Copyright © 2009 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.
This specification defines an API for persistent data storage of key-value pair data in Web clients.
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the most recently formally published revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
If you wish to make comments regarding this document, please send them to public-webapps@w3.org (subscribe, archives) or whatwg@whatwg.org (subscribe, archives), or submit them using our public bug database. All feedback is welcome.
Implementors should be aware that this specification is not stable. Implementors who are not taking part in the discussions are likely to find the specification changing out from under them in incompatible ways. Vendors interested in implementing this specification before it eventually reaches the Candidate Recommendation stage should join the aforementioned mailing lists and take part in the discussions.
The latest stable version of the editor's draft of this specification is always available on the W3C CVS server. Change tracking for this document is available at the following location:
This specification is automatically generated from the corresponding section in the HTML5 specification's source document, as hosted in the WHATWG Subversion repository. Detailed change history for all of HTML5, including the parts that form this specification, can be found at the following locations:
The W3C Web Apps Working Group is the W3C working group responsible for this specification's progress along the W3C Recommendation track. This specification is the 10 September 2009 Working Draft.
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.
This section is non-normative.
This specification introduces two related mechanisms, similar to HTTP session cookies, for storing structured data on the client side. [COOKIES]
The first is designed for scenarios where the user is carrying out a single transaction, but could be carrying out multiple transactions in different windows at the same time.
Cookies don't really handle this case well. For example, a user could be buying plane tickets in two different windows, using the same site. If the site used cookies to keep track of which ticket the user was buying, then as the user clicked from page to page in both windows, the ticket currently being purchased would "leak" from one window to the other, potentially causing the user to buy two tickets for the same flight without really noticing.
To address this, this specification introduces the sessionStorage
IDL attribute.
Sites can add data to the session storage, and it will be accessible
to any page from the same site opened in that window.
For example, a page could have a checkbox that the user ticks to indicate that he wants insurance:
<label> <input type="checkbox" onchange="sessionStorage.insurance = checked"> I want insurance on this trip. </label>
A later page could then check, from script, whether the user had checked the checkbox or not:
if (sessionStorage.insurance) { ... }
If the user had multiple windows opened on the site, each one would have its own individual copy of the session storage object.
The second storage mechanism is designed for storage that spans multiple windows, and lasts beyond the current session. In particular, Web applications may wish to store megabytes of user data, such as entire user-authored documents or a user's mailbox, on the client side for performance reasons.
Again, cookies do not handle this case well, because they are transmitted with every request.
The localStorage
IDL
attribute is used to access a page's local storage area.
The site at example.com can display a count of how many times the user has loaded its page by putting the following at the bottom of its page:
<p> You have viewed this page <span id="count">an untold number of</span> time(s). </p> <script> if (!localStorage.pageLoadCount) localStorage.pageLoadCount = 0; localStorage.pageLoadCount += 1; document.getElementById('count').textContent = localStorage.pageLoadCount; </script>
Each site has its own separate storage area.
All diagrams, examples, and notes in this specification are non-normative, as are all sections explicitly marked non-normative. Everything else in this specification is normative.
The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in the normative parts of this document are to be interpreted as described in RFC2119. For readability, these words do not appear in all uppercase letters in this specification. [RFC2119]
Requirements phrased in the imperative as part of algorithms (such as "strip any leading space characters" or "return false and abort these steps") are to be interpreted with the meaning of the key word ("must", "should", "may", etc) used in introducing the algorithm.
Some conformance requirements are phrased as requirements on attributes, methods or objects. Such requirements are to be interpreted as requirements on user agents.
Conformance requirements phrased as algorithms or specific steps may be implemented in any manner, so long as the end result is equivalent. (In particular, the algorithms defined in this specification are intended to be easy to follow, and not intended to be performant.)
The only conformance class defined by this specification is user agents.
User agents may impose implementation-specific limits on otherwise unconstrained inputs, e.g. to prevent denial of service attacks, to guard against running out of memory, or to work around platform-specific limitations.
This specification relies on several other underlying specifications.
Many fundamental concepts from HTML5 are used by this specification. [HTML5]
The IDL blocks in this specification use the semantics of the WebIDL specification. [WEBIDL]
The construction "a Foo
object", where
Foo
is actually an interface, is sometimes
used instead of the more accurate "an object implementing the
interface Foo
".
The term DOM is used to refer to the API set made available to
scripts in Web applications, and does not necessarily imply the
existence of an actual Document
object or of any other
Node
objects as defined in the DOM Core
specifications. [DOMCORE]
An IDL attribute is said to be getting when its value is being retrieved (e.g. by author script), and is said to be setting when a new value is assigned to it.
The term "JavaScript" is used to refer to ECMA262, rather than the official term ECMAScript, since the term JavaScript is more widely known. [ECMA262]
Storage
interfaceinterface Storage { readonly attribute unsigned long length; getter any key(in unsigned long index); getter any getItem(in DOMString key); setter creator void setItem(in DOMString key, in any data); deleter void removeItem(in DOMString key); void clear(); };
Each Storage
object provides access to a list of
key/value pairs, which are sometimes called items. Keys are
strings. Any string (including the empty string) is a valid
key. Values can be any data type supported by the structured
clone algorithm.
Each Storage
object is associated with a list of
key/value pairs when it is created, as defined in the sections on
the sessionStorage
and localStorage
attributes. Multiple
separate objects implementing the Storage
interface can
all be associated with the same list of key/value pairs
simultaneously.
The object's indices of the supported indexed properties are the numbers in the range zero to one less than the number of key/value pairs currently present in the list associated with the object. If the list is empty, then there are no supported indexed properties.
The length
attribute must return the number of key/value pairs currently
present in the list associated with the object.
The key(n)
method must return the name of the
nth key in the list. The order of keys is
user-agent defined, but must be consistent within an object so long
as the number of keys doesn't change. (Thus, adding or removing a key may change the
order of the keys, but merely changing the value of an existing key
must not.) If n is greater than or equal to the number of key/value pairs
in the object, then this method must return null.
The names of the supported named properties on a
Storage
object are the keys of each key/value pair
currently present in the list associated with the object.
The getItem(key)
method must return a
structured clone of the current value associated with
the given key. If the given key does not exist in the list associated with the
object then this method must return null.
The setItem(key, value)
method
must first create a structured clone of the given value. If this raises an exception, then the
exception must be thrown and the list associated with the object is
left unchanged. If constructing the stuctured clone would involve
constructing a new ImageData
object, then throw a
NOT_SUPPORTED_ERR
exception instead.
Otherwise, the user agent must then check if a key/value pair with the given key already exists in the list associated with the object.
If it does not, then a new key/value pair must be added to the list, with the given key and with its value set to the newly obtained clone of value.
If the given key does exist in the list, then it must have its value updated to the newly obtained clone of value.
If it couldn't set the new value, the method must raise an
QUOTA_EXCEEDED_ERR
exception. (Setting could fail if,
e.g., the user has disabled storage for the site, or if the quota
has been exceeded.)
The removeItem(key)
method must cause the key/value
pair with the given key to be removed from the
list associated with the object, if it exists. If no item with that
key exists, the method must do nothing.
The setItem()
and removeItem()
methods must be
atomic with respect to failure. In the case of failure, the method
does nothing. That is, changes to the data storage area must either
be successful, or the data storage area must not be changed at
all.
The clear()
method must atomically cause the list associated with the object to
be emptied of all key/value pairs, if there are any. If there are
none, then the method must do nothing.
When the setItem()
, removeItem()
, and clear()
methods are invoked, events
are fired on other HTMLDocument
objects that can access
the newly stored or removed data, as defined in the sections on the
sessionStorage
and localStorage
attributes.
This specification does not require that the above methods wait until the data has been physically written to disk. Only consistency in what different scripts accessing the same underlying list of key/value pairs see is required.
sessionStorage
attribute[Supplemental, NoInterfaceObject] interface WindowSessionStorage { readonly attribute Storage sessionStorage; }; Window implements WindowSessionStorage;
The sessionStorage
attribute represents the set of storage areas specific to the
current top-level browsing context.
Each top-level browsing context has a unique set of session storage areas, one for each origin.
User agents should not expire data from a browsing context's session storage areas, but may do so when the user requests that such data be deleted, or when the UA detects that it has limited storage space, or for security reasons. User agents should always avoid deleting data while a script that could access that data is running. When a top-level browsing context is destroyed (and therefore permanently inaccessible to the user) the data stored in its session storage areas can be discarded with it, as the API described in this specification provides no way for that data to ever be subsequently retrieved.
The lifetime of a browsing context can be unrelated to the lifetime of the actual user agent process itself, as the user agent may support resuming sessions after a restart.
When a new HTMLDocument
is created, the user agent
must check to see if the document's top-level browsing
context has allocated a session storage area for that
document's origin. If it has not, a new storage area
for that document's origin must be created.
The sessionStorage
attribute must return the Storage
object associated
with that session storage area. Each Document
object
must have a separate object for its Window
's sessionStorage
attribute.
When a new top-level browsing context is created by cloning an existing browsing context, the new browsing context must start with the same session storage areas as the original, but the two sets must from that point on be considered separate, not affecting each other in any way.
When a new top-level browsing context is created by
a script in an existing
browsing context, or by the user following a link in an
existing browsing context, or in some other way related to a
specific HTMLDocument
, then the session storage area of
the origin of that HTMLDocument
must be
copied into the new browsing context when it is created. From that
point on, however, the two session storage areas must be considered
separate, not affecting each other in any way.
When the setItem()
, removeItem()
, and clear()
methods are called on a
Storage
object x that is associated
with a session storage area, if the methods did something, then in
every HTMLDocument
object whose Window
object's sessionStorage
attribute's Storage
object is associated with the same
storage area, other than x, a storage
event must be fired, as described below.
localStorage
attribute[Supplemental, NoInterfaceObject] interface WindowLocalStorage { readonly attribute Storage localStorage; }; Window implements WindowLocalStorage;
The localStorage
object provides a Storage
object for an
origin.
User agents must have a set of local storage areas, one for each origin.
User agents should expire data from the local storage areas only for security reasons or when requested to do so by the user. User agents should always avoid deleting data while a script that could access that data is running.
When the localStorage
attribute is accessed, the user agent must run the following steps:
If the Document
's effective script
origin is not the same origin as the
Document
's origin, then throw a
SECURITY_ERR
exception and abort these steps.
Check to see if the user agent has allocated a local storage
area for the origin of the Document
of
the Window
object on which the method was invoked. If
it has not, create a new storage area for that
origin.
Return the Storage
object associated with that
origin's local storage area. Each Document
object must
have a separate object for its Window
's localStorage
attribute.
When the setItem()
, removeItem()
, and clear()
methods are called on a
Storage
object x that is associated
with a local storage area, if the methods did something, then in
every HTMLDocument
object whose Window
object's localStorage
attribute's Storage
object is associated with the same
storage area, other than x, a storage
event must be fired, as described below.
Whenever the properties of a localStorage
attribute's
Storage
object are to be examined, returned, set, or
deleted, whether as part of a direct property access, when checking
for the presence of a property, during property enumeration, when
determining the number of properties present, or as part of the
execution of any of the methods or attributes defined on the
Storage
interface. the user agent must first
obtain the storage mutex.
storage
eventThe storage
event
is fired when a storage area changes, as described in the previous
two sections (for session
storage, for local
storage).
When this happens, the user agent must queue a task
to fire an event with the name storage
, which does not
bubble and is not cancelable, and which uses the
StorageEvent
interface, at each Window
object whose Document
object has a Storage
object that is affected.
This includes Document
objects that are
not fully active, but events fired on those are ignored
by the event loop until the Document
becomes fully active again.
The task source for this task is the DOM manipulation task source.
If the event is being fired due to an invocation of the setItem()
or removeItem()
methods, the
event must have its key
attribute set to the name of the key in question, its oldValue
attribute set to a
structured clone of the old value of the key in
question, or null if the key is newly added, and its newValue
attribute set to a
structured clone of the new value of the key in
question, or null if the key was removed.
Otherwise, if the event is being fired due to an invocation of
the clear()
method, the event
must have its key
, oldValue
, and newValue
attributes set to
null.
In addition, the event must have its url
attribute set to the address of the document
whose Storage
object was affected; and its storageArea
attribute
set to the Storage
object from the Window
object of the target Document
that represents the same
kind of Storage
area as was affected (i.e. session or
local).
interface StorageEvent : Event { readonly attribute DOMString key; readonly attribute any oldValue; readonly attribute any newValue; readonly attribute DOMString url; readonly attribute Storage storageArea; void initStorageEvent(in DOMString typeArg, in boolean canBubbleArg, in boolean cancelableArg, in DOMString keyArg, in any oldValueArg, in any newValueArg, in DOMString urlArg, in Storage storageAreaArg); };
The initStorageEvent()
method must initialize the event in a manner analogous to the
similarly-named method in the DOM Events interfaces. [DOMEVENTS]
The key
attribute represents the key being changed.
The oldValue
attribute represents the old value of the key being changed.
The newValue
attribute represents the new value of the key being changed.
The url
attribute represents the address of the document whose key
changed.
The storageArea
attribute represents the Storage
object that was
affected.
Because of the use of the storage mutex, multiple browsing contexts will be able to access the local storage areas simultaneously in such a manner that scripts cannot detect any concurrent script execution.
Thus, the length
attribute of a Storage
object, and the value of the
various properties of that object, cannot change while a script is
executing, other than in a way that is predictable by the script
itself.
User agents should limit the total amount of space allowed for storage areas.
User agents should guard against sites storing data under the origins other affiliated sites, e.g. storing up to the limit in a1.example.com, a2.example.com, a3.example.com, etc, circumventing the main example.com storage limit.
User agents may prompt the user when quotas are reached, allowing the user to grant a site more space. This enables sites to store many user-created documents on the user's computer, for instance.
User agents should allow users to see how much space each domain is using.
A mostly arbitrary limit of five megabytes per origin is recommended. Implementation feedback is welcome and will be used to update this suggestion in the future.
A third-party advertiser (or any entity capable of getting content distributed to multiple sites) could use a unique identifier stored in its local storage area to track a user across multiple sessions, building a profile of the user's interests to allow for highly targeted advertising. In conjunction with a site that is aware of the user's real identity (for example an e-commerce site that requires authenticated credentials), this could allow oppressive groups to target individuals with greater accuracy than in a world with purely anonymous Web usage.
There are a number of techniques that can be used to mitigate the risk of user tracking:
User agents may restrict access to
the localStorage
objects
to scripts originating at the domain of the top-level document of
the browsing context, for instance denying access to
the API for pages from other domains running in
iframe
s.
User agents may, if so configured by the user, automatically delete stored data after a period of time.
For example, a user agent could be configured to treat third-party local storage areas as session-only storage, deleting the data once the user had closed all the browsing contexts that could access it.
This can restrict the ability of a site to track a user, as the site would then only be able to track the user across multiple sessions when he authenticates with the site itself (e.g. by making a purchase or logging in to a service).
However, this also reduces the usefulness of the API as a long-term storage mechanism. It can also put the user's data at risk, if the user does not fully understand the implications of data expiration.
If users attempt to protect their privacy by clearing cookies without also clearing data stored in the local storage area, sites can defeat those attempts by using the two features as redundant backup for each other. User agents should present the interfaces for clearing these in a way that helps users to understand this possibility and enables them to delete data in all persistent storage features simultaneously. [COOKIES]
User agents may allow sites to access session storage areas in an unrestricted manner, but require the user to authorize access to local storage areas.
User agents may record the origins of sites that contained content from third-party origins that caused data to be stored.
If this information is then used to present the view of data currently in persistent storage, it would allow the user to make informed decisions about which parts of the persistent storage to prune. Combined with a blacklist ("delete this data and prevent this domain from ever storing data again"), the user can restrict the use of persistent storage to sites that he trusts.
User agents may allow users to share their persistent storage domain blacklists.
This would allow communities to act together to protect their privacy.
While these suggestions prevent trivial use of this API for user tracking, they do not block it altogether. Within a single domain, a site can continue to track the user during a session, and can then pass all this information to the third party along with any identifying information (names, credit card numbers, addresses) obtained by the site. If a third party cooperates with multiple sites to obtain such information, a profile can still be created.
However, user tracking is to some extent possible even with no cooperation from the user agent whatsoever, for instance by using session identifiers in URLs, a technique already commonly used for innocuous purposes but easily repurposed for user tracking (even retroactively). This information can then be shared with other sites, using using visitors' IP addresses and other user-specific data (e.g. user-agent headers and configuration settings) to combine separate sessions into coherent user profiles.
User agents should treat persistently stored data as potentially sensitive; it's quite possible for e-mails, calendar appointments, health records, or other confidential documents to be stored in this mechanism.
To this end, user agents should ensure that when deleting data, it is promptly deleted from the underlying storage.
Because of the potential for DNS spoofing attacks, one cannot guarantee that a host claiming to be in a certain domain really is from that domain. To mitigate this, pages can use SSL. Pages using SSL can be sure that only pages using SSL that have certificates identifying them as being from the same domain can access their storage areas.
Different authors sharing one host name, for example users
hosting content on geocities.com
, all share one
local storage object.
There is no feature to restrict the access by pathname. Authors on
shared hosts are therefore recommended to avoid using these
features, as it would be trivial for other authors to read the data
and overwrite it.
Even if a path-restriction feature was made available, the usual DOM scripting security model would make it trivial to bypass this protection and access the data from any path.
The two primary risks when implementing these persistent storage features are letting hostile sites read information from other domains, and letting hostile sites write information that is then read from other domains.
Letting third-party sites read data that is not supposed to be read from their domain causes information leakage, For example, a user's shopping wishlist on one domain could be used by another domain for targeted advertising; or a user's work-in-progress confidential documents stored by a word-processing site could be examined by the site of a competing company.
Letting third-party sites write data to the persistent storage of other domains can result in information spoofing, which is equally dangerous. For example, a hostile site could add items to a user's wishlist; or a hostile site could set a user's session identifier to a known ID that the hostile site can then use to track the user's actions on the victim site.
Thus, strictly following the origin model described in this specification is important for user security.
All references are normative unless marked "Non-normative".