Potential Actions

What follows is a series of proposals for augmenting http://schema.org/Action, currently used to
describe past actions, to also enable describing the capability to perform an action in the future,
as well as how that capability can be exercised.

Part 1: Action status
Thing > Action
Thing > Intangible > Enumeration > ActionStatusType
Example: actionStatus
Part 2: Connecting Actions to Things
Thing
Example: Thing.action
Part 3: Action Entrypoints
Example: Action URL
Thing
Thing > Intangible > ProtocolElement > Entrypoint
Scheme-based encoding of Entry
Example: Multiple platform URLs
Part 4: Input and Output constraints
Thing > Intangible > ProtocolElement > PropertyValueSpecification
Example: Text search deep link with /input
request
Example: Product purchase API call with /output
description
request
response
Example: Movie review site API with /input and /output
description
request
response

Part 1: Action status

First, we need a mechanism for differentiating potential actions from actions that have actually
taken place or are even still in-progress. For this we introduce a new property of Action called
"actionStatus."

The expectation is that the status of an action will often be self-evident based on the usage
context, so this property can often be elided. However, it may still be necessary for resolving


http://schema.org/Action

ambiguous cases when they arise.

Thing > Action

Property Expected Type Description

actionStatus | ActionStatusType Indicates the current disposition of the Action.

Thing > Intangible > Enumeration > ActionStatusType
e PotentialAction (default) - A description of an action that is supported
e ActiveAction - An in-progress action (e..g, while watching the movie, or driving to a
location)
e CompletedAction - An action that has already taken place.

Example: actionStatus

{
"Qcontext": "http://schema.org",
"@type": "WatchAction",
"actionStatus": "CompletedAction",
"agent" : {
"Qtype": "Person",
"name": "Kevin Bacon"
}y
"object" : {
"@type": "Movie",
"name": "Footloose"
}y
"start time" : "2014-03-01"
}

Part 2: Connecting Actions to Things

Frequently actions are taken or offered in the context of an object (e.g., watch this movie, review
this article, share this webpage, etc.). We already have Action.object and its subproperties for
describing that relationship, but it's been missing a reverse property so we can assert that same
relationship from the context of a Thing.

Thing
Property Expected Type | Description




action Action Used to associate actions of all statuses with a Thing.
This property is the reverse of Action.object.

Example: Thing.action

{

"@context": "http://schema.org",
"Qtype": "Movie",
"name": "Footloose",
"action" : {
"Qtype": "WatchAction"

Part 3: Action Entrypoints

Potential actions are initiated by requesting the URL of an Action.

Example: Action URL

{

"@context": "http://schema.org",
"Qtype": "Movie",
"name": "Footloose",
"action" : {
"Qtype": "WatchAction",
"url" : "http://example.com/player?id=123"

For some platforms and use cases, however, a simple URL is insufficient for formulating a
request and/or processing the result, so we are introducing a new Entrypoint class for specifying
that additional context beyond a URL when necessary.

Thing
Property Expected Type Description

url URL, Entrypoint How to access the item




Thing > Intangible > ProtocolElement > Entrypoint

Property Expected Type Description

encodingType | Text Supported MIME type(s) for the request
contentType Text Supported MIME type(s) of the response
application SoftwareApplication | The host application

Note: For HTTP specifically, the method used for a Entrypoint will depend on the Action type.
Safe actions (in the sense of HTTP/1.1, see REC 2616: 9.1 Safe and Idempotent Methods) will
use GET, everything else will use POST except the actions that are subclasses of other HTTP
methods (e.g., DeleteAction). These method bindings will be added as part of the description of
each Action subclass in a separate proposal.

Scheme-based encoding of Entry
Ideally, the simple "deep link" use cases should work with just a simple URL. In some cases,
new schemes might even be created to make that possible for some platforms, for example:

android-app://{package id}/{scheme}/{host path}

Example: Multiple platform URLs

{

"@context": "http://schema.org",
"Q@type": "Restaurant",
"name": "Tartine Bakery",
"action": {

"Qtype": "ViewAction",

"url": [

/* Web deep link */
"http://www.urbanspoon.com/r/6/92204",

/* HTTP API that returns JSON-LD */

{
"@type": "Entrypoint",
"url": "http://api.urbanspoon.com/r/6/92204",
"contentType": "application/json+1ld",

b,

/* Android app deep link */
"android-app://com.urbanspoon/http/www.urbanspoon.com/r/6/92204",



http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FProtocols%2Frfc2616%2Frfc2616-sec9.html&sa=D&sntz=1&usg=AFQjCNEnpwhf-KxuYDzH7sJmHFrh8LXcgg
http://schema.org/

/* i0S deep link */
{
"Qtype": "Entrypoint",
"url": "urbanspoon://r/6/92204",
"application": {
"Qtype": "SoftwareApplication",
"@id": "284708449",
"name": "Urbanspoon iPhone & iPad App",
"operatingSystem": "iOS"
}
b,

/* Windows Phone deep link */
{
"@type": "Entrypoint",
"url": "urbanspoon://r/6/92204",
"application": {
"Qtype": "SoftwareApplication",
"@id": "5b23b738-bb64-4829-9296-5bcb59bb0d2d",
"name": "Windows Phone App",
"operatingSystem": "Windows Phone 8"

Part 4: Input and Output constraints

Additional information is often required from a user or client in order to formulate a complete
request. To facilitate this process we need the ability to describe within a potential action how to
construct these inputs. Since we need this capability for filling in any property of an Action, we
introduce a notion of property annotations using a slash delimiter. For example, by specifying a
"location/input" property on a potential action we are indicating that "location" is a supported input
for completing the action.

Similarly, it is also helpful to indicate to clients what will be included in the final completed version
of an action, so we introduce the corresponding /output annotation for indicating which properties
will be present in the completed action.

Annotation Expected Type Description

<property>/input PropertyValueSpecification | Indicates how a property should be filled in




before initiating the action.

<property>/output

PropertyValueSpecification | Indicates how the field will be filled in when

the action is completed.

Thing > Intangible > ProtocolElement > PropertyValueSpecification

A property value specification.

Property Expected Description
Type
valueRequired Boolean Whether the property must be filled in to complete the
action. Default is false. Equivalent to HTML's
input@required.
defaultValue Thing, The default value for the property. For properties that
DataType expect a DataType, it's a literal value, for properties that
expect an object, it's an ID reference to one of the current
values. Equivalent to HTML's input@value.
valueName Text Indicates the name of the PropertyValueSpecification to be
used in URL templates and form encoding in a manner
analogous to HTML's input@name.
readonlyValue Boolean Whether or not a property is mutable. Default is false.
Equivalent to HTML's input@readonly. Specifying this for &
property that also has a value makes it act similar to a
"hidden" input in an HTML form.
multipleValues Boolean Whether multiple values are allowed for the property.
Default is false. Equivalent to HTML's input@multiple.
valueMinLength | Number Specifies the minimum number of characters in a literal
value. Equivalent to HTML's input@minlength.
valueMaxLength | Number Specifies the maximum number of characters in a literal
value. Equivalent to HTML's input@maxlength.
valuePattern Text Specifies a regular expression for testing literal values
Equivalent to HTML's input@pattern.
minValue Number, Specifies the allowed range and intervals for literal values.
Date, Time, | Equivalent to HTML's input@min, max. step.The lower
DateTime value of some characteristic or property



http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-required-attribute&sa=D&sntz=1&usg=AFQjCNELVkNj0yb1h4_tldLBVMOiVoftrw
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-readonly-attribute&sa=D&sntz=1&usg=AFQjCNF8Y302UxY2ToIy0YP5iBqQvoAdsA
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-pattern-attribute&sa=D&sntz=1&usg=AFQjCNEhywSY9kVJ5r6ib-tU-eyCmBdEzw
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-pattern-attribute&sa=D&sntz=1&usg=AFQjCNEhywSY9kVJ5r6ib-tU-eyCmBdEzw
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-multiple-attribute&sa=D&sntz=1&usg=AFQjCNG2Z6OWpeQGtGSngm2u-teY6GeLIg
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-maxlength-and-minlength-attributes&sa=D&sntz=1&usg=AFQjCNGeTEZlV429VVgUTyffgfszcZWHjg
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-maxlength-and-minlength-attributes&sa=D&sntz=1&usg=AFQjCNGeTEZlV429VVgUTyffgfszcZWHjg
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-pattern-attribute&sa=D&sntz=1&usg=AFQjCNEhywSY9kVJ5r6ib-tU-eyCmBdEzw
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-min-and-max-attributes&sa=D&sntz=1&usg=AFQjCNHdYccMqYAPEEgGe2YwMRNoMYQBFQ

maxValue Number, The upper value of some characteristic or property.
Date, Time, | Equivalent to HTML's input@min, max, step.
DateTime

stepValue Number The step attribute indicates the granularity that is expected
(and required) of the value.

The minValue, maxValue and stepValue properties specify the allowed range and intervals for
literal values and are equivalent to HTML's input@min, max, step. It should also be noted that if
both a property and its /input annotation are present, the value of the un-annotated property
should be treated as the allowed options for input (similar to <select><option> in HTML) unless
the Input indicates that the value is also readonly, in which case the value(s) should all be
returned in a manner analogous to hidden inputs in forms.

Textual representations of Input and Output
For convenience, we also support a textual short-hand for both of these types that is formatted
and named similarly to how they would appear in their HTML equivalent. For example:

"<property>/input": {
"@type": "PropertyValueSpecification",
"valueRequired": true,
"valueMaxlength": 100,
"valueName": "g"

}
Can also be expressed as:

<property>/input: "required maxlength=100 name=q"

URI Templates

Finally, we also allow URI templating (using REC6570) for inlining the resulting value of /input
properties into action URLs. The allowed references in the templates for substitution are dotted
schema paths to the filled-in properties (relative to the Action object).

Example: Text search deep link with /input

description
{

"@context": "http://schema.org",

"Qtype": "WebSite",

"name": "Example.com",

"action": {
"@type": "SearchAction",
"url": "http://example.com/search?g={q}",
"query/input": "required maxlength=100 name=q"



http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-min-and-max-attributes&sa=D&sntz=1&usg=AFQjCNHdYccMqYAPEEgGe2YwMRNoMYQBFQ
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-min-and-max-attributes&sa=D&sntz=1&usg=AFQjCNHdYccMqYAPEEgGe2YwMRNoMYQBFQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc6570&sa=D&sntz=1&usg=AFQjCNEpwfs22O1xDoFSmTbJj1jFoy7bzg
http://schema.org/

request

GET http://example.com/search?g=the+search

Example: Product purchase API call with /output

description

{

"@type": "Product",
"url": "http://example.com/products/ipod",
"action": {
"@type": "BuyAction",
"url": {
"@type": "Entrypoint",
"url": "https://example.com/products/ipod/buy",
"encodingType": "application/ld+json",
"contentType": "application/ld+json"
by
"result": {
"@type": "Order",
"url/output": "required",
"confirmationNumber/output": "required",
"orderNumber/output": "required",

"orderStatus/output": "required"

request

POST https://example.com/products/ipod/buy

response
{
"@type": "BuyAction",
"actionStatus": "CompletedAction",
"object": "https://example.com/products/ipod",
"result": {
"@type": "Order",

"url": "http://example.com/orders/1199334"
"confirmationNumber": "1ABBCDDF23234",




"orderNumber": "1199334",
"orderStatus": "PROCESSING"
b

Example: Movie review site APl with /input and /output

description

{
"@context": "http://schema.org",
"Qtype": "ReviewAction",
"url": {
"@type": "Entrypoint",
"url": "https://api.example.com/review",
"encodingType": "application/ld+json",
"contentType": "application/ld+json"
by
"object" : {
"@type": "Movie",
"url/input": "required",
},
"resultReview": {
"url/output": "required",
"reviewBody/input": "required",
"reviewRating": {
"ratingValue/input": "required"

request

POST https://api.example.com/review
{

"@Qcontext": "http://schema.org",
"@type": "ReviewAction",
"object" : {
"url": "http://example.com/movies/123"
bo
"resultReview": {
"reviewBody": "yada, yada, yada",
"reviewRating": {

"ratingValue": "4"




res

onse

{

"@Qcontext": "http://schema.org",
"@type": "ReviewAction",
"actionStatus": "CompletedAction",
"resultReview" : {
"url": "http://example.com/reviews/abc"




