WikiNeuron: Semantic Neuro-Mashup

http://neuroweb3.med.yale.edu/mediawiki/index.php/WikiNeuron

Kei Cheung
Yale Center for Medical Informatics

Introduction

- There has been an increasing number of Bio-Wiki projects including Gene Wiki, Wikiproteins, Wikipathways, Proteopedia, SNPedia, etc
- Why not creating a collaborative and semanticenabled Wiki for the neuroscience domain
- If we have "calling on million minds for community annotation in Wikiproteins", why not "calling on trillion neurons for community annotation in WikiNeuron"

WikiNeuron Protoype

- It is conceived as collaborative knowledge acquisition, annotation, and integration for neurosciences
- It is implemented using Semantic MediaWiki (SMW), which is a semantic extension of MediaWiki that drives large-scale community projects like Wikipedia
- This prototype is developed by SenseLab in collaboration with NIF (Neuroscience Information Framework)

Overview of SMW

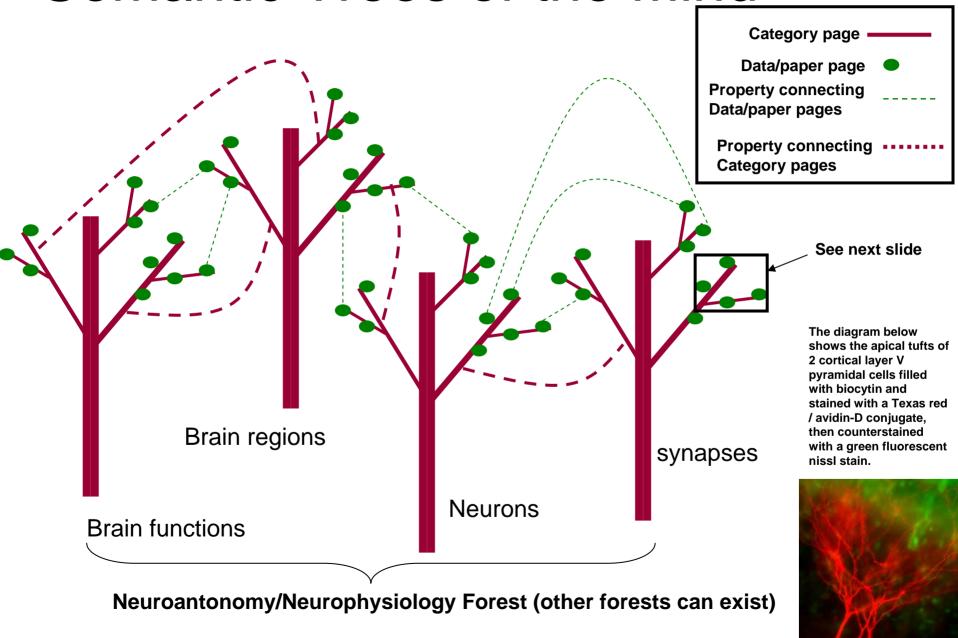
- It is page-centric. There are different types of pages:
 - Categories: support of hierarchical structure
 - E.g., Person is a category, Scientist can be a subcategory of Peron
 - Articles: they are category instances/members
 - E.g., The home page of Jone Smith is a page of the Category Person
- Properties: attributes that are used to annotate page contents and relate pages
 - E.g., Address, Age, Sex, Email, and Friends are properties of Jone Smith

Overview of SMW

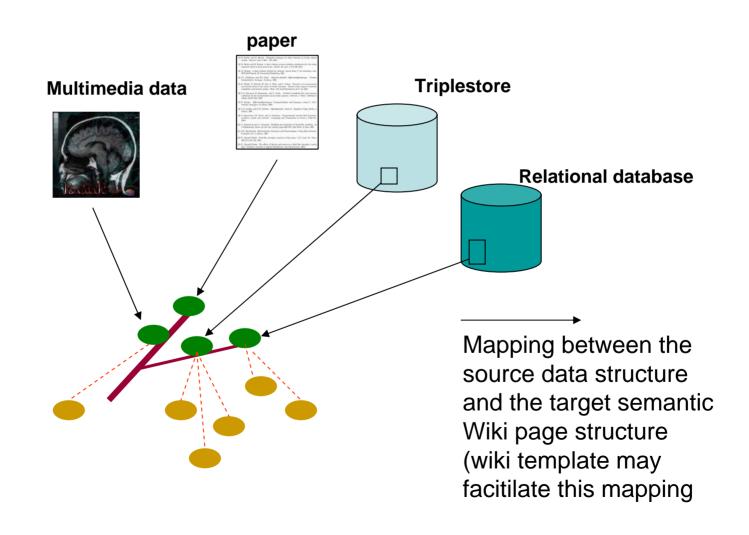
- It provides an internal semantic query language
- It supports SPARQL endpoint
- It supports Open Linked Data through a utility that allows RDF data export
- It has extensions such as the Halo extension that allows incorporation of ontologies into semantic annotation of wiki content.

WikiNeuron Semantic Structure

- Categories: Brain, Database, Literature
- These categories and their subcategories describe databases, literature, brain functions, and brain structure (at different levels of granularity).
- In addition to these categories, properties are defined to annotate data/literature and integrate them with brain functions/structure.
- Many of WikiNeuron's categories/properties come from the NIF ontology


Brain Category Trees

- Brain
 - Brain Region
 - Cerebellum, Hippocampus, Neocortex, ...
 - Neuron
 - Principal neuron
 - CA1 Pyramidal Neuron, Cerebellar Purkinje Neuron, ...
 - Interneuron
 - Cerebellar Granule Cell
 - Neuronal Properties (Synapses)
 - Receptor
 - GABA-A receptor, ...
 - Transmitter
 - Dopamine, ...
 - Current
 - IA, ...


Other Categories

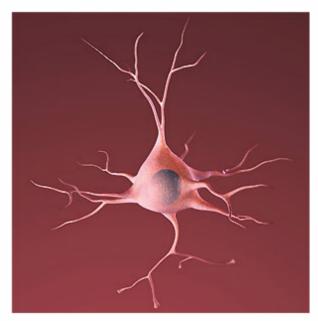
- Database
 - Neuroscience Database, ...
- Scientific literature
 - PubMed Articles, ...
- Person
 - Contributors, administrators, ...

Semantic Trees of the Mind

Automatic Generation and Import of Data/Literature Pages

Demo

http://neuroweb3.med.yale.edu/mediawiki/index.php/WikiNeuron


page discussion edit history delete move unprotect unwatch refresh

WikiNeuron

WikiNeuron is designed for the scientific community to collaborate and contribute knowledge in the neuroscience domain. It is currently implemented using Semantic MediaWiki &. This initial prototype is developed by SenseLab & in collaboration with NIF &. It has the following inter-related components.

- Brain functions and structure
- Neuroscience databases
- PubMed articles

We are planning to expand WikiNeuron by collaborating with communities including Neuroscience Information Framework (NIF), International Neuroinformatics Coordinating Facility (INCF), Alzforum/SWAN, Semantic Web for Health Care and Life Science Interest Group, National Center for Biomedical Ontology, Semantic Wiki community and so on.

Human Brain [edit]

The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts
including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM;
CEREBELLUM; and other structures in the BRAIN STEM. (MeSH)

- The brain is divided into the following lobes: frontal (red), temporal (vellow), parietal (blue) and occipital (green), (See the animation to the right.)
- One of our goals is to integrate data between brain functions and brain structure. We divide the brain structure into different levels: brain regions, neurons, and neuronal cell membrane properties (see 3D brain explorer by function and structure ②.)

[edit]

Brain Functions

+ Pain Function Tree

Video links

Brain Regions

[edit]

for these functions.

3

+ in Brain Regions (with neurons)

See a more comprehensive list of brain regions at NIF 🗗

Video links

Neurons

[edit]

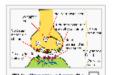
This diagram shows 🗐

The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the nervous system. (MeSH)

🛨 🧰 Neuron Tree

Video links

Neuronal Cell Membrane Properties


[edit]

This diagram shows the 🗗

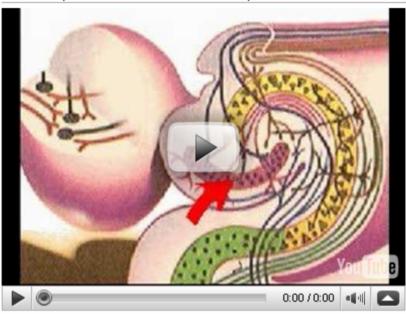
basic structure of a neuron.

+ 📋 Neuronal Properties

Video links

This diagram shows the 🗔 major elements involved in a Brain Functions [edit]

- 🗉 🛅 Brain Function Tree
 - 🗆 🛅 Learning
 - 🖪 🧀 Memory
 - Cognition
 - 🗏 🛅 Perception
 - Space Perception
 - Visual Perception
 - 🖃 늘 Thinking
 - Problem Solving
 - Speech and Language
 - Substance Abuse


The diagram shows some of the general brain functions and the brain regions that are responsible for these functions.

Brain function videos

Back to brain page

How the Body Works: Center of Emotion and Memory

Stress and Memory

Brain Regions [edit]

🗏 🔄 Brain Regions (with neurons)

- [Dentate]
- Hippocampus
- [Diencephalon]
- [Retina]
- [Thalamus]
- Neocortex
- [Olfactory cortex]
- [Olfactory bulb]
- [Olfactory epithelium]
- [] [Dorsal cochlear Nucleus]
- Cerebellum
- [Neostriatum]
- [Substantia nigra]

See a more comprehensive list of brain regions at NIF @

Video links

This diagram shows some of the brain regions.

✓ Article title	⋈ Id	MeuronamesLink NeuronamesLink	M De
Abducens nerve fibers	birnlex_1689	http://braininfo.rprc.washington.edu/Scripts/hiercentraldirectory.aspx?ID=593 🗗	
Abducens nerve root	birnlex_1277		
Abducens nucleus	birnlex_1366	http://braininfo.rprc.washington.edu/Scripts/hiercentraldirectory.aspx?ID=580 🗗	
Accessory basal amygdaloid nucleus	birnlex_2686	http://braininfo.rprc.washington.edu/Scripts/hiercentraldirectory.aspx?ID=231 🗗	
Accessory cuneate nucleus	birnlex_2634	http://braininfo.rprc.washington.edu/Scripts/hiercentraldirectory.aspx?ID=765 &	
Accessory medullary Iamina	birnlex_1626	http://braininfo.rprc.washington.edu/Scripts/hiercentraldirectory.aspx?ID=218 🗗	
Accessory nerve fiber bundle	birnlex_916	http://braininfo.rprc.washington.edu/Scripts/hiercentraldirectory.aspx?ID=789 &	
Accessory nerve root	birnlex_1580	http://braininfo.rprc.washington.edu/Scripts/hiercentraldirectory.aspx?ID=700 🗗	
Adenohypophysis	birnlex_1581	http://braininfo.rprc.washington.edu/Scripts/hiercentraldirectory.aspx?ID=390 &	

Brain Regions [edit]

🗄 🔄 Brain Regions (with neurons)

- [Dentate]
- Hippocampus
- [Diencephalon]
- [Retina]
- [Thalamus]
- Neocortex
- [Olfactory cortex]
- [Olfactory bulb]
- [Olfactory epithelium]
- [Dorsal cochlear Nucleus]
- Cerebellum
- [Neostriatum]
- [Substantia nigra]

See a more comprehensive list of brain regions at NIF $\ensuremath{\mathbf{\mathscr{G}}}$

Video links

This diagram shows some of the brain regions.

Cerebellum

Contents [show]

Chinese Translation [edit]

小脑

Definition [edit]

Part of the rhombencephalon that lies in the posterior cranial fossa behind the brain stem. It is concerned with the coordination of movement. See NIF for more information &

Functions

[edit]

Motor

Neurons [edit]

■ Cerebellar Purkinje Neuron (edit/view)

Data Pages [edit]

[to be added]

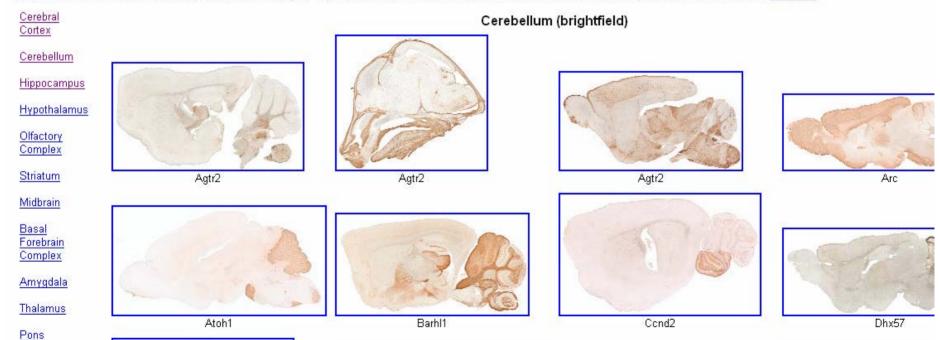
Paper/Article Pages [edit]

[to be added]

External Web Pages [edit]

- GENSAT®
- WikiPedia M
- 维基百科 (Chinese version of Wikipedia) ❷
- ClinicalTrials.gov 🗗

Category: Cerebellum



My Album	Anatomy Showcase	- 19	Cell Showcase		Daily Showcase	-	Embryonic Showcase	- E	Confocal Showcase
Search for genes	Search Annotations		Track Progress	- 1	Mouse & BAC Catalogs	2	Cre Mice	1	About

GENSAT Anatomy Showcase

Images displayed in the Anatomy Showcase are from mouse lines selected by GENSAT staff because they have especially interesting and/or potentially useful expression patterns in given brain regions. Brightfield images of EGFP immunohistochemistry are at the top of the page; confocal images of EGFP fluorescence are below. For example, BAC reporter lines highlighted in the confocal section of the Showcase express sufficient levels of EGFP so as to be useful for many electrophysiology or biochemical investigations. If you have comments on these or other expression patterns, we welcome your input (Contact the Annotation Core). For comprehensive listings of gene expression by brain structure, go to the Search Annotations page.

Choose from the list below to view images with interesting gene expression in that structure. Click on a thumbnail to inspect an image in more detail. Switch to gene view.

Cerebellum

Contents [show]

Chinese Translation

[edit]

[edit]

小脑

Definition

Part of the rhombencephalon that lies in the posterior cranial fossa behind the brain stem. It is concerned with the coordination of movement. See NIF for more information &

Functions

[edit]

Motor

Neurons

[edit]

■ Cerebellar Purkinje Neuron (edit/vięw)

Data Pages

[to be added]

Paper/Article Pages

[edit]

[to be added]

External Web Pages

[edit]

- GENSAT

 Ø
- WikiPedia 🗗
- 维基百科 (Chinese version of Wikipedia) ❷
- ClinicalTrials.gov

Category: Cerebellum

[edit]

Cerebellar Purkinje Neuron

Contents [show]

Definition [edit]

- Principal neuron (projection neuron) of the cerebellar cortex; characterized by a pear shaped cell body, 1-2 primary dendrites and an elaborate dendritic tree
 heavily invested with dendritic spines.
- Large branching neurons of the middle layer of cerebellar cortex, characterized by vast arrays of dendrites; involved in controlling complex movements (CSP).

Region (of Brain) [edit]

|format=ul

Cerebellum

Neuronal Cell Membrane Properties

[edit]

{{#ask: [[Category:Cerebellar Purkinje Neuron]] [[Category:Neuroscience Database]]

receptor: GABA, GABA receptor, GABA-A receptor, GABA-B receptor

current: TK Ca current, TK current

transmitter: GABA transmitter

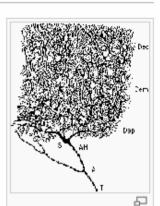
Data Pages

[edit]

- CCDB Cerebellar Purkinje Neuron
- ModelDB Cerebellar Purkinje Neuron
- NeuronDB Cerebellar Purkinje Neuron
- PDSP Cerebellar Purkinje Neuron

Paper/Article Pages

[edit]


[to be added]

External Web Pages

[edit]

- NeuroMorpho.org
- GENSAT
- WikiPedia

Category: Purkinje Cell

CCDB Cerebellar Purkinje Neuron

CCDB

Images of Cerebellar Purkinje Neuron

• Title: spiny dendrite

Project Name: Correlated Microscopy of Dendritic Spines

• Description: Measurements of spine parameters using light microscopy and electron tomography

• Purpose: how well dendritic spines can be detected and measured using LM

Species: rat

• Strain: Sprague Dawley

• Title: spiny dendrite

Project Name: Correlated Microscopy of Dendritic Spines

• Description: Measurements of spine parameters using light microscopy and electron tomography

• Purpose: how well dendritic spines can be detected and measured using LM

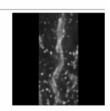
Species: rat

• Strain: Sprague Dawley

• Title: Intracellular injection of Purkinje neuron

• Project Name: Mouse BIRN test data

• Description: Neurolucida tracing of filled Purkinje neurons


Purpose: To obtain multi resolution data for Mouse BIRN

Species: mouseStrain: C57BL 6

Categories: Neuroscience Database | Cerebellar Purkinje Neuron

[edit]

Cerebellar Purkinje Neuron

Contents [show]

Definition [edit]

- Principal neuron (projection neuron) of the cerebellar cortex; characterized by a pear shaped cell body, 1-2 primary dendrites and an elaborate dendritic tree
 heavily invested with dendritic spines.
- Large branching neurons of the middle layer of cerebellar cortex, characterized by vast arrays of dendrites; involved in controlling complex movements (CSP).

Region (of Brain)

Cerebellum

Neuronal Cell Membrane Properties

[edit]

[edit]

receptor: GABA, GABA receptor, GABA-A receptor, GABA-B receptor

current: TK Calcurrent, TK current

transmitter: GABA transmitter

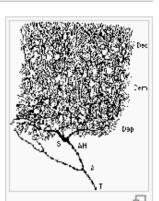
Data Pages

[edit]

- CCDB Cerebellar Purkinje Neuron
- ModelDB Cerebellar Purkinje Neuron
- NeuronDB Cerebellar Purkinje Neuron
- PDSP Cerebellar Purkinje Neuron

Paper/Article Pages

[edit]


[to be added]

External Web Pages

[edit]

- NeuroMorpho.org
- GENSAT
- WikiPedia r

Category: Purkinje Cell

GABA-A receptor

Contents [show]

Definition [edit]

Combining with the amino acid gamma-aminobutyric acid (GABA, 4-aminobutyrate) to initiate a change in cell activity. GABA-A receptors function as chloride channels. (GO)

Neurons [edit]

- CA1 Pyramidal Neuron (edit/view)
- · Cerebellar Purkinje Neuron (edit/view)

Data Pages [edit]

- ModeIDB GABA-A receptor
- NeuronDB GABA-A receptor
- PDSP GABA-A receptor

Paper/Article Pages [edit]

[to be added]

External Web Pages

[edit]

- ClinicalTrials.gov 🗗
- GO 🗗
- Wikipedia
- Proteopedia 🗗

Category: GABA-A receptor

PDSP GABA-A receptor

PDSP

Possible drug interactions with GABA-A receptor

receptor: GABA A Alpha1Beta1Gamma2

small molecule: Gamma-Aminobutyric acid

Ki value: 77.62 nM

receptor: GABA A Alpha1Beta2Gamma2

small molecule: Gamma-Aminobutyric acid

Ki value: 57.54 nM

receptor: GABA A Alpha1Beta3Gamma2

small molecule: Gamma-Aminobutyric acid

Ki value: 21.37 nM

Categories: Neuroscience Database | GABA-A receptor

GABA-A receptor

Contents [show]

Definition [edit]

Combining with the amino acid gamma-aminobutyric acid (GABA, 4-aminobutyrate) to initiate a change in cell activity. GABA-A receptors function as chloride channels. (GO)

Neurons [edit]

- CA1 Pyramidal Neuron (edit/view)
- Cerebellar Purkinje Neuron (edit/view)

Data Pages [edit]

- ModeIDB GABA-A receptor
- NeuronDB GABA-A receptor
- PDSP GABA-A receptor

Paper/Article Pages [edit]

[to be added]

External Web Pages

[edit]

- ClinicalTrials.gov 🗗
- GO 🗗
- Wikipedia
- Proteopedia 🗗

Category: GABA-A receptor

Home

List Results

Refine Search

Results by Topic

Results on Map

Search Details

Found 10 studies with search of: gaba-a receptor

Hide studies that are not seeking new volunteers.

Recruiting Positron Emission Tomography (PET) Study With (11C) Flumazenil to Determine Central GABAA Receptor Occupancy of AZD6280

Condition: Anxiety

Interventions: Drug: AZD6280; Drug: (110) flumazenil

2 Completed Positron Emission Tomography (PET) Study With (11C) Flumazenil to Determine Central GABAA Receptor Occupancy of AZD7325

Condition: Anxiety

Interventions: Drug: AZD7325; Drug: Radioligand (11C) flumazenil

3 Recruiting Study of GABA-A Receptors in the Generation of Tics in Patients With Tourette's Syndrome

Condition: Tourette Syndrome

Intervention:

4 Completed Single Nucleotide Polymorphism (SNP) in Schizophrenia and Schizophrenia Spectrum Disorders: a Population Association Analysis With Hong Kong Chinese

Condition: Schizophrenia

Intervention: Procedure: Extraction of 10ml blood sample for extraction of genomic DNA using DNA purification kits

5 Recruiting Intravenous Levetiracetam as First-Line Anticonvulsive Treatment in Patients With Non-Convulsive Status Epilepticus

Condition: Status Epilepticus, Non-Convulsive Intervention: Drug: first-line i/v-levetiracetam

6 Recruiting Brain Changes in Patients With Focal Hand Dystonia

Condition: Focal Dystonia

Intervention:

7 Active, not recruiting Impact of GABA-Enhancing Agents on Cortical GABA Concentrations Across the Menstrual Cycle in Women

Condition: Healthy

Interventions: Drug: Fluoxetine; Drug: Zolpidem; Drug: Progesterone

8 Recruiting GABA Mechanisms Underlying the Vulnerability to Alcohol Dependence

Condition: Alcoholism

Interventions: Drug: Thiopental; Drug: Placebo

Database and Literature

NIF Database Entry

page discussion	view form view source history				
NeuronDB	NeuronDB				
ID	nif-nif-709				
Name	NeuronDB				
Submitter	nif				
Short Name	NeuronDB				
Full Name	Database of membrane properties in neuronal compartments				
URL	http://senselab.med.yale.edu/senselab/neurondb/default.asp &				
Entry Date	2006/06/26				
Modification Date	2006/03/27				
Cataloger	nif				
Import Source	NDG				
Foreign ID	28903				
Adminstrative Contact Name	Gordon Shepherd				
Adminstrative Contact Email	gordon.shepherd@yale.edu				
Techical Contact Name	Luis Marenco				
Techical Contact Email	Inm7@email.med.yale.edu				
Resource Type	data resource (neuroscience data or findings).database (data sets), bibliographic resource (library/publisher or literature access)				
Data Format	text, neuron hoc files				

Literature

PubMed 18716656

Source	PLoS ONE. 2008 Aug 21;3(8):e3029
Title	GABA(A) receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin
Authors	Yoshiike Y, Kimura T, Yamashita S, Furudate H, Mizoroki T, Murayama M, Takashima A
Affiliation	
Abstract	Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presentiin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9-15 months) transgenic APP/PS1 mice and old (19-25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABA(A) receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABA(A) receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABA(A) receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABA(A) receptor alpha1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABA(A) receptor alpha1 subunit and improvement of cognitive functions by long term GABA(A) receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABA(A) receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Abeta and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice.
MeSH	
Terms	
Substances	

Annotated Abstract: Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presenilin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9-15 months) transgenic APP/PS1 mice and old (19-25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABA(A) receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABA(A) receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABA(A) receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABA(A) receptor alpha1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABA(A) receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Abeta and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice.

Semantic Markup

'''Annotated Abstract: '''Advanced age and mutations in the genes encoding [[protein::amyloid precursor protein]] (APP) and [[protein::presenilin]] (PS1) are two serious risk factors for [[disease::Alzheimer's disease]] (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in [[brain function::memory]] performance and reduction in [[brain region::hippocampus|hippocampal]] [[cellular mechanism::long-term potentiation]] (LTP) in both mature adult (9-15 months) transgenic APP/PS1 mice and old (19-25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a [[receptor::GABA-A receptor|GABA(A) receptor]] antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTq mice. The increased LTP levels in bicuculline-treated slices suggested that GABA(A) receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABA(A) receptor antagonist, [[drug::picrotoxin]] (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of [[junction::synapse|synaptic]] proteins such as GABA(A) receptor alphal subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABA(A) receptor alphal subunit and improvement of cognitive functions by long term GABA(A) receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABA(A) receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Abeta and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice.

Future Directions

- Use WikiNeuron to drive some of the BioRDF activities (with possible collaboration with other task forces such as LODD and SWAN/SIOC)
- Identify neuroscience/life science databases (e.g., NIF databases, SWAN, Neurocommons, Bio2RDF, BioGateway, so on)
- Use of ontologies to help annotate data content
- Automatic extraction and conversion of local data into wiki page format with annotation
- Automatic import of annotated data/paper pages
- Interface with HCLS KB (e.g., DBPedia interfaces with Virtuoso DBPedia supports both SPARQL Endpoint and Open linked data)
- Visualization and cross-language
- Community participation
 - Neuroscience
 - Semantic Web
 - Semantic Wiki
 - Text mining
 - Linked Data
 - Ontology
 - Workflow

Acknowledgement

<u>Yale</u>

- Ernest Lim
- Matt Holford
- Luis Marenco
- Pradeep Mutalik
- Tom Morse
- Perry Miller
- Gordon Shepherd

UCSD

- Maryann Martone
- Stephen Larson

Thanks Questions?