<cn><cn>-Represented Numbers <cn><ci><ci><csymbol><csymbol><cs><apply><bind>
            and <bvar><share>share elementsemantics<cerror><cbytes><apply><domainofapplication>,
            <interval>,
            <condition>,
            <lowlimit> and
            <uplimit><degree><momentabout> and <logbase><interval><inverse><lambda><compose/><ident/><domain/><codomain/><image/><piecewise>, <piece>, <otherwise>)<quotient/><factorial/><divide/><max/><min/><minus/><plus/><power/><rem/><times/><root/><gcd/><and/><or/><xor/><not/><implies/><forall/><exists/><abs/><conjugate/><arg/><real/><imaginary/><lcm/><floor/><ceiling/><eq/><neq/><gt/><lt/><geq/><leq/><equivalent/><approx/><factorof/><int/><diff/><partialdiff/><divergence/><grad/><curl/><laplacian/><set><list><union/><intersect/><in/><notin/><subset/><prsubset/><notsubset/><notprsubset/><setdiff/><card/><cartesianproduct/><sum/><product/><limit/><tendsto/><exp/><ln/><log/><mean/><sdev/><variance/><median/><mode/><moment/>, <momentabout>)<vector><matrix><matrixrow><determinant/><transpose/><selector/><vectorproduct/><scalarproduct/><outerproduct/><integers/><reals/><rationals/><naturalnumbers/><complexes/><primes/><exponentiale/><imaginaryi/><notanumber/><true/><false/><emptyset/><pi/><eulergamma/><infinity/><declare>The intent of Content Markup is to provide an explicit encoding of the underlying mathematical meaning of an expression, rather than any particular rendering for the expression. Mathematics is distinguished both by its use of rigorous formal logic to define and analyze mathematical concepts, and by the use of a (relatively) formal notational system to represent and communicate those concepts. However, mathematics and its presentation should not be viewed as one and the same thing. Mathematical notation, though more rigorous than natural language, is nonetheless at times ambiguous, context-dependent, and varies from community to community. In some cases, heuristics may adequately infer mathematical semantics from mathematical notation. But in many others cases, it is preferable to work directly with the underlying, formal, mathematical objects. Content Markup provides a rigorous, extensible semantic framework and a markup language for this purpose.
The difficulties in inferring semantics from a presentation stem
                  from the fact that there are many to one mappings from presentation to
                  semantics and vice versa. For example the mathematical construct
                  "H multiplied by e" is often
                  encoded using an explicit operator as in
                  H × e. In different
                  presentational contexts, the multiplication operator might be
                  invisible "H e", or rendered
                  as the spoken word "times". Generally, many different
                  presentations are possible depending on the context and style
                  preferences of the author or reader. Thus, given
                  "H e" out of context it may be
                  impossible to decide if this is the name of a chemical or a
                  mathematical product of two variables H and
                  e. Mathematical presentation also changes with culture and
                  time: some expressions in combinatorial mathematics today have one
                  meaning to a Russian mathematician, and quite another to a French
                  mathematician. Notations may lose currency, for example the use of
                  musical sharp and flat symbols to denote maxima and minima [Chaundy1954]. A notation in use in 1644 for the multiplication
                  mentioned above was  He [Cajori1928].
He [Cajori1928].
               
By encoding the underlying mathematical structure explicitly, without regard to how it is presented aurally or visually, it is possible to interchange information more precisely between systems that semantically process mathematical objects. In the trivial example above, such a system could substitute values for the variables H and e and evaluate the result. Important application areas include computer algebra systems, automatic reasoning system, industrial and scientific applications, multi-lingual translation systems, mathematical search, and interactive textbooks.
The organization of this chapter is as follows. In Section 4.2 Content MathML Elements Encoding Expression Structure, a core collection of elements comprising Strict Content Markup are described. Strict Content Markup is sufficient to encode general expression trees in a semantically rigorous way. It is in one-to-one correspondence with OpenMath element set. OpenMath is a standard for representing formal mathematical objects and semantics through the use of extensible Content Dictionaries. Strict Content Markup defines a mechanism for associating precise mathematical semantics with expression trees by referencing OpenMath Content Dictionaries. In Section 4.3 Content MathML for Specific Structures, markup is introduced for representing a small number of mathematical idioms, such as limits on integrals, sums and product. These constructs may all be rewritten as Strict Content Markup expressions, and rules for doing so are given. In Section 4.4 Content MathML for Specific Operators and Constants, elements are introduced for many common function, operators and constants. This section contains many examples, including equivalent Strict Content expressions. Section 4.5 Deprecated Content Elements is a minor section. Finally, Section 4.6 The Strict Content MathML Translation summarizes the alrogrithm for translating arbitrary Content Markup into Strict Content Markup. It collects together in sequence all the rewrite rules introduced throughout the rest of the chapter.
Content MathML represents mathematical objects as expression trees. The notion of constructing a general expression tree is e.g. that of applying an operator to sub-objects. For example, the sum "x+y" can be thought of as an application of the addition operator to two arguments x and y. And the expression "cos(π)" as the application of the cosine function to the number π.
As a general rule, the terminal nodes in the tree represent basic mathematical objects such as numbers, variables, arithmetic operations and so on. The internal nodes in the tree represent function application or other mathematical constructions that build up a compound objects. Function application provides the most important example; an internal node might represent the application of a function to several arguments, which are themselves represented by the nodes underneath the internal node.
The semantics of general mathematical expressions is not a matter of consensus. It would be an enormous job to systematically codify most of mathematics – a task that can never be complete. Instead, MathML makes explicit a relatively small number of commonplace mathematical constructs, chosen carefully to be sufficient in a large number of applications. In addition, it provides a mechanism for associating semantics with new notational constructs. In this way, mathematical concepts that are not in the base collection of elements can still be encoded.
The base set of content elements is chosen to be adequate for simple coding of most of the formulas used from kindergarten to the end of high school in the United States, and probably beyond through the first two years of college, that is up to A-Level or Baccalaureate level in Europe.
While the primary role of the MathML content element set is to directly encode the mathematical structure of expressions independent of the notation used to present the objects, rendering issues cannot be ignored. There are different approaches for rendering Content MathML formulae, ranging from from native implementations of the MathML elements to declarative notation definitions, to XSLT style sheets. The MathML 3 Recommendation will not make one of these normative, but only specify sample notations by way of examples.
In MathML 3, a subset, or profile, of Content MathML is defined: Strict Content MathML. This uses a minimal set of elements to represent the meaning of a mathematical expression in a uniform structure, while the full Content MathML grammar is backward compatible with MathML 2.0, and generally tries to strike a more pragmatic balance between verbosity and formality.
Content MathML provides a large number of predefined functions
                  encoded as empty elements (e.g. sin, log, etc.)
                  and a variety of constructs for forming compound objects
                  (e.g. set, interval, etc.).  By contrast, Strict
                  Content MathML uses a single element (csymbol) with an
                  attribute pointing to an external definition in extensible content
                  dictionaries to represent all functions, and uses only
                  apply and bind for building up compound
                  objects. The token elements such as ci and cn are
                  also considered part of Strict Content MathML, but with a more
                  restricted set of attributes and with content restricted to
                  text.
               
In particular, Strict Content MathML is designed to be compatible with OpenMath (in fact it is an XML encoding of OpenMath Objects in the sense of [OpenMath2004]). OpenMath is a standard for representing formal mathematical objects and semantics through the use of extensible Content Dictionaries. The table below gives an element-by-element correspondence between the OpenMath XML encoding of OpenMath objects and Strict Content MathML.
| Strict Content MathML | OpenMath | 
|---|---|
| cn | OMI,OMF | 
| csymbol | OMS | 
| ci | OMV | 
| cs | OMSTR | 
| apply | OMA | 
| bind | OMBIND | 
| bvar | OMBVAR | 
| share | OMR | 
| semantics | OMATTR | 
| annotation,annotation-xml | OMATP,OMFOREIGN | 
| error | OME | 
| cbytes | OMB | 
In MathML 3, formal semantics for general Content MathML expressions are given by specifying equivalent Strict Content MathML expressions, so that they inherit their semantics. To make the correspondence exact, a transformation algorithm is given in terms of transformation rules that are applied in order to rewrite particular MathML constructs into a strict equivalents. The individual rules are introduce in context throughout the chapter. In Section 4.6 The Strict Content MathML Translation, the algorithm as a whole is described.
As most transformation rules relate to classes of MathML elements that have similar argument structure, they are introduced in Section 4.3.4 Operator Classes where these classes are defined. Some special case rules for specific elements are given in Section Section 4.4 Content MathML for Specific Operators and Constants. Transformations in Section 4.2 Content MathML Elements Encoding Expression Structure concern extended usages of the core Content MathML elements, those in Section 4.3 Content MathML for Specific Structures concern the rewriting of some additional structures not supported in Strict Content MathML.
The transformation algorithm from Section 4.6 The Strict Content MathML Translation is complete: it gives every Content MathML expression a specific meaning in terms of a Strict Content MathML expression. This means it has to give specific strict interpretations to some expressions whose meaning was insufficiently specified in MathML2. The intention of this algorithm is to be faithful to mathematical intuitions. However edge cases may remain where the normative interpretation of the algorithm may break earlier intuitions.
A conformant MathML processor need not implement this transformation. The existence of these transformation rules does not imply that a system must treat equivalent expressions identically. In particular systems may give different presentation renderings for expresssions that the transformation rules imply are mathematically equivalent.
Due to the nature of mathematics, any method for formalizing
                  the meaning of the mathematical expressions must be
                  extensible. The key to extensibility is the ability to define
                  new functions and other symbols to expand the terrain of
                  mathematical discourse. To do this, two things are required: a
                  mechanism for representing symbols not already defined by
                  Content MathML, and a means of associating a specific
                  mathematical meaning with them in an unambiguous way.  In MathML
                  3, the csymbol element provides the means to represent
                  new symbols, while Content Dictionaries are the way
                  in which mathematical semantics are described.  The association
                  is accomplished via attributes of the csymbol element
                  that point at a definition in a CD. The syntax and usage of
                  these attributes are described in detail in Section 4.2.3 Content Symbols <csymbol>.
               
Content Dictionaries are structured documents for the definition of mathematical concepts; see the OpenMath standard, [OpenMath2004]. To maximize modularity and reuse, a Content Dictionary typically contains a relatively small collection of definitions for closely related concepts. The OpenMath Society maintains a large set of public Content Dictionaries including the MathML CD group that including contains definitions for all pre-defined symbols in MathML. There is a process for contributing privately developed CDs to the OpenMath Society repository to facilitate discovery and reuse. MathML 3 does not require CDs be publicly available, though in most situations the goals of semantic markup will be best served by referencing public CDs available to all user agents.
In the text below, descriptions of semantics for predefined MathML symbols refer to the Content Dictionaries developed by the OpenMath Society in conjunction with the W3C Math Working Group. It is important to note, however, that this information is informative, and not normative. In general, the precise mathematical semantics of predefined symbols are not not fully specified by the MathML 3 Recommendation, and the only normative statements about symbol semantics are those present in the text of this chapter. The semantic definitions provided by the OpenMath Content CDs are intended to be sufficient for most applications, and are generally compatible with the semantics specified for analogous constructs in the MathML 2.0 Recommendation. However, in contexts where highly precise semantics are required (e.g. communication between computer algebra systems, within formal systems such as theorem provers, etc.) it is the responsibility of the relevant community of practice to verify, extend or replace definitions provided by OpenMath CDs as appropriate.
In this section we will present the elements for encoding the structure of content MathML expressions. These elements are the only ones used for the Strict Content MathML encoding. Concretely, we have
basic expressions, i.e. Numbers, string literals, encoded bytes, Symbols, and Identifiers.
derived expressions, i.e. function applications and binding expressions, and
Full Content MathML allows further elements presented in Section 4.3 Content MathML for Specific Structures and Section 4.4 Content MathML for Specific Operators and Constants, and allows a richer content model presented in this section. We will contrast the strict and full content models in syntax tables at the beginning of the element specifications.
In these tables, the Content, Attributes, and Attribute
                  Values rows specify the XML encoding. Where applicable, the Class row
               specifies the operator class, which indicate how many arguments the operator represented
               by this element takes, and also in many cases determines the mapping to Strict Content MathML, as described in Section 4.3.4 Operator Classes.
               Finally, the Qualifiers row clarifies whether the
               operator takes qualifiers and if so, which. Both specify how many siblings may follow
               the operator element in an apply; see Section 4.2.5 Function Application <apply> and Section 4.3.3 Qualifiers for details).
            
<cn>| Schema Fragment (Strict) | Schema Fragment (Full) | |||
|---|---|---|---|---|
| Class | Cn | Cn | ||
| Attributes | CommonAtt, type | CommonAtt, type?, base? | ||
| typeAttribute Values | "integer" | "real" | "double" | "hexdouble" | | "integer" | "real" | "double" | "hexdouble" | "e-notation" | "rational" | "complex-cartesian" | "complex-polar" | "constant" | real | |
| baseAttribute Values | integer | 10 | ||
| Content | text | (text |mglyph |sep | PresentationExp)* | ||
The cn element is the Content MathML element used to
                  represent numbers.  Strict Content MathML supports integers, real numbers,
                  and double precision floating point numbers.  In these types of numbers,
                  the content of cn is text. Additionally, cn
                  supports rational numbers and complex numbers in which the different
                  parts are separated by use of the sep element.  Constructs
                  using sep may be rewritten in Strict Content MathML as
                  constructs using apply as described below. 
               
 The type attribute specifies which kind of number is
                  represented in the cn element.  The default value is
                  "real".  Each type implies that the content be of
                  a certain form, as detailed below.
               
<cn>-Represented Numbers 
                  The default rendering of the text content of  cn is the same as that of the Presentation element mn, with suggested variants in the
                     case of attributes or sep being used, as listed below.
                  
In Strict Content MathML, the type attribute is mandatory, and may only take the values
                     "integer", "real", "hexdouble" or
                     "double":
                  
cn as an IEEE
                        double are specified by Section
                           3.1.2.5 of XML Schema Part 2: Datatypes Second Edition
                        [XMLSchemaDatatypes].  For example, -1E4, 1267.43233E12, 12.78e-2,
                        12 , -0, 0 and INF are all valid doubles in this format.
                     This type is used to directly represent the the 64 bits of an IEEE 754 double-precision floating point number as a 16 digit hexadecimal number. Thus the number represents mantissa, exponent, and sign from lowest to highest bits using a least significant byte ordering. This consists of a string of 16 digits 0-9, A-F. The following example represents a NaN value. Note that certain IEEE doubles, such as the preceding NaN, cannot be represented in the lexical format for the "double" type.
<cn type="hexdouble">7F800000</cn>
Sample Presentation
<mn>0x7F800000</mn>
<cn>The base attribute is used to specify how the content is
                     to be parsed.  The attribute value is a base 10 positive integer
                     giving the value of base in which the text content of the cn
                     is to be interpreted.  The base attribute should only be
                     used on elements with type "integer" or
                     "real".  Its use on cn elements of other type
                     is deprecated.  The default value for base is
                     "10".
                  
Additional values for the type attribute element for supporting
                     e-notations for real numbers, rational numbers, complex numbers and selected important
                     constants. As with the "integer", "real",
                     "double" and "hexdouble" types, each of these types
                     implies that the content be of a certain form. If the type attribute is
                     omitted, it defaults to "real".
                  
Integers can be represented with respect to a base different from
                           10: If base is present, it specifies (in base 10) the base for the digit encoding.
                           Thus base='16' specifies a hexadecimal
                           encoding.  When base > 10, Latin letters (A-Z, a-z) are used in
                           alphabetical order as digits. The case of letters used as digits is not
                           significant.  The following example encodes the number written as 32736 in base ten.
                        
<cn base="16">7FE0</cn>
Sample Presentation
<msub><mn>7FE0</mn><mn>16</mn></msub>
                           When base > 36, some integers cannot be represented using
                           numbers and letters alone. For example, while 
                           
                        
<cn base="1000">10F</cn>
                           arguably represents the number written in base 10 as 1,000,015, the number
                           written in base 10 as 1,000,037 cannot be represented using letters and
                           numbers alone when base is 1000.  Consequently, it
                           is up to applications to specify what additional characters (if any)
                           may be used for digits when base > 36.
                           
                        
base attribute is present, then the digits are
                        interpreted as being digits computed relative to that base (in the same way as
                        described for type "integer").
                     A real number may be presented in scientific notation using this type.  Such
                           numbers have two parts (a significand and an exponent)
                           separated by a <sep/> element. The
                           first part is a real number, while the
                           second part is an integer exponent indicating a power of the base.
                        
 For example, <cn type="e-notation">12.3<sep/>5</cn>
                           	 represents 12.3 times 105. The default presentation of this example is
                           	 12.3e5. Note that this type is primarily useful for backwards compatibility with
                           	 MathML 2, and in most cases, it is preferable to use the "double"
                           	 type, if the number to be represented is in the range of IEEE doubles:
                        
A rational number is given as two integers to be used as the numerator and
                           denominator of a quotient. The numerator and denominator are
                           separated by <sep/>.
                        
<cn type="rational">22<sep/>7</cn>
Sample Presentation
<mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>
A complex cartesian number is given as two numbers specifying the real and
                           imaginary parts.  The real and imaginary parts are separated
                           by the <sep/> element, and each part has
                           the format of a real number as described above.
                        
<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>
Sample Presentation
<mrow> <mn>12.3</mn><mo>+</mo><mn>5</mn><mo>⁢</mo><mi>i</mi> </mrow>
A complex polar number is given as two numbers specifying
                           the magnitude and angle. The magnitude and angle are separated
                           by the <sep/> element, and each part has
                           the format of a real number as described above.
                        
<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>
Sample Presentation
<mrow> <mn>2</mn> <mo>⁢</mo> <msup> <mi>e</mi> <mrow><mi>i</mi><mo>⁢</mo><mn>3.1415</mn></mrow> </msup> </mrow>
<mrow> <mi>Polar</mi> <mo>⁡</mo> <mfenced><mn>2</mn><mn>3.1415</mn></mfenced> </mrow>
If the value type is "constant",
                           then the content should be Unicode representations of a
                           well-known constant.  Some important constants and their
                           common Unicode representations are listed below.
                        
This cn type is primarily for backward
                           compatibility with MathML 1.0.  MathML 2.0 introduced many
                           empty elements, such as <pi/> to
                           represent constants, and  the empty
                           element representations are preferred.
                        
Mapping to Strict Content MathML
If a base attribute is present, it specifies the base used for the digit
                     encoding of both integers.  The use of base with
                     "rational" numbers is deprecated.
                  
If there are sep children of the cn,
                        	 then intervening text may be rewritten as cn
                        	 elements.  If the cn element containing sep
                        	 also has a base attribute, this is copied to each
                        	 of the cn arguments of the resulting symbol, as
                        	 shown below.
                     
<cn type="" base=""><sep/></cn>
is rewritten to
<apply><csymbol cd="num1"></csymbol> <cn type="integer" base=""></cn> <cn type="integer" base=""></cn> </apply>
The symbol used in the result depends on the type attribute according to the following table:
                     
| type attribute | OpenMath Symbol | 
|---|---|
| e-notation | bigfloat | 
| rational | rational | 
| complex-cartesian | complex_cartesian | 
| complex-polar | complex_polar | 
Note: In the case of bigfloat the symbol
                        takes three arguments, <cn type="integer">10</cn> should be inserted as the second argument, denoting the base of the exponent used.
                     
If the type attribute has a different value, or if there is more than one <sep/> element, then the intervening expressions are converted as above, but a system-dependent choice of symbol for the head of
                        the application must be used.
                     
If a base attribute has been used then the resulting expression is not Strict Content MathML, and each of the arguments needs to be recursively processed.
A cn element with a base attribute other than 10 is rewritten as follows. (A base attribute with value 10 is simply removed) .
                     
<cn type="" base=""></cn>
<apply><csymbol cd="nums1"></csymbol> <cn type="integer"></cn> <cs></cs> </apply>
If the original element specified type "integer" or if there is no type attribute, but the the content of the element just consists of the characters [a-zA-Z0-9] and white space then the symbol used as the head in the resulting application should be based_integer as shown. Otherwise it should be should be based_float.
In Strict Content MathML, constants should be represented using
                        	    csymbol elements.  A number of important constants are defined in the
                        	    nums1 content dictionary. An expression of the form 
                        
                     
<cn type="constant"></cn>has the Strict Content MathML equivalent
<csymbol cd="nums1"></csymbol>
                        where c2  corresponds to c as specified in the following table.
                     
| Content | Description | OpenMath Symbol | 
|---|---|---|
| U+03C0 ( π) | The usual π of trigonometry: approximately 3.141592653... | pi | 
| U+2147 ( ⅇorⅇ) | The base for natural logarithms: approximately 2.718281828... | e | 
| U+2148 ( ⅈorⅈ) | Square root of -1 | i | 
| U+03B3 ( γ) | Euler's constant: approximately 0.5772156649... | gamma | 
| U+221E ( ∞or&infty;) | Infinity. Proper interpretation varies with context | infinity | 
<ci>| Schema Fragment (Strict) | Schema Fragment (Full) | |
|---|---|---|
| Class | Ci | Ci | 
| Attributes | CommonAtt, type? | CommonAtt, type? | 
| typeAttribute Values | "integer", "rational", "real", "complex", "complex-polar" "complex-cartesian", "constant", "function", "vector", "list", "set", "matrix" | string | 
| Qualifiers | BvarQ, DomainQ, degree, momentabout, logbase | |
| Content | text | StringMglyph | PresentationExp | 
Content identifiers represent "mathematical variables" which have properties, but no fixed value, e.g. x and y in the sum expression "x+y" above. Mathematically, we distinguish "bound variables" which are in the scope of a binding construct from "free variables" i.e. ones that are not; see Section 4.2.6.1 Bindings for details.
Content MathML uses the ci element (mnemonic for "content
                     identifier") to construct a variable, i.e. an identifier that is not a symbol. In
                     the sum expression "x+y" above, the variable
                     x would be represented as
                     
                     
                  
<ci>x</ci>
                     
                     After white space normalization the content of a ci element is interpreted as a
                     name that identifies it. Two variables are considered equal, if and only if their names
                     are identical and in the same scope (see Section 4.2.6 Bindings and Bound Variables <bind>
                        and <bvar> for a
                     discussion).
                  
The ci element uses the type attribute to specify the basic type of
                     object that it represents. In Strict Content  MathML, the set of permissible values is
                     "integer", "rational", "real",
                     "complex", "complex-polar",
                     "complex-cartesian", "constant", "function",
                     vector, list, set, and matrix. These values correspond
                     to the symbols 
                     integer_type, 
                     rational_type, 
                     real_type,
                     complex_polar_type,
                     complex_cartesian_type, 
                     constant_type, 
                     fn_type,
                     vector_type,
                     list_type, 
                     set_type, and 
                     matrix_type in the 
                     mathmltypes Content Dictionary: In this sense the following two expressions are considered equivalent: 
                     
                  
<ci type="integer">n</ci>
<semantics>
  <ci>n</ci>
  <annotation-xml cd="mathmltypes" name="type" encoding="MathML Content">
    <csymbol cd="mathmltypes">integer_type</csymbol>
  </annotation-xml>
</semantics><ci>The ci element allows any string value for the type
                     attribute, in particular any of the names of the MathML container elements or their type
                     values.
                  
Mapping to Strict Content MathML
In Strict Content, type attributes are represented via semantic attribution. An expression of the form
<ci type=""></ci>
is rewritten to
<semantics> <ci></ci> <annotation-xml cd="mathmltypes" name="type" encoding="MathML Content"> <ci></ci> </annotation-xml> </semantics>
 For a more advanced treatment of types, the type attribute is
                     inappropriate.  Advanced types require significant structure of their own (for example,
                     vector(complex)) and are probably best constructed as mathematical objects and
                     then associated with a MathML expression through use of the semantics
                     element. See Section 4.2.8.1 Semantic annotations for an example and
                     [MathMLTypes] for more examples.
                  
In addition to the forms described above, the ci and element can contain
                     mglyph elements to refer to characters not currently available in Unicode, or a
                     general presentation construct (see Section 3.1.9 Summary of Presentation Elements), which is used for
                     rendering (see Section 4.1.2 The Structure and Scope of Content MathML Expressions).
                  
An ci expression with non-text content of the form 
                        
                     
<ci>  </ci>is transformed to Strict Content MathML by rewriting it to
<semantics> <ci></ci> <annotation-xml encoding="MathML Presentation"> </annotation-xml> </semantics>
                        Where the identifier name (which has to be a text string) should be
                        determined from the presentation MathML content, in a system defined way, perhaps as
                        in the above example by taking the character data of the element, ignoring any element
                        markup.  Systems doing such rewriting should ensure that constructs using the same
                        Presentation MathML content are rewritten to semantics elements using the
                        same ci, and that conversely constructs that use different MathML should be
                        rewritten to different identifier names (even if the Presentation MathML has  the same character data).
                        
                     
The following example encodes an atomic symbol that displays visually as C2 and that, for purposes of content, is treated as a single symbol
<ci> <msup><mi>C</mi><mn>2</mn></msup> </ci>
The Strict Content MathML equivalent is
<semantics>
  <ci>C2</ci>
  <annotation-xml encoding="MathML Presentation">
    <msup><mi>C</mi><mn>2</mn></msup>
  </annotation-xml>
</semantics>Sample Presentation
<msup><mi>C</mi><mn>2</mn></msup>
If the content of a ci element consists of Presentation MathML, that
                     presentation is used. If no such tagging is supplied then the text
                     content is rendered as if it were the content of an mi element. If an
                     application supports bidirectional text rendering, then the rendering follows the
                     Unicode bidirectional rendering.
                  
The type attribute can be interpreted to
                     provide rendering information. For example in
                     
                  
<ci type="vector">V</ci>
a renderer could display a bold V for the vector.
<csymbol>| Schema Fragment (Strict) | Schema Fragment (Full) | |
|---|---|---|
| Class | Csymbol | Csymbol | 
| Attributes | CommonAtt, cd | CommonAtt, TypeAtt?, cd?, | 
| Content | Name | StringMglyph | PresentationExp | 
| Qualifiers | BvarQ, DomainQ, degree, momentabout, logbase | 
Content MathML makes a crucial semantic distinction between a function itself and
                  the expression resulting from applying that function to zero or more arguments. This
                  is addressed by making functions self-contained objects with their own properties
                  and providing an explicit apply construct corresponding to function
                  application. We will consider the apply construct in the
                  next section.
               
In the sum expression "x+y" above, x and y are typically taken to be "variables", since they have properties, but no fixed value, whereas the addition function is a "constant" or "symbol" as it denotes a specific function, which is defined somewhere externally. Note that the term "symbol" is used here in the abstract sense and has no connection with any presentation of the construct on screen or paper. These are handled by the infrastructure in Chapter 3 Presentation Markup.
A csymbol is used to refer to a specific, mathematically-defined concept with
                     an external definition referenced via attributes.  Conceptually, a reference to an
                     external definition is merely a URI, i.e. a label uniquely identifying the definition.
                     However, to be useful for communication between user agents, external definitions must be
                     shared.  For this reason, over the years several efforts have been organized to develop
                     systematic, public repositories of mathematical definitions.  Of these, the ongoing
                     development of OpenMath Content Dictionaries (CDs) is the most open and extensive, and in
                     MathML 3, OpenMath CDs are the preferred source of external definitions. In particular,
                     the definitions of pre-defined MathML 3 operators and functions are given in terms of
                     OpenMath CDs.
                  
MathML 3 provides two mechanisms for referencing external definitions or content
                     dictionaries.  The first, using the cd attribute, follows conventions
                     established by OpenMath specifically for referencing CDs.  The second, using the
                     definitionURL attribute, is backward compatible with MathML 2, and can be used
                     to reference CDs or any other source of definitions that can be identified by a URI.
                  
When referencing OpenMath CDs, the preferred method is to use the cd
                     attribute as follows. Abstractly, OpenMath symbol definitions are identified by a triple
                     of values: a symbol name, a CD name, and a CD base,
                     which is a URI that disambiguates CDs of the same name.  To associate such a triple with a
                     csymbol, the content of the csymbol specifies the symbol name, and the
                     name of the Content Dictionary is given using the cd attribute. The CD base is
                     determined either from the document embedding the math element which contains the
                     csymbol by a mechanism given by the embedding document format, or by system
                     defaults, or by the cdgroup attribute , which is optionally specified on the
                     enclosing math element; see Section 2.2.1 Attributes. In the absence
                     of specific information http://www.openmath.org/cd is assumed as the CD base
                     for all csymbol elements annotation, and annotation-xml.  This
                     is the CD base for the collection of standard CDs maintained by the OpenMath Society.
                  
The cdgroup specifies a URL to an OpenMath CD Group file.  For a detailed
                     description of the format of a CD Group file, see Section 4.4.2 (CDGroups) 
                     in [OpenMath2004].  Conceptually, a CD group file is a list of
                     pairs consisting of a CD name, and a corresponding CD base. When a csymbol
                     references a CD name using the cd attribute, the name is looked up in the CD
                     Group file, and the associated CD base value is used for that csymbol. When a CD
                     Group file is specified, but a referenced CD name does not appear in the group file, or
                     there is an error in retrieving the group file, the referencing csymbol is not
                     defined.  However, the handling of the resulting error is not defined, and is the
                     responsibility of the user agent.
                  
While references to external definitions are URIs, it is strongly recommended that CD files be retrievable at the location obtained by interpreting the URI as a URL. In particular, other properties of the symbol being defined may be available by inspecting the Content Dictionary specified. These include not only the symbol definition, but also examples and other formal properties. Note, however, that there are multiple encodings for OpenMath Content Dictionaries, and it is up to the user agent to correctly determine the encoding when retrieving a CD.
<csymbol>In addition to the forms described above, the csymbol and element can contain
                     mglyph elements to refer to characters not currently available in Unicode, or a
                     general presentation construct (see Section 3.1.9 Summary of Presentation Elements), which is used for
                     rendering (see Section 4.1.2 The Structure and Scope of Content MathML Expressions).
                  
External definitions (in OpenMath CDs or elsewhere) may also be specified directly for
                     a csymbol using the definitionURL attribute.  When used to reference
                     OpenMath symbol definitions, the abstract triple of (symbol name, CD name, CD base) is
                     mapped to a fully-qualified URI as follows:
                     
                     
                  
URI =cdbase+ '/' +cd-name+ '#' +symbol-name
For example,
(plus, arith1, http://www.openmath.org/cd)
is mapped to
http://www.openmath.org/cd/arith1#plus| Editorial note | |
| MiKo: I thought we got rid of cdbase (David: it's not an attribute, but is in the abstract openmath model) | |
                     
                     The resulting URI is specified as the value of the definitionURL attribute.
                  
This form of reference is useful for backwards compatibility with MathML2 and to
                     facilitate the use of Content MathML within URI-based frameworks (such as RDF [rdf] in the Semantic Web or OMDoc [OMDoc1.2]).  Another benefit is
                     that the symbol name in the CD does not need to correspond to the content of the
                     csymbol element.  However, in general, this method results in much longer MathML
                     instances.  Also, in situations where CDs are under development, the use of a CD Group
                     file allows the locations of CDs to change without a change to the markup.  A third
                     drawback to definitionURL is that unlike the cd attribute, it is not
                     limited to referencing symbol definitions in OpenMath content dictionaries.  Hence, it is
                     not in general possible for a user agent to automatically determine the proper
                     interpretation for definitionURL values without further information about the
                     context and community of practice in which the MathML instance occurs.
                  
Both the cd and definitionURL mechanisms of external reference
                     may be used within a single MathML instance.  However, when both a cd and a
                     definitionURL attribute are specified on a single csymbol, the
                     cd attribute takes precedence.
                  
If the content of a csymbol element is tagged using presentation tags,
                     that presentation is used. If no such tagging is supplied then the text
                     content is rendered as if it were the content of an mi element. In
                     particular if an application supports bidirectional text rendering, then the
                     rendering follows the Unicode bidirectional rendering.
                  
<cs>| Schema Fragment | |
|---|---|
| Class | Cs | 
| Attributes | CommonAtt | 
| Content | text | 
The cs element encodes "string literals"
                  which may be used in Content MathML expressions.
               
The content of cs is text. Unlike other token elements cs may not contain mglyph or other Presentation MathML constructs, and the content does not undergo white space normalisation.
               
Content MathML
<set> <cs>A</cs><cs>B</cs><cs> </cs> </set>
Sample Presentation
<mrow>
 <mo>{</mo>
 <ms>A</ms>
 <mo>,</mo>
 <ms>B</ms>
 <mo>,</mo>
 <ms>  </ms>
 <mo>}</mo>
</mrow><apply>| Schema Fragment (Strict) | Schema Fragment (Full) | |||
|---|---|---|---|---|
| Class | Apply | Apply | ||
| Attributes | CommonAtt | CommonAtt | ||
| Content | ContExp+ | ContExp+ | ContExp, BVar, Qualifier?, ContExp+ | ||
The most fundamental way of building a compound object in mathematics is by applying a function or an operator to some arguments.
In MathML, the apply element is used to build an expression tree that
                     represents the result of applying a function or operator to its arguments. The
                     resulting tree corresponds to a complete mathematical expression. Roughly
                     speaking, this means a piece of mathematics that could be surrounded by
                     parentheses or "logical brackets" without changing its meaning.
                  
For example, (x + y) might be encoded as
<apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>
                     
                     The opening and closing tags of apply specify exactly the scope of any
                     operator or function. The most typical way of using apply is simple and
                     recursive. Symbolically, the content model can be described as:
                     
                     
                  
<apply> op [ ab ...] </apply>
                     
                     where the operands a, b, ... are MathML
                     expression trees themselves, and op is a MathML expression tree that
                     represents an operator or function. Note that apply constructs can be
                     nested to arbitrary depth.
                  
An apply may in principle have any number of operands. For example,
                     (x + y + z) can be encoded as
                     
                     
                  
<apply><csymbol cd="arith1">plus</csymbol> <ci>x</ci> <ci>y</ci> <ci>z</ci> </apply>
                     Note that MathML also allows applications without operands, e.g. to represent functions like random(), or  current-date().
                  
Mathematical expressions involving a mixture of operations result in nested
                     occurrences of apply. For example, a x + b
                     would be encoded as
                     
                     
                  
<apply><csymbol cd="arith1">plus</csymbol>
  <apply><csymbol cd="arith1">times</csymbol>
    <ci>a</ci>
    <ci>x</ci>
  </apply>
  <ci>b</ci>
</apply>There is no need to introduce parentheses or to resort to
                     operator precedence in order to parse expressions correctly. The
                     apply tags provide the proper grouping for the re-use
                     of the expressions within other constructs. Any expression
                     enclosed by an apply element is well-defined, coherent
                     object whose interpretation does not depend on the surrounding
                     context.  This is in sharp contrast to presentation markup,
                     where the same expression may have very different meanings in
                     different contexts.  For example, an expression with a visual
                     rendering such as (F+G)(x)
                     might be a product, as in
                     
                     
                  
<apply><csymbol cd="arith1">times</csymbol>
  <apply><csymbol cd="arith1">plus</csymbol>
    <ci>F</ci>
    <ci>G</ci>
  </apply>
  <ci>x</ci>
</apply>or it might indicate the application of the function F + G to the argument x. This is indicated by constructing the sum
<apply><csymbol cd="arith1">plus</csymbol><ci>F</ci><ci>G</ci></apply>
and applying it to the argument x as in
<apply>
  <apply><csymbol cd="arith1">plus</csymbol>
    <ci>F</ci>
    <ci>G</ci>
  </apply>
  <ci>x</ci>
</apply>
                     
                     In both cases, the interpretation of the outer apply is
                     explicit and unambiguous, and does not change regardless of
                     where the expression may be reused.
                  
The preceding example also illustrates that in an
                     apply construct, both the function and the arguments
                     may be simple identifiers or more complicated expressions.
                  
The apply element is conceptually necessary in order to distinguish
                     between a function or operator, and an instance of its use. The expression
                     constructed by applying a function to 0 or more arguments is always an element from
                     the codomain of the function. Proper usage depends on the operator that is being
                     applied. For example, the plus operator may have zero or more arguments,
                     while the minus operator requires one or two arguments in order to be properly
                     formed.
                  
Strict Content MathML applications are rendered as mathematical function applications:
If    is the rendering of
                           and 
                          
                        those of
                          .
                     
<apply> </apply>
Sample Presentation
<mrow> <mo>⁡</mo> <mrow> <mo fence="true">(</mo> <mo separator="true">,</mo> <mo separator="true">,</mo> <mo separator="true">,</mo> <mo fence="true">)</mo> </mrow> </mrow>
MathML applications may be used with qualifiers. In the absence of
                     any more specific rendering rules, the proposed presentation in such
                     cases is to follow the layout used for sum. So for
                     example:
                  
Content MathML
<apply> <bvar> </bvar> <domainofapplication> </domainofapplication> </apply>
Sample Presentation
<mrow> <munder> <mrow> <mo>∈</mo> </mrow> </munder> <mo>⁡</mo> <mrow> <mo fence="true">(</mo> <mo fence="true">)</mo> </mrow> </mrow>
<bind>
                  and <bvar>Many complex mathematical expressions are constructed with the use of bound variables, and bound variables are an important concept of logic and formal languages. Variables become bound in the scope of an expression through the use of a quantifier. Informally, they can be thought of as the "dummy variables" in expressions such as integrals, sums, products, and the logical quantifiers "for all" and "there exists". A bound variable is characterized by the property that systematically renaming the variable (to a name not already appearing in the expression) does not change the meaning of the expression.
| Schema Fragment (Strict) | Schema Fragment (Full) | |
|---|---|---|
| Class | Bind | Bind | 
| Attributes | CommonAtt | CommonAtt | 
| Content | ContExp, BVar*, ContExp | ContExp, BVar*, Qualifier*, ContExp+ | 
Binding expressions are represented as MathML expression trees using the bind
                     element. Its first child is a MathML expression that represents a binding operator (the
                     integral operator in our example). This is followed by a non-empty list of bvar
                     elements denoting the bound variables, and then the final child which is a general
                     Content MathML expression, known as the body of the binding.
                  
| Schema Fragment (Strict) | Schema Fragment (Full) | |
|---|---|---|
| Class | BVar | BVar | 
| Attributes | CommonAtt | CommonAtt | 
| Content | AnnVar | AnnVar,degree | degree,AnnVar | 
The bvar element is used to denote the bound variable of a binding
                     expression, e.g. in sums, products, and quantifiers or user defined functions.
                  
The content of a bvar element is an annotated variable,
                     i.e. either a content identifier represented by a ci element or a
                     semantics element whose first child is an annotated variable. The
                     name of an annotated variable of the second kind is the name of its first
                     child. The name of a bound variable is that of the annotated variable
                     in the bvar element.
                  
Bound variables are identified by comparing their names. Such
                     identification can be made explicit by placing an id on the ci
                     element in the bvar element and referring to it using the xref
                     attribute on all other instances.  An example of this approach is
                     
                     
                  
<bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci id="var-x">x</ci></bvar>
  <apply><csymbol cd="relation1">lt</csymbol>
    <ci xref="var-x">x</ci>
    <cn>1</cn>
  </apply>
</bind>
                     
                     This id based approach is especially helpful when constructions
                     involving bound variables are nested.
                  
It is sometimes necessary to associate additional
                     information with a bound variable.  The information might be
                     something like a detailed mathematical type, an alternative
                     presentation or encoding or a domain of application.  Such
                     associations are accomplished in the standard way by replacing
                     a ci element (even inside the bvar element)
                     by a semantics element containing both the ci
                     and the additional information.  Recognition of an instance of
                     the bound variable is still based on the actual ci
                     elements and not the semantics elements or anything
                     else they may contain.  The id based-approach
                     outlined above may still be used.
                  
The following example encodes forall x. x+y=y+x.
<bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="relation1">eq</csymbol>
    <apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>
    <apply><csymbol cd="arith1">plus</csymbol><ci>y</ci><ci>x</ci></apply>
  </apply>
</bind>In non-Strict Content markup, the bvar element is used in
                     a number of idiomatic constructs.  These are described in Section 4.3.3 Qualifiers and Section 4.4 Content MathML for Specific Operators and Constants.
                  
It is a defining property of bound variables that they can be renamed
                     consistently in the scope of their parent bind element. This operation, sometimes known as α-conversion,
                     preserves the semantics of the expression.
                  
A bound variable x may be renamed to say y so long as y does not occur free in the body of the binding, or in any annotations of the bound variable, x to be renamed, or later bound variables.
If a bound variable x is renamed, all free occurrences of x in annotations in its bvar element, any following bvar children of the bind and in the expression in the body of the bind should be renamed.
                  
In the example in the previous section, note how renaming x to z produces the equivalent expression forall z. z+y=y+z, whereas x may not be renamed to y, as y is free in the body of the binding and would be captured, producing the expression forall y. y+y=y+y which is not equivalent to the original expression.
If 
                        and
                        are Content MathML expressions
                     that render as the Presentation MathML expressions
                        and
                       
                     then the sample rendering of a binding element is as follows:
                  
Content MathML
<bind> <bvar> </bvar> <bvar> </bvar> <bvar> </bvar> </bind>
Sample Presentation
<mrow> <mrow> <mo separator="true">,</mo> <mo separator="true">,</mo> </mrow> <mo separator="true">.</mo> </mrow>
<share>To conserve space in the XML encoding, MathML expression trees can make use of structure sharing.
share element
                  | Schema Fragment | ||
|---|---|---|
| Class | Share | |
| Attributes | CommonAtt, href | |
| hrefAttribute Values | URI | |
| Content | Empty | |
The share element has an href attribute used to
                     to reference a MathML expression tree. The value of the
                     href attribute is a URI specifying the id
                     attribute of the root node of the expression tree.  When building a  
                     MathML expression tree, the share element is replaced by a copy of the MathML
                     expression tree referenced by the href attribute. Note that this copy is
                     structurally equal, but not identical to the element referenced. The
                     values of the share will often be relative URI references, in which case they
                     are resolved using the base URI of the document containing the share element.
                     
                  
For instance, the mathematical object f(f(f(a,a),f(a,a)),f(f(a,a),f(a,a))) can be encoded as either one of the following representations (and some intermediate versions as well).
| 
<apply><ci>f</ci>
  <apply><ci>f</ci>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
  </apply>
  <apply><ci>f</ci>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
  </apply>
</apply> | 
<apply><ci>f</ci>
  <apply id="t1"><ci>f</ci>
    <apply id="t11"><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
    <share href="#t11"/>
  </apply>
  <share href="#t1"/>
</apply> | 
Say that an element dominates all its children and all
                     elements they dominate. Say also that a
                     share element dominates its target, i.e. the element that carries the
                     id attribute pointed to by the href attribute. For instance in the
                     representation on the right above, the apply element with id="t1" and also the
                     second share (with href="t11") both dominate the
                     apply element with id="t11".
                  
The occurrences of the share element must obey the following global
                     acyclicity constraint: An element may not dominate itself. For example, the
                     following representation violates this constraint:
                     
                     
                  
<apply id="badid1"><csymbol cd="arith1">divide</csymbol>
  <cn>1</cn>
  <apply><csymbol cd="arith1">plus</csymbol>
    <cn>1</cn>
    <share href="#badid1"/>
  </apply>
</apply>Here, the apply element with id="foo" dominates its third child,
                     which dominates the share element, which dominates its target: the element with
                     id="foo". So by transitivity, this element dominates itself. By the
                     acyclicity constraint, the example is not a valid MathML expression tree. It
                     might be argued that such an expression could be given the interpretation of the continued fraction
                      .
                     However, the procedure of building an expression tree by replacing
.
                     However, the procedure of building an expression tree by replacing
                     share element does not terminate for such an
                     expression, and hence such expressions are not allowed by Content MathML.
                  
Note that the acyclicity constraints is not restricted to such simple cases, as the following example shows:
<apply id="bar"> <apply id="baz"> <csymbol cd="arith1">plus</csymbol> <csymbol cd="arith1">plus</csymbol> <cn>1</cn> <cn>1</cn> <share href="#baz"/> <share href="#bar"/> </apply> </apply>
                     
                     Here, the apply with id="bar" dominates its third child, the
                     share with href="#baz".  That element dominates its target apply
                     (with id="baz"), which in turn dominates its third child, the share
                     with href="#bar". Finally, the share with
                     href="#bar" dominates its target, the original 
                     apply element with id="bar". So this pair of representations
                     ultimately violates the acyclicity constraint.
                  
Note that the share element is a syntactic referencing mechanism:
                     a share element stands for the exact element it points to. In particular,
                     referencing does not interact with binding in a semantically intuitive way, since it
                     allows a phenomenon called variable capture to
                     occur. Consider an example:
                     
                     
                  
<bind id="outer"><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><ci>f</ci>
    <bind id="inner"><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <share id="copy" href="#orig"/>
    </bind>
    <apply id="orig"><ci>g</ci><ci>x</ci></apply>
  </apply>
</bind>
                     
                     This represents a term
                      which has two sub-terms of the form
                     which has two sub-terms of the form
                      ,
                     one with
,
                     one with id="orig"
                     (the one explicitly represented) and one with id="copy",
                     represented by the share element.
                     In the original, explicitly-represented term,
                     the variable x is bound by the 
                     outer bind element.
                     However, in the copy, the variable x is
                     bound by the inner bind element.
                     One says that the inner bind
                     has captured the variable x.
                  
Using references that capture variables in this way can easily lead to representation
                     errors, and is not recommended.  For instance, using
                     α-conversion to rename the inner occurrence of x
                     into, say, y leads to the semantically equivalent expression
                      .  
                     However, in this form, it is no longer possible to share the expression
.  
                     However, in this form, it is no longer possible to share the expression
                      .
                     Replacing x with y in the inner
.
                     Replacing x with y in the inner
                     bvar without replacing the share element results in a change
                     in semantics.
                  
semantics| Schema Fragment (Strict) | Schema Fragment (content MathML) | |||
|---|---|---|---|---|
| Class | Semantics | Semantics | ||
| Attributes | definitionURL?, encoding? | |||
| Content | ContExp, (annotation | annotation-xml)* | ContExp, (annotation | annotation-xml)* | ||
Content elements can be adorned with additional information via the
                  semantics element. An annotation decorates a Content MathML
                  expression with a sequence of one or more semantic annotations. MathML uses the
                  semantics element to wrap the annotated element and the
                  annotation-xml and annotation elements for representing the
                  annotations themselves.
               
| Schema Fragment (Strict) | Schema Fragment (content MathML) | |||
|---|---|---|---|---|
| Class | Annotation | Annotation | ||
| Attributes | cd name href? | definitionURL? encoding? cd? name? href? clipboardflavor? | ||
| Content | text | text | ||
| Schema Fragment (Strict) | Schema Fragment (content MathML) | |||
|---|---|---|---|---|
| Class | AnnotationXML | AnnotationXML | ||
| Attributes | cd name href? | definitionURL? encoding? cd? name? href? clipboardflavor? | ||
| Content | ANY | ANY | ||
As such, the semantics element should be considered part of both
                  presentation MathML and Content MathML. MathML considers a semantics element
                  (strict) Content MathML, if and only if its first child is (strict) Content MathML.
                  All MathML processors should process the semantics element, even if they only
                  process one of those subsets.
               
Each annotation has cd, and name attributes to specify the
                  key, i.e. a symbol that specifies the relation between the annotated
                  object and the annotation; See Section 5.1 Semantic Annotations for
                  details.
               
An annotation acts as either adornment annotation or as semantic annotation, depending on the role of the key symbol is given by its content dictionary
When the key has role "semantic-attribution" then the annotated object is modified by the annotation and dropping it changes the semantics.
An example of the use of a semantic attribution would be to indicate the type of an object. For example the following expression associates with an identifier F the information that it represents an operator that takes real numbers as input and returns natural numbers as values (the absolute value function is an example of such a function).
<semantics>
  <ci>F</ci>
  <annotation-xml cd="mathmltypes" name="type" encoding="MathML Content">
    <apply><csymbol cd="mathmltypes">fun_type</csymbol>
      <csymbol cd="setname1">Z</csymbol>
      <csymbol cd="setname1">N</csymbol>
    </apply>
  </annotation-xml>
</semantics>
                     
                     Here we have assumed the existence of a content dictionary types that
                     provides a key symbol type that specifies that the attributed
                     expression is of the type specified by the Content MathML expression in the
                     annotation-xml element. The key is specified by the cd and
                     name attributes in the attribution-xml element.  The
                     encoding attribute on the annotation-xml element specifies the
                     format of the XML data. 
                  
When the key symbol has role "attribution" in the content dictionary, then an annotation with this key is an adornment annotation and dropping the annotation is not harmful and preserves the semantics. If the key symbol lacks the role specification then attribution is acting as adornment annotation.
An example of the use of an adornment attribution would be to indicate the color in which a Content MathML expression A should be displayed, for example
<semantics> <annotation-xml cd="display" name="color" encoding="MathML Presentation"> </annotation-xml> </semantics>
Note red are arbitrary representations whereas the key is a symbol.
The default rendering of a semantics element is the default rendering of
                     its first child possibly augmented with default renderings of the semantic annotations
                     depending on the key symbol; adornment annotations are not rendered by default.
                  
When a Presentation MathML annotation is provided, a MathML renderer may optionally use this information to render the MathML construct. This would typically be the case when the first child is a MathML content construct and the annotation is provided to give a preferred rendering differing from the default for the content elements.
<cerror>| Schema Fragment (Strict) | ||
|---|---|---|
| Class | Error | |
| Attributes | CommonAtt | |
| Content | Symbol, ContExp* | |
A content error expression is made up of a symbol and a sequence of zero or more
                  MathML expression trees. The initial symbol indicates the kind of
                  error. The cerror object has no direct mathematical meaning.  Errors occur
                  as the result of some action performed on an expression tree and are thus of real interest only
                  when some sort of communication is taking place. Errors may occur inside other objects
                  and also inside other errors.
               
As an example, to encode a division by zero error, one might
                  employ a hypothetical aritherror Content Dictionary
                  with a DivisionByZero symbol, as in the following
                  expression tree:
                  
                  
               
<cerror> <csymbol cd="aritherror">DivisionByZero</csymbol> <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply> </cerror>
                  
                  Note that error markup generally should enclose only the smallest
                  erroneous sub-expression.  Thus a cerror will often be a sub-expression of
                  a bigger one, e.g.
                  
                  
               
<apply><csymbol cd="relation1">eq</csymbol>
  <cerror>
    <csymbol cd="aritherror">DivisionByZero</csymbol>
    <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
  </cerror>
  <cn>0</cn>
</apply>If an application wishes to signal that a Content MathML expression it has received is syntactically invalid or is not well-formed, the offending data must be encoded as a string. For example:
<cerror> <csymbol cd="parser">invalid_XML</csymbol> <mtext> <apply><cos> <ci>v</ci> </apply> </mtext> </cerror>
                  
                  Note that the < and > characters have been escaped as
                  is usual in an XML document.
                  
               
                  The default presentation of a cerror element is a merror expression,
                  where the first child of the merror is a presentation of the first child of the
                  cerror expression and and the remaining children are passed on for reference. For
                  instance the presentation of the example above could be 
                  
                  
               
<merror> <mtext>Division by zero</mtext> <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply> </merror>
| Editorial note | |
| David: shouldn't this be as below, with slight wording changes in the above para to match? should probably be made into a "boxed triple, cerror, merror and an image so the pmml and image can be mechanically checked. | |
<merror> <mtext>Division by zero: <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn> </apply> </mtext> </merror>
<cbytes>| Schema Fragment | |
|---|---|
| Class | Cbytes | 
| Attributes | CommonAtt | 
| Content | base64 | 
The content of cbytes represents a stream of bytes as a
                  sequence of characters in Base64 encoding, that is it matches the
                  base64Binary data type defined in [XMLSchemaDatatypes]. All white space is ignored.
               
The cbytes element is mainly used for OpenMath
                  compatibility, but may be used, as in OpenMath, to encapsulate output
                  from a system that may be hard to encode in MathML, such as binary
                  data relating to the internal state of a system, or image data.
               
The rendering of cbytes is not expected to represent the
                  content and the proposed rendering is that of an empty
                  mrow. Typically cbytes is used in an
                  annotation-xml or is itself annotated with Presentation
                  MathML, so this default rendering should rarely be used.
               
The elements of Strict Content MathML described in the previous section are sufficient to encode logical assertions and expression structure, and they do so in a way that closely models the standard constructions of mathematical logic that underlie the foundations of mathematics. As a consequence, Strict markup can be used to represent all of mathematics, and is ideal for providing consistent mathematical semantics for all Content MathML expressions.
At the same time, many notational idioms of mathematics are not straightforward to represent directly with Strict Content markup. For example, standard notations for sums, integrals, sets, piecewise functions and many other common constructions require non-obvious technical devices, such as the introduction of lambda functions, to rigorously encode them using Strict markup. Consequently, in order to make Content MathML easier to use, a range of additional elements have been provided for encoding such idiomatic constructs more directly. This section discusses the general approach for encoding such idiomatic constructs, and their Strict Content equivalents. Specific constructions are discussed in detail in Section 4.4 Content MathML for Specific Operators and Constants.
Most idiomatic constructions which Content markup addresses fall
               into about a dozen classes.  Some of these classes, such as container elements, have
               their own syntax. Similarly, a small number of non-Strict
               constructions involve a single element with an exceptional syntax,
               for example partialdiff. These exceptional elements are
               discussed on a case-by-case basis in Section 4.4 Content MathML for Specific Operators and Constants. However, the majority of constructs consist of
               classes of operator elements which all share a particular usage of
               qualifiers.
               These classes of operators are described in Section 4.3.4 Operator Classes.
            
In all cases, non-Strict expressions may be rewritten using only Strict markup. In most cases, the transformation is completely algorithmic, and may be automated. Rewrite rules for classes of non-Strict constructions are introduced and discussed later in this section, and rewrite rules for exceptional constructs involving a single operator are given in Section 4.4 Content MathML for Specific Operators and Constants. The complete algorithm for rewriting arbitrary Content MathML as Strict Content markup is summarized at the end of the Chapter in Section 4.6 The Strict Content MathML Translation.
Many mathematical structures are constructed from subparts or parameters. The motivating example is a set. Informally, one thinks of a set as a certain kind of mathematical object that contains a collection of elements. Thus, it is intuitively natural for the markup for a set to contain, in the XML sense, the markup for its constituent elements. This style of representation is termed container markup in MathML. By contrast, Strict markup typically represents an instance of a set as the result of applying a function (or more generally a constructor symbol) to arguments.
While the two approaches are formally equivalent, container markup is generally more intuitive for non-expert authors to use, while Strict markup is preferable is contexts where semantic rigor is paramount. In addition, MathML 2 relied on container markup, and thus container markup is necessary in cases where backward compatibility is required.
MathML provides container markup for the following mathematical
                  constructs: sets, lists, intervals, vectors, matrices (two
                  elements), piecewise functions (three elements) and lambda
                  functions.  There are corresponding constructor symbols in Strict
                  markup for each of these, with the exception of lambda functions,
                  which correspond to binding symbols in Strict markup. Note that in
                  MathML 2, the term "container markup" was also taken to include
                  token elements, and the deprecated declare, fn
                  and reln elements, but MathML 3 limits usage of the term
                  to the above constructs.
               
The rewrite rules for obtaining equivalent Strict Content markup from container markup depend on the operator class of the particular operator involved. For details about a specific container element, obtain its operator class (and any applicable special case information) by consulting the syntax table and discussion for that element in Section 4.4 Content MathML for Specific Operators and Constants. Then apply the rewrite rules for that specific operator class as described in Section 4.3.4 Operator Classes.
The arguments to container elements corresponding to
                     constructors may either be explicitly given as a sequence of child
                     elements, or they may be specified by a rule using qualifiers. The
                     only exceptions are the piecewise, piece, and
                     otherwise elements used for representing functions with
                     piecewise definitions.  The
                     arguments of these elements must always be specified
                     explicitly.
                  
Here is an example of container markup with explicitly specified arguments:
<set><ci>a</ci><ci>b</ci><ci>c</ci></set>
This is equivalent to the following Strict Content MathML expression:
<apply><csymbol cd="set1">set</csymbol><ci>a</ci><ci>b</ci><ci>c</ci></apply>
Another example of container markup, where the list of arguments is given indirectly as an expression with a bound variable. The container markup for the set of even integers is:
<set> <bvar><ci>x</ci></bvar> <domainofapplication><integers/></domainofapplication> <apply><times/><cn>2</cn><ci>x</ci></apply> </set>
This may be written as follows in Strict Content MathML:
<apply><csymbol cd="set1">map</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <apply><csymbol cd="arith1">times</csymbol>
      <cn>2</cn>
      <ci>x</ci>
    </apply>
  </bind>
  <csymbol cd="setname1">Z</csymbol>
</apply>The lambda element is a container element
                     corresponding to the lambda symbol
                     in the fns1 Content Dictionary.  However, unlike the
                     container elements of the preceding section, which purely
                     construct mathematical objects from arguments, the lambda
                     element performs variable binding as well.  Therefore, the child
                     elements of lambda have distinguished roles.  In
                     particular, a lambda element must have at least one
                     bvar child, optionally followed by qualifier elements, followed by a
                     Content MathML element. This basic difference between the
                     lambda container and the other constructor container
                     elements is also reflected in the OpenMath symbols to which they
                     correspond.  The constructor symbols have an OpenMath role of
                     "application", while the lambda symbol has a role of "bind".
                  
This example shows the use of lambda container element and the equivalent use of bind in Strict Content MathML
                     
<lambda><bvar><ci>x</ci></bvar><ci>x</ci></lambda>
<bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar><ci>x</ci> </bind>
<apply>MathML allows the use of the apply element to perform
                  variable binding in non-Strict constructions instead of
                  the bind element.  This usage conserves backwards
                  compatibility with MathML 2.  It also simplifies the encoding of
                  several constructs involving bound variables with qualifiers as
                  described below.
               
Use of the apply element to bind variables is allowed
                  in two situations.  First, when the operator to be applied is
                  itself a binding operator, the apply element merely
                  substitutes for the bind element.  The logical quantifiers
                  <forall/>, <exists/> and the
                  container element lambda are the primary examples of this
                  type.
               
The second situation arises when the operator being applied allows the use of bound variables with qualifiers. The most common examples are sums and integrals. In most of these cases, the variable binding is to some extent implicit in the notation, and the equivalent Strict representation requires the introduction of auxiliary constructs such as lambda expressions for formal correctness.
Because expressions using bound variables with qualifiers are
                  idiomatic in nature, and do not always involve true variable
                  binding, one cannot expect systematic renaming (alpha-conversion)
                  of variables "bound" with apply to preserve meaning in
                  all cases.  An example for this is the diff element where
                  the bvar term is technically not bound at all.
               
The following example illustrates the use of apply
                     with a binding operator.  In these cases, the corresponding Strict
                     equivalent merely replaces the apply element with a
                     bind element:
                     
                     
                  
<apply><forall/> <bvar><ci>x</ci></bvar> <apply><geq/><ci>x</ci><ci>x</ci></apply> </apply>
The equivalent Strict expression is:
<bind><csymbol cd="logic1">forall</csymbol> <bvar><ci>x</ci></bvar> <apply><csymbol cd="relation1">geq</csymbol><ci>x</ci><ci>x</ci></apply> </bind>
In this example, the sum operator is not itself a binding operator, but bound variables with qualifiers are implicit in the standard notation, which is reflected in the non-Strict markup. In the equivalent Strict representation, it is necessary to convert the summand into a lambda expression, and recast the qualifiers as an argument expression:
<apply><sum/> <bvar><ci>i</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <uplimit><cn>100</cn></uplimit> <apply><power/><ci>x</ci><ci>i</ci></apply> </apply>
The equivalent Strict expression is:
<apply><csymbol cd="arith1">sum</csymbol>
  <apply><csymbol cd="interval1">integer_interval</csymbol>
    <cn>0</cn>
    <cn>100</cn>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>i</ci></bvar>
    <apply><csymbol cd="arith1">power</csymbol>
      <ci>x</ci>
      <ci>i</ci>
    </apply>
  </bind>
</apply>Many common mathematical constructs involve an operator together with some additional data. The additional data is either implicit in conventional notation, such as a bound variable, or thought of as part of the operator, as is the case with the limits of a definite integral. MathML 3 uses qualifier elements to represent the additional data in such cases.
Qualifier elements are always used in conjunction with operator or container
                  elements.  Their meaning is idiomatic, and depends on the context in which they are
                  used.  When used with an operator, qualifiers always follow the operator and precede
                  any arguments that are present. In all cases, if more than one qualifier is present,
                  they appear in the order bvar, lowlimit, uplimit,
                  interval, condition, domainofapplication, degree,
                  momentabout, logbase.
               
The precise function of qualifier elements depends on the operator or container that they modify. The majority of use cases fall into one of several categories, discussed below, and usage notes for specific operators and qualifiers are given in Section 4.4 Content MathML for Specific Operators and Constants.
<domainofapplication>,
                     <interval>,
                     <condition>,
                     <lowlimit> and
                     <uplimit>The primary use of domainofapplication, interval,
                     uplimit, lowlimit and condition is to
                     restrict the values of a bound variable.  The most general qualifier
                     is domainofapplication. It is used to specify a set (perhaps
                     with additional structure, such as an ordering or metric) over which
                     an operation is to take place. The interval qualifier, and
                     the pair lowlimit and uplimit also restrict a bound
                     variable to a set in the special case where the set is an
                     interval. The condition qualifier, like
                     domainofapplication, is general, and can be used to restrict
                     bound variables to arbitrary sets.  However, unlike the other
                     qualifiers, it restricts the bound variable by specifying a
                     Boolean-valued function of the bound variable.  Thus,
                     condition qualifiers always contain instances of the bound
                     variable, while the other qualifier usually do not.  The other
                     qualifiers may even be used when no variables are being bound, e.g. to
                     indicate the restriction of a function to a subdomain.
                  
In most cases, any of the qualifiers capable of representing the
                     domain of interest can be used interchangeably. The most qualifier
                     general is domainofapplication, and it has a priveledged
                     role. It is the preferred form, unless there are particular idiomatic
                     reasons to use one of the other qualifier, e.g. limits for an
                     integral.  In MathML 3, the other forms are treated as shorthand
                     notations domainofapplication, because they may all be
                     rewritten as equivalent domainofapplication constructions.
                     The rewrite rules to do this given below. The other qualifer elements
                     are provided because they correspond to common notations and map more
                     easily to familiar presentations.  Therefore, in the situations where
                     they naturally arise, they may be more convenient and direct than
                     domainofapplication.  Note, however, that only one of
                     domainofapplication, interval,condition or
                     the pair uplimit and lowlimit should be used in a
                     single expression, since these qualifiers all serve essentially the
                     same purpose.
                  
To illustrate these ideas, consider the following examples showing alternative
                     representations of a definite integral.  Let C denote the interval from 0 to 1,
                     and f(x) = x2. Then
                     domainofapplication could be used express the integral of a f over
                     C in this way:
                     
                     
                  
<apply><int/>
  <domainofapplication>
    <ci type="set">C</ci>
  </domainofapplication>
  <ci type="function">f</ci>
</apply>Note that no explicit bound variable is identified in this encoding. Alternatively, the
                     interval qualifier could be used with an explicit bound variable:
                     
                     
                  
<apply><int/> <bvar><ci>x</ci></bvar> <interval><cn>0</cn><cn>1</cn></interval> <apply><power/><ci>x</ci><cn>2</cn></apply> </apply>
The pair lowlimit and uplimit can also be used.
                     This is perhaps the most "standard" representation of this integral:
                     
                     
                  
<apply><int/> <bvar><ci>x</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <uplimit><cn>1</cn></uplimit> <apply><power/><ci>x</ci><cn>2</cn></apply> </apply>
Finally, here is the same integral, represented using
                     a condition on the bound variable:
                     
                     
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><and/>
      <apply><leq/><cn>0</cn><ci>x</ci></apply>
      <apply><leq/><ci>x</ci><cn>1</cn></apply>
    </apply>
  </condition>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
                     
                     Note the use of the explicit bound variable within the
                     condition term.
                  
The general technique of using a condition element
                     together with domainofapplication is quite powerful.  For
                     example, to extend the previous example to a multivariate domain, one
                     may use an extra bound variable and a domain of application
                     corresponding to a cartesian product:
                     
                     
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <domainofapplication>
    <set>
      <bvar><ci>t</ci></bvar>
      <bvar><ci>u</ci></bvar>
      <condition>
        <apply><and/>
          <apply><leq/><cn>0</cn><ci>t</ci></apply>
          <apply><leq/><ci>t</ci><cn>1</cn></apply>
          <apply><leq/><cn>0</cn><ci>u</ci></apply>
          <apply><leq/><ci>u</ci><cn>1</cn></apply>
        </apply>
      </condition>
      <list><ci>t</ci><ci>u</ci></list>
    </set>
  </domainofapplication>
  <apply><times/>
    <apply><power/><ci>x</ci><cn>2</cn></apply>
    <apply><power/><ci>y</ci><cn>3</cn></apply>
  </apply>
</apply>Note that the order of the inner and outer bound variables is significant.
Mappings to Strict Content MathML
When rewriting expressions to Strict Content MathML, qualifier
                     elements are removed via a series of rules described in this section.
                     The general algorithm for rewriting a MathML expression involving
                     qualifiers proceeds in two steps.  First, constructs using the
                     interval, condition, uplimit and
                     lowlimit qualifiers are converted to constructs using only
                     domainofapplication. Second, domainofapplication
                     expressions are then rewritten as Strict Content markup.
                     
                  
<apply> <bvar> </bvar> <lowlimit> </lowlimit> <uplimit> </uplimit> </apply>
<apply> <bvar> </bvar> <domainofapplication> <apply><csymbol cd="interval1"></csymbol> </apply> </domainofapplication> </apply>
The symbol used in this translation depends on the head of the
                        application, denoted by 
                           here. By default
                        interval should be used (which is
                        explictly for intervals of underdefined properties). However for the
                        predefined eleents on MathML, more specific interval symbols can be
                        used. If the head is int then ordered_interval, for sum and product
                        integer_interval should be used.
                     
The above technique for replacing lowlimit and uplimit qualifiers
                        with a domainofapplication element is also used for replacing the
                        interval qualifier. 
                     
The condition qualifier restricts a bound variable by specifying a
                     Boolean-valued expression on a larger domain, specifying whether a given value is in the
                     restricted domain. The condition element contains a single child that represents
                     the truth condition. Compound conditions are formed by applying Boolean operators such as
                     and in the condition.
                  
To rewrite an expression using the condition
                        qualifier as one using domainofapplication,
                        
                        
                     
<bvar> </bvar> <bvar> </bvar> <condition> </condition>
is rewritten to
<domainofapplication>
  <apply><csymbol cd="set1">suchthat</csymbol>
      
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar>  </bvar>
      <bvar>  </bvar>
        
    </bind>
  </apply>
</domainofapplication>
                        If the apply has a domainofapplication (perhaps originally expressed as
                        interval or an uplimit/lowlimit pair) then that is used for
                          . Otherwise    is a set determined by the type attribute
                        of the bound variable as specified in Section 4.2.2.2 Extended uses of <ci>, if that is
                        present. If the type is unspecified, the translation introduces an unspecified domain via
                        content identifier <ci>R</ci>.
                     
By applying the rules above, expression using the
                     interval, condition, uplimit and
                     lowlimit can be rewritten using only
                     domainofapplication. Once a domainofapplication has
                     been obtained, the final mapping to Strict markup is accomplished
                     using the following rules:
                  
An application of a function that is qualified by the
                        domainofapplication qualifier (expressed by an apply element without
                        bound variables) is converted to an application of a function term constructed with the
                        restriction symbol.
                     
<apply> <domainofapplication> </domainofapplication> </apply>
may be written as:
<apply>
  <apply><csymbol cd="fns1">restriction</csymbol>
      
      
  </apply>
    
    
</apply>In general, an application involving bound variables and (possibly) domainofapplication is rewritten using the following rule, which makes the domain the first positional argument of the application, and uses
                     the lambda symbol to encode the variable bindings. Certain classes of operator have alternative rules, as described below.
                  
A content MathML expression with bound variables and 
                        domainofapplication
                        
                     
<apply> <bvar> </bvar> ... <bvar> </bvar> <domainofapplication> </domainofapplication> ... </apply>
is rewritten to
<apply> <bind><csymbol cd="fns1">lambda</csymbol> <bvar> </bvar> ... <bvar> </bvar> </bind> ... <bind><csymbol cd="fns1">lambda</csymbol> <bvar> </bvar> ... <bvar> </bvar> </bind> </apply>
                        If there is no domainofapplication qualifier the    child is
                        omitted.
                     
<degree>The degree element is a qualifier used to specify the
                     "degree" or "order" of an operation.  MathML uses the
                     degree element in this way in three contexts: to specify the degree of a
                     root, a moment, and in various derivatives. Rather than introduce special elements for
                     each of these families, MathML provides a single general construct, the
                     degree element in all three cases.
                  
Note that the degree qualifier is not used to restrict a bound variable in
                     the same sense of the qualifiers discussed above.  Indeed, with roots and moments, no
                     bound variable is involved at all, either explicitly or implicitly. In the case of
                     differentiation, the degree element is used in conjunction with a
                     bvar, but even in these cases, the variable may not be genuinely bound.
                  
For the usage of degree with the root and moment operators, see the discussion of those
                     operators below. The usage of degree in differentiation is more complex.  In
                     general, the degree element indicates the order of the derivative with
                     respect to that variable. The degree element is allowed as the second child of a
                     bvar element identifying a variable with respect to which the derivative is
                     being taken. Here is an example of a second derivative using the degree
                     qualifier:
                  
<apply><diff/>
  <bvar>
    <ci>x</ci>
    <degree><cn>2</cn></degree>
  </bvar>
  <apply><power/><ci>x</ci><cn>4</cn></apply>
</apply>For details see Section 4.4.4.2 Differentiation <diff/> and Section 4.4.4.3 Partial Differentiation <partialdiff/>.
                  
The Content MathML elements described in detail in the next section may be broadly separated into classes. The class of each element is shown in the syntax table that introduces the element in Section 4.4 Content MathML for Specific Operators and Constants. The class gives an indication of the general intended mathematical usage of the element, and also determines its usage as determined by the schema. The class also determines the applicable rewrite rules for mapping to Strict Content MathML. This section presents the rewrite rules for each of the operator classes.
The rules in this section cover the use cases applicable to
                  specific operator classes.  Special-case rewrite rules for individual
                  elements are discussed in the sections below.  However, the most
                  common usage pattern is generic, and is used by operators from almost all
                  operator classes. It consists of applying an operator to an explicit list
                  of arguments using an apply element.  In these cases,
                  rewriting to Strict Content MathML is simply a matter of replacing the
                  empty element with an appropriate csymbol, as listed in the
                  syntax tables in Section 4.4 Content MathML for Specific Operators and Constants.  This is summarized in
                  the following rule.
               
The corresponding OpenMath symbols for elements in these classes also take an arbitrary number of arguments.
Many MathML operators may be used with an arbitrary number of
                     arguments. In all such cases, either the arguments my be given
                     explictly as children of the apply or bind element, or
                     the list may be specified implictly via the use of qualifier
                     elements.
                  
If the argument list is given explictly, the Rewrite: element rule applies.
Any use of qualifier elements is expressed in Strict Content
                     MathML, via explictly applying the function to a list of arguments
                     using the apply_to_list symbol as shown
                     in the following rule. The rule only considers the
                     domainofapplication qualifier as other qualifiers may be
                     rewritten to domainofapplication as described earlier.
                  
An expression of the following form,
                        where  represents any
                        element of the relevant class and 
                          
                        is an arbitrary expression involving the bound variable(s)
                        
                     
<bvar> </bvar> <domainofapplication> </domainofapplication>
is rewritten to
<csymbol cd="fns2">apply_to_list</csymbol> <csymbol cd=""></csymbol> <csymbol cd="list1">map</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar> </bvar> </bind>
The above rule applies to all symbols in the listed classes.
                     In the  case of nary-set the choice of Content
                     Dictionary to use depends on the type attribute on the
                     symbol, defaulting to set1, but multiset1
                     should be used if type="multiset".
                  
Note: The above rules apply to n-ary constructors such as
                     vector with the syntactic variation that the MathML element
                     uses constructor syntax where the arguments and
                     qualifiers are given as children of the element rather than as
                     children of a containing apply.
                  
The use of set and list follows the same format
                     as other n-ary constructors, however when rewriting to Strict
                     Content MathML a variant of the above rule is used. This is because the map
                     symbol implicitly constructs the required set or list, and apply_to_list is
                     not needed in this case.
                  
An expression of the following form,
                        where  is either of the elements set or list and 
                          
                        is an arbitrary expression involving the bound variable(s)
                        
                     
<bvar> </bvar> <domainofapplication> </domainofapplication>
is rewritten to
<apply><csymbol cd="">map</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar> </bvar> </bind> </apply>
MathML allows allows transative relations to be used with multiple arguments, to give a natural expression to "chains" of relations such as a < b < c < d. However unlike the case of the arithmetic operators, the underlying symbols used in the Strict Content MathML are classed as binary, so it is not possible to use apply_to_list as in the previous section, but instead a similar function predicate_on_list is used, the semantics of which is essentially to take the conjunction of applying the predicate to elements of the domain two at a time.
An expression of the form
<apply> </apply>
rewrites to Strict Content MathML
<apply><csymbol cd="fns2">predicate_on_list</csymbol> <csymbol cd=""></csymbol> <apply><csymbol cd="list1">list</csymbol> </apply> </apply>
An expression of the form
<apply> <bvar> </bvar> <domainofapplication> </domainofapplication> </apply>
                        
                        where
                          
                        is an arbitrary expression invloving the bound variable, rewrites to the Strict Content MathML
                        
                        
                     
<csymbol cd="fns2">predicate_on_list</csymbol> <csymbol cd=""></csymbol> <csymbol cd="list1">map</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar> </bvar> </bind>
The above rules apply to all symbols in classes nary-reln
                     and nary-set-reln. In the latter case the choice of Content
                     Dictionary to use depends on the type attribute on the
                     symbol, defaulting to set1, but multiset1
                     should be used if type="multiset".
                  
The MathML elements, max, min and some satistical
                     elements such as mean may be used  as a n-ary function as in
                     the above classes, however a special interpretation is given in the
                     case that a single argument is supplied. If a single argument is
                     supplied the function is applied to the elements represented by the
                     argument.
                  
The underlying symbol used in Strict Content MathML for these elements is Unary and so if the MathML is used with 0 or more than 1 arguments, the function is applied to the set constructed from the explictly supplied arguments acording to the following rule.
When an element,
                        , of class nary-stats or nary-minmax
                        is applied to an explicit
                        list of  0 or 2 or more arguments,
                               
                     
<apply> </apply>
It is is translated to the unary application of the symbol
                        <csymbol cd="" name=""/>
                        as specified in the syntax table for the element to the set of
                        arguments, constructed using the
                        <csymbol cd="set1" name="set"/>
                        symbol.
                     
<apply><csymbol cd=""></csymbol> <apply><csymbol cd="set1">set</csymbol> </apply> </apply>
Like all MathML n-ary operators, The list of arguments may be specified implictly using qualifier elements. This is expressed in Strict Content MathML using the following rule, which is similar to the rule Rewrite: n-ary domainofapplication but differs in that the symbol can be directly applied to the constructed set of arguments and it is not necessary to use apply_to_list.
An expression of the following form,
                        where  represents any
                        element of the relevant class and 
                          
                        is an arbitrary expression involving the bound variable(s)
                        
                     
<apply> <bvar> </bvar> <domainofapplication> </domainofapplication> </apply>
is rewritten to
<apply><csymbol cd=""></csymbol> <apply><csymbol cd="set1">map</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar> </bvar> </bind> </apply> </apply>
If the element is applied to a single argument the set symbol is not used and the symbol is applied directly to the argument.
When an element,
                        , of class nary-stats or nary-minmax
                        is applied to a single argument,
                     
<apply> </apply>
It is is translated to the unary application of the symbol in the syntax table for the element.
<apply><csymbol cd=""></csymbol> </apply>
Note: Earlier versions of MathML were not explict about the correct interpretation of elements in this class, and left it undefined as to whether an expression such as max(X) was a trivial application of max to a singleton, or whether it should be interpretted as meaning the maximum of values of the set X. Applications finding that the rule Rewrite: n-ary unary single can not be applied as the supplied argument is a scalar may wish to use the rule Rewrite: n-ary unary set as an error recovery. As a further complication, in the case of the statistical functions the Content Dictionary to use in this case depends on the desired interpretation of the argument as a set of explict data or a random variable representing a distribution.
Binary operators take two arguments and simply map to OpenMath symbols without the need of any special rewrite rules. The
                     binary constructor interval is similar but uses constructor syntax in which the arguments are children of the element, and the symbol used depends on
                     the type element as described in Section 4.4.1.1 Interval <interval> 
                  
Binary operators take a single arguments and map to OpenMath symbols without the need of any special rewrite rules.
Constant symbols relate to mathematical constants such as e and true and also to names of sets such as the Real Numbers, and Integers. In most cases they rewrite simply to a single symbol in Strict Content MathML.
The Quantifier class is used for the forall and exists quantifiers
                     of predicate calculus. If used with bind and no qualifiers,
                     then the interpretation in Strict Content MathML is simple. In general
                     if used with apply or qualifiers, the interpretation in
                     Strict Content MathML is via the following rule.
                  
 An expression of following form where
                         denotes an element of
                        class quantifier and 
                          
                        is an arbitrary expression involving the bound variable(s)
                        
                     
<apply> <bvar> </bvar> <domainofapplication> </domainofapplication> </apply>
is rewritten to an expression
<bind><csymbol cd=""></csymbol> <bvar> </bvar> <apply><csymbol cd=""></csymbol> <apply><csymbol cd="set1">in</csymbol> </apply> </apply> </bind>
                        where the symbols
                        <csymbol cd=""></csymbol>
                        and
                        <csymbol cd=""></csymbol>
                        are as specified in the syntax table of the element.
                        (The additional symbol being  
                        and in the case of exists and 
                        implies in the case of forall.) 
                        
                     
This section presents elements representing a core set of mathematical operators, functions and constants. Most are empty elements, covering the subject matter of standard mathematics curricula up to the level of calculus. The remaining elements are container elements for sets, intervals, vectors and so on. For brevity, all elements defined in this section are sometimes called operator elements.
Each subsection below discusses a specific operator element, beginning with a syntax table, giving the elements operator class. Special case rules for rewritting as Strict Markup are introduced as needed. However, in most cases, the generic rewrite rules for the appropriate operator class is sufficient. In particular, unless otherwise indicated, elements are to be rewritten using the default Rewrite: element rule. Note, however, that all elements in this section must be rewritten in some fashion, since they are not allowed in Strict Content markup.
In MathML 2, the definitionURL attribute could be
               used to redefine or modify the meaning of an operator
               element. This use of the definitionURL attribute is deprecated in MathML 3. Instead a
               csymbol element should be used.  In general, the value of
               cd attribute on the csymbol will correspond to
               the definitionURL value.
            
<interval>| Class | interval | 
|---|---|
| Attributes | CommonAtt,closure? | 
| Content | ContExp,ContExp | 
| OM Symbols | interval_cc, interval_oc, interval_co, interval_oo | 
The interval element is a container element used to represent simple mathematical intervals of the
                     real number line.  It takes an optional attribute closure, with a default value
                     of "closed".
                  
Content MathML
<interval closure="open"><ci>x</ci><cn>1</cn></interval>
<interval closure="closed"><cn>0</cn><cn>1</cn></interval>
<interval closure="open-closed"><cn>0</cn><cn>1</cn></interval>
<interval closure="closed-open"><cn>0</cn><cn>1</cn></interval>
Sample Presentation
<mfenced><mi>x</mi><mn>1</mn></mfenced>
<mfenced open="[" close="]"><mn>0</mn><mn>1</mn></mfenced>
<mfenced open="(" close="]"><mn>0</mn><mn>1</mn></mfenced><mfenced open="[" close=")"><mn>0</mn><mn>1</mn></mfenced>
Mapping to Strict Content MathML
In Strict markup, the interval element corresponds to one
                     of four symbols from the interval1 content
                     dictionary. If closure has the value "open" then
                     interval corresponds to the
                     interval_oo.
                     With the value "closed"
                     interval corresponds to the symbol
                     interval_cc,
                     with value "open-closed" to
                     interval_oc, and with
                     "closed-open" to
                     interval_co.
                  
<inverse>| Class | unary-functional | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | inverse | 
The inverse element is applied to a function in order to
                     construct a generic expression for the functional inverse of that
                     function. The inverse element may either be applied to
                     arguments, or it may appear alone, in which case it represents an
                     abstract inversion operator acting on other functions.
                  
Content MathML
<apply><inverse/> <ci> f </ci> </apply>
Sample Presentation
<msup><mi>f</mi><mrow><mo>(</mo><mn>-1</mn><mo>)</mo></mrow></msup>
Content MathML
<apply> <apply><inverse/><ci type="matrix">A</ci></apply> <ci>a</ci> </apply>
Sample Presentation
<mrow> <msup><mi>A</mi><mrow><mo>(</mo><mn>-1</mn><mo>)</mo></mrow></msup> <mo>⁡</mo> <mfenced><mi>a</mi></mfenced> </mrow>
<lambda>| Class | lambda | 
|---|---|
| Attributes | CommonAtt | 
| Content | BvarQ, DomainQ, ContExp | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | lambda | 
The lambda element is used to construct a user-defined
                     function from an expression, bound variables, and qualifiers. In a
                     lambda construct with n (possibly 0) bound variables, the
                     first n children are bvar elements that identify
                     the variables that are used as placeholders in the last child for
                     actual parameter values. The bound variables can be restricted by an
                     optional domainofapplication qualifier or one of its
                     shorthand
                        notations. The meaning of the lambda construct is an
                     n-ary function that returns the expression in the last
                     child where the bound variables are replaced with the respective
                     arguments.
                  
The domainofapplication child restricts the possible
                     values of the arguments of the constructed function. For instance, the
                     following lambda construct represents a function on
                     the integers.
                     
                     
                  
<lambda> <bvar><ci> x </ci></bvar> <domainofapplication><integers/></domainofapplication> <apply><sin/><ci> x </ci></apply> </lambda>
                     
                     If a lambda construct does not contain bound variables, then
                     the lambda construct is superfluous and may be removed,
                     unless it also contains a domainofapplication construct.  
                     In that case, if the last child of the lambda construct is
                     itself a function, then the domainofapplication restricts
                     it's existing functional arguments, as in this example, which is
                     a variant representation for the function above.  
                     
                     
                  
<lambda> <domainofapplication><integers/></domainofapplication> <sin/> </lambda>
  
                     
                     Otherwise, if the last child of the lambda construct is not a
                     function, say a number, then the lambda construct will not be
                     a function, but the same number, and any domainofapplication
                     is ignored.
                  
Content MathML
<lambda>
  <bvar><ci>x</ci></bvar>
  <apply><sin/>
    <apply><plus/><ci>x</ci><cn>1</cn></apply>
  </apply>
</lambda>Sample Presentation
<mrow> <mi>λ</mi> <mi>x</mi> <mo>.</mo> <mfenced> <mrow> <mi>sin</mi> <mo>⁡</mo> <mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow> </mrow> </mfenced> </mrow>
<mrow> <mi>x</mi> <mo>↦</mo> <mrow> <mi>sin</mi> <mo>⁡</mo> <mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow> </mrow> </mrow>
Mapping to Strict Markup
If the lambda element does not contain qualifiers, the
                        lambda expression is directly translated into a bind
                        expression.
                     
<lambda> <bvar> </bvar><bvar> </bvar> </lambda>
rewrites to the Strict Content MathML
<bind><csymbol cd="fns1">lambda</csymbol> <bvar> </bvar><bvar> </bvar> </bind>
If the lambda element does contain qualifiers, the
                        qualifier may be rewritten to domainofapplication
                        and then the lambda expression is translated to a
                        function term constructed with lambda
                        and restricted to the specified domain using 
                        restriction.
                     
<lambda> <bvar> </bvar><bvar> </bvar> <domainofapplication> </domainofapplication> </lambda>
rewrites to the Strict Content MathML
<apply><csymbol cd="fns1">restriction</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar>  </bvar><bvar>  </bvar>
      
  </bind>
    
</apply><compose/>| Class | nary-functional | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | left_compose | 
The compose element represents the function
                     composition operator. Note that MathML makes no assumption about the domain
                     and codomain of the constituent functions in a composition; the domain of the
                     resulting composition may be empty.
                  
The compose element is a commutative n-ary operator.  Consequently, it may be
                     lifted to the induced operator defined on a collection of arguments indexed by a (possibly
                     infinite) set by using qualifier elements as described in Section 4.3.4.1 N-ary Operators.
                     
                  
Content MathML
<apply><compose/><ci>f</ci><ci>g</ci><ci>h</ci></apply>
Sample Presentation
<mrow><mi>f</mi><mo>∘</mo><mi>g</mi><mo>∘</mo><mi>h</mi></mrow>
Content MathML
<apply><eq/>
  <apply>
    <apply><compose/><ci>f</ci><ci>g</ci></apply>
    <ci>x</ci>
  </apply>
  <apply><ci>f</ci><apply><ci>g</ci><ci>x</ci></apply></apply>
</apply>Sample Presentation
<mrow>
 <mrow>
  <mrow><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo></mrow>
  <mo>⁡</mo>
  <mfenced><mi>x</mi></mfenced>
 </mrow>
 <mo>=</mo>
 <mrow>
  <mi>f</mi>
  <mo>⁡</mo>
  <mfenced>
   <mrow>
    <mi>g</mi>
    <mo>⁡</mo>
    <mfenced><mi>x</mi></mfenced>
  </mrow>
 </mfenced>
 </mrow>
</mrow><ident/>| Class | unary-functional | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | identity | 
The ident element represents the
                     identity function. Note that MathML makes no assumption about the
                     domain and codomain of the represented identity function, which
                     depends on the context in which it is used.
                  
Content MathML
<apply><eq/>
  <apply><compose/>
    <ci type="function">f</ci>
    <apply><inverse/>
      <ci type="function">f</ci>
    </apply>
  </apply>
  <ident/>
</apply>Sample Presentation
<mrow> <mrow> <mi>f</mi> <mo>∘</mo> <msup><mi>f</mi><mrow><mo>(</mo><mn>-1</mn><mo>)</mo></mrow></msup> </mrow> <mo>=</mo> <mi>id</mi> </mrow>
<domain/>| Class | unary-functional | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | domain | 
The domain element represents the domain of the
                     function to which it is applied.  The domain is the set of values
                     over which the function is defined.
                  
Content MathML
<apply><eq/> <apply><domain/><ci>f</ci></apply> <reals/> </apply>
Sample Presentation
<mrow> <mrow><mi>domain</mi><mo>⁡</mo><mfenced><mi>f</mi></mfenced></mrow> <mo>=</mo> <mi mathvariant="double-struck">R</mi> </mrow>
<codomain/>| Class | unary-functional | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | range | 
The codomain represents the codomain, or range, of the function
                     to which is is applied.  Note that the codomain is not necessarily
                     equal to the image of the function, it is merely required to contain
                     the image.
                  
Content MathML
<apply><eq/> <apply><codomain/><ci>f</ci></apply> <rationals/> </apply>
Sample Presentation
<mrow> <mrow><mi>codomain</mi><mo>⁡</mo><mfenced><mi>f</mi></mfenced></mrow> <mo>=</mo> <mi mathvariant="double-struck">Q</mi> </mrow>
<image/>| Class | unary-functional | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | image | 
The image element represent the image of
                     the function to which it is applied. The image of a function is the
                     set of values taken by the function. Every point in the image is
                     generated by the function applied to some point of the domain.
                  
Content MathML
<apply><eq/> <apply><image/><sin/></apply> <interval><cn>-1</cn><cn> 1</cn></interval> </apply>
Sample Presentation
<mrow> <mrow><mi>image</mi><mo>⁡</mo><mfenced><mi>sin</mi></mfenced></mrow> <mo>=</mo> <mfenced open="[" close="]"><mn>-1</mn><mn>1</mn></mfenced> </mrow>
<piecewise>, <piece>, <otherwise>)
                  | 
 | 
 piece | 
 otherwise | 
The piecewise, piece, and otherwise elements are used to
                     represent "piecewise" function definitions of the form "
                     H(x) = 0 if x less than 0, H(x) = 1
                     otherwise".
                  
The declaration is constructed using the piecewise element.  This contains
                     zero or more piece elements, and optionally one otherwise element. Each
                     piece element contains exactly two children. The first child defines the value
                     taken by the piecewise expression when the condition specified in the associated
                     second child of the piece is true.  The degenerate case of no piece
                     elements and no otherwise element is treated as undefined for all values of the
                     domain.
                  
The otherwise element allows the specification of a value to be taken by the
                     piecewise function when none of the conditions (second child elements of the
                     piece elements) is true, i.e. a default value.
                  
It should be noted that no "order of execution" is implied by the
                     ordering of the piece child elements within piecewise. It is the
                     responsibility of the author to ensure that the subsets of the function domain defined by
                     the second children of the piece elements are disjoint, or that, where they
                     overlap, the values of the corresponding first children of the piece elements
                     coincide. If this is not the case, the meaning of the expression is
                     undefined.
                  
Mapping to Strict Markup
In Strict Content MathML, the container elements
                     piecewise, piece and otherwise are mapped
                     to applications of the constructor symbols of the same names in the
                     piece1 CD.  Apart from the fact that these three
                     elements (respectively symbols) are used together, the mapping to
                     Strict markup is straightforward:
                  
Content MathML
<piecewise>
  <piece>
    <apply><cn>0</cn></apply>
    <apply><lt/><ci>x</ci><cn>0</cn></apply>
  </piece>
  <piece>
    <cn>1</cn>
    <apply><gt/><ci>x</ci><cn>1</cn></apply>
  </piece>
  <otherwise>
    <ci>x</ci>
  </otherwise>
</piecewise>Strict Content MathML equivalent
<apply><csymbol cd="piece1">piecewise</csymbol>
  <apply><csymbol cd="piece1">piece</csymbol>
    <cn>0</cn>
    <apply><csymbol cd="relation1">lt</csymbol><ci>x</ci><cn>0</cn></apply>  
  </apply>   
  <apply><csymbol cd="piece1">piece</csymbol>
    <cn>1</cn>
    <apply><csymbol cd="relation1">gt</csymbol><ci>x</ci><cn>1</cn></apply>  
  </apply>   
  <apply><csymbol cd="piece1">otherwise</csymbol>
    <ci>x</ci>
  </apply>   
</apply>Here is an example that doesn't use the optional otherwise element:
                  
Content MathML
<piecewise>
  <piece>
    <apply><minus/><ci>x</ci></apply>
    <apply><lt/><ci>x</ci><cn>0</cn></apply>
  </piece>
  <piece>
    <cn>0</cn>
    <apply><eq/><ci>x</ci><cn>0</cn></apply>
  </piece>
  <piece>
    <ci>x</ci>
    <apply><gt/><ci>x</ci><cn>0</cn></apply>
  </piece>
</piecewise>Sample Presentation
<mrow>
 <mo>{</mo>
 <mtable>
  <mtr>
   <mtd><mrow><mo>−</mo><mi>x</mi></mrow></mtd>
   <mtd columnalign="left"><mtext>  if  </mtext></mtd>
   <mtd><mrow><mi>x</mi><mo><</mo><mn>0</mn></mrow></mtd>
  </mtr>
  <mtr>
   <mtd><mn>0</mn></mtd>
   <mtd columnalign="left"><mtext>  if  </mtext></mtd>
   <mtd><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow></mtd>
  </mtr>
  <mtr>
   <mtd><mi>x</mi></mtd>
   <mtd columnalign="left"><mtext>  if  </mtext></mtd>
   <mtd><mrow><mi>x</mi><mo>></mo><mn>0</mn></mrow></mtd>
  </mtr>
 </mtable>
</mrow><quotient/>| Class | binary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | quotient | 
The quotient element represents the integer division
                     operator. When the operator is applied to integer arguments
                     a and b, the result is the "quotient of
                     a divided by b". That is, the quotient
                     of integers a and b, is the integer
                     q such that a = b * q +
                     r, with |r| less than |b| and
                     a * r positive. In common usage, q
                     is called the quotient and r is the remainder. 
                  
Content MathML
<apply><quotient/><ci>a</ci><ci>b</ci></apply>
Sample Presentation
<mrow><mo>⌊</mo><mi>a</mi><mo>/</mo><mi>b</mi><mo>⌋</mo></mrow>
<factorial/>| Class | unary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | factorial | 
This element represents the unary factorial operator on non-negative integers.
The factorial of an integer n is given by n! = n*(n-1)* ... * 1
Content MathML
<apply><factorial/><ci>n</ci></apply>
Sample Presentation
<mrow><mi>n</mi><mo>!</mo></mrow>
<divide/>| Class | binary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | divide | 
The divide element represents the division operator in a
                     number field.
                  
Content MathML
<apply><divide/> <ci>a</ci> <ci>b</ci> </apply>
Sample Presentation
<mrow><mi>a</mi><mo>/</mo><mi>b</mi></mrow>
<max/>| Class | nary-minmax | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ, DomainQ | 
| OM Symbols | max | 
The max element denotes the maximum function, which
                     returns the largest of the arguments to which it is applied.  Its
                     arguments may be explicitly specified in the enclosing
                     apply element, or specified using qualfier elements
                     as described in Section 4.3.4.4 N-ary/Unary Operators.  Note that when applied to
                     infinite sets of arguments, no maximal argument may exist.
                  
Content MathML
<apply><max/><cn>2</cn><cn>3</cn><cn>5</cn></apply>
Sample Presentation
<mrow>
 <mi>max</mi>
 <mrow>
  <mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>}</mo>
 </mrow>
</mrow>Content MathML
<apply><max/>
  <bvar><ci>y</ci></bvar>
  <condition>
    <apply><in/>
      <ci>y</ci>
      <interval><cn>0</cn><cn>1</cn></interval>
    </apply>
  </condition>
  <apply><power/><ci>y</ci><cn>3</cn></apply>
</apply>Sample Presentation
<mrow>
 <mi>max</mi>
 <mrow>
  <mo>{</mo><mi>y</mi><mo>|</mo>
  <mrow>
   <mi>y</mi>
   <mo>∈</mo>
   <mfenced open="[" close="]"><mn>0</mn><mn>1</mn></mfenced>
  </mrow>
  <mo>}</mo>
 </mrow>
</mrow><min/>| Class | nary-minmax | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | min | 
The min element denotes the minimum function, which returns the smallest of
                     the arguments to which it is applied.  Its arguments may be explicitly specified in the
                     enclosing apply element, or specified using qualfier
                     elements as described in Section 4.3.4.4 N-ary/Unary Operators.  Note that when applied to infinite sets of arguments, no
                     minimal argument may exist.
                  
Content MathML
<apply><min/><ci>a</ci><ci>b</ci></apply>
Sample Presentation
<mrow>
 <mi>min</mi>
 <mrow><mo>{</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>}</mo></mrow>
</mrow>Content MathML
<apply><min/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><notin/><ci>x</ci><ci type="set">B</ci></apply>
  </condition>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>Sample Presentation
<mrow>
 <mi>min</mi>
 <mrow><mo>{</mo><mi>x</mi><mo>|</mo>
  <mrow><mi>x</mi><mo>∉</mo><mi>B</mi></mrow>
  <mo>}</mo>
</mrow>
</mrow><minus/>| Class | unary-arith, binary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | unary_minus, minus | 
The minus element can be used as a unary arithmetic operator
                     (e.g. to represent - x), or as a binary arithmetic operator
                     (e.g. to represent x- y).
                  
If it is used with one argument, minus corresponds to the unary_minus symbol.
                  
Content MathML
<apply><minus/><cn>3</cn></apply>
Sample Presentation
<mrow><mo>−</mo><mn>3</mn></mrow>
If it is used with two arguments, minus corresponds to the
                     minus symbol
                  
Content MathML
<apply><minus/><ci>x</ci><ci>y</ci></apply>
Sample Presentation
<mrow><mi>x</mi><mo>−</mo><mi>y</mi></mrow>
In both cases, the translation to Strict Content markup is direct, as described in Rewrite: element. It is merely a matter of choosing the symbol that reflects the actual usage.
<plus/>| Class | nary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | plus | 
The plus element represents the addition operator.  Its
                     arguments are normally specified explicitly in the enclosing
                     apply element.  As an n-ary commutative operator, it can
                     be used with qualifiers to specify arguments, however,
                     this is discouraged, and the sum operator should be
                     used to represent such expressions instead.
                  
Content MathML
<apply><plus/><ci>x</ci><ci>y</ci><ci>z</ci></apply>
Sample Presentation
<mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi></mrow>
<power/>| Class | binary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | power | 
The power element represents the exponentiation
                     operator. The first argument is raised to the power of the second
                     argument.
                  
Content MathML
<apply><power/><ci>x</ci><cn>3</cn></apply>
Sample Presentation
<msup><mi>x</mi><mn>3</mn></msup>
<rem/>| Class | binary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | remainder | 
The rem element represents the modulus operator, which
                     returns the remainder that results from dividing the first argument by
                     the second.  That is, when applied to integer arguments a
                     and b, it returns the unique integer r such that
                     a = b * q + r, with
                     |r| less than |b| and a *
                     r positive.
                  
Content MathML
<apply><rem/><ci> a </ci><ci> b </ci></apply>
Sample Presentation
<mrow><mi>a</mi><mo>mod</mo><mi>b</mi></mrow>
<times/>| Class | nary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | times | 
The times element represents the n-ary multiplication operator.  Its
                     arguments are normally specified explicitly in the enclosing
                     apply element.  As an n-ary commutative operator, it can 
                     be used with qualifiers to specify arguments by rule, however,
                     this is discouraged, and the product operator should be
                     used to represent such expressions instead.
                  
Content MathML
<apply><times/><ci>a</ci><ci>b</ci></apply>
Sample Presentation
<mrow><mi>a</mi><mo>⁢</mo><mi>b</mi></mrow>
<root/>| Class | unary-arith, binary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | degree | 
| OM Symbols | root | 
The root element is used to extract roots. The kind of root to be taken is
                     specified by a "degree" element, which should be given as the second child of
                     the apply element enclosing the root element. Thus, square roots
                     correspond to the case where degree contains the value 2, cube roots
                     correspond to 3, and so on. If no degree is present, a default value of 2 is
                     used.
                  
Content MathML
<apply><root/> <degree><ci type="integer">n</ci></degree> <ci>a</ci> </apply>
Sample Presentation
<mroot><mi>a</mi><mi>n</mi></mroot>
Mapping to Strict Content Markup
In Strict Content markup, the root symbol is always used with two arguments, with the second indicating the degree of the root being extracted.
Content MathML
<apply><root/><ci>x</ci></apply>
Strict Content MathML equivalent
<apply><csymbol cd="arith1">root</csymbol> <ci>x</ci> <cn type="integer">2</cn> </apply>
Content MathML
<apply><root/> <degree><ci type="integer">n</ci></degree> <ci>a</ci> </apply>
Strict Content MathML equivalent
<apply><csymbol cd="arith1">root</csymbol> <ci>a</ci> <cn type="integer">n</cn> </apply>
<gcd/>| Class | nary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | gcd | 
The gcd element represents the n-ary operator which returns
                     the greatest common divisor of its arguments. Its
                     arguments may be explicitly specified in the enclosing
                     apply element, or specified by rule as described in
                     Section 4.3.4.1 N-ary Operators.
                  
Content MathML
<apply><gcd/><ci>a</ci><ci>b</ci><ci>c</ci></apply>
Sample Presentation
<mrow> <mi>gcd</mi> <mo>⁡</mo> <mfenced><mi>a</mi><mi>b</mi><mi>c</mi></mfenced> </mrow>
This default rendering is English-language locale specific: other locales may have different default renderings.
When the gcd element is applied to an explicit list of arguments, the
                     translation to Strict Content markup is direct, using the gcd symbol, as described in Rewrite: element.  However, when
                     qualifiers are used, the equivalent Strict markup is computed via
                     Rewrite: n-ary domainofapplication.
                  
<and/>| Class | nary-logical | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | and | 
The and element represents the logical "and" function which is
                     an n-ary function taking Boolean arguments and returning a Boolean value. It is true if
                     all arguments are true, and false otherwise. Its arguments may be explicitly specified
                     in the enclosing apply element, or specified by rule as described in Section 4.3.4.1 N-ary Operators.
                  
Content MathML
<apply><and/><ci>a</ci><ci>b</ci></apply>
Sample Presentation
<mrow><mi>a</mi><mo>∧</mo><mi>b</mi></mrow>
Content MathML
<apply><and/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><ci>n</ci></uplimit>
  <apply><gt/>
    <apply><selector/><ci>a</ci><ci>i</ci></apply>
    <cn>0</cn>
  </apply>
</apply>Strict Content MathML
<apply><csymbol cd="fns2">apply_to_list</csymbol>
  <csymbol cd="logic1">and</csymbol>
  <apply><csymbol cd="list1">map</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>i</ci></bvar>
      <apply><csymbol cd="relation1">gt</csymbol>
	<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>i</ci><ci>a</ci></apply>
	<cn>0</cn>
      </apply>
    </bind>
    <apply><csymbol cd="interval1">integer_interval</csymbol>
      <cn type="integer">0</cn>
      <ci>n</ci>
    </apply>
  </apply>
</apply>Sample Presentation
<mrow> <munderover> <mo>⋀</mo> <mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow> <mi>n</mi> </munderover> <mrow> <mo>(</mo> <msub><mi>a</mi><mi>i</mi></msub> <mo>></mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow>
<or/>| Class | nary-logical | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | or | 
The or element represents the logical "or" function. It is
                     true if any of the arguments are true, and false otherwise.
                  
Content MathML
<apply><or/><ci>a</ci><ci>b</ci></apply>
Sample Presentation
<mrow><mi>a</mi><mo>∨</mo><mi>b</mi></mrow>
<xor/>| Class | nary-logical | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | xor | 
The xor element represents the logical "xor"
                     function. It is true if there are an odd number of true arguments or
                     false otherwise.
                  
Content MathML
<apply><xor/><ci>a</ci><ci>b</ci></apply>
Sample Presentation
<mrow><mi>a</mi><mo>xor</mo><mi>b</mi></mrow>
<not/>| Class | unary-logical | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | not | 
The note element represents the logical not function
                     which takes one Boolean argument, and returns the opposite Boolean
                     value.
                  
Content MathML
<apply><not/><ci>a</ci></apply>
Sample Presentation
<mrow><mo>¬</mo><mi>a</mi></mrow>
<implies/>| Class | binary-logical | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | implies | 
The implies element represents the logical implication
                     function which takes two Boolean expressions as arguments. It
                     evaluates to false if the first argument is true and the second
                     argument is false, otherwise it evaluates to true.
                  
Content MathML
<apply><implies/><ci>A</ci><ci>B</ci></apply>
Sample Presentation
<mrow><mi>A</mi><mo>⇒</mo><mi>B</mi></mrow>
<forall/>| Class | quantifier | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | forall, implies | 
The forall element represents the universal ("for all")
                     quantifier which takes one or more bound variables, and an
                     argument which specifies the asserion being quantified.
                     In addition, condition or other qualifiers may be used as
                     described in Section 4.3.4.8 Quantifiers to limit the domain
                     of the bound variables.
                  
Content MathML
<bind><forall/>
  <bvar><ci>x</ci></bvar>
  <apply><eq/>
    <apply><minus/><ci>x</ci><ci>x</ci></apply>
    <cn>0</cn>
  </apply>
</bind>Sample Presentation
<mrow> <mo>∀</mo> <mi>x</mi> <mo>.</mo> <mfenced> <mrow> <mrow><mi>x</mi><mo>−</mo><mi>x</mi></mrow> <mo>=</mo> <mn>0</mn> </mrow> </mfenced> </mrow>
When the forall element is used with a condition qualifier the
                        strict equivalent is constructed with the help of logical implication. Thus by the rules above:
                        
                        
                     
<bind><forall/>
  <bvar><ci>p</ci></bvar>
  <bvar><ci>q</ci></bvar>
  <condition>
    <apply><and/>
      <apply><in/><ci>p</ci><rationals/></apply>
      <apply><in/><ci>q</ci><rationals/></apply>
      <apply><lt/><ci>p</ci><ci>q</ci></apply>
    </apply>
  </condition>
  <apply><lt/>
    <ci>p</ci>
    <apply><power/><ci>q</ci><cn>2</cn></apply>
  </apply>
</bind>translates to
<bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>p</ci></bvar>
  <bvar><ci>q</ci></bvar>
  <apply><csymbol cd="logic1">implies</csymbol>
    <apply><csymbol cd="logic1">and</csymbol>
      <apply><csymbol cd="set1">in</csymbol>
        <ci>p</ci>
        <csymbol cd="setname1">Q</csymbol>
        </apply>
      <apply><csymbol cd="set1">in</csymbol>
        <ci>q</ci>
        <csymbol cd="setname1">Q</csymbol>
      </apply>
      <apply><csymbol cd="relation1">lt</csymbol><ci>p</ci><ci>q</ci></apply>
    </apply>
    <apply><csymbol cd="relation1">lt</csymbol>
      <ci>p</ci>
      <apply><csymbol cd="arith1">power</csymbol>
        <ci>q</ci>
        <cn>2</cn>
      </apply>
    </apply>
  </apply>
</bind>Sample Presentation
<mrow> <mo>∀</mo> <mrow> <mrow><mi>p</mi><mo>∈</mo><mi mathvariant="double-struck">Q</mi></mrow> <mo>∧</mo> <mrow><mi>q</mi><mo>∈</mo><mi mathvariant="double-struck">Q</mi></mrow> <mo>∧</mo> <mrow><mo>(</mo><mi>p</mi><mo><</mo><mi>q</mi><mo>)</mo></mrow> </mrow> <mo>.</mo> <mfenced> <mrow><mi>p</mi><mo><</mo><msup><mi>q</mi><mn>2</mn></msup></mrow> </mfenced> </mrow>
<mrow>
 <mo>∀</mo>
 <mrow><mi>p</mi><mi>q</mi></mrow>
 <mo>.</mo>
 <mfenced>
  <mrow>
   <mrow>
    <mo>(</mo>
    <mrow><mi>p</mi><mo>∈</mo><mi mathvariant="double-struck">Q</mi></mrow>
    <mo>∧</mo>
    <mrow><mi>q</mi><mo>∈</mo><mi mathvariant="double-struck">Q</mi></mrow>
    <mo>∧</mo>
    <mrow><mo>(</mo><mi>p</mi><mo><</mo><mi>q</mi><mo>)</mo></mrow>
    <mo>)</mo>
   </mrow>
   <mo>⇒</mo>
   <mrow>
    <mo>(</mo>
    <mi>p</mi>
    <mo><</mo>
    <msup><mi>q</mi><mn>2</mn></msup>
    <mo>)</mo>
   </mrow>
  </mrow>
 </mfenced>
</mrow><exists/>| Class | quantifier | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | exists, and | 
The exists element represents the existential ("there exists")
                     quantifier which takes one or more bound variables, and an
                     argument which specifies the assertion being quantified. In
                     addition, condition or other qualifiers may be used as 
                     described in Section 4.3.4.8 Quantifiers to limit the domain
                     of the bound variables.
                  
Content MathML
<bind><exists/>
  <bvar><ci>x</ci></bvar>
  <apply><eq/>
    <apply><ci>f</ci><ci>x</ci></apply>
    <cn>0</cn>
  </apply>
</bind>Sample Presentation
<mrow> <mo>∃</mo> <mi>x</mi> <mo>.</mo> <mfenced> <mrow> <mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi></mfenced></mrow> <mo>=</mo> <mn>0</mn> </mrow> </mfenced> </mrow>
Content MathML
<apply><exists/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication>
    <integers/>
  </domainofapplication>
   <apply><eq/>
    <apply><ci>f</ci><ci>x</ci></apply>
    <cn>0</cn>
  </apply>
</apply>Strict MathML equivalent:
<bind><csymbol cd="quant1">exists</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="logic1">and</csymbol>
    <apply><csymbol cd="set1">in</csymbol>
      <ci>x</ci>
      <csymbol cd="setname1">Z</csymbol>
    </apply>
    <apply><csymbol cd="relation1">eq</csymbol>
      <apply><ci>f</ci><ci>x</ci></apply>
      <cn>0</cn>
    </apply>
  </apply>
</bind>Sample Presentation
<mrow> <mo>∃</mo> <mi>x</mi> <mo>.</mo> <mfenced separators=""> <mrow><mi>x</mi><mo>∈</mo><mi mathvariant="double-struck">Z</mi></mrow> <mo>∧</mo> <mrow> <mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi></mfenced></mrow> <mo>=</mo> <mn>0</mn> </mrow> </mfenced> </mrow>
<abs/>| Class | unary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | abs | 
The abs element represents the absolute value
                     function. The argument should be numerically valued. When the
                     argument is a complex number, the absolute value is often referred
                     to as the modulus.
                  
Content MathML
<apply><abs/><ci>x</ci></apply>
Sample Presentation
<mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow>
<conjugate/>| Class | unary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | conjugate | 
                     The conjugate element represents the function defined
                     over the complex numbers with returns the complex conjugate of
                     its argument.
                     
                  
Content MathML
<apply><conjugate/>
  <apply><plus/>
    <ci>x</ci>
    <apply><times/><cn>ⅈ</cn><ci>y</ci></apply>
  </apply>
</apply>Sample Presentation
<mover> <mrow> <mi>x</mi> <mo>+</mo> <mrow><mn>ⅈ</mn><mo>⁢</mo><mi>y</mi></mrow> </mrow> <mo>¯</mo> </mover>
<arg/>| Class | unary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | argument | 
                     The arg element represents the unary function which
                     returns the angular argument of a complex number, namely the
                     angle which a straight line drawn from the number to zero makes
                     with the real line (measured anti-clockwise). 
                     
                  
Content MathML
<apply><arg/>
  <apply><plus/>
    <ci> x </ci>
    <apply><times/><imaginaryi/><ci>y</ci></apply>
  </apply>
</apply>Sample Presentation
<mrow> <mi>arg</mi> <mo>⁡</mo> <mfenced> <mrow> <mi>x</mi> <mo>+</mo> <mrow><mi>i</mi><mo>⁢</mo><mi>y</mi></mrow> </mrow> </mfenced> </mrow>
<real/>| Class | unary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | real | 
                     The real element represents the unary operator used to
                     construct an expression representing the "real" part of a
                     complex number, that is, the x component in x + iy.
                     
                  
Content MathML
<apply><real/>
  <apply><plus/>
    <ci>x</ci>
    <apply><times/><imaginaryi/><ci>y</ci></apply>
  </apply>
</apply>Sample Presentation
<mrow> <mo>ℛ</mo> <mo>⁡</mo> <mfenced> <mrow> <mi>x</mi> <mo>+</mo> <mrow><mi>i</mi><mo>⁢</mo><mi>y</mi></mrow> </mrow> </mfenced> </mrow>
<imaginary/>| Class | unary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | imaginary | 
                     The imaginary element represents the unary operator used to
                     construct an expression representing the "imaginary" part of a
                     complex number, that is, the y component in x + iy.
                     
                  
Content MathML
<apply><imaginary/>
  <apply><plus/>
    <ci>x</ci>
    <apply><times/><imaginaryi/><ci>y</ci></apply>
  </apply>
</apply>Sample Presentation
<mrow> <mo>ℑ</mo> <mo>⁡</mo> <mfenced> <mrow> <mi>x</mi> <mo>+</mo> <mrow><mi>i</mi><mo>⁢</mo><mi>y</mi></mrow> </mrow> </mfenced> </mrow>
<lcm/>| Class | nary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | lcm | 
The lcm element represents the n-ary operator used to
                     construct an expression which represents the least common multiple
                     of its arguments. If no argument is provided, the lcm is 1. If one
                     argument is provided, the lcm is that argument. The least common
                     multiple of x and 1 is x.
                  
Content MathML
<apply><lcm/><ci>a</ci><ci>b</ci><ci>c</ci></apply>
Sample Presentation
<mrow> <mi>lcm</mi> <mo>⁡</mo> <mfenced><mi>a</mi><mi>b</mi><mi>c</mi></mfenced> </mrow>
This default rendering is English-language locale specific: other locales may have different default renderings.
<floor/>| Class | unary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | floor | 
The floor element represents the operation that rounds
                     down (towards negative infinity) to the nearest integer. This
                     function takes one real number as an argument and returns an
                     integer.
                  
Content MathML
<apply><floor/><ci>a</ci></apply>
Sample Presentation
<mrow><mo>⌊</mo><mi>a</mi><mo>⌋</mo></mrow>
<ceiling/>| Class | unary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | ceiling | 
The ceiling element represents the operation that rounds
                     up (towards positive infinity) to the nearest integer. This function
                     takes one real number as an argument and returns an integer.
                  
Content MathML
<apply><ceiling/><ci>a</ci></apply>
Sample Presentation
<mrow><mo>⌈</mo><mi>a</mi><mo>⌉</mo></mrow>
<eq/>| Class | nary-reln | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | eq | 
The eq elements represents the equality relation.
                  
Content MathML
<apply><eq/> <cn type="rational">2<sep/>4</cn> <cn type="rational">1<sep/>2</cn> </apply>
Sample Presentation
<mrow> <mrow><mn>2</mn><mo>/</mo><mn>4</mn></mrow> <mo>=</mo> <mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow> </mrow>
<neq/>| Class | binary-reln | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | neq | 
The neq element represents the binary inequality
                     relation, i.e. the relation "not equal to" which returns true unless
                     the two arguments are equal.
                  
Content MathML
<apply><neq/><cn>3</cn><cn>4</cn></apply>
Sample Presentation
<mrow><mn>3</mn><mo>≠</mo><mn>4</mn></mrow>
<gt/>| Class | nary-reln | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | gt | 
The gt element represents the "greater than" function
                     which returns true if the first argument is greater than the second, and
                     returns false otherwise. While this is a binary relation,
                     gt may be used with more than two arguments, denoting a chain
                     of inequalities, as described in Section 4.3.4.3 N-ary Relations.
                  
Content MathML
<apply><gt/><cn>3</cn><cn>2</cn></apply>
Sample Presentation
<mrow><mn>3</mn><mo>></mo><mn>2</mn></mrow>
<lt/>| Class | nary-reln | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | lt | 
The lt element represents the "less than" function
                     which returns true if the first argument is less than the second, and
                     returns false otherwise. While this is a binary relation,
                     lt may be used with more than two arguments, denoting a chain
                     of inequalities, as described in Section 4.3.4.3 N-ary Relations.
                  
Content MathML
<apply><lt/><cn>2</cn><cn>3</cn><cn>4</cn></apply>
Sample Presentation
<mrow><mn>2</mn><mo><</mo><mn>3</mn><mo><</mo><mn>4</mn></mrow>
<geq/>| Class | nary-reln | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | geq | 
The geq element represents the "greater than or equal to" function
                     which returns true if the first argument is greater than or equal to
                     the second, and returns false otherwise. While this is a binary relation,
                     geq may be used with more than two arguments, denoting a chain
                     of inequalities, as described in Section 4.3.4.3 N-ary Relations.
                  
Content MathML
<apply><geq/><cn>4</cn><cn>3</cn><cn>3</cn></apply>
Strict Content MathML
<apply><csymbol cd="fns2">predicate_on_list</csymbol> <csymbol cd="reln1">geq</csymbol> <apply><csymbol cd="list1">list</csymbol> <cn>4</cn><cn>3</cn><cn>3</cn> </apply> </apply>
Sample Presentation
<mrow><mn>4</mn><mo>≥</mo><mn>3</mn><mo>≥</mo><mn>3</mn></mrow>
<leq/>| Class | nary-reln | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | leq | 
The leq element represents the "less than or equal to" function
                     which returns true if the first argument is less than or equal to
                     the second, and returns false otherwise. While this is a binary relation,
                     leq may be used with more than two arguments, denoting a chain
                     of inequalities, as described in Section 4.3.4.3 N-ary Relations.
                  
Content MathML
<apply><leq/><cn>3</cn><cn>3</cn><cn>4</cn></apply>
Sample Presentation
<mrow><mn>3</mn><mo>≤</mo><mn>3</mn><mo>≤</mo><mn>4</mn></mrow>
<equivalent/>| Class | binary-logical | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | equivalent | 
The equivalent element represents the relation that
                     asserts two Boolean expressions are logically equivalent,
                     that is have the same Boolean value for any inputs.
                  
Content MathML
<apply><equivalent/> <ci>a</ci> <apply><not/><apply><not/><ci>a</ci></apply></apply> </apply>
Sample Presentation
<mrow> <mi>a</mi> <mo>≡</mo> <mrow><mo>¬</mo><mrow><mo>¬</mo><mi>a</mi></mrow></mrow> </mrow>
<approx/>| Class | binary-reln | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | approx | 
The approx element represent the relation that asserts
                     the approximate equality of its arguments.
                  
Content MathML
<apply><approx/> <pi/> <cn type="rational">22<sep/>7</cn> </apply>
Sample Presentation
<mrow> <mi>π</mi> <mo>≃</mo> <mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow> </mrow>
<factorof/>| Class | binary-reln | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | factorof | 
The factorof element is used to indicate the
                     mathematical relationship that the first argument "is a factor of"
                     the second. This relationship is true if and only 
                     if b mod a = 0.
                  
Content MathML
<apply><factorof/><ci>a</ci><ci>b</ci></apply>
Sample Presentation
<mrow><mi>a</mi><mo>|</mo><mi>b</mi></mrow>
<int/>| Class | int | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | int defint | 
The int element is the operator element for a definite or indefinite integral
                     over a function or a definite over an expression with a bound variable.
                  
Content MathML
<apply><eq/> <apply><int/><sin/></apply> <cos/> </apply>
Sample Presentation
<mrow><mrow><mi>∫</mi><mi>sin</mi></mrow><mo>=</mo><mi>cos</mi></mrow>
Content MathML
<apply><int/> <interval><ci>a</ci><ci>b</ci></interval> <cos/> </apply>
Sample Presentation
<mrow><msubsup><mi>∫</mi><mi>a</mi><mi>b</mi></msubsup><mi>cos</mi></mrow>
The int element can also be used with bound variables serving as the
                     integration variables.
                  
Content MathML
 Here, definite integrals are indicated by providing qualifier elements specifying a
                        domain of integration (here a lowlimit/uplimit pair). This is perhaps
                        the most "standard" representation of this integral:
                     
<apply><int/> <bvar><ci>x</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <uplimit><cn>1</cn></uplimit> <apply><power/><ci>x</ci><cn>2</cn></apply> </apply>
Sample Presentation
<mrow> <msubsup><mi>∫</mi><mn>0</mn><mn>1</mn></msubsup> <msup><mi>x</mi><mn>2</mn></msup> <mi>d</mi> <mi>x</mi> </mrow>
Mapping to Strict Markup
As an indefinite integral applied to a function, the int element corresponds to
                     the int symbol from the calculus1 content
                     dictionary. As a definite integral applied to a function, the int element
                     corresponds to the defint symbol
                     from the calculus1 content dictionary. For the case of
                     bound variables the situation is more complicated in general, and the following rule is used.
                  
Translate a definite integral, where 
                           is an
                        arbitrary expression involving the bound variable(s) 
                          
                        
                     
<apply><int/> <bvar> </bvar> <domainofapplication> </domainofapplication> </apply>
to the expression
<apply>
  <apply><csymbol cd="calculus1">defint</csymbol>
        
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar>  </bvar>
      
    </bind>
  </apply>
    
</apply>
                        
                        For the indefinite integral, where the domainofapplication element is missing,
                        the defint is used instead and the
                           is dropped.
                        Note that as x is not bound in the original indefinite integral,
                        the integrated function is applied to the variable x making it
                        an explicit free variable in Strict Content Markup expression, even though
                        it is bound in the subterm used as an argument to defint.
                     
For instance, the expression
<apply><int/> <bvar><ci>x</ci></bvar> <apply><cos/><ci>x</ci></apply> </apply>
has the Strict Content MathML equivalent
<apply>
  <apply><csymbol cd="calculus1">int</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <apply><cos/><ci>x</ci></apply>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
But the definite integral with an lowlimit/uplimit pair carries the
                     strong intuition that the range of integration is oriented, and thus swapping lower and
                     upper limits will change the sign of the result. To accomodate this, use the following special
                     translation rule:
                  
<apply><int/> <bvar> </bvar> <lowlimit> </lowlimit> <uplimit> </uplimit> </apply>
                        where
                          
                        is an expression in the variable x
                        is translated to to the expression:
                     
<apply>
  <apply><csymbol cd="calculus1">defint</csymbol>
    <apply><csymbol cd="interval1">ordered_interval</csymbol>
           
    </apply>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar>  </bvar>
      
    </bind>
  </apply>
    
</apply>The case for multiple integrands is treated analogously.
Note that use of the condition element extends to multivariate domains by
                        using extra bound variables and a domain corresponding to a cartesian product as in:
                     
<bind><int/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <condition>
    <apply><and/>
      <apply><leq/><cn>0</cn><ci>x</ci></apply>
      <apply><leq/><ci>x</ci><cn>1</cn></apply>
      <apply><leq/><cn>0</cn><ci>y</ci></apply>
      <apply><leq/><ci>y</ci><cn>1</cn></apply>
    </apply>
  </condition>
  <apply><times/>
    <apply><power/><ci>x</ci><cn>2</cn></apply>
    <apply><power/><ci>y</ci><cn>3</cn></apply>
  </apply>
</bind>Strict Content MathML equivalent
<bind><csymbol cd="calculus1">defint</csymbol>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <apply><csymbol cd="set1">suchthat</csymbol>
    <apply><csymbol cd="set1">cartesianproduct</csymbol>
      <csymbol cd="setname1">R</csymbol>
      <csymbol cd="setname1">R</csymbol>
    </apply>
    <apply><csymbol cd="logic1">and</csymbol>
      <apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>x</ci></apply>
      <apply><csymbol cd="arith1">leq</csymbol><ci>x</ci><cn>1</cn></apply>
      <apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>y</ci></apply>
      <apply><csymbol cd="arith1">leq</csymbol><ci>y</ci><cn>1</cn></apply>
    </apply>
    <apply><csymbol cd="arith1">times</csymbol>
      <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn>2</cn></apply>
      <apply><csymbol cd="arith1">power</csymbol><ci>y</ci><cn>3</cn></apply>
    </apply>
  </apply>
</bind><diff/>| Class | Differential Operator | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | diff | 
The diff element is the differentiation operator element for functions or
                     expressions of a single variable.  It may be applied directly to an actual function
                     thereby denoting a function which is the derivative of the original function, or it can be
                     applied to an expression involving a single variable.
                  
Content MathML
<apply><diff/><ci>f</ci></apply>
Sample Presentation
<msup><mi>f</mi><mo>′</mo></msup>
Content MathML
<apply><eq/>
  <apply><diff/>
    <bvar><ci>x</ci></bvar>
    <apply><sin/><ci>x</ci></apply>
  </apply>
  <apply><cos/><ci>x</ci></apply>
</apply>Sample Presentation
<mrow> <mfrac> <mrow><mi>d</mi><mrow><mi>sin</mi><mo>⁡</mo><mi>x</mi></mrow></mrow> <mrow><mi>d</mi><mi>x</mi></mrow> </mfrac> <mo>=</mo> <mrow><mi>cos</mi><mo>⁡</mo><mi>x</mi></mrow> </mrow>
The bvar element may also contain a degree element, which specifies
                     the order of the derivative to be taken.
                  
Content MathML
<apply><diff/> <bvar><ci>x</ci><degree><cn>2</cn></degree></bvar> <apply><power/><ci>x</ci><cn>4</cn></apply> </apply>
Sample Presentation
<mfrac> <mrow> <msup><mi>d</mi><mn>2</mn></msup> <msup><mi>x</mi><mn>4</mn></msup> </mrow> <mrow><mi>d</mi><msup><mi>x</mi><mn>2</mn></msup></mrow> </mfrac>
Mapping to Strict Markup
For the translation to strict Markup it is crucial to realize that in the expression case, the variable is actually not bound by the differentiation operator.
Translate an expression
<apply><diff/> <bvar> </bvar> </apply>
                        where
                           is an
                        expression in the variable x
                        to the expression
                        
                     
<apply>
  <apply><csymbol cd="calculus1">diff</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar>  </bvar>
      
    </bind>
  </apply>
    
</apply>Note that the the differentiated function is applied to the variable x making its status as a free variable explicit in strict markup. Thus the strict equivalent of
<apply><diff/> <bvar><ci>x</ci></bvar> <apply><sin/><ci>x</ci></apply> </apply>
is
<apply>
  <apply><csymbol cd="calculus1">diff</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
    </bind>
  </apply>
  <ci>x</ci>
</apply>If the bvar element contains a degree element, use the
                     nthdiff symbol.
                  
<apply><diff/> <bvar> <degree> </degree></bvar> </apply>
where
                           is an
                        is an expression in the variable x
                        is translated to to the expression:
                     
<apply>
  <apply><csymbol cd="calculus1">nthdiff</csymbol>
      
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar>  </bvar>
      
    </bind>
  </apply>
    
</apply>For example
<apply><diff/> <bvar><degree><cn>2</cn></degree><ci>x</ci></bvar> <apply><sin/><ci>x</ci></apply> </apply>
Strict Content MathML equivalent
<apply>
  <apply><csymbol cd="calculus1">nthdiff</csymbol>
    <cn>2</cn>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
    </bind>
  </apply>
  <ci>x</ci>
</apply><partialdiff/>| Class | partialdiff | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | partialdiff partialdiffdegree | 
The partialdiff element is the partial differentiation operator element for
                     functions or expressions in several variables.
                  
For the case of partial differentiation of a function, the
                     containing partialdiff takes two arguments: firstly a list of
                     indices indicating by position which function arguments are involved in
                     constructing the partial derivatives, and secondly the actual function
                     to be partially differentiated.  The indices may be repeated.
                  
Content MathML
<apply><partialdiff/> <list><cn>1</cn><cn>1</cn><cn>3</cn></list> <ci type="function">f</ci> </apply>
Sample Presentation
<mrow> <msub> <mi>D</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>3</mn></mrow> </msub> <mi>f</mi> </mrow>
Content MathML
<apply><partialdiff/> <list><cn>1</cn><cn>1</cn><cn>3</cn></list> <lambda> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <bvar><ci>f</ci></bvar> <apply><ci>f</ci><ci>x</ci><ci>y</ci><ci>f</ci></apply> </lambda> </apply>
Sample Presentation
<mfrac> <mrow> <msup><mo>∂</mo><mn>3</mn></msup> <mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow> </mrow> <mrow> <mrow><mo>∂</mo><msup><mi>x</mi><mn>2</mn></msup></mrow> <mrow><mo>∂</mo><mi>z</mi></mrow> </mrow> </mfrac>
In the case of algebraic expressions, the bound variables are given by bvar
                     elements, which are children of the containing apply element. The bvar
                     elements may also contain degree element, which specify the order of the partial
                     derivative to be taken in that variable.
                  
Content MathML
<apply><partialdiff/> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply> </apply>
Sample Presentation
<mfrac> <mrow> <msup><mo>∂</mo><mn>2</mn></msup> <mrow> <mi>f</mi> <mo>⁡</mo> <mfenced><mi>x</mi><mi>y</mi></mfenced> </mrow> </mrow> <mrow> <mrow><mo>∂</mo><mi>x</mi></mrow> <mrow><mo>∂</mo><mi>y</mi></mrow> </mrow> </mfrac>
Where a total degree of differentiation must be specified, this is
                     indicated by use of a degree element at the top level,
                     i.e. without any associated bvar, as a child of the
                     containing apply element.
                  
Content MathML
<apply><partialdiff/>
  <bvar><ci>x</ci><degree><ci>m</ci></degree></bvar>
  <bvar><ci>y</ci><degree><ci>n</ci></degree></bvar>
  <degree><ci>k</ci></degree>
  <apply><ci type="function">f</ci>
    <ci>x</ci>
    <ci>y</ci>
  </apply>
</apply>Sample Presentation
<mfrac> <mrow> <msup><mo>∂</mo><mi>k</mi></msup> <mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow> </mrow> <mrow> <mrow><mo>∂</mo><msup><mi>x</mi><mi>m</mi></msup></mrow> <mrow><mo>∂</mo><msup><mi>y</mi><mi>n</mi></msup></mrow> </mrow> </mfrac>
Mapping to Strict Markup
When applied to a function, the partialdiff element
                     corresponds to the partialdiff
                     symbol from the calculus1 content dictionary. No special
                     rules are necessary as the two arguments of partialdiff
                     translate directly to the two arguments of
                     partialdiff.
                  
If partialdiff is used with an expression and
                        bvar qualifiers it is rewritten to
                        Strict Content MathML using the 
                        partialdiffdegree symbol.
                        
                        
                     
<apply><partialdiff/> <bvar> <degree> </degree></bvar> <bvar> <degree> </degree></bvar> <degree> </degree> </apply>
                           is an
                        arbitrary expression involving the bound variables.
                     
<apply>
  <apply><csymbol cd="calculus1">partialdiffdegree</csymbol>
    <apply><csymbol cd="list1">list</csymbol>
           
    </apply>
      
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar>  </bvar>
    <bvar>  </bvar>
      
   </bind>
  </apply>
    
    
</apply>If any of the bound variables do not use a degree qualifier, 
                        <cn>1</cn> should be used in place of the degree.
                        If the original expression did not use the total degree qualifier then 
                        the second argument to partialdiffdegree
                        should be the sum of the degrees, for example
                        
                     
<apply><csymbol cd="arith1">plus</csymbol> </apply>
With this rule, the expression
<apply><partialdiff/>
  <bvar><ci>x</ci><degree><ci>n</ci></degree></bvar>
  <bvar><ci>y</ci><degree><ci>m</ci></degree></bvar>
  <apply><sin/>
    <apply><times/><ci>x</ci><ci>y</ci></apply>
  </apply>
</apply>is translated into
<apply>
  <apply><csymbol cd="calculus1">partialdiffdegree</csymbol>
    <apply><csymbol cd="list1">list</csymbol>
      <ci>n</ci><ci>m</ci>
    </apply>
    <apply><csymbol cd="arith1">plus</csymbol>
      <ci>n</ci><ci>m</ci>
    </apply>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <bvar><ci>y</ci></bvar>
      <apply><csymbol cd="transc1">sin</csymbol>
        <apply><csymbol cd="arith1">times</csymbol>
          <ci>x</ci><ci>y</ci>
        </apply>
      </apply>
    </bind>
    <ci>x</ci>
    <ci>y</ci>
  </apply>
</apply><divergence/>| Class | unary-veccalc | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | divergence | 
The divergence element is the vector calculus divergence
                     operator, often called div. It represents the divergence function
                     which takes one argument which should be a vector of scalar-valued
                     functions, intended to represent a vector-valued function, and returns
                     the scalar-valued function giving the divergence of the argument.
                  
Content MathML
<apply><divergence/><ci>a</ci></apply>
Sample Presentation
<mrow><mi>div</mi><mo>⁡</mo><mfenced><mi>a</mi></mfenced></mrow>
Content MathML
<apply><divergence/> <ci type="vector">E</ci> </apply>
Sample Presentation
<mrow><mi>div</mi><mo>⁡</mo><mfenced><mi>E</mi></mfenced></mrow>
<mrow><mo>∇</mo><mo>⋅</mo><mi>E</mi></mrow>
The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordinate names, in which case the coordinate names must be provided as bound variables.
Content MathML
<apply><divergence/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <bvar><ci>z</ci></bvar>
  <vector>
    <apply><plus/><ci>x</ci><ci>y</ci></apply>
    <apply><plus/><ci>x</ci><ci>z</ci></apply>
    <apply><plus/><ci>z</ci><ci>y</ci></apply>
  </vector>
</apply>Sample Presentation
<mrow> <mi>div</mi> <mo>⁡</mo> <mo>(</mo> <mtable> <mtr><mtd> <mi>x</mi> <mo>↦</mo> <mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow> </mtd></mtr> <mtr><mtd> <mi>y</mi> <mo>↦</mo> <mrow><mi>x</mi><mo>+</mo><mi>z</mi></mrow> </mtd></mtr> <mtr><mtd> <mi>z</mi> <mo>↦</mo> <mrow><mi>z</mi><mo>+</mo><mi>y</mi></mrow> </mtd></mtr> </mtable> <mo>)</mo> </mrow>
<grad/>| Class | unary-veccalc | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | grad | 
The grad element is the vector calculus gradient operator, often called
                     grad. It is used to represent the grad function, which takes one
                     argument which should be a scalar-valued function and returns a
                     vector of functions.
                  
Content MathML
<apply><grad/><ci type="function">f</ci></apply>
Sample Presentation
<mrow><mi>grad</mi><mo>⁡</mo><mfenced><mi>f</mi></mfenced></mrow>
<mrow><mo>∇</mo><mo>⁡</mo><mfenced><mi>f</mi></mfenced></mrow>
The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordinate names, in which case the coordinate names must be provided as bound variables.
Content MathML
<apply><grad/> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <bvar><ci>z</ci></bvar> <apply><times/><ci>x</ci><ci>y</ci><ci>z</ci></apply> </apply>
Sample Presentation
<mrow> <mi>grad</mi> <mo>⁡</mo> <mrow> <mo>(</mo> <mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced> <mo>↦</mo> <mrow><mi>x</mi><mo>⁢</mo><mi>y</mi><mo>⁢</mo><mi>z</mi></mrow> <mo>)</mo> </mrow> </mrow>
<curl/>| Class | unary-veccalc | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | curl | 
The curl element is used to represent the curl function
                     of vector calculus. It takes one argument which should be a vector
                     of scalar-valued functions, intended to represent a vector-valued
                     function, and returns a vector of functions.
                  
Content MathML
<apply><curl/><ci>a</ci></apply>
Sample Presentation
<mrow><mi>curl</mi><mo>⁡</mo><mfenced><mi>a</mi></mfenced></mrow>
<mrow><mo>∇</mo><mo>×</mo><mi>a</mi></mrow>
The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordinate names, in which case the coordinate names must be provided as bound variables.
<laplacian/>| Class | unary-veccalc | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | Laplacian | 
The laplacian element represents the Laplacian operator of
                     vector calculus.  The Laplacian takes a single argument which is a
                     vector of scalar-valued functions representing a vector-valued
                     function, and returns a vector of functions.
                  
Content MathML
<apply><laplacian/><ci type="vector">E</ci></apply>
Sample Presentation
<mrow> <msup><mo>∇</mo><mn>2</mn></msup> <mo>⁡</mo> <mfenced><mi>E</mi></mfenced> </mrow>
The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordinate names, in which case the coordinate names must be provided as bound variables.
Content MathML
<apply><laplacian/> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <bvar><ci>z</ci></bvar> <apply><ci>f</ci><ci>x</ci><ci>y</ci></apply> </apply>
Sample Presentation
<mrow> <msup><mo>∇</mo><mn>2</mn></msup> <mo>⁡</mo> <mrow> <mo>(</mo> <mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced> <mo>↦</mo> <mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow> <mo>)</mo> </mrow> </mrow>
<set>| Class | nary-setlist-constructor | 
|---|---|
| Attributes | CommonAtt | 
| Content | ContExp* | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | set, multiset | 
The set represents a function which constructs
                     mathematical sets from its arguments. It is an n-ary function. The
                     members of the set to be constructed may be given explicitly as
                     child elements of the constructor, or specified by rule as described
                     in Section 4.3.1.1 Container Markup for Constructor Symbols.  There is no implied ordering to
                     the elements of a set.
                  
Content MathML
<set> <ci>a</ci><ci>b</ci><ci>c</ci> </set>
Sample Presentation
<mrow>
 <mo>{</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>}</mo>
</mrow>In general, a set can be constructed by providing a function and a domain of application. The elements of the set correspond to the values obtained by evaluating the function at the points of the domain.
Content MathML
<set>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><lt/><ci>x</ci><cn>5</cn></apply>
  </condition>
  <ci>x</ci>
</set>Sample Presentation
<mrow>
 <mo>{</mo>
 <mi>x</mi>
 <mo>|</mo>
 <mrow><mi>x</mi><mo><</mo><mn>5</mn></mrow>
 <mo>}</mo>
</mrow>Content MathML
<set>
  <bvar><ci type="set">S</ci></bvar>
  <condition>
    <apply><in/><ci>S</ci><ci type="list">T</ci></apply>
  </condition>
  <ci>S</ci>
</set>Sample Presentation
<mrow>
 <mo>{</mo>
 <mi>S</mi>
 <mo>|</mo>
 <mrow><mi>S</mi><mo>∈</mo><mi>T</mi></mrow>
 <mo>}</mo>
</mrow>Content MathML
<set>
  <bvar><ci> x </ci></bvar>
  <condition>
    <apply><and/>
      <apply><lt/><ci>x</ci><cn>5</cn></apply>
      <apply><in/><ci>x</ci><naturalnumbers/></apply>
    </apply>
  </condition>
  <ci>x</ci>
</set>Sample Presentation
<mrow>
 <mo>{</mo>
 <mi>x</mi>
 <mo>|</mo>
 <mrow>
  <mrow><mo>(</mo><mi>x</mi><mo><</mo><mn>5</mn><mo>)</mo></mrow>
  <mo>∧</mo>
  <mrow><mi>x</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow>
 </mrow>
 <mo>}</mo>
</mrow><list>| Class | nary-setlist-constructor | 
|---|---|
| Attributes | CommonAtt | 
| Content | ContExp* | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | interval_cc, list | 
The list elements represents the n-ary function which
                     constructs a list from its arguments. Lists differ from sets in that
                     there is an explicit order to the elements.
                  
The list entries and order may be given explicitly.
Content MathML
<list> <ci>a</ci><ci>b</ci><ci>c</ci> </list>
Sample Presentation
<mrow> <mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo> </mrow>
In general a list can be constructed by providing a function and
                     a domain of application.  The elements of the list correspond to the
                     values obtained by evaluating the function at the points of the
                     domain. When this method is used, the ordering of the list elements
                     may not be clear, so the kind of ordering may be specified by the
                     order attribute.  Two orders are supported: lexicographic
                     and numeric.
                  
Content MathML
<list order="numeric">
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><lt/><ci>x</ci><cn>5</cn></apply>
  </condition>
</list>Sample Presentation
<mrow> <mo>(</mo> <mi>x</mi> <mo>|</mo> <mrow><mi>x</mi><mo><</mo><mn>5</mn></mrow> <mo>)</mo> </mrow>
<union/>| Class | nary-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | union | 
The union element is used to denote the n-ary union of sets. It takes sets as arguments,
                     and denotes the set that contains all the elements that occur in any
                     of them.
                  
Arguments may be explicitly specified.
Content MathML
<apply><union/><ci>A</ci><ci>B</ci></apply>
Sample Presentation
<mrow><mi>A</mi><mo>∪</mo><mi>B</mi></mrow>
Arguments may also be specified using qualfier elements as described in Section 4.3.4.1 N-ary Operators. operator element can be used as a binding operator to construct the union over a collection of sets.
Content MathML
<apply><union/>
  <bvar><ci type="set">S</ci></bvar>
  <domainofapplication>
    <ci type="list">L</ci>
  </domainofapplication>
  <ci type="set"> S</ci>
</apply>Sample Presentation
<mrow><munder><mo>⋃</mo><mi>L</mi></munder><mi>S</mi></mrow>
<intersect/>| Class | nary-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | intersect | 
The intersect element is used to denote the n-ary
                     intersection of sets. It takes sets as arguments, and denotes the
                     set that contains all the elements that occur in all of them.  Its arguments may be explicitly specified in the
                     enclosing apply element, or specified using qualfier
                     elements as described in Section 4.3.4.1 N-ary Operators.
                  
Content MathML
<apply><intersect/> <ci type="set"> A </ci> <ci type="set"> B </ci> </apply>
Sample Presentation
<mrow><mi>A</mi><mo>∩</mo><mi>B</mi></mrow>
Content MathML
<apply><intersect/> <bvar><ci type="set">S</ci></bvar> <domainofapplication><ci type="list">L</ci></domainofapplication> <ci type="set"> S </ci> </apply>
Sample Presentation
<mrow><munder><mo>⋂</mo><mi>L</mi></munder><mi>S</mi></mrow>
<in/>| Class | binary-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | in | 
The in element represents the set inclusion relation.
                     It has two arguments, an element and a set. It is used to denote
                     that the element is in the given set.
                  
Content MathML
<apply><in/><ci>a</ci><ci type="set">A</ci></apply>
Sample Presentation
<mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow>
When translating to Strict Content Markup, if the type
                     has value "multiset", then the in from the multiset1 should
                     be used instead.
                  
<notin/>| Class | binary-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | notin | 
The notin represents the negated set inclusion
                     relation. It has two arguments, an element and a set. It is
                     used to denote that the element is not in the given set.
                  
Content MathML
<apply><notin/><ci>a</ci><ci type="set">A</ci></apply>
Sample Presentation
<mrow><mi>a</mi><mo>∉</mo><mi>A</mi></mrow>
When translating to Strict Content Markup, if the type has value "multiset", then
                     the in from the multiset1 should be used instead.
                  
<subset/>| Class | nary-set-reln | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | subset | 
The subset element represents the subset relation.  It is used to denote that the
                     first argument is a subset of the second.  As described in Section 4.3.4.3 N-ary Relations, it may also be used as an n-ary operator to express
                     that each argument is a subset of its predecessor.
                  
Content MathML
<apply><subset/> <ci type="set">A</ci> <ci type="set">B</ci> </apply>
Sample Presentation
<mrow><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow>
<prsubset/>| Class | nary-set-reln | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | prsubset | 
The prsubset element represents the proper subset
                     relation, i.e. that the first argument is a proper subset of the
                     second.  As described in Section 4.3.4.3 N-ary Relations, it may
                     also be used as an n-ary operator to express that each argument is a
                     proper subset of its predecessor.
                  
Content MathML
<apply><prsubset/> <ci type="set">A</ci> <ci type="set">B</ci> </apply>
Sample Presentation
<mrow><mi>A</mi><mo>⊂</mo><mi>B</mi></mrow>
<notsubset/>| Class | binary-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | notsubset | 
The notsubset element represents the negated subset
                     relation. It is used to denote that the first argument is not a subset of the
                     second.
                  
Content MathML
<apply><notsubset/> <ci type="set">A</ci> <ci type="set">B</ci> </apply>
Sample Presentation
<mrow><mi>A</mi><mo>⊈</mo><mi>B</mi></mrow>
When translating to Strict Content Markup, if the type has value "multiset", then
                     the in from the multiset1 should be used instead.
                  
<notprsubset/>| Class | binary-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | notprsubset | 
The notprsubset element represents the negated proper
                     subset relation. It is used to denote that the first argument is not
                     a proper subset of the second.
                  
Content MathML
<apply><notprsubset/> <ci type="set">A</ci> <ci type="set">B</ci> </apply>
Sample Presentation
<mrow><mi>A</mi><mo>⊄</mo><mi>B</mi></mrow>
When translating to Strict Content Markup, if the type has value "multiset", then
                     the in from the multiset1 should be used instead.
                  
<setdiff/>| Class | binary-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | setdiff, setdiff | 
The setdiff element represents set difference
                     operator. It takes two sets as arguments, and denotes the set that
                     contains all the elements that occur in the first set, but not in
                     the second.
                  
Content MathML
<apply><setdiff/> <ci type="set">A</ci> <ci type="set">B</ci> </apply>
Sample Presentation
<mrow><mi>A</mi><mo>∖</mo><mi>B</mi></mrow>
When translating to Strict Content Markup, if the type has value "multiset", then
                     the in from the multiset1 should be used instead.
                  
<card/>| Class | unary-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | size, size | 
The card element represents the cardinality function,
                     which takes a set argument and returns its cardinality, i.e. the
                     number of elements in the set.  The cardinality of a set is a
                     non-negative integer, or an infinite cardinal number.
                  
Content MathML
<apply><eq/> <apply><card/><ci>A</ci></apply> <cn>5</cn> </apply>
Sample Presentation
<mrow> <mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow> <mo>=</mo> <mn>5</mn> </mrow>
When translating to Strict Content Markup, if the type has value "multiset", then the size from the multiset1 should be used
                     instead.
                  
<cartesianproduct/>| Class | nary-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | cartesian_product | 
The cartesianproduct element is used to represents the
                     Cartesian product operator. It takes sets as arguments, which may be
                     explicitly specified in the enclosing apply element, or
                     specified using qualfier elements as described in Section 4.3.4.1 N-ary Operators.
                  
Content MathML
<apply><cartesianproduct/><ci>A</ci><ci>B</ci></apply>
Sample Presentation
<mrow><mi>A</mi><mo>×</mo><mi>B</mi></mrow>
<sum/>| Class | sum | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | sum | 
The sum element represents the n-ary addition operator.
                     The terms of the sum are normally specified by rule through the use of
                     qualifiers.  While it can be used with an explicit list of
                     arguments, this is strongly discouraged, and the plus
                     operator should be used instead in such situations.
                  
The sum operator may be used either with or without
                     explicit bound variables.  When a bound variable is used, the
                     sum element is followed by one or more bvar
                     elements giving the index variables, followed by qualifiers giving
                     the domain for the index variables. The final child in the enclosing
                     apply is then an expression in the bound variables, and the
                     terms of the sum are obtained by evaluating this expression at each
                     point of the domain of the index variables.  Depending on the
                     structure of the domain, the domain of summation is often given
                     by using uplimit and lowlimit to specify upper and
                     lower limits for the sum.
                  
When no bound variables are explicitly given, the final child of
                     the enclosing apply element must be a function, and the
                     terms of the sum are obtained by evaluating the function at
                     each point of the domain specified by qualifiers.
                  
Content MathML
<apply><sum/> <bvar><ci>x</ci></bvar> <lowlimit><ci>a</ci></lowlimit> <uplimit><ci>b</ci></uplimit> <apply><ci>f</ci><ci>x</ci></apply> </apply>
Sample Presentation
<mrow> <munderover> <mo>∑</mo> <mrow><mi>x</mi><mo>=</mo><mi>a</mi></mrow> <mi>b</mi> </munderover> <mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi></mfenced></mrow> </mrow>
Content MathML
<apply><sum/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><in/><ci>x</ci><ci type="set">B</ci></apply>
  </condition>
  <apply><ci type="function">f</ci><ci>x</ci></apply>
</apply>Sample Presentation
<mrow> <munder> <mo>∑</mo> <mrow><mi>x</mi><mo>∈</mo><mi>B</mi></mrow> </munder> <mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi></mfenced></mrow> </mrow>
Content MathML
<apply><sum/>
  <domainofapplication>
    <ci type="set">B</ci>
  </domainofapplication>
  <ci type="function">f</ci>
</apply>Sample Presentation
<mrow><munder><mo>∑</mo><mi>B</mi></munder><mi>f</mi></mrow>
Mapping to Strict Content MathML
When no explicit bound variables are used, no special rules are
                     required to rewrite sums as Strict Content beyond the generic rules
                     for rewriting expressions using qualifiers.  However, when bound
                     variables are used, it is necessary to introduce a lambda
                     construction to rewrite the expression in the bound variables as a
                     function.
                  
Content MathML
<apply><sum/> <bvar><ci>i</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <uplimit><cn>100</cn></uplimit> <apply><power/><ci>x</ci><ci>i</ci></apply> </apply>
Strict Content MathML equivalent
<apply><csymbol cd="arith1">sum</csymbol>
  <apply><csymbol cd="interval1">integer_interval</csymbol>
    <cn>0</cn>
    <cn>100</cn>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>i</ci></bvar>
    <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>
  </bind>
</apply><product/>| Class | product | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | product | 
The product element represents the n-ary multiplication operator.
                     The terms of the product are normally specified by rule through the use of
                     qualifiers.  While it can be used with an explicit list of
                     arguments, this is strongly discouraged, and the times
                     operator should be used instead in such situations.
                  
The product operator may be used either with or without
                     explicit bound variables.  When a bound variable is used, the
                     product element is followed by one or more bvar
                     elements giving the index variables, followed by qualifiers giving
                     the domain for the index variables. The final child in the enclosing
                     apply is then an expression in the bound variables, and the
                     terms of the product are obtained by evaluating this expression at
                     each point of the domain.  Depending on the structure of the domain,
                     it is commonly given using uplimit and lowlimit
                     qualifiers.
                  
When no bound variables are explicitly given, the final child of
                     the enclosing apply element must be a function, and the
                     terms of the product are obtained by evaluating the function
                     at each point of the domain specified by qualifiers.
                  
Content MathML
<apply><product/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <apply><ci type="function">f</ci>
    <ci>x</ci>
  </apply>
</apply>Sample Presentation
<mrow> <munderover> <mo>∏</mo> <mrow><mi>x</mi><mo>=</mo><mi>a</mi></mrow> <mi>b</mi> </munderover> <mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi></mfenced></mrow> </mrow>
Content MathML
<apply><product/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><in/>
      <ci>x</ci>
      <ci type="set">B</ci>
    </apply>
  </condition>
  <apply><ci>f</ci><ci>x</ci></apply>
</apply>Sample Presentation
<mrow> <munder> <mo>∏</mo> <mrow><mi>x</mi><mo>∈</mo><mi>B</mi></mrow> </munder> <mrow><mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi></mfenced></mrow> </mrow>
Mapping to Strict Content MathML
When no explicit bound variables are used, no special rules are
                     required to rewrite products as Strict Content beyond the generic rules
                     for rewriting expressions using qualifiers.  However, when bound
                     variables are used, it is necessary to introduce a lambda
                     construction to rewrite the expression in the bound variables as a
                     function.
                  
Content MathML
<apply><product/> <bvar><ci>i</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <uplimit><cn>100</cn></uplimit> <apply><power/><ci>x</ci><ci>i</ci></apply> </apply>
Strict Content MathML equivalent
<apply><csymbol cd="arith1">product</csymbol>
  <apply><csymbol cd="interval1">integer_interval</csymbol>
    <cn>0</cn>
    <cn>100</cn>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>i</ci></bvar>
    <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>
  </bind>
</apply><limit/>| Class | limit | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | lowlimit, condition | 
| OM Symbols | limit, both_sides, above, below, null | 
The limit element represents the operation of taking a limit of a
                     sequence. The limit point is expressed by specifying a lowlimit and a
                     bvar, or by specifying a condition on one or more bound variables.
                  
Content MathML
<apply><limit/> <bvar><ci>x</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <apply><sin/><ci>x</ci></apply> </apply>
Sample Presentation
<mrow> <munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder> <mrow><mi>sin</mi><mo>⁡</mo><mi>x</mi></mrow> </mrow>
Content MathML
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><tendsto/><ci>x</ci><cn>0</cn></apply>
  </condition>
  <apply><sin/><ci>x</ci></apply>
</apply>Sample Presentation
<mrow> <munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder> <mrow><mi>sin</mi><mo>⁡</mo><mi>x</mi></mrow> </mrow>
Content MathML
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><tendsto type="above"/><ci>x</ci><ci>a</ci></apply>
  </condition>
  <apply><sin/><ci>x</ci></apply>
</apply>Sample Presentation
<mrow> <munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mi>a</mi></mrow></munder> <mrow><mi>sin</mi><mo>⁡</mo><mi>x</mi></mrow> </mrow>
The direction from which a limiting value is approached is given as an argument
                     limit in Strict Content MathML, which supplies the
                     direction specifier symbols both_sides, above, and below for this
                     purpose. The first correspond to the values "all", "above",
                     and "below" of the type attribute of the tendsto
                     element below. The null symbol corresponds to the case
                     where no type attribute is present. We translate
                  
<apply><limit/> <bvar> </bvar> <condition> <apply><tendsto/> 0</apply> </condition> </apply>
Strict Content MathML equivalent
<apply><csymbol cd="limit1">limit</csymbol> 0 <csymbol cd="limit1"></csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar> </bvar> </bind> </apply>
where 
                           is an
                        arbitrary expression involving the bound variable(s), and the choice of
                        symbol, null depends on the
                        type attribute of the the tendsto element as
                        described above.
                     
<tendsto/>| Class | binary-reln | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | limit | 
The tendsto element is used to express the relation that
                     a quantity is tending to a specified value. While this is used
                     primarily as part of the statement of a mathematical limit, it
                     exists as a construct on its own to allow one to capture
                     mathematical statements such as "As x tends to y," and to provide a
                     building block to construct more general kinds of limits.
                  
The tendsto element takes the attributes type to set the
                     direction from which the limiting value is approached.
                  
Content MathML
<apply><tendsto type="above"/> <apply><power/><ci>x</ci><cn>2</cn></apply> <apply><power/><ci>a</ci><cn>2</cn></apply> </apply>
Sample Presentation
<mrow> <msup><mi>x</mi><mn>2</mn></msup> <mo>→</mo> <msup><mi>a</mi><mn>2</mn></msup> </mrow>
Content MathML
<apply><tendsto/>
  <vector><ci>x</ci><ci>y</ci></vector>
   <vector>
     <apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>
     <apply><ci type="function">g</ci><ci>x</ci><ci>y</ci></apply>
   </vector>
</apply>Sample Presentation
<mfenced><mtable>
  <mtr><mtd><mi>x</mi></mtd></mtr>
  <mtr><mtd><mi>y</mi></mtd></mtr>
</mtable></mfenced>
<mo>→</mo>
<mfenced><mtable>
  <mtr><mtd>
    <mi>f</mi><mo>⁡</mo><mfenced><mi>x</mi><mi>y</mi></mfenced>
  </mtd></mtr>
  <mtr><mtd>
    <mi>g</mi><mo>⁡</mo><mfenced><mi>x</mi><mi>y</mi></mfenced>
  </mtd></mtr>
</mtable></mfenced>Mapping to Strict Content MathML
The usage of tendsto to qualify a limit is formally
                     defined by writing the expression in Strict Content MathML via the
                     rule Rewrite: limits condition. The meanings of other more
                     idiomatic uses of tendsto are not formally defined by this
                     specification. When rewriting these cases to Strict Content MathML,
                     tendsto should be rewritten to an annotated identifier as
                     shown below.
                  
| Class | unary-elementary | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | sin | 
| sin | cos | tan | sec | csc | cot | 
| sinh | cosh | tanh | sech | csch | coth | 
| arcsin | arccos | arctan | arccosh | arccot | arccoth | 
| arccsc | arccsch | arcsec | arcsech | arcsinh | arctanh | 
These operator elements denote the standard trigonometric and hyperbolic functions and their inverses. Since their standard interpretations are widely known, they are discussed as a group. In the case of inverse functions there are differing definitions in use. For maximum interoperability applications evaluating such expressions should follow the definitions in [Abramowitz1997].
Content MathML
<apply><sin/><ci>x</ci></apply>
Sample Presentation
<mrow><mi>sin</mi><mo>⁡</mo><mi>x</mi></mrow>
Content MathML
<apply><sin/>
  <apply><plus/>
    <apply><cos/><ci>x</ci></apply>
    <apply><power/><ci>x</ci><cn>3</cn></apply>
  </apply>
</apply>Sample Presentation
<mrow> <mi>sin</mi> <mo>⁡</mo> <mrow> <mo>(</mo> <mrow><mi>cos</mi><mo>⁡</mo><mi>x</mi></mrow> <mo>+</mo> <msup><mi>x</mi><mn>3</mn></msup> <mo>)</mo> </mrow> </mrow>
<exp/>| Class | unary-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | exp | 
The exp element represents the exponentiation function
                     associated with the inverse of the ln function. It takes one
                     argument.
                  
Content MathML
<apply><exp/><ci>x</ci></apply>
Sample Presentation
<msup><mi>e</mi><mi>x</mi></msup>
<ln/>| Class | unary-functional | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | ln | 
The ln element represents the natural logarithm function.
                  
Content MathML
<apply><ln/><ci>a</ci></apply>
Sample Presentation
<mrow><mi>ln</mi><mo>⁡</mo><mi>a</mi></mrow>
<log/>| Class | unary-functional | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | logbase | 
| OM Symbols | log | 
The log elements represents the logarithm function
                     relative to a given base.  When present, the logbase
                     qualifier specifies the base. Otherwise, the base is assumed to be 10.
                     apply.
                  
Content MathML
<apply><log/> <logbase><cn>3</cn></logbase> <ci>x</ci> </apply>
Sample Presentation
<mrow><msub><mi>log</mi><mn>3</mn></msub><mo>⁡</mo><mi>x</mi></mrow>
Content MathML
<apply><log/><ci>x</ci></apply>
Sample Presentation
<mrow><mi>log</mi><mo>⁡</mo><mi>x</mi></mrow>
Mapping to Strict Content MathML
When mapping log to Strict Content, one uses the
                     log, symbol denoting the function
                     that returns the log of it's second argument with respect to the base
                     specified by the first argument.  When logbase is present, it
                     determines the base.  Otherwise, the default base of 10 must be
                     explicitly provided in Strict markup.  See the following example.
                  
<apply><plus/>
  <apply>
    <log/>
    <logbase><cn>2</cn></logbase>
    <ci>x</ci>
  </apply>
  <apply>
    <log/>
    <ci>y</ci>
  </apply>
</apply>
Strict Content MathML equivalent:
<apply>
  <csymbol cd="arith1">plus</csymbol>
  <apply>
    <csymbol cd="transc1">log</csymbol>
    <ci>x</ci>
    <cn>2</cn>
  </apply>
  <apply>
    <csymbol cd="transc1">log</csymbol>
    <ci>y</ci>
    <cn>10</cn>
  </apply>
</apply><mean/>| Class | nary-stats | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | mean, mean | 
The mean element represents the function returning arithmetic mean or average of a
                     data set or random variable. If it is used on a data set, then the mean element
                     corresponds to the mean symbol from the s_data1
                     content dictionary. When it is applied to a random variable, then it corresponds to the
                     mean symbol from the s_dist1 CD.
                  
Content MathML
<apply><mean/> <cn>3</cn><cn>4</cn><cn>3</cn><cn>7</cn><cn>4</cn> </apply>
Sample Presentation
<mrow> <mo>〈</mo> <mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>3</mn> <mo>,</mo><mn>7</mn><mo>,</mo><mn>4</mn> <mo>〉</mo> </mrow>
Content MathML
<apply><mean/><ci>X</ci></apply>
Sample Presentation
<mrow><mo>〈</mo><mi>X</mi><mo>〉</mo></mrow>
<mover><mi>X</mi><mo>¯</mo></mover>
Mapping to Strict Markup
When the mean element is applied to an explicit list of arguments, the
                     translation to Strict Content markup is direct, using the mean symbol from the s_data1 content dictionary, as described in
                     Rewrite: element. When it is applied to a distribution, then the
                     mean symbol from the s_dist1 content
                     dictionary should be used.  In the case with qualifiers use Rewrite: n-ary domainofapplication with the same caveat.
                  
<sdev/>| Class | nary-stats | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | sdev, sdev | 
sdev is the operator element representing the standard deviation of a data set
                     or random variable.
                  
Content MathML
<apply><sdev/> <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn> </apply>
Sample Presentation
<mrow> <mo>σ</mo> <mo>⁡</mo> <mfenced><mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn></mfenced> </mrow>
Content MathML
<apply><sdev/> <ci type="discrete_random_variable">X</ci> </apply>
Sample Presentation
<mrow><mo>σ</mo><mo>⁡</mo><mfenced><mi>X</mi></mfenced></mrow>
Mapping to Strict Markup
When the sdev element is applied to an explicit list of arguments, the
                     translation to Strict Content markup is direct, using the sdev symbol from the s_data1 content dictionary, as described in
                     Rewrite: element. When it is applied to a distribution, then the
                     sdev symbol from the s_dist1 content
                     dictionary should be used. In the case with qualifiers use
                     Rewrite: n-ary domainofapplication with the same caveat.
                  
<variance/>| Class | nary-stats | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | variance, variance | 
variance is the operator element representing the standard deviation of a data
                     set or random variable. If it is used on a data set, then the variance element
                     corresponds to the variance from the s_data1
                     content dictionary, if it is used on a random variable, then it corresponds to the
                     variance from the s_dist1 CD.
                  
Content MathML
<apply><variance/> <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn> </apply>
Sample Presentation
<msup> <mrow> <mo>σ</mo> <mo>⁡</mo> <mfenced><mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn></mfenced> </mrow> <mn>2</mn> </msup>
Content MathML
<apply><variance/> <ci type="discrete_random_variable"> X</ci> </apply>
Sample Presentation
<msup> <mrow><mo>σ</mo><mo>⁡</mo><mfenced><mi>X</mi></mfenced></mrow> <mn>2</mn> </msup>
Mapping to Strict Markup
When the variance element is applied to an explicit list of arguments, the
                     translation to Strict Content markup is direct, using the variance symbol from the s_data1 content dictionary, as described in
                     Rewrite: element. When it is applied to a distribution, then the
                     variance symbol from the s_dist1 content
                     dictionary should be used. In the case with qualifiers use Rewrite: n-ary domainofapplication with the same caveat.
                  
<median/>| Class | nary-stats | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | median | 
This symbol represents an n-ary function denoting the median of its arguments. That is, if the data were placed in ascending order then it denotes the middle one (in the case of an odd amount of data) or the average of the middle two (in the case of an even amount of data).
Content MathML
<apply><median/> <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn> </apply>
Sample Presentation
<mrow> <mi>median</mi> <mo>⁡</mo> <mfenced><mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn></mfenced> </mrow>
Mapping to Strict Markup
When the median element is applied to an explicit list of arguments, the
                     translation to Strict Content markup is direct, using the median symbol from the s_data1 content dictionary, as described in
                     Rewrite: element.
                  
<mode/>| Class | nary-stats | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | BvarQ,DomainQ | 
| OM Symbols | mode | 
This symbol represents an n-ary function denoting the mode of its arguments. That is the value which occurs with the greatest frequency.
Content MathML
<apply><mode/> <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn> </apply>
Sample Presentation
<mrow> <mi>mode</mi> <mo>⁡</mo> <mfenced><mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn></mfenced> </mrow>
Mapping to Strict Markup
When the mode element is applied to an explicit list of arguments, the
                     translation to Strict Content markup is direct, using the mode symbol from the s_data1 content dictionary, as described in
                     Rewrite: element.
                  
<moment/>, <momentabout>)
                  | Class | unary-functional | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| Qualifiers | degree, momentabout | 
| OM Symbols | moment, moment | 
The moment element is used to denote the ith moment of a set of data set or
                     random variable. The moment function accepts the degree and
                     momentabout qualifiers. If present, the degree schema denotes the order of
                     the moment. Otherwise, the moment is assumed to be the first order moment. When used with
                     moment, the degree schema is expected to contain a
                     single child. If present, the momentabout schema denotes the  
                     point about which the moment is taken. Otherwise, the moment is
                     assumed to be the moment about zero.
                  
Content MathML
<apply><moment/> <degree><cn>3</cn></degree> <momentabout><mean/></momentabout> <cn>6</cn><cn>4</cn><cn>2</cn><cn>2</cn><cn>5</cn> </apply>
Sample Presentation
<msub> <mrow> <mo>〈</mo> <msup> <mfenced><mn>6</mn><mn>4</mn><mn>2</mn><mn>2</mn><mn>5</mn></mfenced> <mn>3</mn> </msup> <mo>〉</mo> </mrow> <mi>mean</mi> </msub>
Content MathML
<apply><moment/> <degree><cn>3</cn></degree> <momentabout><ci>p</ci></momentabout> <ci>X</ci> </apply>
Sample Presentation
<msub> <mrow><mo>〈</mo><msup><mi>X</mi><mn>3</mn></msup><mo>〉</mo></mrow> <mi>p</mi> </msub>
Mapping to Strict Markup
When rewriting to Strict Markup, the moment is used. It takes the degreee as the first argument, the point as the second, and the dataset or random variable.
<apply><moment/> <degree><cn>3</cn></degree> <momentabout><ci>p</ci></momentabout> <ci>X</ci> </apply>
Strict Content MathML equivalent
<apply><csymbol cd="s_dist1">moment</csymbol> <cn>3</cn> <ci>p</ci> <ci>X</ci> </apply>
<vector>| Class | nary-constructor | 
|---|---|
| Attributes | CommonAtt | 
| Qualifiers | BvarQ,DomainQ | 
| Content | ContExp* | 
| OM Symbol | vector | 
A vector is an ordered n-tuple of values representing an element of an n-dimensional vector space. The "values" are all from the same ring, typically real or complex. Where orientation is important, such as for pre or post multiplication by a matrix a vector is treated as a row vector and its transpose is treated a column vector.
For purposes of interaction with matrices and matrix multiplication, vectors are regarded as equivalent to a matrix consisting of a single column, and the transpose of a vector behaves the same as a matrix consisting of a single row. Note that vectors may be rendered either as a single column or row.
vector is a constructor element (see ??? ).
                  
Content MathML
<vector> <apply><plus/><ci>x</ci><ci>y</ci></apply> <cn>3</cn> <cn>7</cn> </vector>
Sample Presentation
<mrow> <mo>(</mo> <mtable> <mtr><mtd><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mtd></mtr> <mtr><mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>7</mn></mtd></mtr> </mtable> <mo>)</mo> </mrow>
<mfenced> <mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow> <mn>3</mn> <mn>7</mn> </mfenced>
The vector element constructs vectors from an n-dimensional
                     vector space so that its n child elements typically represent real or complex
                     valued scalars as in the three-element vector
                  
In general a vector can be constructed by providing a function and a 1-dimensional domain of application. The entries of the vector correspond to the values obtained by evaluating the function at the points of the domain.
Content MathML
<vector>
  <bvar><ci>x</ci></bvar>
  <domainofapplication>
    <interval type="integer"><cn>1</cn><cn>7</cn></interval>
  </domainofapplication>
  <apply><power/><ci>x</ci><cn>2</cn>
  </apply>
</vector>Sample Presentation
<mrow> <mo>[</mo> <msup><mi>x</mi><mn>2</mn></msup> <mo>|</mo> <mi>x</mi> <mo>∈</mo> <mfenced open="[" close="]"><mn>1</mn><mn>7</mn></mfenced> <mo>]</mo> </mrow>
<matrix>| Class | nary-constructor | 
|---|---|
| Attributes | CommonAtt | 
| Qualifiers | BvarQ,DomainQ | 
| Content | ContExp* | 
| OM Symbol | matrix | 
A vector is an ordered n-tuple of values representing an element of an n-dimensional vector space. The "values" are all from the same ring, typically real or complex. Where orientation is important, such as for pre or post multiplication by a matrix a vector is treated as a row vector and its transpose is treated a column vector.
For purposes of interaction with matrices and matrix multiplication, vectors are regarded as equivalent to a matrix consisting of a single column, and the transpose of a vector behaves the same as a matrix consisting of a single row. Note that vectors may be rendered either as a single column or row.
Note that the behavior of the matrix and matrixrow elements is
                     substantially different from the mtable and mtr presentation
                     elements.
                  
matrix is a constructor element (see ??? ).
                  
In general a matrix can be constructed by providing a function and a 2-dimensional
                     domain of application.  The entries of the matrix correspond to the values obtained by
                     evaluating the function at the points of the domain.  The qualifications defined by a
                     domainofapplication element can also be abbreviated in several ways including
                     a condition element placing constraints directly on bound variables and an
                     expression in those variables.
                  
Content MathML
<matrix>
  <bvar><ci type="integer">i</ci></bvar>
  <bvar><ci type="integer">j</ci></bvar>
  <condition>
    <apply><and/>
      <apply><in/>
        <ci>i</ci>
        <interval><ci>1</ci><ci>5</ci></interval>
      </apply>
      <apply><in/>
        <ci>j</ci>
        <interval><ci>5</ci><ci>9</ci></interval>
      </apply>
    </apply>
  </condition>
  <apply><power/><ci>i</ci><ci>j</ci></apply>
</matrix>Sample Presentation
<mrow> <mo>[</mo> <msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub> <mo>|</mo> <mrow> <msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub> <mo>=</mo> <msup><mi>i</mi><mi>j</mi></msup> </mrow> <mo>;</mo> <mrow> <mrow> <mi>i</mi> <mo>∈</mo> <mfenced open="[" close="]"><mi>1</mi><mi>5</mi></mfenced> </mrow> <mo>∧</mo> <mrow> <mi>j</mi> <mo>∈</mo> <mfenced open="[" close="]"><mi>5</mi><mi>9</mi></mfenced> </mrow> </mrow> <mo>]</mo> </mrow>
<matrixrow>| Class | nary-constructor | 
|---|---|
| Attributes | CommonAtt | 
| Qualifiers | BvarQ,DomainQ | 
| Content | ContExp* | 
| OM Symbol | matrixrow | 
This symbol is an n-ary constructor used to represent rows of matrices. Its arguments should be members of a ring.
Matrix rows are not directly rendered by themselves outside of the context of a matrix.
<determinant/>| Class | unary-linalg | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | determinant | 
This symbol denotes the unary function which returns the determinant of its argument, the argument should be a square matrix.
Content MathML
<apply><determinant/> <ci type="matrix">A</ci> </apply>
Sample Presentation
<mrow><mi>det</mi><mo>⁡</mo><mi>A</mi></mrow>
<transpose/>| Class | unary-linalg | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | transpose | 
This symbol represents a unary function that denotes the transpose of the given matrix or vector.
Content MathML
<apply><transpose/> <ci type="matrix">A</ci> </apply>
Sample Presentation
<msup><mi>A</mi><mi>T</mi></msup>
<selector/>| Class | nary-linalg | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | vector_selector, matrix_selector | 
The selector element is the operator for indexing into vectors matrices
                     and lists. It accepts one or more arguments. The first argument identifies the vector,
                     matrix or list from which the selection is taking place, and the second and subsequent
                     arguments, if any, indicate the kind of selection taking place.
                  
When selector is used with a single argument, it should be interpreted as
                     giving the sequence of all elements in the list, vector or matrix given. The ordering
                     of elements in the sequence for a matrix is understood to be first by column, then by
                     row. That is, for a matrix (ai,j), where the indices denote row
                     and column, the ordering would be a1,1, 
                     a1,2, ...  a2,1, a2,2
                     ... etc.
                  
When three arguments are given, the last one is ignored for a list or vector, and in the case of a matrix, the second and third arguments specify the row and column of the selected element.
When two arguments are given, and the first is a vector or list, the second argument specifies an element in the list or vector.
Content MathML
<apply><selector/><ci type="vector">V</ci><cn>1</cn></apply>
Sample Presentation
<msub><mi>V</mi><mn>1</mn></msub>
Content MathML
<apply><eq/>
  <apply><selector/>
    <matrix>
      <matrixrow><cn>1</cn><cn>2</cn></matrixrow>
      <matrixrow><cn>3</cn><cn>4</cn></matrixrow>
    </matrix>
    <cn>1</cn>
  </apply>
  <matrixrow><cn>1</cn><cn>2</cn></matrixrow>
</apply>Sample Presentation
<mrow>
 <msub>
  <mrow>
   <mo>(</mo>
   <mtable>
    <mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr>
    <mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr>
   </mtable>
   <mo>)</mo>
  </mrow>
  <mn>1</mn>
 </msub>
 <mo>=</mo>
 <mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable>
</mrow><vectorproduct/>| Class | binary-linalg | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | vectorproduct | 
This symbol represents the vector product function. It takes two three dimensional vector arguments and returns a three dimensional vector.
Content MathML
<apply><eq/>
  <apply><vectorproduct/>
    <ci type="vector"> A </ci>
    <ci type="vector"> B </ci>
 </apply>
  <apply><times/>
    <ci>a</ci>
    <ci>b</ci>
    <apply><sin/><ci>θ</ci></apply>
    <ci type="vector"> N </ci>
  </apply>
</apply>Sample Presentation
<mrow> <mrow><mi>A</mi><mo>×</mo><mi>B</mi></mrow> <mo>=</mo> <mrow> <mi>a</mi> <mo>⁢</mo> <mi>b</mi> <mo>⁢</mo> <mrow><mi>sin</mi><mo>⁡</mo><mi>θ</mi></mrow> <mo>⁢</mo> <mi>N</mi> </mrow> </mrow>
<scalarproduct/>| Class | binary-linalg | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | scalarproduct | 
This symbol represents the scalar product function. It takes two vector arguments and returns a scalar value.
Content MathML
<apply><eq/>
  <apply><scalarproduct/>
    <ci type="vector">A</ci>
    <ci type="vector">B</ci>
  </apply>
  <apply><times/>
    <ci>a</ci>
    <ci>b</ci>
    <apply><cos/><ci>θ</ci></apply>
  </apply>
</apply>Sample Presentation
<mrow> <mrow><mi>A</mi><mo>.</mo><mi>B</mi></mrow> <mo>=</mo> <mrow> <mi>a</mi> <mo>⁢</mo> <mi>b</mi> <mo>⁢</mo> <mrow><mi>cos</mi><mo>⁡</mo><mi>θ</mi></mrow> </mrow> </mrow>
<outerproduct/>| Class | binary-linalg | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | outerproduct | 
This symbol represents the outer product function. It takes two vector arguments and returns a matrix.
Content MathML
<apply><outerproduct/> <ci type="vector">A</ci> <ci type="vector">B</ci> </apply>
Sample Presentation
<mrow><mi>A</mi><mo>⊗</mo><mi>B</mi></mrow>
This section explains the use of the Constant and Symbol elements.
<integers/>| Class | constant-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | Z | 
This symbol represents the set of integers, positive, negative and zero.
Content MathML
<apply><in/> <cn type="integer"> 42 </cn> <integers/> </apply>
Sample Presentation
<mrow><mn>42</mn><mo>∈</mo><mi mathvariant="double-struck">Z</mi></mrow>
<reals/>| Class | constant-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | R | 
This symbol represents the set of real numbers.
Content MathML
<apply><in/> <cn type="real"> 44.997</cn> <reals/> </apply>
Sample Presentation
<mrow><mn>44.997</mn><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow>
<rationals/>| Class | constant-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | Q | 
This symbol represents the set of rational numbers.
Content MathML
<apply><in/> <cn type="rational"> 22 <sep/>7</cn> <rationals/> </apply>
Sample Presentation
<mrow> <mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow> <mo>∈</mo> <mi mathvariant="double-struck">Q</mi> </mrow>
<naturalnumbers/>| Class | constant-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | N | 
This symbol represents the set of natural numbers (including zero).
Content MathML
<apply><in/> <cn type="integer">1729</cn> <naturalnumbers/> </apply>
Sample Presentation
<mrow><mn>1729</mn><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow>
<complexes/>| Class | constant-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | C | 
This symbol represents the set of complex numbers.
Content MathML
<apply><in/> <cn type="complex-cartesian">17<sep/>29</cn> <complexes/> </apply>
Sample Presentation
<mrow> <mrow><mn>17</mn><mo>+</mo><mn>29</mn><mo>⁢</mo><mi>i</mi></mrow> <mo>∈</mo> <mi mathvariant="double-struck">C</mi> </mrow>
<primes/>| Class | constant-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | P | 
This symbol represents the set of positive prime numbers.
Content MathML
<apply><in/> <cn type="integer">17</cn> <primes/> </apply>
Sample Presentation
<mrow><mn>17</mn><mo>∈</mo><mi mathvariant="double-struck">P</mi></mrow>
<exponentiale/>| Class | constant-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | e | 
This symbol represents the base of the natural logarithm, approximately 2.718.
Content MathML
<apply><eq/> <apply><ln/><exponentiale/></apply> <cn>1</cn> </apply>
Sample Presentation
<mrow> <mrow><mi>ln</mi><mo>⁡</mo><mi>e</mi></mrow> <mo>=</mo> <mn>1</mn> </mrow>
<imaginaryi/>| Class | constant-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | i | 
This symbol represents the mathematical constant which is the square root of -1, commonly written i
Content MathML
<apply><eq/> <apply><power/><imaginaryi/><cn>2</cn></apply> <cn>-1</cn> </apply>
Sample Presentation
<mrow><msup><mi>i</mi><mn>2</mn></msup><mo>=</mo><mn>-1</mn></mrow>
<notanumber/>| Class | constant-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | NaN | 
A symbol to convey the notion of not-a-number. The result of an ill-posed floating computation. See IEEE standard for floating point representations.
Content MathML
<apply><eq/> <apply><divide/><cn>0</cn><cn>0</cn></apply> <notanumber/> </apply>
Sample Presentation
<mrow> <mrow><mn>0</mn><mo>/</mo><mn>0</mn></mrow> <mo>=</mo> <mi>NaN</mi> </mrow>
<true/>| Class | constant-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | true | 
This symbol represents the Boolean value true, i.e. the logical constant for truth.
Content MathML
<apply><eq/>
  <apply><or/>
    <true/>
     <ci type="boolean">P</ci>
  </apply>
  <true/>
</apply>Sample Presentation
<mrow> <mrow><mi>true</mi><mo>∨</mo><mi>P</mi></mrow> <mo>=</mo> <mi>true</mi> </mrow>
<false/>| Class | constant-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | false | 
This symbol represents the Boolean value false, i.e. the logical constant for falsehood.
Content MathML
<apply><eq/>
  <apply><and/>
    <false/>
    <ci type="boolean">P</ci>
  </apply>
  <false/>
</apply>Sample Presentation
<mrow> <mrow><mi>false</mi><mo>∧</mo><mi>P</mi></mrow> <mo>=</mo> <mi>false</mi> </mrow>
<emptyset/>| Class | constant-set | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | emptyset, emptyset | 
This symbol is used to represent the empty set, that is the set which contains no members. It takes no parameters.
The emptyset element takes an optional attribute type. If its
                     value is "multiset", then the emptyset corresponds to the
                     emptyset symbol from the multiset1 CD.
                  
Content MathML
<apply><neq/> <integers/> <emptyset/> </apply>
Sample Presentation
<mrow><mi mathvariant="double-struck">Z</mi><mo>≠</mo><mi>∅</mi></mrow>
<pi/>| Class | constant-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | pi | 
A symbol to convey the notion of pi, approximately 3.142. The ratio of the circumference of a circle to its diameter.
Content MathML
<apply><approx/> <pi/> <cn type="rational">22<sep/>7</cn> </apply>
Sample Presentation
<mrow> <mi>π</mi> <mo>≃</mo> <mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow> </mrow>
<eulergamma/>| Class | constant-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | gamma | 
A symbol to convey the notion of the gamma constant. It is the limit of 1 + 1/2 + 1/3 + ... + 1/m - ln m as m tends to infinity, this is approximately 0.5772.
Content MathML
<apply><approx/> <eulergamma/> <cn>0.5772156649</cn> </apply>
Sample Presentation
<mrow><mi>γ</mi><mo>≃</mo><mn>0.5772156649</mn></mrow>
<infinity/>| Class | constant-arith | 
|---|---|
| Attributes | CommonAtt | 
| Content | Empty | 
| OM Symbols | infinity | 
A symbol to represent the notion of infinity.
Content MathML
<infinity/>
Sample Presentation
<mi>∞</mi>
<declare>| Editorial note: MiKo | |
| This should maybe be moved into a general section about changes or deprecated elements. Also Stan thinks the text should be improved. | |
MathML2 provided the declare element to bind properties like
                  types to symbols and variables and to define abbreviations for structure sharing. This
                  element is deprecated in MathML 3. Structure sharing can obtained via the share
                  element (see Section 4.2.7 Structure Sharing <share> for details).
               
This section sketches the meaning-giving translation from full MathML3 into Strict Content MathML as a list of transformation rules which are supposed to be applied in order.
Normalize non-strict bind: Change the outer bind tags
                     in binding expressions to apply, if they have qualifiers or multiple
                     children. This simplifies the algorithm by allowing the subsequent rules to be applied
                     to non-strict binding expressions without case distinction. Note that the following
                     rules will change the apply elements introduced in this step back to
                     bind elements.
                  
Normalize Container Markup:
Sets and lists are rewritten by the rule Section 4.3.4.2 N-ary Constructors for set and list .
Interval, vectors, matricies, and matrix rows are
                           rewritten as described in Section 4.4.1.1 Interval <interval>, Section 4.4.9.1 Vector <vector>,
                           Section 4.4.9.2 Matrix <matrix> and Section 4.4.9.3 Matrix row <matrixrow>.
                        
Lambda expressions are rewritten by rules Rewrite: lambda
Piecewise funtions are rewritten, as described in Section 4.4.1.9 Piecewise declaration (<piecewise>, <piece>, <otherwise>).
                        
Special Case Operator Rules: This step deals with the special cases for the operators introduced in Section 4.4 Content MathML for Specific Operators and Constants. There are different classes of special cases to be taken into account here:
Quantifiers with condition:: The two quantifiers
                           	forall and exists are rewritten to expressions using implication
                           	and conjunction by the rule Rewrite: quantifier.
                           	
                        
Derivatives are rewritten with rules Rewrite: diff, Rewrite: diff, Rewrite: partialdiffdegree that take special care of explicating the binding status of the variables involved.
Integrals are rewritten with rules Rewrite: int that take special
                           	care of bound/free variables and of the orientation of the range of integration if
                           	it is given as a lowlimit/uplimit pair.
                           	
                        
Limits are rewritten as described in Rewrite: tendsto and Rewrite: limits condition.
Sums and products are rewritten as described in
                           Section 4.4.6.1 Sum <sum/> and Section 4.4.6.2 Product <product/>.
                        
Logarithms are rewritten as described in Section 4.4.7.4 Logarithm <log/>.
                        
Moments are rewriteen as described in Section 4.4.8.6 Moment (<moment/>, <momentabout>).
                        
Rewriting Qualifiers:
                     This rule is applied to apply with bvar children and normalizes
                     various cases of qualifiers.
                  
Rewriting Intervals: Qualifiers given as interval and
                           	lowlimit/uplimit are rewritten to intervals of integers via
                           	Rewrite: interval qualifier.
                        
Multiple conditions: Multiple condition qualifiers
                           are rewritten to one, by taking their conjunction, then this is rewritten to
                           domainofapplication according to rule Rewrite: condition.
                        
Multiple domainofapplication Multiple
                           	domainofapplication qualifiers are rewritten to one by taking the
                           	intersection of the specified domains.
                        
Eliminating domainofapplication: At this stage, any
                     apply has at most one domainofapplication child. As
                     domainofapplication is not Strict Content MathML, it is rewritten
                     
                  
into an application of a restricted function via the rule
                           	Rewrite: restriction if the
                           	apply does not contain a bvar child.
                        
into an application of predicate_on_list via the rules Rewrite: n-ary relations and Rewrite: n-ary relations bvar if used with a relation.
into a construction with the apply_to_list symbol via the general rule Rewrite: n-ary domainofapplication for general n-ary operators..
into a construction using the suchthat symbol
                           	from the set1 content dictionary in apply with bound
                           	variables via the Rewrite: apply bvar domainofappliction rule
                        
Rewriting cn:
                     Numbers represented as cn elements with type is one of
                     "e-notation", "rational",
                     "complex-cartesian", "complex-polar",
                     "constant" are rewritten as strict cn via rules 
                     Rewrite: cn sep, 
                     Rewrite: cn constant.
                  
Rewriting the type attribute:
                     ci and csymbol elements with a type attribute to a
                     strict expression with semantics according to rule Rewrite: ci type annotation.
                  
Token Elements containing Presentation MathML:
                     Any ci, csymbol or sep segments of cn containing
                     presentation MathML rewritten to semantics elements with
                     rule Rewrite: ci presentation mathml and its analog for csymbol.
                  
rewriting definitionURL and encoding on
                        csymbol: If the definitionURL and encoding
                     attributes on a csymbol element can be interpreted as a reference to a
                     content dictionary (see Section 4.2.3.2 Extended uses of <csymbol> for details), then
                     this content dictionary referenced by the cd attribute instead. 
                     
                  
rewriting attributes: Any element with attributes that are
                     not allowed in strict markup is rewritten to a semantics construction with
                     the element without these attributes as the first child and the attributes in
                     annotation elements.
                  
For instance,
<ci class="" xmlns:other="" other:att=""></ci>
is rewritten to
<semantics> <ci></ci> <annotation cd="mathmlattr" name="class" encoding="text"></annotation> <annotation-xml cd="mathmlattr" name="foreign" encoding="MathML"> <apply><csymbol cd="mathmlattr">foreign_attribute</csymbol> <cs></cs> <cs></cs> <cs></cs> <cs></cs> </apply> </annotation-xml> </semantics>
                        
                        For MathML attributes not allowed in Strict Content MathML the content dictionary mathmlattr is referenced, which provides symbols for all attributes allowed on content
                        MathML elements. For other attributes in other namespaces, the namespace
                        URI is encoded in the definitionURL attribute instead.
                     
rewriting operators: Any remaining operator defined in Section 4.4 Content MathML for Specific Operators and Constants is rewritten to a csymbol referencing the 
                     symbol identified in the syntax table by the rule Rewrite: element.