OWL 2 extends the W3C OWL Web Ontology Language with a small but useful set of features that have been requested by users, for which effective reasoning algorithms are now available, and that OWL tool developers are willing to support. The new features include extra syntactic sugar, additional property and qualified cardinality constructors, extended datatype support, simple metamodelling, and extended annotations.
This short primer provides an approachable introduction to OWL 2, including orientation for those coming from other disciplines, an example showing how OWL 2 can be used to represent first simple information and then more complex information, how OWL 2 manages ontologies, and finally the distinctions between the various sublanguages of OWL 2.
May Be Superseded
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
This document is being published as one of a set of 6 documents:
- Structural Specification and
Functional-Style Syntax
- Model-Theoretic Semantics
- Mapping to RDF Graphs
- XML Serialization
- Profiles
- Primer (this document)
Compatibility with OWL 1
The OWL Working Group intends to make OWL 2 be a superset of OWL 1, except for some small bug fixes and changes to the formal semantics of annotations. This means that OWL 2 will be backward compatible, and creators of OWL 1 documents need only move to OWL 2 when they want to make use of OWL 2 features. More details and advice concerning migration from OWL 1 to OWL 2 will be in future drafts.
Multiple Syntaxes
This draft includes, experimentally, versions of each example in four different OWL syntaxes. Javascript is used to control the visibility of each syntax. One of the syntaxes, the "Manchester Syntax" is expected to be documented in a (non-normative) Working Group Note; for now, Manchester Syntax links point to a Working Group Wiki page.
Please Comment By 11 May 2008
The OWL Working Group seeks
public feedback on this First Public Working Draft. Please send your
comments to public-owl-comments@w3.org (public archive). If possible, please offer
specific changes to the text that would address your
concern. You may also wish to check the Wiki
Version of this document for internal-review comments and changes being
drafted which may address your concerns.
No Endorsement
Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.
Patents
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.
1 Introduction
Editor's Note: At the second F2F meeting, the Working Group has decided to simplify the vocabulary of OWL ontologies. In future versions of this specification, the terminals of the functional-style grammar and the RDF vocabulary will be significantly smaller.
The W3C OWL 2 Web Ontology Language (OWL) is a Semantic Web language
designed to represent ontologies - information about how individuals are
grouped and fit together in a particular domain. OWL can represent rich
and complex information about classes of individuals and their
properties. OWL is a logical language, where every construct has a
well-defined meaning, meanings that fit together to support exact and
useful representation of many different kinds of information.
OWL groups information into ontologies in the form of documents that can
be stored and transmitted
across the World Wide Web in the same way that data and other kinds of
information are and that can be completely and effectively processed by
tools that extract the information implicit in an ontology.
This short primer contains, first, orientations to OWL for various
communities, including XML, RDF, databases, and object-oriented
programming. The bulk of the primer consists of a running example that
illustrates the different kinds of information that can be represented
in OWL. The Appendix contains the entire example ontology. The primer then describes how OWL packages information into
ontologies and how extra information is associated with
parts of an ontology. There are links from the short descriptions of
the OWL constructs here to other documents that provide more information
on OWL.
Finally, the primer
describes the various sublanguages of OWL, and what is gained and lost
by using them.
OWL is in some respects similar to various existing modeling formalisms and in other respects very different. Some features of OWL may be surprising to people grounded in specific methodologies and the significant advantages of other features may be missed due to unfamiliarity. The key goal of the primer is to help develop insight into OWL, its strengths, and its weaknesses. Users interested in the details of every OWL construct should consult the OWL 2 Structural Syntax. There are also many tutorials available freely on the web, including those bundled with specific OWL ontology development environments.
2 Orientation
OWL
is superficially similar to many other technologies, which is not too
surprising given the prevalence of XML as a concrete syntax and of the
class-object paradigm. People familiar with other technologies are
sometimes misled by the similarities and thus very surprised by the
differences. In section 2.1, we provide a brief orientation to OWL from
a number of prominent technological perspectives. At various points in
the tutorial sections of this Primer, we shall highlight aspects of OWL
that might be surprising to people coming from these perspectives.
In section 2.2, we briefly discuss some major ways of using
OWL in applications.
2.1 Technology Perspectives
Editor's Note: The Working Group is committed to making these technology-specific sections be accessible by users of those technology. We particularly solicit comments on whether this is the case and how to make them moreso.
Editor's Note: Structural issue: Some readers have commented that having these sections up front may be intimidating. The editors are considering move detailed discussion to an appendix -- feedback on this point is welcome.
Editor's Note: There is a proposal for having technology and application tips, notes, and tricks scattered throughout the document, but with optional display. Thus, as with the syntax, different users can configure the document to their tastes and needs.
2.1.1 Resource Description Framework (RDF) and Schema (RDFS)
Of the technologies discussed in this section, RDF(S) is the closest to
OWL. They both have roots in logic based knowledge representation; in
many ways, RDF(S) can be seen as a subset of OWL; and, perhaps most
prominently, the primary exchange syntax for OWL has been RDF/XML.
However, there are differences of style, emphasis, and common practice
that can make relying on RDF(S) intuitions misleading when working with
OWL. For example, while OWL statements and expressions can be encoded
as RDF facts (triples), viewing most OWL statements and expressions as
collections is not typically a fruitful way of
writing or understanding them. Similarly, it is fairly
common and effective to work with RDF as a graph data structure or
database where the primary focus is on the explicit statements in the
graph.
Even when we consider parts of RDFS which support
implicit
knowledge, such as determining subclass relationships, the relation between the
explicit and implicit statements is very direct. Thus, it is easy to
conceptualize inference in terms of graph structure manipulation.
In contrast, determining implicit knowledge in OWL, including
determining subclass relationships and typing and checking consistency
of an ontology,
requires techniques that are much more akin to theorem proving.
2.1.2 XML
OWL and the XML family of technologies share some common parts: OWL can be
expressed in XML languages (such as RDF/XML or the XML syntax for OWL) and thus be
manipulated by XML tools. OWL reuses datatypes and datatype derivation
facets from XML Schema (and can use certain forms of XML Schema type
definitions). Finally, OWL and XML can both
be used for conceptual modeling
as well as data definition, though they ways they go about it are
fairly distinct
and OWL is oriented toward more abstract,
higher level conceptual modeling than is XML.
OWL is designed to support the
discovery of relationships between classes through automated
reasoning. OWL also builds in far fewer presumptions about the entities
it is describing both generally and in terms of their physical
realization in computational systems.
Both OWL and XML Schema support strong abstraction
facilities. However XML Schema, is much more concerned with the data
organization issues relating to its core mission of validating XML documents.
2.1.3 Databases
Databases (either relational or object-oriented) also store and organize
information.
However, databases are oriented to environments where all information
that an application needs is available, where considerations of data
integrity in situations of simultaneous access and update are important,
or where very large amounts of data needs to be worked with.
OWL is more oriented towards flexible and expressive
description of data (or information), and only considers information to
be complete if the completeness can be determined from other information.
Ontologies in OWL are much more powerful and flexible than database
schemas. Database schemas generally only shape the kinds of information
that is associated with objects (or tuples) that belong to a class (or
table). Classes in OWL ontologies can do this, but also can provide
recognition conditions so that explicit typing is not required in OWL.
Of course this flexibility means that determining typing in OWL can
require complex inferences.
A final major difference between databases and OWL is that the
information stored in a database is derived from the database schema and
integrity constraints - if the schema doesn't sanction the storage of
certain kinds of information, then that information cannot be stored,
and, similarly, if the information violates an integrity constraint it
also cannot be stored.
OWL, on the other hand, allows arbitrary information to be associated
with just about any object - if there is nothing in the ontology
forbidding the associated then it is allowable. OWL is thus much more
flexible in its information storage.
2.1.4 Object-oriented Programming
Object-oriented programming (OOP) also has object-centered modeling
characteristics, and thus has much in common with OWL.
However, OOP generally is performed in complete-information contexts,
and where the information that can possibly be known about an object is
circumscribed by the information in the type of the object. As with databases,
the differing stances on completeness and object information is a major
difference between OWL and OOP. Similarly OOP classes are much less
expressive than OWL classes.
Furthermore, OWL is a strictly declarative and logical language.
OWL therefore has none of the operational aspects of OOP, like methods,
and similarly reasoning in OWL is strictly logical, with nothing
comparing to inheritance, particularly inheritance with
exceptions or overriding.
OWL is used in a number of different ways and for a number of different domains -- far too
many to enumerate here. But it's worth examining a few examples to get a feel for the sorts
of problem OWL has worked well for.
Using all of the expressive power of OWL, effectively, requires a fair bit of skill.
2.1.5 OWL 1
OWL 2 is a backwards compatible revision to the Web Ontology Language (OWL). OWL 2 adds several new constructs to extend the expressivity of OWL including those for qualified cardinality restrictions, role chains, and expressive data predicates. OWL 2 also includes a new XML Serialization (targeted to the XML tool chain, i.e., XSLT, schema languages, etc.) and a set of subsetting profiles with various desirable application and computational properties.
For those interested in OWL 1, it is worth consulting the OWL 1
Overview
and Language Guide. As every OWL 1 ontology is also an OWL 2 ontology, the OWL 1 documentation provides a reasonable introduction to OWL 2 (though only through the RDF/XML syntax). There are other OWL 1 documents available from the WebOnt working group webpage.
Editor's Note: A section on the differences between OWL 1 and OWL 2 is forthcoming.
2.2 Application Perspectives
2.2.1 Terminology development and management
Terminologies, controlled vocabularies, taxonomies and the like are used for a range of
information retrieval (IR) tasks such as query broadening or supporting faceted access. Predefined
terminologies may also be used at data entry either to catalog the entry (for IR support) or
to guide the user in a variety of ways. For example, in clinical support systems certain forms or
parts of forms may only be displayed when the clinician is to perform specific sorts of procedures, and
these procedures can be identified by a combination of terms from a controlled vocabulary.
Developing and maintaining large terminology is time- and skill-intensive, even if the structure
of the terminology is relatively simple. OWL can support the process in a number of ways:
- developers can encode models of the domain, instead of just encoding relations between terms -- the relations are then derived from the modeling. This provides an independent check that the terminological relation is correct. The formal semantics of OWL also gives a precise meaning to any definitions; this meaning is available to other modelers or to tools.
- reasoners can confirm the consistency of models (and definitions). For example, a reasoner can determine whether a class definition can consistently have an instance.
- reasoners can extract implicit information from the descriptions; i.e., inference procedures can automatically verify intended entailments and check for unintended ones.
- reasoners can operate on the terminology as a whole, analyzing it to determine much about its structure. For example, to determine whether it is lop-sided, or to identify subsets of the terminology which are logically independent of each other (but individually interdependent; the logically independent portions of the terminology may be removed or enhanced.)
OWL has been used to support very large terminologies consisting of hundred of thousands of terms
in complex hierarchies. Galen? NCI? SNOMED? Much work has been done using OWL in the Health Care and Life
Sciences (HCLS) domain where there is a wealth of experience in developing large scale terminologies.
For terminology development, OWL reasoners have in the past traditionally been used at development
time only; i.e., off line from the application.
In such cases, the reasoner acts like a "terminology complier", that is, it assembles
a complete taxonomy from definitions of terms. The taxonomy is then deployed in the application. For
retrieval tasks of relatively stable collections, this has been an acceptable way to cope with the
difficulty of reasoning with large ontologies. However, as computing power has increased and OWL
reasoners have grown more optimized, there is increasing on line, deployment time use of
OWL reasoners in terminological applications. In particular, what is sometimes known as "post coordination"
-- that is, the ability of a person at the data entry point to extend the terminology to better fit their
situation -- has become more common. Such dynamic terminology extension in critical systems can benefit by the
methodological rigor supported by OWL reasoners. Instead of merely coining a term and plopping it somewhere
in the taxonomy, end users are encouraged to refine existing terms by specializing their definitions.
To take a simple example, a doctor wishing to record that a patient has an almond allergy might be directed to
enter that an almond is a kind of nut. The system then can recognize that the almond allergy is a form
of nut allergy and the requisite advice or entry forms presented as usual. Of course in this situation it
would be more realistic for the application to be built on, or have access to, a large, broad existing ontology
such as OpenCyc which already knew things like almonds are nuts, rather than asking the physician to
stop doing medicine and instruct the system in matters relating to almonds.
2.2.2 Conceptual Modeling
As we saw with terminological management, a key benefit of OWL is the support it gives to modeling
subject domains, that is, to conceptual modeling. OWL is a capable language for conceptual modeling,
for example, it can easily encode most entity-relationship diagrams and many UML diagrams. Once encoded,
OWL reasoners can find implicit relations, conflicts, and missing pieces. Since OWL can describe
and work with incomplete information it is well suited for high level conceptual work wherein you are
not merely abstracting from the physical or logical layers of an information system, but you are still
unsure about various aspects of the conceptual structure. OWL allows you to defer various modeling
decisions while still making effective use of what you do know.
OWL supports a variety of styles of modeling, e.g., top down or bottom up, iterative or upfront,
or refinement oriented vs generalizing. When modeling, a reasoner (and other tools) can provide
continual feedback to the model. Indeed, often the absence of any reaction from a reasoner gives
valuable information to the modeler (i.e., their model is much less well described than they
had thought).
OWL based conceptual models can be used for information integration as well. For example, supposed
you are faced with the task of integration two database applications that have radically different
schemata but, at least to a first glance, similar conceptual models. By first casting both models into
OWL, then aligning parts of the model with each other, one can find hidden relations as well as
inconsistencies between the model (or in your understanding of their relations). By exploring things
at the conceptual level, you are not distracted by the in principle irrelevant low level implementation
details. Since the models have a clear semantics, they can be systematically checked. Instead of
tediously verifying correspondences by hand, you can spend your time tweaking the modeling or the alignment.
OWL based conceptual models have been used directly to federate disparate information systems. There
are several techniques ranging from treating the conceptual models as high level schemas for an RDF based
data store to exploiting the conceptual models to build distributed queries against the data's home systems.
3 Basic Notions
OWL allows us to express information about the
world then to
draw certain consequences based on this
information. There are
OWL tools - reasoners - that can automatically compute these
consequences.
In OWL, we
presume that the world is primarily made up of
individual entities (typically known as individuals or objects).
Individuals are related to each other and to data values
via properties.
Using OWL, we can group individuals that share
certain characteristics into classes.
OWL is part of the Semantic Web, so names in OWL are international
resource identifiers (IRIs).
As IRIs are long, we will use a compact way of writing them in OWL,
consisting of a prefix and a reference separated by a colon.
There are various syntaxes for OWL available, which serve various purposes:
When OWL information is transferred around in the Web, it is written in an
XML dialect.
The Manchester syntax
[OWL 2 Manchester Syntax]
is an OWL syntax that is designed to be easier for
non-logicians to read.
The Functional-Style syntax
[OWL 2 Specification]
is designed to
be easier for specification purposes and for reasoning tools to use.
The OWL XML syntax is an XML syntax for OWL defined by an XML schema
[OWL 2 Specification].
The RDF/XML syntax for OWL is just RDF/XML, with a particular
translation for the OWL constructs
[OWL 2 RDF Mapping]
.
There are tools that can translate
between the different syntaxes for OWL.
The running example and the entire example ontology in the appendix can be viewed an any of the four different syntaxes, by default the Manchester
syntax is the only one shown.
The buttons below can be used to show or hide all
four syntaxes.
Suppose we want to represent information about a particular family. (We do not
intend this example to be representative of the sorts of domains OWL should be used
for, or as a canonical example of good modeling with OWL, or a correct representation
of the rather complex, shifting, and politically explosive domain of families. Instead,
we intend it to be a rather simple exhibition of various features of OWL.)
We first need to determine what individuals there are in a family, and
how they are related to each other and what data values are associated
with them. We can then proceed by writing down all this information in
OWL.
So if we have a family with parents John and
Mary and children Susan
and Bill
we could set up individuals and
write all these facts down, along
with age
facts as follows.
Manchester Syntax:
Individual: f:John
Facts: f:hasWife f:Mary,
f:hasSon f:Bill,
f:hasDaughter f:Susan,
f:hasAge 33
Individual: f:Mary
Facts: f:hasSon f:Bill,
f:hasDaughter f:Susan,
f:hasAge 31
Individual: f:Bill
Facts: f:hasAge 13
Individual: f:Susan
Facts: f:hasAge 8
Functional-Style Syntax:
ObjectPropertyAssertion(f:John f:hasWife f:Mary)
ObjectPropertyAssertion(f:John f:hasSon f:Bill)
ObjectPropertyAssertion(f:John f:hasDaughter f:Susan)
DataPropertyAssertion(f:John f:hasAge "33"^^xsd:integer)
ObjectPropertyAssertion(f:Mary f:hasSon f:Bill)
ObjectPropertyAssertion(f:Mary f:hasDaughter f:Susan)
DataPropertyAssertion(f:Mary f:hasAge "31"^^xsd:integer)
DataPropertyAssertion(f:Bill f:hasAge "13"^^xsd:integer)
DataPropertyAssertion(f:Susan f:hasAge "8"^^xsd:integer)
OWL XML Syntax:
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasWife"/>
<Individual URI="&f;John"/>
<Individual URI="&f;Mary"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasSon"/>
<Individual URI="&f;John"/>
<Individual URI="&f;Bill"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasDaughter"/>
<Individual URI="&f;John"/>
<Individual URI="&f;Susan"/>
</ObjectPropertyAssertion>
<DataPropertyAssertion>
<DataProperty URI="&f;hasAge"/>
<Individual URI="&f;John"/>
<Constant datatypeURI="&xsd;integer">33</Constant>
</DataPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasSon"/>
<Individual URI="&f;Mary"/>
<Individual URI="&f;Bill"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasDaughter"/>
<Individual URI="&f;Mary"/>
<Individual URI="&f;Susan"/>
</ObjectPropertyAssertion>
<DataPropertyAssertion>
<DataProperty URI="&f;hasAge"/>
<Individual URI="&f;Mary"/>
<Constant datatypeURI="&xsd;integer">31</Constant>
</DataPropertyAssertion>
<DataPropertyAssertion>
<DataProperty URI="&f;hasAge"/>
<Individual URI="&f;Bill"/>
<Constant datatypeURI="&xsd;integer">13</Constant>
</DataPropertyAssertion>
<DataPropertyAssertion>
<DataProperty URI="&f;hasAge"/>
<Individual URI="&f;Susan"/>
<Constant datatypeURI="&xsd;integer">8</Constant>
</DataPropertyAssertion>
RDF/XML Syntax:
<rdf:Description rdf:about="&f;John">
<f:hasWife rdf:resource="&f;Mary" />
<f:hasSon rdf:resource="&f;Bill" />
<f:hasDaughter rdf:resource="&f;Susan" />
<f:hasAge rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">33</f:hasage>
</rdf:Description>
<rdf:Description rdf:about="&f;Mary">
<f:hasSon rdf:resource="&f;Bill" />
<f:hasDaughter rdf:resource="&f;Susan" />
<f:hasAge rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">31</f:hasage>
</rdf:Description>
<rdf:Description rdf:about="&f;Bill">
<f:hasAge rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">13</f:hasage>
</rdf:Description>
<rdf:Description rdf:about="&f;Susan">
<f:hasAge rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">8</f:hasage>
</rdf:Description>
We could also write down information about the sex of people
by providing them with a gender, which is
either male or female.
Manchester Syntax:
Individual: f:John Facts: f:hasGender f:male
Individual: f:Mary Facts: f:hasGender f:female
Individual: f:Bill Facts: f:hasGender f:male
Individual: f:Susan Facts: f:hasGender f:female
Individual: f:male
Individual: f:female
Functional-Style Syntax:
ObjectPropertyAssertion(f:John f:hasGender f:male)
ObjectPropertyAssertion(f:Mary f:hasGender f:female)
ObjectPropertyAssertion(f:Bill f:hasGender f:male)
ObjectPropertyAssertion(f:Susan f:hasGender f:female)
OWL XML Syntax:
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;John"/>
<Individual URI="&f;male"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;Mary"/>
<Individual URI="&f;female"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;Bill"/>
<Individual URI="&f;male"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;Susan"/>
<Individual URI="&f;female"/>
</ObjectPropertyAssertion>
RDF/XML Syntax:
<rdf:Description rdf:about="&f;John">
<f:hasGender rdf:resource="&f;male" />
</rdf:Description>
<rdf:Description rdf:about="&f;Mary">
<f:hasGender rdf:resource="&f;female" />
</rdf:Description>
<rdf:Description rdf:about="&f;Bill">
<f:hasGender rdf:resource="&f;male" />
</rdf:Description>
<rdf:Description rdf:about="&f;Susan">
<f:hasGender rdf:resource="&f;female" />
</rdf:Description>
<rdf:Description rdf:about="&f;male"/>
<rdf:Description rdf:about="&f;female"/>
However, all we have done so far is written down the basic
facts about a particular family. In a sense, we have used just the
"RDF" portion of OWL that is tagging individuals as instances of named
classes and relating them to other individuals by properties. While this
is already quite useful, OWL also lets you describe how families work in general.
So let's switch gears and think how families work in general.
(This is the process of knowledge representation. Like all processes
representing information about the world, certain simplifying
assumptions must be made, and since this is a primer we are going to be
simplifying a lot.) For starters, the individuals in families are all people,
so we should have a
class of people, with name Person.
Below you will find information about several properties.
wife is a relationship between Persons,
i.e., both the domain and range of wife is Person,
as are both son and daughter.
age is a
relationship
from a Person
to an integer.
Manchester Syntax:
Class: f:Person
ObjectProperty: f:hasWife Domain: f:Person Range: f:Person
ObjectProperty: f:hasSon Domain: f:Person Range: f:Person
ObjectProperty: f:hasDaughter Domain: f:Person Range: f:Person
DataProperty: f:hasAge Domain: f:Person Range: integer
Functional-Style Syntax:
ObjectPropertyDomain(f:hasWife f:Person)
ObjectPropertyRange(f:hasWife f:Person)
ObjectPropertyDomain(f:hasSon f:Person)
ObjectPropertyRange(f:hasSon f:Person)
ObjectPropertyDomain(f:hasDaughter f:Person)
ObjectPropertyRange(f:hasDaughter f:Person)
DataPropertyDomain(f:hasAge f:Person)
DataPropertyRange(f:hasAge xsd:integer)
OWL XML Syntax:
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasWife"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasWife"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyRange>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasSon"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasSon"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyRange>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasDaughter"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasDaughter"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyRange>
<DataPropertyDomain>
<DataProperty URI="&f;hasAge"/>
<OWLClass URI="&f;Person"/>
</DataPropertyDomain>
<DataPropertyRange>
<DataProperty URI="&f;hasAge"/>
<Datatype URI="&xsd;integer"/>
</DataPropertyRange>
RDF/XML Syntax:
<owl:Class rdf:about="&f;Person" />
<owl:ObjectProperty rdf:about="&f;hasWife">
<rdfs:domain rdf:resource="&f;Person" />
<rdfs:range rdf:resource="&f;Person" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="&f;hasSon">
<rdfs:domain rdf:resource="&f;Person" />
<rdfs:range rdf:resource="&f;Person" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="&f;hasDaughter">
<rdfs:domain rdf:resource="&f;Person" />
<rdfs:range rdf:resource="&f;Person" />
</owl:ObjectProperty>
<owl:DataProperty rdf:about="&f;hasAge">
<rdfs:domain rdf:resource="&f;Person" />
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer" />
</owl:ObjectProperty>
From this information we (or a reasoner) can conclude that John
belongs to
Person, because, for example, the domain of
wife is Person and John
has a
wife.
We can also directly state that an individual belongs to a class.
Manchester Syntax:
Individual: f:John Types: f:Person
Functional-Style Syntax:
ClassAssertion(f:Person f:John)
OWL XML Syntax:
<ClassAssertion>
<OWLClass URI="&f;Person"/>
<Individual URI="&f;John"/>
</ClassAssertion>
RDF/XML Syntax:
<f:Person rdf:about="&f;John" />
There is more that can be said even about just this little
part of
familial relationships.
For example, the inverse of the wife property
is
husband.
As well, son and daughter
are specializations
of the child relationship.
Further, no individual can be both a son and
a
daughter, so these properties are
disjoint.
Individuals have at most one age, so
age is a functional data property.
Individuals participate in at most one wife
relationship
and no individual is its own wife,
so wife is
functional,
inverse functional,
and
irreflexive.
(It is also possible to specify that a property is
reflexive, but this
is not commonly done because the property is then reflexive for
all individuals.)
As well, wife is
asymmetric.
Note that we have added more information about several properties. It
is perfectly acceptable in OWL to have information about a property
(or class, or individual) occur in several places.
Manchester Syntax:
ObjectProperty: f:hasHusband Inverses: f:hasWife
ObjectProperty: f:hasChild Domain: f:Person range f:Person
ObjectProperty: f:hasSon SubPropertyOf: f:hasChild
ObjectProperty: f:hasDaughter SubPropertyOf: f:hasChild
DisjointObjectProperties: f:hasSon f:hasDaughter
DataProperty: f:hasAge Characteristics: Functional
ObjectProperty: f:hasWife Characteristics: Functional, InverseFunctional, Irreflexive, Asymmetric
Functional-Style Syntax:
InverseObjectProperties(f:hasHusband f:hasWife)
ObjectPropertyDomain(f:hasChild f:Person)
ObjectPropertyRange(f:hasChild f:Person)
SubObjectPropertyOf(f:hasSon f:hasChild)
SubObjectPropertyOf(f:hasDaughter f:hasChild)
DisjointObjectProperties(f:hasSon f:hasDaughter)
FunctionalDataProperty(f:hasAge)
FunctionalObjectProperty(f:hasWife)
InverseFunctionalObjectProperty(f:hasWife)
IrreflexiveObjectProperty(f:hasWife)
AsymmetricObjectProperty(f:hasWife)
OWL XML Syntax:
<InverseObjectProperties>
<ObjectProperty URI="&f;hasHusband"/>
<ObjectProperty URI="&f;hasWife"/>
</InverseObjectProperties>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasChild"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasChild"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyRange>
<SubObjectPropertyOf>
<ObjectProperty URI="&f;hasSon"/>
<ObjectProperty URI="&f;hasChild"/>
</SubObjectPropertyOf>
<SubObjectPropertyOf>
<ObjectProperty URI="&f;hasDaughter"/>
<ObjectProperty URI="&f;hasChild"/>
</SubObjectPropertyOf>
<DisjointObjectProperties>
<ObjectProperty URI="&f;hasDaughter"/>
<ObjectProperty URI="&f;hasSon"/>
</DisjointObjectProperties>
<FunctionalDataProperty>
<DataProperty URI="&f;hasAge"/>
</FunctionalDataProperty>
<FunctionalObjectProperty>
<ObjectProperty URI="&f;hasWife"/>
</FunctionalObjectProperty>
<InverseFunctionalObjectProperty>
<ObjectProperty URI="&f;hasWife"/>
</InverseFunctionalObjectProperty>
<IrreflexiveObjectProperty>
<ObjectProperty URI="&f;hasWife"/>
</IrreflexiveObjectProperty>
<AsymmetricObjectProperty>
<ObjectProperty URI="&f;hasWife"/>
</AsymmetricObjectProperty>
RDF/XML Syntax:
<owl:ObjectProperty rdf:about="#hasHusband">
<owl:inverseOf rdf:resource="#hasWife"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasChild">
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasSon">
<rdfs:subPropertyOf rdf:resource="#hasChild"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasDaughter">
<rdfs:subPropertyOf rdf:resource="#hasChild"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasSon">
<owl2:disjointObjectProperties rdf:resource="#hasDaughter"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:about="#hasAge">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
</owl:DatatypeProperty>
<owl:ObjectProperty rdf:about="#hasWife">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
<rdf:type rdf:resource="&owl2;IrreflexiveProperty"/>
<rdf:type rdf:resource="&owl2;AsymmetricProperty"/>
</owl:ObjectProperty>
What we have said about families and about our particular
family has a
number of consequences. For example, because husband
is the inverse of
wife, Mary's husband
is
John.
Complete OWL reasoning tools can efficiently determine whether a
particular consequence follows from the information available.
So far we have written down quite a bit of information about familial
properties, but we have only used a single class: Person.
OWL has a rich language for defining
classes in terms of other classes, but also
in terms of the relations its instances may or must have to other individuals.
So we might have classes for men, women, and parents, each of which is
a specialization of Person.
Manchester Syntax:
Class: f:Man SubClassOf: f:Person
Class: f:Woman SubClassOf: f:Person
Class: f:Parent SubClassOf: f:Person
Functional-Style Syntax:
SubClassOf(f:Man f:Person)
SubClassOf(f:Woman f:Person)
SubClassOf(f:Parent f:Person)
OWL XML Syntax:
<SubClassOf>
<OWLClass URI="&f;Man"/>
<OWLClass URI="&f;Person"/>
</SubClassOf>
<SubClassOf>
<OWLClass URI="&f;Woman"/>
<OWLClass URI="&f;Person"/>
</SubClassOf>
<SubClassOf>
<OWLClass URI="&f;Parent"/>
<OWLClass URI="&f;Person"/>
</SubClassOf>
RDF/XML Syntax:
<owl:Class rdf:about="#Man">
<rdfs:subClassOf rdf:resource="#Parent">
</owl:Class>
<owl:Class rdf:about="#Woman">
<rdfs:subClassOf rdf:resource="#Parent">
</owl:Class>
<owl:Class rdf:about="#Parent">
<rdfs:subClassOf rdf:resource="#Parent">
</owl:Class>
We can do much more in OWL with classes than just provide
generalizations for them. OWL can provide partial or complete
information about
what is required to belong to a class.
(The constructs used to provide information about classes are called
descriptions in OWL.)
For example, saying that people have
exactly one age
and
one gender, that is either male or female]]
provides (partial) information about people.
Not only saying that every individual that belongs
to Man also belongs to Person,
but also saying
that
every Person
that has gender
male belongs to man,
and similarly for
Woman,
provides complete information about what it takes to belong to these two classes.
We can also say that every Person that has
at least one child that
is a Person belongs to Parent.
Manchester Syntax:
ObjectProperty: f:hasGender
Class: f:Person SubClassOf: f:hasAge exactly 1 and
f:hasGender exactly 1 and
f:hasGender only {f:female , f:male}
Class: f:Man EquivalentTo: f:Person and f:hasGender value f:male
Class: f:Woman EquivalentTo: f:Person and f:hasGender value f:female
Class: f:Parent EquivalentTo: f:Person and f:hasChild min 1 f:Person
Functional-Style Syntax:
SubClassOf(f:Person
ObjectIntersectionOf(DataExactCardinality(1 f:hasAge)
ObjectExactCardinality(1 f:hasGender)
ObjectAllValuesFrom(f:hasGender ObjectOneOf(f:female f:male))))
EquivalentClasses(f:Man
ObjectIntersectionOf(f:Person ObjectHasValue(f:hasGender f:male)))
EquivalentClasses(f:Woman
ObjectIntersectionOf(f:Person ObjectHasValue(f:hasGender f:female)))
EquivalentClasses(f:Parent
ObjectIntersectionOf(f:Person ObjectMinCardinality(1 f:hasChild f:Person)))
OWL XML Syntax:
<SubClassOf>
<OWLClass URI="&f;Person"/>
<ObjectIntersectionOf>
<DataExactCardinality cardinality="1">
<DataProperty URI="&f;hasAge"/>
</DataExactCardinality>
<ObjectExactCardinality cardinality="1">
<ObjectProperty URI="&f;hasGender"/>
</ObjectExactCardinality>
<ObjectAllValuesFrom>
<ObjectProperty URI="&f;hasGender"/>
<ObjectOneOf>
<Individual URI="&f;female"/>
<Individual URI="&f;male"/>
</ObjectOneOf>
</ObjectAllValuesFrom>
</ObjectIntersectionOf>
</SubClassOf>
<EquivalentClasses>
<OWLClass URI="&f;Man"/>
<ObjectIntersectionOf>
<ObjectHasValue>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;male"/>
</ObjectHasValue>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</EquivalentClasses>
<EquivalentClasses>
<OWLClass URI="&f;Woman"/>
<ObjectIntersectionOf>
<OWLClass URI="&f;Person"/>
<ObjectHasValue>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;female"/>
</ObjectHasValue>
</ObjectIntersectionOf>
</EquivalentClasses>
<EquivalentClasses>
<OWLClass URI="&f;Parent"/>
<ObjectIntersectionOf>
<ObjectMinCardinality cardinality="1">
<ObjectProperty URI="&f;hasChild"/>
<OWLClass URI="&f;Person"/>
</ObjectMinCardinality>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</EquivalentClasses>
RDF/XML Syntax:
<owl:ObjectProperty rdf:about="#hasGender"/>
<owl:Class rdf:about="#Person">
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender"/>
<owl:allValuesFrom>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<rdf:Description rdf:about="#female"/>
<rdf:Description rdf:about="#male"/>
</owl:oneOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#Man">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender"/>
<owl:hasValue rdf:resource="#male"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#Woman">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender"/>
<owl:hasValue rdf:resource="#female"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#Parent">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl2:onClass rdf:resource="#Person"/>
<owl:minCardinalityQ rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinalityQ>
</owl:Restriction>
<rdf:Description rdf:about="#Person"/>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
Complete definitions enable many consequences in OWL. For
example, from the above John belongs to
Man and Parent. Some
of the consequences can
surprise users, so some OWL tools provide (rudimentary) facilities for
showing how a consequence was determined.
In OWL, descriptions can be used just about anywhere a class name can
be
used.
So, for example, we could provide more information about the
wife,
son, and daughter
properties by giving them more
specific domains and ranges.
Manchester Syntax:
ObjectProperty: f:hasWife Domain: f:Man Range: f:Woman
ObjectProperty: f:hasSon Domain: f:Parent
Range: Person that f:hasGender value f:male
ObjectProperty: f:hasDaughter Domain: f:Parent
Range: Person that f:hasGender value f:female
Functional-Style Syntax:
ObjectPropertyDomain(f:hasWife f:Man)
ObjectPropertyRange(f:hasWife f:Woman)
ObjectPropertyDomain(f:hasSon f:Parent)
ObjectPropertyRange(f:hasSon
ObjectIntersectionOf(f:Person ObjectHasValue(f:hasGender f:male)))
ObjectPropertyDomain(f:hasDaughter f:Parent)
ObjectPropertyRange(f:hasDaughter
ObjectIntersectionOf(f:Person ObjectHasValue(f:hasGender f:female)))
OWL XML Syntax:
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasWife"/>
<OWLClass URI="&f;Man"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasWife"/>
<OWLClass URI="&f;Woman"/>
</ObjectPropertyRange>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasSon"/>
<OWLClass URI="&f;Parent"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasSon"/>
<ObjectIntersectionOf>
<ObjectHasValue>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;male"/>
</ObjectHasValue>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</ObjectPropertyRange>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasDaughter"/>
<OWLClass URI="&f;Parent"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasDaughter"/>
<ObjectIntersectionOf>
<OWLClass URI="&f;Person"/>
<ObjectHasValue>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;female"/>
</ObjectHasValue>
</ObjectIntersectionOf>
</ObjectPropertyRange>
RDF/XML Syntax:
<owl:ObjectProperty rdf:about="#hasWife">
<rdfs:domain rdf:resource="#Man"/>
<rdfs:range rdf:resource="#Woman"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasSon">
<rdfs:domain rdf:resource="#Parent"/>
<rdfs:range>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender"/>
<owl:hasValue rdf:resource="#male"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</rdfs:range>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasDaughter">
<rdfs:domain rdf:resource="#Parent"/>
<rdfs:range>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender"/>
<owl:hasValue rdf:resource="#female"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</rdfs:range>
</owl:ObjectProperty>
In this case, we could just as well have used Man
and
Woman for the ranges of son
and
daughter. This would provide exactly the same
information
to OWL, and OWL reasoners can determine this.
It may seem that there is a circularity in defining Parent
as people with at least one child and also
making it be the
domain of child. In OWL, however, there is no
problem.
The two bits of information are simply different ways of saying the
same
thing.
OWL can also represent information about certain groupings of data
values, called data ranges.
For example, we might have Teenager as those
people
whose age is an integer that is
at least 13 but
less than 20, Adult as those
people whose
age is at least 21,
and Child as
those people whose age is in the complement
of adult ages.
Manchester Syntax:
Class: Teenager EquivalentClass: Person and hasAge some integer[>= 13 , < 20]
Class: Adult EquivalentClass: Person and hasAge some integer[>= 21]
Class: Child EquivalentClass: Person and not ( hasAge some integer[>= 21] )
Functional-Style Syntax:
EquivalentClasses(f:Teenager
ObjectIntersectionOf(f:Person
DataSomeValuesFrom(f:hasAge
DatatypeRestriction(xsd:integer minInclusive "13"^^xsd:int
maxExclusive "20"^^xsd:int))))
EquivalentClasses(f:Adult
ObjectIntersectionOf(f:Person
DataSomeValuesFrom(f:hasAge
DatatypeRestriction(xsd:integer minInclusive "21"^^xsd:int))))
EquivalentClasses(f:Child
ObjectIntersectionOf(f:Person
ObjectComplementOf(
DataSomeValuesFrom(f:hasAge
DatatypeRestriction(xsd:integer minInclusive "21"^^xsd:int)))))
OWL XML Syntax:
<EquivalentClasses>
<OWLClass URI="&f;Teenager"/>
<ObjectIntersectionOf>
<DataSomeValuesFrom>
<DataProperty URI="&f;hasAge"/>
<DatatypeRestriction>
<Datatype URI="&xsd;integer"/>
<DatatypeFacetRestriction facet="&owl2;minInclusive">
<Constant datatypeURI="&xsd;integer">13</Constant>
</DatatypeFacetRestriction>
<DatatypeFacetRestriction facet="&owl2;maxExclusive">
<Constant datatypeURI="&xsd;integer">20</Constant>
</DatatypeFacetRestriction>
</DatatypeRestriction>
</DataSomeValuesFrom>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</EquivalentClasses>
<EquivalentClasses>
<OWLClass URI="&f;Adult"/>
<ObjectIntersectionOf>
<DataSomeValuesFrom>
<DataProperty URI="&f;hasAge"/>
<DatatypeRestriction>
<Datatype URI="&xsd;integer"/>
<DatatypeFacetRestriction facet="&owl2;minInclusive">
<Constant datatypeURI="&xsd;integer">21</Constant>
</DatatypeFacetRestriction>
</DatatypeRestriction>
</DataSomeValuesFrom>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</EquivalentClasses>
<EquivalentClasses>
<OWLClass URI="&f;Child"/>
<ObjectIntersectionOf>
<ObjectComplementOf>
<DataSomeValuesFrom>
<DataProperty URI="&f;hasAge"/>
<DatatypeRestriction>
<Datatype URI="&xsd;integer"/>
<DatatypeFacetRestriction facet="&owl2;minInclusive">
<Constant datatypeURI="&xsd;integer">21</Constant>
</DatatypeFacetRestriction>
</DatatypeRestriction>
</DataSomeValuesFrom>
</ObjectComplementOf>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</EquivalentClasses>
RDF/XML Syntax:
<owl:Class rdf:about="#Teenager">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>
<owl:someValuesFrom>
<rdf:Description>
<rdf:type rdf:resource="&owl;DataRange"/>
<owl2:minInclusive rdf:datatype="&xsd;integer">13</owl2:minInclusive>
<owl2:maxExclusive rdf:datatype="&xsd;integer">20</owl2:maxExclusive>
<owl2:onDataRange rdf:resource="&xsd;integer"/>
</rdf:Description>
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#Adult">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>
<owl:someValuesFrom>
<rdf:Description>
<rdf:type rdf:resource="&owl;DataRange"/>
<owl2:onDataRange rdf:resource="&xsd;integer"/>
<owl2:minInclusive rdf:datatype="&xsd;integer">21</owl2:minInclusive>
</rdf:Description>
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#Child">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Class>
<owl:complementOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>
<owl:someValuesFrom>
<rdf:Description>
<rdf:type rdf:resource="&owl;DataRange"/>
<owl2:onDataRange rdf:resource="&xsd;integer"/>
<owl2:minInclusive rdf:datatype="&xsd;integer">21</owl2:minInclusive>
</rdf:Description>
</owl:someValuesFrom>
</owl:Restriction>
</owl:complementOf>
</owl:Class>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
From this, Bill belongs to Teenager,
but not
Adult.
Both John and Mary
belong to
Adult, but not to Teenage.
Mary belongs to neither Adult
nor to
Teenage.
OWL uses built-in datatypes taken from XML Schema datatypes
[XML Schema Datatypes], e.g.,
xsd:integer, to construct data ranges.
Other useful datatypes include
xsd:string and
xsd:decimal.
4 More Expressive Modeling
So far we have seen OWL used as little more than a data structuring
language. OWL is considerably more expressive than data structuring
languages, in several useful ways. Some of this added expressive power
illustrates the differences between OWL and other formalisms and why we
have to understand how OWL is different.
In the example so far, we knew quite a bit of information.
We knew, for example, that John's (only) age
was 47.
OWL is designed to deal with incomplete information, so it is quite
common in OWL not to know, for example, the ages
of all
individuals belonging to Person, as just
below.
Manchester Syntax:
Individual: f:Jeff
Facts: f:hasWife f:Emily,
f:hasChild f:Ellen,
f:hasChild f:Jack,
f:hasAge 77
Functional-Style Syntax:
ObjectPropertyAssertion(f:hasWife f:Jeff f:Emily)
ObjectPropertyAssertion(f:hasChild f:Jeff f:Ellen)
ObjectPropertyAssertion(f:hasChild f:Jeff f:Jack)
DataPropertyAssertion(f:hasAge f:Jeff "77"^^xsd:integer)
OWL XML Syntax:
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasWife"/>
<Individual URI="&f;Jeff"/>
<Individual URI="&f;Emily"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasChild"/>
<Individual URI="&f;Jeff"/>
<Individual URI="&f;Jack"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasChild"/>
<Individual URI="&f;Jeff"/>
<Individual URI="&f;Ellen"/>
</ObjectPropertyAssertion>
<DataPropertyAssertion>
<DataProperty URI="&f;hasAge"/>
<Individual URI="&f;Jeff"/>
<Constant datatypeURI="&xsd;integer">77</Constant>
</DataPropertyAssertion>
RDF/XML Syntax:
<rdf:Description rdf:about="#Jeff">
<hasWife rdf:resource="#Emily"/>
<hasChild rdf:resource="#Ellen"/>
<hasChild rdf:resource="#Jack"/>
<hasAge rdf:datatype="&xsd;integer">77</hasAge>
</rdf:Description>
It is a consequence of the above that Jeff
belongs to
Adult and not to Teenager.
However, it cannot be determined whether Emily
or
Jack belong to Adult
or Teenager,
even though they both must have an age.
It is also possible to provide partial information about values, as in
saying that Ellen's age
is between 15 and 21, inclusive,
that Emily's age is
either 39 or 49, or even that
Jack's age is not 53.
Manchester Syntax:
Individual: f:Emily Types: f:hasAge some {39 , 49}
Individual: f:Ellen Types: f:hasAge some integer[ 15, 21 ]
Individual: f:Jack Facts: not f:hasAge "53"^^integer
Functional-Style Syntax:
ClassAssertion(DataSomeValuesFrom(f:hasAge DataOneOf("39"^^xsd:integer
"49"^^xsd:integer))
f:Emily)
ClassAssertion(
DataSomeValuesFrom(f:hasAge
DatatypeRestriction(xsd:integer minInclusive "15"^^xsd:int
maxInclusive "21"^^xsd:int))
f:Ellen)
NegativeDataPropertyAssertion(f:hasAge f:Jack "53"^^xsd:integer)
OWL XML Syntax:
<ClassAssertion>
<DataSomeValuesFrom>
<DataProperty URI="&f;hasAge"/>
<DataOneOf>
<Constant datatypeURI="&xsd;integer">39</Constant>
<Constant datatypeURI="&xsd;integer">49</Constant>
</DataOneOf>
</DataSomeValuesFrom>
<Individual URI="&f;Emily"/>
</ClassAssertion>
<ClassAssertion>
<DataSomeValuesFrom>
<DataProperty URI="&f;hasAge"/>
<DatatypeRestriction>
<Datatype URI="&xsd;integer"/>
<DatatypeFacetRestriction facet="&owl2;minInclusive">
<Constant datatypeURI="&xsd;integer">15</Constant>
</DatatypeFacetRestriction>
<DatatypeFacetRestriction facet="&owl2;maxInclusive">
<Constant datatypeURI="&xsd;integer">21</Constant>
</DatatypeFacetRestriction>
</DatatypeRestriction>
</DataSomeValuesFrom>
<Individual URI="&f;Ellen"/>
</ClassAssertion>
<NegativeDataPropertyAssertion>
<DataProperty URI="&f;hasAge"/>
<Individual URI="&f;Jack"/>
<Constant datatypeURI="&xsd;integer">53</Constant>
</NegativeDataPropertyAssertion>
RDF/XML Syntax:
<rdf:Description rdf:about="#Emily">
<rdf:type>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>
<owl:someValuesFrom>
<rdf:Description>
<rdf:type rdf:resource="&owl;DataRange"/>
<owl:oneOf>
<rdf:Description>
<rdf:type rdf:resource="&rdf;List"/>
<rdf:first rdf:datatype="&xsd;integer">39</rdf:first>
<rdf:rest>
<rdf:Description>
<rdf:type rdf:resource="&rdf;List"/>
<rdf:rest rdf:resource="&rdf;nil"/>
<rdf:first rdf:datatype="&xsd;integer">49</rdf:first>
</rdf:Description>
</rdf:rest>
</rdf:Description>
</owl:oneOf>
</rdf:Description>
</owl:someValuesFrom>
</owl:Restriction>
</rdf:type>
</rdf:Description>
<rdf:Description rdf:about="#Ellen">
<rdf:type>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>
<owl:someValuesFrom>
<rdf:Description>
<rdf:type rdf:resource="&owl;DataRange"/>
<owl2:minInclusive rdf:datatype="&xsd;integer">15</owl2:minInclusive>
<owl2:onDataRange rdf:resource="&xsd;integer"/>
<owl2:maxInclusive rdf:datatype="&xsd;integer">21</owl2:maxInclusive>
</rdf:Description>
</owl:someValuesFrom>
</owl:Restriction>
</rdf:type>
</rdf:Description>
<owl2:NegativeDataPropertyAssertion>
<rdf:subject rdf:resource="#Jack"/>
<rdf:predicate rdf:resource="#hasAge"/>
<rdf:object rdf:datatype="&xsd;integer">53</rdf:object>
</owl2:NegativeDataPropertyAssertion>
From this it is possible to determine that Emily
belongs to Adult, even though we don't
know her exact age, but we cannot determine that Ellen
belongs to either Adult or
Teenager.
On the other hand, we could have a class YoungChild
that was
neither
Adult nor Teenager.
Ellen would then not
belong to this class.
Manchester Syntax:
Class: f:YoungChild EquivalentTo: f:Person and not ( f:Teenager or f:Adult )
Functional-Style Syntax:
EquivalentClasses(f:YoungChild
ObjectIntersectionOf(f:Person ObjectComplementOf(ObjectUnionOf(f:Teenager f:Adult))))
OWL XML Syntax:
<EquivalentClasses>
<OWLClass URI="&f;YoungChild"/>
<ObjectIntersectionOf>
<ObjectComplementOf>
<ObjectUnionOf>
<OWLClass URI="&f;Teenager"/>
<OWLClass URI="&f;Adult"/>
</ObjectUnionOf>
</ObjectComplementOf>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</EquivalentClasses>
RDF/XML Syntax:
<owl:Class rdf:about="#YoungChild">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Class>
<owl:complementOf>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Adult"/>
<rdf:Description rdf:about="#Teenager"/>
</owl:unionOf>
</owl:Class>
</owl:complementOf>
</owl:Class>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
There are many sources of incompleteness in OWL, some of which may be
surprising to some readers.
For example, although it may seem to be the case that Jeff
has exactly two children, this is not the case,
nor is it the case that Jeff has
at most one
child that belongs to Man.
Formally, the following is not a consequence of the above information.
Manchester Syntax:
(not in complete ontology)
Individual: f:Jeff Types: f:hasChild exactly 2
Individual: f:Jeff Types: f:hasChild max 1 f:Man
Functional-Style Syntax:
(not in complete ontology)
ClassAssertion(ObjectExactCardinality(2 f:hasChild) f:Jeff)
ClassAssertion(ObjectMaxCardinality(1 f:hasChild f:Man) f:Jeff)
OWL XML Syntax:
(not in complete ontology)
<ClassAssertion>
<ObjectExactCardinality cardinality="2">
<ObjectProperty URI="&f;hasChild"/>
</ObjectExactCardinality>
<Individual URI="&f;Jeff"/>
</ClassAssertion>
<ClassAssertion>
<ObjectMaxCardinality cardinality="1">
<ObjectProperty URI="&f;hasChild"/>
<???? URI="&f;Man"/>
</ObjectExactCardinality>
<Individual URI="&f;Jeff"/>
</ClassAssertion>
RDF/XML Syntax:
(not in complete ontology)
<rdf:Description rdf:about="#Jeff">
<rdf:type>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:cardinality>
</owl:Restriction>
</rdf:type>
</rdf:Description>
<rdf:Description rdf:about="#Jeff">
<rdf:type>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:maxCardinalityQ rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
<owl2:onClass rdf:resource="#Man" />
</owl:Restriction>
</rdf:type>
<rdf:Description>
These do not follow because there is nothing saying that Jack
and Ellen are the only children of
Jeff, and OWL does not make any assumptions
that something
that has not been said is not true.
It is possible to state that Jeff has no
other children,
and this can be done in a number of ways.
One way that is often used for this purpose is to directly say that
Jeff has exactly 2 children, which should
certainly be
adequate to infer that Jeff has exactly 2
children.
Manchester Syntax:
Individual: f:Jeff Types: f:hasChild exactly 2
Functional-Style Syntax:
ClassAssertion(ObjectExactCardinality(2 f:hasChild) f:Jeff)
OWL XML Syntax:
<ClassAssertion>
<ObjectExactCardinality cardinality="2">
<ObjectProperty URI="&f;hasChild"/>
</ObjectExactCardinality>
<Individual URI="&f;Jeff"/>
</ClassAssertion>
RDF/XML Syntax:
<rdf:Description rdf:about="#Jeff">
<rdf:type>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:cardinality>
</owl:Restriction>
</rdf:type>
</rdf:Description>
However, even this is not adequate to infer that Jeff
has only one
child that belongs to Man.
We have not stated that Jack and Ellen
are different people, and
there is nothing said so far that implies that they are not the same.
Again OWL does not make the assumption that
different names are
names for different individuals.
(This "unique names assumption" would be particularly dangerous in the
Semantic Web, where names may be coined by different organizations at
different times unknowingly referring to the same individual.)
If Jack and Ellen are
the same, then
there could be another child of John,
and this
child could belong to Man.
One might think that Jack and Ellen
are
different because they have different genders,
and people have exactly one gender.
Unfortunately, we have
not stated that male and female
are different.
We could just state that male and female
are
different, and have this imply that Jack and
Ellen are different, but let's add in a
reasonable
collection of information about which individuals are different.
Note that we don't really have to do this for John's
family as
their different ages imply that they are all different.
Similarly the wifes and their husbands were already known to be
different, because we already stated that wife
is irreflexive.
Manchester Syntax:
DifferentIndividuals: f:John f:Mary f:Bill f:Susan
DifferentIndividuals: f:Jeff f:Emily f:Jack f:Ellen f:Susan
Individual: f:male DifferentFrom: f: female
Functional-Style Syntax:
DifferentIndividuals(f:John f:Mary f:Bill f:Susan)
DifferentIndividuals(f:Jeff f:Emily f:Jack f:Ellen f:Susan)
DifferentIndividuals(f:male f:female)
OWL XML Syntax:
<DifferentIndividuals>
<Individual URI="&f;John"/>
<Individual URI="&f;Mary"/>
<Individual URI="&f;Bill"/>
<Individual URI="&f;Susan"/>
</DifferentIndividuals>
<DifferentIndividuals>
<Individual URI="&f;Jeff"/>
<Individual URI="&f;Emily"/>
<Individual URI="&f;Jack"/>
<Individual URI="&f;Ellen"/>
<Individual URI="&f;Susan"/>
</DifferentIndividuals>
<DifferentIndividuals>
<Individual URI="&f;female"/>
<Individual URI="&f;male"/>
</DifferentIndividuals>
RDF/XML Syntax:
<rdf:Description>
<rdf:type rdf:resource="&owl;AllDifferent"/>
<owl:distinctMembers rdf:parseType="Collection">
<rdf:Description rdf:about="#John"/>
<rdf:Description rdf:about="#Mary"/>
<rdf:Description rdf:about="#Bill"/>
<rdf:Description rdf:about="#Susan"/>
</owl:distinctMembers>
</rdf:Description>
<rdf:Description>
<rdf:type rdf:resource="&owl;AllDifferent"/>
<owl:distinctMembers rdf:parseType="Collection">
<rdf:Description rdf:about="#Jeff"/>
<rdf:Description rdf:about="#Emily"/>
<rdf:Description rdf:about="#Jack"/>
<rdf:Description rdf:about="#Ellen"/>
<rdf:Description rdf:about="#Susan"/>
</owl:distinctMembers>
</rdf:Description>
<rdf:Description>
<rdf:type rdf:resource="&owl;AllDifferent"/>
<owl:distinctMembers rdf:parseType="Collection">
<rdf:Description rdf:about="#male"/>
<rdf:Description rdf:about="#female"/>
</owl:distinctMembers>
</rdf:Description>
It is also possible to state that
two names refer to (denote) the same individual. For example, we can say that John
and Jack are the same individual.
Manchester Syntax:
Individual: f:John SameAs: f:Jack
Functional-Style Syntax:
SameIndividuals(f:John f:Jack)
OWL XML Syntax:
<SameIndividuals>
<Individual URI="&f;John"/>
<Individual URI="&f;Jack"/>
</SameIndividuals>
RDF/XML Syntax:
<rdf:Description rdf:about="#John">
<owl:sameAs rdf:resource="#Jack"/>
</rdf:Description>
From the above we can conclude that Man and Woman
are disjoint,
i.e., that they can never have individuals belonging to both of them,
because every Person has exactly one gender
and individuals that belong to Man have a
different gender (male)
from those that belong to Woman (female).
However, we can also use OWL to state that classes are disjoint.
This is most often done for classes that lack complete conditions for
belonging to the class. (These classes are called primitive
classes.)
So, for example, for ReligiousMarriage and
CivilMarriage, we have to directly state their
disjointness, and here we also say that Marriage is the
union of the two.
Manchester Syntax:
Class: f:CivilMarriage
Class: f:ReligiousMarriage DisjointWith: f:CivilMarriage
Class: f:Marriage EquivalentTo: f:ReligiousMarriage or f:CivilMarriage
Functional-Style Syntax:
DisjointClasses(f:ReligiousMarriage f:CivilMarriage)
EquivalentClasses(f:Marriage ObjectUnionOf(f:CivilMarriage f:ReligiousMarriage))
OWL XML Syntax:
<DisjointClasses>
<OWLClass URI="&f;CivilMarriage"/>
<OWLClass URI="&f;ReligiousMarriage"/>
</DisjointClasses>
<EquivalentClasses>
<ObjectUnionOf>
<OWLClass URI="&f;CivilMarriage"/>
<OWLClass URI="&f;ReligiousMarriage"/>
</ObjectUnionOf>
<OWLClass URI="&f;Marriage"/>
</EquivalentClasses>
RDF/XML Syntax:
<owl:Class rdf:about="#CivilMarriage"/>
<owl:Class rdf:about="#ReligiousMarriage">
<owl:disjointWith rdf:resource="#CivilMarriage"/>
</owl:Class>
<owl:Class rdf:about="#Marriage">
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#CivilMarriage"/>
<rdf:Description rdf:about="#ReligiousMarriage"/>
</owl:unionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
As it is common to have this situation of a class that is the union of a
number of disjoint classes,
OWL provides a shorthand method for saying this all at once.
Manchester Syntax:
(not in complete ontology)
Class f:Marriage DisjointUnionOf: f:ReligiousMarriage f:CivilMarriage
Functional-Style Syntax:
(not in complete ontology)
MISSING
OWL XML Syntax:
(not in complete ontology)
MISSING
RDF/XML Syntax:
(not in complete ontology)
MISSING
In OWL we can have transitive properties, i.e., properties like
hasAncestor, which also is a generalization of
the inverse of
the hasChild property, and is also irreflexive.
Manchester Syntax:
ObjectProperty: f:hasAncestor Characteristics: Transitive, Irreflexive
ObjectProperty: f:hasChild SubPropertyOf: inverseOf f:hasAncestor
Functional-Style Syntax:
TransitiveObjectProperty(f:hasAncestor)
IrreflexiveObjectProperty(f:hasAncestor)
SubObjectPropertyOf(f:hasChild InverseObjectProperty(f:hasAncestor))
OWL XML Syntax:
<TransitiveObjectProperty>
<ObjectProperty URI="&f;hasAncestor"/>
</TransitiveObjectProperty>
<IrreflexiveObjectProperty>
<ObjectProperty URI="&f;hasAncestor"/>
</IrreflexiveObjectProperty>
<SubObjectPropertyOf>
<ObjectProperty URI="&f;hasChild"/>
<ObjectProperty URI="&f;hasAncestor"/>
</SubObjectPropertyOf>
RDF/XML Syntax:
<owl:ObjectProperty rdf:about="#hasAncestor">
<rdf:type rdf:resource="&owl;TransitiveProperty"/>
<rdf:type rdf:resource="&owl2;IrreflexiveProperty"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasChild">
<rdfs:subPropertyOf rdf:resource="#hasAncestor"/>
</owl:ObjectProperty>
From the above information,
we can now conclude that Bill has Jeff
as an
ancestor, and that Bill
is not his own ancestor.
Manchester Syntax:
(not in complete ontology)
Individual: f:Bill
Facts: f:hasAncestor f:Jeff
not f:hasAncestor f:Bill
Functional-Style Syntax:
(not in complete ontology)
MISSING!
OWL XML Syntax:
(not in complete ontology)
MISSING!
RDF/XML Syntax:
(not in complete ontology)
MISSING
There are yet other kinds of information that we can provide
about
properties.
We can have a spouse property as a
symmetric
and
irreflexive generalization of wife.
Manchester Syntax:
ObjectProperty: f:hasSpouse Characteristics: Symmetric, Irreflexive
ObjectProperty: f:hasWife SubPropertyOf: f:hasSpouse
Functional-Style Syntax:
SymmetricObjectProperty(fhasSpouse)
IrreflexiveObjectProperty(f:hasSpouse)
SubObjectPropertyOf(f:hasWife f:hasSpouse)
OWL XML Syntax:
<SymmetricObjectProperty>
<ObjectProperty URI="&f;hasSpouse"/>
</SymmetricObjectProperty>
<IrreflexiveObjectProperty>
<ObjectProperty URI="&f;hasSpouse"/>
</IrreflexiveObjectProperty>
<SubObjectPropertyOf>
<ObjectProperty URI="&f;hasWife"/>
<ObjectProperty URI="&f;hasSpouse"/>
</SubObjectPropertyOf>
RDF/XML Syntax:
<owl:ObjectProperty rdf:about="#hasSpouse">
<rdf:type rdf:resource="&owl;SymmetricProperty"/>
<rdf:type rdf:resource="&owl2;IrreflexiveProperty"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasWife">
<rdfs:subPropertyOf rdf:resource="#hasSpouse"/>
</owl:ObjectProperty>
Although we haven't directly so stated, we can conclude that
spouse is also a generalization of husband,
because spouse is a symmetric generalization
of the inverse
of husband.
We could enrich our example to include a loves
property as a
generalization of the wife property. (Thus
turning our
simplied view of familial relationships into an idealistic one as
well.)
Manchester Syntax:
ObjectProperty: f:loves Domain: f:Person
ObjectProperty: f:hasWife SubPropertyOf: f:loves
Functional-Style Syntax:
ObjectPropertyDomain(f:loves f:Person)
SubObjectPropertyOf(f:hasWife f:loves)
OWL XML Syntax:
<ObjectPropertyDomain>
<ObjectProperty URI="&f;loves"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyDomain>
<SubObjectPropertyOf>
<ObjectProperty URI="&f;hasWife"/>
<ObjectProperty URI="&f;loves"/>
</SubObjectPropertyOf>
RDF/XML Syntax:
<owl:ObjectProperty rdf:about="#loves">
<rdfs:domain rdf:resource="#Person"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasWife">
<rdfs:subPropertyOf rdf:resource="#loves"/>
</owl:ObjectProperty>
Because loves is not symmetric, we
cannot conclude that loves is a
generalization of husband.
We have also not specified whether loves is
reflexive or
not, so some people may love themselves.
We could have Narcissist, those people who
love themselves,
and add some more information about loves
relationships>
Manchester Syntax:
Class: f:Narcissist EquivalentTo: f:Person that f:loves Self
Individual: f:Jeff Facts: f:loves f:Jeff
Individual: f:Bill Types: not f:Narcissist
Functional-Style Syntax:
EquivalentClasses(f:Narcissist
ObjectIntersectionOf(f:Person ObjectExistsSelf(f:loves)))
ObjectPropertyAssertion(f:loves f:Jeff f:Jeff)
ClassAssertion(ObjectComplementOf(f:Narcissist) f:Bill)
OWL XML Syntax:
<EquivalentClasses>
<OWLClass URI="&f;Narcissist"/>
<ObjectIntersectionOf>
<OWLClass URI="&f;Person"/>
<ObjectExistsSelf>
<ObjectProperty URI="&f;loves"/>
</ObjectExistsSelf>
</ObjectIntersectionOf>
</EquivalentClasses>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;loves"/>
<Individual URI="&f;Jeff"/>
<Individual URI="&f;Jeff"/>
</ObjectPropertyAssertion>
<ClassAssertion>
<ObjectComplementOf>
<OWLClass URI="&f;Narcissist"/>
</ObjectComplementOf>
<Individual URI="&f;Bill"/>
</ClassAssertion>
RDF/XML Syntax:
<owl:Class rdf:about="#Narcissist">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description>
<rdf:type rdf:resource="&owl2;SelfRestriction"/>
<owl:onProperty rdf:resource="#loves"/>
</rdf:Description>
<rdf:Description rdf:about="#Person"/>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<rdf:Description rdf:about="#Jeff">
<loves rdf:resource="#Jeff"/>
</rdf:Description>
<rdf:Description rdf:about="#Bill">
<rdf:type>
<owl:Class>
<owl:complementOf rdf:resource="#Narcissist"/>
</owl:Class>
</rdf:type>
</rdf:Description>
From this we can conclude that Jeff
belongs to
Narcissist and that, of course, Bill
does not.
In OWL we can also say some things about how properties combine, using
chains of object properties.
For example, we can say that sons and
daughters are the same for both spouses,
i.e., the sons and daughters of an individual
include those of their spouse.
Manchester Syntax:
SubObjectProperty: f:hasSpouse o f:hasSon f:hasSon
SubObjectProperty: f:hasSpouse o f:hasDaughter f:hasDaughter
Functional-Style Syntax:
SubObjectPropertyOf(SubObjectPropertyChain(f:hasSpouse f:hasSon) f:hasSon)
SubObjectPropertyOf(SubObjectPropertyChain(f:hasSpouse f:hasDaughter) f:hasDaughter)
OWL XML Syntax:
<SubObjectPropertyOf>
<SubObjectPropertyChain>
<ObjectProperty URI="&f;hasSpouse"/>
<ObjectProperty URI="&f;hasSon"/>
</SubObjectPropertyChain>
<ObjectProperty URI="&f;hasSon"/>
</SubObjectPropertyOf>
<SubObjectPropertyOf>
<SubObjectPropertyChain>
<ObjectProperty URI="&f;hasSpouse"/>
<ObjectProperty URI="&f;hasDaughter"/>
</SubObjectPropertyChain>
<ObjectProperty URI="&f;hasDaughter"/>
</SubObjectPropertyOf>
RDF/XML Syntax:
<rdf:Description>
<rdf:type rdf:resource="&rdf;List"/>
<rdf:first rdf:resource="#hasSpouse"/>
<rdf:rest rdf:parseType="Collection">
<rdf:Description rdf:about="#hasSon"/>
</rdf:rest>
<rdfs:subPropertyOf rdf:resource="#hasSon"/>
</rdf:Description>
<rdf:Description>
<rdf:type rdf:resource="&rdf;List"/>
<rdf:first rdf:resource="#hasSpouse"/>
<rdf:rest rdf:parseType="Collection">
<rdf:Description rdf:about="#hasDaughter"/>
</rdf:rest>
<rdfs:subPropertyOf rdf:resource="#hasDaughter"/>
</rdf:Description>
We can now conclude that Emily has the same
sons and daughters as Jeff:
Manchester Syntax:
(not in complete ontology)
f:Emily f:hasChild f:Jack
f:Emily f:hasChild f:Ellen
Functional-Style Syntax:
(not in complete ontology)
ObjectPropertyAssertion(f:hasChild f:Emily f:Jack)
ObjectPropertyAssertion(f:hasChild f:Emily f:Ellen)
OWL XML Syntax:
(not in complete ontology)
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasChild"/>
<Individual URI="&f;Emily"/>
<Individual URI="&f;Jack"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasChild"/>
<Individual URI="&f;Emily"/>
<Individual URI="&f;Ellen"/>
</ObjectPropertyAssertion>
RDF/XML Syntax:
(not in complete ontology)
<rdf:Description rdf:about="#Emily">
<hasChild rdf:resource="#Jack"/>
</rdf:Description>
<rdf:Description rdf:about="#Emily">
<hasChild rdf:resource="#Ellen"/>
</rdf:Description>
It is also possible to provide conflicting information to OWL.
For example, we could say that John has no
children who belong to Woman,
which conflicts with John having Susan
as a daughter.
An ontology with conflicting information allows all sorts of bad
consequences - many OWL tools will detect inconsistent ontologies and
provide some sort of repair mechanism.
Manchester Syntax:
(not in complete ontology)
Individual: f:John f:hasChild max 0 f:Woman
Functional-Style Syntax:
(not in complete ontology)
ClassAssertion(ObjectMaxCardinality(0 f:hasChild f:Woman) f:John)
OWL XML Syntax:
(not in complete ontology)
<ClassAssertion>
<ObjectMaxCardinality cardinality="0">
<ObjectProperty URI="&f;hasChild"/>
<OWLClass URI="&f;Woman"/>
</ObjectMaxCardinality>
<Individual URI="&f;John"/>
</ClassAssertion>
RDF/XML Syntax:
(not in complete ontology)
<rdf:Description rdf:about="#John">
<rdf:type>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl2:onClass rdf:resource="#Person"/>
<owl:maxCardinalityQ rdf:datatype="&xsd;nonNegativeInteger">0</owl:maxCardinalityQ>
</owl:Restriction>
</rdf:type>
</rdf:Description>
In the presence of conflicting information, determining
consequences in
OWL breaks down, so
it is generally not a good idea to have conflicting information.
There is no notion that OWL tools have to reject
conflicting
information.
However, most OWL tools will at least provide some mechanisms to
identify conflicting
information and allow users to resolve the conflict.
5 Ontology Management
The information we have stated so far falls into two categories. We
have stated general information about classes and properties related to
familial relationships and particular information about two linked
families. In OWL general information about a topic is almost
always gathered into an ontology that is then used by various
applications. We can also provide a name for OWL ontologies, which is
generally the place where the ontology document is placed in the web.
Particular information about a topic can also be placed in an ontology,
if it is used by different applications.
Manchester Syntax:
Ontology: <http://example.com/owl/families>
Functional-Style Syntax:
Ontology(<http://example.com/owl/families>
...
)
OWL XML Syntax:
<Ontology ...
URI="http://example.com/owl/families">
...
</Ontology>
RDF/XML Syntax:
<rdf:RDF ...>
<owl:Ontology rdf:about="http://example.com/owl/families"/>
...
</rdf:RDF>
We place OWL ontologies into OWL documents, which are then placed into local
filesystems or on the World Wide Web. Aside from containing an OWL
ontology, OWL documents also contain information about transforming the
short names used in OWL ontologies (e.g., f:Person) into IRIs,
by providing the expansion for prefixes.
The IRI is then the concatention of the prefix expansion and the
reference.
In our example ontology we have used two prefixes, f and
xsd.
The latter prefix has been used in compact names for
XML Schema datatypes, whose IRIs are fixed by the XML Schema
recommendation.
We thus must use the standard expansion for xsd, which is
http://www.w3.org/2001/XMLSchema#.
The expansion we pick for the other prefix will affect the names of
the classes, properties, and individuals in our ontology, as well as the
name of the ontology itself.
If we are going to put the ontology on the web, we should pick an
expansion that is in some part of the web that we control, both so that
we are not using someone else's names by accident.
(Here we use a made-up name that no one controls.)
The two XML-based syntaxes need namespaces for built-in names and also
use XML entities for namespaces.
Manchester Syntax:
Namespace: f = <http://example.com/owl/families#>
Namespace: g = <http://example.com/owl2/families#>
Namespace: dc = <http:...#>
Functional-Style Syntax:
Namespace(f=<http://example.com/owl/families#>)
Namespace(g=<http://example.com/owl2/families#>)
Namespace(xsd=<http://www.w3.org/2001/XMLSchema#>)
Namespace(dc=<...#>)
OWL XML Syntax:
<!DOCTYPE Ontology [
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY owl2 "http://www.w3.org/2006/12/owl2#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY f "http://example.com/owl/families#" >
<!ENTITY g "http://example.com/owl2/families#" >
<!ENTITY dc "http://http://purl.org/dc/elements/1.1/#" >
]>
<Ontology xml:base="http://www.w3.org/2006/12/owl2-xml#"
xmlns="http://www.w3.org/2006/12/owl2-xml#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:owl2="http://www.w3.org/2006/12/owl2#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:f="http://example.com/owl/families#"
xmlns:g="http://example.com/owl2/families#"
xmlns:dc="http:....#"
URI="http://example.com/owl/families">
...
</Ontology>
RDF/XML Syntax:
<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY owl2 "http://www.w3.org/2006/12/owl2#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY f "http://example.com/owl/families#" >
<!ENTITY g "http://example.com/owl2/families#" >
]>
<rdf:RDF xml:base="http://example.com/owl/families"
xmlns="http://example.com/owl/families#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:owl2="http://www.w3.org/2006/12/owl2#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:f="http://example.com/owl/families#"
xmlns:g="http://example.com/owl2/families#"
xmlns:dc="http:????#">
<owl:Ontology rdf:about="http://example.com/owl/families"/>
...
It is also common in OWL to reuse general information in other
ontologies.
Instead of requiring the copying of this information, OWL allows the
importation of the contents of entire ontologies in other ontologies,
using imports statements, as follows:
Manchester Syntax:
Import: http://example.com/owl2/families
Functional-Style Syntax:
Import(http://example.com/owl2/families)
OWL XML Syntax:
<Import URI="http://example.com/owl2/families.owl" />
RDF/XML Syntax:
<owl:Ontology rdf:about="http://example.com/owl/families">
<owl:imports rdf:resource="http://example.com/owl2/families.owl" />
</owl:Ontology>
As the Semantic Web and ontology construction is distributed it is
common for ontologies to use
different names for the same concept, property, or individual.
Several constructs in OWL can be used to state that different names
refer to the same
class,
property, or
individual, so, for example, we
could tie the names used in our ontology to the names used in an
imported ontology as follows:
Manchester Syntax:
SameIndividual: f:male g:masculine
SameIndividual: f:female g:feminine
EquivalentClasses: f:Adult g:Grownup
EquivalentObjectProperties: f:hasChild g:child
EquivalentDataProperties: f:hasAge g:age
Functional-Style Syntax:
SameIndividuals(f:male g:masculine)
SameIndividuals(f:female g:feminine)
EquivalentClasses(f:Adult g:Grownup)
EquivalentObjectProperties(f:hasChild g:child)
EquivalentDataProperties(f:hasAge g:age)
OWL XML Syntax:
<SameIndividuals>
<Individual URI="&f;male"/>
<Individual URI="&g;masculine"/>
</SameIndividuals>
<SameIndividuals>
<Individual URI="&f;female"/>
<Individual URI="&g;feminine"/>
</SameIndividuals>
<EquivalentClasses>
<OWLClass URI="&f;Adult"/>
<OWLClass URI="&g;Grownup"/>
</EquivalentClasses>
<EquivalentObjectProperties>
<ObjectProperty URI="&f;hasChild"/>
<ObjectProperty URI="&g;child"/>
</EquivalentObjectProperties>
<EquivalentDataProperties>
<DataProperty URI="&f;hasAge"/>
<DataProperty URI="&g;age"/>
</EquivalentDataProperties>
RDF/XML Syntax:
<rdf:Description rdf:about="#male">
<owl:sameAs rdf:resource="&g;masculine"/>
</rdf:Description>
<rdf:Description rdf:about="#female">
<owl:sameAs rdf:resource="&g;feminine"/>
</rdf:Description>
<owl:Class rdf:about="#Adult">
<owl:equivalentClass rdf:resource="&g;Grownup"/>
</owl:Class>
<owl:DatatypeProperty rdf:about="#hasAge">
<owl:equivalentProperty rdf:resource="&g;age"/>
</owl:DatatypeProperty>
<owl:Class rdf:about="#Adult">
<owl:equivalentClass rdf:resource="&g;Grownup"/>
</owl:Class>
In many cases we want to associate information with parts of our OWL
ontology.
OWL provides annotations for this purpose. An OWL annotation simply
associates property-value pairs with parts of an ontology, or the entire
ontology itself. This information is not really part of the logical
meaning of an ontology.
So, for example, we could add author information to one of the facts in
our ontology and to one of the classes.
Manchester Syntax:
Individual f:John
Facts: Annotations: dc:author Individual(f:peter)
dc:creationDate "2008-01-10"^^xsd:date
rdfs:comment "A simple fact about John"
f:hasWife f:Mary
Class: f:Person
Annotations: dc:author Individual(f:peter)
dc:creationDate "2008-01-10"^^xsd:date
rdfs:label "Person":en
rdfs:label "Persona":it
rdfs:comment "The class of people"
Functional-Style Syntax:
MISSING.
OWL XML Syntax:
MISSING.
RDF/XML Syntax:
MISSING.
To help with managing ontologies, OWL has the notion of declarations.
The basic idea is that each class, property, or individual is supposed
to be declared in an ontology, and then it can be used in that ontology
and ontologies that import that ontology.
In the Manchester syntax, declarations are implicit. Constructs that
provide information about a class, property, or individual implicitly
declare that class, property, or individual if needed. The other
syntaxes have explicit declarations.
Functional-Style Syntax:
Declaration(Individual(f:John))
Declaration(OWLClass(f:Person))
Declaration(ObjectProperty(f:hasWife))
Declaration(DataProperty(f:hasAge))
OWL XML Syntax:
<Declaration>
<Individual URI="&f;John"/>
</Declaration>
<Declaration>
<OWLClass URI="&f;Person"/>
</Declaration>
<Declaration>
<ObjectProperty URI="&f;hasWife"/>
</Declaration>
<Declaration>
<DataProperty URI="&f;hasAge"/>
</Declaration>
6 Remaining Constructs
There are a few other kinds of things that can be said in OWL, but that
do not fit into this example, including the following:
-
Some other datatype facets from XML Schema datatypes, including
length, minLength, maxLength,
totalDigits, and fractionDigits.
-
Data properties in, all, min, max, and value constructs.
- Object properties in some constructs.
-
Data properties as subproperties of
or disjoint from other data properties.
-
Some 2- or N-way versions of disjointness, equivalence, and difference.
Details on these constructs can be found in the OWL 2 Structural
Specification and Functional Syntax document
[OWL 2 Specification].
7 Using OWL
Editor's Note: Give a worked example. I was thinking some policy both background knowledge and underlying the formalisms. Or perhaps a Galenesque example.
8 OWL Tools
Editor's Note: Different sorts of OWL tools. Maybe some discussion of using XML tooling or RDF tooling. Reasoner services. Whatev
9 OWL Profiles
As we have seen, reasoning in OWL can be complicated.
The full story of reasoning in OWL is beyond the scope of this primer,
but there are some implications of reasoning that deserve treatement
here.
If we did not place further restrictions on what we can say in OWL,
e.g., classes, properties, and even bits of syntax can be used as
individuals as in the Semantic Web language RDF, reasoning becomes
formally undecidable.
Nevertheless, there is some utility in being able to do this, so there
is a mode of using OWL, called OWL Full that allows all this.
The price, of course, is that reasoning tools are hard to write and are
necessarily incomplete.
There are a set of reasonable restrictions, however, that make reasoning
in OWL decidable, and for which, moreover, there exist effective
reasoning tools.
This mode of using OWL is called OWL DL.
To allow effective reasoning tools, OWL DL limits the kinds of things
that can be said about certain properties.
Properties are said to be composite if they or their inverses
are transitive or have a property chain as a subproperty.
Properties that are composite or have a composite property as a
specialization of themselves or their inverses are not allowed to be
functional, inverse functional, irreflexive, asymmetric, or disjoint
with any other property;
nor are they allowed to participated in cardinality or self conditions.
As well, there is a complex condition on how object property chains are
constructed to prevent loops related to object property chains.
OWL DL tools should recognize whether these conditions are violated in
an ontology.
OWL DL allows the same name to be used for any or all of a class, a
property, and an individual.
However, the different aspects of this name are not tied to one another,
so that if, for example, we said, perhaps by accident that
Person and Man were the same individual, they
would not also be equivalent classes.
Manchester Syntax:
SameIndividual: f:Person f:Man
Functional-Style Syntax:
SameIndividuals(f:Person f:Man)
The above would not allow the conclusion of:
Manchester Syntax:
EquivalentClasses: f:Person f:Man
Functional-Style Syntax:
EquivalentClasses(f:Person f:Man)
OWL Full is formally stronger than OWL DL in this area (and in a few
other areas) so in OWL Full this conclusion could be drawn.
Reasoning in OWL DL is still difficult, and can take a very long time in
the worst case.
Certain profiles of OWL DL have been identified that guarantee better
worst-case performance for reasoning.
The document on OWL profiles
[OWL 2 Profiles]
identifies and chacterizes several of
these profiles that have been shown to be useful in practice.
Staying within one of these profiles limits what we can say, but this
tradeoff can often be desirable when writing large ontologies,
particularly for important applications.
10 What to Do Next
This short primer can only scratch the surface of OWL.
There are many longer and more involved tutorials on OWL and how to use
OWL tools that can be found by searching on the Web.
Reading one of these primers and using a tool to build an OWL ontology
is probably the best way to learn more about OWL.
This short primer is also not a normative definition of OWL.
The normative definition of the OWL syntax as well as informative
definitions of each OWL construct can be found in the
OWL 2 Structural Specification and Functional Syntax document
[OWL 2 Specification].
For those interested in more formal documents,
the formal meaning of OWL 2 can be found in the OWL 2 Semantics document
[OWL 2 Semantics],
and the mapping between OWL syntax and RDF triples can be found in
the OWL 2 Mapping to RDF Graphs document
[OWL 2 RDF Mapping].
11 Appendix: OWL Features
Here is a list of the various OWL features. The
features presented in this primer are linked to from this list.
12 Appendix: The Complete Example
Here we include the complete example OWL ontology.
The ontology here is ordered in a commonly-used ordering, with ontology
information first, followed by information aabout properties, then
classes, then individuals.
Extra annotations have been added (not YET) to help explain the ontology.
Manchester Syntax:
Namespace: = <http://example.com/owl/families#>
Namespace: f = <http://example.com/owl/families#>
Namespace: g = <http://example.com/owl2/families.owl#>
Namespace: dc = <http://purl.org/dc/elements/1.1/>
Ontology: <http://example.com/owl/families>
Import: <http://example.com/owl2/families.owl>
ObjectProperty: hasWife
Characteristics: Functional, InverseFunctional, Irreflexive, Asymmetric
Domain: Person, Man
Range: Person, Woman
SubPropertyOf: hasSpouse, loves
ObjectProperty: hasHusband Inverses: hasWife
ObjectProperty: hasSon
Domain: Person, Parent
Range: Person, Person that hasGender value male
SubPropertyOf: hasChild
DisjointObjectProperties: hasSon hasDaughter
SubObjectProperty: f:hasSpouse o f:hasSon f:hasSon
ObjectProperty: hasDaughter
Domain: Person, Parent
Range: Person, Person that hasGender value female
SubPropertyOf: hasChild
SubObjectProperty: f:hasSpouse o f:hasDaughter f:hasDaughter
ObjectProperty: hasGender
ObjectProperty: hasChild
Domain: Person Range: Person
SubPropertyOf: inverseOf hasAncestor
ObjectProperty: hasAncestor Characteristics: Transitive, Irreflexive
ObjectProperty: hasSpouse Characteristics: Symmetric, Irreflexive
ObjectProperty: loves Domain: Person
DataProperty: hasAge Characteristics: Functional
Domain: Person Range: integer
Class: Person
SubClassOf: hasAge exactly 1
and hasGender exactly 1
and hasGender only {female , male}
Class: Man SubClassOf: Person
EquivalentTo: Person that hasGender value male
Class: Woman SubClassOf: Person
EquivalentTo: Person that hasGender value female
Class: Parent SubClassOf: Person
EquivalentTo: Person that hasChild min 1
Class: Teenager
EquivalentTo: Person that hasAge some integer[>= 13 , < 20]
Class: Adult
EquivalentTo: Person that hasAge some integer[>= 21]
Class: Child
EquivalentTo: Person and not (hasAge some integer[>= 21])
Class: YoungChild
EquivalentTo: Person and not (Teenager or Adult)
Class: Marriage
EquivalentTo: CivilMarriage or ReligiousMarriage
Class: ReligiousMarriage DisjointWith: CivilMarriage
Class: CivilMarriage
Class: Narcissist EquivalentTo: Person that loves Self
Individual: male DifferentFrom: female
Individual: female
Individual: John
Types: Person
Facts: hasWife Mary,
hasSon Bill,
hasDaughter Susan,
hasAge 33,
hasGender male
SameAs: Jack
Individual: Mary
Facts: hasSon Bill,
hasDaughter Susan,
hasAge 31,
hasGender female
Individual: Bill
Types: not (Narcissist)
Facts: hasAge 13,
hasGender male
Individual: Susan
Facts: hasAge 8,
hasGender female
Individual: Jeff
Types: hasChild exactly 2
Facts: hasWife Emily,
hasChild Ellen,
hasChild Jack,
hasAge 77,
loves Jeff
Individual: Emily
Types: hasAge some {39 , 49}
Individual: Ellen
Types: hasAge some integer[>= 15 , <= 21]
Individual: Jack
Facts: not hasAge "53"^^integer
DifferentIndividuals: f:John f:Mary f:Bill f:Susan
DifferentIndividuals: f:Jeff f:Emily f:Jack f:Ellen f:Susan
SameIndividual: f:male g:masculine
SameIndividual: f:female g:feminine
EquivalentClasses: f:Adult g:Grownup
EquivalentObjectProperties: f:hasChild g:child
EquivalentDataProperties: f:hasAge g:age
Functional-Style Syntax:
Namespace(=<http://example.com/owl/families#>)
Namespace(f=<http://example.com/owl/families#>)
Namespace(g=<http://example.com/owl2/families#>)
Namespace(dc=<http://purl.org/dc/elements/1.1/#>)
Namespace(xsd=<http://www.w3.org/2001/XMLSchema#>)
Ontology(<http://example.com/owl/families>
Import(<http://example.com/owl2/families.owl>)
// Object property: http://example.com/owl/families#hasWife
Declaration(ObjectProperty(hasWife))
ObjectPropertyDomain(hasWife Person)
ObjectPropertyDomain(hasWife Man)
ObjectPropertyRange(hasWife Person)
ObjectPropertyRange(hasWife Woman)
FunctionalObjectProperty(hasWife)
InverseFunctionalObjectProperty(hasWife)
IrreflexiveObjectProperty(hasWife)
AsymmetricObjectProperty(hasWife)
SubObjectPropertyOf(hasWife hasSpouse)
SubObjectPropertyOf(hasWife loves)
// Object property: http://example.com/owl/families#hasHusband
Declaration(ObjectProperty(hasHusband))
InverseObjectProperties(hasHusband hasWife)
// Object property: http://example.com/owl/families#hasSon
Declaration(ObjectProperty(hasSon))
ObjectPropertyDomain(hasSon Person)
ObjectPropertyDomain(hasSon Parent)
ObjectPropertyRange(hasSon Person)
ObjectPropertyRange(hasSon
ObjectIntersectionOf(Person ObjectHasValue(hasGender male)))
SubObjectPropertyOf(hasSon hasChild)
DisjointObjectProperties(hasSon hasDaughter)
SubObjectPropertyOf(SubObjectPropertyChain(hasSpouse hasSon) hasSon)
// Object property: http://example.com/owl/families#hasDaughter
Declaration(ObjectProperty(hasDaughter))
ObjectPropertyDomain(hasDaughter Person)
ObjectPropertyDomain(hasDaughter Parent)
ObjectPropertyRange(hasDaughter Person)
ObjectPropertyRange(hasDaughter
ObjectIntersectionOf(Person ObjectHasValue(hasGender female)))
SubObjectPropertyOf(hasDaughter hasChild)
SubObjectPropertyOf(SubObjectPropertyChain(hasSpouse hasDaughter) hasDaughter)
// Object property: http://example.com/owl/families#hasGender
Declaration(ObjectProperty(hasGender))
// Object property: http://example.com/owl/families#hasChild
Declaration(ObjectProperty(hasChild))
ObjectPropertyDomain(hasChild Person)
ObjectPropertyRange(hasChild Person)
SubObjectPropertyOf(hasChild InverseObjectProperty(hasAncestor))
// Object property: http://example.com/owl/families#hasAncestor
Declaration(ObjectProperty(hasAncestor))
TransitiveObjectProperty(hasAncestor)
IrreflexiveObjectProperty(hasAncestor)
// Object property: http://example.com/owl/families#hasSpouse
Declaration(ObjectProperty(hasSpouse))
SymmetricObjectProperty(hasSpouse)
IrreflexiveObjectProperty(hasSpouse)
// Object property: http://example.com/owl/families#loves
ObjectPropertyDomain(loves Person)
Declaration(ObjectProperty(loves))
// Data property: http://example.com/owl/families#hasAge
Declaration(DataProperty(hasAge))
DataPropertyDomain(hasAge Person)
DataPropertyRange(hasAge xsd:integer)
FunctionalDataProperty(hasAge)
// Class: http://example.com/owl/families#Person
Declaration(OWLClass(Person))
SubClassOf(Person
ObjectIntersectionOf(DataExactCardinality(1 hasAge)
ObjectExactCardinality(1 hasGender)
ObjectAllValuesFrom(hasGender ObjectOneOf(female male))))
// Class: http://example.com/owl/families#Man
Declaration(OWLClass(Man))
SubClassOf(Man Person)
EquivalentClasses(Man
ObjectIntersectionOf(Person ObjectHasValue(hasGender male)))
// Class: http://example.com/owl/families#Woman
Declaration(OWLClass(Woman))
SubClassOf(Woman Person)
EquivalentClasses(Woman
ObjectIntersectionOf(Person ObjectHasValue(hasGender female)))
// Class: http://example.com/owl/families#Parent
Declaration(OWLClass(Parent))
SubClassOf(Parent Person)
EquivalentClasses(Parent
ObjectIntersectionOf(Person ObjectMinCardinality(1 hasChild Person)))
// Class: http://example.com/owl/families#Teenager
Declaration(OWLClass(Teenager))
EquivalentClasses(Teenager
ObjectIntersectionOf(Person
DataSomeValuesFrom(hasAge
DatatypeRestriction(xsd:integer minInclusive "13"^^xsd:int
maxExclusive "20"^^xsd:int))))
// Class: http://example.com/owl/families#Adult
Declaration(OWLClass(Adult))
EquivalentClasses(Adult
ObjectIntersectionOf(Person
DataSomeValuesFrom(hasAge
DatatypeRestriction(xsd:integer minInclusive "21"^^xsd:int))))
// Class: http://example.com/owl/families#Child
Declaration(OWLClass(Child))
EquivalentClasses(Child
ObjectIntersectionOf(Person
ObjectComplementOf(
DataSomeValuesFrom(hasAge
DatatypeRestriction(xsd:integer minInclusive "21"^^xsd:int)))))
// Class: http://example.com/owl/families#YoungChild
Declaration(OWLClass(YoungChild))
EquivalentClasses(YoungChild
ObjectIntersectionOf(Person ObjectComplementOf(ObjectUnionOf(Teenager Adult))))
// Class: http://example.com/owl/families#Marriage
Declaration(OWLClass(Marriage))
EquivalentClasses(Marriage ObjectUnionOf(CivilMarriage ReligiousMarriage))
// Class: http://example.com/owl/families#ReligiousMarriage
Declaration(OWLClass(ReligiousMarriage))
DisjointClasses(CivilMarriage ReligiousMarriage)
// Class: http://example.com/owl/families#CivilMarriage
Declaration(OWLClass(CivilMarriage))
// Class: http://example.com/owl/families#Narcissist
Declaration(OWLClass(Narcissist))
EquivalentClasses(Narcissist ObjectIntersectionOf(Person ObjectExistsSelf(loves)))
// Individual: http://example.com/owl/families#male
Declaration(Individual(male))
DifferentIndividuals(male female)
// Individual: http://example.com/owl/families#female
Declaration(Individual(female))
// Individual: http://example.com/owl/families#John
Declaration(Individual(John))
ClassAssertion(Person John)
ObjectPropertyAssertion(hasWife John Mary)
ObjectPropertyAssertion(hasSon John Bill)
ObjectPropertyAssertion(hasDaughter John Susan)
DataPropertyAssertion(hasAge John "33"^^xsd:integer)
ObjectPropertyAssertion(hasGender John male)
SameIndividuals(John Jack)
DifferentIndividuals(John Mary Bill Susan)
// Individual: http://example.com/owl/families#Mary
Declaration(Individual(Mary))
ObjectPropertyAssertion(hasSon Mary Bill)
ObjectPropertyAssertion(hasDaughter Mary Susan)
DataPropertyAssertion(hasAge Mary "31"^^xsd:integer)
ObjectPropertyAssertion(hasGender Mary female)
// Individual: http://example.com/owl/families#Bill
Declaration(Individual(Bill))
ClassAssertion(ObjectComplementOf(Narcissist) Bill)
DataPropertyAssertion(hasAge Bill "13"^^xsd:integer)
ObjectPropertyAssertion(hasGender Bill male)
// Individual: http://example.com/owl/families#Susan
Declaration(Individual(Susan))
DataPropertyAssertion(hasAge Susan "8"^^xsd:integer)
ObjectPropertyAssertion(hasGender Susan female)
// Individual: http://example.com/owl/families#Jeff
Declaration(Individual(Jeff))
ClassAssertion(ObjectExactCardinality(2 hasChild) Jeff)
ObjectPropertyAssertion(hasWife Jeff Emily)
ObjectPropertyAssertion(hasChild Jeff Ellen)
ObjectPropertyAssertion(hasChild Jeff Jack)
DataPropertyAssertion(hasAge Jeff "77"^^xsd:integer)
ObjectPropertyAssertion(loves Jeff Jeff)
DifferentIndividuals(Jeff Emily Jack Ellen Susan)
// Individual: http://example.com/owl/families#Emily
Declaration(Individual(Emily))
ClassAssertion(DataSomeValuesFrom(hasAge DataOneOf("39"^^xsd:integer
"49"^^xsd:integer)) Emily)
// Individual: http://example.com/owl/families#Ellen
Declaration(Individual(Ellen))
ClassAssertion(
DataSomeValuesFrom(hasAge
DatatypeRestriction(xsd:integer minInclusive "15"^^xsd:int
maxInclusive "21"^^xsd:int)) Ellen)
// Individual: http://example.com/owl/families#Jack
Declaration(Individual(Jack))
NegativeDataPropertyAssertion(hasAge Jack "53"^^xsd:integer)
SameIndividuals(male g:masculine)
SameIndividuals(female g:feminine)
EquivalentClasses(Adult g:Grownup)
EquivalentObjectProperties(hasChild g:child)
EquivalentDataProperties(hasAge g:age)
)
OWL XML Syntax:
<?xml version="1.0"?>
<!DOCTYPE Ontology [
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY owl11 "http://www.w3.org/2006/12/owl11#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY f "http://example.com/owl/families#" >
<!ENTITY g "http://example.com/owl2/families#" >
<!ENTITY dc "http://purl.org/dc/elements/1.1/#" >
]>
<Ontology xml:base="http://www.w3.org/2006/12/owl11-xml#"
xmlns="http://www.w3.org/2006/12/owl11-xml#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:owl11="http://www.w3.org/2006/12/owl11#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:f="http://example.com/owl/families#"
xmlns:g="http://example.com/owl2/families#"
xmlns:dc="http://purl.org/dc/elements/1.1/#"
URI="http://example.com/owl/families">
<Import URI="http://example.com/owl2/families.owl" />
<Declaration>
<ObjectProperty URI="&f;hasAncestor"/>
</Declaration>
<IrreflexiveObjectProperty>
<ObjectProperty URI="&f;hasAncestor"/>
</IrreflexiveObjectProperty>
<TransitiveObjectProperty>
<ObjectProperty URI="&f;hasAncestor"/>
</TransitiveObjectProperty>
<Declaration>
<ObjectProperty URI="&f;hasChild"/>
</Declaration>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasChild"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasChild"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyRange>
<SubObjectPropertyOf>
<ObjectProperty URI="&f;hasChild"/>
<ObjectProperty URI="&f;hasAncestor"/>
</SubObjectPropertyOf>
<EquivalentObjectProperties>
<ObjectProperty URI="&f;hasChild"/>
<ObjectProperty URI="&g;child"/>
</EquivalentObjectProperties>
<Declaration>
<ObjectProperty URI="&f;hasDaughter"/>
</Declaration>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasDaughter"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasDaughter"/>
<OWLClass URI="&f;Parent"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasDaughter"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyRange>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasDaughter"/>
<ObjectIntersectionOf>
<OWLClass URI="&f;Person"/>
<ObjectHasValue>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;female"/>
</ObjectHasValue>
</ObjectIntersectionOf>
</ObjectPropertyRange>
<SubObjectPropertyOf>
<ObjectProperty URI="&f;hasDaughter"/>
<ObjectProperty URI="&f;hasChild"/>
</SubObjectPropertyOf>
<SubObjectPropertyOf>
<SubObjectPropertyChain>
<ObjectProperty URI="&f;hasSpouse"/>
<ObjectProperty URI="&f;hasDaughter"/>
</SubObjectPropertyChain>
<ObjectProperty URI="&f;hasDaughter"/>
</SubObjectPropertyOf>
<Declaration>
<ObjectProperty URI="&f;hasGender"/>
</Declaration>
<Declaration>
<ObjectProperty URI="&f;hasHusband"/>
</Declaration>
<InverseObjectProperties>
<ObjectProperty URI="&f;hasHusband"/>
<ObjectProperty URI="&f;hasWife"/>
</InverseObjectProperties>
<Declaration>
<ObjectProperty URI="&f;hasSon"/>
</Declaration>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasSon"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasSon"/>
<OWLClass URI="&f;Parent"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasSon"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyRange>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasSon"/>
<ObjectIntersectionOf>
<ObjectHasValue>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;male"/>
</ObjectHasValue>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</ObjectPropertyRange>
<SubObjectPropertyOf>
<ObjectProperty URI="&f;hasSon"/>
<ObjectProperty URI="&f;hasChild"/>
</SubObjectPropertyOf>
<DisjointObjectProperties>
<ObjectProperty URI="&f;hasSon"/>
<ObjectProperty URI="&f;hasDaughter"/>
</DisjointObjectProperties>
<SubObjectPropertyOf>
<SubObjectPropertyChain>
<ObjectProperty URI="&f;hasSpouse"/>
<ObjectProperty URI="&f;hasSon"/>
</SubObjectPropertyChain>
<ObjectProperty URI="&f;hasSon"/>
</SubObjectPropertyOf>
<Declaration>
<ObjectProperty URI="&f;hasSpouse"/>
</Declaration>
<IrreflexiveObjectProperty>
<ObjectProperty URI="&f;hasSpouse"/>
</IrreflexiveObjectProperty>
<SymmetricObjectProperty>
<ObjectProperty URI="&f;hasSpouse"/>
</SymmetricObjectProperty>
<Declaration>
<ObjectProperty URI="&f;hasWife"/>
</Declaration>
<AsymmetricObjectProperty>
<ObjectProperty URI="&f;hasWife"/>
</AsymmetricObjectProperty>
<FunctionalObjectProperty>
<ObjectProperty URI="&f;hasWife"/>
</FunctionalObjectProperty>
<InverseFunctionalObjectProperty>
<ObjectProperty URI="&f;hasWife"/>
</InverseFunctionalObjectProperty>
<IrreflexiveObjectProperty>
<ObjectProperty URI="&f;hasWife"/>
</IrreflexiveObjectProperty>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasWife"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;hasWife"/>
<OWLClass URI="&f;Man"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasWife"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyRange>
<ObjectPropertyRange>
<ObjectProperty URI="&f;hasWife"/>
<OWLClass URI="&f;Woman"/>
</ObjectPropertyRange>
<SubObjectPropertyOf>
<ObjectProperty URI="&f;hasWife"/>
<ObjectProperty URI="&f;loves"/>
</SubObjectPropertyOf>
<SubObjectPropertyOf>
<ObjectProperty URI="&f;hasWife"/>
<ObjectProperty URI="&f;hasSpouse"/>
</SubObjectPropertyOf>
<Declaration>
<ObjectProperty URI="&f;loves"/>
</Declaration>
<ObjectPropertyDomain>
<ObjectProperty URI="&f;loves"/>
<OWLClass URI="&f;Person"/>
</ObjectPropertyDomain>
<Declaration>
<DataProperty URI="&f;hasAge"/>
</Declaration>
<FunctionalDataProperty>
<DataProperty URI="&f;hasAge"/>
</FunctionalDataProperty>
<DataPropertyDomain>
<DataProperty URI="&f;hasAge"/>
<OWLClass URI="&f;Person"/>
</DataPropertyDomain>
<DataPropertyRange>
<DataProperty URI="&f;hasAge"/>
<Datatype URI="&xsd;integer"/>
</DataPropertyRange>
<EquivalentDataProperties>
<DataProperty URI="&f;hasAge"/>
<DataProperty URI="&g;age"/>
</EquivalentDataProperties>
<Declaration>
<OWLClass URI="&f;Adult"/>
</Declaration>
<EquivalentClasses>
<OWLClass URI="&f;Adult"/>
<ObjectIntersectionOf>
<DataSomeValuesFrom>
<DataProperty URI="&f;hasAge"/>
<DatatypeRestriction>
<Datatype URI="&xsd;integer"/>
<DatatypeFacetRestriction facet="&owl11;minInclusive">
<Constant datatypeURI="&xsd;int">21</Constant>
</DatatypeFacetRestriction>
</DatatypeRestriction>
</DataSomeValuesFrom>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</EquivalentClasses>
<EquivalentClasses>
<OWLClass URI="&f;Adult"/>
<OWLClass URI="&g;Grownup"/>
</EquivalentClasses>
<Declaration>
<OWLClass URI="&f;Child"/>
</Declaration>
<EquivalentClasses>
<OWLClass URI="&f;Child"/>
<ObjectIntersectionOf>
<ObjectComplementOf>
<DataSomeValuesFrom>
<DataProperty URI="&f;hasAge"/>
<DatatypeRestriction>
<Datatype URI="&xsd;integer"/>
<DatatypeFacetRestriction facet="&owl11;minInclusive">
<Constant datatypeURI="&xsd;int">21</Constant>
</DatatypeFacetRestriction>
</DatatypeRestriction>
</DataSomeValuesFrom>
</ObjectComplementOf>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</EquivalentClasses>
<Declaration>
<OWLClass URI="&f;CivilMarriage"/>
</Declaration>
<DisjointClasses>
<OWLClass URI="&f;CivilMarriage"/>
<OWLClass URI="&f;ReligiousMarriage"/>
</DisjointClasses>
<Declaration>
<OWLClass URI="&f;Man"/>
</Declaration>
<EquivalentClasses>
<OWLClass URI="&f;Man"/>
<ObjectIntersectionOf>
<ObjectHasValue>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;male"/>
</ObjectHasValue>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</EquivalentClasses>
<Declaration>
<OWLClass URI="&f;Marriage"/>
</Declaration>
<EquivalentClasses>
<OWLClass URI="&f;Marriage"/>
<ObjectUnionOf>
<OWLClass URI="&f;CivilMarriage"/>
<OWLClass URI="&f;ReligiousMarriage"/>
</ObjectUnionOf>
</EquivalentClasses>
<Declaration>
<OWLClass URI="&f;Narcissist"/>
</Declaration>
<EquivalentClasses>
<OWLClass URI="&f;Narcissist"/>
<ObjectIntersectionOf>
<OWLClass URI="&f;Person"/>
<ObjectExistsSelf>
<ObjectProperty URI="&f;loves"/>
</ObjectExistsSelf>
</ObjectIntersectionOf>
</EquivalentClasses>
<Declaration>
<OWLClass URI="&f;Parent"/>
</Declaration>
<EquivalentClasses>
<OWLClass URI="&f;Parent"/>
<ObjectIntersectionOf>
<ObjectMinCardinality cardinality="1">
<ObjectProperty URI="&f;hasChild"/>
<OWLClass URI="&f;Person"/>
</ObjectMinCardinality>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</EquivalentClasses>
<Declaration>
<OWLClass URI="&f;Person"/>
</Declaration>
<SubClassOf>
<OWLClass URI="&f;Person"/>
<ObjectIntersectionOf>
<DataExactCardinality cardinality="1">
<DataProperty URI="&f;hasAge"/>
</DataExactCardinality>
<ObjectExactCardinality cardinality="1">
<ObjectProperty URI="&f;hasGender"/>
</ObjectExactCardinality>
<ObjectAllValuesFrom>
<ObjectProperty URI="&f;hasGender"/>
<ObjectOneOf>
<Individual URI="&f;female"/>
<Individual URI="&f;male"/>
</ObjectOneOf>
</ObjectAllValuesFrom>
</ObjectIntersectionOf>
</SubClassOf>
<Declaration>
<OWLClass URI="&f;ReligiousMarriage"/>
</Declaration>
<Declaration>
<OWLClass URI="&f;Teenager"/>
</Declaration>
<EquivalentClasses>
<OWLClass URI="&f;Teenager"/>
<ObjectIntersectionOf>
<DataSomeValuesFrom>
<DataProperty URI="&f;hasAge"/>
<DatatypeRestriction>
<Datatype URI="&xsd;integer"/>
<DatatypeFacetRestriction facet="&owl11;minInclusive">
<Constant datatypeURI="&xsd;int">13</Constant>
</DatatypeFacetRestriction>
<DatatypeFacetRestriction facet="&owl11;maxExclusive">
<Constant datatypeURI="&xsd;int">20</Constant>
</DatatypeFacetRestriction>
</DatatypeRestriction>
</DataSomeValuesFrom>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</EquivalentClasses>
<Declaration>
<OWLClass URI="&f;Woman"/>
</Declaration>
<EquivalentClasses>
<OWLClass URI="&f;Woman"/>
<ObjectIntersectionOf>
<OWLClass URI="&f;Person"/>
<ObjectHasValue>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;female"/>
</ObjectHasValue>
</ObjectIntersectionOf>
</EquivalentClasses>
<Declaration>
<OWLClass URI="&f;YoungChild"/>
</Declaration>
<EquivalentClasses>
<OWLClass URI="&f;YoungChild"/>
<ObjectIntersectionOf>
<ObjectComplementOf>
<ObjectUnionOf>
<OWLClass URI="&f;Teenager"/>
<OWLClass URI="&f;Adult"/>
</ObjectUnionOf>
</ObjectComplementOf>
<OWLClass URI="&f;Person"/>
</ObjectIntersectionOf>
</EquivalentClasses>
<Declaration>
<Individual URI="&f;Bill"/>
</Declaration>
<ClassAssertion>
<ObjectComplementOf>
<OWLClass URI="&f;Narcissist"/>
</ObjectComplementOf>
<Individual URI="&f;Bill"/>
</ClassAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;Bill"/>
<Individual URI="&f;male"/>
</ObjectPropertyAssertion>
<DataPropertyAssertion>
<DataProperty URI="&f;hasAge"/>
<Individual URI="&f;Bill"/>
<Constant datatypeURI="&xsd;integer">13</Constant>
</DataPropertyAssertion>
<Declaration>
<Individual URI="&f;Ellen"/>
</Declaration>
<ClassAssertion>
<DataSomeValuesFrom>
<DataProperty URI="&f;hasAge"/>
<DatatypeRestriction>
<Datatype URI="&xsd;integer"/>
<DatatypeFacetRestriction facet="&owl11;minInclusive">
<Constant datatypeURI="&xsd;int">15</Constant>
</DatatypeFacetRestriction>
<DatatypeFacetRestriction facet="&owl11;maxInclusive">
<Constant datatypeURI="&xsd;int">21</Constant>
</DatatypeFacetRestriction>
</DatatypeRestriction>
</DataSomeValuesFrom>
<Individual URI="&f;Ellen"/>
</ClassAssertion>
<Declaration>
<Individual URI="&f;Emily"/>
</Declaration>
<ClassAssertion>
<DataSomeValuesFrom>
<DataProperty URI="&f;hasAge"/>
<DataOneOf>
<Constant datatypeURI="&xsd;integer">39</Constant>
<Constant datatypeURI="&xsd;integer">49</Constant>
</DataOneOf>
</DataSomeValuesFrom>
<Individual URI="&f;Emily"/>
</ClassAssertion>
<Declaration>
<Individual URI="&f;Jack"/>
</Declaration>
<NegativeDataPropertyAssertion>
<DataProperty URI="&f;hasAge"/>
<Individual URI="&f;Jack"/>
<Constant datatypeURI="&xsd;integer">53</Constant>
</NegativeDataPropertyAssertion>
<Declaration>
<Individual URI="&f;Jeff"/>
</Declaration>
<ClassAssertion>
<ObjectExactCardinality cardinality="2">
<ObjectProperty URI="&f;hasChild"/>
</ObjectExactCardinality>
<Individual URI="&f;Jeff"/>
</ClassAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasChild"/>
<Individual URI="&f;Jeff"/>
<Individual URI="&f;Ellen"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasChild"/>
<Individual URI="&f;Jeff"/>
<Individual URI="&f;Jack"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasWife"/>
<Individual URI="&f;Jeff"/>
<Individual URI="&f;Emily"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;loves"/>
<Individual URI="&f;Jeff"/>
<Individual URI="&f;Jeff"/>
</ObjectPropertyAssertion>
<DataPropertyAssertion>
<DataProperty URI="&f;hasAge"/>
<Individual URI="&f;Jeff"/>
<Constant datatypeURI="&xsd;integer">77</Constant>
</DataPropertyAssertion>
<DifferentIndividuals>
<Individual URI="&f;Jeff"/>
<Individual URI="&f;Emily"/>
<Individual URI="&f;Jack"/>
<Individual URI="&f;Ellen"/>
<Individual URI="&f;Susan"/>
</DifferentIndividuals>
<Declaration>
<Individual URI="&f;John"/>
</Declaration>
<ClassAssertion>
<OWLClass URI="&f;Person"/>
<Individual URI="&f;John"/>
</ClassAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasDaughter"/>
<Individual URI="&f;John"/>
<Individual URI="&f;Susan"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;John"/>
<Individual URI="&f;male"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasSon"/>
<Individual URI="&f;John"/>
<Individual URI="&f;Bill"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasWife"/>
<Individual URI="&f;John"/>
<Individual URI="&f;Mary"/>
</ObjectPropertyAssertion>
<DataPropertyAssertion>
<DataProperty URI="&f;hasAge"/>
<Individual URI="&f;John"/>
<Constant datatypeURI="&xsd;integer">33</Constant>
</DataPropertyAssertion>
<SameIndividuals>
<Individual URI="&f;John"/>
<Individual URI="&f;Jack"/>
</SameIndividuals>
<DifferentIndividuals>
<Individual URI="&f;John"/>
<Individual URI="&f;Mary"/>
<Individual URI="&f;Bill"/>
<Individual URI="&f;Susan"/>
</DifferentIndividuals>
<Declaration>
<Individual URI="&f;Mary"/>
</Declaration>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasDaughter"/>
<Individual URI="&f;Mary"/>
<Individual URI="&f;Susan"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;Mary"/>
<Individual URI="&f;female"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasSon"/>
<Individual URI="&f;Mary"/>
<Individual URI="&f;Bill"/>
</ObjectPropertyAssertion>
<DataPropertyAssertion>
<DataProperty URI="&f;hasAge"/>
<Individual URI="&f;Mary"/>
<Constant datatypeURI="&xsd;integer">31</Constant>
</DataPropertyAssertion>
<Declaration>
<Individual URI="&f;Susan"/>
</Declaration>
<ObjectPropertyAssertion>
<ObjectProperty URI="&f;hasGender"/>
<Individual URI="&f;Susan"/>
<Individual URI="&f;female"/>
</ObjectPropertyAssertion>
<DataPropertyAssertion>
<DataProperty URI="&f;hasAge"/>
<Individual URI="&f;Susan"/>
<Constant datatypeURI="&xsd;integer">8</Constant>
</DataPropertyAssertion>
<Declaration>
<Individual URI="&f;female"/>
</Declaration>
<SameIndividuals>
<Individual URI="&f;female"/>
<Individual URI="&g;feminine"/>
</SameIndividuals>
<DifferentIndividuals>
<Individual URI="&f;female"/>
<Individual URI="&f;male"/>
</DifferentIndividuals>
<Declaration>
<Individual URI="&f;male"/>
</Declaration>
<SameIndividuals>
<Individual URI="&f;male"/>
<Individual URI="&g;masculine"/>
</SameIndividuals>
</Ontology>
RDF/XML Syntax:
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY owl11 "http://www.w3.org/2006/12/owl11#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY f "http://example.com/owl/families#" >
<!ENTITY g "http://example.com/owl2/families#" >
<!ENTITY dc "http://purl.org/dc/elements/1.1/#" >
]>
<rdf:RDF xml:base="http://example.com/owl/families"
xmlns="http://example.com/owl/families#"
xmlns:owl="http://www.w3.org/2002/07/owl#">
xmlns:owl11="http://www.w3.org/2006/12/owl11#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:f="http://example.com/owl/families#"
xmlns:g="http://example.com/owl2/families#"
<owl:Ontology rdf:about="http://example.com/owl/families">
<owl:imports rdf:resource="http://example.com/owl2/families.owl"/>
</owl:Ontology>
<owl:ObjectProperty rdf:about="#hasAncestor">
<rdf:type rdf:resource="&owl;TransitiveProperty"/>
<rdf:type rdf:resource="&owl11;IrreflexiveProperty"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasChild">
<rdfs:subPropertyOf rdf:resource="#hasAncestor"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>
<owl:equivalentProperty rdf:resource="&g;child"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasDaughter">
<rdfs:range>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender"/>
<owl:hasValue rdf:resource="#female"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</rdfs:range>
<rdfs:range rdf:resource="#Person"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:subPropertyOf rdf:resource="#hasChild"/>
<rdfs:domain rdf:resource="#Parent"/>
<owl11:disjointObjectProperties rdf:resource="#hasSon"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasGender"/>
<owl:ObjectProperty rdf:about="#hasHusband">
<owl:inverseOf rdf:resource="#hasWife"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasSon">
<rdfs:range>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender"/>
<owl:hasValue rdf:resource="#male"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</rdfs:range>
<rdfs:subPropertyOf rdf:resource="#hasChild"/>
<rdfs:range rdf:resource="#Person"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:domain rdf:resource="#Parent"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasSpouse">
<rdf:type rdf:resource="&owl;SymmetricProperty"/>
<rdf:type rdf:resource="&owl11;IrreflexiveProperty"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasWife">
<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdf:type rdf:resource="&owl11;AsymmetricProperty"/>
<rdf:type rdf:resource="&owl11;IrreflexiveProperty"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>
<rdfs:subPropertyOf rdf:resource="#loves"/>
<rdfs:range rdf:resource="#Woman"/>
<rdfs:subPropertyOf rdf:resource="#hasSpouse"/>
<rdfs:domain rdf:resource="#Man"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#loves">
<rdfs:domain rdf:resource="#Person"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:about="#hasAge">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="&xsd;integer"/>
<owl:equivalentProperty rdf:resource="&g;age"/>
</owl:DatatypeProperty>
<owl:Class rdf:about="#Adult">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>
<owl:someValuesFrom>
<rdf:Description>
<rdf:type rdf:resource="&owl;DataRange"/>
<owl11:onDataRange rdf:resource="&xsd;integer"/>
<owl11:minInclusive rdf:datatype="&xsd;int">21</owl11:minInclusive>
</rdf:Description>
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
<owl:equivalentClass rdf:resource="&g;Grownup"/>
</owl:Class>
<owl:Class rdf:about="#Child">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Class>
<owl:complementOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>
<owl:someValuesFrom>
<rdf:Description>
<rdf:type rdf:resource="&owl;DataRange"/>
<owl11:onDataRange rdf:resource="&xsd;integer"/>
<owl11:minInclusive rdf:datatype="&xsd;int">21</owl11:minInclusive>
</rdf:Description>
</owl:someValuesFrom>
</owl:Restriction>
</owl:complementOf>
</owl:Class>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#CivilMarriage" />
<owl:Class rdf:about="#Man">
<rdfs:subClassOf rdf:resource="#Parent"/>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender"/>
<owl:hasValue rdf:resource="#male"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#Marriage">
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#CivilMarriage"/>
<rdf:Description rdf:about="#ReligiousMarriage"/>
</owl:unionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#Narcissist">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description>
<rdf:type rdf:resource="&owl11;SelfRestriction"/>
<owl:onProperty rdf:resource="#loves"/>
</rdf:Description>
<rdf:Description rdf:about="#Person"/>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#Parent">
<rdfs:subClassOf rdf:resource="#Parent"/>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl11:onClass rdf:resource="#Person"/>
<owl:minCardinalityQ rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinalityQ>
</owl:Restriction>
<rdf:Description rdf:about="#Person"/>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#Person">
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender"/>
<owl:allValuesFrom>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<rdf:Description rdf:about="#female"/>
<rdf:Description rdf:about="#male"/>
</owl:oneOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#ReligiousMarriage">
<owl:disjointWith rdf:resource="#CivilMarriage"/>
</owl:Class>
<owl:Class rdf:about="#Teenager">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>
<owl:someValuesFrom>
<rdf:Description>
<rdf:type rdf:resource="&owl;DataRange"/>
<owl11:minInclusive rdf:datatype="&xsd;int">13</owl11:minInclusive>
<owl11:maxExclusive rdf:datatype="&xsd;int">20</owl11:maxExclusive>
<owl11:onDataRange rdf:resource="&xsd;integer"/>
</rdf:Description>
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#Woman">
<rdfs:subClassOf rdf:resource="#Parent"/>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender"/>
<owl:hasValue rdf:resource="#female"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="#YoungChild">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Person"/>
<owl:Class>
<owl:complementOf>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Adult"/>
<rdf:Description rdf:about="#Teenager"/>
</owl:unionOf>
</owl:Class>
</owl:complementOf>
</owl:Class>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<rdf:Description rdf:about="#Bill">
<rdf:type>
<owl:Class>
<owl:complementOf rdf:resource="#Narcissist"/>
</owl:Class>
</rdf:type>
<hasAge rdf:datatype="&xsd;integer">13</hasAge>
<hasGender rdf:resource="#male"/>
</rdf:Description>
<rdf:Description rdf:about="#Ellen">
<rdf:type>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>
<owl:someValuesFrom>
<rdf:Description>
<rdf:type rdf:resource="&owl;DataRange"/>
<owl11:minInclusive rdf:datatype="&xsd;int">15</owl11:minInclusive>
<owl11:onDataRange rdf:resource="&xsd;integer"/>
<owl11:maxInclusive rdf:datatype="&xsd;int">21</owl11:maxInclusive>
</rdf:Description>
</owl:someValuesFrom>
</owl:Restriction>
</rdf:type>
</rdf:Description>
<rdf:Description rdf:about="#Emily">
<rdf:type>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>
<owl:someValuesFrom>
<rdf:Description>
<rdf:type rdf:resource="&owl;DataRange"/>
<owl:oneOf>
<rdf:Description>
<rdf:type rdf:resource="&rdf;List"/>
<rdf:first rdf:datatype="&xsd;integer">39</rdf:first>
<rdf:rest>
<rdf:Description>
<rdf:type rdf:resource="&rdf;List"/>
<rdf:rest rdf:resource="&rdf;nil"/>
<rdf:first rdf:datatype="&xsd;integer">49</rdf:first>
</rdf:Description>
</rdf:rest>
</rdf:Description>
</owl:oneOf>
</rdf:Description>
</owl:someValuesFrom>
</owl:Restriction>
</rdf:type>
</rdf:Description>
<owl11:NegativeDataPropertyAssertion>
<rdf:subject rdf:resource="#Jack"/>
<rdf:predicate rdf:resource="#hasAge"/>
<rdf:object rdf:datatype="&xsd;integer">53</rdf:object>
</owl11:NegativeDataPropertyAssertion>
<rdf:Description rdf:about="#Jeff">
<rdf:type>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:cardinality>
</owl:Restriction>
</rdf:type>
<hasAge rdf:datatype="&xsd;integer">77</hasAge>
<hasChild rdf:resource="#Ellen"/>
<hasWife rdf:resource="#Emily"/>
<loves rdf:resource="#Jeff"/>
<hasChild rdf:resource="#Jack"/>
</rdf:Description>
<Person rdf:about="#John">
<hasDaughter rdf:resource="#Susan"/>
<hasGender rdf:resource="#male"/>
<hasWife rdf:resource="#Mary"/>
<hasSon rdf:resource="#Bill"/>
<hasAge rdf:datatype="&xsd;integer">33</hasAge>
<owl:sameAs rdf:resource="#Jack"/>
</Person>
<rdf:Description rdf:about="#Mary">
<hasAge rdf:datatype="&xsd;integer">31</hasAge>
<hasGender rdf:resource="#female"/>
<hasSon rdf:resource="#Bill"/>
<hasDaughter rdf:resource="#Susan"/>
</rdf:Description>
<rdf:Description rdf:about="#Susan">
<hasAge rdf:datatype="&xsd;integer">8</hasAge>
<hasGender rdf:resource="#female"/>
</rdf:Description>
<rdf:Description rdf:about="#female">
<owl:sameAs rdf:resource="&g;feminine"/>
</rdf:Description>
<rdf:Description rdf:about="#male">
<owl:sameAs rdf:resource="&g;masculine"/>
</rdf:Description>
<rdf:Description>
<rdf:type rdf:resource="&owl;AllDifferent"/>
<owl:distinctMembers rdf:parseType="Collection">
<rdf:Description rdf:about="#John"/>
<rdf:Description rdf:about="#Mary"/>
<rdf:Description rdf:about="#Bill"/>
<rdf:Description rdf:about="#Susan"/>
</owl:distinctMembers>
</rdf:Description>
<rdf:Description>
<rdf:type rdf:resource="&owl;AllDifferent"/>
<owl:distinctMembers rdf:parseType="Collection">
<rdf:Description rdf:about="#Jeff"/>
<rdf:Description rdf:about="#Emily"/>
<rdf:Description rdf:about="#Jack"/>
<rdf:Description rdf:about="#Ellen"/>
<rdf:Description rdf:about="#Susan"/>
</owl:distinctMembers>
</rdf:Description>
<rdf:Description>
<rdf:type rdf:resource="&owl;AllDifferent"/>
<owl:distinctMembers rdf:parseType="Collection">
<rdf:Description rdf:about="#male"/>
<rdf:Description rdf:about="#female"/>
</owl:distinctMembers>
</rdf:Description>
<rdf:Description>
<rdf:type rdf:resource="&rdf;List"/>
<rdf:first rdf:resource="#hasSpouse"/>
<rdf:rest rdf:parseType="Collection">
<rdf:Description rdf:about="#hasSon"/>
</rdf:rest>
<rdfs:subPropertyOf rdf:resource="#hasSon"/>
</rdf:Description>
<rdf:Description>
<rdf:type rdf:resource="&rdf;List"/>
<rdf:first rdf:resource="#hasSpouse"/>
<rdf:rest rdf:parseType="Collection">
<rdf:Description rdf:about="#hasDaughter"/>
</rdf:rest>
<rdfs:subPropertyOf rdf:resource="#hasDaughter"/>
</rdf:Description>
</rdf:RDF>
13 Acknowledgments
Editor's Note: There'll be a list of everyone whose comments resulted in a change to a draft of the text.
14 References
- [OWL 2 Profiles]
- OWL 2 Web Ontology Language:Profiles Bernardo
Cuenca Grau, Boris Motik, Zhe
Wu,
Achille Fokoue, Carsten
Lutz. W3C Working Draft, 11 April 2008, http://www.w3.org/TR/2008/WD-owl2-profiles-20080411/. Latest version available at http://www.w3.org/TR/owl2-profiles/.
- [OWL 2 Manchester Syntax]
- OWL 2 Web Ontology Language: Manchester Syntax. Matthew Horridge and Peter F. Patel-Schneider and others, 2008.
- [OWL 2 RDF Mapping]
- OWL 2 Web Ontology Language:Mapping to RDF Graphs Bernardo Cuenca Grau, Boris
Motik. W3C Working Draft, 11 April 2008, http://www.w3.org/TR/2008/WD-owl2-mapping-to-rdf-20080411/. Latest version available at http://www.w3.org/TR/owl2-mapping-to-rdf/.
- [OWL 2 Semantics]
- OWL 2 Web Ontology Language:Model-Theoretic Semantics Bernardo Cuenca Grau, Boris
Motik. W3C Working Draft, 11 April 2008, http://www.w3.org/TR/2008/WD-owl2-semantics-20080411/. Latest version available at http://www.w3.org/TR/owl2-semantics/.
- [OWL 2 Specification]
- OWL 2 Web Ontology Language:Structural Specification and
Functional-Style Syntax Boris
Motik, Peter F. Patel-Schneider, Ian
Horrocks. W3C Working Draft, 11 April 2008, http://www.w3.org/TR/2008/WD-owl2-syntax-20080411/. Latest version available at http://www.w3.org/TR/owl2-syntax/.
- [OWL 2 XML Syntax]
- OWL 2 Web Ontology Language:XML Serialization Bernardo
Cuenca Grau, Boris
Motik, Peter
Patel-Schneider. W3C Working Draft, 11 April 2008, http://www.w3.org/TR/2008/WD-owl2-xml-serialization-20080411/. Latest version available at http://www.w3.org/TR/owl2-xml-serialization/.
- [XML Schema Datatypes]
- XML Schema Part 2: Datatypes Second Edition. Paul V. Biron and Ashok Malhotra, eds. W3C Recommendation 28 October 2004.
- [OWL Web Ontology Language Overview]
- OWL Web Ontology Language Overview. W3C Recommendation 10 Feb 2004. McGuinness, van Harmelen, eds.
- [OWL Web Ontology Language Guide]
- OWL Web Ontology Language Guide. W3C Recommendation 10 Feb 2004. Smith, Welty, McGuinness eds.
- [OWL Web Ontology Language Reference]
- OWL Web Ontology Language Reference. W3C Recommendation 10 Feb 2004. Dean, Schreiber, eds.
- [OWL Web Ontology Language Semantics and Abstract Syntax]
- OWL Web Ontology Language Semantics and Abstract Syntax. W3C Recommendation 10 Feb 2004. Patel-Schneider, Hayes, Horrocks, eds.
- [OWL Web Ontology Language Test Cases]
- OWL Web Ontology Language Test Cases. W3C Recommendation 10 Feb 2004. Carroll, De Roo, eds.
- [OWL Web Ontology Language Use Cases and Requirements]
- OWL Web Ontology Language Use Cases and Requirements. W3C Recommendation 10 Feb 2004. Heflin, ed.