Serenoo

Quill — browser based editor

Design goals

-

Serenoos

Quill — browser-based editor

 Goal —to provide a browser-based editor
implementing Serenoa concepts

e HTML5S browser platform

* Modular JavaScript for easier development
* Graphical models with <canvas> element

e Live communication with server via Web Sockets
e Server holds Ul models persistently

* As well as the adaptation rule engine

-

Serenoos

Architecture

Clean separation between each abstraction
layer in the Cameleon Reference Framework

User views/updates only one layer at a time

Quill dynamically sends to the server the
changes made by the user to the visible layer

Server-side rule engine propagates changes to
other abstraction layers

3

Changes sent to client to update local versions

-

Serenoos

Models, rules and visualisation

* Models held as graph of nodes and links

 Graph mutation protocol

* Rule conditions and actions specify mutations
- Infer changes to neighbouring abstraction layers

- Design agenda for tasks users have to deal with

e Automatic layout for visualization of models

* Visualization adapts to browser window size,
to changes made by user, and to changes
made by server-side adaptation rules

-

Serenoos

Rule engine

Forward chaining inference
e Rete algorithm + further optimizations

Existing rule engine e.g. JESS

We define the predicates and actions the rules
operate over, including context models (CARFO)

Objects rather than strings as a basis for enabling
rules at different levels of abstraction

Mapping of rules between user editable format, .
internal format, and tool interchange format (RIF)

-

Serenoos

Multi-user editing sessions

e Support for distributed authoring teams
* Team members typically playing different roles

 Dynamic version control enables multiple
people to view/edit models at same time

e “Junior” editors propose changes
e “Senior” editor reviews changes

e Based upon tree comparison algorithms

-

Serenoos

Quill = run-time framework

Client dynamically coupled to server-side
adaptation engine via web sockets

Events sighalling changes in context are sent to
the server to trigger adaptation rules

Changes are sent back to clients to update the
user interface

Expressed as changes to concrete Ul layer

Client-side script then works out the changes
needed to the final Ul

Serenoos

~ Quill = screen shot — January 2012

ZQuill - a collaborative model-based Ul editor using WebSockets

Design F"attern5.| Low Fidelity wi | Design P.ge-nda| Adaptation FIIJ|E'5-| Domain Models | Task Models | Abstract Ul | Concrete Wi |

Lil camponents click to edit this heading
H heading dlick o aditlabel |

narmal ext dick 1o aditlabel | click to set choices ¥ |
=) b U chick o editlabel

B e U dhick 1o adit label
. Tyt ey) chick s aditlabel
+ radiobuman | Rk to edit caption |
. chackbax

—J bumon

Tiols & wovk i progiess, and’ caTeril e a procy’ of cowoept for bas aohing acion=s WA o wed Soobers oppon Biey 1o Sy Wil SEvey, and! neadiime revistey coniny' o conarer oG, 8l quesion &

o rsanaig (oW D S0P @ Enoad! rnge of G IREVES ouer T Das WY, and! fow Shéoe mag D pages oF oiVenenl oS o cenors. A0 adapianion Anes Dol Shem oome marnvals

See http://lwww.w3.0rg/2012/quill/

http://www.w3.org/2012/quill/

Serenoos

Quill = html markup

<html xmIns="http://www.w3.0rg/1999/xhtml" xml:lang="en-US" lang="en-US">
<head>

<title>Quill - a collaborative model-based Ul editor using WebSockets</title>
<link href="quill.css" rel="stylesheet" type="text/css" />

<script type="text/javascript" src="websocket.js"></script>

<script type="text/javascript" src="quill.js"></script>

<script type="text/javascript" src="abstract.js"></script>

<script type="text/javascript" src="concrete.js"></script>

<!-- public domain quill icon by "ocal" -->

</head>

<body>

<div id="banner">

<hl> Quill -

a collaborative model-based Ul editor using WebSockets

<button title="Link to documentation on how to use Quill">help</button></h1>
</div>

-

Serenoos

Quill = current status — your help
needed for next steps

Proof of concept for client-side Ul and
modularization of scripts

Previous work on tree algorithms for distributed
editing with Web Sockets and JSON encoding of

mutations

Next step is work on visualization for domain
models, task models, abstract Ul and
iImprovements to concrete Ul

10

And work on rule engine and mutation protocol

Serenoos

" Questions?

11

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

