This document is also available in these non-normative formats: PDF version.
Copyright © 2009 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
This Working Draftdocument has a fewundergone only minor changes since the
previous version of 02 December 2008. The mapping to the functional syntax has been adjusted to reflect changes there. Abbreviated IRIs use a mechanism similar to that used21st April, 2009.
The OWL Working Group seeks public feedback on this Working Draft. Please send your comments to public-owl-comments@w3.org (public archive). If possible, please offer specific changes to the text that would address your concern. You may also wish to check the Wiki Version of this document and see if the relevant text has already been updated.
Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. The group does not expect this document to become a W3C Recommendation. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.
Table of Contents |
The Manchester OWL syntax is a user-friendly syntax for OWL 2 descriptions, but it can also be used to write entire OWL 2 ontologies. The original version of the Manchester OWL syntax [Manchester OWL DL Syntax] was created for OWL 1 [OWL Semantics and Abstract Syntax]; it is here updated for OWL 2 [OWL 2 Specification]. The Manchester syntax is used in Protégé 4 [Protégé 4] and TopBraid Composer® [TopBraid Composer], particularly for entering and displaying descriptions associated with classes. Some tools (e.g., Protégé 4) extend the syntax to allow even more compact presentation in some situations (e.g., for explanation) or to replace IRIs by label values, but this document does not include any of these special-purpose extensions.
The Manchester OWL syntax gathers together information about names in a frame-like manner, as opposed to
RDF/XML [RDF Syntax],
the functional-style syntax for OWL 2
[OWL 2 Specification],
and the XML syntax for OWL 2 [OWL 2 XML SyntaxSerialization].
It is thus closer to the abstract syntax
for OWL 1 [OWL Semantics and Abstract Syntax], than the above syntaxes for OWL 2. Nevertheless,
parsing the Manchester OWL syntax into the OWL 2 structural specification is quite easy, as it is easy to identify the axioms inside each frame.
As the Manchester syntax is frame-based, it cannot directly handle all OWL 2 ontologies. However, there is a simple transform that will take any OWL 2 ontology that does not overload between object, data, and annotation properties or between classes and datatypes into a form that can be written in the Manchester syntax.
An example ontology in the Manchester OWL syntax can be found in the OWL Primer [OWL 2 Primer].
The Manchester syntax for OWL 2 ontologies is defined using a standard BNF notation, which is summarized in the table below.
Construct | Syntax | Example |
---|---|---|
| boldface | ClassExpression |
terminal symbols | single quoted | 'PropertyRange' |
zero or more | curly braces | { ClassExpression } |
zero or one | square brackets | [ ClassExpression ] |
alternative | vertical bar | Assertion | Declaration |
grouping | parentheses | dataPropertyExpression ) |
Because comma-separated lists occur in very many places in the syntax, to save space the grammar has three meta-productions, one for non-empty lists, one for lists of minimum length two, and one for non-empty lists with annotations in them.
<NT>List ::= <NT> { ',' <NT> } <NT>2List ::= <NT> ',' <NT>List <NT>AnnotatedList ::= [annotations] <NT> { ',' [annotations] <NT> }
Documents in the Manchester OWL syntax form OWL 2 ontologies and consist
of sequences of Unicode characters
[UNICODE] and are encoded in UTF-8
[ RFC3829RFC 3629].
The grammar for the Manchester syntax does not explicitly show white space. White space is allowed between any two terminals or non-terminals except inside nonNegativeInteger, prefixName, IRI, and literal. White space is required between two terminals or non-terminals if its removal could cause ambiguity. Generally this means requiring white space except before and after punctuation (e.g., commas, parentheses, braces, and brackets).
White space is a sequence of blanks (U+20), tabs (U+9), line feeds (U+A), carriage returns (U+D), and comments. Comments are maximal sequences of Unicode characters starting with a '#' and not containing a line feed or a carriage return. Note that comments are only recognized where white space is allowed, and thus not inside the above non-terminals.
Names are IRIs (the successors of URIs) and can either be given in full or can be abbreviated similar to as in SPARQL [SPARQL]. Abbreviated IRIs consist of an optional colon-terminated prefix followed by a local part. Prefixes in abbreviated IRIs must not match any of the keywords of this syntax. Prefixes should begin with lower case letters so that they do not clash with colon-terminated keywords introduced in future versions of this syntax. Local parts with no prefix are expanded as if they had an initial colon and must not match any keyword of this syntax.
This syntax uses short forms for common data values, e.g., strings and numbers, and short forms for some common datatypes, e.g., integer. These correspond to the obvious long forms.
fullIRI := an IRI as defined in [ RFC3987RFC 3987], enclosed in a pair of < (U+3C) and > (U+3E) characters
prefixName := a finite sequence of characters matching the PNAME_NS production of [SPARQL] and not matching any of the keyword terminals of the syntax
abbreviatedIRI := a finite sequence of characters matching the PNAME_LN production of [SPARQL]
simpleIRI := a finite sequence of characters matching the PN_LOCAL production of [SPARQL] and not matching any of the keyword terminals of the syntax
IRI := fullIRI | abbreviatedIRI | simpleIRI
nonNegativeInteger ::= zero | positiveInteger
positiveInteger ::= nonZero { digit }
digits ::= digit { digit }
digit ::= zero | nonZero
nonZero := '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
zero ::= '0'
classIRI ::= IRI
Datatype ::= datatypeIRI | 'integer' | 'decimal' | 'float' | 'string'
datatypeIRI ::= IRI
objectPropertyIRI ::= IRI
dataPropertyIRI ::= IRI
annotationPropertyIRI ::= IRI
individual ::= individualIRI | nodeID
individualIRI ::= IRI
nodeID := a finite sequence of characters matching the BLANK_NODE_LABEL production of [SPARQL]
literal ::= typedLiteral | abbreviatedXSDStringLiteral | abbreviatedRDFTextLiteral | integerLiteral | decimalLiteral | floatingPointLiteral
typedLiteral ::= lexicalValue '^^' Datatype
abbreviatedXSDStringLiteral ::= quotedString
abbreviatedRDFTextLiteral ::= quotedString languageTag
languageTag := @ (U+40) followed a nonempty sequence of characters matching the langtag production from [BCP 47]
lexicalValue ::= quotedString
quotedString := a finite sequence of characters in which " (U+22) and \ (U+5C) occur only in pairs of the form \" (U+5C, U+22) and \\ (U+5C, U+5C), enclosed in a pair of " (U+22) characters
floatingPointLiteral ::= [ '+' | '-'] ( digits ['.'digits] [exponent] | '.' digits[exponent]) ( 'f' | 'F' )
exponent ::= ('e' | 'E') ['+' | '-'] digits
decimalLiteral ::= ['+' | '-'] digits '.' digits
integerLiteral ::= ['+' | '-'] digits
entity ::= 'Datatype' '(' Datatype ')' | 'Class' '(' classIRI ')'
| 'ObjectProperty' '(' objectPropertyIRI ')' | 'DataProperty' '('dataPropertyIRI ')'
| 'AnnotationProperty' '(' annotationPropertyIRI ')' | 'NamedIndividual' '(' individualIRI ')'
annotations ::= 'Annotations:' annotationAnnotatedList annotation ::= annotationPropertyIRI annotationTarget annotationTarget ::= nodeID | IRI | literal ontologyDocument ::= { prefixDeclaration } ontology prefixDeclaration ::= 'Prefix:' prefixName fullIRI ontology ::= 'Ontology:' [ ontologyIRI [ versionIRI ] ] { import } { annotations } { frame } ontologyIRI ::= IRI versionIRI ::= IRI import ::= 'Import:' IRI frame ::= datatypeFrame | classFrame | objectPropertyFrame | dataPropertyFrame | annotationPropertyFrame | individualFrame | misc
The 'rdf:', 'rdfs:', 'owl:', and 'xsd:' prefixes are pre-defined as follows and cannot be changed. Each other prefix used in an ontology document must have exactly one prefix declaration in the ontology document.
Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#> Prefix: xsd: <http://www.w3.org/2001/XMLSchema#> Prefix: owl: <http://www.w3.org/2002/07/owl#>
objectPropertyExpression ::= objectPropertyIRI | inverseObjectProperty inverseObjectProperty ::= 'inverse' objectPropertyIRI dataPropertyExpression ::= dataPropertyIRI dataRange ::= dataConjunction 'or' dataConjunction { 'or' dataConjunction } | dataConjunction dataConjunction ::= dataPrimary 'and' dataPrimary { 'and' dataPrimary } | dataPrimary dataPrimary ::= [ 'not' ] dataAtomic dataAtomic ::= Datatype | '{' literalList '}' | datatypeRestriction | '(' dataRange ')' datatypeRestriction ::= Datatype '[' facet restrictionValue { ',' facet restrictionValue } ']' facet ::= 'length' | 'minLength' | 'maxLength' | 'pattern' | 'langPattern' | '<=' | '<' | '>=' | '>' restrictionValue ::= literal
In a datatypeRestriction, the facets and restrictionValues must be valid for the Datatype, as in the OWL 2 Specification [OWL 2 Specification], after making the obvious change for the comparison facets.
The infix notation for descriptions is ambiguous as stated. This ambiguity is resolved in the usual way, with later productions in the description grammar below binding more tightly, so, for example,
p some a and p only b
is parsed as
(p some a) and (p only b)
description ::= conjunction 'or' conjunction { 'or' conjunction } | conjunction conjunction ::= classIRI 'that' [ 'not' ] restriction { 'and' [ 'not' ] restriction } | primary 'and' primary { 'and' primary } | primary primary ::= [ 'not' ] ( restriction | atomic ) restriction ::= objectPropertyExpression 'some' primary | objectPropertyExpression 'only' primary | objectPropertyExpression 'value' individual | objectPropertyExpression 'Self' | objectPropertyExpression 'min' nonNegativeInteger [ primary ] | objectPropertyExpression 'max' nonNegativeInteger [ primary ] | objectPropertyExpression 'exactly' nonNegativeInteger [ primary ] | dataPropertyExpression 'some' dataPrimary | dataPropertyExpression 'only' dataPrimary | dataPropertyExpression 'value' literal | dataPropertyExpression 'min' nonNegativeInteger [ dataPrimary ] | dataPropertyExpression 'max' nonNegativeInteger [ dataPrimary ] | dataPropertyExpression 'exactly' nonNegativeInteger [ dataPrimary ] atomic ::= classIRI | '{' individualList '}' | '(' description ')'
datatypeFrame ::= 'Datatype:' Datatype { 'Annotations:' annotationAnnotatedList } [ 'EquivalentTo:' annotations dataRange ] { 'Annotations:' annotationAnnotatedList } classFrame ::= 'Class:' classIRI { 'Annotations:' annotationAnnotatedList | 'SubClassOf:' descriptionAnnotatedList | 'EquivalentTo:' descriptionAnnotatedList | 'DisjointWith:' descriptionAnnotatedList | 'DisjointUnionOf:' annotations description2List } | 'HasKey:' annotations ( objectPropertyExpression | dataPropertyExpression ) { objectPropertyExpression | dataPropertyExpression } objectPropertyFrame ::= 'ObjectProperty:' objectPropertyIRI { 'Annotations:' annotationAnnotatedList | 'Domain:' descriptionAnnotatedList | 'Range:' descriptionAnnotatedList | 'Characteristics:' objectPropertyCharacteristicAnnotatedList | 'SubPropertyOf:' objectPropertyExpressionAnnotatedList | 'EquivalentTo:' objectPropertyExpressionAnnotatedList | 'DisjointWith:' objectPropertyExpressionAnnotatedList | 'InverseOf:' objectPropertyExpressionAnnotatedList | 'SubPropertyChain:' annotations objectPropertyExpression 'o' objectPropertyExpression { 'o' objectPropertyExpression } } objectPropertyCharacteristic ::= 'Functional' | 'InverseFunctional' | 'Reflexive' | 'Irreflexive' | 'Symmetric' | 'Asymmetric' | 'Transitive' dataPropertyFrame ::= 'DataProperty:' dataPropertyIRI { 'Annotations:' annotationAnnotatedList | 'Domain:' descriptionAnnotatedList | 'Range:' dataRangeAnnotatedList | 'Characteristics:' annotations 'Functional' | 'SubPropertyOf:' dataPropertyExpressionAnnotatedList | 'EquivalentTo:' dataPropertyExpressionAnnotatedList | 'DisjointWith:' dataPropertyExpressionAnnotatedList } annotationPropertyFrame ::= 'AnnotationProperty:' annotationPropertyIRI { 'Annotations:' annotationAnnotatedList } | 'Domain:' IRIAnnotatedList | 'Range:' IRIAnnotatedList | 'SubPropertyOf:' annotationPropertyIRIAnnotatedList individualFrame ::= 'Individual:' individual { 'Annotations:' annotationAnnotatedList | 'Types:' descriptionAnnotatedList | 'Facts:' factAnnotatedList | 'SameAs:' individualAnnotatedList | 'DifferentFrom:' individualAnnotatedList } fact ::= [ 'not' ] (objectPropertyFact | dataPropertyFact) objectPropertyFact ::= objectPropertyIRI individual dataPropertyFact ::= dataPropertyIRI literal misc ::= 'EquivalentClasses:' annotations description2List | 'DisjointClasses:' annotations description2List | 'EquivalentProperties:' annotations objectProperty2List | 'DisjointProperties:' annotations objectProperty2List | 'EquivalentProperties:' annotations dataProperty2List | 'DisjointProperties:' annotations dataProperty2List | 'SameIndividual:' annotations individual2List | 'DifferentIndividuals:' annotations individual2List
The Manchester syntax has the same global conditions on ontologies as for OWL 2 ontologies in the OWL 2 Specification [OWL 2 Specification], with the addition of the typing constraints for OWL 2 DL ontologies, but using the appropriate frame instead of declarations.
The Manchester syntax global conditions for OWL 2 DL ontologies are the same as in the OWL 2 Specification except as mentioned just above.
This is a made-up partial ontology that provides a quick reference guide to the Manchester Syntax. Not all of the ontology makes logical sense so that all aspects of the syntax can be shown in a small example.
All colon-terminated keyword constructs except Ontology: (e.g., Import:, Class:, Domain:, SubClassOf:) are optional and can be repeated. Most keyword constructs take a comma-separated list of sub-constructs, which is sometimes indicated by ",...". Annotations are allowed for elements in these lists of sub-constructs except where annotations are explicitly noted (e.g., in DisjointUnionOf:, in DisjointClasses:).
Prefix: : <http://ex.com/owl/families#> Prefix: g: <http://ex.com/owl2/families#> Ontology: <http://example.com/owl/families> <http://example.com/owl/families-v1> Import: <http://ex.com/owl2/families.owl> Annotations: creator John, Annotations: rdfs:comment "Creation Year" creationYear 2008, mainClass Person ObjectProperty: hasWife Annotations: ... Characteristics: Functional, InverseFunctional, Reflexive, Irreflexive, Asymmetric, Transitive Domain: Annotations: rdfs:comment "General domain", creator John Person, Annotations: rdfs:comment "More specific domain" Man Range: Person, Woman SubPropertyOf: hasSpouse, loves EquivalentTo: isMarriedTo ,... DisjointWith: hates ,... InverseOf: hasSpouse, inverse hasSpouse SubPropertyChain: Annotations: ... hasChild o hasParent o... DataProperty: hasAge Annotations: ... Characteristics: Functional Domain: Person ,... Range: integer ,... SubPropertyOf: hasVerifiedAge ,... EquivalentTo: hasAgeInYears ,... DisjointWith: hasSSN ,... AnnotationProperty: creator Annotations: ... Domain: Person ,... Range: integer ,... SubPropertyOf: initialCreator ,... Datatype: NegInt Annotations: ... EquivalentTo: integer[< 0] Class: Person Annotations: ... SubClassOf: owl:Thing that hasFirstName exactly 1 and hasFirstName only string[minLength 1] ,... SubClassOf: hasAge exactly 1 and hasAge only not NegInt,... SubClassOf: hasGender exactly 1 and hasGender only {female , male} ,... SubClassOf: hasSSN max 1, hasSSN min 1 SubClassOf: not hates Self, ... EquivalentTo: g:People ,... DisjointWith: g:Rock , g:Mineral ,... DisjointUnionOf: Annotations: ... Child, Adult HasKey: Annotations: ... hasSSN Individual: John Annotations: ... Types: Person , hasFirstName value "John" or hasFirstName value "Jack"^^xsd:string Facts: hasWife Mary, not hasChild Susan, hasAge 33, hasChild _:child1 SameAs: Jack ,... DifferentFrom: Susan ,... Individual: _:child1 Annotations: ... Types: Person ,... Facts: hasChild Susan ,... DisjointClasses: Annotations: ... g:Rock, g:Scissor, g:Paper EquivalentProperties: Annotations: ... hates, loathes, despises DisjointProperties: Annotations: ... hates, loves, indifferent EquivalentProperties: Annotations: ... favoriteNumber, g:favouriteNumber, g:favouriteInteger DisjointProperties: Annotations: ... favoriteInteger, favouriteReal SameIndividual: Annotations: ... John, Jack, Joe, Jim DifferentIndividuals: Annotations: ... John, Susan, Mary, Jill
Most of the translation between the Manchester OWL syntax and OWL 2 is obvious. The translation given here is with the OWL 2 Functional-Style Syntax [OWL 2 Specification].
In many cases there is a one-to-one correspondence between the Manchester OWL syntax and the OWL 2 Functional-Style Syntax. For example, dataComplementOf in the Manchester OWL syntax corresponds directly to dataComplementOf in the OWL 2 Functional-Style Syntax. All that is required is to translate the keywords and adjust to a parenthesized syntax.
IRIs and their parts are the same in the Manchester OWL syntax and the OWL 2 Functional-Style Syntax, no change is needed for them, except that the "special" datatypes are translated into the corresponding XML Schema datatypes. Literals are mostly the same, but the abbreviated syntaxes for numbers and strings have to be translated in the obvious way. The syntax for data ranges in the Manchester OWL syntax corresponds exactly with the syntax in the OWL 2 Functional-Style Syntax.
The syntax for annotations in the Manchester OWL syntax closely corresponds to the syntax in the OWL 2 Functional-Style Syntax. The only special processing that needs to be done is to determine which frame to attach entity annotations to in the reverse mapping. Translating to the Functional-Style syntax and back again can thus lose some non-logical information in the Manchester syntax.
Descriptions also correspond closely between the Manchester OWL syntax and the OWL 2 Functional-Style Syntax.
The translation of frame axioms is performed by splitting them into pieces that correspond to single axioms. This is done by taking each of the pieces of the frame (Annotations:, Domain:, Range:, etc) and making new frames for each of them. The new frame is of the same kind (Class:, ObjectProperty:, etc.) and for the same IRI. Then each resultant frame that contains an AnnotatedList with more than one element is broken into a frame for each element of the list in a similar manner.
The resultant axioms and any miscellaneous axioms then correspond closely to the OWL 2 Functional-Style Syntax axioms and can be directly translated. The only special cases are that annotations directly in frames become annotations in entity annotation axioms and that (negative) property assertions have to be disambiguated depending on whether the property is an object property or a data property.
Translations of OWL 2 Functional-Style Syntax axioms back to frames can be done piecemeal or the axioms on a single entity can be all combined together, which is done here.
The remaining top-level constructs of an ontology (prefix declarations, imports, ontology annotations, and the ontology name) can be directly translated.
Formally the transformation takes an ontology in the Manchester OWL syntax and produces an ontology in the Functional-Style syntax. The transformation needs access to the imported ontologies.
First, for each frame in the ontology, produce the appropriate declaration as follows:
Frame | Declaration |
---|---|
Class: IRI ... | Declaration( Class(IRI) ) |
ObjectProperty: IRI ... | Declaration( ObjectProperty(IRI) ) |
DataProperty: IRI ... | Declaration( DataProperty(IRI) ) |
AnnotationProperty: IRI ... | Declaration( AnnotationProperty(IRI) ) |
Individual: IRI ... | Declaration( NamedIndividual(IRI) ) |
Individual: nodeID ... |
Second, split up frames into single axioms in three stages. The first stage splits apart top-level pieces of frames that have multiple top-level pieces, transforming F: IRI p1 p2 ... into F: IRI p1 F: IRI p2 ... for F: one of the frame keywords (Class:, ...), until no more transformations are possible. The second stage splits apart the pieces of each of the top-level pieces, transforming F: IRI P: s1 s2 ... into F: IRI P: s1 F: IRI P: s2 ... for P: one of the keywords immediately inside a frame (Annotations:, SubClassOf:, ...), until no more transformations are possible. The third stage just removes any frame containing only an IRI.
Next, perform the actual syntax transformation. Any piece of syntax with no transformation listed here is just copied through.
Nonterminal | Form | Transformation (T) |
---|---|---|
simpleIRI | localPart | :localPart |
Datatype | integer | xsd:integer |
Datatype | decimal | xsd:decimal |
Datatype | float | xsd:float |
Datatype | string | xsd:string |
integerLiteral | integer | "integer"^^xsd:integer |
decimalLiteral | decimal | "decimal"^^xsd:decimal |
floatingPointLiteral | float | "float"^^xsd:float |
abbreviatedXSDStringLiteral | string | string |
abbreviatedRDFTextLiteral | string@tag | string@tag |
facet | length | xsd:length |
facet | minLength | xsd:minLength |
facet | maxLength | xsd:maxLength |
facet | pattern | xsd:pattern |
facet | langPattern | rdf:langPattern |
facet | <= | xsd:minInclusive |
facet | < | xsd:minExclusive |
facet | >= | xsd:maxInclusive |
facet | > | xsd:maxExclusive |
datatypeRestriction | Datatype[facet-value list] | DatatypeRestriction(T(datatype) T(facet-value list)) |
dataAtomic | { literal list } | DataOneOf(T(literal list)) |
dataAtomic | (dataRange) | T(dataRange) |
dataPrimary | dataAtomic | T(dataAtomic) |
dataPrimary | not dataAtomic | DataComplementOf(T(dataAtomic)) |
dataConjunction | dataPrimary and ... | DataIntersectionOf(T(dataPrimary) ...) |
dataConjunction | dataPrimary | T(dataPrimary) |
dataRange | dataConjunction or ... | DataUnionOf(T(dataConjunction) ...) |
dataRange | dataConjunction | T(dataConjunction) |
inverseObjectProperty | inverse objectPropertyExpression | InverseObjectProperty(T(objectPropertyExpression)) |
atomic | {individual list} | ObjectOneOf(T(individual list)) |
atomic | (description) | T(description) |
restriction | objectPropertyExpression some primary | ObjectSomeValuesFrom(T(objectPropertyExpression) T(primary)) |
restriction | objectPropertyExpression only primary | ObjectAllValuesFrom(T(objectPropertyExpression) T(primary)) |
restriction | objectPropertyExpression value individual | ObjectHasValue(T(objectPropertyExpression) individual) |
restriction | objectPropertyExpression min nni | ObjectMinCardinality(T(objectPropertyExpression) nni) |
restriction | objectPropertyExpression min nni primary | ObjectMinCardinality(T(objectPropertyExpression) nni T(primary)) |
restriction | objectPropertyExpression exactly nni | ObjectExactCardinality(T(objectPropertyExpression) nni) |
restriction | objectPropertyExpression exactly nni primary | ObjectExactCardinality(T(objectPropertyExpression) nni T(primary)) |
restriction | objectPropertyExpression max nni | ObjectMaxCardinality(T(objectPropertyExpression) nni) |
restriction | objectPropertyExpression max nni primary | ObjectMaxCardinality(T(objectPropertyExpression) nni T(primary)) |
restriction | objectPropertyExpression Self | ObjectHasSelf(T(objectPropertyExpression)) |
restriction | dataPropertyExpression some dataRange | DataSomeValuesFrom(T(dataPropertyExpression) T(dataRange)) |
restriction | dataPropertyExpression only dataRange | DataAllValuesFrom(T(dataPropertyExpression) T(dataRange)) |
restriction | dataPropertyExpression value literal | DataHasValue(T(dataPropertyExpression) T(literal)) |
restriction | dataPropertyExpression min nni | DataMinCardinality(T(dataPropertyExpression) nni) |
restriction | dataPropertyExpression min nni dataRange | DataMinCardinality(T(dataPropertyExpression) nni T(dataRange)) |
restriction | dataPropertyExpression exactly nni | DataExactCardinality(T(dataPropertyExpression) nni) |
restriction | dataPropertyExpression exactly nni dataRange | DataExactCardinality(T(dataPropertyExpression) nni T(dataRange)) |
restriction | dataPropertyExpression max nni | DataMaxCardinality(T(dataPropertyExpression) nni) |
restriction | dataPropertyExpression max nni dataRange | DataMaxCardinality(T(dataPropertyExpression) nni T(dataRange)) |
primary | atomic | T(atomic) |
primary | not atomic | ObjectComplementOf(T(atomic)) |
conjunction | classIRI that primary ... | ObjectIntersectionOf(classIRI T(primary) ...) |
conjunction | primary and ... | ObjectIntersectionOf(T(primary) ...) |
conjunction | primary | T(primary) |
description | conjunction or ... | ObjectUnionOf(T(conjunction) ...) |
description | conjunction | T(conjunction) |
annotation | annotations annotationPropertyIRI target | Annotation(T(annotations) annotationPropertyIRI T(target)) |
annotations | ||
annotations | Annotations: annotation ... | Annotation(T(annotation) ... |
datatypeFrame | Datatype: Datatype Annotations: annotations annotationPropertyIRI target | AnnotationAssertion(T(annotations) annotationPropertyIRI T(Datatype) T(target)) |
datatypeFrame | Datatype: IRI EquivalentTo: annotations dataRange | DatatypeDefinition(T(annotations) IRI T(dataRange)) |
classFrame | Class: IRI Annotations: annotations annotationPropertyIRI target | AnnotationAssertion(T(annotations) annotationPropertyIRI IRI T(target)) |
classFrame | Class: IRI SubClassOf: annotations description | SubClassOf(T(annotations) IRI T(description)) |
classFrame | Class: IRI EquivalentTo: annotations description | EquivalentClasses(T(annotations) IRI T(description)) |
classFrame | Class: IRI DisjointWith: annotations description | DisjointClasses(T(annotations) IRI T(description)) |
classFrame | Class: IRI DisjointUnionOf: annotations descriptions | DisjointUnion(T(annotations) IRI T(description)) |
classFrame | Class: IRI HasKey: annotations properties | HasKey(T(annotations) IRI T(properties)) |
other | properties | ( T(objectProperties) ) ( T(dataProperties) ) Note: Sort the properties into object and data properties. |
objectPropertyFrame | ObjectProperty: IRI Annotations: annotations annotationPropertyIRI target | AnnotationAssertion(T(annotations) annotationPropertyIRI IRI T(target)) |
objectPropertyFrame | ObjectProperty: IRI Domain: annotations description | ObjectPropertyDomain(T(annotations) IRI T(description)) |
objectPropertyFrame | ObjectProperty: IRI Range: annotations description | ObjectPropertyRange(T(annotations) IRI T(description)) |
objectPropertyFrame | ObjectProperty: IRI Characteristics: annotations Functional | ObjectFunctionalProperty(T(annotations) IRI) |
objectPropertyFrame | ObjectProperty: IRI Characteristics: annotations InverseFunctional | ObjectInverseFunctionalProperty(T(annotations) IRI) |
objectPropertyFrame | ObjectProperty: IRI Characteristics: annotations Reflexive | ObjectReflexiveProperty(T(annotations) IRI) |
objectPropertyFrame | ObjectProperty: IRI Characteristics: annotations Irreflexive | ObjectIrreflexiveProperty(T(annotations) IRI) |
objectPropertyFrame | ObjectProperty: IRI Characteristics: annotations Symmetric | ObjectSymmetricProperty(T(annotations) IRI) |
objectPropertyFrame | ObjectProperty: IRI Characteristics: annotations Asymmetric | ObjectAsymmetricProperty(T(annotations) IRI) |
objectPropertyFrame | ObjectProperty: IRI Characteristics: annotations Transitive | ObjectTransitiveProperty(T(annotations) IRI) |
objectPropertyFrame | ObjectProperty: IRI SubPropertyOf: annotations objectPropertyExpression | SubObjectPropertyOf(T(annotations) IRI T(objectPropertyExpression)) |
objectPropertyFrame | ObjectProperty: IRI EquivalentTo: annotations objectPropertyExpression | EquivalentObjectProperties(T(annotations) IRI T(objectPropertyExpression)) |
objectPropertyFrame | ObjectProperty: IRI DisjointWith: annotations objectPropertyExpression | DisjointObjectProperties(T(annotations) IRI T(objectPropertyExpression)) |
objectPropertyFrame | ObjectProperty: IRI InverseOf: annotations objectPropertyExpression | InverseObjectProperties(T(annotations) IRI T(objectPropertyExpression)) |
objectPropertyFrame | ObjectProperty: IRI SubPropertyChain: objectPropertyExpression o ... | SubObjectPropertyOf(ObjectPropertyChain(T(objectPropertyExpression) ...) IRI) |
dataPropertyFrame | DataProperty: IRI Annotations: annotations annotationPropertyIRI target | AnnotationAssertion(T(annotations) annotationPropertyIRI IRI T(target)) |
dataPropertyFrame | DataProperty: IRI Domain: annotations description | DataPropertyDomain(T(annotations) IRI T(description)) |
dataPropertyFrame | DataProperty: IRI Range: annotations dataRange | DataPropertyRange(T(annotations) IRI T(dataRange)) |
dataPropertyFrame | DataProperty: IRI Characteristics: annotations Functional | FunctionalDataProperty(T(annotations) IRI) |
dataPropertyFrame | DataProperty: IRI SubPropertyOf: annotations dataPropertyExpression | SubDataPropertyOf(T(annotations) IRI T(dataPropertyExpression)) |
dataPropertyFrame | DataProperty: IRI EquivalentTo: annotations dataPropertyExpression | EquivalentDataProperties(T(annotations) IRI T(dataPropertyExpression)) |
dataPropertyFrame | DataProperty: IRI DisjointWith: annotations dataPropertyExpression | DisjointDataProperties(T(annotations) IRI T(dataPropertyExpression)) |
annotationPropertyFrame | AnnotationProperty: IRI Annotations: annotations annotationPropertyIRI target | AnnotationAssertion(T(annotations) annotationPropertyIRI IRI T(target)) |
annotationPropertyFrame | AnnotationProperty: IRI Domain: annotations IRI | AnnotationPropertyDomain(T(annotations) IRI IRI) |
annotationPropertyFrame | AnnotationProperty: IRI Range: annotations IRI | AnnotationPropertyRange(T(annotations) IRI IRI) |
annotationPropertyFrame | AnnotationProperty: IRI SubPropertyOf: annotations annotationPropertyIRI | SubAnnotationPropertyOf(T(annotations) IRI T(annotationPropertyIRI)) |
individualFrame | Individual: IRI Annotations: annotations annotationPropertyIRI target | AnnotationAssertion(T(annotations) annotationPropertyIRI IRI T(target)) |
individualFrame | Individual: nodeID Annotations: annotations annotation | AnnotationAssertion(T(annotations) annotationPropertyIRI nodeID T(target)) |
individualFrame | Individual: individual Types: annotations description | ClassAssertion(T(annotations) T(description) individual) |
individualFrame | Individual: individual Facts: annotations objectPropertyIRI individual2 | ObjectPropertyAssertion(T(annotations) objectPropertyIRI individual individual2) |
individualFrame | Individual: individual Facts: annotations not objectPropertyIRI individual2 | NegativeObjectPropertyAssertion(T(annotations) objectPropertyIRI individual individual2) |
individualFrame | Individual: individual Facts: annotations dataPropertyIRI literal | DataPropertyAssertion(T(annotations) dataPropertyIRI individual T(literal)) |
individualFrame | Individual: individual Facts: annotations not dataPropertyIRI literal | NegativeDataPropertyAssertion(T(annotations) dataPropertyIRI individual T(literal)) |
individualFrame | Individual: individual SameAs: annotations individual2 | SameIndividual(T(annotations) individual individual2) |
individualFrame | Individual: individual DifferentFrom: annotations individual2 | DifferentIndividuals(T(annotations) individual individual2) |
misc | EquivalentClasses: annotations descriptions | EquivalentClasses(T(annotations) T(descriptions)) |
misc | DisjointClasses: annotations descriptions | DisjointClasses(T(annotations) T(descriptions)) |
misc | EquivalentProperties: annotations objectProperties | EquivalentObjectProperties(T(annotations) T(objectProperties)) |
misc | DisjointProperties: annotations objectProperties | DisjointObjectProperties(T(annotations) T(objectProperties)) |
misc | EquivalentProperties: annotations dataProperties | EquivalentDataProperties(T(annotations) T(dataProperties)) |
misc | DisjointProperties: annotations dataProperties | DisjointDataProperties(T(annotations) T(dataProperties)) |
misc | SameIndividual: annotations individuals | SameIndividual(T(annotations) individuals) |
misc | DifferentIndividuals: annotations individuals | DifferentIndividuals(T(annotations) individuals) |
prefixDeclaration | Prefix: prefix fullIRI | Prefix(prefix = fullIRI) |
import | Import: IRI | Import(IRI) |
ontology | Ontology: IRI IRI imports annotations frames | Ontology(IRI IRI T(imports) T(annotations) T(frames)) |
ontology | Ontology: IRI imports annotations frames | Ontology(IRI T(imports) T(annotations) T(frames)) |
ontology | Ontology: imports annotations frames | Ontology(T(imports) T(annotations) T(frames)) |
ontologyDocument | prefixDeclarations ontology | T(prefixDeclarations) T(ontology) |
Finally, put the declarations produced in the first step into the ontology.
The mapping from the Functional-Style Syntax back to the Manchester Syntax essentially just runs the above translation in reverse.
Some axioms that become part of a frame in the Manchester syntax do not need to have a name for the frame, e.g., a SubClassOf axiom between two complex descriptions, so the construction below cannot be directly used. To transform these axioms to the Manchester syntax, take a fresh name and turn the axiom into two axioms, one that makes the new name equivalent to the first piece of the axiom and the other the axiom with the sub-construct replaced by the new name. This would turn a SubClassOf axiom into an EquivalentClasses axiom plus a SubClassOf axiom.
The basic mapping first creates a trivial frame containing only an IRI for each named class, property, and individual in the ontology. Second, turn the Functional-Style Syntax into the Manchester Syntax by running the syntax transformation above in reverse. The non-determinism in the mapping of entity annotations is resolved by uniformly making them annotations in individual frames. Third, collapse frames for the same entity into one frame by running that part of the forward transformation in reverse. This step does not affect the meaning of an ontology and is thus optional.
The Internet Media Type / MIME Type for the OWL Manchester Syntax is "text/owl-manchester".
It is recommended that OWL Manchester Syntax files have the extension ".omn" (all lowercase) on all platforms.
It is recommended that OWL Manchester Syntax files stored on Macintosh HFS file systems be given a file type of "TEXT".
The information that follows will be submitted to the IESG for review, approval, and registration with IANA.