Identity for WebRTC 1.0

W3C Candidate Recommendation

This version:
Latest published version:
Latest editor's draft:
Test suite:
Implementation report:
Previous version:
Cullen Jennings, Cisco
Martin Thomson, Mozilla
Mailing list
Browse open issues
IETF RTCWEB Working Group


This document defines a set of ECMAScript APIs in WebIDL to allow and application using WebRTC to assert an identity, and to mark media streams as only viewable by another identity. This specification is being developed in conjunction with a protocol specification developed by the IETF RTCWEB group.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at

This specification had previously been published as part of the 21 June 2018 Candidate Recommendation of WebRTC 1.0.

While the specification is feature complete and is expected to be stable, there are also a number of known substantive issues on the specification that will be addressed during the Candidate Recommendation period based on implementation experience feedback.

It might also evolve based on feedback gathered as its associated test suite evolves. This test suite will be used to build an implementation report of the API.

To go into Proposed Recommendation status, the group expects to demonstrate implementation of each feature in at least two deployed browsers, and at least one implementation of each optional feature. Mandatory feature with only one implementation may be marked as optional in a revised Candidate Recommendation where applicable.

This document was published by the Web Real-Time Communications Working Group as a Candidate Recommendation. This document is intended to become a W3C Recommendation. Comments regarding this document are welcome. Please send them to (subscribe, archives). W3C publishes a Candidate Recommendation to indicate that the document is believed to be stable and to encourage implementation by the developer community. This Candidate Recommendation is expected to advance to Proposed Recommendation no earlier than 31 December 2018.

Please see the Working Group's implementation report.

Publication as a Candidate Recommendation does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

This document is governed by the 1 February 2018 W3C Process Document.

1. Introduction

This section is non-normative.

This document specifies APIs used for identity in WebRTC.

This specification is being developed in conjunction with a protocol specification developed by the IETF RTCWEB group and an API specification to get access to local media devices [GETUSERMEDIA] developed by the Media Capture Task Force. An overview of the system can be found in [RTCWEB-OVERVIEW] and [RTCWEB-SECURITY].

2. Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, and SHOULD are to be interpreted as described in [RFC2119].

This specification defines conformance criteria that apply to a single product: the user agent that implements the interfaces that it contains.

Conformance requirements phrased as algorithms or specific steps may be implemented in any manner, so long as the end result is equivalent. (In particular, the algorithms defined in this specification are intended to be easy to follow, and not intended to be performant.)

Implementations that use ECMAScript to implement the APIs defined in this specification MUST implement them in a manner consistent with the ECMAScript Bindings defined in the Web IDL specification [WEBIDL-1], as this specification uses that specification and terminology.

3. Terminology

The EventHandler interface, representing a callback used for event handlers, and the ErrorEvent interface are defined in [HTML51].

The concepts queue a task, fire a simple event and networking task source are defined in [HTML51].

The terms event, event handlers and event handler event types are defined in [HTML51].

performance.timeOrigin and are defined in [HIGHRES-TIME].

The terms MediaStream, MediaStreamTrack, and MediaStreamConstraints are defined in [GETUSERMEDIA]. Note that MediaStreamTrack is extended in the MediaStreamTrack section in this document.

The term Blob is defined in [FILEAPI].

The term media description is defined in [RFC4566].

The term media transport is defined in [RFC7656].

The term generation is defined in [TRICKLE-ICE] Section 2.

The terms RTCStatsType, stats object and monitored object are defined in [WEBRTC-STATS].

When referring to exceptions, the terms throw and create are defined in [WEBIDL-1].

The term "throw" is used as specified in [INFRA]: it terminates the current processing steps.

The terms fulfilled, rejected, resolved, pending and settled used in the context of Promises are defined in [ECMASCRIPT-6.0].

The terms bundle, bundle-only and bundle-policy are defined in [JSEP].

The OAuth Client and Authorization Server roles are defined in [RFC6749] Section 1.1.

The terms RTCPeerConnection, target peer identity, setRemoteDescription, createOffer, createAnswer, addTrack and RTCError are defined in [WEBRTC].


4. Identity Provider Interaction

WebRTC offers and answers (and hence the channels established by RTCPeerConnection objects) can be authenticated by using a web-based Identity Provider (IdP). The idea is that the entity sending an offer or answer acts as the Authenticating Party (AP) and obtains an identity assertion from the IdP which it attaches to the session description. The consumer of the session description (i.e., the RTCPeerConnection on which setRemoteDescription is called) acts as the Relying Party (RP) and verifies the assertion.

The interaction with the IdP is designed to decouple the browser from any particular identity provider; the browser need only know how to load the IdP's JavaScript, the location of which is determined by the IdP's identity, and the generic interface to generating and validating assertions. The IdP provides whatever logic is necessary to bridge the generic protocol to the IdP's specific requirements. Thus, a single browser can support any number of identity protocols, including being forward compatible with IdPs which did not exist at the time the browser was written.

4.1 Identity Provider Selection

An IdP is used to generate an identity assertion as follows:

  1. If the setIdentityProvider() method has been called, the IdP provided shall be used.
  2. If the setIdentityProvider() method has not been called, then the user agent MAY use an IdP configured into the browser.

In order to verify assertions, the IdP domain name and protocol are taken from the domain and protocol fields of the identity assertion.

4.2 Instantiating an IdP Proxy

In order to communicate with the IdP, the user agent loads the IdP JavaScript from the IdP. The URI for the IdP script is a well-known URI formed from the domain and protocol fields, as specified in [RTCWEB-SECURITY-ARCH].

The IdP MAY generate an HTTP redirect to another "https" origin, the browser MUST treat a redirect to any other scheme as a fatal error.

The user agent instantiates an isolated interpreted context, a JavaScript realm that operates in the origin of the loaded JavaScript. Note that a redirect will change the origin of the loaded script.

The realm is populated with a global that implements both the RTCIdentityProviderGlobalScope and WorkerGlobalScope [WEBWORKERS] interfaces.

The user agent provides an instance of RTCIdentityProviderRegistrar named rtcIdentityProvider in the global scope of the realm. This object is used by the IdP to interact with the user agent.

interface RTCIdentityProviderGlobalScope : WorkerGlobalScope {
    readonly attribute RTCIdentityProviderRegistrar rtcIdentityProvider;


rtcIdentityProvider of type RTCIdentityProviderRegistrar, readonly
This object is used by the IdP to register an RTCIdentityProvider instance with the browser.

4.2.1 Implementing an IdP Securely

An environment that mimics the identity provider realm can be provided by any script. However, only scripts running in the origin of the IdP are able to generate an identical environment. Other origins can load and run the IdP proxy code, but they will be unable to replicate data that is unique to the origin of the IdP.

This means that it is critical that an IdP use data that is restricted to its own origin when generating identity assertions. Otherwise, another origin could load the IdP script and use it to impersonate users.

The data that the IdP script uses could be stored on the client (for example, in [INDEXEDDB]) or loaded from servers. Data that is acquired from a server SHOULD require credentials and be protected from cross-origin access.

There is no risk to the integrity of identity assertions if an IdP validates an identity assertion without using origin-private data.

5. Registering an IdP Proxy

An IdP proxy implements the RTCIdentityProvider methods, which are the means by which the user agent is able to request that an identity assertion be generated or validated.

Once instantiated, the IdP script is executed. The IdP MUST call the register() function on the RTCIdentityProviderRegistrar instance during script execution. If an IdP is not registered during this script execution, the user agent cannot use the IdP proxy and MUST fail any future attempt to interact with the IdP.

interface RTCIdentityProviderRegistrar {
    void register(RTCIdentityProvider idp);



This method is invoked by the IdP when its script is first executed. This registers RTCIdentityProvider methods with the user agent.

5.1 Interface Exposed by Identity Providers

The callback functions in RTCIdentityProvider are exposed by identity providers and is called by RTCPeerConnection to acquire or validate identity assertions.

dictionary RTCIdentityProvider {
    required GenerateAssertionCallback generateAssertion;
    required ValidateAssertionCallback validateAssertion;

Dictionary RTCIdentityProvider Members

generateAssertion of type GenerateAssertionCallback, required

A user agent invokes this method on the IdP to request the generation of an identity assertion.

The IdP provides a promise that resolves to an RTCIdentityAssertionResult to successfully generate an identity assertion. Any other value, or a rejected promise, is treated as an error.

validateAssertion of type ValidateAssertionCallback, required

A user agent invokes this method on the IdP to request the validation of an identity assertion.

The IdP returns a Promise that resolves to an RTCIdentityValidationResult to successfully validate an identity assertion and to provide the actual identity. Any other value, or a rejected promise, is treated as an error.

callback GenerateAssertionCallback = Promise<RTCIdentityAssertionResult> (DOMString contents,
                                                                          DOMString origin,
                                                                          RTCIdentityProviderOptions options);

Callback GenerateAssertionCallback Parameters

contents of type DOMString
The contents parameter includes the information that the user agent wants covered by the identity assertion. The IdP MUST treat contents as opaque string. A successful validation of the provided assertion MUST produce the same string.
origin of type DOMString
The origin parameter identifies the origin of the RTCPeerConnection that triggered this request. An IdP can use this information as input to policy decisions about use. This value is generated by the user agent based on the origin of the document that created the RTCPeerConnection and therefore can be trusted to be correct.
options of type RTCIdentityProviderOptions
This includes the options provided by the application when calling setIdentityProvider. Though the dictionary is an optional argument to setIdentityProvider, default values are used as necessary when passing the value to the identity provider; see the definition of RTCIdentityProviderOptions for details.
callback ValidateAssertionCallback = Promise<RTCIdentityValidationResult> (DOMString assertion,
                                                                           DOMString origin);

Callback ValidateAssertionCallback Parameters

assertion of type DOMString
The assertion parameter includes the assertion that was recovered from an a=identity in the session description; that is, the value that was part of the RTCIdentityAssertionResult provided by the IdP that generated the assertion.
origin of type DOMString
The origin parameter identifies the origin of the RTCPeerConnection that triggered this request. An IdP can use this information as input to policy decisions about use.

5.2 Identity Assertion and Validation Results

dictionary RTCIdentityAssertionResult {
    required RTCIdentityProviderDetails idp;
    required DOMString                  assertion;

Dictionary RTCIdentityAssertionResult Members

idp of type RTCIdentityProviderDetails, required

An IdP provides these details to identify the IdP that validates the identity assertion. This struct contains the same information that is provided to setIdentityProvider.

assertion of type DOMString, required

An identity assertion. This is an opaque string that MUST contain all information necessary to assert identity. This value is consumed by the validating IdP.

dictionary RTCIdentityProviderDetails {
    required DOMString domain;
             DOMString protocol = "default";

Dictionary RTCIdentityProviderDetails Members

domain of type DOMString, required

The domain name of the IdP that validated the associated identity assertion.

protocol of type DOMString, defaulting to "default"

The protocol parameter used for the IdP. The string MUST NOT include the character '/' or '\'.

dictionary RTCIdentityValidationResult {
    required DOMString identity;
    required DOMString contents;

Dictionary RTCIdentityValidationResult Members

identity of type DOMString, required

The validated identity of the peer.

contents of type DOMString, required

The payload of the identity assertion. An IdP that validates an identity assertion MUST return the same string that was provided to the original IdP that generated the assertion.

The user agent uses the contents string to determine if the identity assertion matches the session description.

6. Requesting Identity Assertions

The identity assertion request process is triggered by a call to createOffer, createAnswer, or getIdentityAssertion. When these calls are invoked and an identity provider has been set, the following steps are executed:

  1. The RTCPeerConnection instantiates an IdP as described in Identity Provider Selection and Registering an IdP Proxy. If the IdP cannot be loaded, instantiated, or the IdP proxy is not registered, this process fails.

  2. If the RTCPeerConnection was not constructed with a set of certificates, and one has not yet been generated, wait for it to be generated.

  3. The RTCPeerConnection invokes the generateAssertion method on the RTCIdentityProvider methods registered by the IdP.

    The RTCPeerConnection generates the contents parameter to this method as described in [RTCWEB-SECURITY-ARCH]. The value of contents includes the fingerprint of the certificate that was selected or generated during the construction of the RTCPeerConnection. The origin parameter contains the origin of the script that calls the RTCPeerConnection method that triggers this behavior. The usernameHint value is the same value that is provided to setIdentityProvider, if any such value was provided.

  4. The IdP proxy returns a Promise to the RTCPeerConnection. The IdP proxy is expected to generate the identity assertion asynchronously.

    If the user has been authenticated by the IdP, and the IdP is able to generate an identity assertion, the IdP resolves the promise with an identity assertion in the form of an RTCIdentityAssertionResult.

    This step depends entirely on the IdP. The methods by which an IdP authenticates users or generates assertions is not specified, though they could involve interacting with the IdP server or other servers.

  5. If the IdP proxy produces an error or returns a promise that does not resolve to a valid RTCIdentityAssertionResult (see 8. IdP Error Handling), then assertion generation fails.

  6. The RTCPeerConnection MAY store the identity assertion for use with future offers or answers. If a fresh identity assertion is needed for any reason, applications can create a new RTCPeerConnection.

  7. If the identity request was triggered by a createOffer() or createAnswer(), then the assertion is converted to a JSON string, base64-encoded and inserted into an a=identity attribute in the session description.

If assertion generation fails, then the promise for the corresponding function call is rejected with a newly created OperationError.

6.1 User Login Procedure

An IdP MAY reject an attempt to generate an identity assertion if it is unable to verify that a user is authenticated. This might be due to the IdP not having the necessary authentication information available to it (such as cookies).

Rejecting the promise returned by generateAssertion will cause the error to propagate to the application. Login errors are indicated by rejecting the promise with an RTCError with errorDetail set to "idp-need-login".

The URL to login at will be passed to the application in the idpLoginUrl attribute of the RTCPeerConnection.

An application can load the login URL in an IFRAME or popup window; the resulting page then SHOULD provide the user with an opportunity to enter any information necessary to complete the authorization process.

Once the authorization process is complete, the page loaded in the IFRAME or popup sends a message using postMessage [webmessaging] to the page that loaded it (through the window.opener attribute for popups, or through window.parent for pages loaded in an IFRAME). The message MUST consist of the DOMString "WEBRTC-LOGINDONE". This message informs the application that another attempt at generating an identity assertion is likely to be successful.

7. Verifying Identity Assertions

Identity assertion validation happens when setRemoteDescription is invoked on RTCPeerConnection. The process runs asynchronously, meaning that validation of an identity assertion might not block the completion of setRemoteDescription.

The identity assertion request process involves the following asynchronous steps:

  1. The RTCPeerConnection awaits any prior identity validation. Only one identity validation can run at a time for an RTCPeerConnection. This can happen because the resolution of setRemoteDescription is not blocked by identity validation unless there is a target peer identity.

  2. The RTCPeerConnection loads the identity assertion from the session description and decodes the base64 value, then parses the resulting JSON. The idp parameter of the resulting dictionary contains a domain and an optional protocol value that identifies the IdP, as described in [RTCWEB-SECURITY-ARCH].

  3. If the identity assertion is malformed, or if protocol includes the character '/' or '\', this process fails.

  4. The RTCPeerConnection instantiates the identified IdP as described in 4.1 Identity Provider Selection and 5. Registering an IdP Proxy. If the IdP cannot be loaded, instantiated or the IdP proxy is not registered, this process fails.

  5. The RTCPeerConnection invokes the validateAssertion method registered by the IdP.

    The assertion parameter is taken from the decoded identity assertion. The origin parameter contains the origin of the script that calls the RTCPeerConnection method that triggers this behavior.

  6. The IdP proxy returns a promise and performs the validation process asynchronously.

    The IdP proxy verifies the identity assertion using whatever means necessary. Depending on the authentication protocol this could involve interacting with the IdP server.

  7. If the IdP proxy produces an error or returns a promise that does not resolve to a valid RTCIdentityValidationResult (see 8. IdP Error Handling), then identity validation fails.

  8. Once the assertion is successfully verified, the IdP proxy resolves the promise with an RTCIdentityValidationResult containing the validated identity and the original contents that are the payload of the assertion.

  9. The RTCPeerConnection decodes the contents and validates that it contains a fingerprint value for every a=fingerprint attribute in the session description. This ensures that the certificate used by the remote peer for communications is covered by the identity assertion.


    A user agent is required to fail to communicate with peers that offer a certificate that doesn't match an a=fingerprint line in the negotiated session description.


    The user agent decodes contents using the format described in [RTCWEB-SECURITY-ARCH]. However the IdP MUST treat contents as opaque and return the same string to allow for future extensions.

  10. The RTCPeerConnection validates that the domain portion of the identity matches the domain of the IdP as described in [RTCWEB-SECURITY-ARCH]. If this check fails then the identity validation fails.

  11. The RTCPeerConnection resolves the peerIdentity attribute with a new instance of RTCIdentityAssertion that includes the IdP domain and peer identity.

  12. The user agent MAY display identity information to a user in its UI. Any user identity information that is displayed in this fashion MUST use a mechanism that cannot be spoofed by content.

If identity validation fails, the peerIdentity promise is rejected with a newly created OperationError if it is not settled. Then, if there is no target peer identity, set peerIdentity to a new unresolved promise. This permits the use of renegotiation (or a subsequent answer, if the session description was a provisional answer) to resolve or reject the identity.

If identity validation fails and there is a target peer identity for the RTCPeerConnection, the promise returned by setRemoteDescription is rejected with the same DOMException.

8. IdP Error Handling

Errors in IdP processing will - in most cases - result in the failure of the procedure that invoked the IdP proxy. This will result in the rejection of the promise returned by getIdentityAssertion, createOffer, or createAnswer. An IdP proxy error causes a setRemoteDescription promise to be rejected if there is a target peer identity; IdP errors in calls to setRemoteDescription where there is no target peer identity cause the peerIdentity promise to be rejected instead.

If an error occurs these promises are rejected with an RTCError if an error occurs in interacting with the IdP proxy. The following scenarios result in errors:

Any error generated by the IdP MAY provide additional information in the idpErrorInfo attribute. The information in this string is defined by the IdP in use.

9. RTCPeerConnection Interface Extensions

The Identity API extends the RTCPeerConnection interface as described below.

partial interface RTCPeerConnection {
    void               setIdentityProvider(DOMString provider,
                                           optional RTCIdentityProviderOptions options);
    Promise<DOMString> getIdentityAssertion();
    readonly attribute Promise<RTCIdentityAssertion> peerIdentity;
    readonly attribute DOMString?                    idpLoginUrl;
    readonly attribute DOMString?                    idpErrorInfo;


peerIdentity of type Promise<RTCIdentityAssertion>, readonly

A promise that resolves with the identity of the peer if the identity is successfully validated.

This promise is rejected if an identity assertion is present in a remote session description and validation of that assertion fails for any reason. If the promise is rejected, a new unresolved value is created, unless a target peer identity has been established. If this promise successfully resolves, the value will not change.

idpLoginUrl of type DOMString, readonly, nullable

The URL that an application can navigate to so that the user can login to the IdP, as described in 6.1 User Login Procedure.

idpErrorInfo of type DOMString, readonly, nullable

An attribute that the IdP can use to pass additional information back to the applications about the error. The format of this string is defined by the IdP and may be JSON.



Sets the identity provider to be used for a given RTCPeerConnection object.

When the setIdentityProvider method is invoked, the user agent MUST run the following steps:

  1. If the RTCPeerConnection object's [[IsClosed]] slot is true, throw an InvalidStateError.

  2. If options.protocol includes the the character '/' or '\', throw a SyntaxError.

  3. Set the current identity provider values to the tuple (provider, options).

  4. If any identity provider value has changed, discard any stored identity assertion.

Identity provider information is not used until an identity assertion is required, either in response to a call to getIdentityAssertion, or a session description is requested with a call to either createOffer or createAnswer.


Initiates the process of obtaining an identity assertion. Applications need not make this call. It is merely intended to allow them to start the process of obtaining identity assertions before a call is initiated. If an identity is needed and an identity provider has been set using the setIdentityProvider method, then an identity will be automatically requested when an offer or answer is created.

When getIdentityAssertion is invoked, queue a task to run the following steps:

  1. If the RTCPeerConnection object's [[IsClosed]] slot is true, throw an InvalidStateError.

  2. Request an identity assertion from the IdP.

  3. Resolve the promise with the base64 and JSON encoded assertion.

dictionary RTCIdentityProviderOptions {
    DOMString protocol = "default";
    DOMString usernameHint;
    DOMString peerIdentity;

RTCIdentityProviderOptions Members

protocol of type DOMString

The name of the protocol that is used by the identity provider. This MUST NOT include '/' (U+002F) or '\' (U+005C) characters. This value defaults to "default" if not provided.

usernameHint of type DOMString

A hint to the identity provider about the identity of the principal for which it should generate an identity assertion. If absent, the value undefined is used.

peerIdentity of type DOMString

The identity of the peer. For identity providers that bind their assertions to a particular pair of communication peers, this allows them to generate an assertion that includes both local and remote identities. If this value is omitted, but a value is provided for the peerIdentity member of RTCConfiguration, the value from RTCConfiguration is used.

[Constructor(DOMString idp, DOMString name),
interface RTCIdentityAssertion {
    attribute DOMString idp;
    attribute DOMString name;

RTCIdentityAssertion Attributes

idp of type DOMString

The domain name of the identity provider that validated this identity.

name of type DOMString

An RFC5322-conformant [RFC5322] representation of the verified peer identity. This identity will have been verified via the procedures described in [RTCWEB-SECURITY-ARCH].

10. Media Stream API Extensions for Network Use

10.1 Isolated Media Streams

A MediaStream acquired using getUserMedia() is, by default, accessible to an application. This means that the application is able to access the contents of tracks, modify their content, and send that media to any peer it chooses.

WebRTC supports calling scenarios where media is sent to a specifically identified peer, without the contents of media streams being accessible to applications. This is enabled by use of the peerIdentity parameter to getUserMedia().

An application willingly relinquishes access to media by including a peerIdentity parameter in the MediaStreamConstraints. This attribute is set to a DOMString containing the identity of a specific peer.

The MediaStreamConstraints dictionary is expanded to include the peerIdentity parameter.

partial dictionary MediaStreamConstraints {
    DOMString peerIdentity;

Dictionary MediaStreamConstraints Members

peerIdentity of type DOMString

If set, peerIdentity isolates media from the application. Media can only be sent to the identified peer.

A user that is prompted to provide consent for access to a camera or microphone can be shown the value of the peerIdentity parameter, so that they can be informed that the consent is more narrowly restricted.

When the peerIdentity option is supplied to getUserMedia(), all of the MediaStreamTracks in the resulting MediaStream are isolated so that content is not accessible to any application. Isolated MediaStreamTracks can be used for two purposes:

A MediaStreamTrack that is added to another MediaStream remains isolated. When an isolated MediaStreamTrack is added to a MediaStream with a different peerIdentity, the MediaStream gets a combination of isolation restrictions. A MediaStream containing MediaStreamTrack instances with mixed isolation properties can be displayed, but cannot be sent using RTCPeerConnection.

Any peerIdentity property MUST be retained on cloned copies of MediaStreamTracks.

10.1.1 Extended MediaStreamTrack Properties

MediaStreamTrack is expanded to include an isolated attribute and a corresponding event. This allows an application to quickly and easily determine whether a track is accessible.

partial interface MediaStreamTrack {
    readonly attribute boolean      isolated;
             attribute EventHandler onisolationchange;
isolated of type boolean, readonly

A MediaStreamTrack is isolated (and the corresponding isolated attribute set to true) when content is inaccessible to the owning document. This occurs as a result of setting the peerIdentity option. A track is also isolated if it comes from a cross origin source.

onisolationchange of type EventHandler

This event handler, of type isolationchange, is fired when the value of the isolated attribute changes.

10.1.2 Isolated Streams and RTCPeerConnection

A MediaStreamTrack with a peerIdentity option set can be added to any RTCPeerConnection. However, the content of an isolated track MUST NOT be transmitted unless all of the following constraints are met:

  • A MediaStreamTrack from a stream acquired using the peerIdentity option can be transmitted if the RTCPeerConnection has successfully validated the identity of the peer AND that identity is the same identity that was used in the peerIdentity option associated with the track. That is, the name attribute of the peerIdentity attribute of the RTCPeerConnection instance MUST match the value of the peerIdentity option passed to getUserMedia().

    Rules for matching identity are described in [RTCWEB-SECURITY-ARCH].

  • The peer has indicated that it will respect the isolation properties of streams. That is, a DTLS connection with a promise to respect stream confidentiality, as defined in [RTCWEB-ALPN] has been established.

Failing to meet these conditions means that no media can be sent for the affected MediaStreamTrack. Video MUST be replaced by black frames, audio MUST be replaced by silence, and equivalently information-free content MUST be provided for other media types.

Remotely sourced MediaStreamTracks MUST be isolated if they are received over a DTLS connection that has been negotiated with track isolation. This protects isolated media from the application in the receiving browser. These tracks MUST only be displayed to a user using the appropriate media element (e.g., <video> or <audio>).

Any MediaStreamTrack that has the peerIdentity option set causes all tracks sent using the same RTCPeerConnection to be isolated at the receiving peer. All DTLS connections created for an RTCPeerConnection with isolated local streams MUST be negotiated so that media remains isolated at the remote peer. This causes non-isolated media to become isolated at the receiving peer if any isolated tracks are added to the same RTCPeerConnection.


Tracks that are not bound to a particular peerIdentity do not cause other streams to be isolated, these tracks simply do not have their content transmitted.

If a stream becomes isolated after initially being accessible, or an isolated stream is added to an active session, then media for that stream is replaced by information-free content (e.g., black frames or silence).

10.1.3 Protection Afforded by Media Isolation

Media isolation ensures that the content of a MediaStreamTrack is not accessible to web applications. However, to ensure that media with a peerIdentity option set can be sent to peers, some meta-information about the media will be exposed to applications.

Applications will be able to observe the parameters of the media that affect session negotiation and conversion into RTP. This includes the codecs that might be supported by the track, the bitrate, the number of packets, and the current settings that are set on the MediaStreamTrack.

In particular, the statistics that RTCPeerConnection records are not reduced in capability. New statistics that might compromise isolation MUST be avoided, or explicitly suppressed for isolated streams.

Most of these data are exposed to the network when the media is transmitted. Only the settings for the MediaStreamTrack present a new source of information. This can includes the frame rate and resolution of video tracks, the bandwidth of audio tracks, and other information about the source, which would not otherwise be revealed to a network observer. Since settings don't change at a high frequency or in response to changes in media content, settings only reveal limited reveal information about the content of a track. However, any setting that might change dynamically in response to the content of an isolated MediaStreamTrack MUST have changes suppressed.

11. Identity Examples

The identity system is designed so that applications need not take any special action in order for users to generate and verify identity assertions; if a user has configured an IdP into their browser, then the browser will automatically request/generate assertions and the other side will automatically verify them and display the results. However, applications may wish to exercise tighter control over the identity system as shown by the following examples.

This example shows how to configure the identity provider.

Example 1

This example shows how to configure the identity provider with all the options.

Example 2
pc.setIdentityProvider('', {
  usernameHint: '',
  peerIdentity: ''

This example shows how to consume identity assertions inside a Web application.

Example 3
async function consumeIdentityAssertion() {
  const identity = await pc.peerIdentity;
  console.log('IdP = ', identity.idp, 'identity =',;

12. Change Log

This section will be removed before publication.

Changes since June 21, 2018

  1. This document was split from the [WEBRTC] specification.
  2. Editors were changed to Cullen Jennings and Martin Thomson.

A. Acknowledgements

The editors wish to thank the Working Group chairs and Team Contact, Harald Alvestrand, Stefan Håkansson, Erik Lagerway and Dominique Hazaël-Massieux, for their support. Substantial text in this specification was provided by many people including Martin Thomson, Harald Alvestrand, Justin Uberti, Eric Rescorla, Peter Thatcher, Jan-Ivar Bruaroey and Peter Saint-Andre. Dan Burnett would like to acknowledge the significant support received from Voxeo and Aspect during the development of this specification.

B. References

B.1 Normative references

ECMA-262 6th Edition, The ECMAScript 2015 Language Specification. Allen Wirfs-Brock. Ecma International. June 2015. Standard. URL:
Fetch Standard. Anne van Kesteren. WHATWG. Living Standard. URL:
File API. Marijn Kruisselbrink. W3C. 26 October 2017. W3C Working Draft. URL:
Media Capture and Streams. Daniel Burnett; Adam Bergkvist; Cullen Jennings; Anant Narayanan; Bernard Aboba. W3C. 3 October 2017. W3C Candidate Recommendation. URL:
High Resolution Time Level 2. Ilya Grigorik; James Simonsen; Jatinder Mann. W3C. 1 March 2018. W3C Candidate Recommendation. URL:
HTML 5.1 2nd Edition. Steve Faulkner; Arron Eicholz; Travis Leithead; Alex Danilo. W3C. 3 October 2017. W3C Recommendation. URL:
Infra Standard. Anne van Kesteren; Domenic Denicola. WHATWG. Living Standard. URL:
Javascript Session Establishment Protocol. Justin Uberti; Cullen Jennings; Eric Rescorla. IETF. 10 October 2017. Active Internet-Draft. URL:
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best Current Practice. URL:
SDP: Session Description Protocol. M. Handley; V. Jacobson; C. Perkins. IETF. July 2006. Proposed Standard. URL:
The OAuth 2.0 Authorization Framework. D. Hardt, Ed.. IETF. October 2012. Proposed Standard. URL:
A Taxonomy of Semantics and Mechanisms for Real-Time Transport Protocol (RTP) Sources. J. Lennox; K. Gross; S. Nandakumar; G. Salgueiro; B. Burman, Ed.. IETF. November 2015. Informational. URL:
Application Layer Protocol Negotiation for Web Real-Time Communications. M. Thomson. IETF. 23 July 2014. Active Internet-Draft. URL:
WebRTC Security Architecture. Eric Rescorla. IETF. 10 December 2016. Active Internet-Draft. URL:
Trickle ICE: Incremental Provisioning of Candidates for the Interactive Connectivity Establishment (ICE) Protocol. E. Ivov; E. Rescorla; J. Uberti. IETF. 20 July 2015. Internet Draft (work in progress). URL:
WebIDL Level 1. Cameron McCormack. W3C. 15 December 2016. W3C Recommendation. URL:
HTML5 Web Messaging. Ian Hickson. W3C. 19 May 2015. W3C Recommendation. URL:
WebRTC 1.0: Real-time Communication Between Browsers. Adam Bergkvist; Daniel Burnett; Cullen Jennings; Anant Narayanan; Bernard Aboba; Taylor Brandstetter; Jan-Ivar Bruaroey. W3C. 21 June 2018. W3C Candidate Recommendation. URL:
Identifiers for WebRTC's Statistics API. Harald Alvestrand; Varun Singh. W3C. 3 July 2018. W3C Candidate Recommendation. URL:
Web Workers. Ian Hickson. W3C. 24 September 2015. W3C Working Draft. URL:

B.2 Informative references

HTML Standard. Anne van Kesteren; Domenic Denicola; Ian Hickson; Philip Jägenstedt; Simon Pieters. WHATWG. Living Standard. URL:
Indexed Database API. Nikunj Mehta; Jonas Sicking; Eliot Graff; Andrei Popescu; Jeremy Orlow; Joshua Bell. W3C. 8 January 2015. W3C Recommendation. URL:
Internet Message Format. P. Resnick, Ed.. IETF. October 2008. Draft Standard. URL:
Overview: Real Time Protocols for Brower-based Applications. H. Alvestrand. IETF. 14 February 2014. Active Internet-Draft. URL:
Security Considerations for WebRTC. Eric Rescorla. IETF. 22 January 2014. Active Internet-Draft. URL:
Web IDL. Cameron McCormack; Boris Zbarsky; Tobie Langel. W3C. 15 December 2016. W3C Editor's Draft. URL: