SVG 2 – 09 April 2015 TopContentsPreviousNextElementsAttributesProperties

Chapter 8: Paths

Contents

8.1. Introduction

Paths represent the outline of a shape which can be filled, stroked, used as a clipping path, or any combination of the three. (See Filling, Stroking and Paint Servers and Clipping, Masking and Compositing.)

Also they can be used by mpath and textPath.

A path is described using the concept of a current point. In an analogy with drawing on paper, the current point can be thought of as the location of the pen. The position of the pen can be changed, and the outline of a shape (open or closed) can be traced by dragging the pen in either straight lines or curves.

Paths represent the geometry of the outline of an object, defined in terms of moveto (set a new current point), bearing (set a new orientation), lineto (draw a straight line), curveto (draw a curve using a cubic Bézier), arc (elliptical or circular arc) and closepath (close the current shape by drawing a line to the last moveto) commands. Compound paths (i.e., a path with multiple subpaths) are possible to allow effects such as "donut holes" in objects.

This chapter describes the syntax, behavior and DOM interfaces for SVG paths. Various implementation notes for SVG paths can be found in ‘path’ element implementation Notes and Elliptical arc implementation notes.

A path is defined in SVG using the path element.

The basic shapes are all described in terms of what their equivalent path is, which is what their shape is as a path. (The equivalent path of a path element is simply the path itself.)

8.2. The ‘path’ element

path
Categories:
Graphics element, markable element, shape element
Content model:
Any number of the following elements, in any order:clipPath, marker, mask, script
Attributes:
DOM Interfaces:
Name Value Lacuna value Animatable
d svg-path [EBNF] (none) yes

Although it is not explicitly stated, when an attribute is specified using an EBNF/ABNF symbol, it would be expected that it either parses or doesn't. However, the definition below of the path data grammar specifies error handling. We should make sure that this is clear upon seeing svg-path above.

The definition of the outline of a shape. See Path data.

Path data animation is only possible when each path data specification within an animation specification has exactly the same list of path data commands as the d attribute. If an animation is specified and the list of path data commands is not the same, then the animation specification is in error (see Error Processing). The animation engine interpolates each parameter to each path data command separately based on the attributes to the given animation element. Flags and booleans are interpolated as fractions between zero and one, with any non-zero value considered to be a value of one/true.

The lacuna value, (none) indicates that the path element is valid but does not render.

Name Value Lacuna value Animatable
pathLength <number> (none) yes

The author's computation of the total length of the path, in user units. This value is used to calibrate the user agent's own distance-along-a-path calculations with that of the author. The user agent will scale all distance-along-a-path computations by the ratio of pathLength to the user agent's own computed value for total path length. pathLength potentially affects calculations for text on a path, motion animation and various stroke operations.

A negative value is an error (see Error processing).

8.3. Path data

SVG 2 Requirement: Include smooth path between points functionality.
Resolution: We will add a Catmull Rom syntax to the path syntax with a tension parameter to control the whole curve (not per-point control).
Purpose: Provide an easy way to graph data, etc.
Owner: Doug (ACTION-3085)
SVG 2 Requirement: Support turtle-graphics-like current rotation in path syntax.
Resolution: We will add a path rotation command.
Purpose: Make path rotations easier to animate and pie charts easier to draw.
Owner: Cameron (ACTION-3125)

8.3.1. General information about path data

A path is defined by including a path element which contains a d="(path data)" attribute, where the d attribute contains the moveto, bearing, lineto, curveto (both cubic and quadratic Béziers), arc and closepath instructions.

Example triangle01 specifies a path in the shape of a triangle. (The M indicates a moveto, the Ls indicate linetos, and the z indicates a closepath).

<?xml version="1.0" standalone="no"?>
<svg width="4cm" height="4cm" viewBox="0 0 400 400"
     xmlns="http://www.w3.org/2000/svg" version="1.1">
  <title>Example triangle01- simple example of a 'path'</title>
  <desc>A path that draws a triangle</desc>
  <rect x="1" y="1" width="398" height="398"
        fill="none" stroke="blue" />
  <path d="M 100 100 L 300 100 L 200 300 z"
        fill="red" stroke="blue" stroke-width="3" />
</svg>
Example triangle01 — simple example of a 'path'

Example triangle01

View this example as SVG (SVG-enabled browsers only)

Path data can contain newline characters and thus can be broken up into multiple lines to improve readability. Because of line length limitations with certain related tools, it is recommended that SVG generators split long path data strings across multiple lines, with each line not exceeding 255 characters. Also note that newline characters are only allowed at certain places within path data.

The path data is defined to allow newline characters, but it should be noted that newlines inside attributes in markup will be normalized to space characters while parsing. If you wanted to, you could write

<path d="M 100,100&#10;L 200,150"/>

but it's not likely that you'd want to.

Are there tools that have line limits nowadays? Do we still need to recommend generators to split up path data at 255 characters?

The sentence about newline characters being allowed only at certain places makes it sound like these places are different from where white space more generally is allowed, but that's not the case.

The syntax of path data is concise in order to allow for minimal file size and efficient downloads, since many SVG files will be dominated by their path data. Some of the ways that SVG attempts to minimize the size of path data are as follows:

The path data syntax is a prefix notation (i.e., commands followed by parameters). The only allowable decimal point is a Unicode U+0046 FULL STOP (".") character (also referred to in Unicode as PERIOD, dot and decimal point) and no other delimiter characters are allowed [UNICODE]. (For example, the following is an invalid numeric value in a path data stream: "13,000.56". Instead, say: "13000.56".)

For the relative versions of the commands, all coordinate values are relative to the current point at the start of the command.

Relative path commands are also influenced by the current bearing, which is an angle set by the bearing commands. This allows for paths to be specified using a style of "turtle graphics", where straight line and curved path segments are placed with their starting point at a tangent (or at some other angle) to the current bearing.

In the tables below, the following notation is used to describe the syntax of a given path command:

In the description of the path commands, cpx and cpy represent the coordinates of the current point, and cb represents the current bearing.

The following sections list the commands. Those that draw straight line segments include the lineto commands (L, l, H, h, V and v) and the close path commands (Z and z). These three groups of commands draw curves:

8.3.2. The "moveto" commands

The "moveto" commands (M or m) establish a new current point. The effect is as if the "pen" were lifted and moved to a new location. A path data segment (if there is one) must begin with a "moveto" command. Subsequent "moveto" commands (i.e., when the "moveto" is not the first command) represent the start of a new subpath:

Command Name Parameters Description
M (absolute)
m (relative)
moveto (x y)+ Start a new sub-path at the given (x,y) coordinates. M (uppercase) indicates that absolute coordinates will follow; m (lowercase) indicates that relative coordinates will follow. If a moveto is followed by multiple pairs of coordinates, the subsequent pairs are treated as implicit lineto commands. Hence, implicit lineto commands will be relative if the moveto is relative, and absolute if the moveto is absolute. If a relative moveto (m) appears as the first element of the path, then it is treated as a pair of absolute coordinates. In this case, subsequent pairs of coordinates are treated as relative even though the initial moveto is interpreted as an absolute moveto.

When a relative m command is used, the position moved to is (cpx + x cos cb + y sin cb, cpy + x sin cb + y cos cb).

8.3.3. The "closepath" command

The "closepath" (Z or z) ends the current subpath and causes an automatic straight line to be drawn from the current point to the initial point of the current subpath. If a "closepath" is followed immediately by a "moveto", then the "moveto" identifies the start point of the next subpath. If a "closepath" is followed immediately by any other command, then the next subpath starts at the same initial point as the current subpath.

When a subpath ends in a "closepath," it differs in behavior from what happens when "manually" closing a subpath via a "lineto" command in how ‘stroke-linejoin’ and ‘stroke-linecap’ are implemented. With "closepath", the end of the final segment of the subpath is "joined" with the start of the initial segment of the subpath using the current value of ‘stroke-linejoin’. If you instead "manually" close the subpath via a "lineto" command, the start of the first segment and the end of the last segment are not joined but instead are each capped using the current value of ‘stroke-linecap’. At the end of the command, the new current point is set to the initial point of the current subpath.

The current bearing does not affect a z command.

Command Name Parameters Description
Z or
z
closepath (none) Close the current subpath by drawing a straight line from the current point to current subpath's initial point. Since the Z and z commands take no parameters, they have an identical effect.

8.3.4. The "lineto" commands

The various "lineto" commands draw straight lines from the current point to a new point:

Command Name Parameters Description
L (absolute)
l (relative)
lineto (x y)+ Draw a line from the current point to the given (x,y) coordinate which becomes the new current point. L (uppercase) indicates that absolute coordinates will follow; l (lowercase) indicates that relative coordinates will follow. A number of coordinates pairs may be specified to draw a polyline. At the end of the command, the new current point is set to the final set of coordinates provided.
H (absolute)
h (relative)
horizontal lineto x+ Draws a horizontal line from the current point. H (uppercase) indicates that absolute coordinates will follow; h (lowercase) indicates that relative coordinates will follow. Multiple x values can be provided (although usually this doesn't make sense). An H or h command is equivalent to an L or l command with 0 specified for the y coordinate. At the end of the command, the new current point is taken from the final coordinate value.
V (absolute)
v (relative)
vertical lineto y+ Draws a vertical line from the current point. V (uppercase) indicates that absolute coordinates will follow; v (lowercase) indicates that relative coordinates will follow. Multiple y values can be provided (although usually this doesn't make sense). A V or v command is equivalent to an L or l command with 0 specified for the x coordinate. At the end of the command, the new current point is taken from the final coordinate value.

When a relative l command is used, the end point of the line is (cpx + x cos cb + y sin cb, cpy + x sin cb + y cos cb).

When a relative h command is used, the end point of the line is (cpx + x cos cb, cpy + x sin cb). This means that an h command with a positive x value draws a line in the direction of the current bearing. When the current bearing is 0, this is a horizontal line in the direction of the positive x-axis.

When there is a non-zero bearing, a mnemonic for the h command could be "head this distance at the current bearing", rather than "draw a horizontal line".

When a relative v command is used, the end point of the line is (cpx + y sin cb, cpy + y cos cb).

8.3.5. The cubic Bézier curve commands

The cubic Bézier commands are as follows:

Command Name Parameters Description
C (absolute)
c (relative)
curveto (x1 y1 x2 y2 x y)+ Draws a cubic Bézier curve from the current point to (x,y) using (x1,y1) as the control point at the beginning of the curve and (x2,y2) as the control point at the end of the curve. C (uppercase) indicates that absolute coordinates will follow; c (lowercase) indicates that relative coordinates will follow. Multiple sets of coordinates may be specified to draw a polybézier. At the end of the command, the new current point becomes the final (x,y) coordinate pair used in the polybézier.
S (absolute)
s (relative)
shorthand/smooth curveto (x2 y2 x y)+ Draws a cubic Bézier curve from the current point to (x,y). The first control point is assumed to be the reflection of the second control point on the previous command relative to the current point. (If there is no previous command or if the previous command was not an C, c, S or s, assume the first control point is coincident with the current point.) (x2,y2) is the second control point (i.e., the control point at the end of the curve). S (uppercase) indicates that absolute coordinates will follow; s (lowercase) indicates that relative coordinates will follow. Multiple sets of coordinates may be specified to draw a polybézier. At the end of the command, the new current point becomes the final (x,y) coordinate pair used in the polybézier.

When a relative c or s command is used, each of the relative coordinate pairs is computed as for those in an m command. For example, the final control point of the curve of both commands is (cpx + x cos cb + y sin cb, cpy + x sin cb + y cos cb).

Example cubic01 shows some simple uses of cubic Bézier commands within a path. The example uses an internal CSS style sheet to assign styling properties. Note that the control point for the "S" command is computed automatically as the reflection of the control point for the previous "C" command relative to the start point of the "S" command.

<?xml version="1.0" standalone="no"?>
<svg width="5cm" height="4cm" viewBox="0 0 500 400"
     xmlns="http://www.w3.org/2000/svg" version="1.1">
  <title>Example cubic01- cubic Bézier commands in path data</title>
  <desc>Picture showing a simple example of path data
        using both a "C" and an "S" command,
        along with annotations showing the control points
        and end points</desc>
  <style type="text/css"><![CDATA[
    .Border { fill:none; stroke:blue; stroke-width:1 }
    .Connect { fill:none; stroke:#888888; stroke-width:2 }
    .SamplePath { fill:none; stroke:red; stroke-width:5 }
    .EndPoint { fill:none; stroke:#888888; stroke-width:2 }
    .CtlPoint { fill:#888888; stroke:none }
    .AutoCtlPoint { fill:none; stroke:blue; stroke-width:4 }
    .Label { font-size:22; font-family:Verdana }
  ]]></style>

  <rect class="Border" x="1" y="1" width="498" height="398" />

  <polyline class="Connect" points="100,200 100,100" />
  <polyline class="Connect" points="250,100 250,200" />
  <polyline class="Connect" points="250,200 250,300" />
  <polyline class="Connect" points="400,300 400,200" />
  <path class="SamplePath" d="M100,200 C100,100 250,100 250,200
                                       S400,300 400,200" />
  <circle class="EndPoint" cx="100" cy="200" r="10" />
  <circle class="EndPoint" cx="250" cy="200" r="10" />
  <circle class="EndPoint" cx="400" cy="200" r="10" />
  <circle class="CtlPoint" cx="100" cy="100" r="10" />
  <circle class="CtlPoint" cx="250" cy="100" r="10" />
  <circle class="CtlPoint" cx="400" cy="300" r="10" />
  <circle class="AutoCtlPoint" cx="250" cy="300" r="9" />
  <text class="Label" x="25" y="70">M100,200 C100,100 250,100 250,200</text>
  <text class="Label" x="325" y="350"
        style="text-anchor:middle">S400,300 400,200</text>
</svg>
Example cubic01 — cubic Bézier comamnds in path data

Example cubic01

View this example as SVG (SVG-enabled browsers only)

The following picture shows some how cubic Bézier curves change their shape depending on the position of the control points. The first five examples illustrate a single cubic Bézier path segment. The example at the lower right shows a "C" command followed by an "S" command.

Example cubic02 - cubic Bézier commands in path data

View this example as SVG (SVG-enabled browsers only)
 

8.3.6. The quadratic Bézier curve commands

The quadratic Bézier commands are as follows:

Command Name Parameters Description
Q (absolute)
q (relative)
quadratic Bézier curveto (x1 y1 x y)+ Draws a quadratic Bézier curve from the current point to (x,y) using (x1,y1) as the control point. Q (uppercase) indicates that absolute coordinates will follow; q (lowercase) indicates that relative coordinates will follow. Multiple sets of coordinates may be specified to draw a polybézier. At the end of the command, the new current point becomes the final (x,y) coordinate pair used in the polybézier.
T (absolute)
t (relative)
Shorthand/smooth quadratic Bézier curveto (x y)+ Draws a quadratic Bézier curve from the current point to (x,y). The control point is assumed to be the reflection of the control point on the previous command relative to the current point. (If there is no previous command or if the previous command was not a Q, q, T or t, assume the control point is coincident with the current point.) T (uppercase) indicates that absolute coordinates will follow; t (lowercase) indicates that relative coordinates will follow. At the end of the command, the new current point becomes the final (x,y) coordinate pair used in the polybézier.

When a relative q or t command is used, each of the relative coordinate pairs is computed as for those in an m command. For example, the final control point of the curve of both commands is (cpx + x cos cb + y sin cb, cpy + x sin cb + y cos cb).

Example quad01 shows some simple uses of quadratic Bézier commands within a path. Note that the control point for the "T" command is computed automatically as the reflection of the control point for the previous "Q" command relative to the start point of the "T" command.

<?xml version="1.0" standalone="no"?>
<svg width="12cm" height="6cm" viewBox="0 0 1200 600"
     xmlns="http://www.w3.org/2000/svg" version="1.1">
  <title>Example quad01 - quadratic Bézier commands in path data</title>
  <desc>Picture showing a "Q" a "T" command,
        along with annotations showing the control points
        and end points</desc>
  <rect x="1" y="1" width="1198" height="598"
        fill="none" stroke="blue" stroke-width="1" />

  <path d="M200,300 Q400,50 600,300 T1000,300"
        fill="none" stroke="red" stroke-width="5"  />
  <!-- End points -->
  <g fill="black" >
    <circle cx="200" cy="300" r="10"/>
    <circle cx="600" cy="300" r="10"/>
    <circle cx="1000" cy="300" r="10"/>
  </g>
  <!-- Control points and lines from end points to control points -->
  <g fill="#888888" >
    <circle cx="400" cy="50" r="10"/>
    <circle cx="800" cy="550" r="10"/>
  </g>
  <path d="M200,300 L400,50 L600,300 
           L800,550 L1000,300"
        fill="none" stroke="#888888" stroke-width="2" />
</svg>
Example quad01 — quadratic Bézier commands in path data

Example quad01

View this example as SVG (SVG-enabled browsers only)

8.3.7. The elliptical arc curve commands

SVG 2 Requirement: Make it simpler to draw arcs in SVG path syntax.
Resolution: Make arcs in paths easier.
Purpose: To make it easier for authors to write path data with arcs by hand.
Owner: Cameron (ACTION-3151)

The elliptical arc commands are as follows:

Command Name Parameters Description
A (absolute)
a (relative)
elliptical arc (rx ry x-axis-rotation large-arc-flag sweep-flag x y)+ Draws an elliptical arc from the current point to (x, y). The size and orientation of the ellipse are defined by two radii (rx, ry) and an x-axis-rotation, which indicates how the ellipse as a whole is rotated relative to the current coordinate system. The center (cx, cy) of the ellipse is calculated automatically to satisfy the constraints imposed by the other parameters. large-arc-flag and sweep-flag contribute to the automatic calculations and help determine how the arc is drawn.

When a relative a command is used, the end point of the arc is (cpx + x cos cb + y sin cb, cpy + x sin cb + y cos cb). The effective value of the x-axis-rotation parameter is also affected by the current bearing: it is computed as x-axis-rotation + cb.

Example arcs01 shows some simple uses of arc commands within a path.

<?xml version="1.0" standalone="no"?>
<svg width="12cm" height="5.25cm" viewBox="0 0 1200 400"
     xmlns="http://www.w3.org/2000/svg" version="1.1">
  <title>Example arcs01 - arc commands in path data</title>
  <desc>Picture of a pie chart with two pie wedges and
        a picture of a line with arc blips</desc>
  <rect x="1" y="1" width="1198" height="398"
        fill="none" stroke="blue" stroke-width="1" />

  <path d="M300,200 h-150 a150,150 0 1,0 150,-150 z"
        fill="red" stroke="blue" stroke-width="5" />
  <path d="M275,175 v-150 a150,150 0 0,0 -150,150 z"
        fill="yellow" stroke="blue" stroke-width="5" />

  <path d="M600,350 l 50,-25 
           a25,25 -30 0,1 50,-25 l 50,-25 
           a25,50 -30 0,1 50,-25 l 50,-25 
           a25,75 -30 0,1 50,-25 l 50,-25 
           a25,100 -30 0,1 50,-25 l 50,-25"
        fill="none" stroke="red" stroke-width="5"  />
</svg>
Example arcs01 — arc commands in path data

Example arcs01

View this example as SVG (SVG-enabled browsers only)

The elliptical arc command draws a section of an ellipse which meets the following constraints:

For most situations, there are actually four different arcs (two different ellipses, each with two different arc sweeps) that satisfy these constraints. large-arc-flag and sweep-flag indicate which one of the four arcs are drawn, as follows:

The following illustrates the four combinations of large-arc-flag and sweep-flag and the four different arcs that will be drawn based on the values of these flags. For each case, the following path data command was used:

<path d="M 125,75 a100,50 0 ?,? 100,50"
      style="fill:none; stroke:red; stroke-width:6"/>

where "?,?" is replaced by "0,0" "0,1" "1,0" and "1,1" to generate the four possible cases.

Illustration of flags in arc commands

View this example as SVG (SVG-enabled browsers only)

Refer to Elliptical arc implementation notes for detailed implementation notes for the path data elliptical arc commands.

8.3.8. The Catmull-Rom curve commands

The Catmull-Rom curve commands (R or r) specify control points for a Catmull-Rom curve. The Catmull-Rom curve commands are:

Command Name Parameters Description
R (absolute)
r (relative)
Catmull-Rom x1 y1 x2 y2 (x y)+

Draws a Catmull-Rom curve using the specified points as its control points. The curve is drawn starting from (x1, y1), passing through each subsequent point, before stopping at the second-last point given. The current point preceding the command provides the first control point of the curve and controls its tangent coming out of (x1, y1). The final point of the command provides the final control point and controls the tangent of the curve coming in to the second-last point. R (uppercase) indicates that absolute coordinates will follows; r (lowercase) indicates that relative coordinates will follow.

The current point after drawing the Catmull-Rom curve is left at the second-last point of the command, i.e. the point at which the curve ends visually.

When a relative r command is used, each of the relative coordinate pairs is computed as for those in an m command. For example, the second control point of the curve – the first listed in the command – is (cpx + x1 cos cb + y1 sin cb, cpy + x1 sin cb + y1 cos cb).

Should we broaden this and allow for a tension parameter to be specified, and thus be cardinal spline rather than a Catmull-Rom spline?

Should we allow for fewer than three coordinate pair arguments to the command and try to do something sensible with them, rather than causing the path data to become invalid?

Is it a problem that the command will move then pen from the current position to (x1, y1) without drawing anything? If so, should we made the first control point explicit in the command rather than implicitly taken from the current position? That would then mirror the behavior written above for how the current position is left at the second-last control point.

Where should we link to for a definition of Catmull-Rom curves so that we don't have to redefine them here?

We should clarify what it means to have two consecutive R or r commands.

We should add an example.

8.3.9. The bearing commands

The bearing commands (B or b) set the current bearing, which influences the orientation of subsequent relative path commands:

Command Name Parameters Description
B (absolute)
b (relative)
bearing angle+ Sets the current bearing. The parameter is an angle in degrees, where 0 indicates the direction of the positive x-axis. B (uppercase) sets the current bearing to the specified angle; b (lowercase) sets the current bearing to be the angle of the tangent at the end of the preceding path command plus the specified angle. The current point is unaffected. Although multiple parameters may be specified, this usually will not be useful, as they could be combined into a single angle value.

At the beginning of a path, the current bearing is 0, which points in the direction of the positive x-axis. The current bearing remains unchanged until a B or b command is encountered. Since the relative b command sets the current bearing relative to the tangent at the end of the preceding path command, it is possible to set the bearing to that tangent by using "b 0".

The example below shows how bearing commands can be used to draw a regular pentagon.

<svg xmlns="http://www.w3.org/2000/svg"
     width="300" height="100" viewBox="0 0 300 100">

  <path fill="#eee"
        stroke="deeppink" stroke-width="8px" stroke-linejoin="round"
        d="M 150,10
           B 36 h 47
           b 72 h 47
           b 72 h 47
           b 72 h 47 z"/>

</svg>
Image showing the use of the bearing command.

Bearing commands can be used to position the end points of the sides of a regular polygon without having to use trigonometry to calculate them based on the polygon's interior angles.

What should we do about the SVGPathSeg objects for these new path commands?

8.3.10. The grammar for path data

SVG path data matches the following EBNF grammar.

svg-path:
    wsp* moveto-drawto-command-groups? wsp*
moveto-drawto-command-groups:
    moveto-drawto-command-group
    | moveto-drawto-command-group wsp* moveto-drawto-command-groups
moveto-drawto-command-group:
    moveto wsp* drawto-commands?
drawto-commands:
    drawto-command
    | drawto-command wsp* drawto-commands
drawto-command:
    closepath
    | lineto
    | horizontal-lineto
    | vertical-lineto
    | curveto
    | smooth-curveto
    | quadratic-bezier-curveto
    | smooth-quadratic-bezier-curveto
    | catmull-rom
    | elliptical-arc
    | bearing
moveto:
    ( "M" | "m" ) wsp* moveto-argument-sequence
moveto-argument-sequence:
    coordinate-pair
    | coordinate-pair comma-wsp? lineto-argument-sequence
closepath:
    ("Z" | "z")
lineto:
    ( "L" | "l" ) wsp* lineto-argument-sequence
lineto-argument-sequence:
    coordinate-pair
    | coordinate-pair comma-wsp? lineto-argument-sequence
horizontal-lineto:
    ( "H" | "h" ) wsp* horizontal-lineto-argument-sequence
horizontal-lineto-argument-sequence:
    coordinate
    | coordinate comma-wsp? horizontal-lineto-argument-sequence
vertical-lineto:
    ( "V" | "v" ) wsp* vertical-lineto-argument-sequence
vertical-lineto-argument-sequence:
    coordinate
    | coordinate comma-wsp? vertical-lineto-argument-sequence
curveto:
    ( "C" | "c" ) wsp* curveto-argument-sequence
curveto-argument-sequence:
    curveto-argument
    | curveto-argument comma-wsp? curveto-argument-sequence
curveto-argument:
    coordinate-pair comma-wsp? coordinate-pair comma-wsp? coordinate-pair
smooth-curveto:
    ( "S" | "s" ) wsp* smooth-curveto-argument-sequence
smooth-curveto-argument-sequence:
    smooth-curveto-argument
    | smooth-curveto-argument comma-wsp? smooth-curveto-argument-sequence
smooth-curveto-argument:
    coordinate-pair comma-wsp? coordinate-pair
quadratic-bezier-curveto:
    ( "Q" | "q" ) wsp* quadratic-bezier-curveto-argument-sequence
quadratic-bezier-curveto-argument-sequence:
    quadratic-bezier-curveto-argument
    | quadratic-bezier-curveto-argument comma-wsp? 
        quadratic-bezier-curveto-argument-sequence
quadratic-bezier-curveto-argument:
    coordinate-pair comma-wsp? coordinate-pair
smooth-quadratic-bezier-curveto:
    ( "T" | "t" ) wsp* smooth-quadratic-bezier-curveto-argument-sequence
smooth-quadratic-bezier-curveto-argument-sequence:
    coordinate-pair
    | coordinate-pair comma-wsp? smooth-quadratic-bezier-curveto-argument-sequence
elliptical-arc:
    ( "A" | "a" ) wsp* elliptical-arc-argument-sequence
elliptical-arc-argument-sequence:
    elliptical-arc-argument
    | elliptical-arc-argument comma-wsp? elliptical-arc-argument-sequence
elliptical-arc-argument:
    number comma-wsp? number comma-wsp? 
        number comma-wsp flag comma-wsp? flag comma-wsp? coordinate-pair
catmull-rom:
    ( "R" | "r" ) wsp* catmull-rom-argument-sequence
catmull-rom-argument-sequence:
    coordinate-pair coordinate-pair coordinate-pair+
bearing:
    ( "B" | "b" ) wsp* bearing-argument-sequence
bearing-argument-sequence:
    number
    | number comma-wsp? bearing-argument-sequence
coordinate-pair:
    coordinate comma-wsp? coordinate
coordinate:
    number
nonnegative-number:
    integer-constant
    | floating-point-constant
number:
    sign? integer-constant
    | sign? floating-point-constant
flag:
    "0" | "1"
integer-constant:
    digit-sequence
floating-point-constant:
    fractional-constant exponent?
    | digit-sequence exponent
fractional-constant:
    digit-sequence? "." digit-sequence
    | digit-sequence "."
exponent:
    ( "e" | "E" ) sign? digit-sequence
sign:
    "+" | "-"
digit-sequence:
    digit
    | digit digit-sequence
digit:
    "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

The processing of the BNF must consume as much of a given BNF production as possible, stopping at the point when a character is encountered which no longer satisfies the production. Thus, in the string "M 100-200", the first coordinate for the "moveto" consumes the characters "100" and stops upon encountering the minus sign because the minus sign cannot follow a digit in the production of a "coordinate". The result is that the first coordinate will be "100" and the second coordinate will be "-200".

Similarly, for the string "M 0.6.5", the first coordinate of the "moveto" consumes the characters "0.6" and stops upon encountering the second decimal point because the production of a "coordinate" only allows one decimal point. The result is that the first coordinate will be "0.6" and the second coordinate will be ".5".

Note that the BNF allows the path d attribute to be empty. This is not an error, instead it disables rendering of the path.

If path data not matching the grammar is encountered, then the path data is in error (see Error Processing).

8.4. Distance along a path

Various operations, including text on a path and motion animation and various stroke operations, require that the user agent compute the distance along the geometry of a graphics element, such as a path.

Exact mathematics exist for computing distance along a path, but the formulas are highly complex and require substantial computation. It is recommended that authoring products and user agents employ algorithms that produce as precise results as possible; however, to accommodate implementation differences and to help distance calculations produce results that approximate author intent, the pathLength attribute can be used to provide the author's computation of the total length of the path so that the user agent can scale distance-along-a-path computations by the ratio of pathLength to the user agent's own computed value for total path length.

A "moveto" or "bearing" operation within a path element is defined to have zero length. Only the various "lineto", "curveto" and "arcto" commands contribute to path length calculations.

8.5. DOM interfaces

8.5.1. Interface SVGPathSeg

The SVGPathSeg interface is a base interface that corresponds to a single command within a path data specification.
interface SVGPathSeg {

  // Path Segment Types
  const unsigned short PATHSEG_UNKNOWN = 0;
  const unsigned short PATHSEG_CLOSEPATH = 1;
  const unsigned short PATHSEG_MOVETO_ABS = 2;
  const unsigned short PATHSEG_MOVETO_REL = 3;
  const unsigned short PATHSEG_LINETO_ABS = 4;
  const unsigned short PATHSEG_LINETO_REL = 5;
  const unsigned short PATHSEG_CURVETO_CUBIC_ABS = 6;
  const unsigned short PATHSEG_CURVETO_CUBIC_REL = 7;
  const unsigned short PATHSEG_CURVETO_QUADRATIC_ABS = 8;
  const unsigned short PATHSEG_CURVETO_QUADRATIC_REL = 9;
  const unsigned short PATHSEG_ARC_ABS = 10;
  const unsigned short PATHSEG_ARC_REL = 11;
  const unsigned short PATHSEG_LINETO_HORIZONTAL_ABS = 12;
  const unsigned short PATHSEG_LINETO_HORIZONTAL_REL = 13;
  const unsigned short PATHSEG_LINETO_VERTICAL_ABS = 14;
  const unsigned short PATHSEG_LINETO_VERTICAL_REL = 15;
  const unsigned short PATHSEG_CURVETO_CUBIC_SMOOTH_ABS = 16;
  const unsigned short PATHSEG_CURVETO_CUBIC_SMOOTH_REL = 17;
  const unsigned short PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS = 18;
  const unsigned short PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL = 19;

  readonly attribute unsigned short pathSegType;
  readonly attribute DOMString pathSegTypeAsLetter;
};
Constants in group “Path Segment Types”:
PATHSEG_UNKNOWN (unsigned short)
The unit type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt to switch an existing value to this type.
PATHSEG_CLOSEPATH (unsigned short)
Corresponds to a "closepath" (z) path data command.
PATHSEG_MOVETO_ABS (unsigned short)
Corresponds to a "absolute moveto" (M) path data command.
PATHSEG_MOVETO_REL (unsigned short)
Corresponds to a "relative moveto" (m) path data command.
PATHSEG_LINETO_ABS (unsigned short)
Corresponds to a "absolute lineto" (L) path data command.
PATHSEG_LINETO_REL (unsigned short)
Corresponds to a "relative lineto" (l) path data command.
PATHSEG_CURVETO_CUBIC_ABS (unsigned short)
Corresponds to a "absolute cubic Bézier curveto" (C) path data command.
PATHSEG_CURVETO_CUBIC_REL (unsigned short)
Corresponds to a "relative cubic Bézier curveto" (c) path data command.
PATHSEG_CURVETO_QUADRATIC_ABS (unsigned short)
Corresponds to a "absolute quadratic Bézier curveto" (Q) path data command.
PATHSEG_CURVETO_QUADRATIC_REL (unsigned short)
Corresponds to a "relative quadratic Bézier curveto" (q) path data command.
PATHSEG_ARC_ABS (unsigned short)
Corresponds to a "absolute arcto" (A) path data command.
PATHSEG_ARC_REL (unsigned short)
Corresponds to a "relative arcto" (a) path data command.
PATHSEG_LINETO_HORIZONTAL_ABS (unsigned short)
Corresponds to a "absolute horizontal lineto" (H) path data command.
PATHSEG_LINETO_HORIZONTAL_REL (unsigned short)
Corresponds to a "relative horizontal lineto" (h) path data command.
PATHSEG_LINETO_VERTICAL_ABS (unsigned short)
Corresponds to a "absolute vertical lineto" (V) path data command.
PATHSEG_LINETO_VERTICAL_REL (unsigned short)
Corresponds to a "relative vertical lineto" (v) path data command.
PATHSEG_CURVETO_CUBIC_SMOOTH_ABS (unsigned short)
Corresponds to a "absolute smooth cubic curveto" (S) path data command.
PATHSEG_CURVETO_CUBIC_SMOOTH_REL (unsigned short)
Corresponds to a "relative smooth cubic curveto" (s) path data command.
PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS (unsigned short)
Corresponds to a "absolute smooth quadratic curveto" (T) path data command.
PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL (unsigned short)
Corresponds to a "relative smooth quadratic curveto" (t) path data command.
Attributes:
pathSegType (readonly unsigned short)
The type of the path segment as specified by one of the constants defined on this interface.
pathSegTypeAsLetter (readonly DOMString)
The type of the path segment, specified by the corresponding one character command name.

8.5.2. Interface SVGPathSegClosePath

The SVGPathSegClosePath interface corresponds to a "closepath" (z) path data command.
interface SVGPathSegClosePath : SVGPathSeg {
};

8.5.3. Interface SVGPathSegMovetoAbs

The SVGPathSegMovetoAbs interface corresponds to an "absolute moveto" (M) path data command.
interface SVGPathSegMovetoAbs : SVGPathSeg {
  attribute float x;
  attribute float y;
};
Attributes:
x (float)
The absolute X coordinate for the end point of this path segment.
y (float)
The absolute Y coordinate for the end point of this path segment.

8.5.4. Interface SVGPathSegMovetoRel

The SVGPathSegMovetoRel interface corresponds to a "relative moveto" (m) path data command.
interface SVGPathSegMovetoRel : SVGPathSeg {
  attribute float x;
  attribute float y;
};
Attributes:
x (float)
The relative X coordinate for the end point of this path segment.
y (float)
The relative Y coordinate for the end point of this path segment.

8.5.5. Interface SVGPathSegLinetoAbs

The SVGPathSegLinetoAbs interface corresponds to an "absolute lineto" (L) path data command.
interface SVGPathSegLinetoAbs : SVGPathSeg {
  attribute float x;
  attribute float y;
};
Attributes:
x (float)
The absolute X coordinate for the end point of this path segment.
y (float)
The absolute Y coordinate for the end point of this path segment.

8.5.6. Interface SVGPathSegLinetoRel

The SVGPathSegLinetoRel interface corresponds to a "relative lineto" (l) path data command.
interface SVGPathSegLinetoRel : SVGPathSeg {
  attribute float x;
  attribute float y;
};
Attributes:
x (float)
The relative X coordinate for the end point of this path segment.
y (float)
The relative Y coordinate for the end point of this path segment.

8.5.7. Interface SVGPathSegCurvetoCubicAbs

The SVGPathSegCurvetoCubicAbs interface corresponds to an "absolute cubic Bézier curveto" (C) path data command.
interface SVGPathSegCurvetoCubicAbs : SVGPathSeg {
  attribute float x;
  attribute float y;
  attribute float x1;
  attribute float y1;
  attribute float x2;
  attribute float y2;
};
Attributes:
x (float)
The absolute X coordinate for the end point of this path segment.
y (float)
The absolute Y coordinate for the end point of this path segment.
x1 (float)
The absolute X coordinate for the first control point.
y1 (float)
The absolute Y coordinate for the first control point.
x2 (float)
The absolute X coordinate for the second control point.
y2 (float)
The absolute Y coordinate for the second control point.

8.5.8. Interface SVGPathSegCurvetoCubicRel

The SVGPathSegCurvetoCubicRel interface corresponds to a "relative cubic Bézier curveto" (c) path data command.
interface SVGPathSegCurvetoCubicRel : SVGPathSeg {
  attribute float x;
  attribute float y;
  attribute float x1;
  attribute float y1;
  attribute float x2;
  attribute float y2;
};
Attributes:
x (float)
The relative X coordinate for the end point of this path segment.
y (float)
The relative Y coordinate for the end point of this path segment.
x1 (float)
The relative X coordinate for the first control point.
y1 (float)
The relative Y coordinate for the first control point.
x2 (float)
The relative X coordinate for the second control point.
y2 (float)
The relative Y coordinate for the second control point.

8.5.9. Interface SVGPathSegCurvetoQuadraticAbs

The SVGPathSegCurvetoQuadraticAbs interface corresponds to an "absolute quadratic Bézier curveto" (Q) path data command.
interface SVGPathSegCurvetoQuadraticAbs : SVGPathSeg {
  attribute float x;
  attribute float y;
  attribute float x1;
  attribute float y1;
};
Attributes:
x (float)
The absolute X coordinate for the end point of this path segment.
y (float)
The absolute Y coordinate for the end point of this path segment.
x1 (float)
The absolute X coordinate for the first control point.
y1 (float)
The absolute Y coordinate for the first control point.

8.5.10. Interface SVGPathSegCurvetoQuadraticRel

The SVGPathSegCurvetoQuadraticRel interface corresponds to a "relative quadratic Bézier curveto" (q) path data command.
interface SVGPathSegCurvetoQuadraticRel : SVGPathSeg {
  attribute float x;
  attribute float y;
  attribute float x1;
  attribute float y1;
};
Attributes:
x (float)
The relative X coordinate for the end point of this path segment.
y (float)
The relative Y coordinate for the end point of this path segment.
x1 (float)
The relative X coordinate for the first control point.
y1 (float)
The relative Y coordinate for the first control point.

8.5.11. Interface SVGPathSegArcAbs

The SVGPathSegArcAbs interface corresponds to an "absolute arcto" (A) path data command.
interface SVGPathSegArcAbs : SVGPathSeg {
  attribute float x;
  attribute float y;
  attribute float r1;
  attribute float r2;
  attribute float angle;
  attribute boolean largeArcFlag;
  attribute boolean sweepFlag;
};
Attributes:
x (float)
The absolute X coordinate for the end point of this path segment.
y (float)
The absolute Y coordinate for the end point of this path segment.
r1 (float)
The x-axis radius for the ellipse (i.e., r1).
r2 (float)
The y-axis radius for the ellipse (i.e., r2).
angle (float)
The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.
largeArcFlag (boolean)
The value of the large-arc-flag parameter.
sweepFlag (boolean)
The value of the sweep-flag parameter.

8.5.12. Interface SVGPathSegArcRel

The SVGPathSegArcRel interface corresponds to a "relative arcto" (a) path data command.
interface SVGPathSegArcRel : SVGPathSeg {
  attribute float x;
  attribute float y;
  attribute float r1;
  attribute float r2;
  attribute float angle;
  attribute boolean largeArcFlag;
  attribute boolean sweepFlag;
};
Attributes:
x (float)
The relative X coordinate for the end point of this path segment.
y (float)
The relative Y coordinate for the end point of this path segment.
r1 (float)
The x-axis radius for the ellipse (i.e., r1).
r2 (float)
The y-axis radius for the ellipse (i.e., r2).
angle (float)
The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.
largeArcFlag (boolean)
The value of the large-arc-flag parameter.
sweepFlag (boolean)
The value of the sweep-flag parameter.

8.5.13. Interface SVGPathSegLinetoHorizontalAbs

The SVGPathSegLinetoHorizontalAbs interface corresponds to an "absolute horizontal lineto" (H) path data command.
interface SVGPathSegLinetoHorizontalAbs : SVGPathSeg {
  attribute float x;
};
Attributes:
x (float)
The absolute X coordinate for the end point of this path segment.

8.5.14. Interface SVGPathSegLinetoHorizontalRel

The SVGPathSegLinetoHorizontalRel interface corresponds to a "relative horizontal lineto" (h) path data command.
interface SVGPathSegLinetoHorizontalRel : SVGPathSeg {
  attribute float x;
};
Attributes:
x (float)
The relative X coordinate for the end point of this path segment.

8.5.15. Interface SVGPathSegLinetoVerticalAbs

The SVGPathSegLinetoVerticalAbs interface corresponds to an "absolute vertical lineto" (V) path data command.
interface SVGPathSegLinetoVerticalAbs : SVGPathSeg {
  attribute float y;
};
Attributes:
y (float)
The absolute Y coordinate for the end point of this path segment.

8.5.16. Interface SVGPathSegLinetoVerticalRel

The SVGPathSegLinetoVerticalRel interface corresponds to a "relative vertical lineto" (v) path data command.
interface SVGPathSegLinetoVerticalRel : SVGPathSeg {
  attribute float y;
};
Attributes:
y (float)
The relative Y coordinate for the end point of this path segment.

8.5.17. Interface SVGPathSegCurvetoCubicSmoothAbs

The SVGPathSegCurvetoCubicSmoothAbs interface corresponds to an "absolute smooth cubic curveto" (S) path data command.
interface SVGPathSegCurvetoCubicSmoothAbs : SVGPathSeg {
  attribute float x;
  attribute float y;
  attribute float x2;
  attribute float y2;
};
Attributes:
x (float)
The absolute X coordinate for the end point of this path segment.
y (float)
The absolute Y coordinate for the end point of this path segment.
x2 (float)
The absolute X coordinate for the second control point.
y2 (float)
The absolute Y coordinate for the second control point.

8.5.18. Interface SVGPathSegCurvetoCubicSmoothRel

The SVGPathSegCurvetoCubicSmoothRel interface corresponds to a "relative smooth cubic curveto" (s) path data command.
interface SVGPathSegCurvetoCubicSmoothRel : SVGPathSeg {
  attribute float x;
  attribute float y;
  attribute float x2;
  attribute float y2;
};
Attributes:
x (float)
The relative X coordinate for the end point of this path segment.
y (float)
The relative Y coordinate for the end point of this path segment.
x2 (float)
The relative X coordinate for the second control point.
y2 (float)
The relative Y coordinate for the second control point.

8.5.19. Interface SVGPathSegCurvetoQuadraticSmoothAbs

The SVGPathSegCurvetoQuadraticSmoothAbs interface corresponds to an "absolute smooth cubic curveto" (T) path data command.
interface SVGPathSegCurvetoQuadraticSmoothAbs : SVGPathSeg {
  attribute float x;
  attribute float y;
};
Attributes:
x (float)
The absolute X coordinate for the end point of this path segment.
y (float)
The absolute Y coordinate for the end point of this path segment.

8.5.20. Interface SVGPathSegCurvetoQuadraticSmoothRel

The SVGPathSegCurvetoQuadraticSmoothRel interface corresponds to a "relative smooth cubic curveto" (t) path data command.
interface SVGPathSegCurvetoQuadraticSmoothRel : SVGPathSeg {
  attribute float x;
  attribute float y;
};
Attributes:
x (float)
The relative X coordinate for the end point of this path segment.
y (float)
The relative Y coordinate for the end point of this path segment.

8.5.21. Interface SVGPathSegList

This interface defines a list of SVGPathSeg objects.

SVGPathSegList has the same attributes and methods as other SVGxxxList interfaces. Implementers may consider using a single base class to implement the various SVGxxxList interfaces.

The supported property indices of an SVGPathSegList object is all non-negative integers less than the length of the list.

interface SVGPathSegList {

  readonly attribute unsigned long length;
  readonly attribute unsigned long numberOfItems;

  void clear();
  SVGPathSeg initialize(SVGPathSeg newItem);
  getter SVGPathSeg getItem(unsigned long index);
  SVGPathSeg insertItemBefore(SVGPathSeg newItem, unsigned long index);
  SVGPathSeg replaceItem(SVGPathSeg newItem, unsigned long index);
  SVGPathSeg removeItem(unsigned long index);
  SVGPathSeg appendItem(SVGPathSeg newItem);
  setter void (unsigned long index, SVGPathSeg newItem);
};
Attributes:
length (readonly unsigned long)
The number of items in the list.
numberOfItems (readonly unsigned long)
The number of items in the list.
Operations:
void clear()
Clears all existing current items from the list, with the result being an empty list.
Exceptions
DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.
SVGPathSeg initialize(SVGPathSeg newItem)
Clears all existing current items from the list and re-initializes the list to hold a single item specified by the parameter. If newItem is in a list, then a new SVGPathSeg object is created with the same values as newItem and this item is inserted into the list. Otherwise, newItem itself is inserted into the list.
Parameters
  1. SVGPathSeg newItem
    The item which should become the only member of the list.
Returns
The item being inserted into the list.
Exceptions
DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.
SVGPathSeg getItem(unsigned long index)
Returns the specified item from the list. The returned item is the item itself and not a copy. Any changes made to the item are immediately reflected in the list.
Parameters
  1. unsigned long index
    The index of the item from the list which is to be returned. The first item is number 0.
Returns
The selected item.
Exceptions
DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.
SVGPathSeg insertItemBefore(SVGPathSeg newItem, unsigned long index)
Inserts a new item into the list at the specified position. The first item is number 0. If newItem is already in a list, then a new SVGPathSeg object is created with the same values as newItem and this item is inserted into the list. Otherwise, newItem itself is inserted into the list.
Parameters
  1. SVGPathSeg newItem
    The item which is to be inserted into the list.
  2. unsigned long index
    The index of the item before which the new item is to be inserted. The first item is number 0. If the index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or equal to numberOfItems, then the new item is appended to the end of the list.
Returns
The inserted item.
Exceptions
DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.
SVGPathSeg replaceItem(SVGPathSeg newItem, unsigned long index)
Replaces an existing item in the list with a new item. If newItem is already in a list, then a new SVGPathSeg object is created with the same values as newItem and this item is inserted into the list. Otherwise, newItem itself is inserted into the list.
Parameters
  1. SVGPathSeg newItem
    The item which is to be inserted into the list.
  2. unsigned long index
    The index of the item which is to be replaced. The first item is number 0.
Returns
The inserted item.
Exceptions
DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.
DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.
SVGPathSeg removeItem(unsigned long index)
Removes an existing item from the list.
Parameters
  1. unsigned long index
    The index of the item which is to be removed. The first item is number 0.
Returns
The removed item.
Exceptions
DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.
DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.
SVGPathSeg appendItem(SVGPathSeg newItem)
Inserts a new item at the end of the list. If newItem is already in a list, then a new SVGPathSeg object is created with the same values as newItem and this item is inserted into the list. Otherwise, newItem itself is inserted into the list.
Parameters
  1. SVGPathSeg newItem
    The item which is to be inserted. The first item is number 0.
Returns
The inserted item.
Exceptions
DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.
setter void (unsigned long index, SVGPathSeg newItem)
Replaces the item at index index with newItem.

8.5.22. Interface SVGAnimatedPathData

The SVGAnimatedPathData interface supports elements which have a ‘d’ attribute which holds SVG path data, and supports the ability to animate that attribute.

The SVGAnimatedPathData interface provides a list to access and modify the base (i.e., static) contents of the ‘d’ attribute:

and a list to access the current animated values of the ‘d’ attribute:

Additionally, the d attribute on the path element accessed via the DOM (e.g., using the getAttribute() method call) will reflect any changes made to pathSegList.

interface SVGAnimatedPathData {
  readonly attribute SVGPathSegList pathSegList;
  readonly attribute SVGPathSegList animatedPathSegList;
};
Attributes:
pathSegList (readonly SVGPathSegList)
Provides access to the base (i.e., static) contents of the ‘d’ attribute in a form which matches one-for-one with SVG's syntax. Thus, if the ‘d’ attribute has an "absolute moveto (M)" and an "absolute arcto (A)" command, then pathSegList will have two entries: a SVG_PATHSEG_MOVETO_ABS and a SVG_PATHSEG_ARC_ABS.
animatedPathSegList (readonly SVGPathSegList)
Provides access to the current animated contents of the ‘d’ attribute in a form which matches one-for-one with SVG's syntax. If the given attribute or property is being animated, contains the current animated value of the attribute or property, and both the object itself and its contents are read only. If the given attribute or property is not currently being animated, contains the same value as pathSegList.

8.5.23. Interface SVGPathElement

The SVGPathElement interface corresponds to the path element.
interface SVGPathElement : SVGGeometryElement {

  readonly attribute SVGAnimatedNumber pathLength;

  float getTotalLength();
  DOMPoint getPointAtLength(float distance);
  unsigned long getPathSegAtLength(float distance);
  SVGPathSegClosePath createSVGPathSegClosePath();
  SVGPathSegMovetoAbs createSVGPathSegMovetoAbs(float x, float y);
  SVGPathSegMovetoRel createSVGPathSegMovetoRel(float x, float y);
  SVGPathSegLinetoAbs createSVGPathSegLinetoAbs(float x, float y);
  SVGPathSegLinetoRel createSVGPathSegLinetoRel(float x, float y);
  SVGPathSegCurvetoCubicAbs createSVGPathSegCurvetoCubicAbs(float x, float y, float x1, float y1, float x2, float y2);
  SVGPathSegCurvetoCubicRel createSVGPathSegCurvetoCubicRel(float x, float y, float x1, float y1, float x2, float y2);
  SVGPathSegCurvetoQuadraticAbs createSVGPathSegCurvetoQuadraticAbs(float x, float y, float x1, float y1);
  SVGPathSegCurvetoQuadraticRel createSVGPathSegCurvetoQuadraticRel(float x, float y, float x1, float y1);
  SVGPathSegArcAbs createSVGPathSegArcAbs(float x, float y, float r1, float r2, float angle, boolean largeArcFlag, boolean sweepFlag);
  SVGPathSegArcRel createSVGPathSegArcRel(float x, float y, float r1, float r2, float angle, boolean largeArcFlag, boolean sweepFlag);
  SVGPathSegLinetoHorizontalAbs createSVGPathSegLinetoHorizontalAbs(float x);
  SVGPathSegLinetoHorizontalRel createSVGPathSegLinetoHorizontalRel(float x);
  SVGPathSegLinetoVerticalAbs createSVGPathSegLinetoVerticalAbs(float y);
  SVGPathSegLinetoVerticalRel createSVGPathSegLinetoVerticalRel(float y);
  SVGPathSegCurvetoCubicSmoothAbs createSVGPathSegCurvetoCubicSmoothAbs(float x, float y, float x2, float y2);
  SVGPathSegCurvetoCubicSmoothRel createSVGPathSegCurvetoCubicSmoothRel(float x, float y, float x2, float y2);
  SVGPathSegCurvetoQuadraticSmoothAbs createSVGPathSegCurvetoQuadraticSmoothAbs(float x, float y);
  SVGPathSegCurvetoQuadraticSmoothRel createSVGPathSegCurvetoQuadraticSmoothRel(float x, float y);
};

SVGPathElement implements SVGAnimatedPathData;
Attributes:
pathLength (readonly SVGAnimatedNumber)
Corresponds to attribute pathLength on the given path element.
Operations:
float getTotalLength()
Returns the user agent's computed value for the total length of the path using the user agent's distance-along-a-path algorithm, as a distance in the current user coordinate system.
Returns
The total length of the path.
DOMPoint getPointAtLength(float distance)
Returns the (x,y) coordinate in user space which is distance units along the path, utilizing the user agent's distance-along-a-path algorithm. The distance shall be clamped to the range [0, total-length-of-path] before passing it to the distance-along-a-path algorithm.

If no valid path data exists, returns (0,0).

Parameters
  1. float distance
    The distance along the path, relative to the start of the path, as a distance in the current user coordinate system.
Returns
The returned point in user space.
unsigned long getPathSegAtLength(float distance)
Returns the index into pathSegList which is distance units along the path, utilizing the user agent's distance-along-a-path algorithm. The distance shall be clamped to the range [0, total-length-of-path] before passing it to the distance-along-a-path algorithm.

If no valid path data exists, returns 0.

Parameters
  1. float distance
    The distance along the path, relative to the start of the path, as a distance in the current user coordinate system.
Returns
The index of the path segment, where the first path segment is number 0.
SVGPathSegClosePath createSVGPathSegClosePath()
Returns a stand-alone, parentless SVGPathSegClosePath object.
Returns
A stand-alone, parentless SVGPathSegClosePath object.
SVGPathSegMovetoAbs createSVGPathSegMovetoAbs(float x, float y)
Returns a stand-alone, parentless SVGPathSegMovetoAbs object.
Parameters
  1. float x
    The absolute X coordinate for the end point of this path segment.
  2. float y
    The absolute Y coordinate for the end point of this path segment.
Returns
A stand-alone, parentless SVGPathSegMovetoAbs object.
SVGPathSegMovetoRel createSVGPathSegMovetoRel(float x, float y)
Returns a stand-alone, parentless SVGPathSegMovetoRel object.
Parameters
  1. float x
    The relative X coordinate for the end point of this path segment.
  2. float y
    The relative Y coordinate for the end point of this path segment.
Returns
A stand-alone, parentless SVGPathSegMovetoRel object.
SVGPathSegLinetoAbs createSVGPathSegLinetoAbs(float x, float y)
Returns a stand-alone, parentless SVGPathSegLinetoAbs object.
Parameters
  1. float x
    The absolute X coordinate for the end point of this path segment.
  2. float y
    The absolute Y coordinate for the end point of this path segment.
Returns
A stand-alone, parentless SVGPathSegLinetoAbs object.
SVGPathSegLinetoRel createSVGPathSegLinetoRel(float x, float y)
Returns a stand-alone, parentless SVGPathSegLinetoRel object.
Parameters
  1. float x
    The relative X coordinate for the end point of this path segment.
  2. float y
    The relative Y coordinate for the end point of this path segment.
Returns
A stand-alone, parentless SVGPathSegLinetoRel object.
SVGPathSegCurvetoCubicAbs createSVGPathSegCurvetoCubicAbs(float x, float y, float x1, float y1, float x2, float y2)
Returns a stand-alone, parentless SVGPathSegCurvetoCubicAbs object.
Parameters
  1. float x
    The absolute X coordinate for the end point of this path segment.
  2. float y
    The absolute Y coordinate for the end point of this path segment.
  3. float x1
    The absolute X coordinate for the first control point.
  4. float y1
    The absolute Y coordinate for the first control point.
  5. float x2
    The absolute X coordinate for the second control point.
  6. float y2
    The absolute Y coordinate for the second control point.
Returns
A stand-alone, parentless SVGPathSegCurvetoCubicAbs object.
SVGPathSegCurvetoCubicRel createSVGPathSegCurvetoCubicRel(float x, float y, float x1, float y1, float x2, float y2)
Returns a stand-alone, parentless SVGPathSegCurvetoCubicRel object.
Parameters
  1. float x
    The relative X coordinate for the end point of this path segment.
  2. float y
    The relative Y coordinate for the end point of this path segment.
  3. float x1
    The relative X coordinate for the first control point.
  4. float y1
    The relative Y coordinate for the first control point.
  5. float x2
    The relative X coordinate for the second control point.
  6. float y2
    The relative Y coordinate for the second control point.
Returns
A stand-alone, parentless SVGPathSegCurvetoCubicRel object.
SVGPathSegCurvetoQuadraticAbs createSVGPathSegCurvetoQuadraticAbs(float x, float y, float x1, float y1)
Returns a stand-alone, parentless SVGPathSegCurvetoQuadraticAbs object.
Parameters
  1. float x
    The absolute X coordinate for the end point of this path segment.
  2. float y
    The absolute Y coordinate for the end point of this path segment.
  3. float x1
    The absolute X coordinate for the first control point.
  4. float y1
    The absolute Y coordinate for the first control point.
Returns
A stand-alone, parentless SVGPathSegCurvetoQuadraticAbs object.
SVGPathSegCurvetoQuadraticRel createSVGPathSegCurvetoQuadraticRel(float x, float y, float x1, float y1)
Returns a stand-alone, parentless SVGPathSegCurvetoQuadraticRel object.
Parameters
  1. float x
    The relative X coordinate for the end point of this path segment.
  2. float y
    The relative Y coordinate for the end point of this path segment.
  3. float x1
    The relative X coordinate for the first control point.
  4. float y1
    The relative Y coordinate for the first control point.
Returns
A stand-alone, parentless SVGPathSegCurvetoQuadraticRel object.
SVGPathSegArcAbs createSVGPathSegArcAbs(float x, float y, float r1, float r2, float angle, boolean largeArcFlag, boolean sweepFlag)
Returns a stand-alone, parentless SVGPathSegArcAbs object.
Parameters
  1. float x
    The absolute X coordinate for the end point of this path segment.
  2. float y
    The absolute Y coordinate for the end point of this path segment.
  3. float r1
    The x-axis radius for the ellipse (i.e., r1).
  4. float r2
    The y-axis radius for the ellipse (i.e., r2).
  5. float angle
    The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.
  6. boolean largeArcFlag
    The value of the large-arc-flag parameter.
  7. boolean sweepFlag
    The value of the large-arc-flag parameter.
Returns
A stand-alone, parentless SVGPathSegArcAbs object.
SVGPathSegArcRel createSVGPathSegArcRel(float x, float y, float r1, float r2, float angle, boolean largeArcFlag, boolean sweepFlag)
Returns a stand-alone, parentless SVGPathSegArcRel object.
Parameters
  1. float x
    The relative X coordinate for the end point of this path segment.
  2. float y
    The relative Y coordinate for the end point of this path segment.
  3. float r1
    The x-axis radius for the ellipse (i.e., r1).
  4. float r2
    The y-axis radius for the ellipse (i.e., r2).
  5. float angle
    The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.
  6. boolean largeArcFlag
    The value of the large-arc-flag parameter.
  7. boolean sweepFlag
    The value of the large-arc-flag parameter.
Returns
A stand-alone, parentless SVGPathSegArcRel object.
SVGPathSegLinetoHorizontalAbs createSVGPathSegLinetoHorizontalAbs(float x)
Returns a stand-alone, parentless SVGPathSegLinetoHorizontalAbs object.
Parameters
  1. float x
    The absolute X coordinate for the end point of this path segment.
Returns
A stand-alone, parentless SVGPathSegLinetoHorizontalAbs object.
SVGPathSegLinetoHorizontalRel createSVGPathSegLinetoHorizontalRel(float x)
Returns a stand-alone, parentless SVGPathSegLinetoHorizontalRel object.
Parameters
  1. float x
    The relative X coordinate for the end point of this path segment.
Returns
A stand-alone, parentless SVGPathSegLinetoHorizontalRel object.
SVGPathSegLinetoVerticalAbs createSVGPathSegLinetoVerticalAbs(float y)
Returns a stand-alone, parentless SVGPathSegLinetoVerticalAbs object.
Parameters
  1. float y
    The absolute Y coordinate for the end point of this path segment.
Returns
A stand-alone, parentless SVGPathSegLinetoVerticalAbs object.
SVGPathSegLinetoVerticalRel createSVGPathSegLinetoVerticalRel(float y)
Returns a stand-alone, parentless SVGPathSegLinetoVerticalRel object.
Parameters
  1. float y
    The relative Y coordinate for the end point of this path segment.
Returns
A stand-alone, parentless SVGPathSegLinetoVerticalRel object.
SVGPathSegCurvetoCubicSmoothAbs createSVGPathSegCurvetoCubicSmoothAbs(float x, float y, float x2, float y2)
Returns a stand-alone, parentless SVGPathSegCurvetoCubicSmoothAbs object.
Parameters
  1. float x
    The absolute X coordinate for the end point of this path segment.
  2. float y
    The absolute Y coordinate for the end point of this path segment.
  3. float x2
    The absolute X coordinate for the second control point.
  4. float y2
    The absolute Y coordinate for the second control point.
Returns
A stand-alone, parentless SVGPathSegCurvetoCubicSmoothAbs object.
SVGPathSegCurvetoCubicSmoothRel createSVGPathSegCurvetoCubicSmoothRel(float x, float y, float x2, float y2)
Returns a stand-alone, parentless SVGPathSegCurvetoCubicSmoothRel object.
Parameters
  1. float x
    The relative X coordinate for the end point of this path segment.
  2. float y
    The relative Y coordinate for the end point of this path segment.
  3. float x2
    The relative X coordinate for the second control point.
  4. float y2
    The relative Y coordinate for the second control point.
Returns
A stand-alone, parentless SVGPathSegCurvetoCubicSmoothRel object.
SVGPathSegCurvetoQuadraticSmoothAbs createSVGPathSegCurvetoQuadraticSmoothAbs(float x, float y)
Returns a stand-alone, parentless SVGPathSegCurvetoQuadraticSmoothAbs object.
Parameters
  1. float x
    The absolute X coordinate for the end point of this path segment.
  2. float y
    The absolute Y coordinate for the end point of this path segment.
Returns
A stand-alone, parentless SVGPathSegCurvetoQuadraticSmoothAbs object.
SVGPathSegCurvetoQuadraticSmoothRel createSVGPathSegCurvetoQuadraticSmoothRel(float x, float y)
Returns a stand-alone, parentless SVGPathSegCurvetoQuadraticSmoothRel object.
Parameters
  1. float x
    The relative X coordinate for the end point of this path segment.
  2. float y
    The relative Y coordinate for the end point of this path segment.
Returns
A stand-alone, parentless SVGPathSegCurvetoQuadraticSmoothRel object.
SVG 2 – 09 April 2015 TopContentsPreviousNextElementsAttributesProperties