
Potential Actions 
 

What follows is a series of proposals for augmenting http://schema.org/Action, currently used to 

describe past actions, to also enable describing the capability to perform an action in the future, 

as well as how that capability can be exercised. 
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Part 1: Action status 
First, we need a mechanism for differentiating potential actions from actions that have actually 

taken place or are even still in-progress.  For this we introduce a new property of Action called 

"actionStatus."  

 

The expectation is that the status of an action will often be self-evident based on the usage 

context, so this property can often be elided.  However, it may still be necessary for resolving 

http://schema.org/Action


ambiguous cases when they arise. 

Thing > Action 

Property Expected Type Description 

actionStatus ActionStatusType Indicates the current disposition of the Action. 

 

Thing > Intangible > Enumeration > ActionStatusType 
● PotentialAction (default) - A description of an action that is supported 

● ActiveAction - An in-progress action (e..g, while watching the movie, or driving to a 

location) 

● CompletedAction - An action that has already taken place. 

 

Example: actionStatus 

{ 

  "@context": "http://schema.org", 

  "@type": "WatchAction", 

  "actionStatus": "CompletedAction", 

  "agent" : { 

    "@type": "Person", 

    "name": "Kevin Bacon" 

  }, 

  "object" : { 

    "@type": "Movie", 

    "name": "Footloose" 

  }, 

  "start_time" : "2014-03-01" 

} 

 

 

Part 2:  Connecting Actions to Things 
Frequently actions are taken or offered in the context of an object (e.g., watch this movie, review 

this article, share this webpage, etc.).  We already have Action.object and its subproperties for 

describing that relationship, but it’s been missing a reverse property so we can assert that same 

relationship from the context of a Thing. 

Thing 

Property Expected Type Description 



action Action Used to associate actions of all statuses with a Thing. 
This property is the reverse of Action.object. 

 

Example: Thing.action 

{ 

  "@context": "http://schema.org", 

  "@type": "Movie", 

  "name": "Footloose", 

  "action" : { 

    "@type": "WatchAction" 

  } 

} 

 

 

Part 3: Action Entrypoints 
Potential actions are initiated by requesting the URL of an Action. 

Example: Action URL 

{ 

  "@context": "http://schema.org", 

  "@type": "Movie", 

  "name": "Footloose", 

  "action" : { 

    "@type": "WatchAction", 

    "url" : "http://example.com/player?id=123" 

  } 

} 

 

For some platforms and use cases, however, a simple URL is insufficient for formulating a 

request and/or processing the result, so we are introducing a new Entrypoint class for specifying 

that additional context beyond a URL when necessary. 

Thing 

Property Expected Type Description 

url URL, Entrypoint How to access the item 

 



Thing > Intangible > ProtocolElement > Entrypoint 

Property Expected Type Description 

encodingType Text Supported MIME type(s) for the request 

contentType Text Supported MIME type(s) of the response 

application SoftwareApplication The host application 

 

Note: For HTTP specifically, the method used for a Entrypoint will depend on the Action type. 

Safe actions (in the sense of HTTP/1.1, see RFC 2616: 9.1 Safe and Idempotent Methods) will 

use GET, everything else will use POST except the actions that are subclasses of other HTTP 

methods (e.g., DeleteAction).  These method bindings will be added as part of the description of 

each Action subclass in a separate proposal. 

 

Scheme-based encoding of Entry 
Ideally, the simple "deep link" use cases should work with just a simple URL.  In some cases, 

new schemes might even be created to make that possible for some platforms, for example: 

 

android-app://{package_id}/{scheme}/{host_path} 

 

Example: Multiple platform URLs 

{ 

  "@context": "http://schema.org", 

  "@type": "Restaurant", 

  "name": "Tartine Bakery", 

  "action": { 

    "@type": "ViewAction", 

    "url": [ 

      /* Web deep link */ 

      "http://www.urbanspoon.com/r/6/92204", 

 

      /* HTTP API that returns JSON-LD */ 

      { 

        "@type": "Entrypoint", 

        "url": "http://api.urbanspoon.com/r/6/92204", 

        "contentType": "application/json+ld", 

      }, 

 

      /* Android app deep link */ 

      "android-app://com.urbanspoon/http/www.urbanspoon.com/r/6/92204", 

 

http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FProtocols%2Frfc2616%2Frfc2616-sec9.html&sa=D&sntz=1&usg=AFQjCNEnpwhf-KxuYDzH7sJmHFrh8LXcgg
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      /* iOS deep link */ 

      { 

        "@type": "Entrypoint", 

        "url": "urbanspoon://r/6/92204", 

        "application": { 

          "@type": "SoftwareApplication", 

          "@id": "284708449", 

          "name": "Urbanspoon iPhone & iPad App", 

          "operatingSystem": "iOS" 

        } 

      }, 

 

      /* Windows Phone deep link */ 

      { 

        "@type": "Entrypoint", 

        "url": "urbanspoon://r/6/92204", 

        "application": { 

          "@type": "SoftwareApplication", 

          "@id": "5b23b738-bb64-4829-9296-5bcb59bb0d2d", 

          "name": "Windows Phone App", 

          "operatingSystem": "Windows Phone 8" 

        } 

      } 

    ] 

  } 

} 

 

Part 4: Input and Output constraints 
Additional information is often required from a user or client in order to formulate a complete 

request.  To facilitate this process we need the ability to describe within a potential action how to 

construct these inputs.  Since we need this capability for filling in any property of an Action, we 

introduce a notion of property annotations using a slash delimiter. For example, by specifying a 

"location/input" property on a potential action we are indicating that "location" is a supported input 

for completing the action. 

 

Similarly, it is also helpful to indicate to clients what will be included in the final completed version 

of an action, so we introduce the corresponding /output annotation for indicating which properties 

will be present in the completed action. 

 

Annotation Expected Type Description 

<property>/input PropertyValueSpecification Indicates how a property should be filled in 



before initiating the action.  

<property>/output PropertyValueSpecification Indicates how the field will be filled in when 
the action is completed. 

 

Thing > Intangible > ProtocolElement > PropertyValueSpecification 
 

A property value specification. 

 

Property Expected 
Type 

Description 

valueRequired Boolean Whether the property must be filled in to complete the 
action. Default is false. Equivalent to HTML's 
input@required. 

defaultValue Thing, 
DataType 

The default value for the property.  For properties that 
expect a DataType, it's a literal value, for properties that 
expect an object, it's an ID reference to one of the current 
values. Equivalent to HTML's input@value. 

valueName Text Indicates the name of the PropertyValueSpecification to be 
used in URL templates and form encoding in a manner 
analogous to HTML's input@name. 

readonlyValue Boolean Whether or not a property is mutable.  Default is false. 
Equivalent to HTML's input@readonly. Specifying this for a 
property that also has a value makes it act similar to a 
"hidden" input in an HTML form. 

multipleValues Boolean Whether multiple values are allowed for the property. 
Default is false. Equivalent to HTML's input@multiple. 

valueMinLength Number Specifies the minimum number of characters in a literal 
value. Equivalent to HTML's input@minlength. 

valueMaxLength Number Specifies the maximum number of characters in a literal 
value. Equivalent to HTML's input@maxlength. 

valuePattern Text Specifies a regular expression for testing literal values 
Equivalent to HTML's input@pattern. 

minValue  Number, 
Date, Time, 
DateTime 

Specifies the allowed range and intervals for literal values. 
Equivalent to HTML's input@min, max, step.The lower 
value of some characteristic or property 
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maxValue Number, 
Date, Time, 
DateTime 

The upper value of some characteristic or property. 
Equivalent to HTML's input@min, max, step. 

stepValue Number The step attribute indicates the granularity that is expected 
(and required) of the value. 

 

The minValue, maxValue and stepValue properties specify the allowed range and intervals for 

literal values and are equivalent to HTML's input@min, max, step. It should also be noted that if 

both a property and its /input annotation are present, the value of the un-annotated property 

should be treated as the allowed options for input (similar to <select><option> in HTML) unless 

the Input indicates that the value is also readonly, in which case the value(s) should all be 

returned in a manner analogous to hidden inputs in forms. 

 

Textual representations of Input and Output 
For convenience, we also support a textual short-hand for both of these types that is formatted 
and named similarly to how they would appear in their HTML equivalent.  For example: 
 
"<property>/input": { 
  "@type": "PropertyValueSpecification", 
  "valueRequired": true, 
  "valueMaxlength": 100, 
  "valueName": "q" 
} 

 
Can also be expressed as: 
 
<property>/input: "required maxlength=100 name=q" 

 
 

URI Templates 
Finally, we also allow URI templating (using RFC6570) for inlining the resulting value of /input 
properties into action URLs. The allowed references in the templates for substitution are dotted 
schema paths to the filled-in properties (relative to the Action object). 
 

Example: Text search deep link with /input 

description 

{ 

  "@context": "http://schema.org", 

  "@type": "WebSite", 

  "name": "Example.com", 

  "action": { 

    "@type": "SearchAction", 

    "url": "http://example.com/search?q={q}", 

    "query/input": "required maxlength=100 name=q" 
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  } 

} 

request 

GET http://example.com/search?q=the+search 

 

 

Example: Product purchase API call with /output 

description 

{ 

  "@type": "Product", 

  "url": "http://example.com/products/ipod", 

  "action": { 

    "@type": "BuyAction", 

    "url": { 

      "@type": "Entrypoint", 

      "url": "https://example.com/products/ipod/buy", 

      "encodingType": "application/ld+json", 

      "contentType": "application/ld+json" 

    }, 

    "result": { 

      "@type": "Order", 

      "url/output": "required", 

      "confirmationNumber/output": "required", 

      "orderNumber/output": "required", 

      "orderStatus/output": "required" 

    } 

  } 

} 

request 

POST https://example.com/products/ipod/buy 

response 

{ 

  "@type": "BuyAction", 

  "actionStatus": "CompletedAction", 

  "object": "https://example.com/products/ipod", 

  "result": { 

    "@type": "Order", 

    "url": "http://example.com/orders/1199334" 

    "confirmationNumber": "1ABBCDDF23234", 



    "orderNumber": "1199334", 

    "orderStatus": "PROCESSING" 

  }, 

} 

 

 

Example: Movie review site API with /input and /output 

description 

{ 

  "@context": "http://schema.org", 

  "@type": "ReviewAction", 

  "url": { 

    "@type": "Entrypoint", 

    "url": "https://api.example.com/review", 

    "encodingType": "application/ld+json", 

    "contentType": "application/ld+json" 

  }, 

  "object" : { 

    "@type": "Movie", 

    "url/input": "required", 

  }, 

  "resultReview": { 

    "url/output": "required", 

    "reviewBody/input": "required", 

    "reviewRating": { 

      "ratingValue/input": "required" 

    } 

  } 

} 

request 

POST https://api.example.com/review 

{ 

  "@context": "http://schema.org", 

  "@type": "ReviewAction", 

  "object" : { 

    "url": "http://example.com/movies/123" 

  }, 

  "resultReview": { 

    "reviewBody": "yada, yada, yada", 

    "reviewRating": { 

      "ratingValue": "4" 

    } 



  } 

} 

response 

{ 

  "@context": "http://schema.org", 

  "@type": "ReviewAction", 

  "actionStatus": "CompletedAction", 

  "resultReview" : { 

    "url": "http://example.com/reviews/abc" 

  } 

} 

 

 


