
WebDriver Extension API for 
Generic Sensors

Wanming Lin (@Honry) <wanming.lin@intel.com>
Raphael Kubo da Costa (@rakuco) <raphael.kubo.da.costa@intel.com> 

mailto:wanming.lin@intel.com
mailto:raphael.kubo.da.costa@intel.com


Problem
Testing Sensor APIs...

● Is a sensor being created with the right state?
● Are sensor readings correct?
● Is the sensor measuring things at the right frequency?
● Are the right errors being thrown under the right circumstances?

… Without actual sensors

● No hardware = more predictable, easier to integrate in CI workflows
● Tests must work across browsers

https://github.com/web-platform-tests/wpt/issues/9686


● Gecko, Blink, WebKit have their 
own WPT copies, periodically 
synced with upstream

● Tests from WPT often run as part 
of their CI

● The binary running the tests is 
often not the browser binary

● Not launched by WPT, no 
WebDriver

https://wpt.fyi Browser CI

● Runs tests in WPT on Chrome, 
Edge, Firefox and Safari

● Reports what passes what fails 
across runs

● Uses WPT’s infrastructure to 
launch unmodified browser 
binaries, controls them via 
WebDriver (ChromeDriver, 
Marionette etc)



Sensors in web-platform-tests
● wpt.fyi 👎
● Blink CI 👍
● Chromium-specific build artifacts checked into WPT (not always used these days, 

see this Chromium bug)

● “Agnostic” API on top that hardcodes a dependency on the files above for 
Chromium

https://bugs.chromium.org/p/chromium/issues/detail?id=821496


Solution

Mock Sensor
WebDriver 

Extension API

● Specify a WebDriver extension protocol for mocking sensors with 
specific characteristics and behavior

● Other specs following the same approach: Permissions API, Reporting 
API

https://w3c.github.io/permissions/#automation
https://w3c.github.io/reporting/#automation
https://w3c.github.io/reporting/#automation


Basic Flow



API Design (Mock Sensor)
A mock sensor simulates the behavior of a platform sensor which should have 
following capabilities:

● Mock sensor type
● Mock sensor readings (modifiable)
● Sampling frequency (upper and lower bounds)
● Connection flag (can be used to create a failing sensor, for example)

https://w3c.github.io/sensors/#concept-platform-sensor


API Design (Extension Commands)

Extension Commands HTTP Method URI Template

Create mock sensor POST /session/{session id}/sensor

Get mock sensor GET /session/{session id}/sensor/{type}

Update mock sensor reading POST /session/{session id}/sensor/{type}

Delete mock sensor DELETE /session/{session id}/sensor/{type}

https://rawgit.com/Honry/sensors/webdriver-extension/webdriver-extension/#create-mock-sensor-command
https://rawgit.com/Honry/sensors/webdriver-extension/webdriver-extension/#get-mock-sensor-command
https://rawgit.com/Honry/sensors/webdriver-extension/webdriver-extension/#update-mock-sensor-reading-command
https://rawgit.com/Honry/sensors/webdriver-extension/webdriver-extension/#delete-mock-sensor-command


Create mock sensor
To create an "accelerometer" mock sensor with session ID 21, the local end 
would send a POST request to /session/21/sensor with the body:

{
   "mockSensorType": "accelerometer",
   "maxSamplingFrequency": 60,
   "minSamplingFrequency": 5,
   "connected": true
}



Get mock sensor
To get an "accelerometer" mock sensor with session ID 22, the local end would 
send a GET request to /session/22/sensor/accelerometer without a body. On 
success, the remote end returns with serialized mock sensor information:

{
   "maxSamplingFrequency": 60,
   "minSamplingFrequency": 5,
   "requestedSamplingFrequency": 30
}



Update mock sensor reading
To update the mock sensor reading of "accelerometer" mock sensor with 
session ID 23, the local end would send a POST request to 
/session/23/sensor/accelerometer with a body like this:

{
   "x": 1.12345,
   "y": 2.12345,
   "z": 3.12345
}



Delete mock sensor

To delete an "accelerometer" mock sensor with session ID 24, the local end 
would send a DELETE request to /session/24/sensor/accelerometer without a 
body.



Handling Errors



WPT’s testdriver.js
● JS API to allow tests to perform human-like interaction via WebDriver
● Current commands include click, send_keys and a few others
● API is separate from implementation, which can be overridden by vendors
● test_driver.click(element)

○ When using WPT’s test runner, ends up sending a Find Element command, then a Click 
command, both via the WebDriver protocol

○ Blink’s testdriver-vendor.js (used in CI) implements it via 
chrome.gpuBenchmarking.pointerActionSequence(), not WebDriver



Obstacles/Gaps
● Long process

○ Spec
○ Browser-specific bits. For Chrome: ChromeDriver changes, Chrome DevTools Protocol changes
○ WPT changes (testdriver.js)

● Does not automatically solve the Browser CI case
○ No WebDriver: same WPT testdriver API needs to be reimplemented
○ Medium/long-term plans ongoing to solve this, at least for Blink

● Security considerations? Web developer use cases? API design?
● WebDriver calls are unidirectional
● The spec introduces new WebDriver errors, but WebDriver support for new 

error types is pending

https://web-platform-tests.org/writing-tests/testdriver.html
https://rawgit.com/Honry/sensors/webdriver-extension/webdriver-extension/#extension-handling-errors
https://github.com/w3c/webdriver/issues/1151


What’s next?
● Call for broader review of this Extension API (thanks @jugglinmike!)
● Prototyping
● See if our approach can be generalized so other specs can adopt it (e.g. Media 

Streams, Screen Orientation, Vibration etc.)

https://github.com/w3c/sensors/pull/369


Q&A
Merci


