
1

Quill – browser based editor

Design goals

2

Quill – browser-based editor

● Goal – to provide a browser-based editor
implementing Serenoa concepts

● HTML5 browser platform
● Modular JavaScript for easier development
● Graphical models with <canvas> element
● Live communication with server via Web Sockets

● Server holds UI models persistently
● As well as the adaptation rule engine

3

Architecture

● Clean separation between each abstraction
layer in the Cameleon Reference Framework

● User views/updates only one layer at a time

● Quill dynamically sends to the server the
changes made by the user to the visible layer

● Server-side rule engine propagates changes to
other abstraction layers

● Changes sent to client to update local versions

4

Models, rules and visualisation

● Models held as graph of nodes and links
● Graph mutation protocol
● Rule conditions and actions specify mutations

– Infer changes to neighbouring abstraction layers

– Design agenda for tasks users have to deal with

● Automatic layout for visualization of models
● Visualization adapts to browser window size,

to changes made by user, and to changes
made by server-side adaptation rules

5

Rule engine

● Forward chaining inference
● Rete algorithm + further optimizations

● Existing rule engine e.g. JESS

● We define the predicates and actions the rules
operate over, including context models (CARFO)

● Objects rather than strings as a basis for enabling
rules at different levels of abstraction

● Mapping of rules between user editable format,
internal format, and tool interchange format (RIF)

6

Multi-user editing sessions

● Support for distributed authoring teams
● Team members typically playing different roles

● Dynamic version control enables multiple
people to view/edit models at same time
● “Junior” editors propose changes
● “Senior” editor reviews changes
● Based upon tree comparison algorithms

7

Quill – run-time framework

● Client dynamically coupled to server-side
adaptation engine via web sockets

● Events signalling changes in context are sent to
the server to trigger adaptation rules

● Changes are sent back to clients to update the
user interface

● Expressed as changes to concrete UI layer

● Client-side script then works out the changes
needed to the final UI

8

Quill – screen shot – January 2012

See http://www.w3.org/2012/quill/

http://www.w3.org/2012/quill/

9

Quill – html markup

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US" lang="en-US">
<head>
<title>Quill - a collaborative model-based UI editor using WebSockets</title>
<link href="quill.css" rel="stylesheet" type="text/css" />
<script type="text/javascript" src="websocket.js"></script>
<script type="text/javascript" src="quill.js"></script>
<script type="text/javascript" src="abstract.js"></script>
<script type="text/javascript" src="concrete.js"></script>
<!-- public domain quill icon by "ocal" -->
</head>
<body>
<div id="banner">
<h1> Quill -
a collaborative model-based UI editor using WebSockets
<button title="Link to documentation on how to use Quill">help</button></h1>
</div>

10

Quill – current status – your help
needed for next steps

● Proof of concept for client-side UI and
modularization of scripts

● Previous work on tree algorithms for distributed
editing with Web Sockets and JSON encoding of
mutations

● Next step is work on visualization for domain
models, task models, abstract UI and
improvements to concrete UI

● And work on rule engine and mutation protocol

11

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

