

[image: W3C]

[bookmark: title]Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language

[bookmark: w3c-doctype]W3C Recommendation
26 June 2007

	This version:
	http://www.w3.org/TR/2007/REC-wsdl20-20070626
	Latest version:
	http://www.w3.org/TR/wsdl20
	Previous version:
	http://www.w3.org/TR/2007/PR-wsdl20-20070523
	Editors:
	Roberto Chinnici, Sun Microsystems
	Jean-Jacques Moreau, Canon
	Arthur Ryman, IBM
	Sanjiva Weerawarana, WSO2

Please refer to the errata
for this document, which may include some normative
corrections.

This document is also available in these non-normative formats:
XHTML with Z Notation, PDF, PostScript, XML, and plain
text.

See also
translations.

Copyright © 2007 W3C®
(MIT, ERCIM,
Keio), All Rights Reserved.
W3C liability,
trademark
and document
use rules apply.

[bookmark: abstract]Abstract

This document describes the Web Services Description Language
Version 2.0 (WSDL 2.0), an XML language for describing Web
services. This specification defines the core language which can be
used to describe Web services based on an abstract model of what
the service offers. It also defines the conformance criteria for
documents in this language.

[bookmark: status]Status of this Document

This section describes the status of this document at the
time of its publication. Other documents may supersede this
document. A list of current W3C publications and the latest
revision of this technical report can be found in the W3C technical reports index at
http://www.w3.org/TR/.

This is the W3C
Recommendation of Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language for review by W3C Members and
other interested parties. It has been produced by the Web Services Description Working
Group, which is part of the W3C Web Services
Activity.

Please send comments about this document to the public public-ws-desc-comments@w3.org
mailing list (public
archive).

The Working Group released a test suite along with an implementation
report. A diff-marked version
against the previous version of this document is available.

This document has been reviewed by W3C Members, by software
developers, and by other W3C groups and interested parties, and is
endorsed by the Director as a W3C Recommendation. It is a stable
document and may be used as reference material or cited from
another document. W3C's role in making the Recommendation is to
draw attention to the specification and to promote its widespread
deployment. This enhances the functionality and interoperability of
the Web.

This document is governed by the 24
January 2002 CPP as amended by the W3C Patent Policy
Transition Procedure. W3C maintains a public
list of any patent disclosures made in connection with the
deliverables of the group; that page also includes instructions for
disclosing a patent. An individual who has actual knowledge of a
patent which the individual believes contains
Essential Claim(s) must disclose the information in accordance
with
section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents

1. Introduction

 1.1 Service
Description

 1.2 The Meaning of a
Service Description

 1.3 Document
Conformance

 1.4 Notational
Conventions

 1.4.1 RFC 2119 Keywords

 1.4.2 RFC 3986 Namespaces

 1.4.3 XML Schema anyURI

 1.4.4 Prefixes and Namespaces Used in This
Specification

 1.4.5 Terms Used in This Specification

 1.4.6 XML Information Set Properties

 1.4.7 WSDL 2.0 Component Model
Properties

 1.4.8 Z Notation

 1.4.9 BNF Pseudo-Schemas

 1.4.10 Assertions

2. Component Model

 2.1 Description

 2.1.1 The Description Component

 2.1.2 XML Representation of Description
Component

 2.1.2.1
targetNamespace
attribute information item

 2.1.3 Mapping Description's XML Representation to
Component Properties

 2.2 Interface

 2.2.1 The Interface Component

 2.2.2 XML Representation of Interface Component

 2.2.2.1
name attribute information item
with interface [owner element]

 2.2.2.2
extends attribute
information item

 2.2.2.3
styleDefault attribute
information item

 2.2.3 Mapping Interface's XML Representation to
Component Properties

 2.3 Interface
Fault

 2.3.1 The Interface Fault Component

 2.3.2 XML Representation of Interface Fault
Component

 2.3.2.1
name attribute information
item with fault [owner element]

 2.3.2.2
element attribute
information item with fault [owner element]

 2.3.3 Mapping Interface Fault's XML
Representation to Component Properties

 2.4 Interface
Operation

 2.4.1 The Interface Operation Component

 2.4.1.1
Message Exchange Pattern

 2.4.1.2
Operation Style

 2.4.2 XML Representation of Interface
Operation Component

 2.4.2.1
name attribute
information item with operation [owner element]

 2.4.2.2
pattern attribute
information item with operation [owner element]

 2.4.2.3
style attribute
information item with operation [owner element]

 2.4.3 Mapping Interface Operation's XML
Representation to Component Properties

 2.5 Interface Message Reference

 2.5.1 The Interface Message
Reference Component

 2.5.2 XML Representation of Interface
Message Reference Component

 2.5.2.1
messageLabel
attribute information item with input or output [owner element]

 2.5.2.2
element
attribute information item with input or output [owner element]

 2.5.3 Mapping Interface Message
Reference's XML Representation to Component Properties

 2.6 Interface Fault Reference

 2.6.1 The Interface Fault Reference
Component

 2.6.2 XML Representation of Interface
Fault Reference

 2.6.2.1
ref attribute
information item with infault, or outfault [owner element]

 2.6.2.2
messageLabel
attribute information item with infault, or outfault [owner
element]

 2.6.3 Mapping Interface Fault
Reference's XML Representation to Component Properties

 2.7 Binding

 2.7.1 The Binding Component

 2.7.2 XML Representation of Binding Component

 2.7.2.1
name attribute information item
with binding [owner element]

 2.7.2.2
interface attribute
information item with binding [owner element]

 2.7.2.3
type attribute information item
with binding [owner element]

 2.7.2.4
Binding extension
elements

 2.7.3 Mapping Binding's XML Representation to
Component Properties

 2.8 Binding
Fault

 2.8.1 The Binding Fault Component

 2.8.2 XML Representation of Binding Fault
Component

 2.8.2.1
ref attribute information
item with fault [owner element]

 2.8.2.2
Binding Fault extension
elements

 2.8.3 Mapping Binding Fault's XML Representation
to Component Properties

 2.9 Binding
Operation

 2.9.1 The Binding Operation Component

 2.9.2 XML Representation of Binding Operation
Component

 2.9.2.1
ref attribute
information item with operation [owner element]

 2.9.2.2
Binding Operation
extension elements

 2.9.3 Mapping Binding Operation's XML
Representation to Component Properties

 2.10 Binding Message Reference

 2.10.1 The Binding Message Reference
Component

 2.10.2 XML Representation of Binding
Message Reference Component

 2.10.2.1
messageLabel
attribute information item with input or output [owner element]

 2.10.2.2
Binding
Message Reference extension elements

 2.10.3 Mapping Binding Message
Reference's XML Representation to Component Properties

 2.11 Binding Fault Reference

 2.11.1 The Binding Fault Reference
Component

 2.11.2 XML Representation of Binding
Fault Reference Component

 2.11.2.1
ref attribute
information item with infault or outfault [owner element]

 2.11.2.2
messageLabel
attribute information item with infault or outfault [owner
element]

 2.11.2.3
Binding Fault
Reference extension elements

 2.11.3 Mapping Binding Fault
Reference's XML Representation to Component Properties

 2.12 Service

 2.12.1 The Service Component

 2.12.2 XML Representation of Service Component

 2.12.2.1
name attribute information item
with service [owner element]

 2.12.2.2
interface attribute
information item with service [owner element]

 2.12.3 Mapping Service's XML Representation to
Component Properties

 2.13 Endpoint

 2.13.1 The Endpoint Component

 2.13.2 XML Representation of Endpoint Component

 2.13.2.1
name attribute information item
with endpoint [owner element]

 2.13.2.2
binding attribute information
item with endpoint [owner element]

 2.13.2.3
address attribute information
item with endpoint [owner element]

 2.13.2.4
Endpoint extension
elements

 2.13.3 Mapping Endpoint's XML Representation to
Component Properties

 2.14 XML Schema 1.0
Simple Types Used in the Component Model

 2.15 Equivalence of
Components

 2.16 Symbol
Spaces

 2.17 QName
resolution

 2.18 Comparing URIs
and IRIs

3. Types

 3.1 Using W3C XML
Schema Definition Language

 3.1.1 Importing XML Schema

 3.1.1.1
namespace attribute information
item

 3.1.1.2
schemaLocation attribute
information item

 3.1.2 Inlining XML Schema

 3.1.3 References to Element Declarations and
Type Definitions

 3.2 Using Other
Schema Languages

 3.3 Describing
Messages that Refer to Services and Endpoints

 3.3.1 wsdlx:interface attribute information
item

 3.3.2 wsdlx:binding attribute information item

 3.3.3 wsdlx:interface and wsdlx:binding
Consistency

 3.3.4 Use of wsdlx:interface and wsdlx:binding with
xs:anyURI

4. Modularizing WSDL 2.0 descriptions

 4.1 Including
Descriptions

 4.1.1 location attribute information item
with include [owner element]

 4.2 Importing
Descriptions

 4.2.1 namespace attribute information
item

 4.2.2 location attribute information item
with import [owner element]

 4.3 Extensions

5. Documentation

6. Language Extensibility

 6.1 Element-based Extensibility

 6.1.1 Mandatory extensions

 6.1.2 required attribute information item

 6.2 Attribute-based Extensibility

 6.3 Extensibility Semantics

7. Locating WSDL 2.0 Documents

 7.1 wsdli:wsdlLocation attribute information
item

8. Conformance

 8.1 XML Information Set
Conformance

9. XML Syntax Summary (Non-Normative)

10. References

 10.1 Normative References

 10.2 Informative References

[bookmark: appendices]Appendices

A. The application/wsdl+xml
Media Type

 A.1 Registration

 A.2 Fragment
Identifiers

 A.2.1 The Description Component

 A.2.2 The Element Declaration Component

 A.2.3 The Type Definition Component

 A.2.4 The Interface Component

 A.2.5 The Interface Fault Component

 A.2.6 The Interface Operation Component

 A.2.7 The Interface Message Reference
Component

 A.2.8 The Interface Fault Reference
Component

 A.2.9 The Binding Component

 A.2.10 The Binding Fault Component

 A.2.11 The Binding Operation Component

 A.2.12 The Binding Message Reference
Component

 A.2.13 The Binding Fault Reference
Component

 A.2.14 The Service Component

 A.2.15 The Endpoint Component

 A.2.16 Extension Components

 A.3 Security
considerations

B. Acknowledgements (Non-Normative)

C. IRI-References for WSDL 2.0
Components (Non-Normative)

 C.1 WSDL 2.0 IRIs

 C.2 Canonical Form for WSDL 2.0
Component Designators

 C.3 Example

D. Component Summary
(Non-Normative)

E. Assertion Summary
(Non-Normative)

[bookmark: intro]1. Introduction

Web Services Description Language Version 2.0 (WSDL 2.0)
provides a model and an XML format for describing Web services.
WSDL 2.0 enables one to separate the description of the abstract
functionality offered by a service from concrete details of a
service description such as “how” and “where” that functionality is
offered.

This specification defines a language for describing the
abstract functionality of a service as well as a framework for
describing the concrete details of a service description. It also
defines the conformance criteria for documents in this
language.

The companion specification, Web Services Description
Language (WSDL) Version 2.0 Part 2: Adjuncts [WSDL 2.0 Adjuncts] describes extensions
for message exchange patterns, operation safety, operation styles
and binding extensions (for SOAP [SOAP 1.2 Part 1: Messaging Framework (Second
Edition)] and HTTP [IETF RFC
2616]).

[bookmark: intro_ws]1.1 Service
Description

WSDL 2.0 describes a Web service in two fundamental stages: one
abstract and one concrete. Within each stage, the description uses
a number of constructs to promote reusability of the description
and to separate independent design concerns.

At an abstract level, WSDL 2.0 describes a Web service in terms
of the messages it sends and receives; messages are described
independent of a specific wire format using a type system,
typically XML Schema.

An operation associates a message exchange pattern with
one or more messages. A message exchange pattern
identifies the sequence and cardinality of messages sent and/or
received as well as who they are logically sent to and/or received
from. An interface groups together operations without any
commitment to transport or wire format.

At a concrete level, a binding specifies transport and
wire format details for one or more interfaces. An
endpoint associates a network address with a binding. And
finally, a service groups together endpoints that
implement a common interface.

[bookmark: meaning]1.2 The Meaning of a Service
Description

A WSDL 2.0 service description indicates how potential clients
are intended to interact with the described service. It represents
an assertion that the described service fully implements and
conforms to what the WSDL 2.0 document describes. For example, as
further explained in section 6.1.1
Mandatory extensions, if the WSDL 2.0 document
specifies a particular optional extension, the functionality
implied by that extension is only optional to the client. It must
be supported by the Web service.

A WSDL 2.0 interface describes potential interactions with a Web
service, not required interactions. The declaration of an operation
in a WSDL 2.0 interface is not an assertion that the interaction
described by the operation must occur. Rather it is an assertion
that if such an interaction is (somehow) initiated, then the
declared operation describes how that interaction is intended to
occur.

[bookmark: markup]1.3 Document Conformance

An element information item (as defined in
[XML Information Set]) whose
namespace name is "http://www.w3.org/ns/wsdl" and whose local part
is description conforms to this specification if it is
valid according to the XML Schema for that element as defined by
this specification (http://www.w3.org/2007/06/wsdl/wsdl20.xsd)
and additionally adheres to all the constraints contained in this
specification and conforms to the specifications of any extensions
contained in it. Such a conformant element information
item constitutes a WSDL 2.0 document.

The definition of the WSDL 2.0 language is based on the XML
Information Set [XML Information
Set] but also imposes many semantic constraints over and
above structural conformance to this XML Infoset. In order to
precisely describe these constraints, and as an aid in precisely
defining the meaning of each WSDL 2.0 document, the WSDL 2.0
specification defines a component model 2. Component Model as an
additional layer of abstraction above the XML Infoset. Constraints
and meaning are defined in terms of this component model, and the
definition of each component includes a mapping that specifies how
values in the component model are derived from corresponding items
in the XML Infoset.

An XML 1.0 document that is valid with respect to the WSDL 2.0
XML Schema and that maps to a valid WSDL 2.0 Component Model is
conformant to the WSDL 2.0 specification.

[bookmark: notation]1.4 Notational
Conventions

All parts of this specification are normative, with the
EXCEPTION of notes, pseudo-schemas, examples, and sections
explicitly marked as “Non-Normative”.

[bookmark: rfc2119keywords]1.4.1 RFC
2119 Keywords

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL”
in this document are to be interpreted as described in RFC 2119
[IETF RFC 2119].

[bookmark: rfc3986namespaces]1.4.2
RFC 3986 Namespaces

Namespace names of the general form:

	
"http://example.org/..." and

	
"http://example.com/..."

represent application or context-dependent URIs [IETF RFC 3986].

[bookmark: xmlSchemaAnyURI]1.4.3 XML
Schema anyURI

This specification uses the XML Schema type
xs:anyURI (see [XML
Schema: Datatypes]). It is defined so that
xs:anyURI values are essentially IRIs (see
[IETF RFC 3987]). The
conversion from xs:anyURI values to an actual URI is
via an escaping procedure defined by (see [XLink 1.0]), which is identical in most
respects to IRI Section 3.1 (see [IETF RFC
3987]).

For interoperability, WSDL authors are advised to avoid the
US-ASCII characters: "<", ">", '"', space, "{", "}", "|",
"\", "^", and "`", which are allowed by the xs:anyURI
type, but disallowed in IRIs.

[bookmark: nsprefixes]1.4.4 Prefixes and
Namespaces Used in This Specification

This specification uses predefined namespace prefixes
throughout; they are given in the following list. Note that the
choice of any namespace prefix is arbitrary and not semantically
significant (see [XML
Namespaces]).

[bookmark: tabprefns]
Table 1-1. Prefixes and Namespaces used in this
specification	Prefix	Namespace	Notes
	wsdl	"http://www.w3.org/ns/wsdl"	Defined by this specification.
	wsdli	
"http://www.w3.org/ns/wsdl-instance"	Defined by this specification 7.1 wsdli:wsdlLocation attribute
information item.
	wsdlx	
"http://www.w3.org/ns/wsdl-extensions"	Defined by this specification 3.3 Describing Messages that Refer to
Services and Endpoints.
	wrpc	"http://www.w3.org/ns/wsdl/rpc"	Defined by WSDL 2.0: Adjuncts
[WSDL 2.0 Adjuncts].
	wsoap	"http://www.w3.org/ns/wsdl/soap"	Defined by WSDL 2.0: Adjuncts
[WSDL 2.0 Adjuncts].
	whttp	"http://www.w3.org/ns/wsdl/http"	Defined by WSDL 2.0: Adjuncts
[WSDL 2.0 Adjuncts].
	xs	"http://www.w3.org/2001/XMLSchema"	Defined in the W3C XML Schema
specification [XML Schema:
Structures], [XML Schema:
Datatypes].
	xsi	
"http://www.w3.org/2001/XMLSchema-instance"	Defined in the W3C XML Schema
specification [XML Schema:
Structures], [XML Schema:
Datatypes].

[bookmark: terminology]1.4.5 Terms Used in
This Specification

This section describes the terms and concepts introduced in Part
1 of the WSDL Version 2.0 specification (this document).

	Actual Value
	
As in [XML Schema:
Structures], the expression "actual value" is used to
refer to the member of the value space of the simple type
definition associated with an attribute information item which
corresponds to its normalized value. This will often be a string,
but may also be an integer, a boolean, an IRI-reference, etc.

	Inlined Schema
	
An XML schema that is defined in the wsdl:types
element information item of a WSDL 2.0 description. For
example, an XML Schema defined in an xs:schema
element information item 3.1.2 Inlining XML Schema.

[bookmark: xmlinfosetproperties]1.4.6 XML Information Set
Properties

This specification refers to properties in the XML Information
Set [XML Information Set].
Such properties are denoted by square brackets, e.g. [children],
[attributes].

[bookmark: wsdlcomponentmodelproperties]1.4.7 WSDL 2.0 Component Model
Properties

This specification defines and refers to properties in the WSDL
2.0 Component Model 2. Component
Model. Such properties are denoted by curly brackets,
e.g. {name}, {interfaces}.

This specification uses a consistent naming convention for
component model properties that refer to components. If a property
refers to a required or optional component, then the property name
is the same as the component name. If a property refers to a set of
components, then the property name is the pluralized form of the
component name.

[bookmark: znotation]1.4.8 Z Notation

Z Notation [Z Notation
Reference Manual] was used in the development of this
specification. Z Notation is a formal specification language that
is based on standard mathematical notation. The Z Notation for this
specification has been verified using the Fuzz 2000 type-checker
[Fuzz 2000].

Since Z Notation is not widely known, it is not included the
normative version of this specification. However, it is included in
a non-normative version which allows to
dynamically hide and show the Z Notation. Browsers correctly
display the mathematical Unicode characters, provided that the
required fonts are installed. Mathematical fonts for Mozilla
Firefox can be downloaded from the Mozilla Web
site.

The Z Notation was used to improve the quality of the normative
text that defines the Component Model, and to help ensure that the
test suite covered all important rules implied by the Component
Model. However, the Z Notation is non-normative, so any conflict
between it and the normative text is an error in the Z Notation.
Readers and implementers may nevertheless find the Z Notation
useful in cases where the normative text is unclear.

There are two elements of Z Notation syntax that conflict with
the notational conventions described in the preceding sections. In
Z Notation, square brackets are used to introduce basic sets, e.g.
[ID], which conflicts with the use of
square brackets to denote XML Information Set properties 1.4.6 XML Information Set
Properties. Also, in Z Notation, curly brackets are
used to denote set display and set comprehension, e.g.
{1, 2,
3}, which conflicts with the use of curly brackets to denote WSDL
2.0 Component Model properties 1.4.7 WSDL 2.0 Component
Model Properties. However, the intended meaning of
square and curly brackets should be clear from their context and
this minor notational conflict should not cause any confusion.

[bookmark: bnfpseudoschemas]1.4.9 BNF
Pseudo-Schemas

Pseudo-schemas are provided for each component, before the
description of the component. They use BNF-style conventions for
attributes and elements: "?" denotes optionality (i.e. zero or one
occurrences), "*" denotes zero or more occurrences, "+" one or more
occurrences, "[" and "]" are used to form groups, and "|"
represents choice. Attributes are conventionally assigned a value
which corresponds to their type, as defined in the normative
schema. Elements with simple content are conventionally assigned a
value which corresponds to the type of their content, as defined in
the normative schema. Pseudo schemas do not include extension
points for brevity.

<!-- sample pseudo-schema -->
<defined_element
 required_attribute_of_type_string="xs:string"
 optional_attribute_of_type_int="xs:int"? >
 <required_element />
 <optional_element />?
 <one_or_more_of_these_elements />+
 [<choice_1 /> | <choice_2 />]*
</defined_element>

[bookmark: assertions]1.4.10 Assertions

Assertions about WSDL 2.0 documents and components that are not
enforced by the normative XML schema for WSDL 2.0 are marked by a
dagger symbol (†) at the end of a sentence. Each assertion has been
assigned a unique identifier that consists of a descriptive textual
prefix and a unique numeric suffix. The numeric suffixes are
assigned sequentially and never reused so there may be gaps in the
sequence. The assertion identifiers MAY be used by implementations
of this specification for any purpose, e.g. error reporting.

The assertions and their identifiers are summarized in section
E. Assertion
Summary.

[bookmark: component_model]2. Component
Model

This section describes the conceptual model of WSDL 2.0 as a set
of components with attached properties, which collectively describe
a Web service. This model is called the Component Model of
WSDL 2.0. A valid WSDL 2.0 component model is a set of
WSDL 2.0 components and properties that satisfy all the
requirements given in this specification as indicated by keywords
whose interpretation is defined by RFC 2119 [IETF RFC 2119].

[bookmark: zed-ComponentModel]
Components are typed collections of properties that correspond
to different aspects of Web services. Each subsection herein
describes a different type of component, its defined properties,
and its representation as an XML Infoset [XML Information Set].

[bookmark: zed-Component][bookmark: zed-ID][bookmark: zed-Identifier][bookmark: zed-Id][bookmark: zed-ComponentModel1][bookmark: zed-IdentifierValid][bookmark: zed-InterfaceComponents][bookmark: zed-InterfaceComponentIds][bookmark: zed-BindingComponents][bookmark: zed-BindingComponentIds][bookmark: zed-ServiceComponents][bookmark: zed-ServiceComponentIds][bookmark: zed-OtherComponents][bookmark: zed-OtherComponentIds][bookmark: zed-ComponentModel2][bookmark: zed-Base][bookmark: zed-BaseValid][bookmark: zed-NestedBase][bookmark: zed-NestedBaseValid]
Properties are unordered and unique with respect to the
component they are associated with. Individual properties'
definitions may constrain their content (e.g., to a typed value,
another component, or a set of typed values or components), and
components may require the presence of a property to be considered
conformant. Such properties are marked as REQUIRED, whereas those
that are not required to be present are marked as OPTIONAL. By
convention, when specifying the mapping rules from the XML Infoset
representation of a component to the component itself, an optional
property that is absent in the component in question is described
as being “empty”. Unless otherwise specified, when a property is
identified as being a collection (a set or a list), its value may
be a 0-element (empty) collection. In order to simplify the
presentation of the rules that deal with sets of components, for
all OPTIONAL properties whose type is a set, the absence of such a
property from a component MUST be treated as semantically
equivalent to the presence of a property with the same name and
whose value is the empty set. In other words, every OPTIONAL
set-valued property MUST be assumed to have the empty set as its
default value, to be used in case the property is absent.

[bookmark: zed-OPTIONAL]
Component definitions are serializable in XML 1.0 format but are
independent of any particular serialization of the component model.
Component definitions use a subset (see 2.14 XML Schema 1.0 Simple Types Used in the
Component Model) of the simple types defined by the
XML Schema 1.0 specification [XML
Schema: Datatypes].

In addition to the direct XML Infoset representation described
here, the component model allows components external to the Infoset
through the mechanisms described in 4. Modularizing WSDL 2.0
descriptions.

A component model can be extracted from a given XML Infoset
which conforms to the XML Schema for WSDL 2.0 by recursively
mapping Information Items to their identified components, starting
with the wsdl:description element information
item. This includes the application of the mechanisms
described in 4. Modularizing WSDL 2.0
descriptions.

This document does not specify a means of producing an XML
Infoset representation from a component model instance. In
particular, there are in general many valid ways to modularize a
given component model instance into one or more XML Infosets.

[bookmark: Description]2.1 Description

[bookmark: Description_details]2.1.1 The Description Component

At a high level, the Description component is just a
container for two categories of components: WSDL 2.0 components and
type system components.

WSDL 2.0 components are interfaces, bindings and services. Type
system components are element declarations and type
definitions.

Type system components describe the constraints on a message's
content. By default, these constraints are expressed in terms of
the [XML Information Set],
i.e. they define the [local name], [namespace name], [children] and
[attributes] properties of an element information item.
Type systems based upon other data models are generally
accommodated by extensions to WSDL 2.0; see 6. Language
Extensibility. In the case where they define
information equivalent to that of a XML Schema global element
declaration, they can be treated as if they were such a
declaration.

This specification does not define the behavior of a WSDL 2.0
document that uses multiple schema languages for describing type
system components simultaneously.

[bookmark: zed-ElementContentModel]
An [bookmark: component-ElementDeclaration]Element Declaration component
defines the name and content model of an element information
item such as that defined by an XML Schema global element
declaration. It has a {[bookmark: property-ElementDeclaration.name]name} property that is
the QName of the element information item and a {[bookmark: property-ElementDeclaration.system]system} property that is
the namespace IRI of the extension element information
items for the type system, e.g. the namespace of XML
Schema.

[bookmark: zed-ElementDeclaration][bookmark: zed-ElementDeclarationCM]
A [bookmark: component-TypeDefinition]Type Definition component defines
the content model of an element information item such as
that defined by an XML Schema global type definition. It has a
{[bookmark: property-TypeDefinition.name]name} property that is the QName
of the type and a {[bookmark: property-TypeDefinition.system]system} property that is the
namespace IRI of the extension element information items
for the type system, e.g. the namespace of XML Schema.

[bookmark: zed-TypeDefinition][bookmark: zed-TypeDefinitionCM]
Interface, Binding, Service, Element Declaration, and
Type Definition components
are directly contained in the Description component and are referred
to as top-level components. The top-level WSDL 2.0
components contain other components, e.g. Interface Operation and
Endpoint, which are referred to
as nested components. Nested components may contain other
nested components. The component that contains a nested component
is referred to as the parent of the nested component.
Nested components have a {[bookmark: property-.parent]parent} property that is a reference to
their parent component.

[bookmark: zed-TopLevelComponent][bookmark: zed-Name][bookmark: zed-Parent][bookmark: zed-ParentValid][bookmark: zed-NestedComponent][bookmark: zed-ParentId]
The properties of the [bookmark: component-Description]Description component are as
follows:

	
{[bookmark: property-Description.interfaces]interfaces} OPTIONAL. A set
of Interface components.

	
{[bookmark: property-Description.bindings]bindings} OPTIONAL. A set of
Binding components.

	
{[bookmark: property-Description.services]services} OPTIONAL. A set of
Service components.

	
{[bookmark: property-Description.elementdeclarations]element
declarations} OPTIONAL. A set of Element Declaration
components.

	
{[bookmark: property-Description.typedefinitions]type definitions}
REQUIRED. A set of Type
Definition components.

[bookmark: zed-Description][bookmark: zed-stringTD...][bookmark: zed-BuiltInTypeDefComps][bookmark: zed-XMLSchemaURI][bookmark: zed-BuiltInTypeDefIds][bookmark: zed-DescriptionTypeDefs][bookmark: zed-DescriptionKey][bookmark: zed-DescriptionCM]
The set of top-level components contained in the Description component associated with
an initial WSDL 2.0 document consists of the components defined in
the initial document, plus the components associated with the WSDL
2.0 documents that the initial document includes, plus the
components defined by other WSDL 2.0 documents in the namespaces
that the initial document imports. The component model makes no
distinction between the components that are defined in the initial
document versus those that are defined in the included documents or
imported namespaces. However, any WSDL 2.0 document that contains
component definitions that refer by QName to WSDL 2.0 components
that belong to a different namespace MUST contain a
wsdl:import element information item for that
namespace (see 4.2 Importing
Descriptions). Furthermore, all QName references,
whether to the same or to different namespaces must resolve to
components (see 2.17 QName
resolution).

When using the XML Schema language to describe type system
components, the inclusion of Element Declaration components
and Type Definition
components in a Description
component is governed by the rules in 3.1 Using W3C XML Schema Definition
Language.

In addition to WSDL 2.0 components and type system components,
additional extension components MAY be added via extensibility
6. Language
Extensibility. Further, additional properties to WSDL
2.0 and type system components MAY also be added via
extensibility.

[bookmark: Description_XMLRep]2.1.2
XML Representation of Description Component

<description
 targetNamespace="xs:anyURI" >
 <documentation />*
 [<import /> | <include />]*
 <types />?
 [<interface /> | <binding /> | <service />]*
</description>

WSDL 2.0 descriptions are represented in XML by one or more WSDL
2.0 Information Sets (Infosets), that is one or more
description element information items. A WSDL
2.0 Infoset contains representations for a collection of WSDL 2.0
components that share a common target namespace and zero or more
wsdl:import element information items
4.2 Importing Descriptions
that correspond to a collection with components from multiple
target namespaces.

The components directly defined or included within a Description component are said to
belong to the same target namespace. The target namespace
therefore groups a set of related component definitions and
represents an unambiguous name for the intended semantics of the
collection of components. The value of the targetNamespace
attribute information item SHOULD be
dereferencable.†
It SHOULD
resolve to a human or machine processable document that directly or
indirectly defines the intended semantics of those
components.†
It MAY
resolve to a WSDL 2.0 document that provides service description
information for that namespace.†

If a WSDL
2.0 document is split into multiple WSDL 2.0 documents (which may
be combined as needed via 4.1 Including
Descriptions), then the targetNamespace
attribute information item SHOULD resolve to a master WSDL
2.0 document that includes all the WSDL 2.0 documents needed for
that service description.†
This approach enables the WSDL 2.0 component designator fragment
identifiers to be properly resolved.

Components that belong to imported namespaces have different
target namespace values than that of the importing WSDL 2.0
document. Thus importing is the mechanism to use components from
one namespace in the definition of components from another
namespace.

Note that each WSDL 2.0 document or type system component of the
same kind must be uniquely identified by its qualified name. That
is, if two distinct components of the same kind (Interface, Binding, etc.) are in the same target
namespace, then their QNames MUST be unique. However, different
kinds of components (e.g., an Interface component and a Binding component) MAY have the same
QName. Thus, QNames of components must be unique within the space
of those components in a given target namespace.

The description element information item
has the following Infoset properties:

	
A [local name] of description.

	
A [namespace name] of "http://www.w3.org/ns/wsdl".

	
One or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED targetNamespace attribute
information item as described below in 2.1.2.1
targetNamespace attribute information item.

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or
more element information items amongst its [children], in
order as follows:†

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more element information items from among the
following, in any order:

	
Zero or more include element information
items (see 4.1 Including
Descriptions)

	
Zero or more import element information
items (see 4.2 Importing
Descriptions)

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
An OPTIONAL types element information item
(see 3. Types).

	
Zero or more element information items from among the
following, in any order:

	
interface element information items (see
2.2.2 XML Representation of
Interface Component).

	
binding element information items (see
2.7.2 XML Representation of
Binding Component).

	
service element information items (see
2.12.2 XML Representation of
Service Component).

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

[bookmark: Description_targetnamespace_attribute]2.1.2.1
targetNamespace attribute information
item

The targetNamespace attribute information
item defines the namespace affiliation of top-level components
defined in this description element information
item. Interface, Binding and Service are top-level components.

The targetNamespace attribute information
item has the following Infoset properties:

	
A [local name] of targetNamespace

	
A [namespace name] which has no value

The type of the targetNamespace attribute
information item is xs:anyURI. Its value MUST be an
absolute IRI (see [IETF RFC
3987]) and should be dereferencable.†

[bookmark: Description_Mapping]2.1.3 Mapping Description's XML
Representation to Component Properties

The mapping from the XML Representation of the
description element information item (see
2.1.2 XML Representation of
Description Component) to the properties of the
Description component is
described in Table 2-1.

[bookmark: tab_Description_Mapping]
Table 2-1. Mapping from XML Representation to Description
Component Properties	Property	Value
	{interfaces}	The set of Interface components corresponding to
all the interface element information items
in the [children] of the description element
information item, if any, plus any included (via
wsdl:include) or imported (via
wsdl:import) Interface components (see 4. Modularizing WSDL 2.0
descriptions).
	{bindings}	The set of Binding components corresponding to all
the binding element information items in the
[children] of the description element information
item, if any, plus any included (via
wsdl:include) or imported (via
wsdl:import) Binding
components (see 4. Modularizing WSDL
2.0 descriptions).
	{services}	The set of Service components corresponding to all
the service element information items in the
[children] of the description element information
item, if any, plus any included (via
wsdl:include) or imported (via
wsdl:import) Service
components (see 4. Modularizing WSDL
2.0 descriptions).
	{element
declarations}	The set of Element Declaration components
corresponding to all the element declarations defined as
descendants of the types element information
item, if any, plus any included (via xs:include)
or imported (via xs:import) Element Declaration components.
At a minimum this will include all the global element declarations
defined by XML Schema element element information
items. It MAY also include any declarations from some other
type system which describes the [local name], [namespace name],
[attributes] and [children] properties of an element
information item. Each XML Schema element declaration MUST have a
unique QName.†
	{type definitions}	The set of Type Definition components
corresponding to all the type definitions defined as descendants of
the types element information item, if any,
plus any included (via xs:include) or imported (via
xs:import) Type
Definition components. In addition, the built-in datatypes
defined by XML Schema Part 2: Datatypes Second Edition
[XML Schema: Datatypes],
namely the nineteen primitive datatypes xs:string,
xs:boolean, xs:decimal,
xs:float, xs:double,
xs:duration, xs:dateTime,
xs:time, xs:date,
xs:gYearMonth, xs:gYear,
xs:gMonthDay, xs:gDay,
xs:gMonth, xs:hexBinary,
xs:base64Binary, xs:anyURI,
xs:QName, xs:NOTATION, and the
twenty-five derived datatypes xs:normalizedString,
xs:token, xs:language,
xs:NMTOKEN, xs:NMTOKENS,
xs:Name, xs:NCName, xs:ID,
xs:IDREF, xs:IDREFS,
xs:ENTITY, xs:ENTITIES,
xs:integer, xs:nonPositiveInteger,
xs:negativeInteger, xs:long,
xs:int, xs:short, xs:byte,
xs:nonNegativeInteger, xs:unsignedLong,
xs:unsignedInt, xs:unsignedShort,
xs:unsignedByte, xs:positiveInteger. The
set MAY also include any definitions from some other type system
which describes the [attributes] and [children] properties of an
element information item. Each XML Schema type definition MUST have a
unique QName.†

[bookmark: Interface]2.2 Interface

[bookmark: Interface_details]2.2.1
The Interface Component

An Interface component
describes sequences of messages that a service sends and/or
receives. It does this by grouping related messages into
operations. An operation is a sequence of input and output
messages, and an interface is a set of operations.

An interface can optionally extend one or more other interfaces.
To avoid
circular definitions, an interface MUST NOT appear in the set of
interfaces it extends, either directly or indirectly. † The
set of operations available in an interface includes all the
operations defined by the interfaces it extends directly or
indirectly, together with any operations it directly defines. The
operations directly defined on an interface are referred to as the
declared operations of the interface. In the process,
operation components that are equivalent per 2.15 Equivalence of Components
are treated as one single component. The interface extension
mechanism behaves in a similar way for all other components that
can be defined inside an interface, namely Interface Fault components.

Interfaces are named constructs and can be referred to by QName
(see 2.17 QName
resolution). For instance, Binding components refer to interfaces in
this way.

The properties of the [bookmark: component-Interface]Interface component are as follows:

	
{[bookmark: property-Interface.name]name} REQUIRED. An
xs:QName.

	
{[bookmark: property-Interface.extendedinterfaces]extended interfaces}
OPTIONAL. A set of declared Interface components which this
interface extends.

	
{[bookmark: property-Interface.interfacefaults]interface faults}
OPTIONAL. The set of declared Interface Fault components. Note
that the namespace name of the {name} property of each Interface Fault in this set is the
same as the namespace name of the {name} property of this Interface component.

	
{[bookmark: property-Interface.interfaceoperations]interface operations}
OPTIONAL. A set of declared Interface Operation components.
Note that the namespace name of the {name} property of each
Interface Operation in
this set is the same as the namespace name of the {name} property of this Interface component.

[bookmark: zed-Interface][bookmark: zed-InterfaceRI]
For each
Interface component in the
{interfaces}
property of a Description
component, the {name}
property MUST be unique.†

[bookmark: zed-InterfaceKey][bookmark: zed-InterfaceParent][bookmark: zed-InterfaceAllExtendedInterfaces][bookmark: zed-InterfaceExtendsAcyclic][bookmark: zed-InterfaceAllInterfaceOperations][bookmark: zed-InterfaceAllInterfaceFaults][bookmark: zed-InterfaceCM]

[bookmark: Interface_XMLRep]2.2.2 XML
Representation of Interface Component

<description>
 <interface
 name="xs:NCName"
 extends="list of xs:QName"?
 styleDefault="list of xs:anyURI"? >
 <documentation />*
 [<fault /> | <operation />]*
 </interface>
</description>

The XML representation for an Interface component is an element
information item with the following Infoset properties:

	
A [local name] of interface

	
A [namespace name] of "http://www.w3.org/ns/wsdl"

	
One or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED name attribute information item
as described below in 2.2.2.1 name attribute
information item with interface [owner element].

	
An OPTIONAL extends attribute information
item as described below in 2.2.2.2 extends attribute
information item.

	
An OPTIONAL styleDefault attribute information
item as described below in 2.2.2.3 styleDefault
attribute information item.

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or more element information items amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more element information items from among the
following, in any order:

	
Zero or more fault element information
items 2.3.2 XML
Representation of Interface Fault Component.

	
Zero or more operation element information
items 2.4.2 XML
Representation of Interface Operation Component.

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

[bookmark: Interface_name_attribute]2.2.2.1 name
attribute information item with interface
[owner element]

The name attribute information item
together with the targetNamespace attribute
information item of the [parent] description
element information item forms the QName of the
interface.

The name attribute information item has
the following Infoset properties:

	
A [local name] of name

	
A [namespace name] which has no value

The type of the name attribute information
item is xs:NCName.

[bookmark: Interface_extends_attribute]2.2.2.2 extends
attribute information item

The extends attribute information item
lists the interfaces that this interface derives from.

The extends attribute information item has
the following Infoset properties:

	
A [local name] of extends

	
A [namespace name] which has no value

The type of the extends attribute information
item is a whitespace-separated list of xs:QName.

The list of
xs:QName in an extends attribute
information item MUST NOT contain duplicates.†

[bookmark: Interface_styleDefault_attribute]2.2.2.3
styleDefault attribute information item

The styleDefault attribute information
item indicates the default style (see 2.4.1.2 Operation
Style) used to construct the {element
declaration} properties of {interface
message references} of all operations contained within the
[owner element] interface.

The styleDefault attribute information
item has the following Infoset properties:

	
A [local name] of styleDefault.

	
A [namespace name] which has no value.

The type of the styleDefault attribute
information item is list of xs:anyURI. Its value, if present,
MUST contain absolute IRIs (see [IETF RFC
3987]).†

[bookmark: Interface_Mapping]2.2.3
Mapping Interface's XML Representation to Component Properties

The mapping from the XML Representation of the
interface element information item (see
2.2.2 XML Representation of
Interface Component) to the properties of the Interface component is as described in
Table 2-2.

[bookmark: tab_Interface_Mapping]
Table 2-2. Mapping from XML Representation to Interface
Component Properties	Property	Value
	{name}	The QName whose local name is actual
value of the name attribute information item
and whose namespace name is the actual value of the
targetNamespace attribute information item of
the [parent] description element information
item
	{extended
interfaces}	The set of Interface components resolved to by the
values in the extends attribute information
item, if any (see 2.17 QName
resolution).
	{interface faults}	The set of Interface Fault components
corresponding to the fault element information
items in [children], if any.
	{interface
operations}	The set of Interface Operation components
corresponding to the operation element information
items in [children], if any.

Recall that, per 2.2.1 The
Interface Component, the Interface components in the {extended interfaces}
property of a given Interface
component MUST NOT contain that Interface component in any of their
{extended
interfaces} properties, that is to say, recursive extension of
interfaces is disallowed.

[bookmark: InterfaceFault]2.3 Interface
Fault

[bookmark: InterfaceFault_details]2.3.1 The Interface Fault
Component

A fault is an event that occurs during the execution of a
message exchange that disrupts the normal flow of messages.

A fault is typically raised when a party is unable to
communicate an error condition inside the normal message flow, or a
party wishes to terminate a message exchange. A fault message may
be used to communicate out of band information such as the reason
for the error, the origin of the fault, as well as other informal
diagnostics such as a program stack trace.

An Interface Fault
component describes a fault that MAY occur during invocation of an
operation of the interface. The Interface Fault component declares
an abstract fault by naming it and indicating the contents of the
fault message. When and how the fault message flows is indicated by
the Interface Operation
component.

The Interface Fault
component provides a clear mechanism to name and describe the set
of faults an interface may generate. This allows operations to
easily identify the individual faults they may generate by name.
This mechanism allows the ready identification of the same fault
occurring across multiple operations and referenced in multiple
bindings as well as reducing duplication of description for an
individual fault.

Faults other than the ones described in the Interface component may also be
generated at run-time, i.e. faults are an open set. The Interface component describes faults
that have application level semantics, i.e. that the client or
service is expected to handle, and potentially recover from, as
part of the application processing logic. For example, an Interface component that accepts a
credit card number may describe faults that indicate the credit
card number is invalid, has been reported stolen, or has expired.
The Interface component does not
describe general system faults such as network failures, out of
memory conditions, out of disk space conditions, invalid message
formats, etc., although these faults may be generated as part of
the message exchange. Such general system faults can reasonably be
expected to occur in any message exchange and explicitly describing
them in an Interface component
is therefore uninformative.

The properties of the [bookmark: component-InterfaceFault]Interface Fault component are as
follows:

	
{[bookmark: property-InterfaceFault.name]name} REQUIRED. An
xs:QName.

	
{[bookmark: property-InterfaceFault.messagecontentmodel]message content
model} REQUIRED. An xs:token with one of the values
#any, #none, #other, or
#element.†
A value of #any indicates that the fault content is any
single element. A value of #none indicates there is no
fault content. A value of #other indicates that the fault
content is described by some other extension property that
references a declaration in a non-XML extension type system. A
value of #element indicates that the fault consists of a
single element described by the global element declaration
referenced by the {element
declaration} property. This property is used only when the
fault is described using an XML-based data model.

	
{[bookmark: property-InterfaceFault.elementdeclaration]element
declaration} OPTIONAL. A reference to an Element Declaration component
in the {element
declarations} property of the Description component. This element
represents the content or “payload” of the fault. When the {message content
model} property has the value #any or #none
the {element
declaration} property MUST be empty.†

	
{[bookmark: property-InterfaceFault.parent]parent} REQUIRED. The Interface component that contains this
component in its {interface faults}
property.

[bookmark: zed-InterfaceFault][bookmark: zed-InterfaceFaultRI]
For each Interface Fault
component in the {interface faults}
property of an Interface
component, the {name}
property must be unique. Note that this constraint is enforced by
the normative WSDL 2.0 XML schema.

Interface Fault
components are uniquely identified by the QName of the enclosing
Interface component and QName of
the Interface Fault
component itself.

[bookmark: zed-InterfaceFaultKey]

Note:

Despite having a {name} property, Interface Fault components cannot
be identified solely by their QName. Indeed, two Interface components whose {name} property value has the same
namespace name, but different local names, can contain Interface Fault components with the
same {name} property
value. Thus, the {name}
property of Interface Fault
component is not sufficient to form the unique identity of an
Interface Fault component.
A method for uniquely identifying components is defined in A.2 Fragment Identifiers. See
A.2.5 The Interface Fault
Component for the definition of the fragment
identifier for the Interface
Fault component.

In
cases where, due to an interface extending one or more other
interfaces, two or more Interface Fault components have the
same value for their {name} property, then the
component models of those Interface Fault components MUST be
equivalent (see 2.15 Equivalence of
Components). †
If the Interface Fault
components are equivalent then they are considered to collapse into
a single component. Within the same Interface component, if two Interface Fault components are not
equivalent then their {name} properties MUST NOT be
equal.

[bookmark: zed-InterfaceFaultNameUnique]
Note that, due to the above rules, if two interfaces that have
the same value for the namespace name of their {name} property also have one or more
faults that have the same value for their {name} property, then those two
interfaces cannot both form part of the derivation chain of a
derived interface unless those faults are the same fault.

For the
above reason, it is considered good practice to ensure, where
necessary, that the local name of the {name} property of Interface Fault components within a
namespace SHOULD be unique, thus allowing such derivation to occur
without inadvertent error.†

If a type system NOT based on the XML Infoset [XML Information Set] is in use (as
considered in 3.2 Using Other Schema
Languages) then additional properties would need to be
added to the Interface
Fault component (along with extension attributes to its XML
representation) to allow associating such message types with the
message reference.

[bookmark: zed-InterfaceFaultCM]

[bookmark: InterfaceFault_XMLRep]2.3.2 XML Representation of Interface
Fault Component

<description>
 <interface>
 <fault
 name="xs:NCName"
 element="union of xs:QName, xs:token"? >
 <documentation />*
 </fault>
 </interface>
</description>

The XML representation for an Interface Fault component is an
element information item with the following Infoset
properties:

	
A [local name] of fault

	
A [namespace name] of "http://www.w3.org/ns/wsdl"

	
One or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED name attribute information item
as described below in 2.3.2.1 name attribute
information item with fault [owner element].

	
An OPTIONAL element attribute information
item as described below in 2.3.2.2 element attribute
information item with fault [owner element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or more element information item amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more namespace-qualified element information
item s whose [namespace name] is NOT "
http://www.w3.org/ns/wsdl " .

[bookmark: Interfacefault_name_attribute]2.3.2.1 name
attribute information item with fault [owner
element]

The name attribute information item
identifies a given fault element information
item inside a given interface element
information item.

The name attribute information item has
the following Infoset properties:

	
A [local name] of name

	
A [namespace name] which has no value

The type of the name attribute information
item is xs:NCName.

[bookmark: Interface_element_attribute]2.3.2.2 element
attribute information item with fault [owner
element]

The element attribute information item
refers, by QName, to an Element Declaration
component.

The element attribute information item has
the following Infoset properties:

	
A [local name] of element.

	
A [namespace name] which has no value.

The type of the element attribute information
item is a union of xs:QName and xs:token
where the allowed token values are #any, #none,
or #other.

[bookmark: InterfaceFault_Mapping]2.3.3 Mapping Interface Fault's XML
Representation to Component Properties

The mapping from the XML Representation of the
fault element information item (see 2.3.2 XML Representation of
Interface Fault Component) to the properties of the
Interface Fault component
is as described in Table
2-3.

[bookmark: tab_InterfaceFault_Mapping]
Table 2-3. Mapping from XML Representation to Interface
Fault Component Properties	Property	Value
	{name}	The QName whose local name is the
actual value of the name attribute information
item. and whose namespace name is the actual value of the
targetNamespace attribute information item of
the [parent] description element information
item of the [parent] interface element
information item.
	{message content
model}	If the element
attribute information item is present and its value is a
QName, then #element; otherwise the actual value of the
element attribute information item, if any;
otherwise #other.
	{element
declaration}	If the element
attribute information item is present and its value is a
QName, then the Element
Declaration component from the {element
declarations} property of the Description component resolved to by
the value of the element attribute information
item (see 2.17 QName
resolution); otherwise empty. If the
element attribute information item has a
value, then it MUST resolve to an Element Declaration component
from the {element
declarations} property of the Description component.†
	{parent}	The Interface component corresponding to the
interface element information item in
[parent].

[bookmark: InterfaceOperation]2.4
Interface Operation

[bookmark: InterfaceOperation_details]2.4.1 The Interface Operation
Component

An Interface
Operation component describes an operation that a given
interface supports. An operation is an interaction with the service
consisting of a set of (ordinary and fault) messages exchanged
between the service and the other parties involved in the
interaction. The sequencing and cardinality of the messages
involved in a particular interaction is governed by the message
exchange pattern used by the operation (see {message
exchange pattern} property).

A message exchange pattern defines placeholders for messages,
the participants in the pattern (i.e., the sources and sinks of the
messages), and the cardinality and sequencing of messages exchanged
by the participants. The message placeholders are associated with
specific message types by the operation that uses the pattern by
means of message and fault references (see {interface
message references} and {interface
fault references} properties). The service whose operation is
using the pattern becomes one of the participants of the pattern.
This specification does not define a machine understandable
language for defining message exchange patterns, nor does it define
any specific patterns. The companion specification, [WSDL 2.0 Adjuncts] defines a set of such
patterns and defines identifying IRIs any of which MAY be used as
the value of the {message
exchange pattern} property.

The properties of the [bookmark: component-InterfaceOperation]Interface Operation component
are as follows:

	
{[bookmark: property-InterfaceOperation.name]name} REQUIRED. An
xs:QName.

	
{[bookmark: property-InterfaceOperation.messageexchangepattern]message
exchange pattern} REQUIRED. An xs:anyURI identifying
the message exchange pattern used by the operation. This
xs:anyURI MUST be an absolute IRI (see [IETF RFC 3987]).†

	
{[bookmark: property-InterfaceOperation.interfacemessagereferences]interface
message references} OPTIONAL. A set of Interface Message
Reference components for the ordinary messages the operation
accepts or sends.

	
{[bookmark: property-InterfaceOperation.interfacefaultreferences]interface
fault references} OPTIONAL. A set of Interface Fault Reference
components for the fault messages the operation accepts or
sends.

	
{[bookmark: property-InterfaceOperation.style]style} OPTIONAL. A set of
xs:anyURIs identifying the rules that were used to
construct the {element
declaration} properties of {interface
message references}. (See 2.4.1.2 Operation
Style.) These xs:anyURIs MUST be absolute IRIs
(see [IETF RFC
3986]).†

	
{[bookmark: property-InterfaceOperation.parent]parent} REQUIRED. The
Interface component that
contains this component in its {interface operations}
property.

[bookmark: zed-InterfaceOperation][bookmark: zed-InterfaceOperationRI]
For each Interface
Operation component in the {interface operations}
property of an Interface
component, the {name} property MUST be
unique. Note that this constraint is enforced by the normative WSDL
2.0 XML schema.

Interface Operation
components are uniquely identified by the QName of the enclosing
Interface component and QName of
the Interface Operation
component itself.

[bookmark: zed-InterfaceOperationKey]

Note:

Despite having a {name} property, Interface Operation components
cannot be identified solely by their QName. Indeed, two Interface components whose {name} property value has the same
namespace name, but different local names, can contain Interface Operation components
with the same {name} property value. Thus,
the {name} property
of Interface Operation
components is not sufficient to form the unique identity of an
Interface Operation
component. A method for uniquely identifying components is defined
in A.2 Fragment
Identifiers . See A.2.6 The Interface Operation
Component for the definition of the fragment
identifier for the Interface Operation
component.

In
cases where, due to an interface extending one or more other
interfaces, two or more Interface Operation components
have the same value for their {name} property, then the
component models of those Interface Operation components MUST be
equivalent (see 2.15 Equivalence of
Components).†
If the Interface
Operation components are equivalent then they are considered to
collapse into a single component. Within the same Interface component, if two Interface Operation components
are not equivalent then their {name} properties MUST NOT
be equal.

[bookmark: zed-InterfaceOperationNameUnique]
Note that, due to the above rules, if two interfaces that have
the same value for the namespace name of their {name} property also have one or more
operations that have the same value for their {name} property, then those
two interfaces cannot both form part of the derivation chain of a
derived interface unless those operations are the same
operation.

For
the above reason, it is considered good practice to ensure, where
necessary, that the {name} property of Interface Operation components
within a namespace SHOULD be unique, thus allowing such derivation
to occur without inadvertent error.†

More than one Interface Fault Reference
component in the {interface
fault references} property of an Interface Operation component
may refer to the same message label. In that case, the listed fault
types define alternative fault messages. This allows one to
indicate that there is more than one type of fault that is related
to that message.

[bookmark: zed-InterfaceOperationParent][bookmark: zed-InterfaceOperationCM]

[bookmark: MessageExchangePattern]2.4.1.1 Message Exchange Pattern

This section describes some aspects of message exchange patterns
in more detail. Refer to the Web Services Description Language
(WSDL) Version 2.0 Part 2: Adjuncts specification
[WSDL 2.0 Adjuncts] for a
complete discussion of the semantics of message exchange patterns
in general, as well as the definitions of the message exchange
patterns that are predefined by WSDL 2.0.

A placeholder message is a template for an actual
message as described by an Interface Message
Reference component. Although a placeholder message is not
itself a component, it is useful to regard it as having both a
{message
label} and a {direction}
property which define the values of the actual Interface Message
Reference component that corresponds to it. A placeholder
message is also associated with some node that exchanges the
message with the service. Furthermore, a placeholder message may be
designated as optional in the exchange.

[bookmark: zed-Node][bookmark: zed-PlaceholderMessage]
A fault propagation ruleset specifies the relation
between the Interface
Fault Reference and Interface Message
Reference components of an Interface Operation component.
The Web Services Description Language (WSDL) Version 2.0 Part
2: Adjuncts specification [WSDL
2.0 Adjuncts] defines three fault propagation rulesets
which we will refer to as fault-replaces-message,
message-triggers-fault, and no-faults. These
three fault propagation rulesets are used by the predefined message
exchange patterns defined in [WSDL 2.0
Adjuncts]. Other message exchange patterns can define
additional fault propagation rulesets.

[bookmark: zed-FaultPropagationRuleset]
A message exchange pattern is a template for the
exchange of one or more messages, and their associated faults,
between the service and one or more other nodes as described by an
Interface Operation
component. The service and the other nodes are referred to as the
participants in the exchange. More specifically, a message
exchange pattern consists of a sequence of one or more placeholder
messages. Each placeholder message within this sequence is uniquely
identified by its {message
label} property. A message exchange pattern is itself uniquely
identified by an absolute IRI, which is used as the value of the
{message
exchange pattern} property of the Interface Operation component,
and which specifies the fault propagation ruleset that its faults
obey.†

[bookmark: zed-MessageExchangePattern]

[bookmark: InterfaceOperationStyle]2.4.1.2 Operation Style

An operation style specifies additional information about an
operation. For example, an operation style may define structural
constraints on the element declarations of the interface message
reference or interface fault components used by the operation. This
additional information in no way affects the messages and faults
exchanged with the service and it can therefore be safely ignored
in that context. However, the additional information can be used
for other purposes, for example, improved code generation. The
{style} property
of the Interface
Operation component contains a set of zero or more IRIs that
identify operation styles. An Interface Operation component
MUST satisfy the specification defined by each operation style
identified by its {style} property.
†
If no Interface
Operation component can simultaneously satisfy all of the
styles, the document is invalid.

If the {style}
property of an Interface
Operation component does have a value, then that value (a set
of IRIs) specifies the rules that were used to define the element
declarations (or other properties that define the message and fault
contents; see 3.2 Using Other Schema
Languages) of the Interface Message
Reference or Interface
Fault components used by the operation. Although a given
operation style has the ability to constrain all input and
output messages and faults of an operation, it MAY choose to
constrain any combination thereof, e.g. only the messages, or only
the inputs.

Please refer to the Web Services Description Language (WSDL)
Version 2.0 Part 2: Adjuncts specification [WSDL 2.0 Adjuncts] for particular
operation style definitions.

[bookmark: InterfaceOperation_XMLRep]2.4.2 XML Representation of
Interface Operation Component

<description>
 <interface>
 <operation
 name="xs:NCName"
 pattern="xs:anyURI"?
 style="list of xs:anyURI"? >
 <documentation />*
 [<input /> | <output /> | <infault /> | <outfault />]*
 </operation>
 </interface>
</description>

The XML representation for an Interface Operation component
is an element information item with the following Infoset
properties:

	
A [local name] of operation

	
A [namespace name] of "http://www.w3.org/ns/wsdl"

	
Two or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED name attribute information item
as described below in 2.4.2.1 name attribute
information item with operation [owner element].

	
An OPTIONAL pattern attribute information
item as described below in 2.4.2.2 pattern
attribute information item with operation [owner
element].

	
An OPTIONAL style attribute information
item as described below in 2.4.2.3 style
attribute information item with operation [owner
element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
One or more element information item amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
One or more element information items from among the
following, in any order:

	
One or more element information items from among the
following, in any order:

	
Zero or more input element information
items (see 2.5.2 XML
Representation of Interface Message Reference
Component).

	
Zero or more output element information
items (see 2.5.2 XML
Representation of Interface Message Reference
Component).

	
Zero or more infault element information
items (see 2.6.2 XML Representation
of Interface Fault Reference).

	
Zero or more outfault element information
items (see 2.6.2 XML Representation
of Interface Fault Reference).

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

[bookmark: Interfaceoperation_name_attribute]2.4.2.1 name
attribute information item with operation
[owner element]

The name attribute information item
identifies a given operation element information
item inside a given interface element
information item.

The name attribute information item has
the following Infoset properties:

	
A [local name] of name

	
A [namespace name] which has no value

The type of the name attribute information
item is xs:NCName.

[bookmark: Interfaceoperation_pattern_attribute]2.4.2.2
pattern attribute information item with
operation [owner element]

The pattern attribute information item
identifies the message exchange pattern a given operation uses.

The pattern attribute information item has
the following Infoset properties:

	
A [local name] of pattern

	
A [namespace name] which has no value

The type of the pattern attribute information
item is xs:anyURI. Note that its value must be an
absolute IRI (see [IETF RFC
3987]).

[bookmark: InterfaceOperation_style_attribute]2.4.2.3 style
attribute information item with operation
[owner element]

The style attribute information item
indicates the rules that were used to construct the {element
declaration} properties of the Interface Message
Reference components which are members of the {interface
message references} property of the [owner element]
operation.

The style attribute information item has
the following Infoset properties:

	
A [local name] of style

	
A [namespace name] which has no value

The type of the style attribute information
item is list of xs:anyURI. Note that its value must
be an absolute IRI (see [IETF RFC
3987]).

[bookmark: InterfaceOperation_Mapping]2.4.3 Mapping Interface
Operation's XML Representation to Component Properties

The mapping from the XML Representation of the
operation element information item (see
2.4.2 XML
Representation of Interface Operation Component) to
the properties of the Interface Operation component (see 2.4.1 The Interface Operation
Component) is as described in Table 2-4.

[bookmark: tab_InterfaceOperation_Mapping]
Table 2-4. Mapping from XML Representation to Interface
Operation Component Properties	Property	Value
	{name}	The QName whose local name is the
actual value of the name attribute information
item and whose namespace name is the actual value of the
targetNamespace attribute information item of
the [parent] description element information
item of the [parent] interface element
information item.
	{message
exchange pattern}	The actual value of the
pattern attribute information item; otherwise
'http://www.w3.org/ns/wsdl/in-out'.
	{interface
message references}	The set of message references
corresponding to the input and output
element information items in [children], if any.
	{interface
fault references}	The set of interface fault references
corresponding to the infault and outfault
element information items in [children], if any.
	{style}	The set containing the IRIs in the
actual value of the style attribute information
item, if present; otherwise the set containing the IRIs in the
actual value of the styleDefault attribute
information item of the [parent] interface
element information item, if present; otherwise
empty.
	{parent}	The Interface component corresponding to the
interface element information item in
[parent].

[bookmark: InterfaceMessageReference]2.5 Interface Message
Reference

[bookmark: InterfaceMessageReference_details]2.5.1 The Interface Message
Reference Component

An Interface
Message Reference component defines the content, or
payload, of a message exchanged in an operation. By
default, the message content is defined by an XML-based type system
such as XML Schema. Other type systems may be used via the WSDL 2.0
type system extension mechanism.

A message exchange pattern defines a set of placeholder messages
that participate in the pattern and assigns them unique message
labels within the pattern (e.g. 'In', 'Out'). The purpose of an
Interface Message
Reference component is to associate an actual message element
(XML element declaration or some other declaration (see 3.2 Using Other Schema
Languages)) with a message in the pattern, as
identified by its message label. Later, when the message exchange
pattern is instantiated, messages corresponding to that particular
label will follow the element assignment made by the Interface Message
Reference component.

The properties of the [bookmark: component-InterfaceMessageReference]Interface Message
Reference component are as follows:

	
{[bookmark: property-InterfaceMessageReference.messagelabel]message
label} REQUIRED. An xs:NCName. This property
identifies the role this message plays in the {message
exchange pattern} of the Interface Operation component
this message is contained within. The value of this property MUST match the
name of a placeholder message defined by the message exchange
pattern.†

	
{[bookmark: property-InterfaceMessageReference.direction]direction}
REQUIRED. An xs:token with one of the values
in or out, indicating whether the message is
coming to the service or going from the service,
respectively.†
The direction MUST be the same as the direction
of the message identified by the {message
label} property in the {message
exchange pattern} of the Interface Operation component
this is contained within.†

	
{[bookmark: property-InterfaceMessageReference.messagecontentmodel]message
content model} REQUIRED. An
xs:token with one of the values #any,
#none, #other, or #element.†
A value of #any indicates that the message content is any
single element. A value of #none indicates there is no
message content. A value of #other indicates that the
message content is described by some other extension property that
references a declaration in a non-XML extension type system. A
value of #element indicates that the message consists of a
single element described by the global element declaration
referenced by the {element
declaration} property. This property is used only when the
message is described using an XML-based data model.

	
{[bookmark: property-InterfaceMessageReference.elementdeclaration]element
declaration} OPTIONAL. A reference to an Element Declaration component
in the {element
declarations} property of the Description component. This element
represents the content or “payload” of the message. When the
{message
content model} property has the value #any or
#none, the {element
declaration} property MUST be empty.†

	
{[bookmark: property-InterfaceMessageReference.parent]parent} REQUIRED.
The Interface Operation
component that contains this component in its {interface
message references} property.

[bookmark: zed-Direction][bookmark: zed-MessageContentModel][bookmark: zed-InterfaceMessageReference][bookmark: zed-InterfaceMessageReferenceRI]
For each Interface Message
Reference component in the {interface
message references} property of an Interface Operation component,
its {message
label} property MUST be unique.†

[bookmark: zed-InterfaceMessageReferenceKey]
If a type system not based upon the XML Infoset is in use (as
considered in 3.2 Using Other Schema
Languages), then additional properties would need to
be added to the Interface Message
Reference component (along with extension attributes to its XML
representation) to allow associating such message types with the
message reference.

[bookmark: zed-InterfaceMessageReferenceCM]

[bookmark: InterfaceMessageReference_XMLRep]2.5.2 XML Representation of
Interface Message Reference Component

<description>
 <interface>
 <operation>
 <input
 messageLabel="xs:NCName"?
 element="union of xs:QName, xs:token"? >
 <documentation />*
 </input>
 <output
 messageLabel="xs:NCName"?
 element="union of xs:QName, xs:token"? >
 <documentation />*
 </output>
 </operation>
 </interface>
</description>

The XML representation for an Interface Message
Reference component is an element information item
with the following Infoset properties:

	
A [local name] of input or output

	
A [namespace name] of "http://www.w3.org/ns/wsdl"

	
Zero or more attribute information items amongst its
[attributes] as follows:

	
An OPTIONAL messageLabel attribute information
item as described below in 2.5.2.1
messageLabel attribute information item with input or output [owner
element].

	
An OPTIONAL element attribute information
item as described below in 2.5.2.2
element attribute information item with input or output [owner
element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or more element information item amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

[bookmark: InterfaceMessageReference_messageReference_attribute]2.5.2.1
messageLabel attribute information item with
input or output [owner element]

The messageLabel attribute information
item identifies the role of this message in the message
exchange pattern of the given operation element
information item.

The messageLabel attribute information
item has the following Infoset properties:

	
A [local name] of messageLabel

	
A [namespace name] which has no value

The type of the messageLabel attribute
information item is xs:NCName.

[bookmark: InterfaceMessageReference_element_attribute]2.5.2.2
element attribute information item with
input or output [owner element]

The element attribute information item has
the following Infoset properties:

	
A [local name] of element.

	
A [namespace name] which has no value.

The type of the element attribute information
item is a union of xs:QName and xs:token
where the allowed token values are #any, #none,
or #other.

[bookmark: InterfaceMessageReference_Mapping]2.5.3 Mapping Interface
Message Reference's XML Representation to Component Properties

The mapping from the XML Representation of the interface message
reference element information item (see 2.5.2 XML
Representation of Interface Message Reference
Component) to the properties of the Interface Message
Reference component (see 2.5.1 The Interface
Message Reference Component) is as described in
Table 2-5 and
uses the definitions below.

Define the message exchange pattern of the element
information item to be the {message
exchange pattern} of the parent Interface Operation
component.

Define the message direction of the element
information item to be in if its local name is
input, and out if its local name is
output.

Note that the messageLabel attribute
information item of an interface message reference element
information item must be present if the message exchange
pattern has more than one placeholder message with {direction}
equal to the message direction.

If the
messageLabel attribute information item of an
interface message reference element information item is
present, then its actual value MUST match the {message
label} of some placeholder message with {direction}
equal to the message direction. †

If the
messageLabel attribute information item of an
interface message reference element information item is
absent then there MUST be a unique placeholder message with
{direction}
equal to the message direction. †

Define the effective message label of an interface
message reference element information item to be either
the actual value of the messageLabel attribute
information item if it is present, or the {message
label} of the unique placeholder message with {direction}
equal to the message direction if the attribute information
item is absent.

If the
local name is input then the message exchange pattern
MUST have at least one placeholder message with direction
"In".†

If the
local name is output then the message exchange pattern
MUST have at least one placeholder message with direction
"Out".†

If the
local name is infault then the message exchange
pattern MUST support at least one fault in the "In"
direction.†

If the
local name is outfault then the message exchange
pattern MUST support at least one fault in the "Out"
direction.†

[bookmark: tab_InterfaceMessageReference_Mapping]
Table 2-5. Mapping from XML Representation to Interface
Message Reference Component Properties	Property	Value
	{message
label}	The effective message label.
	{direction}	The message direction.
	{message
content model}	If the element
attribute information item is present and its value is a
QName, then #element; otherwise the actual value of the
element attribute information item, if any;
otherwise #other.
	{element
declaration}	If the element
attribute information item is present and its value is a
QName, then the Element
Declaration component from the {element
declarations} property of the Description component resolved to by
the value of the element attribute information
item (see 2.17 QName
resolution); otherwise empty. If the
element attribute information item has a
value, then it MUST resolve to an Element Declaration component
from the {element
declarations} property of the Description component.†
	{parent}	The Interface Operation component
corresponding to the interface element information
item in [parent].

[bookmark: InterfaceFaultReference]2.6 Interface Fault Reference

[bookmark: InterfaceFaultReference_details]2.6.1 The Interface Fault
Reference Component

An Interface Fault
Reference component associates a defined type, specified by an
Interface Fault component,
to a fault message exchanged in an operation.

A message exchange pattern defines a set of placeholder messages
that participate in the pattern and assigns them unique message
labels within the pattern (e.g. 'In', 'Out'). The purpose of an
Interface Fault
Reference component is to associate an actual message type (XML
element declaration or some other declaration (see 3.2 Using Other Schema
Languages) for message content, as specified by an
Interface Fault component)
with a fault message occurring in the pattern. In order to identify
the fault message it describes, the Interface Fault Reference
component uses the message label of the message the fault is
associated with, as a key.

As indicated earlier, the companion specification
[WSDL 2.0 Adjuncts] defines
several fault propagation rulesets that a given message
exchange pattern may use. For the ruleset
fault-replaces-message, the message that the fault relates
to identifies the message in place of which the declared
fault message will occur. Thus, the fault message will travel in
the same direction as the message it replaces in the
pattern. For the ruleset message-triggers-fault, the
message that the fault relates to identifies the message after
which the indicated fault may occur, in the opposite direction
of the referred to message. That is, the fault message will travel
in the opposite direction of the message it comes after in
the message exchange pattern.

The properties of the [bookmark: component-InterfaceFaultReference]Interface Fault Reference
component are as follows:

	
{[bookmark: property-InterfaceFaultReference.interfacefault]interface
fault} REQUIRED. An Interface Fault component in the
{interface
faults} property of the [parent] Interface Operation component's
[parent] Interface component, or
an Interface component that it
directly or indirectly extends. Identifying the Interface Fault component therefore
indirectly defines the actual content or payload of the fault
message.

	
{[bookmark: property-InterfaceFaultReference.messagelabel]message label}
REQUIRED. An xs:NCName. This property identifies the
message this fault relates to among those defined in the {message
exchange pattern} property of the Interface Operation component
it is contained within. The value of this property MUST match the
name of a placeholder message defined by the message exchange
pattern.†

	
{[bookmark: property-InterfaceFaultReference.direction]direction}
REQUIRED. A xs:token with one of the values in or
out, indicating whether the fault is coming to the service
or going from the service, respectively. The
direction MUST be consistent with the direction implied by the
fault propagation ruleset used in the message exchange pattern of
the operation.†
For example, if the ruleset fault-replaces-message is
used, then a fault that refers to an outgoing message would have a
{direction}
property value of out. On the other hand, if the ruleset
message-triggers-fault is used, then a fault that refers
to an outgoing message would have a {direction}
property value of in as the fault travels in the opposite
direction of the message.

	
{[bookmark: property-InterfaceFaultReference.parent]parent} REQUIRED. The
Interface Operation
component that contains this component in its {interface
fault references} property.

[bookmark: zed-InterfaceFaultReference][bookmark: zed-InterfaceFaultReferenceRI]
For each Interface Fault Reference
component in the {interface
fault references} property of an Interface Operation component,
the combination of its {interface
fault} and {message label}
properties MUST be unique.†

[bookmark: zed-InterfaceFaultReferenceKey][bookmark: zed-InterfaceFaultReferenceConsistent][bookmark: zed-InterfaceFaultReferenceCM]

[bookmark: InterfaceFaultReference_XMLRep]2.6.2 XML Representation of
Interface Fault Reference

<description>
 <interface>
 <operation>
 <infault
 ref="xs:QName"
 messageLabel="xs:NCName"? >
 <documentation />*
 </infault>*
 <outfault
 ref="xs:QName"
 messageLabel="xs:NCName"? >
 <documentation />*
 </outfault>*
 </operation>
 </interface>
</description>

The XML representation for an Interface Fault Reference
component is an element information item with the
following Infoset properties:

	
A [local name] of infault or
outfault

	
A [namespace name] of "http://www.w3.org/ns/wsdl"

	
One or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED ref attribute information item
as described below in 2.6.2.1 ref
attribute information item with infault, or outfault [owner
element].

	
An OPTIONAL messageLabel attribute information
item as described below in 2.6.2.2
messageLabel attribute information item with infault, or outfault
[owner element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or more element information item amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

[bookmark: InterfaceFaultReference_ref_attribute]2.6.2.1
ref attribute information item with
infault, or outfault [owner element]

The ref attribute information item refers
to a fault component.

The ref attribute information item has the
following Infoset properties:

	
A [local name] of ref

	
A [namespace name] which has no value

The type of the ref attribute information
item is xs:QName.

[bookmark: InterfaceFaultReference_messageReference_attribute]2.6.2.2
messageLabel attribute information item with
infault, or outfault [owner element]

The messageLabel attribute information
item identifies the message in the message exchange pattern of
the given operation element information item
that is associated with this fault.

The messageLabel attribute information
item has the following Infoset properties:

	
A [local name] of messageLabel

	
A [namespace name] which has no value

The type of the messageLabel attribute
information item is xs:NCName.

The messageLabel attribute
information item MUST be present in the XML representation of
an Interface Fault
Reference component with a given {direction}, if
the {message
exchange pattern} of the parent Interface Operation component
has more than one fault with that direction.†
Recall that the fault propagation ruleset of the {message
exchange pattern} specifies the relation between faults and
messages. For example, the fault-replaces-message ruleset
specifies that the faults have the same direction as the messages,
while the message-triggers-fault ruleset specifies that
the faults have the opposite direction from the messages.

[bookmark: InterfaceFaultReference_Mapping]2.6.3 Mapping Interface Fault
Reference's XML Representation to Component Properties

The mapping from the XML Representation of the message reference
element information item (see 2.6.2 XML Representation
of Interface Fault Reference) to the properties of the
Interface Fault Reference component (see 2.6.1 The Interface
Fault Reference Component) is as described in Table 2-6 and uses the
definitions below.

Define the message exchange pattern of the element
information item to be the {message
exchange pattern} of the parent Interface Operation
component.

Define the fault direction of the element
information item to be in if its local name is
infault and out if its local name is
outfault.

Define the message direction of the element
information item to be the {direction} of
the placeholder message associated with the fault as specified by
the fault propagation ruleset of the message exchange pattern.

The
messageLabel attribute information item of an
interface fault reference element information item MUST be
present if the message exchange pattern has more than one
placeholder message with {direction}
equal to the message direction. †

If the
messageLabel attribute information item of an
interface fault reference element information item is
present then its actual value MUST match the {message
label} of some placeholder message with {direction}
equal to the message direction. †

If the
messageLabel attribute information item of an
interface fault reference element information item is
absent then there MUST be a unique placeholder message with
{direction}
equal to the message direction. †

Define the effective message label of an interface
fault reference element information item to be either the
actual value of the messageLabel attribute
information item if it is present, or the {message
label} of the unique placeholder message whose {direction} is
equal to the message direction if the attribute information
item is absent.

[bookmark: tab_InterfaceFaultReference_Mapping]
Table 2-6. Mapping from XML Representation to Interface
Fault Reference Component Properties	Property	Value
	{interface
fault}	The Interface Fault component from
{interface
faults} property of the parent Interface component, or an Interface component that it directly or
indirectly extends, with {name} equal to the actual value
of the ref attribute information item.
	{message
label}	The effective message label.
	{direction}	The fault direction.
	{parent}	The Interface Operation component
corresponding to the interface element information
item in [parent].

[bookmark: Binding]2.7 Binding

[bookmark: Binding_details]2.7.1 The
Binding Component

A Binding component describes a
concrete message format and transmission protocol which may be used
to define an endpoint (see 2.13
Endpoint). That is, a Binding component defines the
implementation details necessary to access the service.

Binding components can be used
to describe such information in a reusable manner for any interface
or specifically for a given interface. Furthermore, binding
information MAY be specified on a per-operation basis (see 2.9.1 The Binding Operation
Component) within an interface, in addition to across
all operations of an interface.

If a Binding component specifies any
operation-specific binding details (by including Binding Operation components) or
any fault binding details (by including Binding Fault components), then it
MUST specify an interface the Binding component applies to, so as to
indicate which interface the operations come from.†

Conversely, a Binding component
which omits any operation-specific binding details and any fault
binding details MAY omit specifying an interface. Binding components that do not specify an
interface MAY be used to specify operation-independent binding
details for Service components
with different interfaces. That is, such Binding components are reusable across one
or more interfaces.

No concrete binding details are given in this specification. The
companion specification, Web Services Description Language
(WSDL) Version 2.0 Part 2: Adjuncts [WSDL 2.0 Adjuncts] defines such bindings
for SOAP 1.2 [SOAP 1.2 Part 1:
Messaging Framework (Second Edition)] and HTTP
[IETF RFC 2616]. Other
specifications MAY define additional binding details. Such
specifications are expected to annotate the Binding component (and its sub-components)
with additional properties and specify the mapping from the XML
representation to these properties.

A Binding component that defines bindings
for an Interface component MUST
define bindings for all the operations of that Interface component.† The
bindings can occur via defaulting rules which allow one to specify
default bindings for all operations and faults (see, for example
[WSDL 2.0 Adjuncts]) or by
defining bindings for each Interface Operation and
Interface Fault component
of the Interface component.

Similarly,
whenever a reusable Binding
component (i.e. one that does not specify an Interface component) is applied to a
specific Interface component in
the context of an Endpoint
component (see 2.13.1 The
Endpoint Component), the Binding component MUST define bindings for
each Interface
Operation and Interface
Fault component of the Interface component, via a combination
of properties defined on the Binding component itself and default
binding rules specific to its binding type.†

A Binding component that defines bindings
for an Interface component MUST
define bindings for all the faults of that Interface component that are referenced
from any of the operations in that Interface component.† As for
the case of operations, the binding can be defined by defaulting
rules. Note that only the faults actually referenced by operations
are required to have bindings.

Bindings are named constructs and can be referred to by QName
(see 2.17 QName
resolution). For instance, Endpoint components refer to bindings in
this way.

The properties of the [bookmark: component-Binding]Binding component are as follows:

	
{[bookmark: property-Binding.name]name} REQUIRED. An
xs:QName.

	
{[bookmark: property-Binding.interface]interface} OPTIONAL. An Interface component indicating the
interface for which binding information is being specified.

	
{[bookmark: property-Binding.type]type} REQUIRED. An xs:anyURI.
This
xs:anyURI MUST be an absolute IRI as defined by
[IETF RFC 3987].† The
value of this IRI indicates what kind of concrete binding details
are contained within this Binding
component. Specifications (such as [WSDL 2.0 Adjuncts]) that define such
concrete binding details MUST specify appropriate values for this
property. The value of this property MAY be the namespace name of
the extension elements or attributes which define those concrete
binding details.

	
{[bookmark: property-Binding.bindingfaults]binding faults} OPTIONAL. A
set of Binding Fault
components.

	
{[bookmark: property-Binding.bindingoperations]binding operations}
OPTIONAL. A set of Binding
Operation components.

[bookmark: zed-Binding][bookmark: zed-BindingRI]
For each
Binding component in the {bindings} property of a
Description component, the
{name} property MUST be
unique.†

[bookmark: zed-BindingKey][bookmark: zed-BindingParent][bookmark: zed-BindingCM]

[bookmark: Binding_XMLRep]2.7.2 XML
Representation of Binding Component

<description>
 <binding
 name="xs:NCName"
 interface="xs:QName"?
 type="xs:anyURI" >
 <documentation />*
 [<fault /> | <operation />]*
 </binding>
</description>

The XML representation for a Binding component is an element
information item with the following Infoset properties:

	
A [local name] of binding

	
A [namespace name] of "http://www.w3.org/ns/wsdl"

	
Two or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED name attribute information item
as described below in 2.7.2.1 name attribute
information item with binding [owner element].

	
An OPTIONAL interface attribute information
item as described below in 2.7.2.2 interface attribute
information item with binding [owner element].

	
An REQUIRED type attribute information
item as described below in 2.7.2.3 type attribute
information item with binding [owner element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or more element information items amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more element information items from among the
following, in any order:

	
Zero or more fault element information
items (see 2.8.2 XML
Representation of Binding Fault Component).

	
Zero or more operation element information
items (see 2.9.2
XML Representation of Binding Operation
Component).

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl". Such element information
items are considered to be binding extension elements(see
2.7.2.4 Binding
extension elements).

[bookmark: Binding_name_attribute]2.7.2.1 name
attribute information item with binding
[owner element]

The name attribute information item
together with the targetNamespace attribute
information item of the description element
information item forms the QName of the binding.

The name attribute information item has
the following Infoset properties:

	
A [local name] of name

	
A [namespace name] which has no value

The type of the name attribute information
item is xs:NCName.

[bookmark: Binding_interface_attribute]2.7.2.2 interface
attribute information item with binding
[owner element]

The interface attribute information item
refers, by QName, to an Interface component.

The interface attribute information item
has the following Infoset properties:

	
A [local name] of interface

	
A [namespace name] which has no value

The type of the interface attribute information
item is xs:QName.

[bookmark: Binding_type_attribute]2.7.2.3 type
attribute information item with binding
[owner element]

The type attribute information item
identifies the kind of binding details contained in the Binding component.

The type attribute information item has
the following Infoset properties:

	
A [local name] of type

	
A [namespace name] which has no value

The type of the type attribute information
item is xs:anyURI.

[bookmark: Binding_extension_elements]2.7.2.4 Binding extension
elements

Binding extension elements are used to provide information
specific to a particular binding. The semantics of such element
information items are defined by the specification for those
element information items. Such specifications are
expected to annotate the Binding
component with additional properties and specify the mapping from
the XML representation to those properties.

[bookmark: Binding_Mapping]2.7.3
Mapping Binding's XML Representation to Component Properties

The mapping from the XML Representation of the
binding element information item (see
2.7.2 XML Representation of
Binding Component) to the properties of the Binding component (see 2.7.1 The Binding
Component) is as described in Table 2-7.

[bookmark: tab_Binding_Mapping]
Table 2-7. Mapping from XML Representation to Binding
Component Properties	Property	Value
	{name}	The QName whose local name is the
actual value of the name attribute information
item and whose namespace name is the actual value of the
targetNamespace attribute information item of
the [parent] description element information
item.
	{interface}	The Interface component resolved to by the
actual value of the interface attribute
information item (see 2.17 QName
resolution), if any.
	{type}	The actual value of the
type attribute information item.
	{binding faults}	The set of Binding Fault components
corresponding to the fault element information
items in [children], if any.
	{binding operations}	The set of Binding Operation components
corresponding to the operation element information
items in [children], if any.

[bookmark: Binding_Fault]2.8 Binding
Fault

[bookmark: Binding_Fault_details]2.8.1 The Binding Fault Component

A Binding Fault component
describes a concrete binding of a particular fault within an
interface to a particular concrete message format. A particular
fault of an interface is uniquely identified by its {name} property.

Note that the fault does not occur by itself -it occurs as part
of a message exchange as defined by an Interface Operation component
(and its binding counterpart the Binding Operation component).
Thus, the fault binding information specified in a Binding Fault component describes how
faults that occur within a message exchange of an operation will be
formatted and carried in the transport.

The properties of the [bookmark: component-BindingFault]Binding Fault component are as
follows:

	
{[bookmark: property-BindingFault.interfacefault]interface fault}
REQUIRED. An Interface
Fault component in the {interface faults}
property of the Interface
component identified by the {interface} property of the parent
Binding component, or an Interface component that that Interface component directly or
indirectly extends. This is the Interface Fault component for which
binding information is being specified.

	
{[bookmark: property-BindingFault.parent]parent} REQUIRED. The Binding component that contains this
component in its {binding
faults} property.

[bookmark: zed-BindingFault][bookmark: zed-BindingFaultRI]
For each
Binding Fault component in
the {binding faults}
property of a Binding component,
the {interface
fault} property MUST be unique.†
That is, one cannot define multiple bindings for the same fault
within a given Binding
component.

[bookmark: zed-BindingFaultKey][bookmark: zed-BindingFaultConsistent][bookmark: zed-BindingFaultCM]

[bookmark: Binding_Fault_XMLRep]2.8.2 XML Representation of Binding
Fault Component

<description>
 <binding>
 <fault
 ref="xs:QName" >
 <documentation />*
 </fault>
 </binding>
</description>

The XML representation for a Binding Fault component is an
element information item with the following Infoset
properties:

	
A [local name] of fault

	
A [namespace name] of "http://www.w3.org/ns/wsdl"

	
One or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED ref attribute information item
as described below in 2.8.2.1 ref attribute
information item with fault [owner element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or more element information item amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl". Such element information
items are considered to be binding fault extension elements as
described further below (see 2.8.2.2 Binding Fault
extension elements).

[bookmark: Binding_Fault_ref_attribute]2.8.2.1 ref
attribute information item with fault [owner
element]

The ref attribute information item has the
following Infoset properties:

	
A [local name] of ref

	
A [namespace name] which has no value

The type of the ref attribute information
item is xs:QName.

[bookmark: Binding_Fault_extension_elements]2.8.2.2 Binding Fault
extension elements

Binding Fault extension elements are used to provide information
specific to a particular fault in a binding. The semantics of such
element information items are defined by the specification
for those element information items. Such specifications
are expected to annotate the Binding Fault component with
additional properties and specify the mapping from the XML
representation to those properties.

[bookmark: Binding_Fault_Mapping]2.8.3 Mapping Binding Fault's XML
Representation to Component Properties

The mapping from the XML Representation of the
fault element information item (see 2.8.2 XML Representation of Binding
Fault Component) to the properties of the Binding Fault component (see 2.8.1 The Binding Fault
Component) is as described in Table 2-8.

[bookmark: tab_Binding_Fault_Mapping]
Table 2-8. Mapping from XML Representation to Binding
Fault Component Properties	Property	Value
	{interface fault}	The Interface Fault component
corresponding to the actual value of the ref
attribute information item.
	{parent}	The Binding component corresponding to the
binding element information item in
[parent].

[bookmark: Binding_Operation]2.9
Binding Operation

[bookmark: Binding_Operation_details]2.9.1 The Binding Operation
Component

The Binding Operation
component describes the concrete message format(s) and protocol
interaction(s) associated with a particular interface operation for
a given endpoint. A particular operation of an interface is
uniquely identified by its {name} property.

The properties of the [bookmark: component-BindingOperation]Binding Operation component are as
follows:

	
{[bookmark: property-BindingOperation.interfaceoperation]interface
operation} REQUIRED. An Interface Operation component
in the {interface
operations} property of the Interface component identified by the
{interface} property of
the [parent] Binding component, or
an Interface component that that Interface component directly or
indirectly extends. This is the Interface Operation component
for which binding information is being specified.

	
{[bookmark: property-BindingOperation.bindingmessagereferences]binding
message references} OPTIONAL. A set of Binding Message Reference
components.

	
{[bookmark: property-BindingOperation.bindingfaultreferences]binding fault
references} OPTIONAL. A set of Binding Fault Reference
components.

	
{[bookmark: property-BindingOperation.parent]parent} REQUIRED. The
Binding component that contains
this component in its {binding operations}
property.

[bookmark: zed-BindingOperation][bookmark: zed-BindingOperationRI]
For
each Binding Operation
component in the {binding operations}
property of a Binding component,
the {interface
operation} property MUST be unique.†
That is, one cannot define multiple bindings for the same operation
within a given Binding
component.

[bookmark: zed-BindingOperationKey][bookmark: zed-BindingOperationParent][bookmark: zed-BindingOperationConsistent][bookmark: zed-BindingOperationCM]

[bookmark: Binding_Operation_XMLRep]2.9.2 XML Representation of Binding
Operation Component

<description>
 <binding>
 <operation
 ref="xs:QName" >
 <documentation />*
 [<input /> | <output /> | <infault /> | <outfault />]*
 </operation>
 </binding>
</description>

The XML representation for a Binding Operation component is an
element information item with the following Infoset
properties:

	
A [local name] of operation

	
A [namespace name] of "http://www.w3.org/ns/wsdl"

	
One or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED ref attribute information item
as described below in 2.9.2.1 ref attribute
information item with operation [owner element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or more element information items amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more element information items from among the
following, in any order:

	
Zero or more input element information
items (see 2.10
Binding Message Reference)

	
Zero or more output element information
items (see 2.10
Binding Message Reference)

	
Zero or more infault element information
items (see 2.11
Binding Fault Reference)

	
Zero or more outfault element information
items (see 2.11
Binding Fault Reference)

	
Zero or more namespace-qualified element information
item whose [namespace name] is NOT " http://www.w3.org/ns/wsdl
". Such element information items are considered to be
binding operation extension elements as described below (see
2.9.2.2
Binding Operation extension elements).

[bookmark: Binding_Operation_ref_attribute]2.9.2.1 ref
attribute information item with operation
[owner element]

The ref attribute information item has the
following Infoset properties:

	
A [local name] of ref

	
A [namespace name] which has no value

The type of the ref attribute information
item is xs:QName.

[bookmark: Binding_Operation_extension_elements]2.9.2.2 Binding
Operation extension elements

Binding Operation extension elements are used to provide
information specific to a particular operation in a binding. The
semantics of such element information items are defined by
the specification for those element information items.
Such specifications are expected to annotate the Binding Operation component with
additional properties and specify the mapping from the XML
representation to those properties.

[bookmark: Binding_Operation_Mapping]2.9.3 Mapping Binding Operation's
XML Representation to Component Properties

The mapping from the XML Representation of the
operation element information item (see
2.9.2 XML
Representation of Binding Operation Component) to the
properties of the Binding
Operation component is as described in Table 2-9.

[bookmark: tab_Binding_Operation_Mapping]
Table 2-9. Mapping from XML Representation to Binding
Operation Component Properties	Property	Value
	{interface
operation}	The Interface Operation component
corresponding to the actual value of the ref
attribute information item.
	{binding
message references}	The set of Binding Message Reference
components corresponding to the input and
output element information items in
[children], if any.
	{binding fault
references}	The set of Binding Fault Reference
components corresponding to the infault and
outfault element information items in
[children], if any.
	{parent}	The Binding component corresponding to the
binding element information item in
[parent].

[bookmark: Binding_Message_Reference]2.10 Binding Message Reference

[bookmark: Binding_Message_Reference_details]2.10.1 The Binding Message
Reference Component

A Binding Message
Reference component describes a concrete binding of a
particular message participating in an operation to a particular
concrete message format.

The properties of the [bookmark: component-BindingMessageReference]Binding Message Reference
component are as follows:

	
{[bookmark: property-BindingMessageReference.interfacemessagereference]interface
message reference} REQUIRED. An Interface Message
Reference component among those in the {interface
message references} property of the Interface Operation component
being bound by the containing Binding Operation component.

	
{[bookmark: property-BindingMessageReference.parent]parent} REQUIRED. The
Binding Operation
component that contains this component in its {binding
message references} property.

[bookmark: zed-BindingMessageReference][bookmark: zed-BindingMessageReferenceRI]
For each Binding Message Reference
component in the {binding
message references} property of a Binding Operation component, the
{interface
message reference} property MUST be unique.†
That is, the same message cannot be bound twice within the same
operation.

[bookmark: zed-BindingMessageReferenceKey][bookmark: zed-BindingMessageReferenceConsistent][bookmark: zed-BindingMessageReferenceCM]

[bookmark: Binding_Message_Reference_XMLRep]2.10.2 XML Representation of
Binding Message Reference Component

<description>
 <binding>
 <operation>
 <input
 messageLabel="xs:NCName"? >
 <documentation />*
 </input>
 <output
 messageLabel="xs:NCName"? >
 <documentation />*
 </output>
 </operation>
 </binding>
</description>

The XML representation for a Binding Message Reference
component is an element information item with the
following Infoset properties:

	
A [local name] of input or output.

	
A [namespace name] of "http://www.w3.org/ns/wsdl".

	
Zero or more attribute information items amongst its
[attributes] as follows:

	
An OPTIONAL messageLabel attribute information
item as described below in 2.10.2.1
messageLabel attribute information item with input or output [owner
element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or more element information item amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl". Such element information
items are considered to be binding message reference extension
elements as described below (see 2.10.2.2
Binding Message Reference extension elements).

[bookmark: Binding_Message_Reference_name_attribute]2.10.2.1
messageLabel attribute information item with
input or output [owner element]

The messageLabel attribute information
item has the following Infoset properties:

	
A [local name] of messageLabel.

	
A [namespace name] which has no value.

The type of the messageLabel attribute
information item is xs:NCName.

[bookmark: Binding_Message_Reference_extension_elements]2.10.2.2 Binding
Message Reference extension elements

Binding Message Reference extension elements are used to provide
information specific to a particular message in an operation. The
semantics of such element information items are defined by
the specification for those element information items.
Such specifications are expected to annotate the Binding Message Reference
component with additional properties and specify the mapping from
the XML representation to those properties.

[bookmark: Binding_Message_Reference_Mapping]2.10.3 Mapping Binding
Message Reference's XML Representation to Component Properties

The mapping from the XML Representation of the
binding element information item (see
2.10.2 XML
Representation of Binding Message Reference Component)
to the properties of the Binding Message Reference
component is as described in Table 2-10 and uses
the definitions below.

Define the message exchange pattern of the element
information item to be the {message
exchange pattern} of the Interface Operation component
being bound.

Define the message direction of the element
information item to be in if its local name is
input and out if its local name is
output.

Note that the messageLabel attribute
information item of a binding message reference element
information item must be present if the message exchange
pattern has more than one placeholder message with {direction}
equal to the message direction.

If the
messageLabel attribute information item of a
binding message reference element information item is
present then its actual value MUST match the {message
label} of some placeholder message with {direction}
equal to the message direction. †

If the
messageLabel attribute information item of a
binding message reference element information item is
absent then there MUST be a unique placeholder message with
{direction}
equal to the message direction. †

Define the effective message label of a binding message
reference element information item to be either the actual
value of the messageLabel attribute information
item if it is present, or the {message
label} of the unique placeholder message with {direction}
equal to the message direction if the attribute information
item is absent.

[bookmark: tab_Binding_Message_Reference_Mapping]
Table 2-10. Mapping from XML Representation to Binding
Message Reference Component Properties	Property	Value
	{interface
message reference}	The Interface Message
Reference component in the {interface
message references} of the Interface Operation component
being bound with {message
label} equal to the effective message label.
	{parent}	The Binding Operation component
corresponding to the operation element information
item in [parent].

[bookmark: Binding_Fault_Reference]2.11 Binding Fault Reference

[bookmark: Binding_Fault_Reference_details]2.11.1 The Binding Fault
Reference Component

A Binding Fault
Reference component describes a concrete binding of a
particular fault participating in an operation to a particular
concrete message format.

The properties of the [bookmark: component-BindingFaultReference]Binding Fault Reference
component are as follows:

	
{[bookmark: property-BindingFaultReference.interfacefaultreference]interface
fault reference} REQUIRED. An Interface Fault Reference
component among those in the {interface
fault references} property of the Interface Operation component
being bound by the parent Binding Operation component.

	
{[bookmark: property-BindingFaultReference.parent]parent} REQUIRED. The
Binding Operation
component that contains this component in its {binding fault
references} property.

[bookmark: zed-BindingFaultReference][bookmark: zed-BindingFaultReferenceRI]
For each Binding Fault Reference
component in the {binding fault
references} property of a Binding Operation component, the
{interface
fault reference} property MUST be unique.†
That is, the same fault cannot be bound twice within the same
operation.

[bookmark: zed-BindingFaultReferenceKey][bookmark: zed-BindingFaultReferenceConsistent][bookmark: zed-BindingFaultReferenceCM]

[bookmark: Binding_Fault_Reference_XMLRep]2.11.2 XML Representation of
Binding Fault Reference Component

<description>
 <binding>
 <operation>
 <infault
 ref="xs:QName"
 messageLabel="xs:NCName"?>
 <documentation />*
 </infault>
 <outfault
 ref="xs:QName"
 messageLabel="xs:NCName"?>
 <documentation />*
 </outfault>
 </operation>
 </binding>
</description>

The XML representation for a Binding Fault Reference
component is an element information item with the
following Infoset properties:

	
A [local name] of infault or
outfault.

	
A [namespace name] of "http://www.w3.org/ns/wsdl".

	
One or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED ref attribute information item
as described below in 2.11.2.1 ref
attribute information item with infault or outfault [owner
element].

An OPTIONAL messageLabel attribute information
item as described below in 2.11.2.2
messageLabel attribute information item with infault or outfault
[owner element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or more element information item amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl". Such element information
items are considered to be binding fault reference extension
elements as described below (see 2.11.2.3
Binding Fault Reference extension elements).

[bookmark: Binding_Fault_Reference_ref_attribute]2.11.2.1
ref attribute information item with
infault or outfault [owner element]

The ref attribute information item has the
following Infoset properties:

	
A [local name] of ref.

	
A [namespace name] which has no value.

The type of the ref attribute information
item is xs:QName.

[bookmark: Binding_Fault_Reference_messageLabel_attribute]2.11.2.2
messageLabel attribute information item with
infault or outfault [owner element]

The messageLabel attribute information
item has the following Infoset properties:

	
A [local name] of messageLabel.

	
A [namespace name] which has no value.

The type of the messageLabel attribute
information item is xs:NCName.

[bookmark: Binding_Fault_Reference_extension_elements]2.11.2.3 Binding
Fault Reference extension elements

Binding Fault Reference extension elements are used to provide
information specific to a particular fault in an operation. The
semantics of such element information items are defined by
the specification for those element information items.
Such specifications are expected to annotate the Binding Fault Reference
component with additional properties and specify the mapping from
the XML representation to those properties.

[bookmark: Binding_Fault_Reference_Mapping]2.11.3 Mapping Binding Fault
Reference's XML Representation to Component Properties

The mapping from the XML Representation of the
binding element information item (see
2.11.2 XML
Representation of Binding Fault Reference Component)
to the properties of the Binding Fault Reference
component is as described in Table 2-11 and uses the
definitions below.

Define the message exchange pattern of the element
information item to be the {message
exchange pattern} of the Interface Operation component
being bound.

Define the fault direction of the element
information item to be in if its local name is
infault and out if its local name is
outfault.

Define the message direction of the element
information item to be the {direction} of
the placeholder message associated with the fault as specified by
the fault propagation ruleset of the message exchange pattern.

The
messageLabel attribute information item of a
binding fault reference element information item MUST be
present if the message exchange pattern has more than one
placeholder message with {direction}
equal to the message direction. †

If the
messageLabel attribute information item of a
binding fault reference element information item is
present then its actual value MUST match the {message
label} of some placeholder message with {direction}
equal to the message direction. †

If the
messageLabel attribute information item of a
binding fault reference element information item is absent
then there MUST be a unique placeholder message with {direction}
equal to the message direction. †

Define the effective message label of a binding fault
reference element information item to be either the actual
value of the messageLabel attribute information
item if it is present, or the {message
label} of the unique placeholder message with {direction}
equal to the message direction if the attribute information
item is absent.

There MUST be an Interface Fault Reference
component in the {interface
fault references} of the Interface Operation being bound
with {message label}
equal to the effective message label and with {interface
fault} equal to an Interface Fault component with
{name} equal to the
actual value of the ref attribute information
item.†

[bookmark: tab_Binding_Fault_Reference_Mapping]
Table 2-11. Mapping from XML Representation to Binding
Fault Reference Component Properties	Property	Value
	{interface
fault reference}	The Interface Fault Reference
component in the {interface
fault references} of the Interface Operation being bound
with {message label}
equal to the effective message label, and with {interface
fault} equal to an Interface Fault component with
{name} equal to the
actual value of the ref attribute information
item.
	{parent}	The Binding Operation component
corresponding to the operation element information
item in [parent].

[bookmark: Service]2.12 Service

[bookmark: Service_details]2.12.1 The
Service Component

A Service component describes a
set of endpoints (see 2.13
Endpoint) at which a particular deployed
implementation of the service is provided. The endpoints thus are
in effect alternate places at which the service is provided.

Services are named constructs and can be referred to by QName
(see 2.17 QName
resolution).

The properties of the [bookmark: component-Service]Service component are as follows:

	
{[bookmark: property-Service.name]name} REQUIRED. An
xs:QName.

	
{[bookmark: property-Service.interface]interface} REQUIRED. An Interface component.

	
{[bookmark: property-Service.endpoints]endpoints} REQUIRED. A non-empty
set of Endpoint components.

[bookmark: zed-Service][bookmark: zed-ServiceRI]
For each
Service component in the {services} property of a
Description component, the
{name} property MUST be
unique.†

[bookmark: zed-ServiceKey][bookmark: zed-ServiceParent][bookmark: zed-ServiceCM]

[bookmark: Service_XMLRep]2.12.2 XML
Representation of Service Component

<description>
 <service
 name="xs:NCName"
 interface="xs:QName" >
 <documentation />*
 <endpoint />+
 </service>
</description>

The XML representation for a Service component is an element
information item with the following Infoset properties:

	
A [local name] of service

	
A [namespace name] of "http://www.w3.org/ns/wsdl"

	
Two or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED name attribute information item
as described below in 2.12.2.1 name attribute
information item with service [owner element].

	
A REQUIRED interface attribute information
item as described below in 2.12.2.2 interface attribute
information item with service [owner element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
One or more element information item amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
One or more element information items from among the
following, in any order:

	
One or more endpoint element information
items (see 2.13.2 XML
Representation of Endpoint Component

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

[bookmark: Service_name_attribute]2.12.2.1 name
attribute information item with service
[owner element]

The name attribute information item
together with the targetNamespace attribute
information item of the description element
information item forms the QName of the service.

The name attribute information item has
the following Infoset properties:

	
A [local name] of name

	
A [namespace name] which has no value

The type of the name attribute information
item is xs:NCName.

[bookmark: Service_interface_attribute]2.12.2.2 interface
attribute information item with service
[owner element]

The interface attribute information item
identifies the interface that the service is an instance of.

The interface attribute information item
has the following Infoset properties:

	
A [local name] of interface

	
A [namespace name] which has no value

The type of the interface attribute information
item is xs:QName..

[bookmark: Service_Mapping]2.12.3
Mapping Service's XML Representation to Component Properties

The mapping from the XML Representation of the
service element information item (see
2.12.2 XML Representation of
Service Component) to the properties of the Service component is as described in
Table 2-12.

[bookmark: tab_Service_Mapping]
Table 2-12. Mapping from XML Representation to Service
Component Properties	Property	Value
	{name}	The QName whose local name is the
actual value of the name attribute information
item, and whose namespace name is the actual value of the
targetNamespace attribute information item of
the [parent] description element information
item.
	{interface}	The Interface component resolved to by the
actual value of the interface attribute
information item (see 2.17 QName
resolution).
	{endpoints}	The Endpoint components corresponding to the
endpoint element information items in
[children].

[bookmark: Endpoint]2.13 Endpoint

[bookmark: Endpoint_details]2.13.1 The
Endpoint Component

An Endpoint component defines
the particulars of a specific endpoint at which a given service is
available.

Endpoint components are local
to a given Service component (see
A.2 Fragment
Identifiers).

The Binding component specified
by the {binding} property
of an Endpoint component is said
to be applied to the Interface component which is the value
of the {interface}
property of the parent Service
component of the Endpoint.
According to the constraints given below, if this Binding component has an {interface} property, its value
must be the Interface component
the Binding component is applied
to.

The {address} property
is optional to allow for means other than IRIs to be used, e.g. a
WS-Addressing Endpoint Reference [WSA 1.0
Core]. It is also possible that, in certain scenarios,
an address will not be required, in which case this property may be
absent.

The properties of the [bookmark: component-Endpoint]Endpoint component are as follows:

	
{[bookmark: property-Endpoint.name]name} REQUIRED. An
xs:NCName.

	
{[bookmark: property-Endpoint.binding]binding} REQUIRED. A Binding component.

	
{[bookmark: property-Endpoint.address]address} OPTIONAL. An
xs:anyURI. This xs:anyURI MUST be an absolute IRI
as defined by [IETF RFC
3987].† If
present, the value of this attribute represents the network address
at which the service indicated by the parent Service component's {interface} property is offered
via the binding referred to by the {binding} property.
Note that the presence in this property of the
characters "?" and "#" can conflict with those potentially added by
the query string serialization mechanism, as defined in
Serialization as "application/x-www-form-urlencoded"
([WSDL 2.0 Adjuncts],
section 6.8.2).

	
{[bookmark: property-Endpoint.parent]parent} REQUIRED. The Service component that contains this
component in its {endpoints} property.

[bookmark: zed-Endpoint][bookmark: zed-EndpointRI]
For each Endpoint component in
the {endpoints} property
of a Service component, the
{name} property MUST be
unique. Note that this constraint is enforced by the normative WSDL
2.0 XML schema.

[bookmark: zed-EndpointKey]
For each
Endpoint component in the
{endpoints} property of a
Service component, the {binding} property MUST either be a
Binding component with an
unspecified {interface}
property or a Binding component
with an {interface}
property equal to the {interface} property of the
Service component.†

[bookmark: zed-EndpointConsistent][bookmark: zed-EndpointCM]

[bookmark: Endpoint_XMLRep]2.13.2 XML
Representation of Endpoint Component

<description>
 <service>
 <endpoint
 name="xs:NCName"
 binding="xs:QName"
 address="xs:anyURI"? >
 <documentation />*
 </endpoint>+
 </service>
</description>

The XML representation for a Endpoint component is an element
information item with the following Infoset properties:

	
A [local name] of endpoint.

	
A [namespace name] of "http://www.w3.org/ns/wsdl".

	
Two or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED name attribute information item
as described below in 2.13.2.1 name attribute
information item with endpoint [owner element].

	
A REQUIRED binding attribute information
item as described below in 2.13.2.2 binding attribute
information item with endpoint [owner element].

	
An OPTIONAL address attribute information
item as described below in 2.13.2.3 address attribute
information item with endpoint [owner element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or more element information item amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl". Such element information
items are considered to be endpoint extension elements as
described below (see 2.13.2.4 Endpoint extension
elements).

[bookmark: Endpoint_name_attribute]2.13.2.1 name
attribute information item with endpoint
[owner element]

The name attribute information item
together with the targetNamespace attribute
information item of the description element
information item forms the QName of the endpoint.

The name attribute information item has
the following Infoset properties:

	
A [local name] of name.

	
A [namespace name] which has no value.

The type of the name attribute information
item is xs:NCName.

[bookmark: Endpoint_binding_attribute]2.13.2.2 binding
attribute information item with endpoint
[owner element]

The binding attribute information item
refers, by QName, to a Binding
component

The binding attribute information item has
the following Infoset properties:

	
A [local name] of binding

	
A [namespace name] which has no value

The type of the binding attribute information
item is xs:QName.

[bookmark: Endpoint_address_attribute]2.13.2.3 address
attribute information item with endpoint
[owner element]

The address attribute information item
specifies the address of the endpoint.

The address attribute information item has
the following Infoset properties:

	
A [local name] of address

	
A [namespace name] which has no value

The type of the address attribute information
item is xs:anyURI.

[bookmark: Endpoint_extension_elements]2.13.2.4 Endpoint extension
elements

Endpoint extension elements are used to provide information
specific to a particular endpoint in a server. The semantics of
such element information items are defined by the
specification for those element information items. Such
specifications are expected to annotate the Endpoint component with additional
properties and specify the mapping from the XML representation to
those properties.

[bookmark: Endpoint_Mapping]2.13.3
Mapping Endpoint's XML Representation to Component Properties

The mapping from the XML Representation of the
endpoint element information item (see
2.13.2 XML Representation of
Endpoint Component) to the properties of the Endpoint component is as described in
Table 2-13.

[bookmark: tab_Endpoint_Mapping]
Table 2-13. Mapping from XML Representation to Endpoint
Component Properties	Property	Value
	{name}	The actual value of the
name attribute information item.
	{binding}	The Binding component resolved to by the
actual value of the binding attribute information
item (see 2.17 QName
resolution).
	{address}	The actual value of the
address attribute information item if
present; otherwise empty.
	{parent}	The Service component corresponding to the
service element information item in
[parent].

[bookmark: simpletypes]2.14 XML Schema 1.0
Simple Types Used in the Component Model

The XML Schema 1.0 simple types [XML Schema: Datatypes] used in this
specification are:

	
xs:token

	
xs:NCName

	
xs:anyURI

	
xs:QName

	
xs:boolean

[bookmark: zed-NCName][bookmark: zed-URI][bookmark: zed-AbsoluteURI][bookmark: zed-QName][bookmark: zed-Boolean]

[bookmark: compequiv]2.15 Equivalence of
Components

Two component instances of the same type are considered
equivalent if, for each property value of the first component,
there is a corresponding property with an equivalent value on the
second component, and vice versa.

	
For values of a simple type (see 2.14 XML Schema 1.0 Simple Types Used in the
Component Model) this means that they contain the same
values. For instance, two string values are equivalent if they
contain the same sequence of Unicode characters, as described in
[Character Model for the WWW],
or two boolean values are equivalent if they contain the same
canonical value (true or false).

	
Values which are references to other components are considered
equivalent when they refer to equivalent components (as determined
above).

	
List-based values are considered equivalent if they have the
same length and their elements at corresponding positions are
equivalent.

	
Finally, set-based values are considered equivalent if, for each
value in the first, there is an equivalent value in the second, and
vice versa.

Extension
properties which are not string values, sets of strings or
references MUST describe their values' equivalence
rules.†

Because different top-level components (e.g., Interface, Binding, and Service) are required to have different
names, it is possible to determine whether two top-level components
of a given type are equivalent by simply examining their {name}
property.

The Binding component specified
by the {binding} property
of an Endpoint is said to be
applied to the Interface
component which is the value of the {interface} property of the
{parent} Service component for the Endpoint. Note that, if this Binding component has an {interface} property, then its
value MUST be the Interface
component that the Binding
component is applied to.

[bookmark: symbolspaces]2.16 Symbol
Spaces

This specification defines three symbol spaces, one for each
top-level component type (Interface, Binding and Service).

Within a symbol space, all qualified names (that is, the
{[bookmark: property-.name]name} property)
are unique. Between symbol spaces, the names need not be unique.
Thus it is perfectly coherent to have, for example, a binding and
an interface that have the same name.

When XML Schema is being used as one of the type systems for a
WSDL 2.0 description, then six other symbol spaces also exist, one
for each of: global element declarations, global attribute
declarations, named model groups, named attribute groups, type
definitions and key constraints, as defined by [XML Schema: Structures]. Other type
systems may define additional symbol spaces.

[bookmark: qnameres]2.17 QName resolution

In its serialized form WSDL 2.0 makes significant use of
references between components. Such references are made using the
Qualified Name, or QName, of the component being referred to.
QNames are a tuple, consisting of two parts; a namespace name and a
local name. The namespace name for a component is represented by
the value of the targetNamespace attribute
information item of the [parent] description
element information item. The local name is represented by
the {name} property of the
component.

QName references are resolved by looking in the appropriate
property of the Description
component. For example, to resolve a QName of an interface (as
referred to by the interface attribute information
item on a binding), the {interfaces} property of the
Description component would be
inspected.

If the appropriate property of the Description component does not contain
a component with the required QName, then the reference is a broken
reference. A Description component MUST NOT have
such broken references.†

[bookmark: uricompare]2.18 Comparing URIs
and IRIs

This specification uses absolute URIs and IRIs to identify
several components and components characteristics (for example,
operation message exchange patterns and styles). When such absolute
URIs and IRIs are being compared to determine equivalence (see
2.15 Equivalence of
Components), they MUST be compared
character-by-character as indicated in [IETF RFC 3987].†

[bookmark: eii-types]3. Types

<description>
 <types>
 <documentation />*
 [<xs:import namespace="xs:anyURI" schemaLocation="xs:anyURI"? /> |
 <xs:schema targetNamespace="xs:anyURI"? /> |
 other extension elements]*
 </types>
</description>

The content of messages and faults may be constrained using type
system components. These constraints are based upon a specific data
model, and expressed using a particular schema language.

Although a variety of data models can be accommodated (through
WSDL 2.0 extensions), this specification only defines a means of
expressing constraints based upon the XML Infoset [XML Information Set]. Furthermore,
although a number of alternate schema languages can be used to
constrain the XML Infoset (as long as they support the semantics of
either inlining or importing schema), this specification only
defines the use of XML Schema [XML
Schema: Structures], [XML
Schema: Datatypes].

Specifically, the {element
declarations} and {type definitions}
properties of the Description
component are collections of imported and inlined schema components
that describe Infoset element information items.

When extensions are used to enable the use of a non-Infoset data
model, or a non-Schema constraint language, the
wsdl:required attribute information item MAY be used
to require support for that extension.

Note:

Support for the W3C XML Schema [XML
Schema: Structures], [XML
Schema: Datatypes] is included in the conformance
criteria for WSDL 2.0 documents (see 3.1 Using W3C XML Schema Definition
Language).

The schema components contained in the {element
declarations} property of the Description component provide the type
system used for Interface Message
Reference and Interface
Fault components. Interface Message
Reference components indicate their structure and content by
using the standard attribute information items
element, or for alternate schema languages in which
these concepts do not map well, by using alternative attribute
information item extensions. Interface Fault components behave
similarly. Such extensions should define how they reference type
system components. Such type system components MAY appear in
additional collection properties on the Description component.

Extensions in the form of attribute information items
can be used to refer to constraints (type definitions or analogous
constructs) described using other schema languages or type systems.
Such components MAY appear in additional collection properties on
the Description component.

The types element information item
encloses data type definitions, based upon the XML Infoset, used to
define messages and has the following Infoset properties:

	
A [local name] of types.

	
A [namespace name] of "http://www.w3.org/ns/wsdl".

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
http://www.w3.org/ns/wsdl

	
Zero or more element information items amongst its
[children] as follows:

	
Zero or more documentation element information
items (see 5.
Documentation) in its [children] property.

	
Zero or more element information items from among the
following, in any order:

	
xs:import element information items

	
xs:schema element information items

	
Other namespace qualified element information items
whose namespace is NOT http://www.w3.org/ns/wsdl

[bookmark: xsd-types]3.1 Using W3C XML Schema
Definition Language

XML Schema MAY be used as the schema language via import or
inlining.

A WSDL 2.0
document MUST NOT refer to XML Schema components in a given
namespace UNLESS an xs:import or
xs:schema element information item for that
namespace is present OR the namespace is the XML Schema namespace,
http://www.w3.org/2001/XMLSchema, which contains built-in types as
defined in XML Schema Part 2: Datatypes Second Edition
[XML Schema:
Datatypes].† That is,
using the xs:import or xs:schema
element information item is a necessary condition for
making XML Schema components, other than the built-in components,
referenceable within a WSDL 2.0 document. The built-in XML Schema
datatypes are built-in to the WSDL 2.0 component model and are
contained in the {type definitions}
property of the Description
component. A WSDL 2.0 document that refers to any element
declaration or type definition component of the XML Schema
namespace, except the built-in primitive and derived types, MUST
import http://www.w3.org/2001/XMLSchema.

Table 3-1 summarizes the
referenceability of schema components.

[bookmark: tab_SchemaVisibility]
Table 3-1. Referenceability of schema components		XML Representation	Referenceability of XML Schema
Components
	Including description	description/include	XML Schema components in the included
Description component's
{element
declarations} and {type definitions}
properties are referenceable.
	Importing description	description/import	None of the XML Schema Components in
the imported Description
component are referenceable.
	Importing XML Schema	description/types/xs:import	Element Declaration and
Type Definition components
in the imported namespace are referenceable.
	Inlined XML Schema	description/types/xs:schema	Element Declaration and
Type Definition components
in the inlined XML Schema are referenceable.

[bookmark: import-xsd]3.1.1 Importing XML
Schema

Importing an XML Schema uses the syntax and semantics of the
xs:import mechanism defined by XML Schema
[XML Schema: Structures],
[XML Schema: Datatypes],
with the differences defined in this section and the following one.
The schema components defined in the imported namespace are
referenceable by QName (see 2.17 QName
resolution). Only components in the imported namespace
are referenceable in the WSDL 2.0 document. For each component in
the imported namespace, a corresponding Element Declaration component
or Type Definition
component MUST appear in the {element
declarations} or {type definitions}
property respectively of the Description component corresponding to
the WSDL document that imports the schema, or that imports directly
or indirectly a WSDL document that imports the schema.†
Schema
components not in an imported namespace MUST NOT appear in the
{element
declarations} or {type definitions}
properties.†

A child element information item of the
types element information item is defined
with the Infoset properties as follows:

	
A [local name] of "import".

	
A [namespace name] of "http://www.w3.org/2001/XMLSchema".

	
One or two attribute information items as follows:

	
A REQUIRED namespace attribute information
item as described below.

	
An OPTIONAL schemaLocation attribute
information item as described below.

[bookmark: namespace-attribute]3.1.1.1 namespace
attribute information item

The namespace attribute information item
defines the namespace of the element declarations and type
definitions imported from the referenced schema. The referenced schema MUST
contain a targetNamespace attribute information
item on its xs:schema element information
item.†
The value of the
targetNamespace attribute information item of
the xs:schema element information item of an
imported schema MUST equal the value of the namespace
of the import element information item in the
importing WSDL 2.0 document.†
Note that a WSDL 2.0 document must not import a schema that does
not have a targetNamespace attribute information
item on its xs:schema element information
item. Such schemas must first be included (using
xs:include) in a schema that contains a
targetNamespace attribute information item on
its xs:schema element information item, which
can then be either imported or inlined in the WSDL 2.0
document.

The namespace attribute information item
has the following Infoset properties:

	
A [local name] of namespace

	
A [namespace name] which has no value.

The type of the namespace attribute information
item is xs:anyURI.

[bookmark: schemaLocation-attribute]3.1.1.2 schemaLocation
attribute information item

The schemaLocation attribute information
item, if present, provides a hint to the XML Schema processor
as to where the schema may be located. Caching and cataloging
technologies may provide better information than this hint. The
schemaLocation attribute information item has
the following Infoset properties:

	
A [local name] of schemaLocation.

	
A [namespace name] which has no value.

The type of the schemaLocation attribute
information item is xs:anyURI.

Every QName reference must resolve (see 2.17 QName resolution). Note that,
when resolving QNames references for schema definitions, the
namespace must be imported by the referring WSDL 2.0 document (see
3.1 Using W3C XML Schema Definition
Language).

[bookmark: inlining-xsd]3.1.2 Inlining XML
Schema

Inlining an XML schema uses the existing top-level
xs:schema element information item defined by
XML Schema [XML Schema:
Structures]. Conceptually, inlining can be viewed as
simply cutting and pasting an existing schema document to a
location inside the types element information item.

The schema components defined and declared in the inlined schema
document are referenceable by QName (see 2.17 QName resolution). Only
components defined and declared in the schema itself and components
included by it via xs:include are referenceable.
For each
component defined and declared in the inlined schema document or
included by xs:include, a corresponding Element Declaration component
or Type Definition
component MUST appear in the {element
declarations} property or {type definitions}
property respectively of the Description component corresponding to
the WSDL document that contains the schema, or that imports
directly or indirectly a WSDL document that contains the
schema.†Schema components not defined or declared
in the inlined schema document or included by
xs:include MUST NOT appear in the {element
declarations} or {type definitions}
properties.†

Note that components in the namespace that the inline schema
imports via xs:import are not automatically
referenceable from the WSDL 2.0 document that contains the inline
schema. If the namespace referenced in a QName is contained in an
inline schema, it MAY be imported without a
schemaLocation attribute, so long as the inline schema
has been resolved in the current component model.

Note that components defined in an inlined XML schema are not
automatically referenceable within the WSDL 2.0 document that
imported (using wsdl:import) the WSDL 2.0 document
that inlines the schema (see 4.2
Importing Descriptions for more details). For this
reason, it is recommended that XML schema documents intended to be
shared across several WSDL 2.0 documents be placed in separate XML
schema documents and imported using xs:import, rather
than inlined inside a WSDL 2.0 document.

Inside an inlined XML schema, the xs:import and
xs:include element information items MAY be
used to refer to other XML schemas inlined in the same or other
WSDL 2.0 document, provided that an appropriate value, such as a
fragment identifier (see [XML Schema:
Structures] 4.3.1) is specified for their
schemaLocation attribute information items.
For xs:import, the schemaLocation
attribute is not required so long as the namespace has been
resolved in the current component model. The semantics of such
element information items are governed solely by the XML
Schema specification [XML Schema:
Structures].

A WSDL 2.0 document MAY inline two or more schemas from the same
targetNamespace. For example, two or more inlined
schemas can have the same targetNamespace provided
that they do not define the same elements or types. A WSDL 2.0 document MUST
NOT define the same element or type in more than one inlined
schema.† Note
that it is the responsibility of the underlying XML Schema
processor to sort out a coherent set of schema components.

The xs:schema element information item has
the following Infoset properties:

	
A [local name] of schema.

	
A [namespace name] of "http://www.w3.org/2001/XMLSchema".

	
Additional OPTIONAL attribute information items as
specified for the xs:schema element information
item by the XML Schema specification.

	
Zero or more child element information items as
specified for the xs:schema element information
item by the XML Schema specification.

[bookmark: references-definitions]3.1.3 References to Element
Declarations and Type Definitions

Whether inlined or imported, the global element declarations
present in a schema are referenceable from an Interface Message
Reference or Interface
Fault component. Similarly, regardless of whether they are
inlined or imported, the global type definitions present in a
schema are referenceable from other components.

A named, global xs:element declaration is
referenceable from the element attribute
information item of an input, output
(see 2.5.2 XML
Representation of Interface Message Reference
Component) or fault element
information item (see 2.3.2 XML Representation of
Interface Fault Component). The QName of the element
declaration is constructed from the targetNamespace of
the schema and the value of the name attribute
information item of the xs:element element
information item. Note that the element
attribute information item cannot refer to a global
xs:simpleType or xs:complexType
definition, since these are in a different symbol space than global
element declarations. If the element attribute
information item erroneously contains the QName of a type
definition then this would result in a failure to resolve the
element declaration.

[bookmark: other-types]3.2 Using Other
Schema Languages

Since it is unreasonable to expect that a single schema language
can be used to describe all possible Interface Message
Reference and Interface
Fault component contents and their constraints, WSDL 2.0 allows
alternate schema languages to be specified via extension elements.
An extension element information item MAY appear under the
types element information item to identify
the schema language employed, and to locate the schema instance
defining the grammar for Interface Message
Reference and Interface
Fault components. Depending upon the schema language used, an
element information item MAY be defined to allow inlining,
if and only if the schema language can be expressed in XML.

A specification
of extension syntax for an alternative schema language MUST include
the declaration of an element information item, intended
to appear as a child of the wsdl:types element
information item, which references, names, and locates the
schema instance (an import element information
item).† The
extension specification SHOULD, if necessary, define additional
properties of the Description
component (and extension attributes) to hold the components of the
referenced type system. It is expected that additional extension
attributes for Interface Message
Reference and Interface
Fault components will also be defined, along with a mechanism
for resolving the values of those attributes to a particular
imported type system component.

A specification
of extension syntax for an alternative schema language MUST use a
namespace that is different than the namespace of XML
Schema.† The
namespace of the alternative schema language is used for
element information items that are children of the
wsdl:types element information item and for
any extension attribute information items that appear on
other components. The namespace used for an alternate schema
language MUST be an absolute IRI.†

See [WSDL 2.0 Alternative
Schema Languages Support] for examples of using other
schema languages. These examples reuse the {element
declarations} property of the Description component and the
element attribute information items of the
wsdl:input, wsdl:output and
wsdl:fault element information items.

Note:

This specification does not define the behavior of a WSDL 2.0
document that uses multiple schema languages for describing type
system components simultaneously.

[bookmark: wsdlx-references]3.3
Describing Messages that Refer to Services and Endpoints

Web services can exchange messages that refer to other Web
services or Web service endpoints. If the interface or binding of
these referenced services or endpoints are known at description
time, then it may be useful to include this information in the WSDL
2.0 document that describes the Web service. WSDL 2.0 provides two
global attribute information items,
wsdlx:interface and wsdlx:binding that
may be used to annotate XML Schema components or components from
other type description languages.

WSDL 2.0 defines the use of these global attribute
information items to annotate XML Schema components that use
the xs:anyURI simple type in an element
information item or attribute information item for
endpoint addresses that correspond to the {address} property of the Endpoint component. However, the use of
these global attribute information items is not limited to
simple types based on xs:anyURI. They may be used for
any other types that are used to refer to Web services or Web
service endpoints, e.g. a WS-Addressing Endpoint Reference
[WSA 1.0 Core]. See the primer
[WSDL 2.0 Primer] for more
information and examples.

[bookmark: wsdlx-interface-aii]3.3.1 wsdlx:interface
attribute information item

WSDL 2.0 provides a global attribute information item
with the following Infoset properties:

	
A [local name] of interface.

	
A [namespace name] of " http://www.w3.org/ns/wsdl-extensions
".

The type of the
wsdlx:interface attribute information item is
an xs:QName that specifies the {name} property of an Interface component.†

[bookmark: wsdlx-binding-aii]3.3.2
wsdlx:binding attribute information item

WSDL 2.0 provides a global attribute information item
with the following Infoset properties:

	
A [local name] of binding.

	
A [namespace name] of " http://www.w3.org/ns/wsdl-extensions
".

The type of the
wsdlx:binding attribute information item is
an xs:QName that specifies the {name} property of a Binding component.†

[bookmark: wsdlx-consistency]3.3.3
wsdlx:interface and wsdlx:binding
Consistency

The wsdlx:interface and wsdlx:binding
attributes may be used either independently or together. If
wsdlx:interface and wsdlx:binding are
used together then they MUST satisfy the same consistency rules
that apply to the {interface} property of a Service component and the {binding} property of a nested
Endpoint component, that is
either the binding refers the interface of the service or the
binding refers to no interface.†

[bookmark: wsdlx-xsanyuri]3.3.4 Use of
wsdlx:interface and wsdlx:binding with
xs:anyURI

wsdlx:interface and wsdlx:binding are
used to describe element information items and
attribute information items whose type is
xs:anyURI or a restriction of it, as well messages
that contain the {address}
property of an Endpoint. This is
accomplished by including the wsdlx:interface and/or
wsdlx:binding attribute information item in
the xs:element, xs:simpleType, or
xs:attribute element information item of the
corresponding XML Schema component.

[bookmark: modularize]4. Modularizing WSDL
2.0 descriptions

WSDL 2.0 provides two mechanisms for modularizing WSDL 2.0
descriptions. These mechanisms help to make Web service
descriptions clearer by allowing separation of the various
components of a description. Such separation can be performed
according to the level of abstraction of a given set of components,
or according to the namespace affiliation required of a given set
of components or even according to some other grouping such as
application applicability.

Both mechanisms work at the level of WSDL 2.0 components and NOT
at the level of XML Information Sets or XML 1.0 serializations.

[bookmark: includes]4.1 Including
Descriptions

<description>
 <include
 location="xs:anyURI" >
 <documentation />*
 </include>
</description>

The WSDL 2.0 include element information
item allows separating the different components of a service
definition, belonging to the same target namespace, into
independent WSDL 2.0 documents.

The WSDL 2.0 include element information
item is modeled after the XML Schema include
element information item (see [XML Schema: Structures], section 4.2.3
"References to schema components in the same namespace").
Specifically, it can be used to include components from WSDL 2.0
descriptions that share a target namespace with the including
description. Components in the transitive closure of the included
WSDL 2.0 documents become part of the Description component of the including
WSDL 2.0 document. The included components can be referenced by
QName. Note that because all WSDL 2.0 descriptions have a target
namespace, no-namespace includes (sometimes known as “chameleon
includes”) never occur in WSDL 2.0.

A mutual include is the direct inclusion by one WSDL 2.0
document of another WSDL 2.0 document which includes the first
document. A circular include achieves the same effect with greater
indirection (for example, A includes B, B includes C, and C
includes A). Multiple inclusion of a single WSDL 2.0 document
resolves to a single set of components, as if the document was
included only once. Mutual, multiple, and circular includes are
explicitly permitted, and do not represent multiple redefinitions
of the same components.

The include element information item
has:

	
A [local name] of include.

	
A [namespace name] of "http://www.w3.org/ns/wsdl".

	
One or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED location attribute information
item as described below in 4.1.1 location attribute
information item with include [owner element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or more element information item amongst its
[children], as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

[bookmark: include_location_attribute]4.1.1 location
attribute information item with include
[owner element]

The location attribute information item
has the following Infoset properties:

	
A [local name] of location.

	
A [namespace name] which has no value.

A location attribute information item is
of type xs:anyURI. Its actual value is the location of
some information about the namespace identified by the
targetNamespace attribute information item of
the containing description element information
item.

The IRI
indicated by location MUST resolve to a WSDL 2.0
document.† (see
7. Locating WSDL 2.0
Documents)

The actual
value of the targetNamespace attribute information
item of the included WSDL 2.0 document MUST match the actual
value of the targetNamespace attribute information
item of the description element information
item which is the [parent] of the include
element information item.†

[bookmark: imports]4.2 Importing
Descriptions

<description>
 <import
 namespace="xs:anyURI" location="xs:anyURI"? >
 <documentation />*
 </import>
</description>

Every top-level WSDL 2.0 component is associated with a
namespace. Every WSDL 2.0 document carries a
targetNamespace attribute information item on
its wsdl:description element information
item. This attribute associates the document with a target
namespace, which consequently also becomes the namespace of each
top-level WSDL 2.0 component defined in that document. Any
namespace other than the document's target namespace is referred to
as a foreign namespace. Any component associated with a
foreign namespace is referred to as a foreign component.
This section describes the syntax and mechanisms by which
references may be made from within a WSDL 2.0 document to foreign
components. In addition to this syntax, there is an optional
facility for suggesting the IRI of a WSDL 2.0 document that
contains definitions of foreign components.

The WSDL 2.0 import element information
item is modeled after the XML Schema import
element information item (see [XML Schema: Structures], section 4.2.3
"References to schema components across namespaces"). Specifically,
it can be used to import WSDL 2.0 components from a foreign
namespace. The WSDL 2.0 import element information
item identifies a foreign namespace. The presence of a WSDL
2.0 import element information item signals
that the WSDL 2.0 document may contain references to foreign
components. The wsdl:import element information
item is therefore like a forward declaration for foreign
namespaces.

As with XML
schema, any WSDL 2.0 document that references a foreign component
MUST have a wsdl:import element information
item for the associated foreign namespace (but which does not
necessarily provide a location attribute
information item that identifies the WSDL 2.0 document in
which the referenced component is defined).† In other
respects, the visibility of components is pervasive: if two WSDL
2.0 documents import the same namespace, then they will have access
to the same components from the imported namespace (i.e. regardless
of which, if any, location attribute information
item values are provided on the respective
wsdl:import element information items.)

Using the wsdl:import element information
item is a necessary condition for making foreign components
available to a WSDL 2.0 document. That is, a WSDL 2.0 document can
only refer to foreign components, if it contains an
wsdl:import element information item for the
associated foreign namespace.

If a WSDL 2.0
document contains more than one wsdl:import
element information item for a given value of the
namespace attribute information item, then
they MUST provide different values for the location
attribute information item.†
Repeating the wsdl:import element information
item for the same namespace value MAY be used as
a way to provide alternate locations to find information about a
given namespace.

Furthermore, this specification DOES NOT require the
location attribute information item to be
dereferencable. When it is not dereferencable, no information about
the imported namespace is provided by that wsdl:import
element information item. It is possible that such lack of
information can cause QNames in other parts of a WSDL 2.0 Description component to become broken
references (see 2.17 QName
resolution). Such broken references are not ascribed
to the wsdl:import element information item,
but rather are failures of the QName resolution requirements which
must be detected as described in 2.17
QName resolution.

The import element information item has
the following Infoset properties:

	
A [local name] of import.

	
A [namespace name] of "http://www.w3.org/ns/wsdl".

	
One or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED namespace attribute information
item as described below in 4.2.1 namespace attribute
information item.

	
An OPTIONAL location attribute information
item as described below in 4.2.2 location attribute
information item with import [owner element].

	
Zero or more namespace qualified attribute information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

	
Zero or more element information items amongst its
[children], as follows:

	
Zero or more documentation element information
items (see 5.
Documentation).

	
Zero or more namespace-qualified element information
items whose [namespace name] is NOT
"http://www.w3.org/ns/wsdl".

[bookmark: import_namespace_attribute]4.2.1 namespace
attribute information item

The namespace attribute information item
has the following Infoset properties:

	
A [local name] of namespace.

	
A [namespace name] which has no value.

The namespace attribute information item
is of type xs:anyURI. Its actual value indicates that
the containing WSDL 2.0 document MAY contain qualified references
to WSDL 2.0 components in that namespace (via one or more prefixes
declared with namespace declarations in the normal way). This value MUST NOT match
the actual value of targetNamespace attribute
information item in the enclosing WSDL 2.0
document.†
If the location
attribute in the import element information
item is dereferencable, then it MUST reference a WSDL 2.0
document.†
If the
location attribute information item of the
import element information item is
dereferencable, then the actual value of the namespace
attribute information item MUST be identical to the actual
value of the targetNamespace attribute information
item of the referenced WSDL 2.0 document (see 7. Locating WSDL 2.0
Documents).†

[bookmark: import_location_attribute]4.2.2 location
attribute information item with import [owner
element]

The location attribute information item
has the following Infoset properties:

	
A [local name] of location.

	
A [namespace name] which has no value.

The location attribute information item is
of type xs:anyURI. Its actual value, if present, gives
a hint as to where a serialization of a WSDL 2.0 document with
definitions for the imported namespace can be found.

The location attribute information item is
optional. This allows WSDL 2.0 components to be constructed from
information other than an XML 1.0 serialization of a WSDL 2.0
document. It also allows the development of WSDL 2.0 processors
that have a prior (i.e., built-in) knowledge of certain
namespaces.

[bookmark: extensions-and-modules]4.3 Extensions

The
semantics of an extension MUST NOT depend on how components are
brought into a component model instance via <import> or
<include>. †
That is, the components that are defined by a WSDL 2.0 document are
determined by the contents of the document, EXCEPT for the
resolution of references to other components that may be defined in
other documents, AND any further processing, as mandated by the
extension specification, that depends on such references having
been resolved to the actual components.

This restriction on the behavior of extensions permits WSDL 2.0
documents to be flexibly modularized and efficiently processed. In
contrast, note that the so-called chameleon include mechanism of
XML Schema, which allows a no-namespace schema to be included in a
schema document that has a namespace, violates this restriction
since the namespace of the included XML Schema components is
determined by the including XML Schema document (see 4.2.1
Assembling a schema for a single target namespace from multiple
schema definition documents in [XML
Schema: Structures]).

[bookmark: eii-documentation]5.
Documentation

<documentation>
 [extension elements]*
</documentation>

WSDL 2.0 uses the optional documentation
element information item as a container for human readable
or machine processable documentation. The content of the
element information item is arbitrary character
information items and element information items
("mixed" content in XML Schema [XML
Schema: Structures]). The documentation
element information item is allowed inside any WSDL 2.0
element information item.

Like other element information items in the
"http://www.w3.org/ns/wsdl" namespace, the
documentation element information item allows
qualified attribute information items whose [namespace
name] is not "http://www.w3.org/ns/wsdl". The xml:lang
attribute (see [XML 1.0]) MAY be
used to indicate the language used in the contents of the
documentation element information item.

The documentation element information item
has:

	
A [local name] of documentation.

	
A [namespace name] of "http://www.w3.org/ns/wsdl".

	
Zero or more attribute information items in its
[attributes] property.

	
Zero or more child element information items in its
[children] property.

	
Zero or more character information items in its
[children] property.

[bookmark: language-extensibility]6. Language Extensibility

The schema for WSDL 2.0 has a two-part extensibility model based
on namespace-qualified elements and attributes. An extension is
identified by the QName consisting of its namespace IRI and its
element or attribute name. The meaning of an extension SHOULD be defined
(directly or indirectly) in a document that is available at its
namespace IRI.†

[bookmark: eii-extensibility]6.1
Element-based Extensibility

WSDL 2.0 allows extensions to be defined in terms of element
information items. Where indicated herein, WSDL 2.0 allows
namespace-qualified element information items whose
[namespace name] is NOT "http://www.w3.org/ns/wsdl" to appear among
the [children] of specific element information items whose
[namespace name] is "http://www.w3.org/ns/wsdl". Such element
information items MAY be used to annotate WSDL 2.0 constructs
such as interface, operation, etc.

It is expected that extensions will add to the existing
properties of components in the component model. The specification
for an extension element information item should include
definitions of any such properties and the mapping from the XML
representation of the extension to the properties in the component
model.

The WSDL 2.0 schema defines a base type for use by extension
elements. Example 6-1 shows the type
definition. The use of this type as a base type is optional.

[bookmark: exttype]Example 6-1. Base type for
extension elements

<xs:complexType name='ExtensionElement' abstract='true' >
 <xs:attribute ref='wsdl:required' use='optional' />
</xs:complexType>

Extension elements are commonly used to specify some
technology-specific binding. They allow innovation in the area of
network and message protocols without having to revise the base
WSDL 2.0 specification. WSDL 2.0 recommends that specifications
defining such protocols also define any necessary WSDL 2.0
extensions used to describe those protocols or formats.

[bookmark: mandatoryext]6.1.1 Mandatory
extensions

Extension elements can be marked as mandatory by annotating them
with a wsdl:required attribute information
item (see 6.1.2 required
attribute information item) with a value of "true". A
mandatory extension is an extension that MAY change the meaning of
the element to which it is attached, such that the meaning of that
element is no longer governed by this specification. Instead, the
meaning of an element containing a mandatory extension is governed
by the meaning of that extension. Thus, the definition of the
element's meaning is delegated to the specification that
defines the extension.

An
extension that is NOT marked as mandatory MUST NOT invalidate the
meaning of any part of a WSDL 2.0 document.†
Thus, a NON-mandatory extension merely provides additional
description of capabilities of the service. This specification does
not provide a mechanism to mark extension attributes as being
required. Therefore, all extension attributes are
NON-mandatory.

Note:

A mandatory extension is considered mandatory because it has the
ability to change the meaning of the element to which it is
attached. Thus, the meaning of the element may not be fully
understood without understanding the attached extension. A
NON-mandatory extension, on the other hand, can be safely ignored
without danger of misunderstanding the rest of the WSDL 2.0
document.

If a
WSDL 2.0 document declares an extension as optional (i.e.,
NON-mandatory), then the Web service MUST NOT assume that the
client supports that extension unless the Web service
knows (through some other means) that the client has in fact
elected to engage and support that extension.†

Note:

A key purpose of an extension is to formally indicate (i.e., in
a machine-processable way) that a particular feature or convention
is supported or required. This enables toolkits that understand the
extension to engage it automatically, while toolkits that do not
yet understand a required extension can possibly bring it to the
attention of an operator for manual support.

If a Web service requires a client to follow a particular
convention that is likely to be automatable in WSDL 2.0 toolkits,
then that convention SHOULD be indicated in the WSDL 2.0 document
as a wsdl:required extension, rather than just being
conveyed out of band, even if that convention is not currently
implemented in WSDL 2.0 toolkits.

This practice will help prevent interoperability problems that
could arise if one toolkit requires a particular convention that is
not indicated in the WSDL 2.0 document, while another toolkit does
not realize that that convention is required. It will also help
facilitate future automatic processing by WSDL 2.0 toolkits.

On the other hand, a client MAY engage an extension that is
declared as optional in the WSDL 2.0 document. Therefore, the Web
service MUST support every extension that is declared as optional
in the WSDL 2.0 document, in addition to supporting every extension
that is declared as mandatory.†

Note:

If finer-grain, direction-sensitive control of extensions is
desired, then such extensions may be designed in a
direction-sensitive manner (from the client or from the Web
service) so that either direction may be separately marked required
or optional. For example, instead of defining a single extension
that governs both directions, two extensions could be defined -one
for each direction.

Validity of a WSDL 2.0 document can only be assessed within the
context of a set of supported extensions. A WSDL 2.0 document that
contains a required but unsupported extension is invalid with
respect to that set of supported extensions.

[bookmark: required-aii]6.1.2
required attribute information item

WSDL 2.0 provides a global attribute information item
with the following Infoset properties:

	
A [local name] of required.

	
A [namespace name] of "http://www.w3.org/ns/wsdl".

The type of the required attribute information
item is xs:boolean. Its default value is "false"
(hence extensions are NOT required by default).

[bookmark: aii-extensibility]6.2
Attribute-based Extensibility

WSDL 2.0 allows qualified attribute information items
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl" to appear
on any element information item whose namespace name IS
"http://www.w3.org/ns/wsdl". Such attribute information
items can be used to annotate WSDL 2.0 constructs such as
interfaces, bindings, etc.

WSDL 2.0 does not provide a mechanism for marking extension
attribute information items as mandatory.

[bookmark: extensibility-semantics]6.3 Extensibility Semantics

As indicated above, it is expected that the presence of
extension elements and attributes will result in additional
properties appearing in the component model.

The presence of an optional extension element or attribute MAY
therefore augment the semantics of a WSDL 2.0 document in ways that
do not invalidate the existing semantics. However, the presence of
a mandatory extension element MAY alter the semantics of a WSDL 2.0
document in ways that invalidate the existing semantics.

Extension elements SHOULD NOT alter the existing semantics in
ways that are likely to confuse users.

Note:

Note that, however, once the client and service both know that
an optional extension has been engaged (because the service has
received a message explicitly engaging that extension, for
example), then the semantics of that extension supersede what the
WSDL 2.0 document indicated. For example, the WSDL 2.0 document may
have specified an XML message schema to be used, but also indicated
an optional security extension that encrypts the messages. If the
security extension is engaged, then the encrypted messages will no
longer conform to the specified message schema (until they are
decrypted).

Note:

Authors of extension elements should make sure to include in the
specification of these elements a clear statement of the
requirements for document conformance (see 1.3 Document Conformance).

Note:

Authors of extension elements that may manifest as properties of
the Description component
should be aware of the impact of imports on their extensions, or of
their extensions on imports. It is not possible, within the
component model, to define extensions that have an effective scope
equal to the scope of a containing file. Extensions that modify the
behavior of the components contained in a description may therefore
unexpectedly modify the behavior of components in imported
descriptions as well, unless proper care is taken.

[bookmark: wsdllocation]7. Locating WSDL
2.0 Documents

A WSDL 2.0 document is a description
element information item that is either the document root
of an XML document or an element within an XML document. The
location of a WSDL 2.0 MAY therefore be specified by an
IRI for an XML resource whose document root is a
description element information item or an
IRI-reference for a description element
information item within an XML resource.

As an XML vocabulary, WSDL 2.0 documents, WSDL2.0 document
fragments or QName references to WSDL 2.0 components MAY appear
within other XML documents. This specification defines a global
attribute, wsdlLocation, to help with QName resolution
(see 2.17 QName
resolution). This attribute allows an element that
contains such references to be annotated to indicate where the WSDL
2.0 documents for one or more namespaces can be found. In
particular, this attribute is expected to be useful when using
service references in message exchanges.

The wsdlLocation global attribute is defined in the
namespace "http://www.w3.org/ns/wsdl-instance" (hereafter referred
to as "wsdli:wsdlLocation", for brevity). This attribute MAY appear
on any XML element which allows attributes from other namespaces to
occur. It MUST
NOT appear on a wsdl:description element or any of its
children/descendants.†

A normative XML Schema [XML Schema:
Structures], [XML Schema:
Datatypes] document for the
"http://www.w3.org/ns/wsdl-instance" namespace can be found at
http://www.w3.org/ns/wsdl-instance.

[bookmark: wsdlLocation-aii]7.1
wsdli:wsdlLocation attribute information
item

WSDL 2.0 provides a global attribute information item
with the following Infoset properties:

	
A [local name] of wsdlLocation.

	
A [namespace name] of "http://www.w3.org/ns/wsdl-instance".

The type of the wsdlLocation attribute
information item is a list xs:anyURI. Its actual value MUST be
a list of pairs of IRIs; where the first IRI of a pair, which MUST
be an absolute IRI as defined in [IETF RFC
3987], indicates a WSDL 2.0 (or 1.1) namespace name,
and, the second a hint as to the location of a WSDL 2.0 document
defining WSDL 2.0 components (or WSDL 1.1 elements [WSDL 1.1]) for that namespace
name.† The
second IRI of a pair MAY be absolute or relative. For each pair of IRIs, if
the location IRI of the pair is dereferencable, then it MUST
reference a WSDL 2.0 (or 1.1) document whose target namespace is
the namespace IRI of the pair.†

[bookmark: conformance]8. Conformance

This section describes how this specification conforms to other
specifications. This is limited, at present, to the XML Information
Set specification. Refer to 1.3 Document
Conformance for a description of the criteria that Web
service description documents must satisfy in order to conform to
this specification.

[bookmark: infoset]8.1 XML Information Set
Conformance

This specification conforms to the [XML Information Set]. The following
information items MUST be present in the input Infosets to enable
correct processing of WSDL 2.0 documents:

	
Document Information Items with [children] and
[base URI] properties.

	
Element Information Items with [namespace
name], [local name], [children],
[attributes], [base URI] and [parent]
properties.

	
Attribute Information Items with [namespace
name], [local name] and [normalized value]
properties.

	
Character Information Items with [character
code], [element content whitespace] and
[parent] properties.

[bookmark: Syntax-Summary]9. XML Syntax
Summary (Non-Normative)

<description targetNamespace="xs:anyURI" >
 <documentation />*

 <import namespace="xs:anyURI" location="xs:anyURI"? >
 <documentation />*
 </import>*

 <include location="xs:anyURI" >
 <documentation />*
 </include>*

 <types>
 <documentation />*

 [<xs:import namespace="xs:anyURI" schemaLocation="xs:anyURI"? /> |
 <xs:schema targetNamespace="xs:anyURI"? /> |
 other extension elements]*
 </types>

 <interface name="xs:NCName" extends="list of xs:QName"? styleDefault="list of xs:anyURI"? >
 <documentation />*

 <fault name="xs:NCName" element="union of xs:QName, xs:token"? >
 <documentation />*
 </fault>*

 <operation name="xs:NCName" pattern="xs:anyURI"? style="list of xs:anyURI"? >
 <documentation />*

 <input messageLabel="xs:NCName"? element="union of xs:QName, xs:token"? >
 <documentation />*
 </input>*

 <output messageLabel="xs:NCName"? element="union of xs:QName, xs:token"? >
 <documentation />*

 </output>*

 <infault ref="xs:QName" messageLabel="xs:NCName"? >
 <documentation />*
 </infault>*

 <outfault ref="xs:QName" messageLabel="xs:NCName"? >
 <documentation />*
 </outfault>*

 </operation>*

 </interface>*

 <binding name="xs:NCName" interface="xs:QName"? type="xs:anyURI" >
 <documentation />*

 <fault ref="xs:QName" >
 <documentation />*
 </fault>*

 <operation ref="xs:QName" >
 <documentation />*

 <input messageLabel="xs:NCName"? >
 <documentation />*
 </input>*

 <output messageLabel="xs:NCName"? >
 <documentation />*
 </output>*

 <infault ref="xs:QName" messageLabel="xs:NCName"? >
 <documentation />*
 </infault>*

 <outfault ref="xs:QName" messageLabel="xs:NCName"? >
 <documentation />*
 </outfault>*

 </operation>*

 </binding>*

 <service name="xs:NCName" interface="xs:QName" >
 <documentation />*

 <endpoint name="xs:NCName" binding="xs:QName" address="xs:anyURI"? >
 <documentation />*
 </endpoint>+

 </service>*
</description>

[bookmark: References]10. References

[bookmark: Normative-References]10.1 Normative References

	[bookmark: CHARMOD][Character
Model for the WWW]
	Character Model
for the World Wide Web 1.0: Fundamentals, M. Dürst, F.
Yergeau, R. Ishida, M. Wolf, T. Texin, Editors. W3C Recommendation,
15 February 2005. Latest version available at
http://www.w3.org/TR/charmod/.
	[bookmark: RFC2119][IETF RFC
2119]
	Key words
for use in RFCs to Indicate Requirement Levels, S.
Bradner, Author. Internet Engineering Task Force, March 1997.
Available at http://www.ietf.org/rfc/rfc2119.txt.
	[bookmark: RFC3023][IETF RFC
3023]
	XML Media
Types, M. Murata, S. St. Laurent, D. Kohn, Authors.
Internet Engineering Task Force, January 2001. Available at
http://www.ietf.org/rfc/rfc3023.txt.
	[bookmark: RFC3986][IETF RFC
3986]
	Uniform
Resource Identifiers (URI): Generic Syntax, T.
Berners-Lee, R. Fielding, L. Masinter, Authors. Internet
Engineering Task Force, January 2005. Available at
http://www.ietf.org/rfc/rfc3986.txt.
	[bookmark: RFC3987][IETF RFC
3987]
	Internationalized Resource
Identifiers (IRIs), M. Duerst, M. Suignard, Authors.
Internet Engineering Task Force, January 2005. Available at
http://www.ietf.org/rfc/rfc3987.txt.
	[bookmark: XLink][XLink 1.0]
	XML Linking
Language (XLink) Version 1.0, Steve DeRose, Eve Maler,
David Orchard, Editors. World Wide Web Consortium, 27 June 2001.
This version of the XLink Recommendation is
http://www.w3.org/TR/2001/REC-xlink-20010627/ The latest version of XLink is
available at http://www.w3.org/TR/xlink/.
	[bookmark: XML10][XML 1.0]
	Extensible Markup
Language (XML) 1.0 (Fourth Edition), T. Bray, J. Paoli,
C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, Editors. World
Wide Web Consortium, 10 February 1998, revised 16 August 2006. This
version of the XML 1.0 Recommendation is
http://www.w3.org/TR/2006/REC-xml-20060816/. The latest version of "Extensible Markup
Language (XML) 1.0" is available at
http://www.w3.org/TR/REC-xml.
	[bookmark: XMLNS][XML
Namespaces]
	Namespaces in
XML (Second Edition), T. Bray, D. Hollander, A. Layman,
and R. Tobin, Editors. World Wide Web Consortium, 16 August 2006.
This version of the XML Information Set Recommendation is
http://www.w3.org/TR/2006/REC-xml-names-20060816. The latest version of Namespaces
in XML is available at http://www.w3.org/TR/REC-xml-names.
	[bookmark: XMLInfoSet][XML
Information Set]
	XML
Information Set (Second Edition), J. Cowan and R. Tobin,
Editors. World Wide Web Consortium, 24 October 2001, revised 4
February 2004. This version of the XML Information Set
Recommendation is
http://www.w3.org/TR/2004/REC-xml-infoset-20040204. The latest version of XML
Information Set is available at
http://www.w3.org/TR/xml-infoset.
	[bookmark: XMLSchemaP1][XML
Schema: Structures]
	XML Schema
Part 1: Structures Second Edition, H. Thompson, D.
Beech, M. Maloney, and N. Mendelsohn, Editors. World Wide Web
Consortium, 2 May 2001, revised 28 October 2004. This version of
the XML Schema Part 1 Recommendation is
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028. The latest version of XML Schema
Part 1 is available at http://www.w3.org/TR/xmlschema-1.
	[bookmark: XMLSchemaP2][XML
Schema: Datatypes]
	XML Schema
Part 2: Datatypes Second Edition, P. Byron and A.
Malhotra, Editors. World Wide Web Consortium, 2 May 2001, revised
28 October 2004. This version of the XML Schema Part 2
Recommendation is
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028. The latest version of XML Schema
Part 2 is available at http://www.w3.org/TR/xmlschema-2.
	[bookmark: WSDL-PART2][WSDL
2.0 Adjuncts]
	Web
Services Description Language (WSDL) Version 2.0 Part 2:
Adjuncts , R. Chinnici, H. Haas, A. Lewis, J-J. Moreau,
D. Orchard, S. Weerawarana, Editors. World Wide Web Consortium, 26
June 2007. This version of the "Web Services Description Language
(WSDL) Version 2.0 Part 2: Adjuncts" Recommendation is available at
http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626. The
latest version of
"Web Services Description Language (WSDL) Version 2.0 Part 2:
Adjuncts" is available at
http://www.w3.org/TR/wsdl20-adjuncts.

[bookmark: Informative-References]10.2 Informative References

	[bookmark: RFC2045][IETF RFC
2045]
	Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies, N. Freed, N. Borenstein, Authors. Internet
Engineering Task Force, November 1996. Available at
http://www.ietf.org/rfc/rfc2045.txt.
	[bookmark: RFC2616][IETF RFC
2616]
	Hypertext
Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys,
J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
Authors. Internet Engineering Task Force, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.
	[bookmark: WSA-Core][WSA 1.0
Core]
	Web Services
Addressing 1.0 - Core , M. Gudgin, M. Hadley, T. Rogers,
Editors. World Wide Web Consortium, 9 May 2006. This version of Web
Services Addressing 1.0 - Core Recommendation is
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/ The latest
version of the "Web Services Addressing 1.0 - Core" document is
available from http://www.w3.org/TR/ws-addr-core.
	[bookmark: WSDL11][WSDL 1.1]
	Web Services
Description Language (WSDL) 1.1, E. Christensen, F.
Curbera, G. Meredith, and S. Weerawarana, Authors. World Wide Web
Consortium, 15 March 2002. This version of the Web Services
Description Language 1.1 Note is
http://www.w3.org/TR/2001/NOTE-wsdl-20010315. The latest version of Web Services
Description Language 1.1 is available at
http://www.w3.org/TR/wsdl.
	[bookmark: WSDL-PART0][WSDL
2.0 Primer]
	Web Services
Description Language (WSDL) Version 2.0 Part 0: Primer ,
D.Booth, C.K. Liu , Editors. World Wide Web Consortium, 26 June
2007. This version of the "Web Services Description Language (WSDL)
Version 2.0 Part 0: Primer" Recommendation is available at
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626. The latest version of "Web
Services Description Language (WSDL) Version 2.0 Part 0:
Primer" is available at
http://www.w3.org/TR/wsdl20-primer.
	[bookmark: WSDReqs][WSDL 2.0
Requirements]
	Web Services
Description Requirements, J. Schlimmer, Editor. World
Wide Web Consortium, 28 October 2002. This version of the Web
Services Description Requirements document is
http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028. The latest version of Web Services
Description Requirements is available at
http://www.w3.org/TR/ws-desc-reqs.
	[bookmark: WSDL2-OTHER-SCHEMA][WSDL 2.0 Alternative Schema Languages
Support]
	Discussion
of Alternative Schema Languages and Type System Support in WSDL
2.0, A. Lewis, B. Parsia, Editors. World Wide Web
Consortium, 17 August 2005. This version of the "Discussion of
Alternative Schema Languages and Type System Support in WSDL 2.0"
Working Group Note is
http://www.w3.org/TR/2005/NOTE-wsdl20-altschemalangs-20050817/. The
latest version
of "Discussion of Alternative Schema Languages and Type System
Support in WSDL 2.0" is available at
http://www.w3.org/TR/wsdl20-altschemalangs.
	[bookmark: SOAP12-PART1][SOAP 1.2 Part 1: Messaging Framework (Second
Edition)]
	SOAP Version
1.2 Part 1: Messaging Framework (Second Edition), M.
Gudgin, et al., Editors. World Wide Web Consortium, 24 June 2003,
revised 27 April 2007. This version of the "SOAP Version 1.2 Part
1: Messaging Framework (Second Edition)" Recommendation is
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/. The latest version of "SOAP
Version 1.2 Part 1: Messaging Framework" is available at
http://www.w3.org/TR/soap12-part1/.
	[bookmark: XPTR][XPointer]
	XPointer
Framework, P. Grosso, E. Maler, J. Marsh, N. Walsh,
Editors. World Wide Web Consortium, 25 March 2003. This version of
the XPointer Framework Recommendation is
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/ The latest version of XPointer
Framework is available at
http://www.w3.org/TR/xptr-framework/.
	[bookmark: ZNotationReferenceManual][Z Notation Reference Manual]
	The Z Notation:
A Reference Manual, Second Edition, J. M. Spivey,
Prentice Hall, 1992.
	[bookmark: Fuzz2000][Fuzz
2000]
	Release
Notes For Fuzz 2000, J. M. Spivey.

[bookmark: ietf-draft]A. The
application/wsdl+xml Media Type

This appendix defines the "application/wsdl+xml" media type
which can be used to describe WSDL 2.0 documents serialized as
XML.

[bookmark: ietf-reg]A.1 Registration

	MIME media type name:
	
application

	MIME subtype name:
	
wsdl+xml

	Required parameters:
	
none

	Optional parameters:
	
	charset
	
This parameter has identical semantics to the charset parameter
of the "application/xml" media type as specified in [IETF RFC 3023].

	Encoding considerations:
	
Identical to those of "application/xml" as described in
[IETF RFC 3023], section 3.2,
as applied to the WSDL document Infoset.

	Security considerations:
	
See section A.3 Security
considerations.

	Interoperability considerations:
	
There are no known interoperability issues.

	Published specifications:
	
This document and [WSDL 2.0
Adjuncts].

	Applications which use this media type:
	
No known applications currently use this media type.

	Additional information:
	
	File extension:
	
wsdl

	Fragment identifiers:
	
Either a syntax identical to that of "application/xml" as
described in [IETF RFC 3023],
section 5 or the syntax defined in A.2
Fragment Identifiers.

	Base URI:
	
As specified in [IETF RFC
3023], section 6.

	Macintosh File Type code:
	
WSDL

	Person and email address to contact for further
information:
	
World Wide Web Consortium <web-human@w3.org>

	Intended usage:
	
COMMON

	Author/Change controller:
	
The WSDL 2.0 specification set is a work product of the World
Wide Web Consortium's Web
Service Description Working Group. The W3C has change control
over these specifications.

[bookmark: frag-ids]A.2 Fragment
Identifiers

This section defines a fragment identifier syntax for
identifying components of a WSDL 2.0 document. This fragment
identifier syntax is compliant with the [XPointer].

A WSDL 2.0 fragment identifier is an XPointer [XPointer], augmented with WSDL 2.0 pointer parts
as defined below. Note that many of these parts require the
pre-appearance of one or more xmlns pointer parts (see
3.4 Namespace Binding Context in [XPointer]). The pointer parts have a scheme name
that corresponds to one of the standard WSDL 2.0 component types,
and scheme data that is a path composed of names that identify the
components. The scheme names all begin with the prefix "wsdl." to
avoid name conflicts with other schemes. The names in the path are
of type either QName, NCName, IRI, URI, or Pointer Part depending
on the context. The scheme data for WSDL 2.0 extension components
is defined by the corresponding extension specification.

For QNames, any
prefix MUST be defined by a preceding xmlns pointer
part.† If a
QName does not have a prefix then its namespace name is the target
namespace of the WSDL 2.0 document.

The fragment identifier is typically constructed from the
{name} property of the component and
the {name} properties of its
ancestors as a path according to Table
A-1. The first column of this table gives the name of the WSDL
2.0 component. Columns labeled 1 through 4 specify the identifiers
that uniquely identify the component within its context.
Identifiers are typically formed from the {name} property, although in several cases
references to other components are used. These identifiers are then
used to construct the pointer part in the last column. The fragment identifier in
a WSDL 2.0 component IRI-reference MUST resolve to some component
as defined by the construction rules in Table A-1.†

[bookmark: frag-ids-table]
Table A-1. Rules for determining pointer parts for WSDL
2.0 components	Component	1	2	3	4	Pointer Part
	Description	n/a	n/a	n/a	n/a	wsdl.description()
	Element Declaration	element
QName	n/a	n/a	n/a	wsdl.elementDeclaration(element)
	Element Declaration	element
QName	system IRI	n/a	n/a	wsdl.elementDeclaration(element,system)
	Type Definition	type QName	n/a	n/a	n/a	wsdl.typeDefinition(type)
	Type Definition	type QName	system IRI	n/a	n/a	wsdl.typeDefinition(type,system)
	Interface	interface
NCName	n/a	n/a	n/a	wsdl.interface(interface)
	Interface Fault	interface
NCName	fault NCName	n/a	n/a	wsdl.interfaceFault(interface/fault)
	Interface Operation	interface
NCName	operation
NCName	n/a	n/a	wsdl.interfaceOperation(interface/operation)
	Interface Message
Reference	interface
NCName	operation
NCName	message
NCName	n/a	wsdl.interfaceMessageReference(interface/operation/message)
	Interface Fault
Reference	interface
NCName	operation
NCName	message
NCName	fault QName	wsdl.interfaceFaultReference(interface/operation/message/fault)
	Binding	binding
NCName	n/a	n/a	n/a	wsdl.binding(binding)
	Binding Fault	binding
NCName	fault QName	n/a	n/a	wsdl.bindingFault(binding/fault)
	Binding Operation	binding
NCName	operation
QName	n/a	n/a	wsdl.bindingOperation(binding/operation)
	Binding Message
Reference	binding
NCName	operation
QName	message
NCName	n/a	wsdl.bindingMessageReference(binding/operation/message)
	Binding Fault Reference	binding
NCName	operation
QName	message
NCName	fault QName	wsdl.bindingFaultReference(binding/operation/message/fault)
	Service	service
NCName	n/a	n/a	n/a	wsdl.service(service)
	Endpoint	service
NCName	endpoint
NCName	n/a	n/a	wsdl.endpoint(service/endpoint)
	Extensions	namespace
URI	identifier
extension-specific-syntax	n/a	n/a	wsdl.extension(namespace,identifier)

Note that the above rules are defined in terms of component
properties rather than the XML Infoset representation of the
component model. The following sections specify in detail how the
pointer parts are constructed from the component model.

[bookmark: zed-ComponentID][bookmark: zed-ComponentDesignator][bookmark: zed-ComponentContext][bookmark: zed-componentNamespace][bookmark: zed-ExtensionIdentifier][bookmark: zed-wsdlPointerPart][bookmark: zed-pointerPart][bookmark: zed-ComponentToDesignator]

[bookmark: wsdl.description]A.2.1 The
Description Component

wsdl.description()

[bookmark: zed-wsdlDescription]

[bookmark: wsdl.elementDeclaration]A.2.2 The Element Declaration
Component

wsdl.elementDeclaration(element)

wsdl.elementDeclaration(element,system)

	
element is the {name} property of the
Element Declaration
component.

	
system is the namespace absolute IRI of
the extension type system used for the Element Declaration component
(see 3.2 Using Other Schema
Languages). This parameter is absent if XML Schema is
the type system.

[bookmark: zed-xmlSchemaNamespaceURI][bookmark: zed-ElementDeclArgs][bookmark: zed-ElementDeclDesignator][bookmark: zed-wsdlElementDeclaration]

[bookmark: wsdl.typeDefinition]A.2.3 The Type Definition Component

wsdl.typeDefinition(type)

wsdl.typeDefinition(type,system)

	
type is the {name} property of the Type Definition component.

	
system is the namespace absolute IRI of
the extension type system used for the Type Definition component (see
3.2 Using Other Schema
Languages). This parameter is absent if XML Schema is
the type system.

[bookmark: zed-TypeDefArgs][bookmark: zed-TypeDefDesignator][bookmark: zed-wsdlTypeDefinition]

[bookmark: wsdl.interface]A.2.4 The
Interface Component

wsdl.interface(interface)

	
interface is the local name of the
{name} property of the
Interface component.

[bookmark: zed-InterfaceArgs][bookmark: zed-InterfaceDesignator][bookmark: zed-wsdlInterface]

[bookmark: wsdl.interfaceFault]A.2.5 The Interface Fault Component

wsdl.interfaceFault(interface/fault)

	
interface is the local name of the
{name} property of the
parent Interface component.

	
fault is the local name of the {name} property of the Interface Fault component.

[bookmark: zed-InterfaceFaultArgs][bookmark: zed-InterfaceFaultDesignator][bookmark: zed-wsdlInterfaceFault]

[bookmark: wsdl.interfaceOperation]A.2.6 The Interface Operation
Component

wsdl.interfaceOperation(interface/operation)

	
interface is the local name of the
{name} property of the
parent Interface component.

	
operation is the local name of the
{name} property of
the Interface Operation
component.

[bookmark: zed-InterfaceOpArgs][bookmark: zed-InterfaceOpDesignator][bookmark: zed-wsdlInterfaceOperation]

[bookmark: wsdl.interfaceMessageReference]A.2.7 The Interface Message
Reference Component

wsdl.interfaceMessageReference(interface/operation/message)

	
interface is the local name of the
{name} property of the
grandparent Interface
component.

	
operation is the local name of the
{name} property of
the parent Interface
Operation component.

	
message is the {message
label} property of the Interface Message
Reference component.

[bookmark: zed-InterfaceMessageRefArgs][bookmark: zed-InterfaceMessageRefDesignator][bookmark: zed-wsdlInterfaceMessageReference]

[bookmark: wsdl.interfaceFaultReference]A.2.8 The Interface Fault
Reference Component

wsdl.interfaceFaultReference(interface/operation/message/fault)

	
interface is the local name of the
{name} property of the
grandparent Interface
component.

	
operation is the local name of the
{name} property of
the parent Interface
Operation component.

	
message is the {message label}
property of the Interface Fault Reference
component.

	
fault is the {name} property of the Interface Fault component referred
to by the {interface
fault} property of the Interface Fault Reference
component.

[bookmark: zed-InterfaceFaultRefArgs][bookmark: zed-InterfaceFaultRefDesignator][bookmark: zed-wsdlInterfaceFaultReference]

[bookmark: wsdl.binding]A.2.9 The Binding
Component

wsdl.binding(binding)

	
binding is the local name of the {name} property of the Binding component.

[bookmark: zed-BindingArgs][bookmark: zed-BindingDesignator][bookmark: zed-wsdlBinding][bookmark: zed-BindingInterfaceDesignator]

[bookmark: wsdl.bindingFault]A.2.10
The Binding Fault Component

wsdl.bindingFault(binding/fault)

	
binding is the local name of the {name} property of the parent Binding component.

	
fault is the {name} property of the Interface Fault component referred
to by the {interface fault}
property of the Binding Fault
component.

[bookmark: zed-BindingFaultArgs][bookmark: zed-BindingFaultDesignator][bookmark: zed-wsdlBindingFault]

[bookmark: wsdl.bindingOperation]A.2.11 The Binding Operation
Component

wsdl.bindingOperation(binding/operation)

	
binding is the local name of the {name} property of the parent Binding component.

	
operation is the {name} property of the
Interface Operation
component referred to by the {interface
operation} property of the Binding Operation component.

[bookmark: zed-BindingOpArgs][bookmark: zed-BindingOpDesignator][bookmark: zed-wsdlBindingOperation]

[bookmark: wsdl.bindingMessageReference]A.2.12 The Binding Message
Reference Component

wsdl.bindingMessageReference(binding/operation/message)

	
binding is the local name of the {name} property of the grandparent
Binding component.

	
operation is the {name} property of the
Interface Operation
component referred to by the {interface
operation} property of the parent Binding Operation component.

	
message is the {message
label} property of the Interface Message
Reference component referred to by the {interface
message reference} property of the Binding Message Reference
component.

[bookmark: zed-BindingMessageRefArgs][bookmark: zed-BindingMessageRefDesignator][bookmark: zed-wsdlBindingMessageReference]

[bookmark: wsdl.bindingFaultReference]A.2.13 The Binding Fault Reference
Component

wsdl.bindingFaultReference(binding/operation/message/fault)

	
binding is the local name of the {name} property of the grandparent
Binding component.

	
operation is the {name} property of the
Interface Operation
component referred to by the {interface
operation} property of the parent Binding Operation component.

	
message is the {message label}
property of the Interface Fault Reference
component referred to by the {interface
fault reference} property of the Binding Fault Reference
component.

	
fault is the {name} property of the Interface Fault component referred
to by the {interface
fault} property of the Interface Fault Reference
component referred to by the {interface
fault reference} property of the Binding Fault Reference
component.

[bookmark: zed-BindingFaultRefArgs][bookmark: zed-BindingFaultRefDesignator][bookmark: zed-wsdlBindingFaultReference]

[bookmark: wsdl.service]A.2.14 The Service
Component

wsdl.service(service)

	
service is the local name of the {name} property of the Service component.

[bookmark: zed-ServiceArgs][bookmark: zed-ServiceDesignator][bookmark: zed-wsdlService]

[bookmark: wsdl.endpoint]A.2.15 The
Endpoint Component

wsdl.endpoint(service/endpoint)

	
service is the local name of the {name} property of the parent Service component.

	
endpoint is the {name} property of the Endpoint component.

[bookmark: zed-EndpointArgs][bookmark: zed-EndpointDesignator][bookmark: zed-wsdlEndpoint]

[bookmark: wsdl.extension]A.2.16
Extension Components

WSDL 2.0 is extensible and it is possible for an extension to
define new components types. The XPointer Framework scheme for
extension components is:

wsdl.extension(namespace,
identifier)

	
namespace is the namespace URI that
identifies the extension, e.g. for the WSDL 2.0 SOAP 1.2 Binding
the namespace is http://www.w3.org/ns/wsdl/soap.

	
identifier is defined by the extension
using a syntax specific to the extension. The owner of the
extension must define any components contributed by the extension
and a syntax for identifying them.

[bookmark: zed-ExtensionArgs][bookmark: zed-ExtensionDesignator][bookmark: zed-wsdlExtension]

[bookmark: ietf-sec]A.3 Security
considerations

This media type uses the "+xml" convention, it shares the same
security considerations as described in [IETF RFC 3023], section 10.

[bookmark: acknowledgments]B.
Acknowledgements (Non-Normative)

This document is the work of the W3C Web Service Description
Working Group.

Members of the Working Group are (at the time of writing, and by
alphabetical order): Charlton Barreto (Adobe Systems, Inc), Allen
Brookes (Rogue Wave Softwave), Dave Chappell (Sonic Software),
Helen Chen (Agfa-Gevaert N. V.), Roberto Chinnici (Sun
Microsystems), Kendall Clark (University of Maryland), Glen Daniels
(Sonic Software), Paul Downey (British Telecommunications), Youenn
Fablet (Canon), Ram Jeyaraman (Microsoft), Tom Jordahl (Adobe
Systems), Anish Karmarkar (Oracle Corporation), Jacek Kopecky (DERI
Innsbruck at the Leopold-Franzens-Universität Innsbruck, Austria),
Amelia Lewis (TIBCO Software, Inc.), Philippe Le Hegaret (W3C),
Michael Liddy (Education.au Ltd.), Kevin Canyang Liu (SAP AG),
Jonathan Marsh (WSO2), Monica Martin (Sun Microsystems), Josephine
Micallef (SAIC - Telcordia Technologies), Jeff Mischkinsky (Oracle
Corporation), Dale Moberg (Cyclone Commerce), Jean-Jacques Moreau
(Canon), David Orchard (BEA Systems, Inc.), Gilbert Pilz (BEA
Systems, Inc.), Tony Rogers (Computer Associates), Arthur Ryman
(IBM), Adi Sakala (IONA Technologies), Michael Shepherd (Xerox),
Asir Vedamuthu (Microsoft Corporation), Sanjiva Weerawarana (WSO2),
Ümit Yalçınalp (SAP AG), Peter Zehler (Xerox).

Previous members were: Eran Chinthaka (WSO2), Mark Nottingham
(BEA Systems, Inc.), Hugo Haas (W3C), Vivek Pandey (Sun
Microsystems), Bijan Parsia (University of Maryland), Lily Liu
(webMethods, Inc.), Don Wright (Lexmark), Joyce Yang (Oracle
Corporation), Daniel Schutzer (Citigroup), Dave Solo (Citigroup),
Stefano Pogliani (Sun Microsystems), William Stumbo (Xerox),
Stephen White (SeeBeyond), Barbara Zengler (DaimlerChrysler
Research and Technology), Tim Finin (University of Maryland),
Laurent De Teneuille (L'Echangeur), Johan Pauhlsson (L'Echangeur),
Mark Jones (AT&T), Steve Lind (AT&T), Sandra Swearingen
(U.S. Department of Defense, U.S. Air Force), Philippe Le Hégaret
(W3C), Jim Hendler (University of Maryland), Dietmar Gaertner
(Software AG), Michael Champion (Software AG), Don Mullen (TIBCO
Software, Inc.), Steve Graham (Global Grid Forum), Steve Tuecke
(Global Grid Forum), Michael Mahan (Nokia), Bryan Thompson (Hicks
& Associates), Ingo Melzer (DaimlerChrysler Research and
Technology), Sandeep Kumar (Cisco Systems), Alan Davies
(SeeBeyond), Jacek Kopecky (Systinet), Mike Ballantyne (Electronic
Data Systems), Mike Davoren (W. W. Grainger), Dan Kulp (IONA
Technologies), Mike McHugh (W. W. Grainger), Michael Mealling
(Verisign), Waqar Sadiq (Electronic Data Systems), Yaron Goland
(BEA Systems, Inc.), Ümit Yalçınalp (Oracle Corporation), Peter
Madziak (Agfa-Gevaert N. V.), Jeffrey Schlimmer (Microsoft
Corporation), Hao He (The Thomson Corporation), Erik Ackerman
(Lexmark), Jerry Thrasher (Lexmark), Prasad Yendluri (webMethods,
Inc.), William Vambenepe (Hewlett-Packard Company), David Booth
(W3C), Sanjiva Weerawarana (IBM), Asir Vedamuthu (webMethods,
Inc.), Igor Sedukhin (Computer Associates), Martin Gudgin
(Microsoft Corporation), Rebecca Bergersen (IONA Technologies), Ugo
Corda (SeeBeyond).

The people who have contributed to discussions on
www-ws-desc@w3.org are also gratefully acknowledged.

[bookmark: wsdl-iri-references]C.
IRI-References for WSDL 2.0 Components (Non-Normative)

This appendix provides a syntax for IRI-references for all
components found in a WSDL 2.0 document. The IRI-references are
easy to understand and compare, while imposing no burden on the
WSDL 2.0 author.

[bookmark: wsdl-iris]C.1 WSDL 2.0 IRIs

There are two main cases for WSDL 2.0 IRIs:

	
the IRI of a WSDL 2.0 document

	
the IRI of a WSDL 2.0 namespace

The IRI of a WSDL 2.0 document can be dereferenced to give a
resource representation that contributes component definitions to a
single WSDL 2.0 namespace. If the media type is set to the WSDL 2.0
media type, then the fragment identifiers can be used to identify
the main components that are defined in the document.

However, in keeping with the recommendation in 2.1.1 The Description
Component that the namespace URI be dereferencable to
a WSDL 2.0 document, this appendix specifies the use of the
namespace IRI with the WSDL 2.0 fragment identifiers to form an
IRI-reference.

The IRI in an IRI-reference for a WSDL 2.0 component is the
namespace name of the {name} property
of either the component itself, in the case of Interface , Binding , and Service components, or the {name} property of the ancestor top-level
component. The IRI provided by the namespace name of the {name} property is combined with a zero or
more xmlns pointer parts (see 3.4 Namespace
Binding Context in [XPointer]
) followed by a single WSDL 2.0 pointer part as defined in A.2 Fragment Identifiers .

[bookmark: component-designator-canonical-form]C.2 Canonical Form for
WSDL 2.0 Component Designators

The IRI-references described above MAY be used as WSDL 2.0
component designators. For ease of comparison, the fragment
identifier of WSDL 2.0 component designators SHOULD conform to the
following canonicalization rules:

	
The
fragment identifier consists of a sequence zero or more
xmlns() pointer parts followed by exactly one
wsdl.*() pointer part. †

	
Each
xmlns() pointer part that appears in the fragment
identifier defines a namespace that is referenced by the
wsdl.*() pointer part. †

	
Each
xmlns() pointer part defines a unique namespace.
†

	
The
xmlns() pointer parts define namespaces in the same
order as they are referenced in the wsdl.*() pointer
part. †

	
The
namespace prefixes defined by the xmlns() pointer
parts are named ns1 , ns2 , etc., in the
order of their appearance. †

	
The
fragment identifier contains no optional whitespace. †

	
No
xmlns() pointer part defines a namespace for the
targetNamespace of the WSDL 2.0 document. †

[bookmark: Iri-ref-ex]C.3 Example

Consider the following WSDL 2.0 document located at
http://example.org/TicketAgent.wsdl:

[bookmark: iri-ref-example-wsdl]Example C-1.
IRI-References - Example WSDL 2.0 Document

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:description
 targetNamespace="http://example.org/TicketAgent.wsdl20"
 xmlns:xsTicketAgent="http://example.org/TicketAgent.xsd"
 xmlns:wsdl="http://www.w3.org/ns/wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/ns/wsdl http://www.w3.org/2007/06/wsdl/wsdl20.xsd">

 <wsdl:types>
 <xs:import schemaLocation="TicketAgent.xsd"
 namespace="http://example.org/TicketAgent.xsd" />
 </wsdl:types>

 <wsdl:interface name="TicketAgent">
 <wsdl:operation name="listFlights"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <wsdl:input element="xsTicketAgent:listFlightsRequest"/>
 <wsdl:output element="xsTicketAgent:listFlightsResponse"/>
 </wsdl:operation>

 <wsdl:operation name="reserveFlight"
 pattern="http://www.w3.org/ns/wsdl/in-out">
 <wsdl:input element="xsTicketAgent:reserveFlightRequest"/>
 <wsdl:output element="xsTicketAgent:reserveFlightResponse"/>
 </wsdl:operation>
 </wsdl:interface>
</wsdl:description>

Its components have the following IRI-references which follow
the above canonicalization rules except for the presence of
optional whitespace that has been added in order to improve the
formatting:

[bookmark: iri-ref-example-iris]Example C-2.
IRI-References - Example IRIs

http://example.org/TicketAgent.wsdl20#
 wsdl.description()

http://example.org/TicketAgent.wsdl20#
 xmlns(ns1=http://example.org/TicketAgent.xsd)
 wsdl.elementDeclaration(ns1:listFlightsRequest)

http://example.org/TicketAgent.wsdl20#
 xmlns(ns1=http://example.org/TicketAgent.xsd)
 wsdl.elementDeclaration(ns1:listFlightsResponse)

http://example.org/TicketAgent.wsdl20#
 xmlns(ns1=http://example.org/TicketAgent.xsd)
 wsdl.elementDeclaration(ns1:reserveFlightRequest)

http://example.org/TicketAgent.wsdl20#
 xmlns(ns1=http://example.org/TicketAgent.xsd)
 wsdl.elementDeclaration(ns1:reserveFlightResponse)

http://example.org/TicketAgent.wsdl20#
 wsdl.interface(TicketAgent)

http://example.org/TicketAgent.wsdl20#
 wsdl.interfaceOperation(TicketAgent/listFlights)

http://example.org/TicketAgent.wsdl20#
 wsdl.interfaceMessageReference(TicketAgent/listFlights/In)

http://example.org/TicketAgent.wsdl20#
 wsdl.interfaceMessageReference(TicketAgent/listFlights/Out)

http://example.org/TicketAgent.wsdl20#
 wsdl.interfaceOperation(TicketAgent/reserveFlight)

http://example.org/TicketAgent.wsdl20#
 wsdl.interfaceMessageReference(TicketAgent/reserveFlight/In)

http://example.org/TicketAgent.wsdl20#
 wsdl.interfaceMessageReference(TicketAgent/reserveFlight/Out)

[bookmark: componentsummary]D.
Component Summary (Non-Normative)

Table D-1 lists all the
components in the WSDL 2.0 abstract Component Model, and all their
properties. Note some properties have a generic definition that is
used in more than one component. In this case, the Component column
contains a "-" to indicate this generic definition of the
property.

[bookmark: component-summary]
Table D-1. Summary of WSDL 2.0 Components and their
Properties	Component	Defined Properties
	-	{name},
{parent}
	Binding	{binding faults}, {binding operations},
{interface}, {name}, {type}
	Binding Fault	{interface fault},
{parent}
	Binding Fault Reference	{interface
fault reference}, {parent}
	Binding Message
Reference	{interface
message reference}, {parent}
	Binding Operation	{binding fault
references}, {binding
message references}, {interface
operation}, {parent}
	Description	{bindings}, {element
declarations}, {interfaces}, {services}, {type definitions}
	Element Declaration	{name}, {system}
	Endpoint	{address}, {binding}, {name}, {parent}
	Interface	{extended interfaces},
{interface
faults}, {interface
operations}, {name}
	Interface Fault	{element
declaration}, {message content
model}, {name},
{parent}
	Interface Fault
Reference	{direction},
{interface
fault}, {message
label}, {parent}
	Interface Message
Reference	{direction},
{element
declaration}, {message
content model}, {message
label}, {parent}
	Interface Operation	{interface
fault references}, {interface
message references}, {message
exchange pattern}, {name}, {parent}, {style}
	Service	{endpoints}, {interface}, {name}
	Type Definition	{name}, {system}
	Property	Where Defined
	address	Endpoint.{address}
	binding	Endpoint.{binding}
	binding fault references	Binding Operation.{binding fault
references}
	binding faults	Binding.{binding faults}
	binding message references	Binding Operation.{binding
message references}
	binding operations	Binding.{binding operations}
	bindings	Description.{bindings}
	direction	Interface Fault Reference.{direction},
Interface Message Reference.{direction}
	element declaration	Interface Fault.{element
declaration}, Interface Message Reference.{element
declaration}
	element declarations	Description.{element
declarations}
	endpoints	Service.{endpoints}
	extended interfaces	Interface.{extended
interfaces}
	interface	Binding.{interface}, Service.{interface}
	interface fault	Binding Fault.{interface fault},
Interface Fault Reference.{interface
fault}
	interface fault reference	Binding Fault Reference.{interface
fault reference}
	interface fault references	Interface Operation.{interface
fault references}
	interface faults	Interface.{interface faults}
	interface message reference	Binding Message Reference.{interface
message reference}
	interface message references	Interface Operation.{interface
message references}
	interface operation	Binding Operation.{interface
operation}
	interface operations	Interface.{interface
operations}
	interfaces	Description.{interfaces}
	message content model	Interface Fault.{message content
model}, Interface Message Reference.{message
content model}
	message exchange pattern	Interface Operation.{message
exchange pattern}
	message label	Interface Fault Reference.{message
label}, Interface Message Reference.{message
label}
	name	.{name},
Binding.{name}, Element
Declaration.{name},
Endpoint.{name},
Interface.{name}, Interface
Fault.{name}, Interface
Operation.{name},
Service.{name}, Type
Definition.{name}
	parent	.{parent}, Binding Fault.{parent}, Binding Fault
Reference.{parent}, Binding
Message Reference.{parent}, Binding
Operation.{parent},
Endpoint.{parent},
Interface Fault.{parent}, Interface Fault
Reference.{parent}, Interface
Message Reference.{parent}, Interface
Operation.{parent}
	services	Description.{services}
	style	Interface Operation.{style}
	system	Element Declaration.{system}, Type
Definition.{system}
	type	Binding.{type}
	type definitions	Description.{type definitions}

[bookmark: assertionsummary]E.
Assertion Summary (Non-Normative)

This appendix summarizes assertions about WSDL 2.0 documents and
components that are not enforced by the WSDL 2.0 schema. Each
assertion is assigned a unique identifier which WSDL 2.0 processors
may use to report errors.

[bookmark: document-assertion-summary]
Table E-1. Summary of Assertions about WSDL 2.0
Documents	Id	Assertion
	[bookmark: Description-1004-summary]Description-1004	If a WSDL 2.0 document is split into
multiple WSDL 2.0 documents (which may be combined as needed via
4.1 Including
Descriptions), then the targetNamespace
attribute information item SHOULD resolve to a master WSDL
2.0 document that includes all the WSDL 2.0 documents needed for
that service description.
	[bookmark: Description-1005-summary]Description-1005	Zero or more element information
items amongst its [children], in order as follows:
	[bookmark: Description-1006-summary]Description-1006	Its value MUST be an absolute IRI (see
[IETF RFC 3987]) and should be
dereferencable.
	[bookmark: Import-1082-summary]Import-1082	As with XML schema, any WSDL 2.0
document that references a foreign component MUST have a
wsdl:import element information item for the
associated foreign namespace (but which does not necessarily
provide a location attribute information item
that identifies the WSDL 2.0 document in which the referenced
component is defined).
	[bookmark: Import-1083-summary]Import-1083	If a WSDL 2.0 document contains more
than one wsdl:import element information item
for a given value of the namespace attribute
information item, then they MUST provide different values for
the location attribute information item.
	[bookmark: Import-1084-summary]Import-1084	This value MUST NOT match the actual
value of targetNamespace attribute information
item in the enclosing WSDL 2.0 document.
	[bookmark: Import-1085-summary]Import-1085	If the location attribute in the
import element information item is
dereferencable, then it MUST reference a WSDL 2.0 document.
	[bookmark: Import-1086-summary]Import-1086	If the location
attribute information item of the import
element information item is dereferencable, then the
actual value of the namespace attribute
information item MUST be identical to the actual value of the
targetNamespace attribute information item of
the referenced WSDL 2.0 document (see 7. Locating WSDL 2.0
Documents).
	[bookmark: Include-1080-summary]Include-1080	The IRI indicated by
location MUST resolve to a WSDL 2.0 document.
	[bookmark: Include-1081-summary]Include-1081	The actual value of the
targetNamespace attribute information item of
the included WSDL 2.0 document MUST match the actual value of the
targetNamespace attribute information item of
the description element information item
which is the [parent] of the include element
information item.
	[bookmark: Interface-1012-summary]Interface-1012	Its value, if present, MUST contain
absolute IRIs (see [IETF RFC
3987]).
	[bookmark: InterfaceFault-1017-summary]InterfaceFault-1017	If the element
attribute information item has a value, then it MUST
resolve to an Element
Declaration component from the {element
declarations} property of the Description component.
	[bookmark: InterfaceFaultReference-1040-summary]InterfaceFaultReference-1040	The messageLabel
attribute information item MUST be present in the XML
representation of an Interface Fault Reference
component with a given {direction}, if
the {message
exchange pattern} of the parent Interface Operation component
has more than one fault with that direction.
	[bookmark: InterfaceMessageReference-1036-summary]InterfaceMessageReference-1036	If the element
attribute information item has a value, then it MUST
resolve to an Element
Declaration component from the {element
declarations} property of the Description component.
	[bookmark: Location-1092-summary]Location-1092	It MUST NOT appear on a
wsdl:description element or any of its
children/descendants.
	[bookmark: Location-1094-summary]Location-1094	For each pair of IRIs, if the location
IRI of the pair is dereferencable, then it MUST reference a WSDL
2.0 (or 1.1) document whose target namespace is the namespace IRI
of the pair.
	[bookmark: MessageLabel-1030-summary]MessageLabel-1030	If the messageLabel
attribute information item of an interface message
reference element information item is present, then its
actual value MUST match the {message
label} of some placeholder message with {direction}
equal to the message direction.
	[bookmark: MessageLabel-1031-summary]MessageLabel-1031	If the messageLabel
attribute information item of an interface message
reference element information item is absent then there
MUST be a unique placeholder message with {direction}
equal to the message direction.
	[bookmark: MessageLabel-1032-summary]MessageLabel-1032	If the local name is input
then the message exchange pattern MUST have at least one
placeholder message with direction "In".
	[bookmark: MessageLabel-1033-summary]MessageLabel-1033	If the local name is
output then the message exchange pattern MUST have at
least one placeholder message with direction "Out".
	[bookmark: MessageLabel-1034-summary]MessageLabel-1034	If the local name is
infault then the message exchange pattern MUST support
at least one fault in the "In" direction.
	[bookmark: MessageLabel-1035-summary]MessageLabel-1035	If the local name is
outfault then the message exchange pattern MUST
support at least one fault in the "Out" direction.
	[bookmark: MessageLabel-1041-summary]MessageLabel-1041	The messageLabel
attribute information item of an interface fault reference
element information item MUST be present if the message
exchange pattern has more than one placeholder message with
{direction}
equal to the message direction.
	[bookmark: MessageLabel-1042-summary]MessageLabel-1042	If the messageLabel
attribute information item of an interface fault reference
element information item is present then its actual value
MUST match the {message
label} of some placeholder message with {direction}
equal to the message direction.
	[bookmark: MessageLabel-1043-summary]MessageLabel-1043	If the messageLabel
attribute information item of an interface fault reference
element information item is absent then there MUST be a
unique placeholder message with {direction}
equal to the message direction.
	[bookmark: MessageLabel-1053-summary]MessageLabel-1053	If the messageLabel
attribute information item of a binding message reference
element information item is present then its actual value
MUST match the {message
label} of some placeholder message with {direction}
equal to the message direction.
	[bookmark: MessageLabel-1054-summary]MessageLabel-1054	If the messageLabel
attribute information item of a binding message reference
element information item is absent then there MUST be a
unique placeholder message with {direction}
equal to the message direction.
	[bookmark: MessageLabel-1056-summary]MessageLabel-1056	The messageLabel
attribute information item of a binding fault reference
element information item MUST be present if the message
exchange pattern has more than one placeholder message with
{direction}
equal to the message direction.
	[bookmark: MessageLabel-1057-summary]MessageLabel-1057	If the messageLabel
attribute information item of a binding fault reference
element information item is present then its actual value
MUST match the {message
label} of some placeholder message with {direction}
equal to the message direction.
	[bookmark: MessageLabel-1058-summary]MessageLabel-1058	If the messageLabel
attribute information item of a binding fault reference
element information item is absent then there MUST be a
unique placeholder message with {direction}
equal to the message direction.
	[bookmark: QName-resolution-1064-summary]QName-resolution-1064	A Description component MUST NOT have
such broken references.
	[bookmark: Schema-1066-summary]Schema-1066	A WSDL 2.0 document MUST NOT refer to
XML Schema components in a given namespace UNLESS an
xs:import or xs:schema element
information item for that namespace is present OR the
namespace is the XML Schema namespace,
http://www.w3.org/2001/XMLSchema, which contains built-in types as
defined in XML Schema Part 2: Datatypes Second Edition
[XML Schema:
Datatypes].
	[bookmark: Schema-1069-summary]Schema-1069	The referenced schema MUST contain a
targetNamespace attribute information item on
its xs:schema element information item.
	[bookmark: Schema-1070-summary]Schema-1070	The value of the
targetNamespace attribute information item of
the xs:schema element information item of an
imported schema MUST equal the value of the namespace
of the import element information item in the
importing WSDL 2.0 document.
	[bookmark: Schema-1073-summary]Schema-1073	A WSDL 2.0 document MUST NOT define the
same element or type in more than one inlined schema.
	[bookmark: Schema-1075-summary]Schema-1075	A specification of extension syntax for
an alternative schema language MUST use a namespace that is
different than the namespace of XML Schema.
	[bookmark: Schema-1076-summary]Schema-1076	The namespace used for an alternate
schema language MUST be an absolute IRI.
	[bookmark: Schema-1079-summary]Schema-1079	If wsdlx:interface and
wsdlx:binding are used together then they MUST satisfy
the same consistency rules that apply to the {interface} property of a Service component and the {binding} property of a nested
Endpoint component, that is
either the binding refers the interface of the service or the
binding refers to no interface.
	[bookmark: Types-1074-summary]Types-1074	A specification of extension syntax for
an alternative schema language MUST include the declaration of an
element information item, intended to appear as a child of
the wsdl:types element information item,
which references, names, and locates the schema instance (an
import element information item).
	[bookmark: Types-1077-summary]Types-1077	The type of the
wsdlx:interface attribute information item is
an xs:QName that specifies the {name} property of an Interface component.
	[bookmark: Types-1078-summary]Types-1078	The type of the
wsdlx:binding attribute information item is
an xs:QName that specifies the {name} property of a Binding component.

[bookmark: component-assertion-summary]
Table E-2. Summary of Assertions about WSDL 2.0
Components	Id	Assertion
	[bookmark: Binding-1044-summary]Binding-1044	If a Binding component specifies any
operation-specific binding details (by including Binding Operation components) or
any fault binding details (by including Binding Fault components), then it
MUST specify an interface the Binding component applies to, so as to
indicate which interface the operations come from.
	[bookmark: Binding-1045-summary]Binding-1045	A Binding component that defines bindings
for an Interface component MUST
define bindings for all the operations of that Interface component.
	[bookmark: Binding-1046-summary]Binding-1046	Similarly, whenever a reusable Binding component (i.e. one that does not
specify an Interface component)
is applied to a specific Interface component in the context of an
Endpoint component (see 2.13.1 The Endpoint
Component), the Binding component MUST define bindings for
each Interface
Operation and Interface
Fault component of the Interface component, via a combination
of properties defined on the Binding component itself and default
binding rules specific to its binding type.
	[bookmark: Binding-1047-summary]Binding-1047	A Binding component that defines bindings
for an Interface component MUST
define bindings for all the faults of that Interface component that are referenced
from any of the operations in that Interface component.
	[bookmark: Binding-1048-summary]Binding-1048	This xs:anyURI MUST be an
absolute IRI as defined by [IETF RFC
3987].
	[bookmark: Binding-1049-summary]Binding-1049	For each Binding component in the {bindings} property of a
Description component, the
{name} property MUST be
unique.
	[bookmark: BindingFault-1050-summary]BindingFault-1050	For each Binding Fault component in the
{binding faults}
property of a Binding component,
the {interface
fault} property MUST be unique.
	[bookmark: BindingFaultReference-1055-summary]BindingFaultReference-1055	For each Binding Fault Reference
component in the {binding fault
references} property of a Binding Operation component, the
{interface
fault reference} property MUST be unique.
	[bookmark: BindingFaultReference-1059-summary]BindingFaultReference-1059	There MUST be an Interface Fault Reference
component in the {interface
fault references} of the Interface Operation being bound
with {message label}
equal to the effective message label and with {interface
fault} equal to an Interface Fault component with
{name} equal to the
actual value of the ref attribute information
item.
	[bookmark: BindingMessageReference-1052-summary]BindingMessageReference-1052	For each Binding Message Reference
component in the {binding
message references} property of a Binding Operation component, the
{interface
message reference} property MUST be unique.
	[bookmark: BindingOperation-1051-summary]BindingOperation-1051	For each Binding Operation component in
the {binding
operations} property of a Binding component, the {interface
operation} property MUST be unique.
	[bookmark: CanonFragId-1097-summary]CanonFragId-1097	The fragment identifier consists of a
sequence zero or more xmlns() pointer parts followed
by exactly one wsdl.*() pointer part.
	[bookmark: CanonFragId-1098-summary]CanonFragId-1098	Each xmlns() pointer part
that appears in the fragment identifier defines a namespace that is
referenced by the wsdl.*() pointer part.
	[bookmark: CanonFragId-1099-summary]CanonFragId-1099	Each xmlns() pointer part
defines a unique namespace.
	[bookmark: CanonFragId-1100-summary]CanonFragId-1100	The xmlns() pointer parts
define namespaces in the same order as they are referenced in the
wsdl.*() pointer part.
	[bookmark: CanonFragId-1101-summary]CanonFragId-1101	The namespace prefixes defined by the
xmlns() pointer parts are named ns1 ,
ns2 , etc., in the order of their appearance.
	[bookmark: CanonFragId-1102-summary]CanonFragId-1102	The fragment identifier contains no
optional whitespace.
	[bookmark: CanonFragId-1103-summary]CanonFragId-1103	No xmlns() pointer part
defines a namespace for the targetNamespace of the WSDL 2.0
document.
	[bookmark: Compare-URI-IRI-1065-summary]Compare-URI-IRI-1065	When such absolute URIs and IRIs are
being compared to determine equivalence (see 2.15 Equivalence of Components),
they MUST be compared character-by-character as indicated in
[IETF RFC 3987].
	[bookmark: Description-1001-summary]Description-1001	The value of the
targetNamespace attribute information item
SHOULD be dereferencable.
	[bookmark: Description-1002-summary]Description-1002	It SHOULD resolve to a human or machine
processable document that directly or indirectly defines the
intended semantics of those components.
	[bookmark: Description-1003-summary]Description-1003	It MAY resolve to a WSDL 2.0 document
that provides service description information for that
namespace.
	[bookmark: Description-1067-summary]Description-1067	For each component in the imported
namespace, a corresponding Element Declaration component
or Type Definition
component MUST appear in the {element
declarations} or {type definitions}
property respectively of the Description component corresponding to
the WSDL document that imports the schema, or that imports directly
or indirectly a WSDL document that imports the schema.
	[bookmark: Description-1068-summary]Description-1068	Schema components not in an imported
namespace MUST NOT appear in the {element
declarations} or {type definitions}
properties.
	[bookmark: Description-1071-summary]Description-1071	For each component defined and declared
in the inlined schema document or included by
xs:include, a corresponding Element Declaration component
or Type Definition
component MUST appear in the {element
declarations} property or {type definitions}
property respectively of the Description component corresponding to
the WSDL document that contains the schema, or that imports
directly or indirectly a WSDL document that contains the
schema.
	[bookmark: Description-1072-summary]Description-1072	Schema components not defined or
declared in the inlined schema document or included by
xs:include MUST NOT appear in the {element
declarations} or {type definitions}
properties.
	[bookmark: Endpoint-1061-summary]Endpoint-1061	This xs:anyURI MUST be an
absolute IRI as defined by [IETF RFC
3987].
	[bookmark: Endpoint-1062-summary]Endpoint-1062	For each Endpoint component in the {endpoints} property of a Service component, the {binding} property MUST either be a
Binding component with an
unspecified {interface}
property or a Binding component
with an {interface}
property equal to the {interface} property of the
Service component.
	[bookmark: Equivalence-1063-summary]Equivalence-1063	Extension properties which are not
string values, sets of strings or references MUST describe their
values' equivalence rules.
	[bookmark: Extensibility-1089-summary]Extensibility-1089	An extension that is NOT marked as
mandatory MUST NOT invalidate the meaning of any part of a WSDL 2.0
document.
	[bookmark: Extensibility-1090-summary]Extensibility-1090	If a WSDL 2.0 document declares an
extension as optional (i.e., NON-mandatory), then the Web service
MUST NOT assume that the client supports that extension
unless the Web service knows (through some other means)
that the client has in fact elected to engage and support that
extension.
	[bookmark: Extensibility-1091-summary]Extensibility-1091	Therefore, the Web service MUST support
every extension that is declared as optional in the WSDL 2.0
document, in addition to supporting every extension that is
declared as mandatory.
	[bookmark: Extension-1088-summary]Extension-1088	The meaning of an extension SHOULD be
defined (directly or indirectly) in a document that is available at
its namespace IRI.
	[bookmark: FragId-1095-summary]FragId-1095	For QNames, any prefix MUST be defined
by a preceding xmlns pointer part.
	[bookmark: FragId-1096-summary]FragId-1096	The fragment identifier in a WSDL 2.0
component IRI-reference MUST resolve to some component as defined
by the construction rules in Table
A-1.
	[bookmark: ImportInclude-1087-summary]ImportInclude-1087	The semantics of an extension MUST NOT
depend on how components are brought into a component model
instance via <import> or <include>.
	[bookmark: Interface-1009-summary]Interface-1009	To avoid circular definitions, an
interface MUST NOT appear in the set of interfaces it extends,
either directly or indirectly.
	[bookmark: Interface-1010-summary]Interface-1010	For each Interface component in the {interfaces} property of a
Description component, the
{name} property MUST be
unique.
	[bookmark: Interface-1011-summary]Interface-1011	The list of xs:QName in an
extends attribute information item MUST NOT
contain duplicates.
	[bookmark: InterfaceFault-1013-summary]InterfaceFault-1013	An xs:token with one of the
values #any, #none, #other, or
#element.
	[bookmark: InterfaceFault-1014-summary]InterfaceFault-1014	When the {message content
model} property has the value #any or #none
the {element
declaration} property MUST be empty.
	[bookmark: InterfaceFault-1015-summary]InterfaceFault-1015	In cases where, due to an interface
extending one or more other interfaces, two or more Interface Fault components have the
same value for their {name} property, then the
component models of those Interface Fault components MUST be
equivalent (see 2.15 Equivalence of
Components).
	[bookmark: InterfaceFault-1016-summary]InterfaceFault-1016	For the above reason, it is considered
good practice to ensure, where necessary, that the local name of
the {name} property of
Interface Fault components
within a namespace SHOULD be unique, thus allowing such derivation
to occur without inadvertent error.
	[bookmark: InterfaceFaultReference-1037-summary]InterfaceFaultReference-1037	The value of this property MUST match
the name of a placeholder message defined by the message exchange
pattern.
	[bookmark: InterfaceFaultReference-1038-summary]InterfaceFaultReference-1038	The direction MUST be consistent with
the direction implied by the fault propagation ruleset used in the
message exchange pattern of the operation.
	[bookmark: InterfaceFaultReference-1039-summary]InterfaceFaultReference-1039	For each Interface Fault Reference
component in the {interface
fault references} property of an Interface Operation component,
the combination of its {interface
fault} and {message label}
properties MUST be unique.
	[bookmark: InterfaceMessageReference-1025-summary]InterfaceMessageReference-1025	An xs:token with one of the
values in or out, indicating whether the message
is coming to the service or going from the service,
respectively.
	[bookmark: InterfaceMessageReference-1026-summary]InterfaceMessageReference-1026	The direction MUST be the same as the
direction of the message identified by the {message
label} property in the {message
exchange pattern} of the Interface Operation component
this is contained within.
	[bookmark: InterfaceMessageReference-1027-summary]InterfaceMessageReference-1027	An xs:token with one of the
values #any, #none, #other, or
#element.
	[bookmark: InterfaceMessageReference-1028-summary]InterfaceMessageReference-1028	When the {message
content model} property has the value #any or
#none, the {element
declaration} property MUST be empty.
	[bookmark: InterfaceMessageReference-1029-summary]InterfaceMessageReference-1029	For each Interface Message
Reference component in the {interface
message references} property of an Interface Operation component,
its {message
label} property MUST be unique.
	[bookmark: InterfaceOperation-1018-summary]InterfaceOperation-1018	This xs:anyURI MUST be an
absolute IRI (see [IETF RFC
3987]).
	[bookmark: InterfaceOperation-1019-summary]InterfaceOperation-1019	These xs:anyURIs MUST be
absolute IRIs (see [IETF RFC
3986]).
	[bookmark: InterfaceOperation-1020-summary]InterfaceOperation-1020	In cases where, due to an interface
extending one or more other interfaces, two or more Interface Operation components
have the same value for their {name} property, then the
component models of those Interface Operation components MUST be
equivalent (see 2.15 Equivalence of
Components).
	[bookmark: InterfaceOperation-1021-summary]InterfaceOperation-1021	For the above reason, it is considered
good practice to ensure, where necessary, that the {name} property of Interface Operation components
within a namespace SHOULD be unique, thus allowing such derivation
to occur without inadvertent error.
	[bookmark: InterfaceOperation-1023-summary]InterfaceOperation-1023	An Interface Operation component
MUST satisfy the specification defined by each operation style
identified by its {style} property.
	[bookmark: Location-1093-summary]Location-1093	Its actual value MUST be a list of
pairs of IRIs; where the first IRI of a pair, which MUST be an
absolute IRI as defined in [IETF RFC
3987], indicates a WSDL 2.0 (or 1.1) namespace name,
and, the second a hint as to the location of a WSDL 2.0 document
defining WSDL 2.0 components (or WSDL 1.1 elements [WSDL 1.1]) for that namespace name.
	[bookmark: MEP-1022-summary]MEP-1022	A message exchange pattern is itself
uniquely identified by an absolute IRI, which is used as the value
of the {message
exchange pattern} property of the Interface Operation component,
and which specifies the fault propagation ruleset that its faults
obey.
	[bookmark: MessageLabel-1024-summary]MessageLabel-1024	The value of this property MUST match
the name of a placeholder message defined by the message exchange
pattern.
	[bookmark: Service-1060-summary]Service-1060	For each Service component in the {services} property of a
Description component, the
{name} property MUST be
unique.
	[bookmark: Types-1007-summary]Types-1007	Each XML Schema element declaration
MUST have a unique QName.
	[bookmark: Types-1008-summary]Types-1008	Each XML Schema type definition MUST
have a unique QName.

