WebDriver Extension API for
Generic Sensors

Wanming Lin (@Honry) <wanming.lin@intel.com>

Raphael Kubo da Costa (@rakuco) <raphael.kubo.da.costa@intel.com>

mailto:wanming.lin@intel.com
mailto:raphael.kubo.da.costa@intel.com

Problem

Testing Sensor APIs...

Is a sensor being created with the right state?

Are sensor readings correct?

Is the sensor measuring things at the right frequency?

Are the right errors being thrown under the right circumstances?

... Without actual sensors

No hardware = more predictable, easier to integrate in Cl workflows
Tests must work across browsers

https://github.com/web-platform-tests/wpt/issues/9686

https://wpt.fyi

Runs tests in WPT on Chrome,
Edge, Firefox and Safari
Reports what passes what fails
across runs

Uses WPT’s infrastructure to
launch unmodified browser
binaries, controls them via
WebDriver (ChromeDriver,
Marionette etc)

Browser CI

e Gecko, Blink, WebKit have their

own WPT copies, periodically
synced with upstream

e Tests from WPT often run as part

of their CI

e The binary running the tests is

often not the browser binary

e Not launched by WPT, no

WebDriver

Sensors in web-platform-tests

o wpt.fyi K@

e Blink Cl &4

e Chromium-specific build artifacts checked into WPT (not always used these days,
see this Chromium bug)

e “Agnostic” APl on top that hardcodes a dependency on the files above for
Chromium

https://bugs.chromium.org/p/chromium/issues/detail?id=821496

WebDriver
Extension API

e Specify a WebDriver extension protocol for mocking sensors with
specific characteristics and behavior
e Other specs following the same approach: Permissions API, Reporting

API

https://w3c.github.io/permissions/#automation
https://w3c.github.io/reporting/#automation
https://w3c.github.io/reporting/#automation

HTTP Request
Method(POST, GET, DELETE)

Route(URL after domain) Execute WebDriver
Body N Extension Command
HTTP -
Client WebDriver J< Browsers
& N
HTTP Response JSON WebDriver Response
Status ! Mock Sensor
Body Extension Commands

- Create mock sensor

- Get mock sensor

- Update mock sensor reading
- Delete mock sensor

API Design (Mock Sensor)

A mock sensor simulates the behavior of a platform sensor which should have
following capabilities:

Mock sensor type

Mock sensor readings (modifiable)

Sampling frequency (upper and lower bounds)

Connection flag (can be used to create a failing sensor, for example)

https://w3c.github.io/sensors/#concept-platform-sensor

API Design (Extension Commands)

Extension Commands HTTP Method URI Template
Create mock sensor POST /session/{session id}/sensor
Get mock sensor GET /session/{session id}/sensor/{type}
Update mock sensor reading | POST /session/{session id}/sensor/{type}

Delete mock sensor DELETE /session/{session id}/sensor/{type}

https://rawgit.com/Honry/sensors/webdriver-extension/webdriver-extension/#create-mock-sensor-command
https://rawgit.com/Honry/sensors/webdriver-extension/webdriver-extension/#get-mock-sensor-command
https://rawgit.com/Honry/sensors/webdriver-extension/webdriver-extension/#update-mock-sensor-reading-command
https://rawgit.com/Honry/sensors/webdriver-extension/webdriver-extension/#delete-mock-sensor-command

Create mock sensor

To create an "accelerometer" mock sensor with session ID 21, the local end
would send a POST request to /session/21/sensor with the body:

{ dictionary MockSensorcConfiguration |
"mockSensorType": "accelerometer", :
- _ - required MockSensorType mockSensorType;
maxSamplingFrequency™: 60, boolean connected = true;
minSamplingFrequency™ 5, double? maxSamplingFrequency;

"connected": true double? minSamplingFrequency;

Get mock sensor

To get an "accelerometer" mock sensor with session ID 22, the local end would
send a GET request to /session/22/sensor/accelerometer without a body. On
success, the remote end returns with serialized mock sensor information:

{

"maxSamplingFrequency": 60, dictionary Mocksensor {
"minSamplingFrequency": 5, double maxsamplingFrequency;
"requestedSamplingFrequency": 30 double minsamplingFrequency;

) double requestedSamplingFrequency;

Update mock sensor reading

To update the mock sensor reading of "accelerometer" mock sensor with
session ID 23, the local end would send a POST request to
/session/23/sensor/accelerometer with a body like this:

{ dictionary AccelerometerReadingValues |
"x": 112345, required double? x;
"y": 2.12345, required double? y;

"z": 312345 required double? z;
} }s

Delete mock sensor

To delete an "accelerometer" mock sensor with session ID 24, the local end
would send a DELETE request to /session/24/sensor/accelerometer without a

body.

Handling Errors

Error Code HTTP JSON Error Description
Status Code

no such mock 404 no such mock no mock sensor matching the given type was
sensor sensor found.

mock sensor 500 mock sensor A command to create a mock sensor could not be
already created already created satisfied because the given type of mock sensor is

already existed.

WPT's testdriver.js

JS API to allow tests to perform human-like interaction via WebDriver
Current commands include click, send _keys and a few others

APl is separate from implementation, which can be overridden by vendors

test driver.click(element)
o When using WPT’s test runner, ends up sending a Find Element command, then a Click
command, both via the WebDriver protocol
o Blink’s testdriver-vendor.js (used in Cl) implements it via
chrome.gpuBenchmarking.pointerActionSequence(), not WebDriver

Obstacles/Gaps

e Long process
o Spec
o Browser-specific bits. For Chrome: ChromeDriver changes, Chrome DevTools Protocol changes
o WPT changes (testdriver.js)

e Does not automatically solve the Browser Cl case

o No WebDriver: same WPT testdriver APl needs to be reimplemented
o Medium/long-term plans ongoing to solve this, at least for Blink

e Security considerations? Web developer use cases? API design?
e WebDriver calls are unidirectional
e The spec introduces new WebDriver errors, but WebDriver support for new

error types is pending

https://web-platform-tests.org/writing-tests/testdriver.html
https://rawgit.com/Honry/sensors/webdriver-extension/webdriver-extension/#extension-handling-errors
https://github.com/w3c/webdriver/issues/1151

What's next?

e Call for broader review of this Extension API (thanks @jugglinmike!)

e Prototyping

e See if our approach can be generalized so other specs can adopt it (e.g. Media
Streams, Screen Orientation, Vibration etc.)

https://github.com/w3c/sensors/pull/369

Q&A

Merci

