Useware Markup Language (useML)
W3C Working Group Submission 3 February 2012

Editors:
Gerrit Meixner, DFKI
Marc Seissler, DFKI

Copyright© 2012 DFKI

This document is available under the W3C Document License. See the W3C Intellectual
Rights Notice and Legal Disclaimers for additional information.

Abstract

This is a submission to the W3C Model-Based Ul Working Group and describes a metamodel
and XML format for defining use models.

1. Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
and notes in this specification are non-normative. Everything else in this specification is
normative.

2. Introduction

This section is non-normative.

The Useware Markup Language (useML) had been developed to support the user- and task-
oriented Useware-Engineering process [ZT08] (see Fig. 1) with a modeling language that
could integrate, harmonize and represent the results of an initial analysis phase in one
common, so-called use model in the domain of production automation and industrial
environments [Meil0, MSB11].

Analysis Structuring Design Realisation

> > >

Evaluation

Fig 1. Useware Engineering Process

http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/2011/mbui/

3. useML Metamodel

This section is normative.

The use model abstracts platform-independent tasks, actions, activities, and operations into
use objects that make up a hierarchically ordered structure. Each element of this structure can
be annotated by attributes such as eligible user groups, access rights, importance. Use objects
can be further structured into other use objects or elementary use objects. Elementary use
objects represent the most basic, atomic activities of a user, such as entering a value or
selecting an option. Currently, five types of elementary use objects exist:

e Inform: the user gathers information from the user interface

e Trigger: starting, calling, or executing a certain function of the underlying technical
device (e.g., a computer or field device)

e Select: choosing one or more items from a range of given ones
Input: entering an absolute value, overwriting previous values
Change: making relative changes to an existing value or item

Fig. 2 visualizes the structure of a use model.

(F——)
!

Use object]— -1
L
Temporal operator
i 3 |
[Elementary use object]_ -
| | | |

(o) ==)

o - "l -] » o - -
) - ey -) - . - -

Fig. 2. Structure of a use model

The use model differentiates between interactive user tasks (performed via the user interface)
and pure system tasks requiring no active intervention by the user. System tasks encapsulate
tasks that are fulfilled solely by the system — which, however, does not imply that no user
interface must be presented, because the user might decide, for example, to abort the system
task, or request information about the status of the system. Interactive tasks usually require
the user(s) to actively operate the system, but still, there can be tasks that do not have to be
fulfilled or may be tackled only under certain conditions. In any case, however, interactive
tasks are usually connected to system tasks and the underlying application logic. To specify
that a certain task is optional, user actions can now be marked as “optional” or “required”.

Similarly, useML 2.0 can attribute cardinalities to use objects and elementary use objects.
These cardinalities can specify minimum and maximum frequencies of utilization, ranging

from O for optional tasks up to c. Further, respective logical and/or temporal conditions can
be specified, as well as invariants that must be fulfilled at any time during the execution
(processing) of a task. UseML makes use of different temporal operators. These operators
allow for putting tasks on one hierarchical level into certain explicitly temporal orders;
implicitly, temporal operators applied to neighboring levels of the hierarchical structure can
form highly complex, temporal expressions. In order to define the minimum number of
temporal operators that allows for the broadest range of applications. The following binary
temporal operators were embedded in useML.:

e Choice (CHO): Exactly one of two tasks will be fulfilled.

e Order Independence (IND): The two tasks can be accomplished in any arbitrary
order. However, when the first task has been performed, the second one has to wait for
the first one to be finalized or aborted.

e Concurrency (CON): The two tasks can be accomplished in any arbitrary order, even
in parallel at the same time (i.e., concurrently).

e Deactivation (DEA): The second task interrupts and deactivates the first task.

e Sequence (SEQ): The tasks must be accomplished in the given order. The second task
must wait until the first one has been fulfilled.

Since the unambiguous priority of these four temporal operators is crucial for the connection
of the use model with a dialog model, their priorities (i.e., their order of temporal execution)
have been defined as follows:

Choice > Order Independence > Concurrency > Deactivation > Sequence

4. useML XML Scheme

This section is normative.

The XML schema for useML as a basis for an XML serialization of use models can be found
in useML_schema v2_en_smartmote.xsd.

A. References
A.1 Normative references

A.2 Informative references

[MSB11] Meixner, G.; Seissler, M.; Breiner, K.: Model-Driven Useware Engineering, In:
Model-Driven Development of Advanced User Interfaces, Springer, pp. 1-26, 2011.

[Mei10] Meixner, G.: Model-based Useware Engineering, W3C Workshop on Future
Standards for Model-Based User Interfaces, Rom, Italy, 2010.

[ZT08] Zuehlke, D.; Thiels, N.: Useware engineering: a methodology for the development of
user-friendly interfaces, In: Library Hi Tech, Vol. 26, No. 1, 2008.

