
Potential Actions

What follows is a series of proposals for augmenting http://schema.org/Action, currently used to

describe past actions, to also enable describing the capability to perform an action in the future,

as well as how that capability can be exercised.

Part 1: Action status

Thing > Action

Thing > Intangible > Enumeration > ActionStatusType

Example: actionStatus

Part 2: Connecting Actions to Things

Thing

Example: Thing.action

Part 3: Action Entrypoints

Example: Action URL

Thing

Thing > Intangible > ProtocolElement > Entrypoint

Scheme-based encoding of Entry

Example: Multiple platform URLs

Part 4: Input and Output constraints

Thing > Intangible > ProtocolElement > PropertyValueSpecification

Example: Text search deep link with /input

request

Example: Product purchase API call with /output

description

request

response

Example: Movie review site API with /input and /output

description

request

response

Part 1: Action status
First, we need a mechanism for differentiating potential actions from actions that have actually

taken place or are even still in-progress. For this we introduce a new property of Action called

"actionStatus."

The expectation is that the status of an action will often be self-evident based on the usage

context, so this property can often be elided. However, it may still be necessary for resolving

http://schema.org/Action

ambiguous cases when they arise.

Thing > Action

Property Expected Type Description

actionStatus ActionStatusType Indicates the current disposition of the Action.

Thing > Intangible > Enumeration > ActionStatusType
● PotentialAction (default) - A description of an action that is supported

● ActiveAction - An in-progress action (e..g, while watching the movie, or driving to a

location)

● CompletedAction - An action that has already taken place.

Example: actionStatus

{

 "@context": "http://schema.org",

 "@type": "WatchAction",

 "actionStatus": "CompletedAction",

 "agent" : {

 "@type": "Person",

 "name": "Kevin Bacon"

 },

 "object" : {

 "@type": "Movie",

 "name": "Footloose"

 },

 "start_time" : "2014-03-01"

}

Part 2: Connecting Actions to Things
Frequently actions are taken or offered in the context of an object (e.g., watch this movie, review

this article, share this webpage, etc.). We already have Action.object and its subproperties for

describing that relationship, but it’s been missing a reverse property so we can assert that same

relationship from the context of a Thing.

Thing

Property Expected Type Description

action Action Used to associate actions of all statuses with a Thing.
This property is the reverse of Action.object.

Example: Thing.action

{

 "@context": "http://schema.org",

 "@type": "Movie",

 "name": "Footloose",

 "action" : {

 "@type": "WatchAction"

 }

}

Part 3: Action Entrypoints
Potential actions are initiated by requesting the URL of an Action.

Example: Action URL

{

 "@context": "http://schema.org",

 "@type": "Movie",

 "name": "Footloose",

 "action" : {

 "@type": "WatchAction",

 "url" : "http://example.com/player?id=123"

 }

}

For some platforms and use cases, however, a simple URL is insufficient for formulating a

request and/or processing the result, so we are introducing a new Entrypoint class for specifying

that additional context beyond a URL when necessary.

Thing

Property Expected Type Description

url URL, Entrypoint How to access the item

Thing > Intangible > ProtocolElement > Entrypoint

Property Expected Type Description

encodingType Text Supported MIME type(s) for the request

contentType Text Supported MIME type(s) of the response

application SoftwareApplication The host application

Note: For HTTP specifically, the method used for a Entrypoint will depend on the Action type.

Safe actions (in the sense of HTTP/1.1, see RFC 2616: 9.1 Safe and Idempotent Methods) will

use GET, everything else will use POST except the actions that are subclasses of other HTTP

methods (e.g., DeleteAction). These method bindings will be added as part of the description of

each Action subclass in a separate proposal.

Scheme-based encoding of Entry
Ideally, the simple "deep link" use cases should work with just a simple URL. In some cases,

new schemes might even be created to make that possible for some platforms, for example:

android-app://{package_id}/{scheme}/{host_path}

Example: Multiple platform URLs

{

 "@context": "http://schema.org",

 "@type": "Restaurant",

 "name": "Tartine Bakery",

 "action": {

 "@type": "ViewAction",

 "url": [

 /* Web deep link */

 "http://www.urbanspoon.com/r/6/92204",

 /* HTTP API that returns JSON-LD */

 {

 "@type": "Entrypoint",

 "url": "http://api.urbanspoon.com/r/6/92204",

 "contentType": "application/json+ld",

 },

 /* Android app deep link */

 "android-app://com.urbanspoon/http/www.urbanspoon.com/r/6/92204",

http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FProtocols%2Frfc2616%2Frfc2616-sec9.html&sa=D&sntz=1&usg=AFQjCNEnpwhf-KxuYDzH7sJmHFrh8LXcgg
http://schema.org/

 /* iOS deep link */

 {

 "@type": "Entrypoint",

 "url": "urbanspoon://r/6/92204",

 "application": {

 "@type": "SoftwareApplication",

 "@id": "284708449",

 "name": "Urbanspoon iPhone & iPad App",

 "operatingSystem": "iOS"

 }

 },

 /* Windows Phone deep link */

 {

 "@type": "Entrypoint",

 "url": "urbanspoon://r/6/92204",

 "application": {

 "@type": "SoftwareApplication",

 "@id": "5b23b738-bb64-4829-9296-5bcb59bb0d2d",

 "name": "Windows Phone App",

 "operatingSystem": "Windows Phone 8"

 }

 }

]

 }

}

Part 4: Input and Output constraints
Additional information is often required from a user or client in order to formulate a complete

request. To facilitate this process we need the ability to describe within a potential action how to

construct these inputs. Since we need this capability for filling in any property of an Action, we

introduce a notion of property annotations using a slash delimiter. For example, by specifying a

"location/input" property on a potential action we are indicating that "location" is a supported input

for completing the action.

Similarly, it is also helpful to indicate to clients what will be included in the final completed version

of an action, so we introduce the corresponding /output annotation for indicating which properties

will be present in the completed action.

Annotation Expected Type Description

<property>/input PropertyValueSpecification Indicates how a property should be filled in

before initiating the action.

<property>/output PropertyValueSpecification Indicates how the field will be filled in when
the action is completed.

Thing > Intangible > ProtocolElement > PropertyValueSpecification

A property value specification.

Property Expected
Type

Description

valueRequired Boolean Whether the property must be filled in to complete the
action. Default is false. Equivalent to HTML's
input@required.

defaultValue Thing,
DataType

The default value for the property. For properties that
expect a DataType, it's a literal value, for properties that
expect an object, it's an ID reference to one of the current
values. Equivalent to HTML's input@value.

valueName Text Indicates the name of the PropertyValueSpecification to be
used in URL templates and form encoding in a manner
analogous to HTML's input@name.

readonlyValue Boolean Whether or not a property is mutable. Default is false.
Equivalent to HTML's input@readonly. Specifying this for a
property that also has a value makes it act similar to a
"hidden" input in an HTML form.

multipleValues Boolean Whether multiple values are allowed for the property.
Default is false. Equivalent to HTML's input@multiple.

valueMinLength Number Specifies the minimum number of characters in a literal
value. Equivalent to HTML's input@minlength.

valueMaxLength Number Specifies the maximum number of characters in a literal
value. Equivalent to HTML's input@maxlength.

valuePattern Text Specifies a regular expression for testing literal values
Equivalent to HTML's input@pattern.

minValue Number,
Date, Time,
DateTime

Specifies the allowed range and intervals for literal values.
Equivalent to HTML's input@min, max, step.The lower
value of some characteristic or property

http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-required-attribute&sa=D&sntz=1&usg=AFQjCNELVkNj0yb1h4_tldLBVMOiVoftrw
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-readonly-attribute&sa=D&sntz=1&usg=AFQjCNF8Y302UxY2ToIy0YP5iBqQvoAdsA
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-pattern-attribute&sa=D&sntz=1&usg=AFQjCNEhywSY9kVJ5r6ib-tU-eyCmBdEzw
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-pattern-attribute&sa=D&sntz=1&usg=AFQjCNEhywSY9kVJ5r6ib-tU-eyCmBdEzw
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-multiple-attribute&sa=D&sntz=1&usg=AFQjCNG2Z6OWpeQGtGSngm2u-teY6GeLIg
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-maxlength-and-minlength-attributes&sa=D&sntz=1&usg=AFQjCNGeTEZlV429VVgUTyffgfszcZWHjg
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-maxlength-and-minlength-attributes&sa=D&sntz=1&usg=AFQjCNGeTEZlV429VVgUTyffgfszcZWHjg
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-pattern-attribute&sa=D&sntz=1&usg=AFQjCNEhywSY9kVJ5r6ib-tU-eyCmBdEzw
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-min-and-max-attributes&sa=D&sntz=1&usg=AFQjCNHdYccMqYAPEEgGe2YwMRNoMYQBFQ

maxValue Number,
Date, Time,
DateTime

The upper value of some characteristic or property.
Equivalent to HTML's input@min, max, step.

stepValue Number The step attribute indicates the granularity that is expected
(and required) of the value.

The minValue, maxValue and stepValue properties specify the allowed range and intervals for

literal values and are equivalent to HTML's input@min, max, step. It should also be noted that if

both a property and its /input annotation are present, the value of the un-annotated property

should be treated as the allowed options for input (similar to <select><option> in HTML) unless

the Input indicates that the value is also readonly, in which case the value(s) should all be

returned in a manner analogous to hidden inputs in forms.

Textual representations of Input and Output
For convenience, we also support a textual short-hand for both of these types that is formatted
and named similarly to how they would appear in their HTML equivalent. For example:

"<property>/input": {
 "@type": "PropertyValueSpecification",
 "valueRequired": true,
 "valueMaxlength": 100,
 "valueName": "q"
}

Can also be expressed as:

<property>/input: "required maxlength=100 name=q"

URI Templates
Finally, we also allow URI templating (using RFC6570) for inlining the resulting value of /input
properties into action URLs. The allowed references in the templates for substitution are dotted
schema paths to the filled-in properties (relative to the Action object).

Example: Text search deep link with /input

description

{

 "@context": "http://schema.org",

 "@type": "WebSite",

 "name": "Example.com",

 "action": {

 "@type": "SearchAction",

 "url": "http://example.com/search?q={q}",

 "query/input": "required maxlength=100 name=q"

http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-min-and-max-attributes&sa=D&sntz=1&usg=AFQjCNHdYccMqYAPEEgGe2YwMRNoMYQBFQ
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml5%2Fforms.html%23the-min-and-max-attributes&sa=D&sntz=1&usg=AFQjCNHdYccMqYAPEEgGe2YwMRNoMYQBFQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc6570&sa=D&sntz=1&usg=AFQjCNEpwfs22O1xDoFSmTbJj1jFoy7bzg
http://schema.org/

 }

}

request

GET http://example.com/search?q=the+search

Example: Product purchase API call with /output

description

{

 "@type": "Product",

 "url": "http://example.com/products/ipod",

 "action": {

 "@type": "BuyAction",

 "url": {

 "@type": "Entrypoint",

 "url": "https://example.com/products/ipod/buy",

 "encodingType": "application/ld+json",

 "contentType": "application/ld+json"

 },

 "result": {

 "@type": "Order",

 "url/output": "required",

 "confirmationNumber/output": "required",

 "orderNumber/output": "required",

 "orderStatus/output": "required"

 }

 }

}

request

POST https://example.com/products/ipod/buy

response

{

 "@type": "BuyAction",

 "actionStatus": "CompletedAction",

 "object": "https://example.com/products/ipod",

 "result": {

 "@type": "Order",

 "url": "http://example.com/orders/1199334"

 "confirmationNumber": "1ABBCDDF23234",

 "orderNumber": "1199334",

 "orderStatus": "PROCESSING"

 },

}

Example: Movie review site API with /input and /output

description

{

 "@context": "http://schema.org",

 "@type": "ReviewAction",

 "url": {

 "@type": "Entrypoint",

 "url": "https://api.example.com/review",

 "encodingType": "application/ld+json",

 "contentType": "application/ld+json"

 },

 "object" : {

 "@type": "Movie",

 "url/input": "required",

 },

 "resultReview": {

 "url/output": "required",

 "reviewBody/input": "required",

 "reviewRating": {

 "ratingValue/input": "required"

 }

 }

}

request

POST https://api.example.com/review

{

 "@context": "http://schema.org",

 "@type": "ReviewAction",

 "object" : {

 "url": "http://example.com/movies/123"

 },

 "resultReview": {

 "reviewBody": "yada, yada, yada",

 "reviewRating": {

 "ratingValue": "4"

 }

 }

}

response

{

 "@context": "http://schema.org",

 "@type": "ReviewAction",

 "actionStatus": "CompletedAction",

 "resultReview" : {

 "url": "http://example.com/reviews/abc"

 }

}

