

 SPARQL 1.1

 W3C Recommendation

 Dave Beckett, Jeen Broekstra, Carlos Buil-Aranda, Kendall Grant Clark, Lee Feigenbaum, Paul Gearon, Birte Glimm, Steve Harris, Sandro Hawke, Chimezie Ogbuji, Alexandre Passant, Axel Polleres, Eric Prud'hommeaux, Andy Seaborne, Elias Torres, and Gregory Todd Williams (eds.)

 World Wide Web Consortium (W3C)

 21 March, 2013

 [image: W3C main logo]

 Note: this ePub edition does not represent the authoritative texts of the specifications; please consult the originals on the W3C Web Site for those

 Copyright © of the original documents: 2014 W3C® (MIT, ERCIM, W3C® (MIT, ERCIM, Keio, Beihang).

 All right reserved. W3C liability, trademark, and document use rules apply.

 Original, authoritative documents:

 	
 SPARQL 1.1 Overview: http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

 	
 SPARQL 1.1 Query Language: http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

 	
 SPARQL 1.1 Update: http://www.w3.org/TR/2013/REC-sparql11-update-20130321/

 	
 SPARQL 1.1 Service Description: http://www.w3.org/TR/2013/REC-sparql11-service-description-20130321/

 	
 SPARQL 1.1 Federated Query: http://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/

 	
 SPARQL 1.1 Query Results JSON Format: http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/

 	
 SPARQL 1.1 Query Results CSV and TSV Formats: http://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321/

 	
 SPARQL Query Results XML Format (Second Edition): http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321/

 	
 SPARQL 1.1 Entailment Regimes: http://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/

 	
 SPARQL 1.1 Protocol: http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/

 	
 SPARQL 1.1 Graph Store HTTP Protocol: http://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321/

 SPARQL 1.1

 Table of Contents

 	
 Cover

 	
 Table of Contents

 	
 SPARQL 1.1 Overview

 	
 SPARQL 1.1 Query Language

 	
 Different query results formats supported by SPARQL 1.1 (XML, JSON, CSV, TSV)

 	
 SPARQL 1.1 Federated Query

 	
 SPARQL 1.1 Entailment Regimes

 	
 SPARQL 1.1 Update Language

 	
 SPARQL 1.1 Protocol for RDF

 	
 SPARQL 1.1 Service Description

 	
 SPARQL 1.1 Graph Store HTTP Protocol

 	
 Acknowledgements

 	
 References

 	
 SPARQL 1.1 Query Language

 	
 Introduction

 	
 Making Simple Queries (Informative)

 	
 RDF Term Constraints (Informative)

 	
 SPARQL Syntax

 	
 Graph Patterns

 	
 Including Optional Values

 	
 Matching Alternatives

 	
 Negation

 	
 Property Paths

 	
 Assignment

 	
 Aggregates

 	
 Subqueries

 	
 RDF Dataset

 	
 Basic Federated Query

 	
 Solution Sequences and Modifiers

 	
 Query Forms

 	
 Expressions and Testing Values

 	
 Definition of SPARQL

 	
 SPARQL Grammar

 	
 Conformance

 	
 Security Considerations (Informative)

 	
 Internet Media Type, File Extension and Macintosh File Type

 	
 SPARQL 1.1 Update

 	
 Introduction

 	
 The Graph Store

 	
 SPARQL 1.1 Update Language

 	
 SPARQL Update Formal Model

 	
 Conformance

 	
 SPARQL 1.1 Service Description

 	
 Introduction

 	
 Accessing a Service Description

 	
 Service Description Vocabulary

 	
 Example (Informative)

 	
 Conformance

 	
 SPARQL 1.1 Federated Query

 	
 Introduction

 	
 SPARQL 1.1 Federated Query Extension

 	
 SPARQL 1.1 Simple Federation Extension: semantics

 	
 SERVICE Variables (Informative)

 	
 Conformance

 	
 Security Considerations (Informative)

 	
 SPARQL 1.1 Query Results JSON Format

 	
 Introduction

 	
 JSON Results Object

 	
 Variable Binding Results

 	
 Boolean Results

 	
 Example

 	
 Internet Media Type, File Extension and Macintosh File Type

 	
 SPARQL 1.1 Query Results CSV and TSV Formats

 	
 Introduction

 	
 Transmission issues using CSV and TSV Formats

 	
 CSV - Comma Separated values

 	
 TSV - Tab Separated values

 	
 References

 	
 References

 	
 SPARQL Query Results XML Format (Second Edition)

 	
 Introduction

 	
 Definition

 	
 Examples

 	
 XML Schemas

 	
 Internet Media Type, File Extension and Macintosh File Type

 	
 References

 	
 SPARQL 1.1 Entailment Regimes

 	
 Introduction

 	
 RDF Entailment Regime

 	
 General Notes on Entailment Regimes (Informative)

 	
 RDFS Entailment Regime

 	
 D-Entailment Regime

 	
 OWL 2 RDF-Based Semantics Entailment Regime

 	
 OWL 2 Direct Semantics Entailment Regime

 	
 RIF Core Entailment

 	
 Entailment Regimes and Data Sets (Informative)

 	
 Entailment Regimes and Property Paths (Informative)

 	
 Entailment Regimes and Updates (Informative)

 	
 SPARQL 1.1 Protocol

 	
 Introduction

 	
 SPARQL Protocol Operations

 	
 Example SPARQL Protocol Requests (informative)

 	
 Policy Considerations

 	
 Conformance

 	
 Changes Since Previous Recommendation (Informative)

 	
 SPARQL 1.1 Graph Store HTTP Protocol

 [image: W3C]

[bookmark: title]SPARQL 1.1 Overview

[bookmark: w3c-doctype]W3C Recommendation 21 March 2013
	This version:
	
			http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
		
	Latest version:
	
			http://www.w3.org/TR/sparql11-overview/
		
	Previous version:
	http://www.w3.org/TR/2012/PR-sparql11-overview-20121108/
	Editor:
	The W3C SPARQL Working Group, see Acknowledgements <public-rdf-dawg-comments@w3.org>

Please refer to the errata for this document, which may
 include some normative corrections.
See also translations.
Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract
This document is an overview of SPARQL 1.1. It provides an introduction to a set of W3C specifications that facilitate querying and manipulating RDF graph content on the Web or in an RDF store.

[bookmark: status]Status of this Document
May Be Superseded
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
Set of Documents
This document is one of eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:
	SPARQL 1.1 Overview (this document)
	SPARQL 1.1 Query Language
	SPARQL 1.1 Update
	SPARQL1.1 Service Description
	SPARQL 1.1 Federated Query
	SPARQL 1.1 Query Results JSON Format
	SPARQL 1.1 Query Results CSV and TSV Formats
	SPARQL Query Results XML Format (Second Edition)
	SPARQL 1.1 Entailment Regimes
	SPARQL 1.1 Protocol
	SPARQL 1.1 Graph Store HTTP Protocol

No Substantive Changes
There have been no substantive changes to this document since the previous version. Minor editorial changes, if any, are detailed in the change log and visible in the color-coded diff.
Please Send Comments
Please send any comments to public-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document by the SPARQL Working Group is complete, comments may be addressed in the errata or in future revisions. Open discussion is welcome at public-sparql-dev@w3.org (public archive).
Endorsed By W3C
This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.
Patents
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents
1 Introduction

 1.1 Example

2 SPARQL 1.1 Query Language

3 Different query results formats supported by SPARQL 1.1 (XML, JSON, CSV, TSV)

4 SPARQL 1.1 Federated Query

5 SPARQL 1.1 Entailment Regimes

6 SPARQL 1.1 Update Language

7 SPARQL 1.1 Protocol for RDF

8 SPARQL 1.1 Service Description

9 SPARQL 1.1 Graph Store HTTP Protocol

10 Acknowledgements

11 References

[bookmark: sec-intro]1 Introduction
SPARQL 1.1 is a set of specifications that provide languages and protocols to query and manipulate RDF graph content on the Web or in an RDF store. The standard comprises the following specifications:
	SPARQL 1.1 Query Language - A query language for RDF.
	SPARQL 1.1 Query Results JSON Format and SPARQL 1.1 Query Results CSV and TSV Formats - Apart from the standard SPARQL Query Results XML Format [SPARQL-XML-Result], SPARQL 1.1 now allows three alternative popular formats to exchange answers to SPARQL queries, namely JSON, CSV (comma separated values) and TSV (tab separated values) which are described in these two documents.
	SPARQL 1.1 Federated Query - A specification defining an extension of the SPARQL 1.1 Query Language for executing queries distributed over different SPARQL endpoints.
	SPARQL 1.1 Entailment Regimes - A specification defining the semantics of SPARQL queries under entailment regimes such as RDF Schema, OWL, or RIF.
	SPARQL 1.1 Update Language - An update language for RDF graphs.
	SPARQL 1.1 Protocol for RDF - A protocol defining means for conveying arbitrary SPARQL queries and update requests to a SPARQL service.
	SPARQL 1.1 Service Description - A specification defining a method for discovering and a vocabulary for describing SPARQL services.
	SPARQL 1.1 Graph Store HTTP Protocol - As opposed to the full SPARQL protocol, this specification defines minimal means for managing RDF graph content directly via common HTTP operations.
	SPARQL 1.1 Test Cases - A suite of tests, helpful for understanding corner cases in the specification and assessing whether a system is SPARQL 1.1 conformant

[bookmark: Example]1.1 Example
In the following, we will illustrate the use of SPARQL's languages, protocols, and related specifications with a small example.
Some RDF graph published on the Web at the URL 'http://example.org/alice' contains personal information about Alice and her social contacts. We use Turtle [Turtle] syntax here for illustration.

Graph: http://example.org/alice

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

 <http://example.org/alice#me> a foaf:Person .
 <http://example.org/alice#me> foaf:name "Alice" .
 <http://example.org/alice#me> foaf:mbox <mailto:alice@example.org> .
 <http://example.org/alice#me> foaf:knows <http://example.org/bob#me> .
 <http://example.org/bob#me> foaf:knows <http://example.org/alice#me> .
 <http://example.org/bob#me> foaf:name "Bob" .
 <http://example.org/alice#me> foaf:knows <http://example.org/charlie#me> .
 <http://example.org/charlie#me> foaf:knows <http://example.org/alice#me> .
 <http://example.org/charlie#me> foaf:name "Charlie" .
 <http://example.org/alice#me> foaf:knows <http://example.org/snoopy> .
 <http://example.org/snoopy> foaf:name "Snoopy"@en .

With SPARQL 1.1 one can query such graphs, load them into RDF stores and manipulate them in various ways.

[bookmark: sparql11-query]2 SPARQL 1.1 Query Language
Assuming the graph data from above is loaded into a SPARQL service (i.e., an HTTP service endpoint that can process SPARQL queries), the SPARQL 1.1 Query Language can be used to formulate queries ranging from simple graph pattern matching to complex queries. For instance, one can ask using a SPARQL SELECT query for names of persons and the number of their friends:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name (COUNT(?friend) AS ?count)
WHERE {
 ?person foaf:name ?name .
 ?person foaf:knows ?friend .
} GROUP BY ?person ?name

Just like in the earlier SPARQL1.0 specification [SPARQL-Query] from 2008, complex queries may include union, optional query parts, and filters; new features like value aggregation, path expressions, nested queries, etc. have been added in SPARQL 1.1. Apart from SELECT queries - which return variable bindings - SPARQL supports ASK queries - i.e. boolean "yes/no" queries - and CONSTRUCT queries - by which new RDF graphs can be constructed from a query result; all the new query language features of SPARQL 1.1 are likewise usable in ASK and CONSTRUCT queries.

Compared to SPARQL1.0, SPARQL 1.1 adds a number of new features to the query language, including subqueries, value assignment, path expressions, or aggregates - such as COUNT, as used in the above example query - etc.

The SPARQL 1.1 Query Language document defines the syntax and semantics of SPARQL 1.1 queries and provides various examples for their usage.

[bookmark: sparql11-results]3 Different query results formats supported by SPARQL 1.1 (XML, JSON, CSV, TSV)
Results of SELECT queries in SPARQL comprise bags of mappings from variables to RDF terms, often conveniently represented in tabular form. For instance, the query from Section 2 has the following results:

	?name
	?count

	"Alice"
	3

	"Bob"
	1

	"Charlie"
	1

In order to exchange these results in machine-readable form, SPARQL supports four common exchange formats, namely the Extensible Markup Language (XML), the JavaScript Object Notation (JSON), Comma Separated Values (CSV), and Tab Separated Values (TSV). These results formats are described in three different documents:

	 the SPARQL Query Results XML Format (please, particularly note that the SPARQL 1.1 WG has made some minor Errata to this specification),

	 the SPARQL 1.1 Query Results JSON Format, and

	 the SPARQL 1.1 Query Results CSV and TSV Formats

These documents specify details of how particular solutions and RDF terms occurring in solutions are encoded in the respective target formats.

The results of our example query, in these three formats look as follows.

XML:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="name"/>
 <variable name="count"/>
 </head>
 <results>
 <result>
 <binding name="name">
 <literal>Alice</literal>
 </binding>
 <binding name="count">
 <literal datatype="http://www.w3.org/2001/XMLSchema#integer">3</literal>
 </binding>
 </result>
 <result>
 <binding name="name">
 <literal>Bob</literal>
 </binding>
 <binding name="count">
 <literal datatype="http://www.w3.org/2001/XMLSchema#integer">1</literal>
 </binding>
 </result>
 <result>
 <binding name="name">
 <literal>Charlie</literal>
 </binding>
 <binding name="count">
 <literal datatype="http://www.w3.org/2001/XMLSchema#integer">1</literal>
 </binding>
 </result>
 </results>
</sparql>

JSON:

{
 "head": {
 "vars": ["name" , "count"]
 } ,
 "results": {
 "bindings": [
 {
 "name": { "type": "literal" , "value": "Alice" } ,
 "count": { "datatype": "http://www.w3.org/2001/XMLSchema#integer" , "type": "typed-literal" , "value": "3" }
 } ,
 {
 "name": { "type": "literal" , "value": "Bob" } ,
 "count": { "datatype": "http://www.w3.org/2001/XMLSchema#integer" , "type": "typed-literal" , "value": "1" }
 } ,
 {
 "name": { "type": "literal" , "value": "Charlie" } ,
 "count": { "datatype": "http://www.w3.org/2001/XMLSchema#integer" , "type": "typed-literal" , "value": "1" }
 }
]
 }
}

CSV:

name,count
Alice,3
Bob,1
Charlie,1

TSV:

?name<TAB>?count
"Alice"<TAB>3
"Bob"<TAB>1
"Charlie"<TAB>1

(Note: tab characters are visually marked with '<TAB>' here for illustration only.)

[bookmark: sparql11-federated-query]4 SPARQL 1.1 Federated Query
The SPARQL 1.1 Federated Query document describes an extension of the basic SPARQL 1.1 Query Language to explicitly delegate certain subqueries to different SPARQL endpoints.

For instance, in our example, one may want to know whether there is anyone among Alice's friends with the same name as the resource identified by the IRI <http://dbpedia.org/resource/Snoopy> at DBpedia. This can be done by combining a query for the names of friends with a remote call to the SPARQL endpoint at http://dbpedia.org/sparql finding out the name of <http://dbpedia.org/resource/Snoopy> using the SERVICE keyword as follows:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
 <http://example.org/alice#me> foaf:knows [foaf:name ?name] .
 SERVICE <http://dbpedia.org/sparql> { <http://dbpedia.org/resource/Snoopy> foaf:name ?name }
}

with the following result:
	?name

	"Snoopy"@en

Here, the first part of the pattern in the WHERE part is still matched against the local SPARQL service, whereas the evaluation of the pattern following the SERVICE keyword is delegated to the respective remote SPARQL service.

[bookmark: sparql11-entailment]5 SPARQL 1.1 Entailment Regimes
SPARQL could be used together with ontological information in the form of, for example, RDF Schema or OWL axioms.
For instance, let us assume that - apart from the data about Alice - some ontological information in the form
of RDF Schema [RDF-Schema] and OWL [OWL2-Overview]
constructs defining the FOAF vocabulary is loaded into our example SPARQL service.
The FOAF ontology: (only an excerpt given)

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 ...
 foaf:name rdfs:subPropertyOf rdfs:label .
 ...

The following query asks for labels of persons:

SELECT ?label
WHERE { ?person rdfs:label ?label }

A SPARQL engine that does not consider any special entailment regimes (on top of standard simple entailment) would not return any results for this query, whereas an RDF Schema aware query engine will return

	?label

	"Alice"

	"Bob"

	"Charlie"

	"Snoopy"@en

since foaf:name is a sub-property of rdfs:label.

The SPARQL 1.1 Entailment Regimes specification defines which answers should be given under which entailment regime, specifying entailment regimes for RDF, RDF Schema, D-Entailment [RDF-MT], OWL [OWL2-Overview], and RIF [RIF-Overview].

[bookmark: sparql11-update]6 SPARQL 1.1 Update Language
The SPARQL 1.1 Update specification defines the syntax and semantics of SPARQL 1.1 update requests and provides various examples for their usage. Update operations can consist of several sequential requests and are performed on a collection of graphs in a Graph Store. Operations are provided to update, create and remove RDF graphs in a Graph Store.

For instance, the following request inserts a new friend of Alice named Dorothy into the default graph of our example SPARQL service and thereafter deletes all names of Alice's friends with an English language tag.

PREFIX foaf: <http://xmlns.com/foaf/0.1/> .

INSERT DATA { <http://www.example.org/alice#me> foaf:knows [foaf:name "Dorothy"]. } ;
DELETE { ?person foaf:name ?mbox }
WHERE { <http://www.example.org/alice#me> foaf:knows ?person .
 ?person foaf:name ?name FILTER (lang(?name) = "EN") .}

As the second operation shows, insertions and deletions can be dependent on the results of queries to the Graph Store; the respective syntax used in the WHERE part is derived from the SPARQL 1.1 Query Language.

[bookmark: sparql11-protocol]7 SPARQL 1.1 Protocol for RDF
The SPARQL 1.1 Protocol for RDF defines how to transfer SPARQL 1.1 queries and update requests to a SPARQL service via HTTP. It also defines how to map requests to HTTP GET and POST operations and what respective HTTP responses to such requests should look like.

For instance, the query from Section 3 above issued against a SPARQL query service hosted at http://www.example.org/sparql/ could according to this specification be wrapped into an HTTP GET request (where the query string is URI-encoded):

GET /sparql/?query=PREFIX%20foaf%3A%20%3Chttp%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2F%3E%0ASELECT%20%3Fname%20%28COUNT%28%3Ffriend%29%20AS%20%3Fcount%29%0AWHERE%20%7B%20%0A%20%20%20%20%3Fperson%20foaf%3Aname%20%3Fname%20.%20%0A%20%20%20%20%3Fperson%20foaf%3Aknows%20%3Ffriend%20.%20%0A%7D%20GROUP%20BY%20%3Fperson%20%3Fname HTTP/1.1
Host: www.example.org
User-agent: my-sparql-client/0.1

Details about response encoding and different operations for query and update requests, as well as supported HTTP methods, are described in the Protocol specification.

[bookmark: sparql11-service-description]8 SPARQL 1.1 Service Description
The SPARQL 1.1 Service Description document describes a method for discovering and an RDF vocabulary for describing SPARQL services made available via the SPARQL 1.1 Protocol for RDF.

According to this specification, a service endpoint, when accessed via an HTTP GET operation without further (query or update request) parameters should return an RDF description of the service provided. For instance, the following HTTP request:

GET /sparql/ HTTP/1.1
Host: www.example.org

issued against the SPARQL endpoint hosted at http://www.example.org/sparql/ should return an RDF description, using the Service Description vocabulary. Such a description provides, for instance, information about the default dataset of the respective endpoint, or about SPARQL query language features and entailment regimes that are supported.

[bookmark: sparql11-graphstore-http-protocol]9 SPARQL 1.1 Graph Store HTTP Protocol
For many applications and services that deal with RDF data, the full SPARQL 1.1 Update language might not be required. To this end, the SPARQL 1.1 Graph Store HTTP Protocol provides means to perform certain operations to manage collections of graphs directly via HTTP operations.

For instance, the first part of the update request in Section 4 above is a simple insertion of triples into an RDF graph. On a service supporting this protocol, such insertion can - instead of via a SPARQL 1.1 update request - directly be performed via an HTTP POST operation taking the RDF triples to be inserted as payload:

POST /rdf-graphs/service?graph=http%3A%2F%2Fwww.example.org%2Falice HTTP/1.1
Host: example.org
Content-Type: text/turtle
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://www.example.org/alice#me> foaf:knows [foaf:name "Dorothy"] .

Other direct HTTP operations for modifying (e.g. to use HTTP PUT to replace an entire graph, or HTTP DELETE to drop an RDF graph) or retrieving (via HTTP GET) RDF graphs are described in the SPARQL 1.1 Graph Store HTTP Protocol specification, which can be viewed as a lightweight alternative to the SPARQL 1.1 protocol in combination with the full SPARQL 1.1 Query and SPARQL 1.1 Update languages.

[bookmark: Acknowledgements]10 Acknowledgements
The members of the W3C SPARQL Working group who actively contributed to the SPARQL 1.1 specifications are:

	 Carlos Buil Aranda, Universidad Politécnica de Madrid

	 Olivier Corby, Institut National de Recherche en Informatique et en Automatique (INRIA)

	 Souripriya Das, Oracle Corporation

	 Lee Feigenbaum, Cambridge Semantics

	 Paul Gearon, Revelytix Inc

	 Birte Glimm, Universität Ulm

	 Steve Harris, Garlik Ltd

	 Sandro Hawke, W3C

	 Ivan Herman, W3C

	 Nicholas Humfrey, BBC

	 Nico Michaelis, Dreamlab Technologies AG

	 Chimezie Ogbuji, Invited Expert

	 Matthew Perry, Oracle Corporation

	 Alexandre Passant, DERI, National University of Ireland, Galway

	 Axel Polleres, Siemens AG

	 Eric Prud'hommeaux, W3C

	 Andy Seaborne, The Apache Software Foundation

	 Gregory Todd Williams, Rensselaer Polytechnic Institute

[bookmark: sec-bibliography]11 References
	[bookmark: SPARQL-XML-Result]SPARQL-XML-Result
	SPARQL Query Results XML Format (Second Edition), D. Beckett, J. Broekstra, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321. Latest version available at http://www.w3.org/TR/rdf-sparql-XMLres. (See http://www.w3.org/TR/rdf-sparql-XMLres/.)
	[bookmark: RDF-Schema]RDF-Schema
	RDF Vocabulary Description Language 1.0: RDF Schema
,
ed. Dan Brickley and R.V. Guha, W3C Recommendation 10 February 2004 (See http://www.w3.org/TR/rdf-schema/.)
	[bookmark: RDF-MT]RDF-MT
	RDF Semantics
,
ed. Pat Hayes, W3C Recommendation 10 February 2004 (See http://www.w3.org/TR/rdf-mt/.)
	[bookmark: OWL2-Overview]OWL2-Overview
	OWL 2 Web Ontology Language
Document Overview,
W3C OWL Working Group, W3C Recommendation 27 October 2009 (See http://www.w3.org/TR/owl2-overview/.)
	[bookmark: RIF-Overview]RIF-Overview
	RIF Overview,
ed. Michael Kifer and Harold Boley, W3C Working Group Note 22 June 2010 (See http://www.w3.org/TR/rif-overview/.)
	[bookmark: Turtle]Turtle
	Turtle - Terse RDF Triple Language,
ed Eric Prud'hommeaux and Gavin Carothers, Working Draft 09 August 2011. (See http://www.w3.org/TR/turtle/.)
	[bookmark: SPARQL10-Query]SPARQL10-Query
	SPARQL Query Language for RDF,
ed. Eric Prud'hommeaux and Andy Seaborne, W3C Recommendation 15 January 2008 (See http://www.w3.org/TR/rdf-sparql-query/.)

Change Log
Changes since Proposed Recommendation
	Removed reference to obsolete document

Changes since Last Call
	Remove use of term "REST"; updated references.

[image: W3C]

[bookmark: title]SPARQL 1.1 Query Language

[bookmark: w3c-doctype]W3C Recommendation 21 March 2013

 	This version:
	
 http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

	Latest version:
	
 http://www.w3.org/TR/sparql11-query/

	Previous version:
	http://www.w3.org/TR/2012/PR-sparql11-query-20121108/

 	Editors:

 	Steve Harris, Garlik, a part of Experian

 	Andy Seaborne, The Apache Software Foundation

 	Previous Editor:
	Eric Prud'hommeaux, W3C

Please refer to the errata for this document, which may
 include some normative corrections.
See also translations.
Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract

 RDF is a directed, labeled graph data format for representing information
 in the Web. This specification defines the syntax and semantics of the
 SPARQL query language for RDF. SPARQL can be used to express queries
 across diverse data sources, whether the data is stored natively as RDF or
 viewed as RDF via middleware. SPARQL contains capabilities for querying
 required and optional graph patterns along with their conjunctions and
 disjunctions. SPARQL also supports aggregation, subqueries, negation,
 creating values by expressions, extensible value testing, and constraining queries
 by source RDF graph. The results of SPARQL queries can be result
 sets or RDF graphs.

[bookmark: status]Status of This Document
May Be Superseded
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
Set of Documents
This document is one of eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:
	SPARQL 1.1 Overview
	SPARQL 1.1 Query Language (this document)
	SPARQL 1.1 Update
	SPARQL1.1 Service Description
	SPARQL 1.1 Federated Query
	SPARQL 1.1 Query Results JSON Format
	SPARQL 1.1 Query Results CSV and TSV Formats
	SPARQL Query Results XML Format (Second Edition)
	SPARQL 1.1 Entailment Regimes
	SPARQL 1.1 Protocol
	SPARQL 1.1 Graph Store HTTP Protocol

No Substantive Changes
There have been no substantive changes to this document since the previous version. Minor editorial changes, if any, are detailed in the change log and visible in the color-coded diff.
Please Send Comments
Please send any comments to public-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document by the SPARQL Working Group is complete, comments may be addressed in the errata or in future revisions. Open discussion is welcome at public-sparql-dev@w3.org (public archive).
Endorsed By W3C
This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.
Patents
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents

1 Introduction

 1.1 Document Outline

 1.2 Document Conventions

 1.2.1 Namespaces

 1.2.2 Data Descriptions

 1.2.3 Result Descriptions

 1.2.4 Terminology

2 Making Simple Queries (Informative)

 2.1 Writing a Simple Query

 2.2 Multiple Matches

 2.3 Matching RDF Literals

 2.3.1 Matching Literals with Language Tags

 2.3.2 Matching Literals with Numeric Types

 2.3.3 Matching Literals with Arbitrary Datatypes

 2.4 Blank Node Labels in Query Results

 2.5 Creating Values with Expressions

 2.6 Building RDF Graphs

3 RDF Term Constraints (Informative)

 3.1 Restricting the Value of Strings

 3.2 Restricting Numeric Values

 3.3 Other Term Constraints

4 SPARQL Syntax

 4.1 RDF Term Syntax

 4.1.1 Syntax for IRIs

 4.1.1.1 Prefixed Names

 4.1.1.2 Relative IRIs

 4.1.2 Syntax for Literals

 4.1.3 Syntax for Query Variables

 4.1.4 Syntax for Blank Nodes

 4.2 Syntax for Triple Patterns

 4.2.1 Predicate-Object Lists

 4.2.2 Object Lists

 4.2.3 RDF Collections

 4.2.4 rdf:type

5 Graph Patterns

 5.1 Basic Graph Patterns

 5.1.1 Blank Node Labels

 5.1.2 Extending Basic Graph Pattern Matching

 5.2 Group Graph Patterns

 5.2.1 Empty Group Pattern

 5.2.2 Scope of Filters

 5.2.3 Group Graph Pattern Examples

6 Including Optional Values

 6.1 Optional Pattern Matching

 6.2 Constraints
in Optional Pattern Matching

 6.3 Multiple Optional Graph
Patterns

7 Matching Alternatives

8 Negation

 8.1 Filtering Using Graph Patterns

 8.1.1 Testing For the Absence of a Pattern

 8.1.2 Testing For the Presence of a Pattern

 8.2 Removing Possible Solutions

 8.3 Relationship and differences between NOT EXISTS and MINUS

 8.3.1 Example: Sharing of variables

 8.3.2 Example: Fixed pattern

 8.3.3 Example: Inner FILTERs

9 Property Paths

 9.1 Property Path Syntax

 9.2 Examples

 9.3 Property Paths and Equivalent Patterns

 9.4 Arbitrary Length Path Matching

10 Assignment

 10.1 BIND: Assigning to Variables

 10.2 VALUES: Providing inline data

 10.2.1 VALUES syntax

 10.2.2 VALUES Examples

11 Aggregates

 11.1 Aggregate Example

 11.2 GROUP BY

 11.3 HAVING

 11.4 Aggregate Projection Restrictions

 11.5 Aggregate Example (with errors)

12 Subqueries

13 RDF Dataset

 13.1 Examples of RDF Datasets

 13.2 Specifying RDF Datasets

 13.2.1 Specifying the Default Graph

 13.2.2 Specifying Named Graphs

 13.2.3 Combining FROM and FROM NAMED

 13.3 Querying the Dataset

 13.3.1 Accessing Graph Names

 13.3.2 Restricting by Graph
 IRI

 13.3.3 Restricting Possible Graph IRIs

 13.3.4 Named and Default
Graphs

14 Basic Federated Query

15 Solution Sequences and Modifiers

 15.1 ORDER BY

 15.2 Projection

 15.3 Duplicate Solutions

 15.4 OFFSET

 15.5 LIMIT

16 Query Forms

 16.1 SELECT

 16.1.1 Projection

 16.1.2 SELECT Expressions

 16.2 CONSTRUCT

 16.2.1 Templates with Blank Nodes

 16.2.2 Accessing Graphs in the RDF Dataset

 16.2.3 Solution Modifiers and CONSTRUCT

 16.2.4 CONSTRUCT WHERE

 16.3 ASK

 16.4 DESCRIBE (Informative)

 16.4.1 Explicit IRIs

 16.4.2 Identifying Resources

 16.4.3 Descriptions of Resources

17 Expressions and Testing Values

 17.1 Operand Data Types

 17.2 Filter Evaluation

 17.2.1 Invocation

 17.2.2 Effective Boolean Value (EBV)

 17.3 Operator Mapping

 17.3.1 Operator Extensibility

 17.4 Function Definitions

 17.4.1 Functional Forms

 17.4.1.1 bound

 17.4.1.2 IF

 17.4.1.3 COALESCE

 17.4.1.4 NOT EXISTS and EXISTS

 17.4.1.5 logical-or

 17.4.1.6 logical-and

 17.4.1.7 RDFterm-equal

 17.4.1.8 sameTerm

 17.4.1.9 IN

 17.4.1.10 NOT IN

 17.4.2 Functions on RDF Terms

 17.4.2.1 isIRI

 17.4.2.2 isBlank

 17.4.2.3 isLiteral

 17.4.2.4 isNumeric

 17.4.2.5 str

 17.4.2.6 lang

 17.4.2.7 datatype

 17.4.2.8 IRI

 17.4.2.9 BNODE

 17.4.2.10 STRDT

 17.4.2.11 STRLANG

 17.4.2.12 UUID

 17.4.2.13 STRUUID

 17.4.3 Functions on Strings

 17.4.3.1 Strings in SPARQL Functions

 17.4.3.1.1 String arguments

 17.4.3.1.2 Argument Compatibility Rules

 17.4.3.1.3 String Literal Return Type

 17.4.3.2 STRLEN

 17.4.3.3 SUBSTR

 17.4.3.4 UCASE

 17.4.3.5 LCASE

 17.4.3.6 STRSTARTS

 17.4.3.7 STRENDS

 17.4.3.8 CONTAINS

 17.4.3.9 STRBEFORE

 17.4.3.10 STRAFTER

 17.4.3.11 ENCODE_FOR_URI

 17.4.3.12 CONCAT

 17.4.3.13 langMatches

 17.4.3.14 REGEX

 17.4.3.15 REPLACE

 17.4.4 Functions on Numerics

 17.4.4.1 abs

 17.4.4.2 round

 17.4.4.3 ceil

 17.4.4.4 floor

 17.4.4.5 RAND

 17.4.5 Functions on Dates and Times

 17.4.5.1 now

 17.4.5.2 year

 17.4.5.3 month

 17.4.5.4 day

 17.4.5.5 hours

 17.4.5.6 minutes

 17.4.5.7 seconds

 17.4.5.8 timezone

 17.4.5.9 tz

 17.4.6 Hash Functions

 17.4.6.1 MD5

 17.4.6.2 SHA1

 17.4.6.3 SHA256

 17.4.6.4 SHA384

 17.4.6.5 SHA512

 17.5 XPath Constructor Functions

 17.6 Extensible Value Testing

18 Definition of SPARQL

 18.1 Initial Definitions

 18.1.1 RDF Terms

 18.1.2 Simple Literal

 18.1.3 RDF Dataset

 18.1.4 Query Variables

 18.1.5 Triple Patterns

 18.1.6 Basic Graph Patterns

 18.1.7 Property Path Patterns

 18.1.8 Solution Mapping

 18.1.9 Solution Sequence Modifiers

 18.1.10 SPARQL Query

 18.2 Translation to the SPARQL Algebra

 18.2.1 Variable Scope

 18.2.2 Converting Graph Patterns

 18.2.2.1 Expand Syntax Forms

 18.2.2.2 Collect FILTER Elements

 18.2.2.3 Translate Property Path Expressions

 18.2.2.4 Translate Property Path Patterns

 18.2.2.5 Translate Basic Graph Patterns

 18.2.2.6 Translate Graph Patterns

 18.2.2.7 Filters of Group

 18.2.2.8 Simplification step

 18.2.3 Examples of Mapped Graph Patterns

 18.2.4 Converting Groups, Aggregates, HAVING, final VALUES clause and SELECT Expressions

 18.2.4.1 Grouping and Aggregation

 18.2.4.2 HAVING

 18.2.4.3 VALUES

 18.2.4.4 SELECT Expressions

 18.2.5 Converting Solution Modifiers

 18.2.5.1 ORDER BY

 18.2.5.2 Projection

 18.2.5.3 DISTINCT

 18.2.5.4 REDUCED

 18.2.5.5 OFFSET and LIMIT

 18.2.5.6 Final Algebra Expression

 18.3 Basic Graph Patterns

 18.3.1 SPARQL Basic Graph Pattern Matching

 18.3.2 Treatment of Blank Nodes

 18.4 Property Path Patterns

 18.5 SPARQL Algebra

 18.5.1 Aggregate Algebra

 18.5.1.1 Set Functions

 18.5.1.2 Count

 18.5.1.3 Sum

 18.5.1.4 Avg

 18.5.1.5 Min

 18.5.1.6 Max

 18.5.1.7 GroupConcat

 18.5.1.8 Sample

 18.6 Evaluation Semantics

 18.7 Extending SPARQL Basic Graph Matching

 18.7.1 Notes

19 SPARQL Grammar

 19.1 SPARQL Request String

 19.2 Codepoint Escape Sequences

 19.3 White Space

 19.4 Comments

 19.5 IRI References

 19.6 Blank Nodes and Blank Node Labels

 19.7 Escape sequences in strings

 19.8 Grammar

20 Conformance

21 Security Considerations (Informative)

22 Internet Media Type, File Extension and Macintosh File Type

[bookmark: appendices]Appendix
A References

 A.1 Normative References

 A.2 Other References

[bookmark: introduction]1 Introduction

 RDF is a directed, labeled graph data format for representing information
 in the Web. RDF is often used to represent, among other things, personal
 information, social networks, metadata about digital artifacts, as well as
 to provide a means of integration over disparate sources of information.
 This specification defines the syntax and semantics of the SPARQL query
 language for RDF.

 The SPARQL query language for RDF is designed to meet the use cases and requirements
 identified by the RDF Data Access Working Group in

 RDF Data Access Use
 Cases and Requirements [UCNR] and

 SPARQL New Features and Rationale
 [UCNR2].

[bookmark: docOutline]1.1 Document Outline
Unless otherwise noted in the section heading, all sections and appendices in this document are normative.

This section of the document, section 1, introduces the SPARQL query
language specification. It presents the organization of this specification
document and the conventions used throughout the specification.

Section 2 of the specification introduces the SPARQL query language itself
via a series of example queries and query results. Section 3 continues
the introduction of the SPARQL query language with more examples that
demonstrate SPARQL's ability to express constraints on the RDF terms that
appear in a query's results.
Section 4 presents details of the SPARQL query language's syntax. It is a
companion to the full grammar of the language and defines how grammatical
constructs represent IRIs, blank nodes, literals, and variables. Section 4
also defines the meaning of several grammatical constructs that serve as
syntactic sugar for more verbose expressions.
Section 5 introduces basic graph patterns and group graph patterns, the
building blocks from which more complex SPARQL query patterns are
constructed. Sections 6, 7, and 8 present constructs that combine SPARQL
graph patterns into larger graph patterns. In particular, Section 6
introduces the ability to make portions of a query optional; Section 7
introduces the ability to express the disjunction of alternative graph
patterns; and Section 8 introduces patterns to test for the absense of information.
Section 9 adds property paths to graph pattern matching, giving
a compact representation of queries and also the ability to match arbitrary length paths in the graph.
Section 10 describes the forms of assignment possible in SPARQL.
Sections 11 introduces the mechanism to group and aggregate results,
which can be incorporated as subqueries as described in Section 12.
Section 13 introduces the ability to constrain portions of a
query to particular source graphs. Section 13 also presents SPARQL's
mechanism for defining the source graphs for a query.
Section 14 refers to the separate document
SPARQL 1.1 Federated Query.
Section 15 defines the constructs that affect the solutions of a query by
ordering, slicing, projecting, limiting, and removing duplicates from a
sequence of solutions.
Section 16 defines the four types of SPARQL queries that produce results
in different forms.
Section 17 defines SPARQL's extensible value testing and expression framework.
It presents the functions and operators that can be used to constrain the
values that appear in a query's results and also calculate new values to be returned by a query.
Section 18 is a formal definition of the evaluation of SPARQL graph
patterns and solution modifiers.
Section 19 contains the normative definition of the syntax for the
SPARQL query and SPARQL update languages,
as given by a grammar expressed in EBNF notation.

[bookmark: docConventions]1.2 Document Conventions

[bookmark: docNamespaces]1.2.1 Namespaces
In this document, examples assume the following namespace prefix bindings unless
otherwise stated:
	Prefix	IRI
	rdf:	http://www.w3.org/1999/02/22-rdf-syntax-ns#
	rdfs:	http://www.w3.org/2000/01/rdf-schema#
	xsd:	http://www.w3.org/2001/XMLSchema#
	fn:	http://www.w3.org/2005/xpath-functions#
	sfn:	http://www.w3.org/ns/sparql#

[bookmark: docDataDesc]1.2.2 Data Descriptions
This document uses the
Turtle [TURTLE]
data format to show each triple explicitly. Turtle allows IRIs to be abbreviated with prefixes:
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
:book1 dc:title "SPARQL Tutorial" .

[bookmark: docResultDesc]1.2.3 Result Descriptions
Result sets are illustrated in tabular form.

[bookmark: table39]	x	y	z
	"Alice"	<http://example/a>	

A 'binding' is a pair (variable,
RDF term). In this result set, there are three
variables:
x, y and z (shown as column headers). Each
solution is shown as one row in the body of the table. Here, there is a single
solution, in which variable x is bound to "Alice", variable
y is bound to <http://example/a>, and variable z
is not bound to an RDF term. Variables are not required to be bound in a
solution.

[bookmark: docTerminology]1.2.4 Terminology
The SPARQL language includes IRIs, a subset of RDF URI References that omits spaces. Note that all IRIs
 in SPARQL queries are absolute; they may or may not include a fragment identifier [RFC3987, section 3.1]. IRIs include URIs [RFC3986] and URLs. The abbreviated
 forms (relative IRIs and prefixed names) in the SPARQL syntax are resolved to produce absolute
 IRIs.
The following terms are defined in
RDF
 Concepts and Abstract Syntax [CONCEPTS] and used
in SPARQL:
	IRI (corresponds to the Concepts and Abstract Syntax term "RDF URI reference")
	literal
	lexical form
	plain literal
	language tag
	typed literal
	datatype IRI (corresponds to the Concepts and Abstract Syntax term "datatype URI")
	blank node

In addition, we define the following terms:
	RDF Term, which includes IRIs, blank nodes and literals
	Simple Literal, which covers literals without language tag or datatype IRI

[bookmark: basicpatterns]2 Making Simple Queries (Informative)
Most forms of SPARQL query contain a set of triple patterns called a basic graph pattern. Triple patterns are like RDF triples except that each of the subject, predicate and object may be a variable. A basic graph pattern matches a subgraph of the RDF data when RDF terms from that subgraph may be substituted for the variables and the result is RDF graph equivalent to the subgraph.

[bookmark: WritingSimpleQueries]2.1 Writing a Simple Query
The example below shows a SPARQL query to find the title of a book from the
given data graph. The query consists of two parts:
the SELECT clause identifies
the variables to appear in the query results, and the WHERE clause
provides the basic graph pattern to match against the data graph. The basic graph pattern in this example
consists of a single triple pattern with a single variable (?title) in the object position.
Data:
<http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> "SPARQL Tutorial" .
Query:
SELECT ?title
WHERE
{
 <http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> ?title .
}
This query, on the data above, has one solution:
Query Result:
[bookmark: table109]	title
	"SPARQL Tutorial"

[bookmark: MultipleMatches]2.2 Multiple Matches
The result of a query is a solution sequence, corresponding to the ways in which
the query's graph pattern matches the data. There may be
zero, one or multiple solutions to a query.
Data:
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Johnny Lee Outlaw" .
_:a foaf:mbox <mailto:jlow@example.com> .
_:b foaf:name "Peter Goodguy" .
_:b foaf:mbox <mailto:peter@example.org> .
_:c foaf:mbox <mailto:carol@example.org> .

Query:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE
 { ?x foaf:name ?name .
 ?x foaf:mbox ?mbox }
Query Result:
	name	mbox
	"Johnny Lee Outlaw"	<mailto:jlow@example.com>
	"Peter Goodguy"	<mailto:peter@example.org>

Each solution gives one way in which the selected variables can be bound
to RDF terms so that the query pattern matches the data. The result set gives
all the possible solutions. In the above example,
the following two subsets of the data provided the two matches.
 _:a foaf:name "Johnny Lee Outlaw" .
 _:a foaf:box <mailto:jlow@example.com> .
 _:b foaf:name "Peter Goodguy" .
 _:b foaf:box <mailto:peter@example.org> .
This is a basic graph pattern match; all the
variables used in the query pattern must be bound in every solution.

[bookmark: matchingRDFLiterals]2.3 Matching RDF Literals
The data below contains three RDF literals:
@prefix dt: <http://example.org/datatype#> .
@prefix ns: <http://example.org/ns#> .
@prefix : <http://example.org/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:x ns:p "cat"@en .
:y ns:p "42"^^xsd:integer .
:z ns:p "abc"^^dt:specialDatatype .
Note that, in Turtle, "cat"@en is an RDF literal with a lexical form "cat" and a language tag "en"; "42"^^xsd:integer is a typed literal with the datatype http://www.w3.org/2001/XMLSchema#integer; and "abc"^^dt:specialDatatype is a typed literal with the datatype http://example.org/datatype#specialDatatype.

This RDF data is the data graph for the query examples in sections 2.3.1–2.3.3.

[bookmark: matchLangTags]2.3.1 Matching Literals with Language Tags
Language tags in SPARQL are expressed using @ and the
 language tag, as defined in Best Common Practice 47 [BCP47].
This following query has no solution because "cat" is not the
 same RDF literal as "cat"@en:
SELECT ?v WHERE { ?v ?p "cat" }
	 v

but the query below will find a solution where variable v is bound to
 :x because the language tag is specified and matches the given data:
SELECT ?v WHERE { ?v ?p "cat"@en }

	v
	<http://example.org/ns#x>

[bookmark: matchNumber]2.3.2 Matching Literals with Numeric Types
Integers in a SPARQL query indicate an RDF typed literal with the datatype
 xsd:integer. For example: 42 is a shortened form
 of "42"^^<http://www.w3.org/2001/XMLSchema#integer>.
The pattern in the following query has a solution with variable v
 bound to :y.
SELECT ?v WHERE { ?v ?p 42 }

[bookmark: table60]	v
	<http://example.org/ns#y>

Section 4.1.2 defines SPARQL shortened forms for xsd:float and xsd:double.

[bookmark: matchArbDT]2.3.3 Matching Literals with Arbitrary Datatypes
The following query has a solution with variable v bound to
 :z. The query processor does not have to have any understanding
 of the values in the space of the datatype. Because the lexical form and
 datatype IRI both match, the literal matches.
SELECT ?v WHERE { ?v ?p "abc"^^<http://example.org/datatype#specialDatatype> }

[bookmark: table61]	v
	<http://example.org/ns#z>

[bookmark: BlankNodesInResults]2.4 Blank Node Labels in Query Results

 Query results can contain blank nodes. Blank nodes in the example
 result sets in this document are written in the form
 "_:" followed by a blank node label.

Blank node labels are scoped to a result set (see
"SPARQL
Query Results XML Format" and
"SPARQL 1.1 Query Results JSON Format")
or, for the CONSTRUCT query
form, the result graph.
Use of the same label within a
result set indicates the same blank node.

 Data:
 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:b foaf:name "Bob" .

 Query:
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?x ?name
WHERE { ?x foaf:name ?name }

[bookmark: table56]	x	name
	_:c	"Alice"
	_:d	"Bob"

The results above could equally be given with different blank node labels because
 the labels in the results only indicate whether RDF terms in the solutions are
 the same or different.
[bookmark: table57]	x	name
	_:r	"Alice"
	_:s	"Bob"

These two results have the same information: the blank nodes used to match the
query are different in the two solutions. There need not be any relation between a
label
_:a in the result set and a blank node in the data graph
with the same label.
An application writer should not expect blank node labels in a query to refer to a particular blank node in the data.

[bookmark: CreatingValuesWithExpressions]2.5 Creating Values with Expressions
SPARQL 1.1 allows to create values from complex expressions.
 The queries below show how to the CONCAT function
	can be used to concatenate first names and last names from foaf data, then assign
	the value using an expression in the SELECT clause
	and also assign the value by using the BIND form.

 Data:
 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:givenName "John" .
_:a foaf:surname "Doe" .

 Query:
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT (CONCAT(?G, " ", ?S) AS ?name)
WHERE { ?P foaf:givenName ?G ; foaf:surname ?S }

 Query:
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
 ?P foaf:givenName ?G ;
 foaf:surname ?S
 BIND(CONCAT(?G, " ", ?S) AS ?name)
}
[bookmark: table59]	name
	"John Doe"

[bookmark: constructGraph]2.6 Building RDF Graphs
SPARQL has several query forms.
The SELECT query form
returns variable bindings. The CONSTRUCT query form
returns an RDF graph. The graph is built based on a template
which is used to generate RDF triples based on the results of matching
the graph pattern of the query.
Data:
@prefix org: <http://example.com/ns#> .

_:a org:employeeName "Alice" .
_:a org:employeeId 12345 .

_:b org:employeeName "Bob" .
_:b org:employeeId 67890 .
Query:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX org: <http://example.com/ns#>

CONSTRUCT { ?x foaf:name ?name }
WHERE { ?x org:employeeName ?name }
Results:
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:x foaf:name "Alice" .
_:y foaf:name "Bob" .

which can be serialized in
 RDF/XML as:
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 >
 <rdf:Description>
 <foaf:name>Alice</foaf:name>
 </rdf:Description>
 <rdf:Description>
 <foaf:name>Bob</foaf:name>
 </rdf:Description>
</rdf:RDF>

[bookmark: termConstraint]3 RDF Term Constraints (Informative)
Graph pattern matching produces a solution sequence, where each solution has a set of bindings of variables to RDF terms. SPARQL FILTERs
 restrict solutions to those for which the filter expression evaluates to TRUE.
This section provides an informal introduction to SPARQL FILTERs; their semantics are defined in section 'Expressions and Testing Values' where there is a comprehensive function library. The examples in this section share one input graph:

 Data:
 @prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .

[bookmark: restrictString]3.1 Restricting the Value of Strings
SPARQL FILTER functions like regex can test RDF literals. regex matches only string literals.
 regex can be used to match the lexical forms of other literals by
 using the str
 function.
Query:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { ?x dc:title ?title
 FILTER regex(?title, "^SPARQL")
 }

Query Result:
[bookmark: table63]	title
	"SPARQL Tutorial"

Regular expression matches may be made case-insensitive with the "i"
 flag.
Query:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { ?x dc:title ?title
 FILTER regex(?title, "web", "i")
 }

Query Result:
[bookmark: table64]	title
	"The Semantic Web"

The regular expression language is defined by XQuery 1.0 and XPath 2.0 Functions and Operators and is based on XML Schema Regular Expressions.

[bookmark: restrictNumber]3.2 Restricting Numeric Values
SPARQL FILTERs can restrict on arithmetic expressions.
Query:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?title ?price
WHERE { ?x ns:price ?price .
 FILTER (?price < 30.5)
 ?x dc:title ?title . }
Query Result:
[bookmark: table58]	title	price
	"The Semantic Web"	23

By constraining the price variable, only :book2 matches
the query because only :book2 has a price less than 30.5,
as the filter condition requires.

[bookmark: otherTermConstraints]3.3 Other Term Constraints
In addition to numeric types, SPARQL supports
	types xsd:string, xsd:boolean and xsd:dateTime
	(see Operand Data Types).
	Section Operator Mapping describes the operators
	and section Function Definitions the functions that can be
	that can be applied to RDF terms.

[bookmark: sparqlSyntax]4 SPARQL Syntax
This section covers the syntax used by SPARQL for
RDF terms and triple patterns. The full grammar
is given in section 19.

[bookmark: syntaxTerms]4.1 RDF Term Syntax

[bookmark: QSynIRI]4.1.1 Syntax for IRIs
The iri production designates the set of IRIs [RFC3987]; IRIs are a generalization of URIs [RFC3986] and are fully compatible with URIs and URLs. The PrefixedName production designates a prefixed name. The mapping from a prefixed name to an IRI is described below. IRI references (relative or absolute IRIs) are designated by the IRIREF production, where the '<' and '>' delimiters do not form part of the IRI reference. Relative IRIs match the irelative-ref reference in section 2.2 ABNF for IRI References and IRIs in [RFC3987] and are resolved to IRIs as described below.
The set of RDF terms defined in RDF Concepts and Abstract Syntax
 includes RDF URI references while SPARQL terms include IRIs. RDF URI
 references containing "<", ">", '"' (double
quote), space, "{", "}", "|",
"\", "^", and
"`" are not IRIs. The behavior of a SPARQL query against RDF
 statements composed of such RDF URI references is not defined.

[bookmark: prefNames]4.1.1.1 Prefixed Names
The PREFIX keyword associates a prefix label with an IRI. A prefixed
name is a prefix label and a local part, separated by a colon ":".
A prefixed name is mapped to an IRI by concatenating the IRI associated with the prefix and the local part.
The prefix label or the local part may be empty.
Note that SPARQL local names allow leading digits while XML local names do not.
SPARQL local names also allow the non-alphanumeric characters allowed in IRIs
via backslash character escapes (e.g. ns:id\=123).
SPARQL local names have more syntactic restrictions than CURIEs.

[bookmark: relIRIs]4.1.1.2 Relative IRIs
Relative IRIs are combined with base IRIs as per
Uniform Resource Identifier
(URI): Generic Syntax [RFC3986] using only the basic
algorithm in section 5.2. Neither Syntax-Based Normalization nor Scheme-Based Normalization
(described in sections 6.2.2 and 6.2.3 of RFC3986) are performed. Characters additionally
allowed in IRI references are treated in the same way that unreserved characters
are treated in URI references, per section 6.5 of
Internationalized Resource
Identifiers (IRIs) [RFC3987].
The BASE keyword defines the Base IRI used to resolve relative IRIs
per RFC3986 section 5.1.1, "Base URI Embedded in Content". Section 5.1.2, "Base
URI from the Encapsulating Entity" defines how the Base IRI may come from an encapsulating
document, such as a SOAP envelope with an xml:base directive or a mime multipart
document with a Content-Location header. The "Retrieval URI" identified in 5.1.3,
Base "URI from the Retrieval URI", is the URL from which a particular SPARQL query
was retrieved. If none of the above specifies the Base URI, the default Base URI
(section 5.1.4, "Default Base URI") is used.
The following fragments are some of the different ways to write the same IRI:
<http://example.org/book/book1>
BASE <http://example.org/book/>
<book1>
PREFIX book: <http://example.org/book/>
book:book1

[bookmark: QSynLiterals]4.1.2 Syntax for Literals
The general syntax for literals is a string (enclosed in either double
quotes, "...", or single quotes, '...'), with either an optional
language tag (introduced by @) or an optional datatype IRI or prefixed
name (introduced by ^^).
As a convenience, integers can be written directly (without quotation marks and an explicit datatype IRI) and are interpreted as typed
literals of datatype xsd:integer; decimal numbers for which there is '.'
in the number but no exponent are interpreted as xsd:decimal; and
numbers with exponents are interpreted as xsd:double. Values of
type xsd:boolean can also be written as true or
false.
To facilitate writing literal values which themselves contain quotation marks
or which are long and contain newline characters, SPARQL provides an additional
quoting construct in which literals are enclosed in three single- or double-quotation
marks.
Examples of literal syntax in SPARQL include:
	"chat"
	'chat'@fr with language tag "fr"
	"xyz"^^<http://example.org/ns/userDatatype>
	"abc"^^appNS:appDataType
	'''The librarian said, "Perhaps you would enjoy 'War and Peace'."'''
	1, which is the same as "1"^^xsd:integer
	1.3, which is the same as "1.3"^^xsd:decimal
	1.300, which is the same as "1.300"^^xsd:decimal
	1.0e6, which is the same as "1.0e6"^^xsd:double
	true, which is the same as "true"^^xsd:boolean
	false, which is the same as "false"^^xsd:boolean

 Tokens matching the productions INTEGER, DECIMAL, DOUBLE and
 BooleanLiteral are equivalent to a typed
 literal with the lexical value of the token and the corresponding
 datatype (xsd:integer, xsd:decimal, xsd:double, xsd:boolean).

[bookmark: QSynVariables]4.1.3 Syntax for Query Variables
A query variable is marked by the use of either "?" or "$";
	 the "?" or "$" is not part of the variable name.
	 In a query, $abc and ?abc identify the same variable. The
	 possible names for variables are given in the
	 SPARQL grammar.

[bookmark: QSynBlankNodes]4.1.4 Syntax for Blank Nodes
Blank
nodes in graph patterns act as variables, not as references to specific blank nodes in the
data being queried.
Blank nodes are indicated by either the label form, such as "_:abc", or the abbreviated form "[]". A blank
node that is used in only one place in the query syntax can be indicated with
[]. A unique blank node will be used to form the triple
pattern. Blank node labels are written as "_:abc" for a blank node with
label "abc". The same blank node label cannot be used
 in two different basic graph patterns in the same query.
The [:p :v] construct can be used in triple patterns. It creates
a blank node label which is used as the subject of all contained predicate-object
pairs. The created blank node can also be used in further triple patterns in the
subject and object positions.
The following two forms
[:p "v"] .

[] :p "v" .

allocate a unique blank node label (here "b57") and are equivalent
to writing:
_:b57 :p "v" .

This allocated blank node label can be used as the subject or object of further
triple patterns. For example, as a subject:
[:p "v"] :q "w" .

which is equivalent to the two triples:
_:b57 :p "v" .
_:b57 :q "w" .

and as an object:
:x :q [:p "v"] .

which is equivalent to the two triples:
:x :q _:b57 .
_:b57 :p "v" .

Abbreviated blank node syntax can be combined with other abbreviations for
common
subjects and common predicates.
 [foaf:name ?name ;
 foaf:mbox <mailto:alice@example.org>]

This is the same as writing the following basic graph pattern for some uniquely
allocated blank node label, "b18":
 _:b18 foaf:name ?name .
 _:b18 foaf:mbox <mailto:alice@example.org> .

[bookmark: QSynTriples]4.2 Syntax for Triple Patterns
Triple Patterns are written as subject,
predicate and object; there are abbreviated ways of writing some common triple pattern
constructs.
The following examples express the same query:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { <http://example.org/book/book1> dc:title ?title }

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://example.org/book/>

SELECT $title
WHERE { :book1 dc:title $title }

BASE <http://example.org/book/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT $title
WHERE { <book1> dc:title ?title }

[bookmark: predObjLists]4.2.1 Predicate-Object Lists
Triple patterns with a common subject can be written so that the subject is only
written once and is used for more than one triple pattern by employing the ";"
notation.
 ?x foaf:name ?name ;
 foaf:mbox ?mbox .

This is the same as writing the triple patterns:
 ?x foaf:name ?name .
 ?x foaf:mbox ?mbox .

[bookmark: objLists]4.2.2 Object Lists
If triple patterns share both subject and predicate, the objects may be separated
by ",".
 ?x foaf:nick "Alice" , "Alice_" .

is the same as writing the triple patterns:
 ?x foaf:nick "Alice" .
 ?x foaf:nick "Alice_" .

Object lists can be combined with predicate-object lists:
 ?x foaf:name ?name ; foaf:nick "Alice" , "Alice_" .

is equivalent to:
 ?x foaf:name ?name .
 ?x foaf:nick "Alice" .
 ?x foaf:nick "Alice_" .

[bookmark: collections]4.2.3 RDF Collections

RDF collections can be written in triple patterns using the syntax "(element1 element2 ...)". The
form "()" is an alternative for the IRI
http://www.w3.org/1999/02/22-rdf-syntax-ns#nil.
When used with collection elements, such as (1 ?x 3 4), triple patterns
with blank nodes are allocated for the collection. The blank node at the head
of the collection can be used as a subject or object in other triple patterns. The blank nodes allocated by the collection syntax do not occur elsewhere in the query.
(1 ?x 3 4) :p "w" .

is syntactic sugar for (noting that b0, b1, b2 and b3 do not occur anywhere else in the
query):
 _:b0 rdf:first 1 ;
 rdf:rest _:b1 .
 _:b1 rdf:first ?x ;
 rdf:rest _:b2 .
 _:b2 rdf:first 3 ;
 rdf:rest _:b3 .
 _:b3 rdf:first 4 ;
 rdf:rest rdf:nil .
 _:b0 :p "w" .

RDF collections can be nested and can involve other syntactic forms:
(1 [:p :q] (2)) .

is syntactic sugar for:
 _:b0 rdf:first 1 ;
 rdf:rest _:b1 .
 _:b1 rdf:first _:b2 .
 _:b2 :p :q .
 _:b1 rdf:rest _:b3 .
 _:b3 rdf:first _:b4 .
 _:b4 rdf:first 2 ;
 rdf:rest rdf:nil .
 _:b3 rdf:rest rdf:nil .

[bookmark: abbrevRdfType]4.2.4 rdf:type
The keyword "a" can be used as a predicate in a triple pattern and
is an alternative for the IRI
http://www.w3.org/1999/02/22-rdf-syntax-ns#type.
This keyword is case-sensitive.
 ?x a :Class1 .
 [a :appClass] :p "v" .

is syntactic sugar for:
 ?x rdf:type :Class1 .
 _:b0 rdf:type :appClass .
 _:b0 :p "v" .

[bookmark: GraphPattern]5 Graph Patterns
SPARQL is based around graph pattern matching. More complex graph patterns
can be formed by combining smaller patterns in various ways:
	Basic Graph Patterns,
 where a set of triple
 patterns must match
	Group Graph Pattern, where a set of graph
 patterns must all match
	Optional Graph patterns, where additional patterns
 may extend the solution
	Alternative Graph Pattern, where two or more possible
 patterns are tried
	Patterns on Named Graphs, where patterns are matched
 against named graphs

In this section we describe the two forms that combine patterns by
conjunction: basic graph patterns, which combine triples patterns, and group
graph patterns, which combine all other graph patterns.
The outer-most graph pattern in a query is called the query pattern. It is grammatically identified by GroupGraphPattern in
	[17] 	WhereClause	 ::= 	'WHERE'? GroupGraphPattern

[bookmark: BasicGraphPatterns]5.1 Basic Graph Patterns
Basic graph patterns are sets of triple patterns. SPARQL graph pattern
matching is defined in terms of combining the results from matching basic graph patterns.
A sequence of triple patterns, with optional filters, comprises a single
basic graph pattern. Any other graph pattern terminates a basic graph pattern.

[bookmark: bgpBNodeLabels]5.1.1 Blank Node Labels
When using blank nodes of the form _:abc, labels for blank
nodes are scoped to the basic graph pattern. A label can be used in only a
single basic graph pattern in any query.

[bookmark: bgpExtend]5.1.2 Extending Basic Graph Pattern Matching
SPARQL evaluates basic graph patterns using subgraph matching, which
	 is defined for simple entailment. SPARQL can be extended to
	 other forms of entailment given certain conditions
	 as described below.
	 The document SPARQL 1.1 Entailment Regimes
	 describes several specific entailment regimes.

[bookmark: GroupPatterns]5.2 Group Graph Patterns
In a SPARQL query string, a group graph pattern is delimited with braces:
{}. For example, this query's query pattern is a group graph pattern of one basic
graph pattern.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE {
 ?x foaf:name ?name .
 ?x foaf:mbox ?mbox .
 }

 The same solutions would be obtained from a query that grouped the triple patterns
 into two basic graph patterns. For example, the query below has a different
 structure but would yield the same solutions as the previous query:
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { { ?x foaf:name ?name . }
 { ?x foaf:mbox ?mbox . }
 }

[bookmark: emptyGroupPattern]5.2.1 Empty Group Pattern
The group pattern:
{ }
matches any graph (including the empty graph) with one solution that does not bind any
variables. For example:
SELECT ?x
WHERE {}

matches with one solution in which variable x is not bound.

[bookmark: scopeFilters]5.2.2 Scope of Filters
A constraint, expressed by the keyword FILTER, is a
restriction on solutions over the whole group in which the filter appears. The
following patterns all have the same solutions:
 { ?x foaf:name ?name .
 ?x foaf:mbox ?mbox .
 FILTER regex(?name, "Smith")
 }

 { FILTER regex(?name, "Smith")
 ?x foaf:name ?name .
 ?x foaf:mbox ?mbox .
 }

 { ?x foaf:name ?name .
 FILTER regex(?name, "Smith")
 ?x foaf:mbox ?mbox .
 }

[bookmark: groupExamples]5.2.3 Group Graph Pattern Examples
 {
 ?x foaf:name ?name .
 ?x foaf:mbox ?mbox .
 }

is a group of one basic graph pattern and that basic graph pattern consists
 of two triple patterns.
 {
 ?x foaf:name ?name . FILTER regex(?name, "Smith")
 ?x foaf:mbox ?mbox .
 }

is a group of one basic graph pattern and a filter, and that basic graph
pattern consists of two triple patterns; the filter does not break the
basic graph pattern into two basic graph patterns.
 {
 ?x foaf:name ?name .
 {}
 ?x foaf:mbox ?mbox .
 }

is a group of three elements, a basic graph pattern of one triple pattern,
an empty group, and another basic graph pattern of one triple pattern.

[bookmark: optionals]6 Including Optional Values
Basic graph patterns allow applications to make queries where the entire query
pattern must match for there to be a solution. For every solution of a query containing only group graph patterns with at least one basic graph pattern,
every variable is bound to an RDF Term in a solution. However, regular,
complete structures cannot be assumed in all RDF graphs. It is useful to be able
to have queries that allow information to be added to the solution where the information
is available, but do not reject the solution because some part of the query
pattern does not match. Optional matching provides this facility: if the optional
part does not match, it creates no bindings but does not eliminate
the solution.

[bookmark: OptionalMatching]6.1 Optional Pattern Matching
Optional parts of the graph pattern may be specified syntactically with the OPTIONAL
keyword applied to a graph pattern:
pattern OPTIONAL { pattern }

The syntactic form:
{ OPTIONAL { pattern } }

is equivalent to:
{ { } OPTIONAL { pattern } }

The OPTIONAL keyword is left-associative :
pattern OPTIONAL { pattern } OPTIONAL { pattern }

is the same as:
{ pattern OPTIONAL { pattern } } OPTIONAL { pattern }

In an optional match, either the optional graph pattern matches a graph, thereby
defining and adding bindings to one or more solutions, or it leaves a solution unchanged without adding
any additional bindings.
Data:
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

_:a rdf:type foaf:Person .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@example.com> .
_:a foaf:mbox <mailto:alice@work.example> .

_:b rdf:type foaf:Person .
_:b foaf:name "Bob" .

 Query:PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { ?x foaf:name ?name .
 OPTIONAL { ?x foaf:mbox ?mbox }
 }

With the data above, the query result is:
[bookmark: table92]	name	mbox
	"Alice"	<mailto:alice@example.com>
	"Alice"	<mailto:alice@work.example>
	"Bob"	

There is no value of mbox in the solution where the name is
"Bob".
This query finds the names of people in the data. If there is a triple with predicate
mbox and the same subject, a solution will contain the object of that triple
as well. In this example, only a single triple pattern is given in the optional match
part of the query but, in general, the optional part may be any graph pattern. The entire
optional graph pattern must match for the optional graph pattern to affect
the query solution.

[bookmark: OptionalAndConstraints]6.2 Constraints
in Optional Pattern Matching
Constraints can be given in an optional graph pattern. For example:
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?title ?price
WHERE { ?x dc:title ?title .
 OPTIONAL { ?x ns:price ?price . FILTER (?price < 30) }
 }

[bookmark: table93]	title	price
	"SPARQL Tutorial"	
	"The Semantic Web"	23

No price appears for the book with title "SPARQL Tutorial" because the optional
graph pattern did not lead to a solution involving the variable "price".

[bookmark: MultipleOptionals]6.3 Multiple Optional Graph
Patterns
Graph patterns are defined recursively. A graph pattern may have zero or more
optional graph patterns, and any part of a query pattern may have an optional part.
In this example, there are two optional graph patterns.

 Data:@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:homepage <http://work.example.org/alice/> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .

 Query:PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox ?hpage
WHERE { ?x foaf:name ?name .
 OPTIONAL { ?x foaf:mbox ?mbox } .
 OPTIONAL { ?x foaf:homepage ?hpage }
 }

Query result:
[bookmark: table94]	name	mbox	hpage
	"Alice"		<http://work.example.org/alice/>
	"Bob"	<mailto:bob@work.example>	

[bookmark: alternatives]7 Matching Alternatives
SPARQL provides a means of combining graph patterns so that one of several alternative
graph patterns may match. If more than one of the alternatives matches, all the
possible pattern solutions are found.
Pattern alternatives are syntactically specified with the UNION keyword.

 Data:@prefix dc10: <http://purl.org/dc/elements/1.0/> .
@prefix dc11: <http://purl.org/dc/elements/1.1/> .

_:a dc10:title "SPARQL Query Language Tutorial" .
_:a dc10:creator "Alice" .

_:b dc11:title "SPARQL Protocol Tutorial" .
_:b dc11:creator "Bob" .

_:c dc10:title "SPARQL" .
_:c dc11:title "SPARQL (updated)" .

 Query:PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT ?title
WHERE { { ?book dc10:title ?title } UNION { ?book dc11:title ?title } }

Query result:
[bookmark: table97]	title
	"SPARQL Protocol Tutorial"
	"SPARQL"
	"SPARQL (updated)"
	"SPARQL Query Language Tutorial"

This query finds titles of the books in the data, whether the title is recorded
 using Dublin Core properties
 from version 1.0 or version 1.1. To determine exactly how the information was
 recorded, a query could use different variables for the two alternatives:
PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT ?x ?y
WHERE { { ?book dc10:title ?x } UNION { ?book dc11:title ?y } }

[bookmark: table98]	x	y
		"SPARQL (updated)"
		"SPARQL Protocol Tutorial"
	"SPARQL"	
	"SPARQL Query Language Tutorial"	

This will return results with the variable x bound for solutions from the left branch of the UNION, and y bound
 for the solutions from the right branch. If neither part of the UNION
 pattern matched, then the graph pattern would not match.
The UNION pattern combines graph patterns; each alternative possibility can contain more
 than one triple
 pattern:
PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT ?title ?author
WHERE { { ?book dc10:title ?title . ?book dc10:creator ?author }
 UNION
 { ?book dc11:title ?title . ?book dc11:creator ?author }
 }

[bookmark: table99]	title	author
	"SPARQL Query Language Tutorial"	"Alice"
	"SPARQL Protocol Tutorial"	"Bob"

This query will only match a book if it has both a title and creator predicate
from the same version of Dublin Core.

[bookmark: negation]8 Negation
The SPARQL query language incorporates two styles of negation, one
 based on filtering results depending on whether a graph pattern does or
 does not match in the context of the query solution being filtered,
 and one based on removing solutions related to another pattern.

[bookmark: neg-pattern]8.1 Filtering Using Graph Patterns
Filtering of query solutions is done within a FILTER
 expression using NOT EXISTS and EXISTS.
 Note that the filter scope rules
 apply to the
 whole group in which the filter appears.

[bookmark: neg-notexists]8.1.1 Testing For the Absence of a Pattern
The NOT EXISTS filter expression tests whether a graph pattern does
 not match the dataset, given the values of variables in the group graph pattern
 in which the filter occurs. It does
 not generate any additional bindings.
Data:
@prefix : <http://example/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

:alice rdf:type foaf:Person .
:alice foaf:name "Alice" .
:bob rdf:type foaf:Person .
Query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?person
WHERE
{
 ?person rdf:type foaf:Person .
 FILTER NOT EXISTS { ?person foaf:name ?name }
}
Query Result:
	person
	<http://example/bob>

[bookmark: neg-exists]8.1.2 Testing For the Presence of a Pattern
The filter expression EXISTS is also provided.
 It tests whether the pattern can be found in the data;
 it does not generate any additional bindings.
Query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?person
WHERE
{
 ?person rdf:type foaf:Person .
 FILTER EXISTS { ?person foaf:name ?name }
}
Query Result:
	person
	<http://example/alice>

[bookmark: neg-minus]8.2 Removing Possible Solutions
The other style of negation provided in SPARQL is
 MINUS which evaluates both its arguments,
 then calculates solutions in the left-hand side that are not
 compatible with the solutions on the right-hand side.

 Data:
 @prefix : <http://example/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

:alice foaf:givenName "Alice" ;
 foaf:familyName "Smith" .

:bob foaf:givenName "Bob" ;
 foaf:familyName "Jones" .

:carol foaf:givenName "Carol" ;
 foaf:familyName "Smith" .

 Query:
 PREFIX : <http://example/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?s
WHERE {
 ?s ?p ?o .
 MINUS {
 ?s foaf:givenName "Bob" .
 }
}
Results:
	s
	<http://example/carol>
	<http://example/alice>

[bookmark: neg-notexists-minus]8.3 Relationship and differences between NOT EXISTS and MINUS
NOT EXISTS and MINUS represent two ways of
 thinking about negation, one based on
 testing whether a pattern exists in the data, given the bindings
 already determined by the query pattern,
 and one based on removing matches based on the evaluation of
 two patterns. In some cases they can produce different answers.

[bookmark: neg-example-1]8.3.1 Example: Sharing of variables
@prefix : <http://example/> .
:a :b :c .
SELECT *
{
 ?s ?p ?o
 FILTER NOT EXISTS { ?x ?y ?z }
}
evaluates to a result set with no solutions because { ?x ?y ?z }
 matches given any ?s ?p ?o, so NOT EXISTS { ?x ?y ?z }
 eliminates any solutions.
	s	p	o

whereas with MINUS, there is no shared variable between the
 first part (?s ?p ?o) and the second (?x ?y ?z)
 so no bindings are eliminated.
SELECT *
{
 ?s ?p ?o
 MINUS
 { ?x ?y ?z }
}
Results:
	s	p	o
	<http://example/a>	<http://example/b>	<http://example/c>

[bookmark: neg-example-2]8.3.2 Example: Fixed pattern
Another case is where there is a concrete pattern (no variables) in the example:
PREFIX : <http://example/>
SELECT *
{
 ?s ?p ?o
 FILTER NOT EXISTS { :a :b :c }
}
evaluates to a result set with no query solutions:

 Results:
 	s	p	o

whereas
PREFIX : <http://example/>
SELECT *
{
 ?s ?p ?o
 MINUS { :a :b :c }
}
evaluates to result set with one query solution:
Results:
	s	p	o
	<http://example/a>	<http://example/b>	<http://example/c>

because there is no match of bindings and so no solutions are eliminated.

[bookmark: idp899488]8.3.3 Example: Inner FILTERs
Differences also arise because in a filter, variables from the group are
 in scope. In this example, the FILTER inside
 the NOT EXISTS has access to the value of ?n for the solution being considered.

@prefix : <http://example.com/> .
:a :p 1 .
:a :q 1 .
:a :q 2 .

:b :p 3.0 .
:b :q 4.0 .
:b :q 5.0 .
When using FILTER NOT EXISTS, the test is on each possible solution to ?x :p ?n:
PREFIX : <http://example.com/>
SELECT * WHERE {
 ?x :p ?n
 FILTER NOT EXISTS {
 ?x :q ?m .
 FILTER(?n = ?m)
 }
}
	x	n
	<http://example.com/b>	3.0

whereas with MINUS, the FILTER inside the pattern does not have a value for ?n and it is always unbound:
PREFIX : <http://example/>
SELECT * WHERE {
 ?x :p ?n
 MINUS {
 ?x :q ?m .
 FILTER(?n = ?m)
 }
}
	x	n
	<http://example.com/b>	3.0
	<http://example.com/a>	1

[bookmark: propertypaths]9 Property Paths
A property path is a possible route through a graph between two graph nodes.
 A trivial case is a property path of length exactly 1, which is a triple pattern.
 The ends of the path may be RDF terms or variables. Variables
 can not be used as part of the path itself, only the ends.

 Property paths allow for more concise expressions for
 some SPARQL basic graph patterns and they also add the ability
 to match connectivity of two resources by an arbitrary length path.

[bookmark: pp-language]9.1 Property Path Syntax
In the description below, iri is either an IRI written
 in full or abbreviated by a prefixed name, or the keyword a.
 elt is a path element, which may itself
 be composed of path constructs.

	Syntax Form	Property Path Expression Name	Matches
	iri	PredicatePath	 An IRI. A path of length one.
	^elt	InversePath	Inverse path (object to subject).
	elt1 / elt2	SequencePath	A sequence path of elt1 followed by elt2.
	 elt1 | elt2	AlternativePath	A alternative path of elt1 or elt2 (all possibilities are tried).
	elt*	ZeroOrMorePath	A path that connects the subject and object of the path by zero or more matches of elt.
	elt+	OneOrMorePath	A path that connects the subject and object of the path by one or more matches of elt.
	elt?	ZeroOrOnePath	A path that connects the subject and object of the path by zero or one matches of elt.
	!iri or !(iri1| ...|irin)	NegatedPropertySet	Negated property set. An IRI which is not one of irii.
	 !iri is short for !(iri).
	
	!^iri or !(^iri1| ...|^irin)	NegatedPropertySet	Negated property set where the excluded matches are based on reversed path.

	 That is, not one of iri1...irin as reverse paths.
	 !^iri is short for !(^iri).

	
	 !(iri1| ...|irij|^irij+1| ...|^irin)	NegatedPropertySet	
	 A combination of forward and reverse properties in a negated property set.
	
	(elt)	 	A group path elt, brackets control precedence.

The order of IRIs, and reverse IRIs, in a negated property set is not significant
 and they can occur in a mixed order.
The precedence of the syntax forms is, from highest to lowest:

	IRI, prefixed names
	Negated property sets
	Groups
	Unary operators *, ? and +
	Unary ^ inverse links
	Binary operator /
	Binary operator |

Precedence is left-to-right within groups.

[bookmark: propertypath-examples]9.2 Examples
Alternatives: Match one or both possibilities
 { :book1 dc:title|rdfs:label ?displayString }
which could have writen:
 { :book1 <http://purl.org/dc/elements/1.1/title> | <http://www.w3.org/2000/01/rdf-schema#label> ?displayString }
Sequence: Find the name of any people that Alice knows.
 {
 ?x foaf:mbox <mailto:alice@example> .
 ?x foaf:knows/foaf:name ?name .
 }
Sequence: Find the names of people 2 "foaf:knows" links away.
 {
 ?x foaf:mbox <mailto:alice@example> .
 ?x foaf:knows/foaf:knows/foaf:name ?name .
 }
This is the same as the SPARQL query:
 SELECT ?x ?name
 {
 ?x foaf:mbox <mailto:alice@example> .
 ?x foaf:knows [foaf:knows [foaf:name ?name]].
 }
or, with explicit variables:
 SELECT ?x ?name
 {
 ?x foaf:mbox <mailto:alice@example> .
 ?x foaf:knows ?a1 .
 ?a1 foaf:knows ?a2 .
 ?a2 foaf:name ?name .
 }
Filtering duplicates: Because someone Alice knows may well know Alice, the example above may
 include Alice herself. This could be avoided with:

 { ?x foaf:mbox <mailto:alice@example> .
 ?x foaf:knows/foaf:knows ?y .
 FILTER (?x != ?y)
 ?y foaf:name ?name
 }

	Inverse Property Paths: These two are the same query: the second is just reversing the property
	direction which swaps the roles of subject and object.

 { ?x foaf:mbox <mailto:alice@example> }
 { <mailto:alice@example> ^foaf:mbox ?x }
Inverse Path Sequence: Find all the people who know someone ?x knows.
 {
 ?x foaf:knows/^foaf:knows ?y .
 FILTER(?x != ?y)
 }
which is equivalent to (?gen1 is a system generated variable):
 {
 ?x foaf:knows ?gen1 .
 ?y foaf:knows ?gen1 .
 FILTER(?x != ?y)
 }
Arbitrary length match: Find the names of all the people that can be reached from Alice by foaf:knows:
 {
 ?x foaf:mbox <mailto:alice@example> .
 ?x foaf:knows+/foaf:name ?name .
 }
Alternatives in an arbitrary length path:
 { ?ancestor (ex:motherOf|ex:fatherOf)+ <#me> }

	Arbitrary length path match: Some forms of limited inference are possible as well.
	For example, for RDFS, all types
 and supertypes of a resource:

 { <http://example/thing> rdf:type/rdfs:subClassOf* ?type }
All resources and all their inferred types:
 { ?x rdf:type/rdfs:subClassOf* ?type }
Subproperty:
 { ?x ?p ?v . ?p rdfs:subPropertyOf* :property }
Negated Property Paths: Find nodes connected but not by rdf:type (either way round):
 { ?x !(rdf:type|^rdf:type) ?y }
Elements in an RDF collection:
 { :list rdf:rest*/rdf:first ?element }
Note: This path expression does not guarantee the order of the results.

[bookmark: propertypath-syntaxforms]9.3 Property Paths and Equivalent Patterns

	SPARQL property paths treat the RDF triples as a directed, possibly cyclic, graph
	with named edges. Some property paths are equivalent to a
	translation into triple patterns
	and SPARQL UNION graph patterns. Evaluation of a property path expression can lead
	to duplicates because any variables introduced in the equivalent pattern are not part
	of the results and are not already used elsewhere. They are hidden by implicit
	projection of the results to just the variables given in the query.

For example, on the data:
@prefix : <http://example/> .

:order :item :z1 .
:order :item :z2 .

:z1 :name "Small" .
:z1 :price 5 .

:z2 :name "Large" .
:z2 :price 5 .
Query:
PREFIX : <http://example/>
SELECT *
{ ?s :item/:price ?x . }
Results:
	s	x
	<http://example/order>	5
	<http://example/order>	5

whereas if the query were written out to include the intermediate variable
	(?_a), no rows in the results are duplicates:
PREFIX : <http://example/>
SELECT *
{ ?s :item ?_a .
 ?_a :price ?x . }
Results:
	s	_a	x
	<http://example/order>	<http://example/z1>	5
	<http://example/order>	<http://example/z2>	5

The equivalance to graphs patterns is particularly significant
 when query also involves an aggregation operation. The total cost
 of the order can be found with

 PREFIX : <http://example/>
 SELECT (sum(?x) AS ?total)
 {
 :order :item/:price ?x
 }
	total
	10

[bookmark: propertypath-arbitrary-length]9.4 Arbitrary Length Path Matching

	Connectivity between the subject and object by a property path
	of arbitrary length can be found using the "zero or more"
	property path operator, *, and the "one or more"
	property path operator, +.
	There is also a "zero or one" connectivity property path operator,
	?.

	Each of these operators uses the property path expression
	to try to find a connection between subject and object, using the
	path step a number of times, as restricted by the operator.

	 For example, finding all the the possible types of a resource,
	 including supertypes of resources, can be achieved with:

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 SELECT ?x ?type
 {
 ?x rdf:type/rdfs:subClassOf* ?type
 }

	 Similarly, finding all the people :x connects to via the
	 foaf:knows relationship,

 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 PREFIX : <http://example/>
 SELECT ?person
 {
 :x foaf:knows+ ?person
 }

	 Such connectivity matching does not introduce duplicates (it does not
	 incorporate any count of the number of ways the connection can be made) even
	 if the repeated path itself would otherwise result in duplicates.

	 The graph matched may include cycles. Connectivity matching is defined so that
	 matching cycles does not lead to undefined or infinite results.

[bookmark: assignment]10 Assignment
The value of an expression can be added to a solution mapping by binding a new variable
 to the value of the expression, which is an RDF term.
 The variable can then be used in the query and also can be returned
 in results.
Three syntax forms allow this: the BIND keyword,
 expressions in the
 SELECT clause and expressions in the GROUP BY clause.
 The assignment form is (expression AS ?var).

If the evaluation of the expression produces an error,
 the variable remains unbound for that solution but the query evaluation continues.
Data can also be directly included in a query using
 VALUES for inline data.

[bookmark: bind]10.1 BIND: Assigning to Variables
The BIND form allows a value to be assigned to a variable from a
 basic graph pattern or property path expression. Use of BIND
 ends the preceding basic graph pattern. The variable introduced by
 the BIND clause must not have been used in the group graph
 pattern up to the point of use in BIND.

Example:
Data:
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book1 ns:discount 0.2 .

:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .
:book2 ns:discount 0.25 .
Query:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>

SELECT ?title ?price
{ ?x ns:price ?p .
 ?x ns:discount ?discount
 BIND (?p*(1-?discount) AS ?price)
 FILTER(?price < 20)
 ?x dc:title ?title .
}
Equivalent query (BIND ends the basic graph pattern;
 the FILTER applies to the whole group graph pattern):
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>

SELECT ?title ?price
{ { ?x ns:price ?p .
 ?x ns:discount ?discount
 BIND (?p*(1-?discount) AS ?price)
 }
 {?x dc:title ?title . }
 FILTER(?price < 20)
}
Results:
	title	price
	 "The Semantic Web"	17.25

[bookmark: inline-data]10.2 VALUES: Providing inline data
Data can be directly written in a graph pattern or added to a query using
 VALUES. VALUES provides inline data as a
 solution sequence
 which are combined with the results of query evaluation by a
 join operation. It can be used by an
 application to provide specific requirements on query results
 and also by SPARQL query engine implementations that provide
 federated query through
 the SERVICE keyword to send a more constrained query to a
 remote query service.

[bookmark: inline-data-syntax]10.2.1 VALUES syntax
VALUES allows multiple variables to be specified in the
	data block; there is a special syntax for the common case of specifying
	just one variable and some values.
In the following example, there is a table of two variables,
	?x and ?y. The second row has no value for
	?y.
VALUES (?x ?y) {
 (:uri1 1)
 (:uri2 UNDEF)
}
Optionally, when there is a single variable and some values:
VALUES ?z { "abc" "def" }
which is the same as using the general form:
VALUES (?z) { ("abc") ("def") }

[bookmark: inline-data-examples]10.2.2 VALUES Examples
A VALUES block of data can appear in a query pattern or
	at the end of a SELECT query, including a
	subquery.
Data:
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .

Query:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://example.org/book/>
PREFIX ns: <http://example.org/ns#>

SELECT ?book ?title ?price
{
 VALUES ?book { :book1 :book3 }
 ?book dc:title ?title ;
 ns:price ?price .
}
Result:
[bookmark: table110]	book	title	price
	<http://example.org/book/book1>	"SPARQL Tutorial"	42

If a variable has no value for a particular solution in the
 VALUES clause, the keyword UNDEF is used
 instead of an RDF term.
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://example.org/book/>
PREFIX ns: <http://example.org/ns#>

SELECT ?book ?title ?price
{
 ?book dc:title ?title ;
 ns:price ?price .
 VALUES (?book ?title)
 { (UNDEF "SPARQL Tutorial")
 (:book2 UNDEF)
 }
}
[bookmark: table111]	book	title	price
	<http://example.org/book/book1>	"SPARQL Tutorial"	42
	<http://example.org/book/book2>	"The Semantic Web"	23

In this example, the VALUES might have been specified
	to execute over the results of the SELECT query:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://example.org/book/>
PREFIX ns: <http://example.org/ns#>

SELECT ?book ?title ?price
{
 ?book dc:title ?title ;
 ns:price ?price .
}
VALUES (?book ?title)
{ (UNDEF "SPARQL Tutorial")
 (:book2 UNDEF)
}
This is a different query but, in the example situation, has the same results.

[bookmark: aggregates]11 Aggregates
Aggregates apply expressions over groups of solutions. By default
a solution set consists of a single group, containing all solutions.
Grouping may be specified using the GROUP BY syntax.
Aggregates defined in version 1.1 of SPARQL are
COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE.
Aggregates are used where the querier wishes to see a result which is computed over a group of solutions, rather than a single solution. For example the maximum value that a particular variable takes, rather than each value individually.

[bookmark: aggregateExample]11.1 Aggregate Example
Data:
@prefix : <http://books.example/> .

:org1 :affiliates :auth1, :auth2 .
:auth1 :writesBook :book1, :book2 .
:book1 :price 9 .
:book2 :price 5 .
:auth2 :writesBook :book3 .
:book3 :price 7 .
:org2 :affiliates :auth3 .
:auth3 :writesBook :book4 .
:book4 :price 7 .
Query:
PREFIX : <http://books.example/>
SELECT (SUM(?lprice) AS ?totalPrice)
WHERE {
 ?org :affiliates ?auth .
 ?auth :writesBook ?book .
 ?book :price ?lprice .
}
GROUP BY ?org
HAVING (SUM(?lprice) > 10)
Results:
	totalPrice
	21

This example demonstrates two features of aggregates: GROUP BY, which
 groups query solutions according to one or more expressions (in this case
 ?org), and HAVING, which is analogous to a FILTER
 expression, but operates over groups, rather than individual solutions.
The example is produced by grouping solutions according to the GROUP BY
 expression (i.e. all solutions where ?org takes a particular value appear
 within the same group), and evaluating the Set Function SUM over that group.
 The groups are then filtered by the HAVING expression, which removes
 all groups where SUM(?lprice) is not greater than 10.
In aggregate queries and sub-queries, variables that appear in the
query pattern, but are not in the GROUP BY clause, can only be
projected or used in select expressions if they are aggregated. The
SAMPLE aggregate may be used for this purpose. For details see the
section on Projection Restrictions.
It should be noted that as per functions, aggregate expressions are required to be aliased (again, similar to the BIND clause, using the keyword AS) in order to project them from queries or subqueries. In the example above this is done using the variable ?totalPrice. It is an error for aggregates to project variables with a name already used in other aggregate projections, or in the WHERE clause.

[bookmark: groupby]11.2 GROUP BY
In order to calculate aggregate values for a solution, the solution is first divided into one or more groups, and the aggregate value is calculated for each group.
If aggregates are used in the query level in SELECT,
 HAVING or ORDER BY but the GROUP BY term is not used,
 then this is taken to be a single implicit group, to which all solutions belong.
Within GROUP BY clauses the binding keyword, AS, may be used, such as GROUP BY (?x + ?y AS ?z). This is equivalent to { ... BIND (?x + ?y AS ?z) } GROUP BY ?z.
For example, given a solution sequence S, ({?x→2, ?y→3}, {?x→2, ?y→5}, {?x→6, ?y→7}), we might wish to group the solutions according to the value of ?x, and calculate the average of the values of ?y for each group.
This could be written as:
SELECT (AVG(?y) AS ?avg)
WHERE {
 ?a :x ?x ;
 :y ?y .
}
GROUP BY ?x

[bookmark: having]11.3 HAVING
HAVING operates over grouped solution sets, in the same way that FILTER operates over un-grouped ones.
HAVING expressions have the same evaluation rules as projections from
grouped queries, as described in the following section.
An example of the use of HAVING is given below.
PREFIX : <http://data.example/>
SELECT (AVG(?size) AS ?asize)
WHERE {
 ?x :size ?size
}
GROUP BY ?x
HAVING(AVG(?size) > 10)
This will return average sizes, grouped by the subject, but only where the mean size is greater than 10.

[bookmark: aggregateRestrictions]11.4 Aggregate Projection Restrictions
In a query level which uses aggregates, only expressions consisting of aggregates and constants may be projected, with one exception. When GROUP BY is given with one or more simple expressions consisting of just a variable, those variables may be projected from the level.
For example, the following query is legal as ?x is given as a GROUP BY term.
PREFIX : <http://example.com/data/#>
SELECT ?x (MIN(?y) * 2 AS ?min)
WHERE {
 ?x :p ?y .
 ?x :q ?z .
} GROUP BY ?x (STR(?z))
Note that it would not be legal to project STR(?z) as this is not a simple variable expression. However, with GROUP BY (STR(?z) AS ?strZ) it would be possible to project ?strZ.
Other expressions, not using GROUP BY variables, or aggregates may have non-deterministic values projected from their groups using the SAMPLE aggregate.

[bookmark: aggregateExample2]11.5 Aggregate Example (with errors)
This section shows an example query using aggregation, which demonstrates how errors are handled in results, in the presence of aggregates.
Data:
@prefix : <http://example.com/data/#> .

:x :p 1, 2, 3, 4 .
:y :p 1, _:b2, 3, 4 .
:z :p 1.0, 2.0, 3.0, 4 .
Query:
PREFIX : <http://example.com/data/#>
SELECT ?g (AVG(?p) AS ?avg) ((MIN(?p) + MAX(?p)) / 2 AS ?c)
WHERE {
 ?g :p ?p .
}
GROUP BY ?g
Result:
	g	avg	c
	<http://example.com/data/#x>	2.5	2.5
	<http://example.com/data/#y>		
	<http://example.com/data/#z>	2.5	2.5

Note that the bindings for the :y group is not included in the results as the evaluation of Avg({1, _:b2, 3, 4}), and (_:b2 + 4) / 2 is an error, removing the bindings from the solution.

[bookmark: subqueries]12 Subqueries
Subqueries are a way to embed SPARQL queries within other queries, normally to achieve results which cannot otherwise be achieved, such as limiting the number of results from some sub-expression within the query.
Due to the bottom-up nature of SPARQL query evaluation, the subqueries are evaluated logically first, and the results are projected up to the outer query.
Note that only variables projected out of the subquery will be visible, or
 in scope,
 to the outer query.
Example
Data:
@prefix : <http://people.example/> .

:alice :name "Alice", "Alice Foo", "A. Foo" .
:alice :knows :bob, :carol .
:bob :name "Bob", "Bob Bar", "B. Bar" .
:carol :name "Carol", "Carol Baz", "C. Baz" .
Return a name (the one with the lowest sort order) for all the people that know Alice and have a name.
Query:
PREFIX : <http://people.example/>
PREFIX : <http://people.example/>
SELECT ?y ?minName
WHERE {
 :alice :knows ?y .
 {
 SELECT ?y (MIN(?name) AS ?minName)
 WHERE {
 ?y :name ?name .
 } GROUP BY ?y
 }
}

Results:
	y	minName
	:bob	"B. Bar"
	:carol	"C. Baz"

This result is achieved by first evaluating the inner query:
SELECT ?y (MIN(?name) AS ?minName)
WHERE {
 ?y :name ?name .
} GROUP BY ?y
This produces the following solution sequence:
	y	minName
	:alice	"A. Foo"
	:bob	"B. Bar"
	:carol	"C. Baz"

Which is joined with the results of the outer query:
	y
	:bob
	:carol

[bookmark: rdfDataset]13 RDF Dataset
The RDF data model expresses information as graphs consisting of triples with
subject, predicate and object. Many RDF data stores hold multiple RDF graphs and
record information about each graph, allowing an application to make queries that
involve information from more than one graph.
A SPARQL query is executed against an RDF Dataset which represents a
collection of graphs. An RDF Dataset comprises one graph, the default graph, which
does not have a name, and zero or more named graphs, where each named graph is identified by
an IRI. A SPARQL
query can match different parts of the query pattern against different graphs as
described in section 13.3 Querying the Dataset.
An RDF Dataset may contain zero named graphs; an RDF Dataset always contains one default graph.
A query does not need to involve
matching the default graph; the query can just involve matching named graphs.
The graph that is used for matching a basic graph pattern is the active
graph. In the previous sections, all queries have been shown executed
against a single graph, the default graph of an RDF dataset as the active graph.
The GRAPH keyword is used to make the active graph one of all of
the named graphs in the dataset for part of the query.

[bookmark: exampleDatasets]13.1 Examples of RDF Datasets
The definition of RDF Dataset does not restrict the relationships of named and
default graphs. Information can be repeated in different graphs; relationships between
graphs can be exposed. Two useful arrangements are:
	to have information in the default graph that includes provenance information
 about the named graphs
	to include the information in the named graphs in the default graph as well.

Example 1:# Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example.org/bob> dc:publisher "Bob" .
<http://example.org/alice> dc:publisher "Alice" .

Named graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Bob" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .

Named graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example.org> .

In this example, the default graph contains the names of the publishers of two
named graphs. The triples in the named graphs are not visible in the default graph
in this example.
Example 2:
RDF data can be combined by the
RDF merge
[RDF-MT] of graphs. One possible arrangement of graphs in
an RDF Dataset is to have the default graph be the RDF merge of some or all of
the information in the named graphs.
In this next example, the named graphs contain the same triples as before. The
RDF dataset includes an RDF merge of the named graphs in the default graph, re-labeling
blank nodes to keep them distinct.
Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:x foaf:name "Bob" .
_:x foaf:mbox <mailto:bob@oldcorp.example.org> .

_:y foaf:name "Alice" .
_:y foaf:mbox <mailto:alice@work.example.org> .

Named graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Bob" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .

Named graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
In an RDF merge, blank nodes in the merged graph are not shared with blank
 nodes from the graphs being merged.

[bookmark: specifyingDataset]13.2 Specifying RDF Datasets
A SPARQL query may specify the dataset to be used for matching by using the
FROM clause and the FROM NAMED clause to describe the
RDF dataset. If a query provides such a dataset description, then it is used in
place of any dataset that the query service would use if no dataset description
is provided in a query. The RDF dataset may also be

specified in a SPARQL protocol request, in which case the protocol description
overrides any description in the query itself. A query service may refuse a query
request if the dataset description is not acceptable to the service.
The FROM and FROM NAMED keywords allow a query to specify
an RDF dataset by reference; they indicate that the dataset should include graphs
that are obtained from representations of the resources identified by the given
IRIs (i.e. the absolute form of the given IRI references). The dataset resulting
from a number of FROM and FROM NAMED clauses is:
	a default graph consisting of the RDF merge of the graphs referred to in the
 FROM clauses, and
	a set of (IRI, graph) pairs, one from each FROM NAMED clause.

If there is no FROM clause, but there is one or more FROM NAMED
clauses, then the dataset includes an empty graph for the default graph.

[bookmark: unnamedGraph]13.2.1 Specifying the Default Graph
Each FROM clause contains an IRI that indicates a graph to be
used to form the default graph. This does not put the graph in as a named graph.
In this example, the RDF Dataset contains a single default graph and no named graphs:
Default graph (located at http://example.org/foaf/aliceFoaf)
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
FROM <http://example.org/foaf/aliceFoaf>
WHERE { ?x foaf:name ?name }

[bookmark: table102]	name
	"Alice"

If a query provides more than one FROM clause, providing more than
one IRI to indicate the default graph, then the default graph is the
RDF merge of the
graphs obtained from representations of the resources identified by the given IRIs.

[bookmark: namedGraphs]13.2.2 Specifying Named Graphs
A query can supply IRIs for the named graphs in the RDF Dataset using the
FROM NAMED clause. Each IRI is used to provide one named graph in the
RDF Dataset. Using the same IRI in two or more FROM NAMED clauses results
in one named graph with that IRI appearing in the dataset.
Graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Bob" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .

Graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .

...
FROM NAMED <http://example.org/alice>
FROM NAMED <http://example.org/bob>
...

The FROM NAMED syntax suggests that the IRI identifies the corresponding
graph, but the relationship between an IRI and a graph in an RDF dataset
is indirect. The IRI identifies a resource, and the resource is represented by a
graph (or, more precisely: by a document that serializes a graph). For
further details
see [WEBARCH].

[bookmark: specDataset]13.2.3 Combining FROM and FROM NAMED
The FROM clause and FROM NAMED clause can be used in
the same query.
Default graph (located at http://example.org/dft.ttl)
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example.org/bob> dc:publisher "Bob Hacker" .
<http://example.org/alice> dc:publisher "Alice Hacker" .

Named graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Bob" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .

Named graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example.org> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?who ?g ?mbox
FROM <http://example.org/dft.ttl>
FROM NAMED <http://example.org/alice>
FROM NAMED <http://example.org/bob>
WHERE
{
 ?g dc:publisher ?who .
 GRAPH ?g { ?x foaf:mbox ?mbox }
}

The RDF Dataset for this query contains a default graph and two named graphs.
The GRAPH keyword is described below.
The actions required to construct the dataset are not determined by the
dataset description alone. If an IRI is given twice in a dataset
description, either by using two FROM clauses, or a FROM clause and a
FROM NAMED clause, then it does not assume that exactly one or exactly
two attempts are made to obtain an RDF graph associated with the IRI.
Therefore, no assumptions can be made about blank node identity in
triples obtained from the two occurrences in the dataset description.
In general, no assumptions can be made about the equivalence of the graphs.

[bookmark: queryDataset]13.3 Querying the Dataset
When querying a collection of graphs, the GRAPH keyword is used
to match patterns against named graphs. GRAPH can provide an IRI to select
one graph or use a variable which will range over the IRI of all the named graphs in the query's RDF dataset.
The use of GRAPH changes the active graph for matching
graph patterns within that part of the query. Outside the use of GRAPH,
matching is done using the default graph.
The following two graphs will be used in examples:
Named graph: http://example.org/foaf/aliceFoaf
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
_:a foaf:knows _:b .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .
_:b foaf:nick "Bobby" .
_:b rdfs:seeAlso <http://example.org/foaf/bobFoaf> .

<http://example.org/foaf/bobFoaf>
 rdf:type foaf:PersonalProfileDocument .

Named graph: http://example.org/foaf/bobFoaf
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

_:z foaf:mbox <mailto:bob@work.example> .
_:z rdfs:seeAlso <http://example.org/foaf/bobFoaf> .
_:z foaf:nick "Robert" .

<http://example.org/foaf/bobFoaf>
 rdf:type foaf:PersonalProfileDocument .

[bookmark: accessByLabel]13.3.1 Accessing Graph Names
The query below matches the graph pattern against each of the named graphs in the
 dataset and forms solutions which have the src variable bound to
 IRIs of the graph being matched. The graph pattern is matched with the active
 graph being each of the named graphs in the dataset.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?src ?bobNick
FROM NAMED <http://example.org/foaf/aliceFoaf>
FROM NAMED <http://example.org/foaf/bobFoaf>
WHERE
 {
 GRAPH ?src
 { ?x foaf:mbox <mailto:bob@work.example> .
 ?x foaf:nick ?bobNick
 }
 }

The query result gives the name of the graphs where the information was found
 and the value for Bob's nick:
[bookmark: table105]	src	bobNick
	<http://example.org/foaf/aliceFoaf>	"Bobby"
	<http://example.org/foaf/bobFoaf>	"Robert"

[bookmark: restrictByLabel]13.3.2 Restricting by Graph
 IRI
The query can restrict the matching applied to a specific graph by supplying
 the graph IRI. This sets the active graph to the graph named by the IRI. This query looks for Bob's nick as given in the graph http://example.org/foaf/bobFoaf.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX data: <http://example.org/foaf/>

SELECT ?nick
FROM NAMED <http://example.org/foaf/aliceFoaf>
FROM NAMED <http://example.org/foaf/bobFoaf>
WHERE
 {
 GRAPH data:bobFoaf {
 ?x foaf:mbox <mailto:bob@work.example> .
 ?x foaf:nick ?nick }
 }

which yields a single solution:
[bookmark: table106]	nick
	"Robert"

[bookmark: restrictInQuery]13.3.3 Restricting Possible Graph IRIs
A variable used in the GRAPH clause may also be used in another
 GRAPH clause or in a graph pattern matched against the default graph
 in the dataset.
The query below uses the graph
 with IRI http://example.org/foaf/aliceFoaf to find the profile document
 for Bob; it then matches another pattern against that graph. The pattern in the
 second GRAPH clause finds the blank node (variable w)
 for the person with the same mail box (given by variable mbox) as
 found in the first GRAPH clause (variable whom), because
 the blank node used to match for variable whom from Alice's FOAF
 file is not the same as the blank node in the profile document (they are in different
 graphs).
PREFIX data: <http://example.org/foaf/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?mbox ?nick ?ppd
FROM NAMED <http://example.org/foaf/aliceFoaf>
FROM NAMED <http://example.org/foaf/bobFoaf>
WHERE
{
 GRAPH data:aliceFoaf
 {
 ?alice foaf:mbox <mailto:alice@work.example> ;
 foaf:knows ?whom .
 ?whom foaf:mbox ?mbox ;
 rdfs:seeAlso ?ppd .
 ?ppd a foaf:PersonalProfileDocument .
 } .
 GRAPH ?ppd
 {
 ?w foaf:mbox ?mbox ;
 foaf:nick ?nick
 }
}

[bookmark: table107]	mbox	nick	ppd
	<mailto:bob@work.example>	"Robert"	<http://example.org/foaf/bobFoaf>

Any triple in Alice's FOAF file giving Bob's nick is not used to
provide a nick for Bob because the pattern involving variable nick
is restricted by ppd to a particular Personal Profile Document.

[bookmark: namedAndDefaultGraph]13.3.4 Named and Default
Graphs
Query patterns can involve both the default graph and the named graphs. In this
example, an aggregator has read in a Web resource on two different occasions. Each
time a graph is read into the aggregator, it is given an IRI by the local system.
The graphs are nearly the same but the email address for "Bob" has changed.
In this example, the default graph is being used to record the provenance information and the
RDF data actually read is kept in two separate graphs, each of which is given a
different IRI by the system. The RDF dataset consists of two named graphs and the
information about them.
RDF Dataset:
Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix g: <tag:example.org,2005-06-06:> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

g:graph1 dc:publisher "Bob" .
g:graph1 dc:date "2004-12-06"^^xsd:date .

g:graph2 dc:publisher "Bob" .
g:graph2 dc:date "2005-01-10"^^xsd:date .

Graph: locally allocated IRI: tag:example.org,2005-06-06:graph1
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@oldcorp.example.org> .

Graph: locally allocated IRI: tag:example.org,2005-06-06:graph2
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@newcorp.example.org> .

This query finds email addresses, detailing the name of the person and the
 date the information was discovered.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?name ?mbox ?date
WHERE
 { ?g dc:publisher ?name ;
 dc:date ?date .
 GRAPH ?g
 { ?person foaf:name ?name ; foaf:mbox ?mbox }
 }

The results show that the email address for "Bob" has changed.
[bookmark: table108]	name	mbox	date
	"Bob"	<mailto:bob@oldcorp.example.org>	"2004-12-06"^^xsd:date
	"Bob"	<mailto:bob@newcorp.example.org>	"2005-01-10"^^xsd:date

[bookmark: basic-federated-query]14 Basic Federated Query
This document incorporates the syntax for SPARQL federation extensions.
This feature is defined in the document
 SPARQL 1.1 Federated Query.

[bookmark: solutionModifiers]15 Solution Sequences and Modifiers
Query patterns generate an unordered collection of solutions, each
solution being a partial function from variables to RDF terms.
These solutions are then treated as a sequence (a solution sequence), initially in no specific order;
any sequence modifiers are then applied to create another sequence. Finally, this
latter sequence is used to generate one of the results of a
SPARQL query form.
A solution sequence modifier is one of:
	Order modifier: put the solutions in order
	Projection modifier: choose certain
 variables
	Distinct modifier: ensure solutions in the
 sequence are unique
	Reduced modifier: permit elimination of some non-distinct solutions
	Offset modifier: control where the solutions
 start from in the overall sequence of solutions
	Limit modifier: restrict the number of solutions

Modifiers are applied in the order given by the list above.

[bookmark: modOrderBy]15.1 ORDER BY
The ORDER BY clause establishes the order of a solution sequence.
Following the ORDER BY clause is a sequence of order comparators, composed of an expression and an optional order modifier (either ASC() or DESC()). Each ordering comparator is either ascending (indicated by the ASC() modifier or by no modifier) or descending (indicated by the DESC() modifier).
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE { ?x foaf:name ?name }
ORDER BY ?name

PREFIX : <http://example.org/ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE { ?x foaf:name ?name ; :empId ?emp }
ORDER BY DESC(?emp)

PREFIX : <http://example.org/ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE { ?x foaf:name ?name ; :empId ?emp }
ORDER BY ?name DESC(?emp)

The "<" operator (see the Operator Mapping and 17.3.1 Operator Extensibility) defines
the relative order of pairs of numerics, simple literals, xsd:strings, xsd:booleans
and xsd:dateTimes. Pairs of IRIs are ordered by comparing them as simple literals.
SPARQL also fixes an order between some kinds of RDF terms that would not otherwise be ordered:
	(Lowest) no value assigned to the variable or expression in this solution.
	Blank nodes
	IRIs
	RDF literals

A plain literal is lower than an RDF literal with type xsd:string of the same lexical form.
SPARQL does not define a total ordering of all possible RDF terms. Here are a few examples of pairs of terms for which the relative order is undefined:
	"a" and "a"@en_gb (a simple literal and a literal with a language tag)
	"a"@en_gb and "b"@en_gb (two literals with language tags)
	"a" and "1"^^xsd:integer (a simple literal and a literal with a supported datatype)
	"1"^^my:integer and "2"^^my:integer (two unsupported datatypes)
	"1"^^xsd:integer and "2"^^my:integer (a supported datatype and an unsupported datatype)

This list of variable bindings is in ascending order:
	RDF Term	Reason
		Unbound results sort earliest.
	_:z	Blank nodes follow unbound.
	_:a	There is no relative ordering of blank nodes.
	<http://script.example/Latin>	IRIs follow blank nodes.
	<http://script.example/Кириллица>	The character in the 23rd position, "К", has a unicode codepoint 0x41A, which is higher than 0x4C ("L").
	<http://script.example/漢字> 	The character in the 23rd position, "漢", has a unicode codepoint 0x6F22, which is higher than 0x41A ("К").
	"http://script.example/Latin"	Simple literals follow IRIs.
	"http://script.example/Latin"^^xsd:string	xsd:strings follow simple literals.

The ascending order of two solutions with respect to an ordering comparator is established by substituting the solution bindings into the expressions and comparing them with the "<" operator. The descending order is the reverse of the ascending order.
The relative order of two solutions is the relative order of the two solutions with respect to the first ordering comparator in the sequence. For solutions where the substitutions of the solution bindings produce the same RDF term, the order is the relative order of the two solutions with respect to the next ordering comparator. The relative order of two solutions is undefined if no order expression evaluated for the two solutions produces distinct RDF terms.
Ordering a sequence of solutions always results in a sequence with the same number
of solutions in it.
Using ORDER BY on a solution sequence for a CONSTRUCT or
DESCRIBE query has no direct effect because only SELECT returns
a sequence of results. Used in combination with LIMIT and OFFSET,
ORDER BY can be used to return results generated from a different slice of the solution sequence.
An ASK query does not include ORDER BY, LIMIT or OFFSET.

[bookmark: modProjection]15.2 Projection
The solution sequence can be transformed into one involving only a subset of
the variables. For each solution in the sequence, a new solution is formed using
a specified selection of the variables using the SELECT query form.
The following example shows a query to extract just the names of people described
in an RDF graph using FOAF properties.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE
 { ?x foaf:name ?name }

	name
	"Bob"
	"Alice"

[bookmark: modDuplicates]15.3 Duplicate Solutions
A solution sequence with no DISTINCT or REDUCED query modifier
will preserve duplicate solutions.
Data:
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:x foaf:name "Alice" .
_:x foaf:mbox <mailto:alice@example.com> .

_:y foaf:name "Alice" .
_:y foaf:mbox <mailto:asmith@example.com> .

_:z foaf:name "Alice" .
_:z foaf:mbox <mailto:alice.smith@example.com> .

Query:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name WHERE { ?x foaf:name ?name }

Results:
	name
	"Alice"
	"Alice"
	"Alice"

The modifiers DISTINCT and REDUCED affect whether duplicates are included in the query results.

[bookmark: modDistinct]15.3.1 DISTINCT
The DISTINCT solution modifier eliminates duplicate solutions.
Only one solution solution that binds the same variables to the same RDF terms is returned from the query.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?name WHERE { ?x foaf:name ?name }

	name
	"Alice"

Note that, per the order of solution sequence modifiers, duplicates are eliminated before either limit or offset is applied.

[bookmark: modReduced]15.3.2 REDUCED
While the DISTINCT modifier ensures that duplicate solutions are eliminated from the solution set, REDUCED simply permits them to be eliminated. The cardinality of any set of variable bindings in a REDUCED solution set is at least one and not more than the cardinality of the solution set with no DISTINCT or REDUCED modifier. For example, using the data above, the query
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT REDUCED ?name WHERE { ?x foaf:name ?name }

may have one, two (shown here) or three solutions:
	name
	"Alice"
	"Alice"

[bookmark: modOffset]15.4 OFFSET
OFFSET causes the solutions generated to start after the specified
number of solutions. An OFFSET of zero has no effect.
Using
LIMIT and OFFSET to select different subsets of the query solutions
will not be useful unless the order is made predictable by using ORDER BY.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE { ?x foaf:name ?name }
ORDER BY ?name
LIMIT 5
OFFSET 10

[bookmark: modResultLimit]15.5 LIMIT
The LIMIT clause puts an upper bound on the number of solutions returned. If the
number of actual solutions, after OFFSET is applied, is greater than the limit,
then at most the limit number of solutions will be returned.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE { ?x foaf:name ?name }
LIMIT 20

A LIMIT of 0 would cause no results to be returned. A limit may not be negative.

[bookmark: QueryForms]16 Query Forms
SPARQL has four query forms. These query forms use the solutions from
pattern matching to form result sets or RDF graphs. The query forms are:

 	SELECT

 	Returns all, or a subset of, the variables bound in a query pattern match.

 	CONSTRUCT

 	Returns an RDF graph constructed by substituting variables in a set of triple
 templates.

 	ASK

 	Returns a boolean indicating whether a query pattern matches or not.

 	DESCRIBE

 	Returns an RDF graph that describes the resources found.

Formats such as
SPARQL 1.1 Query Results JSON Format,
SPARQL Query Results XML Format or
SPARQL 1.1 Query Results CSV and TSV Formats

can be used to serialize the result set from a
SELECT query or the boolean result of an ASK query.

[bookmark: select]16.1 SELECT
The SELECT form of results returns variables and their bindings directly. It combines the operations of projecting the required variables with introducing new variable bindings into a query solution.

[bookmark: selectproject]16.1.1 Projection
Specific variables and their bindings are
	 returned when a list of variable names is given in the SELECT clause. The syntax
	 SELECT * is an abbreviation that
	 selects all of the variables that are in-scope
	 at that point in the query. It excludes variables only used in
	 FILTER, in the right-hand side of MINUS,
	 and takes account of subqueries.
Use of SELECT * is only permitted when the
	 query does not have a GROUP BY clause.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:knows _:b .
_:a foaf:knows _:c .

_:b foaf:name "Bob" .

_:c foaf:name "Clare" .
_:c foaf:nick "CT" .	
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?nameX ?nameY ?nickY
WHERE
 { ?x foaf:knows ?y ;
 foaf:name ?nameX .
 ?y foaf:name ?nameY .
 OPTIONAL { ?y foaf:nick ?nickY }
 }
[bookmark: table33]	nameX	nameY	nickY
	"Alice"	"Bob"	
	"Alice"	"Clare"	"CT"

Result sets can be accessed by a local API but also can be serialized into
	 either JSON, XML, CSV or TSV.
SPARQL 1.1 Query Results JSON Format:
{
 "head": {
 "vars": ["nameX" , "nameY" , "nickY"]
 } ,
 "results": {
 "bindings": [
 {
 "nameX": { "type": "literal" , "value": "Alice" } ,
 "nameY": { "type": "literal" , "value": "Bob" }
 } ,
 {
 "nameX": { "type": "literal" , "value": "Alice" } ,
 "nameY": { "type": "literal" , "value": "Clare" } ,
 "nickY": { "type": "literal" , "value": "CT" }
 }
]
 }
}

SPARQL Query
	 Results XML Format:
<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="nameX"/>
 <variable name="nameY"/>
 <variable name="nickY"/>
 </head>
 <results>
 <result>
 <binding name="nameX">
 <literal>Alice</literal>
 </binding>
 <binding name="nameY">
 <literal>Bob</literal>
 </binding>
 </result>
 <result>
 <binding name="nameX">
 <literal>Alice</literal>
 </binding>
 <binding name="nameY">
 <literal>Clare</literal>
 </binding>
 <binding name="nickY">
 <literal>CT</literal>
 </binding>
 </result>
 </results>
</sparql>

[bookmark: selectExpressions]16.1.2 SELECT Expressions
As well as choosing which variables from the pattern matching are included in
	 the results, the SELECT clause can also introduce new variables. The rules of
	 assignment in SELECT expression are the same as for assignment in BIND.
	 The expression combines variable bindings already in the query solution,
	 or defined earlier in the SELECT clause, to produce a binding in the query solution.
The scoping for (expr AS v) applies immediately. In
	 SELECT expressions, the variable may be used in an expression
	 later in the same SELECT clause and may not be
	 be assigned again in the same SELECT clause.
Example:
Data:
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book1 ns:discount 0.2 .

:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .
:book2 ns:discount 0.25 .
Query:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?title (?p*(1-?discount) AS ?price)
{ ?x ns:price ?p .
 ?x dc:title ?title .
 ?x ns:discount ?discount
}
Results:
	title	price
	"The Semantic Web"	17.25
	"SPARQL Tutorial"	33.6

New variables can also be used in expressions if they are introduced earlier,
	 syntactically, in the same SELECT clause:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?title (?p AS ?fullPrice) (?fullPrice*(1-?discount) AS ?customerPrice)
{ ?x ns:price ?p .
 ?x dc:title ?title .
 ?x ns:discount ?discount
}
Results:
	title	fullPrice	customerPrice
	"The Semantic Web"	23	17.25
	"SPARQL Tutorial"	42	33.6

[bookmark: construct]16.2 CONSTRUCT
The CONSTRUCT query form returns a single RDF graph specified by
a graph template. The result is an RDF graph formed by taking each query solution
in the solution sequence, substituting for the variables in the graph template,
and combining the triples into a single RDF graph by set union.
If any such instantiation produces a triple containing an unbound variable or
an illegal RDF construct, such as a literal in subject or predicate position, then
that triple is not included in the output RDF graph. The graph template can contain
triples with no variables (known as ground or explicit triples), and these also appear
in the output RDF graph returned by the CONSTRUCT query form.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@example.org> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>
CONSTRUCT { <http://example.org/person#Alice> vcard:FN ?name }
WHERE { ?x foaf:name ?name }

creates vcard properties from the FOAF information:
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

<http://example.org/person#Alice> vcard:FN "Alice" .

[bookmark: templatesWithBNodes]16.2.1 Templates with Blank Nodes
A template can create an RDF graph containing blank nodes. The blank node labels
are scoped to the template for each solution. If the same label occurs twice in
a template, then there will be one blank node created for each query solution, but
there will be different blank nodes for triples generated by different query
solutions.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:givenname "Alice" .
_:a foaf:family_name "Hacker" .

_:b foaf:firstname "Bob" .
_:b foaf:surname "Hacker" .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

CONSTRUCT { ?x vcard:N _:v .
 _:v vcard:givenName ?gname .
 _:v vcard:familyName ?fname }
WHERE
 {
 { ?x foaf:firstname ?gname } UNION { ?x foaf:givenname ?gname } .
 { ?x foaf:surname ?fname } UNION { ?x foaf:family_name ?fname } .
 }

creates vcard properties corresponding to the FOAF information:
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

_:v1 vcard:N _:x .
_:x vcard:givenName "Alice" .
_:x vcard:familyName "Hacker" .

_:v2 vcard:N _:z .
_:z vcard:givenName "Bob" .
_:z vcard:familyName "Hacker" .

The use of variable x in the template, which in this example will be bound to
blank nodes with labels _:a and _:b in the data,
causes different blank node labels (_:v1 and _:v2) in the resulting RDF graph.

[bookmark: accessingRdfGraphs]16.2.2 Accessing Graphs in the RDF Dataset
Using CONSTRUCT, it is possible to extract parts or the whole of
graphs from the target RDF dataset. This first example returns the graph (if it
is in the dataset) with IRI label http://example.org/aGraph; otherwise,
it returns an empty graph.
CONSTRUCT { ?s ?p ?o } WHERE { GRAPH <http://example.org/aGraph> { ?s ?p ?o } . }

The access to the graph can be conditional on other information. For example, if the
default graph contains metadata about the named graphs in the dataset, then a query
like the following one can extract one graph based on information about the named
graph:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX app: <http://example.org/ns#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

CONSTRUCT { ?s ?p ?o } WHERE
 {
 GRAPH ?g { ?s ?p ?o } .
 ?g dc:publisher <http://www.w3.org/> .
 ?g dc:date ?date .
 FILTER (app:customDate(?date) > "2005-02-28T00:00:00Z"^^xsd:dateTime) .
 }

where app:customDate identifies an
extension function to turn the date format into an xsd:dateTime
RDF term.

[bookmark: SolModandCONSTRUCT]16.2.3 Solution Modifiers and CONSTRUCT
The solution modifiers of a query affect the results of a CONSTRUCT
query. In this example, the output graph from the CONSTRUCT template
is formed from just two of the solutions from graph pattern matching. The query outputs
a graph with the names of the people with the top two sites, rated by hits. The triples
in the RDF graph are not ordered.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix site: <http://example.org/stats#> .

_:a foaf:name "Alice" .
_:a site:hits 2349 .

_:b foaf:name "Bob" .
_:b site:hits 105 .

_:c foaf:name "Eve" .
_:c site:hits 181 .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX site: <http://example.org/stats#>

CONSTRUCT { [] foaf:name ?name }
WHERE
{ [] foaf:name ?name ;
 site:hits ?hits .
}
ORDER BY desc(?hits)
LIMIT 2

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:x foaf:name "Alice" .
_:y foaf:name "Eve" .

[bookmark: constructWhere]16.2.4 CONSTRUCT WHERE
A short form for the CONSTRUCT query form is provided for the case where the template and
	the pattern are the same and the pattern is just a basic graph pattern
	(no FILTERs and no complex graph patterns are allowed in the short form).
	The keyword WHERE is required in the short form.
The following two queries are the same; the first is a short form of the second.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
CONSTRUCT WHERE { ?x foaf:name ?name }

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT { ?x foaf:name ?name }
WHERE
{ ?x foaf:name ?name }

[bookmark: ask]16.3 ASK
Applications can use the ASK form to test whether or not a query
pattern has a solution. No information is returned about the possible query solutions,
just whether or not a solution exists.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:homepage <http://work.example.org/alice/> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
ASK { ?x foaf:name "Alice" }

true

The SPARQL
 Query Results XML Format form of this result set gives:
<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head></head>
 <boolean>true</boolean>
</sparql>

On the same data, the following returns no match because Alice's mbox
 is not mentioned.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
ASK { ?x foaf:name "Alice" ;
 foaf:mbox <mailto:alice@work.example> }

false

[bookmark: describe]16.4 DESCRIBE (Informative)
The DESCRIBE form returns a single result RDF graph containing RDF
data about resources. This data is not prescribed by a SPARQL query, where the query
client would need to know the structure of the RDF in the data source, but, instead,
is determined by the SPARQL query processor. The query pattern is used to create
a result set. The DESCRIBE form takes each of the resources identified
in a solution, together with any resources directly named by IRI, and assembles
a single RDF graph by taking a "description" which can come from any
information available including the target RDF Dataset. The
description is determined by the query service. The syntax DESCRIBE *
is an abbreviation that describes all of the variables in a query.

[bookmark: explicitIRIs]16.4.1 Explicit IRIs
The DESCRIBE clause itself can take IRIs to identify the resources.
The simplest DESCRIBE query is just an IRI in the DESCRIBE
clause:
DESCRIBE <http://example.org/>

[bookmark: identifyingResources]16.4.2 Identifying Resources
The resources to be described can also be taken from the bindings to a query variable in a result set. This enables description
of resources whether they are identified by IRI or by blank node in the dataset:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DESCRIBE ?x
WHERE { ?x foaf:mbox <mailto:alice@org> }

The property foaf:mbox is defined as being an inverse functional property
in the FOAF vocabulary. If treated as such, this query will return information about
at most one person. If, however, the query pattern has multiple solutions, the RDF
data for each is the union of all RDF graph descriptions.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DESCRIBE ?x
WHERE { ?x foaf:name "Alice" }

More than one IRI or variable can be given:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DESCRIBE ?x ?y <http://example.org/>
WHERE {?x foaf:knows ?y}

[bookmark: descriptionsOfResources]16.4.3 Descriptions of Resources
The RDF returned is determined by the information publisher.
It may be information the service deems relevant to the resources being described.
It may include information about other resources: for example, the RDF data for a
book may also include details about the author.
A simple query such as
PREFIX ent: <http://org.example.com/employees#>
DESCRIBE ?x WHERE { ?x ent:employeeId "1234" }

might return a description of the employee and some other potentially useful
 details:
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0> .
@prefix exOrg: <http://org.example.com/employees#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#>

_:a exOrg:employeeId "1234" ;

 foaf:mbox_sha1sum "bee135d3af1e418104bc42904596fe148e90f033" ;
 vcard:N
 [vcard:Family "Smith" ;
 vcard:Given "John"] .

foaf:mbox_sha1sum rdf:type owl:InverseFunctionalProperty .

which includes the blank node closure for the
vcard vocabulary vcard:N.
Other possible mechanisms for deciding what information to return include Concise
Bounded Descriptions [CBD].
For a vocabulary such as FOAF, where the resources are typically blank nodes,
returning sufficient information to identify a node such as the InverseFunctionalProperty
foaf:mbox_sha1sum as well as information like name and other details recorded
would be appropriate. In the example, the match to the WHERE clause was returned,
but this is not required.

[bookmark: expressions]17 Expressions and Testing Values
SPARQL FILTERs restrict the solutions of a graph pattern match according to a given constraint. Specifically,
 FILTERs eliminate any solutions that, when substituted into the expression, either result in an effective boolean value of false or produce an error. Effective boolean values are defined in section 17.2.2 Effective Boolean Value and errors are defined in XQuery 1.0: An XML Query Language [XQUERY] section 2.3.1, Kinds of Errors. These errors have no effect outside of FILTER evaluation.
RDF literals may have a datatype IRI:
@prefix a: <http://www.w3.org/2000/10/annotation-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

_:a a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:a dc:date "2004-12-31T19:00:00-05:00" .

_:b a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:b dc:date "2004-12-31T19:01:00-05:00"^^<http://www.w3.org/2001/XMLSchema#dateTime> .
The object of the first dc:date triple has no type information. The second has the datatype xsd:dateTime.
SPARQL expressions are constructed according to the grammar and provide access to functions (named by IRI) and operator functions (invoked by keywords and symbols in the SPARQL grammar). SPARQL operators can be used to compare the values of typed literals:
PREFIX a: <http://www.w3.org/2000/10/annotation-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?annot
WHERE { ?annot a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
 ?annot dc:date ?date .
 FILTER (?date > "2005-01-01T00:00:00Z"^^xsd:dateTime) }

The SPARQL operators are listed in section 17.3 and are associated with their productions in the grammar.
In addition, SPARQL provides the ability to invoke arbitrary functions, including a subset of the XPath casting functions, listed in section 17.5. These functions are invoked by name (an IRI) within a SPARQL query. For example:
... FILTER (xsd:dateTime(?date) < xsd:dateTime("2005-01-01T00:00:00Z")) ...
Typographical convention in this section: XPath operators are labeled
 with the prefix op:. XPath operators have no namespace;
 op: is a labeling convention.

[bookmark: operandDataTypes]17.1 Operand Data Types
SPARQL functions and operators operate on RDF terms and SPARQL variables. A subset of these functions and operators are taken from the XQuery 1.0 and XPath 2.0 Functions and Operators [FUNCOP] and have XML Schema typed value arguments and return types.

RDF typed literals passed as arguments to these functions and operators are mapped to XML Schema typed values with a string value of the lexical form and an atomic datatype corresponding to the datatype IRI. The returned typed values are mapped back to RDF typed literals the same way.
SPARQL has additional operators which operate on specific subsets of RDF terms. When referring to a type, the following terms denote a typed literal with the corresponding XML Schema [XSDT] datatype IRI:
	xsd:integer
	xsd:decimal
	xsd:float
	xsd:double
	xsd:string
	xsd:boolean
	xsd:dateTime

The following terms identify additional types used in SPARQL value tests:
	numeric denotes typed literals with datatypes xsd:integer, xsd:decimal, xsd:float, and xsd:double.
	simple literal denotes a plain literal with no language tag.
	RDF term denotes the types IRI, literal, and blank node.
	variable denotes a SPARQL variable.

The following types are derived from numeric types and are valid arguments to functions and operators taking numeric arguments:
	xsd:nonPositiveInteger
	xsd:negativeInteger
	xsd:long
	xsd:int
	xsd:short
	xsd:byte
	xsd:nonNegativeInteger
	xsd:unsignedLong
	xsd:unsignedInt
	xsd:unsignedShort
	xsd:unsignedByte
	xsd:positiveInteger

SPARQL language extensions may treat additional types as being derived from XML schema datatypes.

[bookmark: evaluation]17.2 Filter Evaluation
SPARQL provides a subset of the functions and operators defined by XQuery Operator Mapping. XQuery 1.0 section 2.2.3 Expression Processing describes the invocation of XPath functions. The following rules accommodate the differences in the data and execution models between XQuery and SPARQL:
	Unlike XPath/XQuery, SPARQL functions do not process node sequences. When interpreting the semantics of XPath functions, assume that each argument is a sequence of a single node.
	Functions invoked with an argument of the wrong type will produce a type error. Effective boolean value arguments (labeled "xsd:boolean (EBV)" in the operator mapping table below), are coerced to xsd:boolean using the EBV rules in section 17.2.2.
	Apart from BOUND, COALESCE,
 NOT EXISTS and EXISTS,
 all functions and operators operate on RDF Terms and will produce a type error
 if any arguments are unbound.
	Any expression other than logical-or (||) or logical-and (&&) that encounters an error will produce that error.
	A logical-or that encounters an error on only one branch will return TRUE if the other branch is TRUE and an error if the other branch is FALSE.
	A logical-and that encounters an error on only one branch will return an error if the other branch is TRUE and FALSE if the other branch is FALSE.
	A logical-or or logical-and that encounters errors on both branches will produce either of the errors.

The logical-and and logical-or truth table for true (T), false (F), and error (E) is as follows:
[bookmark: truthTable]	A	B	A || B	A && B
	T	T	T	T
	T	F	T	F
	F	T	T	F
	F	F	F	F
	T	E	T	E
	E	T	T	E
	F	E	E	F
	E	F	E	F
	E	E	E	E

[bookmark: invocation]17.2.1 Invocation
SPARQL defines a syntax for invoking functions on a list of arguments.
 Unless otherwise noted, these are invoked as follows:
	Argument expressions are evaluated, producing argument values.
	The order of argument evaluation is not defined.
	Numeric arguments are promoted as necessary to fit the expected types for that function or operator.
	The function or operator is invoked on the argument values.

If any of these steps fails, the invocation generates an error.
 The effects of errors are defined in Filter Evaluation.

There are also "functional forms" which have different evaluation rules to functions
 as specified by each such form.

[bookmark: ebv]17.2.2 Effective Boolean Value (EBV)
Effective boolean value is used to calculate the arguments to the logical functions logical-and, logical-or, and fn:not, as well as evaluate the result of a FILTER expression.
The XQuery Effective Boolean Value rules rely on the definition of XPath's fn:boolean. The following rules reflect the rules for fn:boolean applied to the argument types present in SPARQL queries:
	The EBV of any literal whose type is xsd:boolean or numeric is false if the lexical form is not valid for that datatype (e.g. "abc"^^xsd:integer).
	If the argument is a typed literal with a datatype of xsd:boolean, and it has a valid lexical form, the EBV is the value of that argument.
	If the argument is a plain literal or a typed literal with a datatype of xsd:string, the EBV is false if the operand value has zero length; otherwise the EBV is true.
	If the argument is a numeric type or a typed literal with a datatype derived from a numeric type, and it has a valid lexical form, the EBV is false if the operand value is NaN or is numerically equal to zero; otherwise the EBV is true.
	All other arguments, including unbound arguments, produce a type error.

An EBV of true is represented as a typed literal with a datatype of xsd:boolean and a lexical value of "true"; an EBV of false is represented as a typed literal with a datatype of xsd:boolean and a lexical value of "false".

[bookmark: OperatorMapping]17.3 Operator Mapping
The SPARQL grammar identifies a set of operators (for instance, &&, *, isIRI) used to construct constraints. The following table associates each of these grammatical productions with the appropriate operands and an operator function defined by either XQuery 1.0 and XPath 2.0 Functions and Operators [FUNCOP] or the SPARQL operators specified in section 17.4. When selecting the operator definition for a given set of parameters, the definition with the most specific parameters applies. For instance, when evaluating xsd:integer = xsd:signedInt, the definition for = with two numeric parameters applies, rather than the one with two RDF terms. The table is arranged so that the upper-most viable candidate is the most specific. Operators invoked without appropriate operands result in a type error.
SPARQL follows XPath's scheme for numeric type promotions and subtype substitution for arguments to numeric operators. The XPath Operator Mapping rules for numeric operands (xsd:integer, xsd:decimal, xsd:float, xsd:double, and types derived from a numeric type) apply to SPARQL operators as well (see XML Path Language (XPath) 2.0 [XPATH20] for definitions of numeric type promotions and subtype substitution). Some of the operators are associated with nested function expressions, e.g. fn:not(op:numeric-equal(A, B)). Note that per the XPath definitions, fn:not and op:numeric-equal produce an error if their argument is an error.
The collation for fn:compare is defined by XPath and identified by http://www.w3.org/2005/xpath-functions/collation/codepoint. This collation allows for string comparison based on code point values. Codepoint string equivalence can be tested with RDF term equivalence.
SPARQL Unary Operators	Operator	Type(A)	Function	Result type
	XQuery Unary Operators
	! A	xsd:boolean (EBV)	fn:not(A)	xsd:boolean
	+ A
	 	numeric	op:numeric-unary-plus(A)	numeric
	- A
	 	numeric	op:numeric-unary-minus(A)	numeric

SPARQL Binary Operators	Operator	Type(A)	Type(B)	Function	Result type
	Logical Connectives
	A || B	xsd:boolean (EBV)	xsd:boolean (EBV)	logical-or(A, B)	xsd:boolean
	A && B	xsd:boolean (EBV)	xsd:boolean (EBV)	logical-and(A, B)	xsd:boolean
	XPath Tests
	A = B	numeric	numeric	op:numeric-equal(A, B)	xsd:boolean
	A = B	simple literal	simple literal	op:numeric-equal(fn:compare(A, B), 0)	xsd:boolean
	A = B	xsd:string	xsd:string	op:numeric-equal(fn:compare(STR(A), STR(B)), 0)	xsd:boolean
	A = B	xsd:boolean	xsd:boolean	op:boolean-equal(A, B)	xsd:boolean
	A = B	xsd:dateTime	xsd:dateTime	op:dateTime-equal(A, B)	xsd:boolean
	A != B	numeric	numeric	fn:not(op:numeric-equal(A, B))	xsd:boolean
	A != B	simple literal	simple literal	fn:not(op:numeric-equal(fn:compare(A, B), 0))	xsd:boolean
	A != B	xsd:string	xsd:string	fn:not(op:numeric-equal(fn:compare(STR(A), STR(B)), 0))	xsd:boolean
	A != B	xsd:boolean	xsd:boolean	fn:not(op:boolean-equal(A, B))	xsd:boolean
	A != B	xsd:dateTime	xsd:dateTime	fn:not(op:dateTime-equal(A, B))	xsd:boolean
	A < B	numeric	numeric	op:numeric-less-than(A, B)	xsd:boolean
	A < B	simple literal	simple literal	op:numeric-equal(fn:compare(A, B), -1)	xsd:boolean
	A < B	xsd:string	xsd:string	op:numeric-equal(fn:compare(STR(A), STR(B)), -1)	xsd:boolean
	A < B	xsd:boolean	xsd:boolean	op:boolean-less-than(A, B)	xsd:boolean
	A < B	xsd:dateTime	xsd:dateTime	op:dateTime-less-than(A, B)	xsd:boolean
	A > B	numeric	numeric	op:numeric-greater-than(A, B)	xsd:boolean
	A > B	simple literal	simple literal	op:numeric-equal(fn:compare(A, B), 1)	xsd:boolean
	A > B	xsd:string	xsd:string	op:numeric-equal(fn:compare(STR(A), STR(B)), 1)	xsd:boolean
	A > B	xsd:boolean	xsd:boolean	op:boolean-greater-than(A, B)	xsd:boolean
	A > B	xsd:dateTime	xsd:dateTime	op:dateTime-greater-than(A, B)	xsd:boolean
	A <= B	numeric	numeric	logical-or(op:numeric-less-than(A, B), op:numeric-equal(A, B))	xsd:boolean
	A <= B	simple literal	simple literal	fn:not(op:numeric-equal(fn:compare(A, B), 1))	xsd:boolean
	A <= B	xsd:string	xsd:string	fn:not(op:numeric-equal(fn:compare(STR(A), STR(B)), 1))	xsd:boolean
	A <= B	xsd:boolean	xsd:boolean	fn:not(op:boolean-greater-than(A, B))	xsd:boolean
	A <= B	xsd:dateTime	xsd:dateTime	fn:not(op:dateTime-greater-than(A, B))	xsd:boolean
	A >= B	numeric	numeric	logical-or(op:numeric-greater-than(A, B), op:numeric-equal(A, B))	xsd:boolean
	A >= B	simple literal	simple literal	fn:not(op:numeric-equal(fn:compare(A, B), -1))	xsd:boolean
	A >= B	xsd:string	xsd:string	fn:not(op:numeric-equal(fn:compare(STR(A), STR(B)), -1))	xsd:boolean
	A >= B	xsd:boolean	xsd:boolean	fn:not(op:boolean-less-than(A, B))	xsd:boolean
	A >= B	xsd:dateTime	xsd:dateTime	fn:not(op:dateTime-less-than(A, B))	xsd:boolean
	XPath Arithmetic
	A * B	numeric	numeric	op:numeric-multiply(A, B)	numeric
	A / B	numeric	numeric	op:numeric-divide(A, B)	numeric; but xsd:decimal if both operands are xsd:integer
	A + B	numeric	numeric	op:numeric-add(A, B)	numeric
	A - B	numeric	numeric	op:numeric-subtract(A, B)	numeric
	SPARQL Tests
	A = B	RDF term	RDF term	RDFterm-equal(A, B)	xsd:boolean
	A != B	RDF term	RDF term	fn:not(RDFterm-equal(A, B))	xsd:boolean

[bookmark: ebv-arg]xsd:boolean function arguments marked with "(EBV)" are coerced to xsd:boolean by evaluating the effective boolean value of that argument.

[bookmark: operatorExtensibility]17.3.1 Operator Extensibility
SPARQL language extensions may provide additional associations between operators and operator functions; this amounts to adding rows to the table above. No additional operator may yield a result that replaces any result other than a type error in the semantics defined above. The consequence of this rule is that SPARQL FILTERs will produce at least the same intermediate bindings after applying a FILTER as an unextended implementation.
Additional mappings of the '<' operator are expected to control the relative ordering of the operands, specifically, when used in an ORDER BY clause.

[bookmark: SparqlOps]17.4 Function Definitions
This section defines the operators and functions
 introduced by the SPARQL Query language. The examples
 show the behavior of the operators as invoked by the
 appropriate grammatical constructs.

[bookmark: func-forms]17.4.1 Functional Forms

[bookmark: func-bound]17.4.1.1 bound
xsd:boolean BOUND (variable var)
Returns true if var is bound to a value. Returns false otherwise. Variables with the value NaN or INF are considered bound.
Data:
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:a foaf:givenName "Alice".

_:b foaf:givenName "Bob" .
_:b dc:date "2005-04-04T04:04:04Z"^^xsd:dateTime .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?givenName
 WHERE { ?x foaf:givenName ?givenName .
 OPTIONAL { ?x dc:date ?date } .
 FILTER (bound(?date)) }

Query result:
	givenName
	"Bob"

One may test that a graph pattern is not expressed by specifying an OPTIONAL graph pattern that introduces a variable and testing to see that the variable is not bound. This is called Negation as Failure in logic programming.
This query matches the people with a name but no expressed date:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?name
 WHERE { ?x foaf:givenName ?name .
 OPTIONAL { ?x dc:date ?date } .
 FILTER (!bound(?date)) }
Query result:
	name
	"Alice"

Because Bob's dc:date was known, "Bob" was not a solution to the query.

[bookmark: func-if]17.4.1.2 IF
rdfTerm IF (expression1, expression2, expression3)
The IF function form evaluates the first argument, interprets it as a effective boolean value, then returns the value of expression2 if the EBV is true, otherwise it returns the value of expression3. Only one of expression2 and expression3 is evaluated.
	 If evaluating the first argument raises an error,
	 then an error is raised for the evaluation of the IF expression.
Examples: Suppose ?x = 2, ?z = 0 and ?y is not bound in some query solution:
	IF(?x = 2, "yes", "no")	returns "yes"
	IF(bound(?y), "yes", "no")	returns "no"
	IF(?x=2, "yes", 1/?z)	returns "yes", the expression 1/?z is not evaluated
	IF(?x=1, "yes", 1/?z)	raises an error
	IF("2" > 1, "yes", "no")	raises an error

[bookmark: func-coalesce]17.4.1.3 COALESCE
rdfTerm COALESCE(expression,)
The COALESCE function form returns the RDF term value
 of the first expression that evaluates without error. In SPARQL,
 evaluating an unbound variable raises an error.
If none of the arguments evaluates to an RDF term, an error is raised.
 If no expressions are evaluated without error, an error is raised.
Examples: Suppose ?x = 2 and ?y is not bound in some query solution:
	COALESCE(?x, 1/0)	returns 2, the value of x
	COALESCE(1/0, ?x)	returns 2
	COALESCE(5, ?x)	returns 5
	COALESCE(?y, 3)	returns 3
	COALESCE(?y)	raises an error because y is not bound.

[bookmark: func-filter-exists]17.4.1.4 NOT EXISTS and EXISTS
There is a filter operator EXISTS that takes a graph pattern.
	 EXISTS returns true/false
	 depending on whether
	 the pattern matches the dataset
 given the bindings in the current group graph pattern, the dataset and
	 the active graph at this point in the
	 query evaluation.
 No additional binding of variables occurs. The NOT EXISTS form
 translates into fn:not(EXISTS{...}).
 xsd:boolean NOT EXISTS { pattern }
Returns false if pattern matches. Returns true otherwise.
NOT EXISTS { pattern } is equivalent to fn:not(EXISTS { pattern }).
 xsd:boolean EXISTS { pattern }
Returns true if pattern matches.
 Returns false otherwise.
Variables in the pattern that are bound in the current

 solution mapping take the value that they have from the solution mapping.
 Variables in the pattern pattern that are not bound in the current
 solution mapping take part in pattern matching.
To facilitate this, we introduce a function Exists
	 that evaluates a SPARQL Algebra expression and returns true or false, depending
	 on whether there are any solutions to the pattern, given the solution mapping
	 being tested by the filter operation.

[bookmark: func-logical-or]17.4.1.5 logical-or
 xsd:boolean xsd:boolean left || xsd:boolean right
Returns a logical OR of left and right. Note that logical-or operates on the effective boolean value of its arguments.
Note: see section 17.2, Filter Evaluation, for
 the || operator's treatment of errors.

[bookmark: func-logical-and]17.4.1.6 logical-and
 xsd:boolean xsd:boolean left && xsd:boolean right
Returns a logical AND of left and right. Note that logical-and operates on the effective boolean value of its arguments.
Note: see section 17.2, Filter Evaluation, for
 the && operator's treatment of errors.

[bookmark: func-RDFterm-equal]17.4.1.7 RDFterm-equal
 xsd:boolean RDF term term1 = RDF term term2
Returns TRUE if term1 and term2 are the same RDF term as defined in Resource Description Framework (RDF): Concepts and Abstract Syntax [CONCEPTS]; produces a type error if the arguments are both literal but are not the same RDF term *; returns FALSE otherwise. term1 and term2 are the same if any of the following is true:
	term1 and term2 are equivalent IRIs as defined in 6.4 RDF URI References
 of [CONCEPTS].
	term1 and term2 are equivalent literals as defined in 6.5.1 Literal Equality
 of [CONCEPTS].
	term1 and term2 are the same blank node as described in 6.6 Blank Nodes
 of [CONCEPTS].

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Ms A.".
_:b foaf:mbox <mailto:alice@work.example> .

This query finds the people who have multiple foaf:name triples:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name1 ?name2
WHERE { ?x foaf:name ?name1 ;
 foaf:mbox ?mbox1 .
 ?y foaf:name ?name2 ;
 foaf:mbox ?mbox2 .
 FILTER (?mbox1 = ?mbox2 && ?name1 != ?name2)
 }
Query result:
	name1	name2
	"Alice"	"Ms A."
	"Ms A."	"Alice"

In this query for documents that were annotated at a specific date and time (New Year's Day 2005, measures in timezone +00:00), the RDF terms are not the same, but have equivalent values:
@prefix a: <http://www.w3.org/2000/10/annotation-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

_:b a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:b dc:date "2004-12-31T19:00:00-05:00"^^<http://www.w3.org/2001/XMLSchema#dateTime> .
PREFIX a: <http://www.w3.org/2000/10/annotation-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?annotates
WHERE { ?annot a:annotates ?annotates .
 ?annot dc:date ?date .
 FILTER (?date = xsd:dateTime("2005-01-01T00:00:00Z"))
 }
	annotates
	<http://www.w3.org/TR/rdf-sparql-query/>

* Invoking RDFterm-equal on two typed literals tests for
 equivalent values. An extended implementation may have support for additional datatypes. An implementation processing a query that tests for equivalence on unsupported datatypes (and non-identical lexical form and datatype IRI) returns an error, indicating that it was unable to determine whether or not the values are equivalent. For example, an unextended implementation will produce an error when testing either

 "iiii"^^my:romanNumeral = "iv"^^my:romanNumeral or
 "iiii"^^my:romanNumeral != "iv"^^my:romanNumeral.

[bookmark: func-sameTerm]17.4.1.8 sameTerm
 xsd:boolean sameTerm (RDF term term1, RDF term term2)
Returns TRUE if term1 and term2 are the same RDF term as defined in Resource Description Framework (RDF): Concepts and Abstract Syntax [CONCEPTS]; returns FALSE otherwise.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Ms A.".
_:b foaf:mbox <mailto:alice@work.example> .
This query finds the people who have multiple foaf:name triples:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name1 ?name2
WHERE { ?x foaf:name ?name1 ;
 foaf:mbox ?mbox1 .
 ?y foaf:name ?name2 ;
 foaf:mbox ?mbox2 .
 FILTER (sameTerm(?mbox1, ?mbox2) && !sameTerm(?name1, ?name2))
 }
Query result:
	name1	name2
	"Alice"	"Ms A."
	"Ms A."	"Alice"

Unlike RDFterm-equal, sameTerm can be used to test for non-equivalent typed literals with unsupported datatypes:
@prefix : <http://example.org/WMterms#> .
@prefix t: <http://example.org/types#> .

_:c1 :label "Container 1" .
_:c1 :weight "100"^^t:kilos .
_:c1 :displacement "100"^^t:liters .

_:c2 :label "Container 2" .
_:c2 :weight "100"^^t:kilos .
_:c2 :displacement "85"^^t:liters .

_:c3 :label "Container 3" .
_:c3 :weight "85"^^t:kilos .
_:c3 :displacement "85"^^t:liters .
PREFIX : <http://example.org/WMterms#>
PREFIX t: <http://example.org/types#>

SELECT ?aLabel1 ?bLabel
WHERE { ?a :label ?aLabel .
 ?a :weight ?aWeight .
 ?a :displacement ?aDisp .

 ?b :label ?bLabel .
 ?b :weight ?bWeight .
 ?b :displacement ?bDisp .

 FILTER (sameTerm(?aWeight, ?bWeight) && !sameTerm(?aDisp, ?bDisp)) }
	aLabel	bLabel
	"Container 1"	"Container 2"
	"Container 2"	"Container 1"

The test for boxes with the same weight may also be done with the '=' operator (RDFterm-equal) as the test for "100"^^t:kilos = "85"^^t:kilos will result in an error, eliminating that potential solution.

[bookmark: func-in]17.4.1.9 IN
boolean rdfTerm IN (expression, ...)
The IN operator tests whether the RDF term on the
 left-hand side is found in the values of list of expressions
 on the right-hand side.
 The test is done with "=" operator, which tests for the same value, as
 determined by the operator mapping.

A list of zero terms on the right-hand side is legal.
Errors in comparisons cause the IN expression
 to raise an error if the RDF term being tested is not found
 elsewhere in the list of terms.
The IN operator is equivalent to the SPARQL expression:
(lhs = expression1) || (lhs = expression2) || ...
Examples:
	2 IN (1, 2, 3)	true
	2 IN ()	false
	2 IN (<http://example/iri>, "str", 2.0)	true
	2 IN (1/0, 2)	true
	2 IN (2, 1/0)	true
	2 IN (3, 1/0)	raises an error

[bookmark: func-not-in]17.4.1.10 NOT IN
boolean rdfTerm NOT IN (expression, ...)
The NOT IN operator tests whether the RDF term on the
 left-hand side is not found in the values of list of expressions
 on the right-hand side.
 The test is done with "!=" operator, which tests for not the same value, as
 determined by the operator mapping.
A list of zero terms on the right-hand side is legal.
Errors in comparisons cause the NOT IN expression
 to raise an error if the RDF term being tested is not found
 to be in the list elsewhere in the list of terms.
The NOT IN operator is equivalent to the SPARQL expression:
(lhs != expression1) && (lhs != expression2) && ...
NOT IN (...) is equivalent to !(IN (...)).
Examples:
	2 NOT IN (1, 2, 3)	false
	2 NOT IN ()	true
	2 NOT IN (<http://example/iri>, "str", 2.0)	false
	2 NOT IN (1/0, 2)	false
	2 NOT IN (2, 1/0)	false
	2 NOT IN (3, 1/0)	raises an error

[bookmark: func-rdfTerms]17.4.2 Functions on RDF Terms

[bookmark: func-isIRI]17.4.2.1 isIRI
 xsd:boolean isIRI (RDF term term)
 xsd:boolean isURI (RDF term term)
Returns true if term is an IRI. Returns false otherwise. isURI is an alternate spelling for the isIRI operator.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .
_:b foaf:mbox "bob@work.example" .

This query matches the people with a name and an mbox which is an IRI:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
 WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 FILTER isIRI(?mbox) }
Query result:
	name	mbox
	"Alice"	<mailto:alice@work.example>

[bookmark: func-isBlank]17.4.2.2 isBlank
 xsd:boolean isBlank (RDF term term)
Returns true if term is a blank node. Returns false otherwise.
@prefix a: <http://www.w3.org/2000/10/annotation-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:a dc:creator "Alice B. Toeclips" .

_:b a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:b dc:creator _:c .
_:c foaf:given "Bob".
_:c foaf:family "Smith".
This query matches the people with a dc:creator which uses
 predicates from the FOAF vocabulary to express the name.
PREFIX a: <http://www.w3.org/2000/10/annotation-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?given ?family
WHERE { ?annot a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
 ?annot dc:creator ?c .
 OPTIONAL { ?c foaf:given ?given ; foaf:family ?family } .
 FILTER isBlank(?c)
}
Query result:
	given	family
	"Bob"	"Smith"

In this example, there were two objects of dc:creator predicates, but only one (_:c) was a blank node.

[bookmark: func-isLiteral]17.4.2.3 isLiteral
 xsd:boolean isLiteral (RDF term term)
Returns true if term is a literal. Returns false otherwise.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .
_:b foaf:mbox "bob@work.example" .
This query is similar to the one in 17.4.2.1 except that is matches the people with a name and an mbox which is a literal. This could be used to look for erroneous data (foaf:mbox should only have an
 IRI as its object).
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 FILTER isLiteral(?mbox) }
Query result:
	name	mbox
	"Bob"	"bob@work.example"

[bookmark: func-isNumeric]17.4.2.4 isNumeric
 xsd:boolean isNumeric (RDF term term)
Returns true if term is a numeric value. Returns false otherwise.
 term
 is numeric if it has an appropriate datatype (see the section Operand Data Types) and has a valid lexical form, making it
 a valid argument to functions and operators
 taking numeric arguments.

Examples:
	isNumeric(12)	true
	isNumeric("12")	false
	isNumeric("12"^^xsd:nonNegativeInteger)	true
	isNumeric("1200"^^xsd:byte)	false
	isNumeric(<http://example/>)	false

[bookmark: func-str]17.4.2.5 str
 simple literal STR (literal ltrl)
 simple literal STR (IRI rsrc)

Returns the lexical form of ltrl (a literal); returns the codepoint representation of rsrc (an IRI). This is useful for examining parts of an IRI, for instance, the host-name.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@home.example> .

This query selects the set of people who use their work.example address in their foaf profile:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
 WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 FILTER regex(str(?mbox), "@work\\.example$") }

Query result:
	name	mbox
	"Alice"	<mailto:alice@work.example>

[bookmark: func-lang]17.4.2.6 lang
 simple literal LANG (literal ltrl)

Returns the language tag of ltrl, if it has one. It returns "" if ltrl has no language tag. Note that the RDF data model does not include literals with an empty language tag.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Robert"@en.
_:a foaf:name "Roberto"@es.
_:a foaf:mbox <mailto:bob@work.example> .

This query finds the Spanish foaf:name and foaf:mbox:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
 WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 FILTER (lang(?name) = "es") }
Query result:
	name	mbox
	"Roberto"@es	<mailto:bob@work.example>

[bookmark: func-datatype]17.4.2.7 datatype
 iri DATATYPE (literal literal)

Returns the datatype IRI of a literal.
	If the literal is a typed literal, return the datatype IRI.
	If the literal is a simple literal, return xsd:string
	If the literal is literal with a language tag, return rdf:langString

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix eg: <http://biometrics.example/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:a foaf:name "Alice".
_:a eg:shoeSize "9.5"^^xsd:float .

_:b foaf:name "Bob".
_:b eg:shoeSize "42"^^xsd:integer .

This query finds the foaf:name and foaf:shoeSize of everyone with a shoeSize that is an integer:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX eg: <http://biometrics.example/ns#>
SELECT ?name ?shoeSize
 WHERE { ?x foaf:name ?name ; eg:shoeSize ?shoeSize .
 FILTER (datatype(?shoeSize) = xsd:integer) }
Query result:
	name	shoeSize
	"Bob"	42

In SPARQL 1.0, the
 DATATYPE function was not defined for literals with a language tag.
 Therefore, an unextended implementation would raise an error when DATATYPE
 was called with a literal with a language tag. Operator extensibility allows implementations to
 return a result rather than raise an error. SPARQL 1.1 defines the result of
 DATATYPE applied to a literal with a language tag to be
 rdf:langString.

 The SPARQL Working Group is using rdf:langString based on the latest Working Drafts of the RDF Working Group. This usage should be considered experimental (and non-normative) until/unless rdf:langString becomes part of an updated RDF Recommendation.

[bookmark: func-iri]17.4.2.8 IRI
 iri IRI(simple literal)
 iri IRI(xsd:string)
 iri IRI(iri)
 iri URI(simple literal)
 iri URI(xsd:string)
 iri URI(iri)
The IRI function constructs an IRI by resolving the string argument
 (see RFC 3986
	 and RFC 3987
 or any later RFC that superceeds RFC 3986 or RFC 3987).
	 The IRI is resolved against the base IRI of the query and must result
 in an absolute IRI.

The URI function is a synonym for IRI.
If the function is passed an IRI, it returns the IRI unchanged.
Passing any RDF term other than a simple literal, xsd:string or an IRI is an error.
An implementation MAY normalize the IRI.
Examples:
	IRI("http://example/")	<http://example/>
	IRI(<http://example/>)	<http://example/>

[bookmark: func-bnode]17.4.2.9 BNODE
blank node BNODE()
blank node BNODE(simple literal)
blank node BNODE(xsd:string)
The BNODE function constructs a blank node that is distinct
 from all blank nodes in the dataset being queried and distinct
 from all blank nodes created by calls to this constructor
 for other query solutions. If the no argument form is used,
 every call results in a distinct blank node. If the form with
 a simple literal is used, every call results in distinct blank nodes
 for different simple literals, and the same blank node
 for calls with the same simple literal within expressions for
 one solution mapping.
This functionality is compatible with the treatment
 of blank nodes in SPARQL CONSTRUCT templates.

[bookmark: func-strdt]17.4.2.10 STRDT
literal STRDT(simple literal lexicalForm, IRI datatypeIRI)
The STRDT function constructs a literal with lexical
 form and type as specified by the arguments.
	STRDT("123", xsd:integer)	"123"^^<http://www.w3.org/2001/XMLSchema#integer>
	STRDT("iiii", <http://example/romanNumeral>)	"iiii"^^<http://example/romanNumeral>

[bookmark: func-strlang]17.4.2.11 STRLANG
literal STRLANG(simple literal lexicalForm, simple literal langTag)
The STRLANG function constructs a literal with
 lexical form and language tag as specified by the arguments.
	STRLANG("chat", "en")	"chat"@en

[bookmark: func-uuid]17.4.2.12 UUID
iri UUID()
Return a fresh IRI from the
	 UUID URN scheme.
	 Each call of UUID()
	 returns a different UUID. It must not be the "nil" UUID (all zeroes).
	 The variant and version of the UUID is
	 implementation dependent.
	UUID()	<urn:uuid:b9302fb5-642e-4d3b-af19-29a8f6d894c9>

[bookmark: func-struuid]17.4.2.13 STRUUID
simple literal STRUUID()
Return a string that is the scheme specific part of UUID.
	 That is, as a simple literal, the result of generating a UUID, converting to a
	 simple literal and removing the initial urn:uuid:.
	
	STRUUID()	"73cd4307-8a99-4691-a608-b5bda64fb6c1"

[bookmark: func-strings]17.4.3 Functions on Strings

[bookmark: idp1887976]17.4.3.1 Strings in SPARQL Functions

[bookmark: func-string]17.4.3.1.1 String arguments
Certain functions (e.g. REGEX,
	 STRLEN, CONTAINS)
	 take a string literal as an argument and accept a simple literal,
	 a plain literal with language tag, or a literal with datatype xsd:string.
	 They then act on the lexcial form of the literal.
The term string literal is used in the function descriptions for this.
	 Use of any other RDF term will cause a call to the function to raise an error.

[bookmark: func-arg-compatibility]17.4.3.1.2 Argument Compatibility Rules
The functions
	 STRSTARTS,
	 STRENDS,
	 CONTAINS,
	 STRBEFORE and
	 STRAFTER take two arguments.
	 These arguments must be compatible otherwise invocation of
	 one of these functions raises an error.
	
Compatibility of two arguments is defined as:
	
	The arguments are simple literals or literals typed as xsd:string
	The arguments are plain literals with identical language tags
	The first argument is a plain literal with language tag
		and the second argument is a simple literal or literal typed as xsd:string

	Argument1	Argument2	Compatible?
	"abc"	"b"	yes
	"abc"	"b"^^xsd:string	yes
	"abc"^^xsd:string	"b"	yes
	"abc"^^xsd:string	"b"^^xsd:string	yes
	"abc"@en	"b"	yes
	"abc"@en	"b"^^xsd:string	yes
	"abc"@en	"b"@en	yes
	"abc"@fr	"b"@ja	no
	"abc"	"b"@ja	no
	"abc"	"b"@en	no
	"abc"^^xsd:string	"b"@en	no

[bookmark: idp1915512]17.4.3.1.3 String Literal Return Type
Functions that return a string literal do so with the string literal
	 of the same kind as the first argument (simple literal, plain literal
	 with same language tag, xsd:string). This includes SUBSTR,
	 STRBEFORE and
	 STRAFTER.
The function CONCAT returns a string literal
	 based on the details of all its arguments.

[bookmark: func-strlen]17.4.3.2 STRLEN
xsd:integer STRLEN(string literal str)
The strlen function corresponds to the
	 XPath fn:string-length
	 function and returns an xsd:integer equal to the length
	 in characters of the lexical form of the literal.
	strlen("chat")	4
	strlen("chat"@en)	4
	strlen("chat"^^xsd:string)	4

[bookmark: func-substr]17.4.3.3 SUBSTR
string literal SUBSTR(string literal source, xsd:integer startingLoc)
string literal SUBSTR(string literal source, xsd:integer startingLoc, xsd:integer length)
The substr function corresponds to the XPath
	 fn:substring
	 function and returns a literal of the same kind (simple literal, literal with language tag,
	 xsd:string typed literal) as the source input parameter but
	 with a lexical form formed from the substring of the lexcial form of the source.
The arguments startingLoc and length may be derived types of xsd:integer.
The index of the first character in a strings is 1.
	substr("foobar", 4)	"bar"
	substr("foobar"@en, 4)	"bar"@en
	substr("foobar"^^xsd:string, 4)	"bar"^^xsd:string
	substr("foobar", 4, 1)	"b"
	substr("foobar"@en, 4, 1)	"b"@en
	substr("foobar"^^xsd:string, 4, 1)	"b"^^xsd:string

[bookmark: func-ucase]17.4.3.4 UCASE
string literal UCASE(string literal str)
The UCASE function corresponds to the XPath
	 fn:upper-case function.
	 It returns a string literal whose lexical form is the upper case of the
	 lexcial form of the argument.
	ucase("foo")	"FOO"
	ucase("foo"@en)	"FOO"@en
	ucase("foo"^^xsd:string)	"FOO"^^xsd:string

[bookmark: func-lcase]17.4.3.5 LCASE
string literal LCASE(string literal str)
The LCASE function corresponds to the XPath
	 fn:lower-case function.
	 It returns a string literal whose lexical form is the lower case of the
	 lexcial form of the argument.
	lcase("BAR")	"bar"
	lcase("BAR"@en)	"bar"@en
	lcase("BAR"^^xsd:string)	"bar"^^xsd:string

[bookmark: func-strstarts]17.4.3.6 STRSTARTS
xsd:boolean STRSTARTS(string literal arg1, string literal arg2)
The STRSTARTS function corresponds to the XPath
	 fn:starts-with function.
	 The arguments must be argument compatible
	 otherwise an error is raised.
For such input pairs, the function returns true if the lexical form of arg1
	 starts with the lexical form of arg2, otherwise it returns false.
	strStarts("foobar", "foo")	true
	strStarts("foobar"@en, "foo"@en)	true
	strStarts("foobar"^^xsd:string, "foo"^^xsd:string)	true
	strStarts("foobar"^^xsd:string, "foo")	true
	strStarts("foobar", "foo"^^xsd:string)	true
	strStarts("foobar"@en, "foo")	true
	strStarts("foobar"@en, "foo"^^xsd:string)	true

[bookmark: func-strends]17.4.3.7 STRENDS
xsd:boolean STRENDS(string literal arg1, string literal arg2)
The STRENDS function corresponds to the XPath
	 fn:ends-with function.
	 The arguments must be argument compatible
	 otherwise an error is raised.
For such input pairs, the function returns true if the lexical form of arg1
	 ends with the lexical form of arg2, otherwise it returns false.
	strEnds("foobar", "bar")	true
	strEnds("foobar"@en, "bar"@en)	true
	strEnds("foobar"^^xsd:string, "bar"^^xsd:string)	true
	strEnds("foobar"^^xsd:string, "bar")	true
	strEnds("foobar", "bar"^^xsd:string)	true
	strEnds("foobar"@en, "bar")	true
	strEnds("foobar"@en, "bar"^^xsd:string)	true

[bookmark: func-contains]17.4.3.8 CONTAINS
xsd:boolean CONTAINS(string literal arg1, string literal arg2)
The CONTAINS function corresponds to the XPath
	 fn:contains.
	 The arguments must be argument compatible
	 otherwise an error is raised.
	contains("foobar", "bar")	true
	contains("foobar"@en, "foo"@en)	true
	contains("foobar"^^xsd:string, "bar"^^xsd:string)	true
	contains("foobar"^^xsd:string, "foo")	true
	contains("foobar", "bar"^^xsd:string)	true
	contains("foobar"@en, "foo")	true
	contains("foobar"@en, "bar"^^xsd:string)	true

[bookmark: func-strbefore]17.4.3.9 STRBEFORE
literal STRBEFORE(string literal arg1, string literal arg2)
The STRBEFORE function corresponds to the XPath
	 fn:substring-before function.
	 The arguments must be argument compatible
	 otherwise an error is raised.

	 For compatible arguments, if the lexical part of the second argument
	 occurs as a substring of the lexical part of the first argument, the
	 function returns a literal of the same kind as the first argument
	 arg1 (simple literal, plain literal same language tag, xsd:string).
	 The lexical form of
	 the result is the substring of the lexical form of arg1
	 that precedes the first occurrence of
	 the lexical form of arg2.
	 If the lexical form of arg2
	 is the empty string, this is considered to be a match and the lexical
	 form of the result is the empty string.
	

	 If there is no such occurrence, an empty simple literal is returned.
	
	strbefore("abc","b")	"a"
	strbefore("abc"@en,"bc")	"a"@en
	strbefore("abc"@en,"b"@cy)	error
	strbefore("abc"^^xsd:string,"")	""^^xsd:string
	strbefore("abc","xyz")	""
	strbefore("abc"@en, "z"@en)	""
	strbefore("abc"@en, "z")	""
	strbefore("abc"@en, ""@en)	""@en
	strbefore("abc"@en, "")	""@en

[bookmark: func-strafter]17.4.3.10 STRAFTER
literal STRAFTER(string literal arg1, string literal arg2)
The STRAFTER function corresponds to the XPath
	 fn:substring-after function.
	 The arguments must be argument compatible
	 otherwise an error is raised.

	 For compatible arguments, if the lexical part of the second argument
	 occurs as a substring of the lexical part of the first argument, the
	 function returns a literal of the same kind as the first argument
	 arg1 (simple literal, plain literal same language tag, xsd:string).

	 The lexical form of
	 the result is the substring of the lexcial form of arg1
	 that follows the first occurrence of
	 the lexical form of arg2.
	 If the lexical form of arg2
	 is the empty string, this is considered to be a match and the lexical
	 form of the result is the lexical form of arg1.

	

	 If there is no such occurrence, an empty simple literal is returned.
	
	strafter("abc","b")	"c"
	strafter("abc"@en,"ab")	"c"@en
	strafter("abc"@en,"b"@cy)	error
	strafter("abc"^^xsd:string,"")	"abc"^^xsd:string
	strafter("abc","xyz")	""
	strafter("abc"@en, "z"@en)	""
	strafter("abc"@en, "z")	""
	strafter("abc"@en, ""@en)	"abc"@en
	strafter("abc"@en, "")	"abc"@en

[bookmark: func-encode]17.4.3.11 ENCODE_FOR_URI
simple literal ENCODE_FOR_URI(string literal ltrl)
The ENCODE_FOR_URI function corresponds to the XPath fn:encode-for-uri function.
	 It returns a simple literal with the lexical form obtained from the lexical
	 form of its input after translating reserved characters according to the
	 fn:encode-for-uri function.
	encode_for_uri("Los Angeles")	"Los%20Angeles"
	encode_for_uri("Los Angeles"@en)	"Los%20Angeles"
	encode_for_uri("Los Angeles"^^xsd:string)	"Los%20Angeles"

[bookmark: func-concat]17.4.3.12 CONCAT
string literal CONCAT(string literal ltrl1 ... string literal ltrln)
The CONCAT function corresponds to the XPath fn:concat function. The function accepts string literals as arguments.
The lexical form of the returned literal is obtained by concatenating the lexical forms of its inputs.
	 If all input literals are typed literals of type xsd:string, then the returned literal is also of type xsd:string, if all input literals are plain literals with identical language tag, then the returned literal is a plain literal with the same language tag, in all other cases, the returned literal is a simple literal.
	concat("foo", "bar")	"foobar"
	concat("foo"@en, "bar"@en)	"foobar"@en
	concat("foo"^^xsd:string, "bar"^^xsd:string)	"foobar"^^xsd:string
	concat("foo", "bar"^^xsd:string)	"foobar"
	concat("foo"@en, "bar")	"foobar"
	concat("foo"@en, "bar"^^xsd:string)	"foobar"

[bookmark: func-langMatches]17.4.3.13 langMatches
 xsd:boolean langMatches (simple literal language-tag, simple literal language-range)

Returns true if language-tag (first argument) matches language-range (second argument) per the basic filtering scheme defined in [RFC4647] section 3.3.1. language-range is a basic language range per Matching of Language Tags [RFC4647] section 2.1. A language-range of "*" matches any non-empty language-tag string.
@prefix dc: <http://purl.org/dc/elements/1.1/> .

_:a dc:title "That Seventies Show"@en .
_:a dc:title "Cette Série des Années Soixante-dix"@fr .
_:a dc:title "Cette Série des Années Septante"@fr-BE .
_:b dc:title "Il Buono, il Bruto, il Cattivo" .

This query uses
 langMatches and
 lang
 to find the French titles for the show known in English as "That Seventies Show":
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
 WHERE { ?x dc:title "That Seventies Show"@en ;
 dc:title ?title .
 FILTER langMatches(lang(?title), "FR") }
Query result:
	title
	"Cette Série des Années Soixante-dix"@fr
	"Cette Série des Années Septante"@fr-BE

The idiom langMatches(lang(?v), "*") will not match literals without a language tag as lang(?v) will return an empty string, so
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
 WHERE { ?x dc:title ?title .
 FILTER langMatches(lang(?title), "*") }
will report all of the titles with a language tag:
	title
	"That Seventies Show"@en
	"Cette Série des Années Soixante-dix"@fr
	"Cette Série des Années Septante"@fr-BE

[bookmark: func-regex]17.4.3.14 REGEX
 xsd:boolean REGEX (string literal text, simple literal pattern)
 xsd:boolean REGEX (string literal text, simple literal pattern, simple literal flags)

Invokes the XPath fn:matches function to match text against a regular expression pattern. The regular expression language is defined in XQuery 1.0 and XPath 2.0 Functions and Operators section 7.6.1 Regular Expression Syntax [FUNCOP].
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice".
_:b foaf:name "Bob" .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
 WHERE { ?x foaf:name ?name
 FILTER regex(?name, "^ali", "i") }

Query result:
	name
	"Alice"

[bookmark: func-replace]17.4.3.15 REPLACE
 string literal REPLACE (string literal arg, simple literal pattern, simple literal replacement)
 string literal REPLACE (string literal arg, simple literal pattern, simple literal replacement, simple literal flags)
The REPLACE function corresponds to the XPath
	 fn:replace function.
	 It replaces each non-overlapping occurrence of the regular expression pattern with the replacement string.
	 Regular expession matching may involve modifier flags. See REGEX.
	
	replace("abcd", "b", "Z")	"aZcd"
	replace("abab", "B", "Z","i")	"aZaZ"
	replace("abab", "B.", "Z","i")	"aZb"

[bookmark: func-numerics]17.4.4 Functions on Numerics

[bookmark: func-abs]17.4.4.1 abs
 numeric ABS (numeric term)
Returns the absolute value of arg.
	 An error is raised if arg is not a numeric value.
This function is the same as
	 fn:numeric-abs
	 for terms with a datatype from XDM.
	
	abs(1)	1
	abs(-1.5)	1.5

[bookmark: func-round]17.4.4.2 round
 numeric ROUND (numeric term)
Returns the number with no fractional part that is closest to the argument.
	 If there are two such numbers, then the one that is closest to
	 positive infinity is returned.
	 An error is raised if arg is not a numeric value.
This function is the same as
	 fn:numeric-round
	 for terms with a datatype from XDM.
	
	round(2.4999)	2.0
	round(2.5)	3.0
	round(-2.5)	-2.0

[bookmark: func-ceil]17.4.4.3 ceil
 numeric CEIL (numeric term)
Returns the smallest (closest to negative infinity) number
	 with no fractional part that is not less than the value of arg.
	 An error is raised if arg is not a numeric value.
This function is the same as
	 fn:numeric-ceil
	 for terms with a datatype from XDM.
	
	ceil(10.5)	11.0
	ceil(-10.5)	-10.0

[bookmark: func-floor]17.4.4.4 floor
 numeric FLOOR (numeric term)
Returns the largest (closest to positive infinity) number
	 with no fractional part that is not greater than the value of arg.
	 An error is raised if arg is not a numeric value.
This function is the same as
	 fn:numeric-floor
	 for terms with a datatype from XDM.
	
	floor(10.5)	10.0
	floor(-10.5)	-11.0

[bookmark: idp2130040]17.4.4.5 RAND
 xsd:double RAND ()
Returns a pseudo-random number between 0 (inclusive) and 1.0e0 (exclusive).
	 Different numbers can be produced every time this function is invoked.
	 Numbers should be produced with approximately equal probability.
	rand()	"0.31221030831984886"^^xsd:double

[bookmark: func-date-time]17.4.5 Functions on Dates and Times

[bookmark: func-now]17.4.5.1 now
 xsd:dateTime NOW ()
Returns an XSD dateTime value for the current query execution.
	 All calls to this function in any one query execution must return the same
	 value. The exact moment returned is not specified.
	now()	"2011-01-10T14:45:13.815-05:00"^^xsd:dateTime

[bookmark: func-year]17.4.5.2 year
 xsd:integer YEAR (xsd:dateTime arg)
Returns the year part of arg as an integer.
This function corresponds to
	 fn:year-from-dateTime.
	year("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)	2011

[bookmark: func-month]17.4.5.3 month
 xsd:integer MONTH (xsd:dateTime arg)
Returns the month part of arg as an integer.
This function corresponds to
	 fn:month-from-dateTime.
	month("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)	1

[bookmark: func-day]17.4.5.4 day
 xsd:integer DAY (xsd:dateTime arg)
Returns the day part of arg as an integer.
This function corresponds to
	 fn:day-from-dateTime.
	day("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)	10

[bookmark: func-hours]17.4.5.5 hours
 xsd:integer HOURS (xsd:dateTime arg)
Returns the hours part of arg as an integer.
	 The value is as given in the lexical form of the XSD dateTime.
This function corresponds to
	 fn:hours-from-dateTime.
	hours("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)	14

[bookmark: func-minutes]17.4.5.6 minutes
 xsd:integer MINUTES (xsd:dateTime arg)
Returns the minutes part of the lexical form of arg.
	 The value is as given in the lexical form of the XSD dateTime.
This function corresponds to
	 fn:minutes-from-dateTime.
	minutes("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)	45

[bookmark: func-seconds]17.4.5.7 seconds
 xsd:decimal SECONDS (xsd:dateTime arg)
Returns the seconds part of the lexical form of arg.
This function corresponds to
	 fn:seconds-from-dateTime.
	seconds("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)	13.815

[bookmark: func-timezone]17.4.5.8 timezone
 xsd:dayTimeDuration TIMEZONE (xsd:dateTime arg)
Returns the timezone part of arg as an xsd:dayTimeDuration.
	 Raises an error if there is no timezone.
This function corresponds to
	 fn:timezone-from-dateTime except for the treatment of literals
	 with no timezone.
	timezone("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)	"-PT5H"^^xsd:dayTimeDuration
	timezone("2011-01-10T14:45:13.815Z"^^xsd:dateTime)	"PT0S"^^xsd:dayTimeDuration
	timezone("2011-01-10T14:45:13.815"^^xsd:dateTime)	error

[bookmark: func-tz]17.4.5.9 tz
 simple literal TZ (xsd:dateTime arg)
Returns the timezone part of arg as a simple literal.
	 Returns the empty string if there is no timezone.
	tz("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)	"-05:00"
	tz("2011-01-10T14:45:13.815Z"^^xsd:dateTime)	"Z"
	tz("2011-01-10T14:45:13.815"^^xsd:dateTime)	""

[bookmark: func-hash]17.4.6 Hash Functions

[bookmark: func-md5]17.4.6.1 MD5
 simple literal MD5 (simple literal arg)
 simple literal MD5 (xsd:string arg)
Returns the MD5 checksum, as a hex digit string, calculated on the
	 UTF-8 representation of the simple literal or lexical form of the
	 xsd:string. Hex digits SHOULD be in lower case.
	MD5("abc")	"900150983cd24fb0d6963f7d28e17f72"
	MD5("abc"^^xsd:string)	"900150983cd24fb0d6963f7d28e17f72"

[bookmark: func-sha1]17.4.6.2 SHA1
 simple literal SHA1 (simple literal arg)
 simple literal SHA1 (xsd:string arg)
Returns the SHA1 checksum, as a hex digit string, calculated on the
	 UTF-8 representation of the simple literal or lexical form of the
	 xsd:string. Hex digits SHOULD be in lower case.
	SHA1("abc")	"a9993e364706816aba3e25717850c26c9cd0d89d"
	SHA1("abc"^^xsd:string)	"a9993e364706816aba3e25717850c26c9cd0d89d"

[bookmark: func-sha256]17.4.6.3 SHA256
 simple literal SHA256 (simple literal arg)
 simple literal SHA256 (xsd:string arg)
Returns the SHA256 checksum, as a hex digit string, calculated on the
	 UTF-8 representation of the simple literal or lexical form of the
	 xsd:string. Hex digits SHOULD be in lower case.
	SHA256("abc")	"ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"
	SHA256("abc"^^xsd:string)	"ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"

[bookmark: func-sha384]17.4.6.4 SHA384
 simple literal SHA384 (simple literal arg)
 simple literal SHA384 (xsd:string arg)
Returns the SHA384 checksum, as a hex digit string, calculated on the
	 UTF-8 representation of the simple literal or lexical form of the
	 xsd:string. Hex digits SHOULD be in lower case.
	SHA384("abc")	"cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7"
	SHA384("abc"^^xsd:string)	"cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7"

[bookmark: func-sha512]17.4.6.5 SHA512
 simple literal SHA512 (simple literal arg)
 simple literal SHA512 (xsd:string arg)
Returns the SHA512 checksum, as a hex digit string, calculated on the
	 UTF-8 representation of the simple literal or lexical form of the
	 xsd:string. Hex digits SHOULD be in lower case.
	SHA512("abc")	"ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f"
	SHA512("abc"^^xsd:string)	"ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f"

[bookmark: FunctionMapping]17.5 XPath Constructor Functions
SPARQL imports a subset of the XPath constructor functions defined in XQuery 1.0 and XPath 2.0 Functions and Operators [FUNCOP] in section 17.1 Casting from primitive types to primitive types. SPARQL constructors include all of the XPath constructors for the SPARQL operand datatypes plus the additional datatypes imposed by the RDF data model. Casting in SPARQL is performed by calling a constructor function for the target type on an operand of the source type.
XPath defines only the casts from one XML Schema datatype to another. The remaining casts are defined as follows:
	Casting an IRI to an xsd:string produces a typed literal with a lexical value of the codepoints comprising the IRI, and a datatype of xsd:string.
	Casting a simple literal to any XML Schema datatype is defined as the product of casting an xsd:string with the string value equal to the lexical value of the literal to the target datatype.

The table below summarizes the casting operations that are always allowed (Y), never allowed (N) and dependent on the lexical value (M). For example, a casting operation from an xsd:string (the first row) to an xsd:float (the second column) is dependent on the lexical value (M).

bool = xsd:boolean

dbl = xsd:double

flt = xsd:float

dec = xsd:decimal

int = xsd:integer

dT = xsd:dateTime

str = xsd:string

IRI = IRI

ltrl = simple literal

	From \ To	str	flt	dbl	dec	int	dT	bool
	str	Y	M	M	M	M	M	M
	flt	Y	Y	Y	M	M	N	Y
	dbl	Y	Y	Y	M	M	N	Y
	dec	Y	Y	Y	Y	Y	N	Y
	int	Y	Y	Y	Y	Y	N	Y
	dT	Y	N	N	N	N	Y	N
	bool	Y	Y	Y	Y	Y	N	Y
	IRI	Y	N	N	N	N	N	N
	ltrl	Y	M	M	M	M	M	M

[bookmark: extensionFunctions]17.6 Extensible Value Testing
It should be noted that any function or operator that is specified
to return an error under some conditions is a valid extension point.
That is, an implementation may return a non-error value in these
error cases, and still be conformant with this recommendation.
A PrimaryExpression grammar rule can be a call to an extension function named by an IRI. An extension function takes some number of RDF terms as arguments and returns an RDF term. The semantics of these functions are identified by the IRI that identifies the function.
SPARQL queries using extension functions are likely to have limited interoperability.
As an example, consider a function called func:even:
 xsd:boolean func:even (numeric value)

This function would be invoked in a FILTER as such:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX func: <http://example.org/functions#>
SELECT ?name ?id
WHERE { ?x foaf:name ?name ;
 func:empId ?id .
 FILTER (func:even(?id)) }

For a second example, consider a function aGeo:distance that calculates the distance between two points, which is used here to find the places near Grenoble:
 xsd:double aGeo:distance (numeric x1, numeric y1, numeric x2, numeric y2)

PREFIX aGeo: <http://example.org/geo#>

SELECT ?neighbor
WHERE { ?a aGeo:placeName "Grenoble" .
 ?a aGeo:locationX ?axLoc .
 ?a aGeo:locationY ?ayLoc .

 ?b aGeo:placeName ?neighbor .
 ?b aGeo:locationX ?bxLoc .
 ?b aGeo:locationY ?byLoc .

 FILTER (aGeo:distance(?axLoc, ?ayLoc, ?bxLoc, ?byLoc) < 10) .
 }

An extension function might be used to test some
 application datatype not supported by the core SPARQL specification, it might
 be a transformation between datatype formats, for example into an XSD dateTime
 RDF term from another date format.

[bookmark: sparqlDefinition]18 Definition of SPARQL
This section defines the correct behavior for evaluation of graph patterns
 and solution modifiers, given a query string and an RDF
 dataset. It does not imply a SPARQL implementation must use the process defined
 here.
The outcome of executing a SPARQL query is defined by a series of steps,
 starting from the SPARQL query as a string, turning that string into an
 abstract syntax form, then turning the abstract syntax into a SPARQL
 abstract query comprising operators from the SPARQL algebra.
 This abstract query is then evaluated on an RDF dataset.

[bookmark: initDefinitions]18.1 Initial Definitions

[bookmark: sparqlBasicTerms]18.1.1 RDF Terms
SPARQL is defined in terms of IRIs [RFC3987].
 IRIs are a subset of RDF URI References that omits the use of spaces.
Definition: [bookmark: defn_RDFTerm]RDF TermLet I be the set of all IRIs.

 Let RDF-L be the set of all RDF Literals

 Let RDF-B be the set of all blank nodes in RDF graphs
The set of RDF Terms, RDF-T, is I ∪ RDF-L ∪ RDF-B.

This definition of RDF Term collects together
 several basic notions from the
 RDF data model,
 but updated to refer to IRIs
 rather than RDF URI references.

[bookmark: simple_literal]18.1.2 Simple Literal
Definition: [bookmark: defn_SimpleLiteral]Simple Literal
The set of Simple Literals is the set of all RDF Literals with no language tag or datatype IRI.

[bookmark: sparqlDataset]18.1.3 RDF Dataset
Definition: [bookmark: defn_RDFDataset]RDF Dataset
 An RDF dataset is a set:

 { G, (<u1>, G1), (<u2>, G2), . . .
 (<un>, Gn) }

 where G and each Gi are graphs, and each <ui> is
 an IRI.
 Each <ui> is distinct.
G is called the default graph. (<ui>, Gi) are called
 named graphs.

Definition: [bookmark: defn_ActiveGraph]Active GraphThe active graph is the graph from the dataset used for basic
 graph pattern matching.

[bookmark: defn_RDFDatasetMerge]Definition: RDF Dataset Merge
Let DS1 =
	 { G1, (<u11>, G11), (<u12>, G12), . . .
	 (<u1n>, G1n) },

	 and DS2 =
	 { G2, (<u21>, G21), (<u22>, G22), . . .
	 (<u2m>, G2m) }

	 then we define the RDF Dataset Merge of DS1 and DS2 to be:

	 DS={ G, (<u1>, G1), (<u2>, G2), . . .
	 (<uk>, Gk) }

	 where:
Write N1 for { <u1j> j = 1 to n }

	 Write N2 for { <u2j> j = 1 to m }

	
	G is the merge of G1 and G2
	(<ui>, Gi) where <ui> is in N1 but not in N2
	(<ui>, Gi) where <ui> is in N2 but not in N1
	(<ui>, Gi) where <ui> is equal to <uj> in N1 and equal to <uk> in N2 and Gi is the merge of G1j and G2k

[bookmark: sparqlQueryVariables]18.1.4 Query Variables
Definition: [bookmark: defn_QueryVariable]Query VariableA query variable is a member of the set V
 where V is infinite and disjoint from RDF-T.

[bookmark: sparqlTriplePatterns]18.1.5 Triple Patterns
Definition: [bookmark: defn_TriplePattern]Triple PatternA triple pattern is member of the set:

 (RDF-T ∪ V) x (I ∪ V) x (RDF-T ∪ V)

This definition of Triple Pattern includes literal subjects. This has been noted by RDF-core.
"[The RDF core Working Group] noted that it is aware of no reason why literals should
not be subjects and a future WG with a less restrictive charter may
extend the syntaxes to allow literals as the subjects of statements."
Because RDF graphs may not contain literal subjects, any SPARQL triple pattern with a literal as subject will fail
 to match on any RDF graph.

[bookmark: sparqlBasicGraphPatterns]18.1.6 Basic Graph Patterns
Definition: [bookmark: defn_BasicGraphPattern]Basic Graph PatternA Basic Graph Pattern is a
 set of Triple Patterns.

The empty graph pattern is a basic graph pattern which is the empty set.

[bookmark: sparqlPropertyPaths]18.1.7 Property Path Patterns
Definition: [bookmark: defn_PropertyPath]Property PathA Property Path is a sequence of triples, ti in sequence ST, with n = length(ST)-1, such that, for i=0 to n,
 the object of ti is the same term as the subject of ti+1.
We call the subject of t0 the start of the path.
We call the object of tn the end of the path.
A Property Path is a path in graph G if each ti is a triple of G.

A property path does not span multiple graphs in a dataset.
Definition: [bookmark: defn_PropertyPathExpr]Property Path ExpressionA property path expression is an expression using the property path forms described above.

Definition: [bookmark: defn_PropertyPathPattern]Property Path PatternLet PP be the set of all property path expressions.
 A property path pattern is a member of the set:

 (RDF-T ∪ V) x PP x (RDF-T ∪ V)

A Property Path Pattern is a generalization of a
 Triple Pattern
 to include a property path expression
 in the property position.

[bookmark: sparqlSolutions]18.1.8 Solution Mapping
A solution mapping is a mapping from a set of variables to a set of RDF terms.
 We use the term 'solution' where it is clear.
Definition: [bookmark: defn_sparqlSolutionMapping]Solution MappingA solution mapping, μ, is a partial function μ : V -> RDF-T.
The domain of μ, dom(μ), is the subset of V where μ is defined.

Definition: [bookmark: defn_sparqlSolutionSequence]Solution SequenceA solution sequence is a list of solutions, possibly unordered.

Write expr(μ) for the value of the expression expr,
	 using the terms for variables given by μ.
	 Evaluation may result in an error.

[bookmark: sparqlSolMod]18.1.9 Solution Sequence Modifiers
Definition: [bookmark: defn_SolutionModifier]Solution Sequence ModifierA solution sequence modifier is one of:
	

 Order By modifier: put the solutions in order
	

 Projection modifier: choose certain variables
	

 Distinct modifier: ensure solutions in the sequence are unique
	

 Reduced modifier: permit any non-distinct solutions to be eliminated
	

 Offset modifier: control where the solutions start from in
 the overall sequence of solutions
	

 Limit modifier: restrict the number of solutions

[bookmark: idp2427544]18.1.10 SPARQL Query
Definition: [bookmark: defn_SPARQLQuery]SPARQL QueryA SPARQL Abstract Query is a tuple (E, DS, QF) where:
	E is a SPARQL algebra expression
	DS is an RDF Dataset
	QF is a query form

Definition: [bookmark: defn_QueryUnit]Query LevelA query level is a graph pattern, a set of group and aggregation, and a set of solution modifiers.

A query is a tree of "query levels", where each subquery
	 forms one query level in the tree.

[bookmark: sparqlQuery]18.2 Translation to the SPARQL Algebra
This section defines the process of converting graph patterns and solution
 modifiers in a SPARQL query string into a SPARQL algebra expression. The process described
 converts one level of query nesting, as formed by subqueries using the nested
 SELECT syntax and is applied recursively on subqueries. Each level consists of graph
 pattern matching and filtering, followed by the application of solution modifiers.
The SPARQL query string is parsed and the abbreviations for IRIs and triple patterns given in
 section 4 are applied.
 At this point the abstract syntax tree is composed of:
	Patterns	Modifiers	Query Forms	Other
	RDF terms	DISTINCT	SELECT	VALUES
	Property path expression	REDUCED	CONSTRUCT	SERVICE
	Property path patterns	Projection	DESCRIBE	
	Groups	ORDER BY	ASK	
	OPTIONAL	LIMIT	 	
	UNION	OFFSET	 	
	GRAPH	Select expressions	 	
	BIND	 	 	
	GROUP BY	 	 	
	HAVING	 	 	
	MINUS	 	 	
	FILTER	 	 	

The result of converting such an abstract syntax tree is a SPARQL query that
 uses the following symbols in the SPARQL algebra:
	Graph Pattern	Solution Modifiers	Property Path
	BGP 	ToList	PredicatePath
	Join	OrderBy	InversePath
	LeftJoin	Project	SequencePath
	Filter	Distinct	AlernativePath
	Union	Reduced	ZeroOrMorePath
	Graph	Slice	OneOrMorePath
	Extend	ToMultiSet	ZeroOrOnePath
	Minus	 	NegatedPropertySet
	Group	 	
	Aggregation	 	
	AggregateJoin	 	

Slice is the combination of OFFSET and LIMIT.
ToList is used where conversion from the results of graph pattern
 matching to sequences occurs.
ToMultiSet is used where conversion from a solution sequence
 to a multiset occurs.

[bookmark: variableScope]18.2.1 Variable Scope
We define a variable to be in-scope if there is a way for
 a variable to be in the domain of a solution mapping at that point
 in the execution of the SPARQL algebra for the query.
 The definition below provides a way of determing this from the
 abstract syntax of a query.
Note that a subquery with a projection can hide variables;
 use of a variable in FILTER, or in MINUS does not cause a variable
 to be in-scope outside of those forms.
Let P, P1, P2 be graph patterns and E, E1,...En be expressions.
 A variable v is in-scope if:
	Syntax Form	In-scope variables
	Basic Graph Pattern (BGP)	v occurs in the BGP
	Path 	v occurs in the path
	Group { P1 P2 ... }	v is in-scope if it is in-scope in one or more of P1, P2, ...
	GRAPH term { P }	v is term or v is in-scope in P
	{ P1 } UNION { P2 }	v is in-scope in P1 or in-scope in P2
	OPTIONAL {P}	v is in-scope in P
	SERVICE term {P}	v is term or v is in-scope in P
	BIND (expr AS v)	v is in-scope
	SELECT .. v .. { P }	v is in-scope
	SELECT ... (expr AS v)	v is in-scope
	GROUP BY (expr AS v)	v is in-scope
	SELECT * { P }	v is in-scope in P
	VALUES v { values }	v is in-scope
	VALUES varlist { values }	v is in-scope if v is in varlist

The variable v must not be in-scope at the point of the (expr AS v)
	 form. The scoping for (expr AS v) applies immediately in
 SELECT expressions.
In BIND (expr AS v) requires that the variable v is
	 not in-scope from the preceeding elements in the group graph pattern in which it is used.
In SELECT, the variable v must not be in-scope
	 in the graph pattern of the SELECT clause, nor used in another
	 select expression earlier in the clause.

[bookmark: convertGraphPattern]18.2.2 Converting Graph Patterns
This section describes the process for translating a SPARQL graph
 pattern into a SPARQL algebra expression. This process is applied to
	 the group graph pattern (the unit between {...} delimiters)
	 forming the WHERE clause of a query, and recursively
	 to each syntactic element within the group graph pattern. The result of
	 the translation is a SPARQL algebra expression.
	
In summary, the steps are applied as follows:
	
	 Expand syntax forms
	 for IRIs, literals and triple patterns.
	
	Translate property path expressions
	Convert some property path patterns to triples
	Collect the FILTERs in the group
	Translate Basic Graph Patterns
	Translate the remaining graph patterns in the group
	Add in Filters
	Simplify the algebra expression

We write

	 translate(graph pattern)
	
for the algorthm described here to translate graph patterns.
	

 The working group notes that in SPARQL 1.0, the point at which the simplification step is
	 applied leads to ambiguous transformation
 of queries involving a doubly nested filter and pattern in an optional:
	 OPTIONAL { { ... FILTER (... ?x ...) } }..
This is illustrated by two non-normative test cases:
	
 Simplification applied after all transformations or not at all.
	
 Simplification applied during transformation.

Applying the simpification step after all the translation of graph patterns
	 is the preferred reading.

[bookmark: sparqlExpandForms]18.2.2.1 Expand Syntax Forms
Expand abbreviations for IRIs and triple patterns given in
 section 4.

[bookmark: sparqlCollectFilters]18.2.2.2 Collect FILTER Elements

	 FILTER expressions apply to the whole group graph pattern
	 in which they appear. The algebra operators to perform filtering are
	 added to the group after translation of each group element. We collect
	 the filters together here and remove them from group, then
	 apply
	 them to the whole translated group graph pattern.
	
In this step, we also translate graph patterns within FILTER
	 expressions EXISTS and
	 NOT EXISTS.
	
Let FS := empty set

For each form FILTER(expr) in the group graph pattern:
 In expr, replace NOT EXISTS{P} with fn:not(exists(translate(P)))
 In expr, replace EXISTS{P} with exists(translate(P))
 FS := FS ∪ {expr}
 End
The set of filter expressions FS is used later.

[bookmark: sparqlTranslatePathExpressions]18.2.2.3 Translate Property Path Expressions
The following table gives the translation of property paths
	 expressions from SPARQL syntax to terms in the SPARQL algebra.
	 This applies to all elements of a property path expression recursively.
The next step after this one
	 translates certain forms to triple patterns,
	 and these are converted later to basic graph patterns by adjacency
	 (without intervening group pattern delimiters { and })
	 or other syntax forms. Overall, SPARQL syntax property paths of just
	 an IRI become triple patterns and these are aggregated into basic graph patterns.
Notes:
	The order of forms IRI and ^IRI in negated property sets is not relevant.

We introduce the following symbols:
	link
	inv
	alt
	seq
	ZeroOrMorePath
	OneOrMorePath
	ZeroOrOnePath
	NPS (for NegatedPropertySet)

	Syntax Form (path)	Algebra (path)
	iri	link(iri)
	^path	inv(path)
	!(:iri1|...|:irin)	NPS({:iri1 ... :irin})
	!(^:iri1|...|^:irin)	inv(NPS({:iri1 ... :irin}))
	!(:iri1|...|:irii|^:irii+1|...|^:irim) 	alt(NPS({:iri1 ...:irii}),

		 inv(NPS({:irii+1, ..., :irim})))
		
	path1 / path2	seq(path1, path2)
	path1 | path2	alt(path1, path2)
	path*	ZeroOrMorePath(path)
	path+	OneOrMorePath(path)
	path?	ZeroOrOnePath(path)

[bookmark: sparqlTranslatePathPatterns]18.2.2.4 Translate Property Path Patterns

	 The previous step translated property path expressions.
	 This step translates property path patterns,
	 which are a subject end point, property path expression and object end point,
	 into triple patterns or wraps in a general algebra operation for path evaluation.
	
Notes:
	X and Y are RDF terms or variables.
	?V is a fresh variable.
	P and Q are path expressions.
	These are only applied to property path patterns, not within property path expressions.
	Translations earlier in the table are applied in preference to the last translation.
	
		The final translation simply wraps any remaining property path expression to
		use a common form Path(...).
	

	Algebra (path)	Translation
	X link(iri) Y	X iri Y
	X inv(iri) Y	Y iri X
	X seq(P, Q) Y	X P ?V . ?V Q P
	X P Y	Path(X, P, Y)

Examples of the whole path translation process
	 (?_V is a fresh variable):

		?s :p/:q ?o
	

		 ?s :p ?_V .

 ?_V :q ?o
	

		?s :p* ?o
	

		Path(?s, ZeroOrMorePath(link(:p)), ?o)
	

		:list rdf:rest*/rdf:first ?member
	

		Path(:list, ZeroOrMorePath(link(rdf:rest)), ?_V) .

		?_V rdf:first ?member
	

[bookmark: sparqlTranslateBasicGraphPatterns]18.2.2.5 Translate Basic Graph Patterns
After translating property paths, any adjacent triple patterns are collected together
	 to form a basic graph pattern BGP(triples).

[bookmark: sparqlTranslateGraphPatterns]18.2.2.6 Translate Graph Patterns
Next, we translate each remaining graph pattern form, recursively applying the translation process.

 If the form is
 GroupOrUnionGraphPattern

Let A := undefined

For each element G in the GroupOrUnionGraphPattern
 If A is undefined
 A := Translate(G)
 Else
 A := Union(A, Translate(G))
 End

The result is A

 If the form is GraphGraphPattern

If the form is GRAPH IRI GroupGraphPattern
 The result is Graph(IRI, Translate(GroupGraphPattern))
If the form is GRAPH Var GroupGraphPattern
 The result is Graph(Var, Translate(GroupGraphPattern))

	 If the form is GroupGraphPattern:

Let FS := the empty set
Let G := the empty pattern, a basic graph pattern which is the empty set.

For each element E in the GroupGraphPattern

 If E is of the form OPTIONAL{P}
 Let A := Translate(P)
 If A is of the form Filter(F, A2)
 G := LeftJoin(G, A2, F)
 Else
 G := LeftJoin(G, A, true)
 End
 End

 If E is of the form MINUS{P}
 G := Minus(G, Translate(P))
 End

 If E is of the form BIND(expr AS var)
 G := Extend(G, var, expr)
 End

 If E is any other form
 Let A := Translate(E)
 G := Join(G, A)
 End

 End

The result is G.

	 If the form is InlineData

	
The result is a multiset of solution mappings 'data'.

		data is formed by forming a solution mapping
		from the variable in the corresponding position in list of variables
		(or single variable),
		omitting a binding if the BindingValue is the word UNDEF.
	

	 If the form is SubSelect

	
The result is ToMultiset(Translate(SubSelect))

[bookmark: sparqlAddFilters]18.2.2.7 Filters of Group
After the group has been translated, the filter expressions are
	 added so they wil apply to the whole of the rest of the group:
If FS is not empty
 Let G := output of preceding step
 Let X := Conjunction of expressions in FS
 G := Filter(X, G)
 End

[bookmark: sparqlSimplification]18.2.2.8 Simplification step
Some groups of one graph pattern become join(Z, A),
	 where Z is the empty basic graph pattern
	 (which is the empty set). These can be replaced by A.
	 The empty graph pattern Z is the identity for join:
Replace join(Z, A) by A
Replace join(A, Z) by A

[bookmark: sparqlAlgebraExamples]18.2.3 Examples of Mapped Graph Patterns
The second form of a rewrite example is the first with empty group joins removed by
 the simplification step.
Example: group with a basic graph pattern consisting of a single triple
 pattern:

 { ?s ?p ?o }

 Join(Z,
 BGP(?s ?p ?o))

 BGP(?s ?p ?o)

Example: group with a basic graph pattern consisting of two triple patterns:

 { ?s :p1 ?v1 ; :p2 ?v2 }

 BGP(?s :p1 ?v1 . ?s :p2 ?v2)

Example: group consisting of a union of two basic graph patterns:

 { { ?s :p1 ?v1 } UNION {?s :p2 ?v2 } }

 Union(Join(Z, BGP(?s :p1 ?v1)),

 Join(Z, BGP(?s :p2 ?v2)))

 Union(BGP(?s :p1 ?v1) , BGP(?s :p2 ?v2))

Example: group consisting of a union of a union and a basic graph pattern:

 { { ?s :p1 ?v1 } UNION {?s :p2 ?v2 } UNION {?s :p3 ?v3 } }

 Union(

 Union(Join(Z, BGP(?s :p1 ?v1)),

 Join(Z, BGP(?s :p2 ?v2)))
 ,

 Join(Z, BGP(?s :p3 ?v3)))

 Union(

 Union(BGP(?s :p1 ?v1) ,

 BGP(?s :p2 ?v2),

 BGP(?s :p3 ?v3))

Example: group consisting of a basic graph pattern and an optional graph
 pattern:

 { ?s :p1 ?v1 OPTIONAL {?s :p2 ?v2 } }

 LeftJoin(

 Join(Z, BGP(?s :p1 ?v1)),

 Join(Z, BGP(?s :p2 ?v2)),

 true)

 LeftJoin(BGP(?s :p1 ?v1), BGP(?s :p2 ?v2), true)

Example: group consisting of a basic graph pattern and two optional graph
 patterns:

 { ?s :p1 ?v1 OPTIONAL {?s :p2 ?v2 } OPTIONAL { ?s :p3 ?v3 } }

 LeftJoin(

 LeftJoin(

 BGP(?s :p1 ?v1),

 BGP(?s :p2 ?v2),

 true) ,

 BGP(?s :p3 ?v3),

 true)

Example: group consisting of a basic graph pattern and an optional graph
 pattern with a filter:

 { ?s :p1 ?v1 OPTIONAL {?s :p2 ?v2 FILTER(?v1<3) } }

 LeftJoin(

 Join(Z, BGP(?s :p1 ?v1)),

 Join(Z, BGP(?s :p2 ?v2)),

 (?v1<3))

 LeftJoin(

 BGP(?s :p1 ?v1) ,

 BGP(?s :p2 ?v2) ,

 (?v1<3))

Example: group consisting of a union graph pattern and an optional graph
 pattern:

 { {?s :p1 ?v1} UNION {?s :p2 ?v2} OPTIONAL {?s :p3 ?v3} }

 LeftJoin(

 Union(BGP(?s :p1 ?v1),

 BGP(?s :p2 ?v2)) ,

 BGP(?s :p3 ?v3) ,

 true)

Example: group consisting of a basic graph pattern, a filter and an optional
 graph pattern:

 { ?s :p1 ?v1 FILTER (?v1 < 3) OPTIONAL {?s :p2 ?v2} }

 Filter(?v1 < 3 ,

 LeftJoin(BGP(?s :p1 ?v1), BGP(?s :p2 ?v2), true) ,

)

Example: Pattern involving BIND:

 { ?s :p ?v . BIND (2*?v AS ?v2) ?s :p1 ?v2 }
	

	 Join(

	
	 Extend(BGP(?s :p ?v), ?v2, 2*?v) ,

	
	 BGP(?s :p1 ?v2)
)

Example: Pattern involving BIND:

 { ?s :p ?v . {} BIND (2*?v AS ?v2) }
	

	 Join(

	 BGP(?s :p ?v), ?v2, 2*?v) ,

	 Extend({}, ?v2, 2*?v)

)

Example: Pattern involving MINUS:

	 { ?s :p ?v . MINUS {?s :p1 ?v2 } }
	

	 Minus(

	
	 BGP(?s :p ?v)

	
	 BGP(?s :p1 ?v2))

Example: Pattern involving a subquery:

	 { ?s :p ?o . {SELECT DISTINCT ?o {?o ?p ?z} } }
	

	 Join(

	
	 BGP(?s :p ?o) ,

	
	 ToMultiSet(

	
	 Distinct(Project(BGP(?o ?p ?z), {?o})))

	
)

[bookmark: convertGroupAggSelectExpressions]18.2.4 Converting Groups, Aggregates, HAVING, final VALUES clause and SELECT Expressions
In this step, we process clauses on the query level in the following order:
	Grouping
	Aggregates
	HAVING
	VALUES
	Select expressions

[bookmark: sparqlGroupAggregate]18.2.4.1 Grouping and Aggregation
Step: GROUP BY
If the GROUP BY keyword is used, or there is implicit grouping due to the use of aggregates in the projection, then grouping is performed by the Group function. It divides the solution set into groups of one or more solutions, with the same overall cardinality. In case of implicit grouping, a fixed constant (1) is used to group all solutions into a single group.
Step: Aggregates
The aggregation step is applied as a transformation on the query level, replacing aggregate expressions in the query level with Aggregation() algebraic expressions.
The transformation for query levels that use any aggregates is given below:
Let A := the empty sequence
Let Q := the query level being evaluated
Let P := the algebra translation of the GroupGraphPattern of the query level
Let E := [], a list of pairs of the form (variable, expression)

If Q contains GROUP BY exprlist
 Let G := Group(exprlist, P)
Else If Q contains an aggregate in SELECT, HAVING, ORDER BY
 Let G := Group((1), P)
Else
 skip the rest of the aggregate step
 End

Global i := 1 # Initially 1 for each query processed

For each (X AS Var) in SELECT, each HAVING(X), and each ORDER BY X in Q
 For each unaggregated variable V in X
 Replace V with Sample(V)
 End
 For each aggregate R(args ; scalarvals) now in X
 # note scalarvals may be omitted, then it's equivalent to the empty set
 Ai := Aggregation(args, R, scalarvals, G)
 Replace R(...) with aggi in Q
 i := i + 1
 End
 End

For each variable V appearing outside of an aggregate
 Ai := Aggregation(V, Sample, {}, G)
 E := E append (V, aggi)
 i := i + 1
 End

A := Ai, ..., Ai-1
P := AggregateJoin(A)

Note: aggi is a temporary variable. E is then used in 18.2.4.4 for the processing of select
expressions.
Example:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT (SUM(?val) AS ?sum) (COUNT(?a) AS ?count)
WHERE {
 ?a rdf:value ?val .
} GROUP BY ?a
The SUM expression becomes agg1, and the COUNT expression becomes agg2.
Let G := Group((?a), BGP(?a rdf:value ?val))
A1 = Aggregation((?val), Sum, {}, G)
A2 = Aggregation((?a), Count, {}, G)
A := (A1, A2)
Let P := AggregateJoin(A)

[bookmark: sparqlHavingClause]18.2.4.2 HAVING
The HAVING expression is evaluated using the same rules as FILTER(). Note that,
	 due to the logic position in which the HAVING clause is evaluated, expressions projected
	 by the SELECT clause are not visible to the HAVING clause.
Let Q := the query level being evaluated
Let P := the algebra translation of the query level so far

For each HAVING(E) in Q
 P := Filter(E, P)
 End

[bookmark: sparqlAlgebraFinalValues]18.2.4.3 VALUES
If the query has a trailing VALUES clause:
Let P := the algebra translation of the query level so far
P := Join(P, ToMultiSet(data))
 where data is a solution sequence formed from the VALUES clause
The translatation of the data is the same as for inline data.

[bookmark: sparqlSelectExpressions]18.2.4.4 SELECT Expressions
Step: Select expressions
We have two forms of the abstract syntax to consider:
SELECT selItem ... { pattern }
SELECT * { pattern }
Let X := algebra from earlier steps
Let VS := list of all variables visible in the pattern,
 so restricted by sub-SELECT projected variables and GROUP BY variables.
 Not visible: only in filter, exists/not exists, masked by a subselect,
 non-projected GROUP variables, only in the right hand side of MINUS

Let PV := {}, a set of variable names
Note, E is a list of pairs of the form (variable, expression), defined in section 18.2.4

If "SELECT *"
 PV := VS

If "SELECT selItem ...:"
 For each selItem:
 If selItem is a variable
 PV := PV ∪ { variable }
 End
 If selItem is (expr AS variable)
 variable must not appear in VS nor in PV; if it does then generate a syntax error and stop
 PV := PV ∪ { variable }
 E := E append (variable, expr)
 End
 End

For each pair (var, expr) in E
 X := Extend(X, var, expr)
 End

Result is X
The set PV is used later for projection.

The syntax error arises for use of a variable as the named target of AS (e.g.
 ... AS ?x) when the variable is used inside the WHERE clause of the SELECT or
	 if already used as the traget of AS in this SELECT expression.

[bookmark: convertSolMod]18.2.5 Converting Solution Modifiers
Solutions modifiers apply to the processing of a SPARQL query after pattern matching.
 The solution modifiers are applied to a query in the following order:
	Order by
	Projection
	Distinct
	Reduced
	Offset
	Limit

Step: ToList
ToList turns a multiset into a sequence with the same elements and cardinality. There is no implied ordering to
 the sequence; duplicates need not be adjacent.

 Let M := ToList(Pattern)

[bookmark: sparqlOrderBy]18.2.5.1 ORDER BY
If the query string has an ORDER BY clause

 M := OrderBy(M, list of order comparators)

[bookmark: sparqlProjection]18.2.5.2 Projection
The set of projection variables, PV, was calculated in the
	 processing of SELECT expressions.

 M := Project(M, PV)

where vars is the set of variables mentioned in the SELECT
 clause or all named variables that are in-scope
	 in the query if SELECT * used.

[bookmark: sparqlDistinct]18.2.5.3 DISTINCT
If the query contains DISTINCT,

 M := Distinct(M)

[bookmark: sparqlReduced]18.2.5.4 REDUCED
If the query contains REDUCED,

 M := Reduced(M)

[bookmark: sparqlOffsetLimit]18.2.5.5 OFFSET and LIMIT
If the query contains "OFFSET start" or "LIMIT length"

 M := Slice(M, start, length)

 start defaults to 0

 length defaults to (size(M)-start).

[bookmark: sparqlAlgebraOutcome]18.2.5.6 Final Algebra Expression
The overall abstract query is M.

[bookmark: BasicGraphPattern]18.3 Basic Graph Patterns
When matching graph patterns, the possible solutions form a
 multiset [multiset], also known as
 a bag. A multiset is an unordered collection of elements in which each
 element may appear more than once. It is described by a set of elements and a
 cardinality function giving the number of occurrences of each element from the
 set in the multiset.
Write μ for solution mappings.
Write μ0 for the mapping such that dom(μ0) is the empty set.
Write Ω0 for the multiset consisting of exactly the empty mapping μ0, with
 cardinality 1. This is the join identity.
Write μ(x) for the solution mapping variable x to RDF term t : { (x, t) }
Write Ω(x) for the multiset consisting of exactly μ(?x->t), that is, { { (x, t) } } with
 cardinality 1.
Definition: [bookmark: defn_algCompatibleMapping]Compatible MappingsTwo solution mappings μ1 and μ2 are compatible if, for every variable v in
 dom(μ1) and in dom(μ2), μ1(v) = μ2(v).

Here, μ1(v) = μ2(v) means that μ1(v) and μ2(v) are the same RDF term.
If μ1 and μ2 are compatible then μ1 ∪ μ2
 is also a mapping. Write merge(μ1, μ2) for μ1 ∪ μ2
Write card[Ω](μ) for the cardinality of solution mapping μ in a multiset
 of mappings Ω.

[bookmark: BGPsparql]18.3.1 SPARQL Basic Graph Pattern Matching
A basic
 graph pattern is matched against the active graph for that part of the query.
 Basic graph patterns can be instantiated by
 replacing both variables and blank nodes by terms, giving two notions
 of instance. Blank nodes are replaced using an
 RDF
 instance mapping, σ, from blank nodes to RDF terms; variables are
 replaced by a solution mapping from query variables to RDF terms.
Definition: [bookmark: defn_PatternInstanceMapping]Pattern Instance MappingA Pattern Instance Mapping, P, is the combination of an RDF
 instance mapping, σ, and solution mapping, μ. P(x) = μ(σ(x))

For a BGP 'x', P(x) denotes the result of replacing blank
 nodes b in x for which σ is defined with σ(b) and all
 variables v in x for which μ is defined with μ(v).
Any pattern instance mapping defines a unique solution mapping
 and a unique RDF instance mapping obtained by restricting it to query
 variables and blank nodes respectively.
Definition: Basic Graph Pattern MatchingLet BGP be a basic graph pattern and let G be an RDF graph.
μ is a solution for BGP from G when there is a pattern instance
 mapping P such that P(BGP) is a subgraph of G and μ is the restriction of P to
 the query variables in BGP.
card[Ω](μ) = card[Ω](number of distinct RDF instance mappings, σ,
 such that P = μ(σ) is a pattern instance mapping and P(BGP) is a subgraph of G).

If a basic graph pattern is the empty set, then the solution is Ω0.

[bookmark: BGPsparqlBNodes]18.3.2 Treatment of Blank Nodes
This definition allows the solution mapping to bind a variable in a
 basic graph pattern, BGP, to a blank node in G. Since SPARQL treats
 blank node identifiers in a results format document

(SPARQL Query Results XML Format,
SPARQL 1.1 Query Results JSON Format and
SPARQL 1.1 Query Results CSV and TSV Formats)

 as scoped to the document, they
 cannot be understood as identifying nodes in the active graph of the dataset. If DS is
 the dataset of a query, pattern solutions are therefore understood to
 be not from the active graph of DS itself, but from an RDF graph, called the scoping
 graph, which is graph-equivalent to the active graph of DS but shares no blank nodes
 with DS or with BGP. The same scoping graph is used for all solutions
 to a single query. The scoping graph is purely a theoretical
 construct; in practice, the effect is obtained simply by the document
 scope conventions for blank node identifiers.
Since RDF blank nodes allow infinitely many redundant solutions for
 many patterns, there can be infinitely many pattern solutions (obtained
 by replacing blank nodes by different blank nodes). It is necessary,
 therefore, to somehow delimit the solutions for a basic graph pattern. SPARQL uses the
 subgraph match criterion to determine the solutions of a basic graph
 pattern. There is
 one solution for each distinct pattern instance mapping from the basic
 graph pattern to a subset of the active graph.
This is optimized for ease of computation rather
 than redundancy elimination. It allows query results to contain
 redundancies even when the active graph of the dataset is
 lean, and it allows logically
 equivalent datasets to yield different query results.

[bookmark: PropertyPathPatterns]18.4 Property Path Patterns
This section defines the evaluation of
 property path patterns.
 A property path pattern is a subject endpoint (an RDF term or a variable),
 a property path express and an object endpoint.
 The translation of property path expressions
 converts some forms to other SPARQL expressions, such as converting property
 paths of length one to triple patterns, which in turn are combined into basic
 graph patterns. This leaves property path operators ZeroOrOnePath, ZeroOrMorePath,
 OneOrMorePath and NegatedPropertySets and also path expressions contained within these
 operators.

All remaining property path expressions are present in the algebra in the form
 Path(X, path, Y) for endpoints X and Y.
 For example: syntax(:p/:q)* is a ZeroOrMorePath expression involving
 a sequence property path becoming the algebra expession ZeroOrMorePath(seq(link(:p), link(:q))).

[bookmark: pp-eval-notation]Notation
Write
eval(Path(X, PP, Y))

	 for the evaluation of the property path patterns.
	 This produces a multiset of solution mappings μ, each solution mapping having
	 a binding for variables used (each of X and Y can be a variable).
	 Some operators only produce a set of solution mappings.
	
Write
Var(x1, x2, ..., xn) = { xi | i in 1...n and xi is a variable }
for the variables in x1, x2, ..., xn.
Write
	x:term	when x is an RDF term
	x:var	when x is a variable
	x:path	when x is a path expression

	All evaluation is carried out by matching the
	active graph at that point in the
	overall query evaluation. We omit explicitly including the active
	graph in each definition for clarity.
Definition: [bookmark: defn_evalPP_predicate]Evaluation of Predicate Property Path
Let Path(X, link(iri), Y) be an predicate inverse property path pattern,
	using some IRI iri.

	 eval(Path(X, link(iri), Y)) = evaluation of basic graph pattern {X iri Y}

	

If both X and Y are variables, this is the same as:
eval(Path(X:var, link(iri), Y:var)) =
 { (X, xn) (Y, yn) | xn and yn are RDF terms and triple (xn iri yn) is in the active graph }
If X is a variable and Y an RDF term:
eval(Path(X:var, link(iri), Y:term)) =
 { (X, xn) | xn is an RDF term and triple (xn iri Y) is in the active graph }
If X is an RDF term and Y is a variable:
eval(Path(X:term, link(iri), Y:var)) =
 { (Y, yn) | yn is an RDF term and triple (X iri yn) is in the active graph }
If both X and Y are RDF terms:
eval(Path(X:term, link(iri), Y:term)) =
 { μ0 } if triple (X iri Y) is in the active graph
 = { { } }
 = Ω0

eval(Path(X:term, link(iri), Y:term)) =
 { } if triple (X iri Y) is not in the active graph
Informally, evaluating a Predicate Property Path is the same as executing a subquery
 SELECT * { X P Y } at that point in the query evaluation.

Definition: [bookmark: defn_evalPP_inverse]Evaluation of Inverse Property Path
Let P be a property path expression, then:

	 eval(Path(X, inv(P), Y)) = eval(Path(Y, P, X))

	

Definition: [bookmark: defn_evalPP_sequence]Evaluation of Sequence Property Path

	 Let P and Q be property path expressions.
	 Let V be a fresh variable.
	

	 A = Join(eval(Path(X, P, V)), eval(Path(V, Q, Y)))

	 eval(Path(X, seq(P,Q), Y)) = Project(A, Var(X,Y))

	

Informally, this is the same as:
SELECT * { X P _:a . _:a Q Y }
using the fact that a blank node _:a acts like a variable (under simple entailment)
 except it does not appear in the results from SELECT *.
Definition: [bookmark: defn_evalPP_alternative]Evaluation of Alternative Property Path

	 Let P and Q be property path expressions.
	

	 eval(Path(X, alt(P,Q), Y)) = Union(eval(Path(X, P, Y)), eval(Path(X, Q, Y)))

	

Informally, this is the same as:
SELECT * { { X P Y } UNION { X Q Y } }
Definition: [bookmark: defn_nodeSet]Node set of a graph
The node set of a graph G, nodes(G), is:
nodes(G) = { n | n is an RDF term that is used as a subject or object of a triple of G}

Definition: Evaluation of ZeroOrOnePath
eval(Path(X:term, ZeroOrOnePath(P), Y:var)) = { (Y, yn) | yn = X or {(Y, yn)} in eval(Path(X,P,Y)) }
eval(Path(X:var, ZeroOrOnePath(P), Y:term)) = { (X, xn) | xn = Y or {(X, xn)} in eval(Path(X,P,Y)) }
eval(Path(X:term, ZeroOrOnePath(P), Y:term)) =
 { {} } if X = Y or eval(Path(X,P,Y)) is not empty
 { } othewise
eval(Path(X:var, ZeroOrOnePath(P), Y:var)) =
 { (X, xn) (Y, yn) | either (yn in nodes(G) and xn = yn) or {(X,xn), (Y,yn)} in eval(Path(X,P,Y)) }

	We define an auxillary function, ALP, used in the definitions of
	ZeroOrMorePath and OneOrMorePath.
	Note that the algorithm given here serves to specify the feature.
	An implementation is free to implement evaluation by any method that
	produces the same results for the query overall.
	The ZeroOrMorePath and OneOrMorePath forms return matches based
	on distinct nodes connected by the path.

The matching algorithm is based on following all paths, and detecting
 when a graph node (subject or object), has been already visited on the path.

Informally, this algorithm attempts to extend the multiset of results by one
 application of
 path at each step, noting which nodes it has visited
 for this particular path. If a node has been visited for the path
 under consideration, it is not a candidate for another step.
Definition: [bookmark: defn_evalALP_1]Function ALP
Let eval(x:term, path) be the evaluation of 'path', starting at RDF term x,
 and returning a multiset of RDF terms reached
 by repeated matches of path.

ALP(x:term, path) =
 Let V = empty multiset
 ALP(x:term, path, V)
 return is V

V is the set of nodes visited

ALP(x:term, path, V:set of RDF terms) =
 if (x in V) return
 add x to V
 X = eval(x,path)
 For n:term in X
 ALP(n, path, V)
 End

Definition: Evaluation of [bookmark: defn_evalZeroOrMorePath]ZeroOrMorePath
eval(Path(X:term, ZeroOrMorePath(path), vy:var)) =
 { { (vy, n) } | n in ALP(X, path) }

eval(Path(vx:var, ZeroOrMorePath(path), vy:var)) =
 { { (vx, t), (vy, n) } | t in nodes(G), (vy, n) in eval(Path(t, ZeroOrMorePath(path), vy)) }

eval(Path(vx:var, ZeroOrMorePath(path), y:term)) =
 eval(Path(y:term, ZeroOrMorePath(inv(path)), vx:var))

eval(Path(x:term, ZeroOrMorePath(path), y:term)) =
 { { } } if { (vy:var,y) } in eval(Path(x, ZeroOrMorePath(path) vy)
 { } otherwise
	

Definition: Evaluation of [bookmark: defn_evalOneOrMorePath]OneOrMorePath
eval(Path(X, OneOrMorePath(path), Y))
For OneOrMorePath, we take one step of the path then start
recording nodes for results.

eval(Path(x:term, OneOrMorePath(path), vy:var)) =
 Let X = eval(x, path)
 Let V = the empty multiset
 For n in X
 ALP(n, path, V)
 End
 result is V

eval(Path(vx:var, OneOrMorePath(path), vy:var)) =
 { { (vx, t), (vy, n) } | t in nodes(G), (vy, n) in eval(Path(t, OneOrMorePath(path), vy)) }

eval(Path(vx:var, OneOrMorePath(path), y:term)) =
 eval(Path(y:term, OneOrMorePath(inv(path)), vx))

eval(Path(x:term, OneOrMorePath(path), y:term)) =
 { { } } if { (vy:var, y) } in eval(Path(x, OneOrMorePath(path), vy))
 { } otherwise
	

Definition: [bookmark: eval_negatedPropertySet]Evaluation of NegatedPropertySet
Write μ' as the extension of a solution mapping:
μ'(μ,x) = μ(x) if x is a variable
μ'(μ,t) = t if t is a RDF term
	
Let x and y be variables or RDF terms, and S a set of IRIs:

eval(Path(x, NPS(S), y)) = { μ | ∃ triple(μ'(μ,x), p, μ'(μ,y)) in G, such that the IRI of p ∉ S }
	

[bookmark: sparqlAlgebra]18.5 SPARQL Algebra

	 For each remaining symbol in a SPARQL abstract query, we define an operator for
	 evaluation. The SPARQL algebra operators of the same name are
	 used to evaluate SPARQL abstract query nodes as described in the section
	 "Evaluation Semantics".
	 Evaluation of basic graph patterns and property path patterns
	 has been described above.
	
Definition: [bookmark: defn_algFilter]Filter
Let Ω be a multiset of solution mappings and expr be an expression. We define:
Filter(expr, Ω, D(G)) = { μ | μ in Ω and expr(μ) is an expression that has an
 effective boolean value of true }
card[Filter(expr, Ω, D(G))](μ) = card[Ω](μ)

	 Note that evaluating an exists(pattern) expression uses the dataset and active graph, D(G).
	 See the evaluation of filter.
	

Definition: [bookmark: defn_algJoin]Join
Let Ω1 and Ω2 be multisets of solution mappings. We define:
Join(Ω1, Ω2) = { merge(μ1, μ2) | μ1
 in Ω1and μ2 in Ω2, and μ1 and μ2 are
 compatible }
card[Join(Ω1, Ω2)](μ) =

 for each merge(μ1, μ2), μ1
 in Ω1and μ2 in Ω2 such that μ = merge(μ1, μ2),

 sum over (μ1, μ2), card[Ω1](μ1)*card[Ω2](μ2)

It is possible that a solution mapping μ in a Join can arise in different
 solution mappings, μ1and μ2 in the multisets being
 joined. The cardinality of μ is the sum of the cardinalities from all
 possibilities.
Definition: [bookmark: defn_algDiff]Diff
Let Ω1 and Ω2 be multisets of solution mappings
	 and expr be an expression. We define:
Diff(Ω1, Ω2, expr) =
 { μ | μ in Ω1 such that ∀ μ′ in Ω2,
 either μ and μ′ are not compatible or μ and μ'
 are compatible and expr(merge(μ, μ')) has an effective boolean value
 of false }
card[Diff(Ω1, Ω2, expr)](μ) = card[Ω1](μ)

Diff is used internally for the definition of LeftJoin.
Definition: [bookmark: defn_algLeftJoin]LeftJoin
Let Ω1 and Ω2 be multisets of solution mappings and
 expr be an expression. We define:
LeftJoin(Ω1, Ω2, expr) = Filter(expr, Join(Ω1,
 Ω2)) ∪ Diff(Ω1, Ω2, expr)
card[LeftJoin(Ω1, Ω2, expr)](μ) = card[Filter(expr,
 Join(Ω1, Ω2))](μ) + card[Diff(Ω1, Ω2,
 expr)](μ)

Written in full that is:
LeftJoin(Ω1, Ω2, expr) =

 { merge(μ1, μ2) | μ1 in Ω1 and μ2 in
 Ω2, μ1 and μ2 are compatible and expr(merge(μ1,
 μ2)) is true }

 ∪

 { μ1 | μ1 in Ω1, ∀ μ2 in Ω2,
 μ1 and μ2 are not compatible, or Ω2 is empty }

 ∪

 { μ1 | μ1 in Ω1, ∃ μ2 in Ω2,
 μ1 and μ2 are compatible and expr(merge(μ1, μ2)) is false. }
As these are distinct, the cardinality of LeftJoin is cardinality of these individual
 components of the definition.
Definition: [bookmark: defn_algUnion]Union
Let Ω1 and Ω2 be multisets of solution mappings. We define:
Union(Ω1, Ω2) = { μ | μ in Ω1 or μ in
 Ω2 }
card[Union(Ω1, Ω2)](μ) = card[Ω1](μ) + card[Ω2](μ)

Definition: [bookmark: defn_algMinus]Minus
Let Ω1 and Ω2 be multisets of solution mappings. We define:
Minus(Ω1, Ω2) =
 { μ | μ in Ω1 . ∀ μ' in Ω2,
 either μ and μ' are not compatible or dom(μ) and dom(μ') are disjoint }
card[Minus(Ω1, Ω2)](μ) = card[Ω1](μ)

The additional restriction on dom(μ) and dom(μ') is added because otherwise
 if there is a solution mapping in Ω2 that has no variables in
 common with the solution mappings of Ω1, then
 Minus(Ω1, Ω2) would be empty, regardless of
 the rest of Ω2. The empty solution mapping is compatible
 with every other solution mapping so P MINUS {} would otherwise
	be empty for any pattern P.
Definition: [bookmark: defn_extend]ExtendLet μ be a
 solution mapping, Ω a multiset of solution mappings, var a variable
 and expr be an expression, then we define:
Extend(μ, var, expr) = μ ∪ { (var,value) | var not in dom(μ) and value
	 = expr(μ) }
Extend(μ, var, expr) = μ if var not in dom(μ) and expr(μ) is an
	 error
Extend is undefined when var in dom(μ).
Extend(Ω, var, expr) = { Extend(μ, var, expr) | μ in Ω }

Write [x | C] for a sequence of elements where C is a condition on x.
Write card[L](x) to be the cardinality of x in L.
Definition: [bookmark: defn_algToList]ToListLet Ω be a multiset of solution mappings. We define:
ToList(Ω) = a sequence of mappings μ in Ω in any order, with card[Ω](μ) occurrences of
 μ
card[ToList(Ω)](μ) = card[Ω](μ)

Definition: [bookmark: defn_algOrdered]OrderByLet Ψ be a sequence of solution mappings. We define:
[bookmark: defn_algOrderBy]OrderBy(Ψ, condition) = [μ | μ in Ψ and the
 sequence satisfies the ordering condition]
card[OrderBy(Ψ, condition)](μ) =
 card[Ψ](μ)

Definition: [bookmark: defn_algProjection]ProjectLet Ψ be a sequence of solution mappings and PV a set of variables.
For mapping μ, write Proj(μ, PV) to be the restriction of μ to variables in
 PV.
Project(Ψ, PV) = [Proj(Ψ[μ], PV) | μ in Ψ]
card[Project(Ψ, PV)](μ) = card[Ψ](μ)
The order of Project(Ψ, PV) must preserve any ordering given by OrderBy.

Definition: [bookmark: defn_algDistinct]DistinctLet Ψ be a sequence of solution mappings. We define:
Distinct(Ψ) = [μ | μ in Ψ]
card[Distinct(Ψ)](μ) = 1
The order of Distinct(Ψ) must preserve any ordering given by OrderBy.

Definition: [bookmark: defn_algReduced]ReducedLet Ψ be a sequence of solution mappings. We define:
Reduced(Ψ) = [μ | μ in Ψ]
card[Reduced(Ψ)](μ) is between 1 and card[Ψ](μ)
The order of Reduced(Ψ) must preserve any ordering given by OrderBy.

The Reduced solution sequence modifier does not guarantee a defined cardinality.
Definition: [bookmark: defn_algSlice]SliceLet Ψ be a sequence of solution mappings. We define:
[bookmark: defn_algOrderBy2]Slice(Ψ, start, length)[i] = Ψ[start+i] for i = 0
 to (length-1)

Definition: [bookmark: defn_algToMultiSet]ToMultiSetLet Ψ be a solution sequence. We define:
ToMultiSet(Ψ) = { μ | μ in Ψ }
card[ToMultiSet(Ψ)](μ) = card[Ψ](μ)

ListEval is a function which is used to evaluate a list of expressions against a solution and return a list of the resulting values.
[bookmark: defn_algToMultiset]Definition: ToMultiset
ToMultiset turns a sequence into a multiset with the same elements and cardinality as the sequence. The order of the sequence has no effect on the resulting multiset, and duplicates are preserved.

Definition: [bookmark: defn_exists]Exists
exists(pattern) is a function that returns true if the pattern
 evaluates
 to a non-empty solution sequence, given the current solution mapping and active graph
	 at the time of evaluation; otherwise it returns false.

[bookmark: aggregateAlgebra]18.5.1 Aggregate Algebra
Group is a function which groups a solution sequence into multiple solutions, based on some attribute of the solutions.
[bookmark: defn_algGroup]Definition: Group
Group evaluates a list of expressions against a solution sequence, producing a set of partial functions from keys to solution sequences.
Group(exprlist, Ω) = { ListEval(exprlist, μ) → { μ' | μ' in Ω, ListEval(exprlist, μ) = ListEval(exprlist, μ') } | μ in Ω }

Definition: ListEval
ListEval((expr1, ..., exprn), μ) returns a list (e1, ..., en), where ei = expri(μ) or error.
ListEval retains errors resulting from the evaluation of the list elements.

Note that, although the result of a ListEval can be an error, and errors may be used to group, solutions containing error values are removed at projection time.
ListEval((unbound), μ) = (error), as the evaluation of an unbound expression is an error.
Aggregation, a function which calculates a scalar value as an output of the aggregate expression. It is used in the SELECT clause, the HAVING evaluation process, and in ORDER BY (where required). Aggregation calculates aggregated values over groups of solutions, using set functions.
[bookmark: defn_algAggregation]Definition: Aggregation
Let exprlist be a list of expressions or *, func a set function,
scalarvals a set of partial functions (possibly empty) passed from the
aggregate in the query, and let { key1→Ω1, ..., keym→Ωm
} be a multiset of partial functions from keys to solution sequences
as produced by the grouping step.
Aggregation applies the set function func to the given multiset and produces a single value for each key and partition of solutions for that key.
Aggregation(exprlist, func, scalarvals, { key1→Ω1, ..., keym→Ωm })

 = { (key, F(Ω)) | key → Ω in { key1→Ω1, ..., keym→Ωm } }
where

 M(Ω) = { ListEval(exprlist, μ) | μ in Ω }

 F(Ω) = func(M(Ω), scalarvals), for non-DISTINCT

 F(Ω) = func(Distinct(M(Ω)), scalarvals), for DISTINCT
Special Case: when COUNT is used with the expression * the value of F
will be the cardinality of the group solution sequence,
card[Ω], or card[Distinct(Ω)] if the DISTINCT keyword is
present.

scalarvals are used to pass values to the underlying set function,
bypassing the mechanics of the grouping. For example, the aggregate
expression GROUP_CONCAT(?x ; separator="|") has a scalarvals argument
of { "separator" → "|" }.
All aggregates may have the DISTINCT
keyword as the first token in their argument list. If this keyword is
present then first argument to func is Distinct(M).
Example
Given a solution multiset (Ω) with the following values:
	solution	?x	?y	?z
	μ1	1	2	3
	μ2	1	3	4
	μ3	2	5	6

And the query expression SELECT (ex:agg(?y, ?z) AS ?agg) WHERE { ?x ?y ?z } GROUP BY ?x.
We produce G = Group((?x), Ω) = { ((1), { μ1, μ2 }), ((2), { μ3 }) }
And so Aggregation((?y, ?z), ex:agg, {}, G) =

 { ((1), eg:agg({(2, 3), (3, 4)}, {})), ((2), eg:agg({(5, 6)}, {})) }.
Definition: AggregateJoin
Let S1, ..., Sn be a list of sets, where each set Si contains key
to (aggregated) value maps as produced by Aggregate.
Let K = { key | key in dom(Sj) for some 1 <= j <= n } be the set of keys, then
AggregateJoin(S1, ..., Sn) = { agg1→val1, ..., aggn→valn | key in K and key→vali in Si for each 1 <= i <= n }

Flatten is a function which is used to collapse multisets of lists into a multiset, so for example { (1, 2), (3, 4) } becomes { 1, 2, 3, 4 }.
Definition: Flatten
The Flatten(M) function takes a multiset of lists, M {(L1, L2, ...), ...}, and returns the multiset { x | L in M and x in L }.

[bookmark: setFunctions]18.5.1.1 Set Functions
The set functions which underlie SPARQL aggregates all have a common
signature: SetFunc(M), or SetFunc(M, scalarvals) where M is a multiset
of lists, and scalarvals is one or more scalar values that are passed to the
set function indirectly via the (... ; key=value) syntax for aggregates in the SPARQL grammar. The only use of this that is supported by the built-in aggregates in SPARQL Query 1.1 is GROUP_CONCAT, as in GROUP_CONCAT(?x ; separator=", ").
Note that the name "Set Function" is somewhat historical — the arguments to set functions are in fact multisets. The name is retained due to the commonality with SQL Set Functions, which also operate over multisets.
The set functions defined in this document are Count, Sum, Min, Max, Avg, GroupConcat, and Sample — corresponding to the aggregates COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE. Definitions may be found in the following sections. Systems may choose to expand this set using local extensions, using the same notation as for functions and casts. Note that, unless the ; separator is used this requires the parser to know whether some IRI refers to a function, cast, or aggregate before it can determine if there are any errors in a query where aggregates are used.

[bookmark: defn_aggCount]18.5.1.2 Count
Count is a SPARQL set function which counts the number of times a given expression has a bound, and non-error value within the aggregate group.
Definition: Count
xsd:integer Count(multiset M)N = Flatten(M)
remove error elements from N
Count(M) = card[N]

[bookmark: defn_aggSum]18.5.1.3 Sum
Sum is a SPARQL set function that will return the numeric value obtained
by summing the values within the aggregate group. Type promotion happens as per
the op:numeric-add function, applied transitively, (see definition below) so the
value of SUM(?x), in an aggregate group where ?x has values 1 (integer), 2.0e0
(float), and 3.0 (decimal) will be 6.0 (float).
Definition: Sum
numeric Sum(multiset M)The Sum set function is used by the SUM aggregate in the syntax.
Sum(M) = Sum(ToList(Flatten(M))).
Sum(S) = op:numeric-add(S1, Sum(S2..n)) when card[S] > 1

 Sum(S) = op:numeric-add(S1, 0) when card[S] = 1

 Sum(S) = "0"^^xsd:integer when card[S] = 0
In this way, Sum({1, 2, 3}) = op:numeric-add(1, op:numeric-add(2, op:numeric-add(3, 0))).

[bookmark: defn_aggAvg]18.5.1.4 Avg
[bookmark: defn_algAvg]The Avg set function calculates the average value for an expression over
a group. It is defined in terms of Sum and Count.
Definition: Avg
numeric Avg(multiset M)Avg(M) = "0"^^xsd:integer, where Count(M) = 0
Avg(M) = Sum(M) / Count(M), where Count(M) > 0

For example, Avg({1, 2, 3}) = Sum({1, 2, 3})/Count({1, 2, 3}) = 6/3 = 2.

[bookmark: defn_aggMin]18.5.1.5 Min
Min is a SPARQL set functions that returns the minimum value from a group respectively.
It makes use of the SPARQL ORDER BY ordering definition, to allow ordering over arbitrarily typed expressions.
Definition: Min
term Min(multiset M)Min(M) = Min(ToList(Flatten(M)))
Min({}) = error.
The flattened multiset of values passed as an argument is converted to a sequence S, this sequence is ordered as per the ORDER BY ASC clause.
Min(S) = S0

[bookmark: defn_aggMax]18.5.1.6 Max
Max is a SPARQL set function that return the maximum value from a group respectively.
It makes use of the SPARQL ORDER BY ordering definition, to allow ordering over arbitrarily typed expressions.
Definition: Max
term Max(multiset M)Max(M) = Max(ToList(Flatten(M)))
Max({}) = error.
The multiset of values passed as an argument is converted to a sequence S, this sequence is ordered as per the ORDER BY DESC clause.
Max(S) = S0

[bookmark: defn_aggGroupConcat]18.5.1.7 GroupConcat
GroupConcat is a set function which performs a string concatenation
across the values of an expression with a group. The order of the strings is
not specified. The separator character used in the concatenation may be given
with the scalar argument SEPARATOR.
Definition: GroupConcat
literal GroupConcat(multiset M)If the "separator" scalar argument is absent from GROUP_CONCAT then it is taken to be the "space" character, unicode codepoint U+0020.
The multiset of values, M passed as an argument is converted to a sequence S.
GroupConcat(M, scalarvals) = GroupConcat(Flatten(M), scalarvals("separator"))
GroupConcat(S, sep) = "", where |S| = 0
GroupConcat(S, sep) = CONCAT("", S0), where |S| = 1
GroupConcat(S, sep) = CONCAT(S0, sep, GroupConcat(S1..n-1, sep)), where |S| > 1

For example, GroupConcat({"a", "b", "c"}, {"separator" → "."}) = "a.b.c".

[bookmark: defn_aggSample]18.5.1.8 Sample
Sample is a set function which returns an arbitrary value from the multiset passed to it.
Definition: Sample
RDFTerm Sample(multiset M)Sample(M) = v, where v in Flatten(M)
Sample({}) = error

For example, given Sample({"a", "b", "c"}), "a", "b", and "c" are all valid return values. Note that Sample() is not required to be deterministic for a given input, the only restriction is that the output value must be present in the input multiset.

[bookmark: sparqlAlgebraEval]18.6 Evaluation Semantics
We define eval(D(G), algebra expression) as the evaluation of an algebra expression
	with respect to a dataset D having active
 graph G. The active graph is initially the default graph.
D : a dataset
D(G) : D a dataset with active graph G (the one patterns match against)
D[i] : The graph with IRI i in dataset D
P, P1, P2 : graph patterns
L : a solution sequence
F : an expression
Definition: [bookmark: defn_evalBasicGraphPattern]Evaluation of a Basic Graph Patterneval(D(G), BGP) = multiset of solution mappings
See section Basic Graph Patterns

Definition: [bookmark: defn_evalPropertyPathPattern]Evaluation of a Property Path Patterneval(D(G), Path(X, path, Y)) = multiset of solution mappings
See section Property Path Expresions

Definition: [bookmark: defn_evalFilter]Evaluation of Filtereval(D(G), Filter(F, P)) = Filter(F, eval(D(G),P), D(G))

'substitute' is a filter function in support of the evaluation of
	 EXISTS and NOT EXISTS
	 forms which were translated to exists.
	
Definition: [bookmark: defn_substitute]Substitute
Let μ be a solution mapping.

	 substitute(pattern, μ) = the pattern formed by replacing every
	 occurrence of a variable v in pattern by μ(v) for each v in dom(μ)

	

Definition: [bookmark: defn_evalExists]Evaluation of Exists
Let μ be the current solution mapping for a filter and P a graph pattern:

	 The value exists(P), given D(G) is true if and only if eval(D(G), substitute(P, μ)) is a non-empty sequence.
	

Definition: [bookmark: defn_evalJoin]Evaluation of Joineval(D(G), Join(P1, P2)) = Join(eval(D(G), P1), eval(D(G), P2))

Definition: [bookmark: defn_evalLeftJoin]Evaluation of LeftJoineval(D(G), LeftJoin(P1, P2, F)) = LeftJoin(eval(D(G), P1), eval(D(G), P2), F)

Definition: [bookmark: defn_evalUnion]Evaluation of Unioneval(D(G), Union(P1,P2)) = Union(eval(D(G), P1), eval(D(G), P2))

Definition: [bookmark: defn_evalGraph]Evaluation of Graphif IRI is a graph name in D
eval(D(G), Graph(IRI,P)) = eval(D(D[IRI]), P)
if IRI is not a graph name in D
eval(D(G), Graph(IRI,P)) = the empty multiset
eval(D(G), Graph(var,P)) =
 Let R be the empty multiset
 foreach IRI i in D
 R := Union(R, Join(eval(D(D[i]), P) , Ω(?var->i))
 the result is R

The evaluation of graph uses the SPARQL algebra union operator. The
 cardinality of a solution mapping is the sum of the cardinalities of that
 solution mapping in each join operation.
[bookmark: defn_evalGroup]Definition: Evaluation of Group
eval(D(G), Group(exprlist, P)) = Group(exprlist, eval(D(G), P))

[bookmark: defn_evalAggregation]Definition: Evaluation of Aggregation
eval(D(G), Aggregation(exprlist, func, scalarvals, P)) = Aggregation(exprlist, func, scalarvals, eval(D(G), P))

[bookmark: defn_evalAggregateJoin]Definition: Evaluation of AggregateJoin
eval(D(G), AggregateJoin(A1, ..., An)) = AggregateJoin(eval(D(G), A1), ..., eval(D(G), An))

Note that if eval(D(G), Ai) is an error, it is ignored.
Definition: [bookmark: defn_evalExtend]Evaluation of Extendeval(D(G), Extend(P, var, expr)) = Extend(eval(D(G), P), var, expr)

Definition: [bookmark: defn_evalList]Evaluation of ToListeval(D(G), ToList(P)) = ToList(eval(D(G), P))

Definition: [bookmark: defn_evalDistinct]Evaluation of Distincteval(D(G), Distinct(L)) = Distinct(eval(D(G), L))

Definition: [bookmark: defn_evalReduced]Evaluation of Reducedeval(D(G), Reduced(L)) = Reduced(eval(D(G), L))

Definition: [bookmark: defn_evalProject]Evaluation of Projecteval(D(G), Project(L, vars)) = Project(eval(D(G), L), vars)

Definition: [bookmark: defn_evalOrderBy]Evaluation of OrderByeval(D(G), OrderBy(L, condition)) = OrderBy(eval(D(G), L), condition)

Definition: [bookmark: defn_evalToMultiSet]Evaluation of ToMultiSeteval(D(G), ToMultiSet(L)) = ToMultiSet(eval(D), M))

Definition: [bookmark: defn_evalSlice]Evaluation of Sliceeval(D(G), Slice(L, start, length)) = Slice(eval(D(G), L), start, length)

[bookmark: sparqlBGPExtend]18.7 Extending SPARQL Basic Graph Matching
The overall SPARQL design can be used for queries
 which assume a more elaborate form of entailment than simple
 entailment, by re-writing the matching conditions for basic graph
 patterns. Since it is an open research problem to state such
 conditions in a single general form which applies to all forms of
 entailment and optimally eliminates needless or inappropriate
 redundancy, this document only gives necessary conditions which any
 such solution should satisfy. These will need to be extended to full
 definitions for each particular case.
Basic graph patterns stand in the same relation to triple patterns
 that RDF graphs do to RDF triples, and much of the same terminology
 can be applied to them. In particular, two basic graph patterns are
 said to be equivalent if there is a bijection M between the
 terms of the triple patterns that maps blank nodes to blank nodes and
 maps variables, literals and IRIs to themselves, such that a triple (
 s, p, o) is in the first pattern if and only if the triple (M(s),
 M(p), M(o)) is in the second. This definition extends that for RDF
 graph equivalence to basic graph patterns by preserving variable
 names across equivalent patterns.
An entailment regime specifies
	a subset of RDF graphs called well-formed for the regime
	an entailment relation between subsets of well-formed graphs
 and well-formed graphs.

Detailed definitions for querying various entailment regimes can be found in
	SPARQL 1.1 Entailment Regimes.
	
Some entailment regimes can categorize some RDF
 graphs as inconsistent. For example, the RDF graph:
_:x rdf:type xsd:string .
_:x rdf:type xsd:decimal .
is D-inconsistent when D contains the XSD datatypes. The effect of a query
 on an inconsistent graph is not
 covered by this specification, but must be specified by the particular
 SPARQL extension.
An entailment regime E must provide conditions on basic graph pattern
 evaluation such that for any basic graph pattern BGP, any RDF graph G,
 and any evaluation that satisfies the conditions, the resulting
 multiset of solutions is uniquely determined up to RDF graph
 equivalence. We denote the multiset of solutions from evaluating BGP
 over G using E with Eval-E(G, BGP).

 An entailment regime must further satisfy the following conditions:
	For any E-consistent active graph AG, the entailment regime E uniquely
 specifies a scoping graph SG that is
 E-equivalent to AG.
	A set of well-formed graphs for E is specified such that, for any
 basic graph pattern BGP, scoping graph SG, and solution mapping μ in
 Eval-E(SG, BGP), the graph μ(BGP) is well-formed for E.
	For any basic graph pattern BGP and scoping graph SG, if μ1,
 ..., μn in Eval-E(SG, BGP) and BGP1, ...,
 BGPn are basic graph patterns all equivalent to BGP but not
 sharing any blank nodes with each other or with SG, then

 SG E-entails (SG union μ1(BGP1) union ...
 union μn(BGPn))

 These conditions do not fully determine the set of possible answers, since
 RDF allows unlimited amounts of redundancy. In addition, therefore, the
 following must hold.

	 Entailment regimes should provide conditions to prevent trivial
 infinite solution multisets as appropriate to the regime.

[bookmark: sparqlBGPExtend-notes]18.7.1 Notes
(a) SG will often be graph equivalent to AG, but restricting this to
 E-equivalence allows some forms of normalization, for example elimination of
 semantic redundancies, to be applied to the source documents before querying.

(b) The construction in condition 3 ensures that any blank nodes introduced
 by the solution mapping are used in a way which is internally consistent with the
 way that blank nodes occur in SG. This ensures that blank node identifiers occur
 in more than one answer in an answer set only when the blank nodes so identified
 are indeed identical in SG. If the extension does not allow bindings to
 blank nodes, then this condition can be simplified to the condition:

 SG E-entails μ(BGP) for each solution mapping μ.

(c) These conditions do not impose the SPARQL requirement that SG shares no
 blank nodes with AG or BGP. In particular, it allows SG to actually be AG. This
 allows query protocols in which blank node identifiers retain their meaning
 between the query and the source document, or across multiple queries. Such
 protocols are not supported by the current SPARQL protocol specification,
 however.
(d) Since conditions 1 to 3 are only necessary conditions on answers,
 condition 4 allows cases where the set of legal answers can be restricted in
 various ways.
	
(e) None of these conditions refer explicitly to instance mappings on blank
 nodes in BGP. For some entailment regimes, the existential interpretation of
 blank nodes cannot be fully captured by the existence of a single instance
 mapping. These conditions allow such regimes to give blank nodes in query
 patterns a 'fully existential' reading.
It is straightforward to show that SPARQL satisfies these conditions for the
 case where E is simple entailment, given that the SPARQL condition on SG is that
 it is graph-equivalent to AG but shares no blank nodes with AG or BGP (which
 satisfies the first condition). The only condition which is nontrivial is (3).

For every solution mapping μi, there is, by definition of
 basic graph pattern matching, an RDF instance mapping σi such
 that Pi(BGPi) is a subgraph of SG where Pi is
 the pattern instance mapping composed of μi and σi.
 Since BGPi and SG have no blank nodes in common, the ranges of
 σi and μi contain no blank nodes from BGPi;
 therefore, the solution mapping μi and the RDF instance mapping
 σi of Pi commute, so Pi(BGPi)
 = σi(μi(BGPi)). So
P1(BGP1) union ... union Pn(BGPn)

= σ1(μ1(BGP1)) union ... union
 σn(μn(BGPn))

= [σ1 + ... + σn](
 μ1(BGP1) union ... union
 μn(BGPn))
since the domains of the σi RDF instance mappings are all mutually
 exclusive. Since they are also exclusive from SG,
SG union [σ1 + ... + σn](
 μ1(BGP1) union ... union μn(BGPn))

= [σ1 + ... + σn](SG union
 μ1(BGP1) union ... union μn(BGPn))
i.e.
SG union μ1(BGP1) union ... union
 μn(BGPn)
has an instance which is a subgraph of SG, so is simply entailed by SG by the RDF interpolation lemma
 [RDF-MT].

[bookmark: grammar]19 SPARQL Grammar
The SPARQL grammar covers both SPARQL Query and
 SPARQL Update.

[bookmark: queryString]19.1 SPARQL Request String
A [bookmark: defn_SPARQLRequestString]SPARQL Request String
	is a SPARQL Query String or SPARQL Update String and it is a Unicode character string
	(c.f. section 6.1 String concepts of [CHARMOD])
	in the language defined by the following grammar.
A [bookmark: defn_SPARQLQueryString]SPARQL Query String
	start at the QueryUnit production.
A [bookmark: defn_SPARQLUpdateString]SPARQL Update String
	start at the UpdateUnit production.

	 For compatibility with future versions of
	 Unicode, the characters in this string may
	 include Unicode codepoints that are unassigned
	 as of the date of this publication (see
	 Identifier
	 and Pattern Syntax [UNIID] section 4 Pattern Syntax).
	 For productions with excluded character classes
	 (for example [^<>'{}|^`]),
	 the characters are excluded from the range
	#x0 - #x10FFFF.

[bookmark: codepointEscape]19.2 Codepoint Escape Sequences
A SPARQL Query String is processed for codepoint escape sequences before parsing
by the grammar defined in EBNF below. The codepoint escape sequences for a SPARQL
query string are:
[bookmark: table68]	Escape	Unicode code point
	'\u' HEX
 HEX HEX HEX	A Unicode code point in the range U+0 to U+FFFF inclusive corresponding
 to the encoded hexadecimal value.
	'\U' HEX
 HEX HEX HEX
 HEX HEX HEX
 HEX	A Unicode code point in the range U+0 to U+10FFFF inclusive corresponding
 to the encoded hexadecimal value.

where HEX is a hexadecimal character

 [bookmark: HEX]HEX ::= [0-9] | [A-F] | [a-f]

Examples:
<ab\u00E9xy> # Codepoint 00E9 is Latin small e with acute - é
\u03B1:a # Codepoint x03B1 is Greek small alpha - α
a\u003Ab # a:b -- codepoint x3A is colon
Codepoint escape sequences can appear anywhere in the query string. They are
processed before parsing based on the grammar rules and so may be replaced by codepoints
with significance in the grammar, such as ":" marking a prefixed name.

These escape sequences are not included in the grammar below. Only escape sequences
for characters that would be legal at that point in the grammar may be given. For
example, the variable "?x\u0020y" is not legal (\u0020
is a space and is not permitted in a variable name).

[bookmark: whitespace]19.3 White Space
White space (production WS)
is used to separate two terminals which would otherwise be (mis-)recognized as one
terminal. Rule names below in capitals indicate where white space is significant;
these form a possible choice of terminals for constructing a SPARQL parser. White
space is significant in strings. Otherwise, white space is ignored between tokens.
For example:

 ?a<?b&&?c>?d

is the token sequence variable '?a', an IRI '<?b&&?c>',
and variable '?d', not a expression involving the operator '&&'
connecting two expression using '<' (less than) and '>' (greater than).

[bookmark: grammarComments]19.4 Comments
Comments in SPARQL queries take the form of '#', outside an IRI
or string, and continue to the end of line (marked by characters 0x0D
or 0x0A) or end of file if there is no end of line after the comment
marker. Comments are treated as white space.

[bookmark: iriRefs]19.5 IRI References
Text matched by the IRIREF
production and PrefixedName (after
prefix expansion) production, after escape processing, must conform to the generic
syntax of IRI references in section 2.2 of RFC 3987 "ABNF for IRI References and
IRIs" [RFC3987]. For example, the
IRIREF <abc#def> may occur in a
SPARQL query string, but the IRIREF
<abc##def> must not.
Base IRIs declared with the BASE keyword must be absolute
IRIs. A prefix declared with the PREFIX keyword may not
be re-declared in the same query. See section 4.1.1, Syntax
of IRI Terms, for a description of BASE and
PREFIX.

[bookmark: grammarBNodes]19.6 Blank Nodes and Blank Node Labels
Blank nodes can not be used in:
	DELETE WHERE
	DELETE DATA
	a DeleteClause

in a
	 SPARQL Update request.
	
Blank node labels are scoped to the
	 SPARQL Request String
	 in which they occur. Different uses of the same blank node label in a
	 request string refer to the same blank node. Fresh blank nodes are generated for
	 each request; blank nodes can not be referenced by label across requests.
	
The same blank node label can not be used in:
	two basic graph patterns in a SPARQL Query
	two WHERE clauses
	 within a single SPARQL Update request
	two INSERT DATA
	 operations within a single SPARQL Update request

Note that the same blank node label can occur in different
	 QuadPattern clauses
	 in a SPARQL Update request.
	

[bookmark: grammarEscapes]19.7 Escape sequences in strings
In addition to the codepoint escape sequences, the following escape sequences
any string production (e.g.
STRING_LITERAL1,
STRING_LITERAL2,
STRING_LITERAL_LONG1,
STRING_LITERAL_LONG2):
	Escape	Unicode code point
	'\t'	U+0009 (tab)
	'\n'	U+000A (line feed)
	'\r'	U+000D (carriage return)
	'\b'	U+0008 (backspace)
	'\f'	U+000C (form feed)
	'\"'	U+0022 (quotation mark, double quote mark)
	"\'"	U+0027 (apostrophe-quote, single quote mark)
	'\\'	U+005C (backslash)

Examples:
"abc\n"
"xy\rz"
'xy\tz'

[bookmark: sparqlGrammar]19.8 Grammar
The EBNF notation used in the grammar is defined in Extensible Markup Language
	 (XML) 1.1 [XML11] section 6
	 Notation.
Notes:
	Keywords are matched in a case-insensitive manner with the exception of the keyword
	 'a' which, in line with Turtle and N3, is used in place of the IRI
	 rdf:type (in full,
	 http://www.w3.org/1999/02/22-rdf-syntax-ns#type).
	Escape sequences are case sensitive.
	When tokenizing the input and choosing grammar rules, the longest match is chosen.
	The SPARQL grammar is LL(1) when the rules with uppercased names are used as
	 terminals.
	There are two entry points into the grammar: QueryUnit for SPARQL queries,
	 and UpdateUnit for SPARQL Update requests.
	
	In signed numbers, no white space is allowed between the sign and the
	 number. The AdditiveExpression grammar rule
	 allows for this by covering the two cases of an expression followed by a
	 signed number. These produce an addition or subtraction of the unsigned
	 number as appropriate.
	The tokens INSERT DATA, DELETE DATA, DELETE WHERE allow any amount of
	 white space between the words. The single space version is used in the grammar for clarity.
	
	
	 The
	 QuadData and
	 QuadPattern
	 rules both use rule Quads.
	 The rule QuadData,
	 used in
	 INSERT DATA
	 and
	 DELETE DATA,
	 must not allow variables in the quad patterns.
	
	
	 Blank node syntax is not allowed in
	 DELETE WHERE,
	 the DeleteClause
	 for DELETE, nor in
	 DELETE DATA.
	
	
	 Rules for limiting the use of blank node labels are given in section 19.6.
	
	
	 The number of variables in the variable list of
	 VALUES block
	 must be the same as the number of each list of associated values in the
	 DataBlock.
	
	
	 Variables introduced by AS in a SELECT clause
	 must not already be in-scope.
	
	
	 The variable assigned in a BIND clause must not be already
	 in-use within the immediately preceding
	 TriplesBlock within a
	 GroupGraphPattern.
	
	
	 Aggregate functions can be one of the
	 built-in keywords for aggregates or
	 a custom aggregate, which is syntactically a
	 function call.
	 Aggregate functions may only be used in SELECT,
	 HAVING and
	 ORDER BY clauses.
	
	
	 Only custom aggregate functions use the DISTINCT keyword
	 in a function call.
	

	[1] 	[bookmark: rQueryUnit]QueryUnit	 ::= 	Query
	[2] 	[bookmark: rQuery]Query	 ::= 	Prologue
(SelectQuery | ConstructQuery | DescribeQuery | AskQuery)
ValuesClause
	[3] 	[bookmark: rUpdateUnit]UpdateUnit	 ::= 	Update
	[4] 	[bookmark: rPrologue]Prologue	 ::= 	(BaseDecl | PrefixDecl)*
	[5] 	[bookmark: rBaseDecl]BaseDecl	 ::= 	'BASE' IRIREF
	[6] 	[bookmark: rPrefixDecl]PrefixDecl	 ::= 	'PREFIX' PNAME_NS IRIREF
	[7] 	[bookmark: rSelectQuery]SelectQuery	 ::= 	SelectClause DatasetClause* WhereClause SolutionModifier
	[8] 	[bookmark: rSubSelect]SubSelect	 ::= 	SelectClause WhereClause SolutionModifier ValuesClause
	[9] 	[bookmark: rSelectClause]SelectClause	 ::= 	'SELECT' ('DISTINCT' | 'REDUCED')? ((Var | ('(' Expression 'AS' Var ')'))+ | '*')
	[10] 	[bookmark: rConstructQuery]ConstructQuery	 ::= 	'CONSTRUCT' (ConstructTemplate DatasetClause* WhereClause SolutionModifier | DatasetClause* 'WHERE' '{' TriplesTemplate? '}' SolutionModifier)
	[11] 	[bookmark: rDescribeQuery]DescribeQuery	 ::= 	'DESCRIBE' (VarOrIri+ | '*') DatasetClause* WhereClause? SolutionModifier
	[12] 	[bookmark: rAskQuery]AskQuery	 ::= 	'ASK' DatasetClause* WhereClause SolutionModifier
	[13] 	[bookmark: rDatasetClause]DatasetClause	 ::= 	'FROM' (DefaultGraphClause | NamedGraphClause)
	[14] 	[bookmark: rDefaultGraphClause]DefaultGraphClause	 ::= 	SourceSelector
	[15] 	[bookmark: rNamedGraphClause]NamedGraphClause	 ::= 	'NAMED' SourceSelector
	[16] 	[bookmark: rSourceSelector]SourceSelector	 ::= 	iri
	[17] 	[bookmark: rWhereClause]WhereClause	 ::= 	'WHERE'? GroupGraphPattern
	[18] 	[bookmark: rSolutionModifier]SolutionModifier	 ::= 	GroupClause? HavingClause? OrderClause? LimitOffsetClauses?
	[19] 	[bookmark: rGroupClause]GroupClause	 ::= 	'GROUP' 'BY' GroupCondition+
	[20] 	[bookmark: rGroupCondition]GroupCondition	 ::= 	BuiltInCall | FunctionCall | '(' Expression ('AS' Var)? ')' | Var
	[21] 	[bookmark: rHavingClause]HavingClause	 ::= 	'HAVING' HavingCondition+
	[22] 	[bookmark: rHavingCondition]HavingCondition	 ::= 	Constraint
	[23] 	[bookmark: rOrderClause]OrderClause	 ::= 	'ORDER' 'BY' OrderCondition+
	[24] 	[bookmark: rOrderCondition]OrderCondition	 ::= 	 (('ASC' | 'DESC') BrackettedExpression)
| (Constraint | Var)
	[25] 	[bookmark: rLimitOffsetClauses]LimitOffsetClauses	 ::= 	LimitClause OffsetClause? | OffsetClause LimitClause?
	[26] 	[bookmark: rLimitClause]LimitClause	 ::= 	'LIMIT' INTEGER
	[27] 	[bookmark: rOffsetClause]OffsetClause	 ::= 	'OFFSET' INTEGER
	[28] 	[bookmark: rValuesClause]ValuesClause	 ::= 	('VALUES' DataBlock)?
	[29] 	[bookmark: rUpdate]Update	 ::= 	Prologue (Update1 (';' Update)?)?
	[30] 	[bookmark: rUpdate1]Update1	 ::= 	Load | Clear | Drop | Add | Move | Copy | Create | InsertData | DeleteData | DeleteWhere | Modify
	[31] 	[bookmark: rLoad]Load	 ::= 	'LOAD' 'SILENT'? iri ('INTO' GraphRef)?
	[32] 	[bookmark: rClear]Clear	 ::= 	'CLEAR' 'SILENT'? GraphRefAll
	[33] 	[bookmark: rDrop]Drop	 ::= 	'DROP' 'SILENT'? GraphRefAll
	[34] 	[bookmark: rCreate]Create	 ::= 	'CREATE' 'SILENT'? GraphRef
	[35] 	[bookmark: rAdd]Add	 ::= 	'ADD' 'SILENT'? GraphOrDefault 'TO' GraphOrDefault
	[36] 	[bookmark: rMove]Move	 ::= 	'MOVE' 'SILENT'? GraphOrDefault 'TO' GraphOrDefault
	[37] 	[bookmark: rCopy]Copy	 ::= 	'COPY' 'SILENT'? GraphOrDefault 'TO' GraphOrDefault
	[38] 	[bookmark: rInsertData]InsertData	 ::= 	'INSERT DATA' QuadData
	[39] 	[bookmark: rDeleteData]DeleteData	 ::= 	'DELETE DATA' QuadData
	[40] 	[bookmark: rDeleteWhere]DeleteWhere	 ::= 	'DELETE WHERE' QuadPattern
	[41] 	[bookmark: rModify]Modify	 ::= 	('WITH' iri)? (DeleteClause InsertClause? | InsertClause) UsingClause* 'WHERE' GroupGraphPattern
	[42] 	[bookmark: rDeleteClause]DeleteClause	 ::= 	'DELETE' QuadPattern
	[43] 	[bookmark: rInsertClause]InsertClause	 ::= 	'INSERT' QuadPattern
	[44] 	[bookmark: rUsingClause]UsingClause	 ::= 	'USING' (iri | 'NAMED' iri)
	[45] 	[bookmark: rGraphOrDefault]GraphOrDefault	 ::= 	'DEFAULT' | 'GRAPH'? iri
	[46] 	[bookmark: rGraphRef]GraphRef	 ::= 	'GRAPH' iri
	[47] 	[bookmark: rGraphRefAll]GraphRefAll	 ::= 	GraphRef | 'DEFAULT' | 'NAMED' | 'ALL'
	[48] 	[bookmark: rQuadPattern]QuadPattern	 ::= 	'{' Quads '}'
	[49] 	[bookmark: rQuadData]QuadData	 ::= 	'{' Quads '}'
	[50] 	[bookmark: rQuads]Quads	 ::= 	TriplesTemplate? (QuadsNotTriples '.'? TriplesTemplate?)*
	[51] 	[bookmark: rQuadsNotTriples]QuadsNotTriples	 ::= 	'GRAPH' VarOrIri '{' TriplesTemplate? '}'
	[52] 	[bookmark: rTriplesTemplate]TriplesTemplate	 ::= 	TriplesSameSubject ('.' TriplesTemplate?)?
	[53] 	[bookmark: rGroupGraphPattern]GroupGraphPattern	 ::= 	'{' (SubSelect | GroupGraphPatternSub) '}'
	[54] 	[bookmark: rGroupGraphPatternSub]GroupGraphPatternSub	 ::= 	TriplesBlock? (GraphPatternNotTriples '.'? TriplesBlock?)*
	[55] 	[bookmark: rTriplesBlock]TriplesBlock	 ::= 	TriplesSameSubjectPath ('.' TriplesBlock?)?
	[56] 	[bookmark: rGraphPatternNotTriples]GraphPatternNotTriples	 ::= 	GroupOrUnionGraphPattern | OptionalGraphPattern | MinusGraphPattern | GraphGraphPattern | ServiceGraphPattern | Filter | Bind | InlineData
	[57] 	[bookmark: rOptionalGraphPattern]OptionalGraphPattern	 ::= 	'OPTIONAL' GroupGraphPattern
	[58] 	[bookmark: rGraphGraphPattern]GraphGraphPattern	 ::= 	'GRAPH' VarOrIri GroupGraphPattern
	[59] 	[bookmark: rServiceGraphPattern]ServiceGraphPattern	 ::= 	'SERVICE' 'SILENT'? VarOrIri GroupGraphPattern
	[60] 	[bookmark: rBind]Bind	 ::= 	'BIND' '(' Expression 'AS' Var ')'
	[61] 	[bookmark: rInlineData]InlineData	 ::= 	'VALUES' DataBlock
	[62] 	[bookmark: rDataBlock]DataBlock	 ::= 	InlineDataOneVar | InlineDataFull
	[63] 	[bookmark: rInlineDataOneVar]InlineDataOneVar	 ::= 	Var '{' DataBlockValue* '}'
	[64] 	[bookmark: rInlineDataFull]InlineDataFull	 ::= 	(NIL | '(' Var* ')') '{' ('(' DataBlockValue* ')' | NIL)* '}'
	[65] 	[bookmark: rDataBlockValue]DataBlockValue	 ::= 	iri |	RDFLiteral |	NumericLiteral |	BooleanLiteral |	'UNDEF'
	[66] 	[bookmark: rMinusGraphPattern]MinusGraphPattern	 ::= 	'MINUS' GroupGraphPattern
	[67] 	[bookmark: rGroupOrUnionGraphPattern]GroupOrUnionGraphPattern	 ::= 	GroupGraphPattern ('UNION' GroupGraphPattern)*
	[68] 	[bookmark: rFilter]Filter	 ::= 	'FILTER' Constraint
	[69] 	[bookmark: rConstraint]Constraint	 ::= 	BrackettedExpression | BuiltInCall | FunctionCall
	[70] 	[bookmark: rFunctionCall]FunctionCall	 ::= 	iri ArgList
	[71] 	[bookmark: rArgList]ArgList	 ::= 	NIL | '(' 'DISTINCT'? Expression (',' Expression)* ')'
	[72] 	[bookmark: rExpressionList]ExpressionList	 ::= 	NIL | '(' Expression (',' Expression)* ')'
	[73] 	[bookmark: rConstructTemplate]ConstructTemplate	 ::= 	'{' ConstructTriples? '}'
	[74] 	[bookmark: rConstructTriples]ConstructTriples	 ::= 	TriplesSameSubject ('.' ConstructTriples?)?
	[75] 	[bookmark: rTriplesSameSubject]TriplesSameSubject	 ::= 	VarOrTerm PropertyListNotEmpty |	TriplesNode PropertyList
	[76] 	[bookmark: rPropertyList]PropertyList	 ::= 	PropertyListNotEmpty?
	[77] 	[bookmark: rPropertyListNotEmpty]PropertyListNotEmpty	 ::= 	Verb ObjectList (';' (Verb ObjectList)?)*
	[78] 	[bookmark: rVerb]Verb	 ::= 	VarOrIri | 'a'
	[79] 	[bookmark: rObjectList]ObjectList	 ::= 	Object (',' Object)*
	[80] 	[bookmark: rObject]Object	 ::= 	GraphNode
	[81] 	[bookmark: rTriplesSameSubjectPath]TriplesSameSubjectPath	 ::= 	VarOrTerm PropertyListPathNotEmpty |	TriplesNodePath PropertyListPath
	[82] 	[bookmark: rPropertyListPath]PropertyListPath	 ::= 	PropertyListPathNotEmpty?
	[83] 	[bookmark: rPropertyListPathNotEmpty]PropertyListPathNotEmpty	 ::= 	(VerbPath | VerbSimple) ObjectListPath (';' ((VerbPath | VerbSimple) ObjectList)?)*
	[84] 	[bookmark: rVerbPath]VerbPath	 ::= 	Path
	[85] 	[bookmark: rVerbSimple]VerbSimple	 ::= 	Var
	[86] 	[bookmark: rObjectListPath]ObjectListPath	 ::= 	ObjectPath (',' ObjectPath)*
	[87] 	[bookmark: rObjectPath]ObjectPath	 ::= 	GraphNodePath
	[88] 	[bookmark: rPath]Path	 ::= 	PathAlternative
	[89] 	[bookmark: rPathAlternative]PathAlternative	 ::= 	PathSequence ('|' PathSequence)*
	[90] 	[bookmark: rPathSequence]PathSequence	 ::= 	PathEltOrInverse ('/' PathEltOrInverse)*
	[91] 	[bookmark: rPathElt]PathElt	 ::= 	PathPrimary PathMod?
	[92] 	[bookmark: rPathEltOrInverse]PathEltOrInverse	 ::= 	PathElt | '^' PathElt
	[93] 	[bookmark: rPathMod]PathMod	 ::= 	'?' | '*' | '+'
	[94] 	[bookmark: rPathPrimary]PathPrimary	 ::= 	iri | 'a' | '!' PathNegatedPropertySet | '(' Path ')'
	[95] 	[bookmark: rPathNegatedPropertySet]PathNegatedPropertySet	 ::= 	PathOneInPropertySet | '(' (PathOneInPropertySet ('|' PathOneInPropertySet)*)? ')'
	[96] 	[bookmark: rPathOneInPropertySet]PathOneInPropertySet	 ::= 	iri | 'a' | '^' (iri | 'a')
	[97] 	[bookmark: rInteger]Integer	 ::= 	INTEGER
	[98] 	[bookmark: rTriplesNode]TriplesNode	 ::= 	Collection |	BlankNodePropertyList
	[99] 	[bookmark: rBlankNodePropertyList]BlankNodePropertyList	 ::= 	'[' PropertyListNotEmpty ']'
	[100] 	[bookmark: rTriplesNodePath]TriplesNodePath	 ::= 	CollectionPath |	BlankNodePropertyListPath
	[101] 	[bookmark: rBlankNodePropertyListPath]BlankNodePropertyListPath	 ::= 	'[' PropertyListPathNotEmpty ']'
	[102] 	[bookmark: rCollection]Collection	 ::= 	'(' GraphNode+ ')'
	[103] 	[bookmark: rCollectionPath]CollectionPath	 ::= 	'(' GraphNodePath+ ')'
	[104] 	[bookmark: rGraphNode]GraphNode	 ::= 	VarOrTerm |	TriplesNode
	[105] 	[bookmark: rGraphNodePath]GraphNodePath	 ::= 	VarOrTerm |	TriplesNodePath
	[106] 	[bookmark: rVarOrTerm]VarOrTerm	 ::= 	Var | GraphTerm
	[107] 	[bookmark: rVarOrIri]VarOrIri	 ::= 	Var | iri
	[108] 	[bookmark: rVar]Var	 ::= 	VAR1 | VAR2
	[109] 	[bookmark: rGraphTerm]GraphTerm	 ::= 	iri |	RDFLiteral |	NumericLiteral |	BooleanLiteral |	BlankNode |	NIL
	[110] 	[bookmark: rExpression]Expression	 ::= 	ConditionalOrExpression
	[111] 	[bookmark: rConditionalOrExpression]ConditionalOrExpression	 ::= 	ConditionalAndExpression ('||' ConditionalAndExpression)*
	[112] 	[bookmark: rConditionalAndExpression]ConditionalAndExpression	 ::= 	ValueLogical ('&&' ValueLogical)*
	[113] 	[bookmark: rValueLogical]ValueLogical	 ::= 	RelationalExpression
	[114] 	[bookmark: rRelationalExpression]RelationalExpression	 ::= 	NumericExpression ('=' NumericExpression | '!=' NumericExpression | '<' NumericExpression | '>' NumericExpression | '<=' NumericExpression | '>=' NumericExpression | 'IN' ExpressionList | 'NOT' 'IN' ExpressionList)?
	[115] 	[bookmark: rNumericExpression]NumericExpression	 ::= 	AdditiveExpression
	[116] 	[bookmark: rAdditiveExpression]AdditiveExpression	 ::= 	MultiplicativeExpression ('+' MultiplicativeExpression | '-' MultiplicativeExpression | (NumericLiteralPositive | NumericLiteralNegative) (('*' UnaryExpression) | ('/' UnaryExpression))*)*
	[117] 	[bookmark: rMultiplicativeExpression]MultiplicativeExpression	 ::= 	UnaryExpression ('*' UnaryExpression | '/' UnaryExpression)*
	[118] 	[bookmark: rUnaryExpression]UnaryExpression	 ::= 	 '!' PrimaryExpression
|	'+' PrimaryExpression
|	'-' PrimaryExpression
|	PrimaryExpression
	[119] 	[bookmark: rPrimaryExpression]PrimaryExpression	 ::= 	BrackettedExpression | BuiltInCall | iriOrFunction | RDFLiteral | NumericLiteral | BooleanLiteral | Var
	[120] 	[bookmark: rBrackettedExpression]BrackettedExpression	 ::= 	'(' Expression ')'
	[121] 	[bookmark: rBuiltInCall]BuiltInCall	 ::= 	 Aggregate
|	'STR' '(' Expression ')'
|	'LANG' '(' Expression ')'
|	'LANGMATCHES' '(' Expression ',' Expression ')'
|	'DATATYPE' '(' Expression ')'
|	'BOUND' '(' Var ')'
|	'IRI' '(' Expression ')'
|	'URI' '(' Expression ')'
|	'BNODE' ('(' Expression ')' | NIL)
|	'RAND' NIL
|	'ABS' '(' Expression ')'
|	'CEIL' '(' Expression ')'
|	'FLOOR' '(' Expression ')'
|	'ROUND' '(' Expression ')'
|	'CONCAT' ExpressionList
|	SubstringExpression
|	'STRLEN' '(' Expression ')'
|	StrReplaceExpression
|	'UCASE' '(' Expression ')'
|	'LCASE' '(' Expression ')'
|	'ENCODE_FOR_URI' '(' Expression ')'
|	'CONTAINS' '(' Expression ',' Expression ')'
|	'STRSTARTS' '(' Expression ',' Expression ')'
|	'STRENDS' '(' Expression ',' Expression ')'
|	'STRBEFORE' '(' Expression ',' Expression ')'
|	'STRAFTER' '(' Expression ',' Expression ')'
|	'YEAR' '(' Expression ')'
|	'MONTH' '(' Expression ')'
|	'DAY' '(' Expression ')'
|	'HOURS' '(' Expression ')'
|	'MINUTES' '(' Expression ')'
|	'SECONDS' '(' Expression ')'
|	'TIMEZONE' '(' Expression ')'
|	'TZ' '(' Expression ')'
|	'NOW' NIL
|	'UUID' NIL
|	'STRUUID' NIL
|	'MD5' '(' Expression ')'
|	'SHA1' '(' Expression ')'
|	'SHA256' '(' Expression ')'
|	'SHA384' '(' Expression ')'
|	'SHA512' '(' Expression ')'
|	'COALESCE' ExpressionList
|	'IF' '(' Expression ',' Expression ',' Expression ')'
|	'STRLANG' '(' Expression ',' Expression ')'
|	'STRDT' '(' Expression ',' Expression ')'
|	'sameTerm' '(' Expression ',' Expression ')'
|	'isIRI' '(' Expression ')'
|	'isURI' '(' Expression ')'
|	'isBLANK' '(' Expression ')'
|	'isLITERAL' '(' Expression ')'
|	'isNUMERIC' '(' Expression ')'
|	RegexExpression
|	ExistsFunc
|	NotExistsFunc
	[122] 	[bookmark: rRegexExpression]RegexExpression	 ::= 	'REGEX' '(' Expression ',' Expression (',' Expression)? ')'
	[123] 	[bookmark: rSubstringExpression]SubstringExpression	 ::= 	'SUBSTR' '(' Expression ',' Expression (',' Expression)? ')'
	[124] 	[bookmark: rStrReplaceExpression]StrReplaceExpression	 ::= 	'REPLACE' '(' Expression ',' Expression ',' Expression (',' Expression)? ')'
	[125] 	[bookmark: rExistsFunc]ExistsFunc	 ::= 	'EXISTS' GroupGraphPattern
	[126] 	[bookmark: rNotExistsFunc]NotExistsFunc	 ::= 	'NOT' 'EXISTS' GroupGraphPattern
	[127] 	[bookmark: rAggregate]Aggregate	 ::= 	 'COUNT' '(' 'DISTINCT'? ('*' | Expression) ')'
| 'SUM' '(' 'DISTINCT'? Expression ')'
| 'MIN' '(' 'DISTINCT'? Expression ')'
| 'MAX' '(' 'DISTINCT'? Expression ')'
| 'AVG' '(' 'DISTINCT'? Expression ')'
| 'SAMPLE' '(' 'DISTINCT'? Expression ')'
| 'GROUP_CONCAT' '(' 'DISTINCT'? Expression (';' 'SEPARATOR' '=' String)? ')'
	[128] 	[bookmark: ririOrFunction]iriOrFunction	 ::= 	iri ArgList?
	[129] 	[bookmark: rRDFLiteral]RDFLiteral	 ::= 	String (LANGTAG | ('^^' iri))?
	[130] 	[bookmark: rNumericLiteral]NumericLiteral	 ::= 	NumericLiteralUnsigned | NumericLiteralPositive | NumericLiteralNegative
	[131] 	[bookmark: rNumericLiteralUnsigned]NumericLiteralUnsigned	 ::= 	INTEGER |	DECIMAL |	DOUBLE
	[132] 	[bookmark: rNumericLiteralPositive]NumericLiteralPositive	 ::= 	INTEGER_POSITIVE |	DECIMAL_POSITIVE |	DOUBLE_POSITIVE
	[133] 	[bookmark: rNumericLiteralNegative]NumericLiteralNegative	 ::= 	INTEGER_NEGATIVE |	DECIMAL_NEGATIVE |	DOUBLE_NEGATIVE
	[134] 	[bookmark: rBooleanLiteral]BooleanLiteral	 ::= 	'true' |	'false'
	[135] 	[bookmark: rString]String	 ::= 	STRING_LITERAL1 | STRING_LITERAL2 | STRING_LITERAL_LONG1 | STRING_LITERAL_LONG2
	[136] 	[bookmark: riri]iri	 ::= 	IRIREF |	PrefixedName
	[137] 	[bookmark: rPrefixedName]PrefixedName	 ::= 	PNAME_LN | PNAME_NS
	[138] 	[bookmark: rBlankNode]BlankNode	 ::= 	BLANK_NODE_LABEL |	ANON

Productions for terminals:
	[139] 	[bookmark: rIRIREF]IRIREF	 ::= 	'<' ([^<>"{}|^`\]-[#x00-#x20])* '>'
	[140] 	[bookmark: rPNAME_NS]PNAME_NS	 ::= 	PN_PREFIX? ':'
	[141] 	[bookmark: rPNAME_LN]PNAME_LN	 ::= 	PNAME_NS PN_LOCAL
	[142] 	[bookmark: rBLANK_NODE_LABEL]BLANK_NODE_LABEL	 ::= 	'_:' (PN_CHARS_U | [0-9]) ((PN_CHARS|'.')* PN_CHARS)?
	[143] 	[bookmark: rVAR1]VAR1	 ::= 	'?' VARNAME
	[144] 	[bookmark: rVAR2]VAR2	 ::= 	'$' VARNAME
	[145] 	[bookmark: rLANGTAG]LANGTAG	 ::= 	'@' [a-zA-Z]+ ('-' [a-zA-Z0-9]+)*
	[146] 	[bookmark: rINTEGER]INTEGER	 ::= 	[0-9]+
	[147] 	[bookmark: rDECIMAL]DECIMAL	 ::= 	[0-9]* '.' [0-9]+
	[148] 	[bookmark: rDOUBLE]DOUBLE	 ::= 	[0-9]+ '.' [0-9]* EXPONENT | '.' ([0-9])+ EXPONENT | ([0-9])+ EXPONENT
	[149] 	[bookmark: rINTEGER_POSITIVE]INTEGER_POSITIVE	 ::= 	'+' INTEGER
	[150] 	[bookmark: rDECIMAL_POSITIVE]DECIMAL_POSITIVE	 ::= 	'+' DECIMAL
	[151] 	[bookmark: rDOUBLE_POSITIVE]DOUBLE_POSITIVE	 ::= 	'+' DOUBLE
	[152] 	[bookmark: rINTEGER_NEGATIVE]INTEGER_NEGATIVE	 ::= 	'-' INTEGER
	[153] 	[bookmark: rDECIMAL_NEGATIVE]DECIMAL_NEGATIVE	 ::= 	'-' DECIMAL
	[154] 	[bookmark: rDOUBLE_NEGATIVE]DOUBLE_NEGATIVE	 ::= 	'-' DOUBLE
	[155] 	[bookmark: rEXPONENT]EXPONENT	 ::= 	[eE] [+-]? [0-9]+
	[156] 	[bookmark: rSTRING_LITERAL1]STRING_LITERAL1	 ::= 	"'" (([^#x27#x5C#xA#xD]) | ECHAR)* "'"
	[157] 	[bookmark: rSTRING_LITERAL2]STRING_LITERAL2	 ::= 	'"' (([^#x22#x5C#xA#xD]) | ECHAR)* '"'
	[158] 	[bookmark: rSTRING_LITERAL_LONG1]STRING_LITERAL_LONG1	 ::= 	"'''" (("'" | "''")? ([^'\] | ECHAR))* "'''"
	[159] 	[bookmark: rSTRING_LITERAL_LONG2]STRING_LITERAL_LONG2	 ::= 	'"""' (('"' | '""')? ([^"\] | ECHAR))* '"""'
	[160] 	[bookmark: rECHAR]ECHAR	 ::= 	'\' [tbnrf\"']
	[161] 	[bookmark: rNIL]NIL	 ::= 	'(' WS* ')'
	[162] 	[bookmark: rWS]WS	 ::= 	#x20 | #x9 | #xD | #xA
	[163] 	[bookmark: rANON]ANON	 ::= 	'[' WS* ']'
	[164] 	[bookmark: rPN_CHARS_BASE]PN_CHARS_BASE	 ::= 	[A-Z] | [a-z] | [#x00C0-#x00D6] | [#x00D8-#x00F6] | [#x00F8-#x02FF] | [#x0370-#x037D] | [#x037F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]
	[165] 	[bookmark: rPN_CHARS_U]PN_CHARS_U	 ::= 	PN_CHARS_BASE | '_'
	[166] 	[bookmark: rVARNAME]VARNAME	 ::= 	(PN_CHARS_U | [0-9]) (PN_CHARS_U | [0-9] | #x00B7 | [#x0300-#x036F] | [#x203F-#x2040])*
	[167] 	[bookmark: rPN_CHARS]PN_CHARS	 ::= 	PN_CHARS_U | '-' | [0-9] | #x00B7 | [#x0300-#x036F] | [#x203F-#x2040]
	[168] 	[bookmark: rPN_PREFIX]PN_PREFIX	 ::= 	PN_CHARS_BASE ((PN_CHARS|'.')* PN_CHARS)?
	[169] 	[bookmark: rPN_LOCAL]PN_LOCAL	 ::= 	(PN_CHARS_U | ':' | [0-9] | PLX) ((PN_CHARS | '.' | ':' | PLX)* (PN_CHARS | ':' | PLX))?
	[170] 	[bookmark: rPLX]PLX	 ::= 	PERCENT | PN_LOCAL_ESC
	[171] 	[bookmark: rPERCENT]PERCENT	 ::= 	'%' HEX HEX
	[172] 	[bookmark: rHEX]HEX	 ::= 	[0-9] | [A-F] | [a-f]
	[173] 	[bookmark: rPN_LOCAL_ESC]PN_LOCAL_ESC	 ::= 	'\' ('_' | '~' | '.' | '-' | '!' | '$' | '&' | "'" | '(' | ')' | '*' | '+' | ',' | ';' | '=' | '/' | '?' | '#' | '@' | '%')

[bookmark: conformance]20 Conformance
See Section 19 SPARQL Grammar regarding conformance of
	SPARQL Query strings, and section
	16 Query Forms for conformance of query results.
	See section 22. Internet Media Type for conformance to
	the application/sparql-query media type.
This specification is intended for use in conjunction with the SPARQL 1.1 Protocol
	[SPROT],
	the SPARQL Query Results XML Format [SPARQL XML Results],
	the SPARQL 1.1 Query Results JSON Format [SPARQL-JSON-Results] and
	the SPARQL 1.1 Query Results CSV and TSV Formats [SPARQL CSV and TSV Results].
	See those specifications for their conformance criteria.
Note that the SPARQL protocol describes a means for conveying SPARQL queries to an SPARQL query processing service and returning the query results to the entity that requested them.

[bookmark: security]21 Security Considerations (Informative)
SPARQL queries using FROM, FROM NAMED, or GRAPH may cause the specified URI to
be dereferenced. This may cause additional use of network, disk or CPU resources
along with associated secondary issues such as denial of service. The security issues
of Uniform Resource Identifier
(URI): Generic Syntax [RFC3986] Section 7 should be considered.
In addition, the contents of file: URIs can in some cases be accessed,
processed and returned as results, providing unintended access to local resources.
SPARQL requests may cause additional requests to be issued from the SPARQL endpoint, such as FROM NAMED. The endpoint is potentially within an organisations firewall or DMZ, and so such queries may be a source of indirection attacks.
The SPARQL language permits extensions, which will have their own security implications.
Multiple IRIs may have the same appearance. Characters in different scripts may
look similar (a Cyrillic "о" may appear similar to a Latin "o"). A character followed
by combining characters may have the same visual representation as another character
(LATIN SMALL LETTER E followed by COMBINING ACUTE ACCENT has the same visual representation
as LATIN SMALL LETTER E WITH ACUTE).

Users of SPARQL must take care to construct queries with IRIs that match the IRIs
in the data. Further information about matching of similar characters can be found
in Unicode Security
Considerations [UNISEC] and
Internationalized Resource
Identifiers (IRIs) [RFC3987] Section 8.

[bookmark: mediaType]22 Internet Media Type, File Extension and Macintosh File Type
The Internet Media Type / MIME Type for the SPARQL Query Language is "application/sparql-query".
It is recommended that sparql query files have the extension ".rq" (lowercase)
 on all platforms.
It is recommended that sparql query files stored on Macintosh HFS file systems
 be given a file type of "TEXT".

	 	Type name:

	 	application

	 	Subtype name:

	 	sparql-query

	 	Required parameters:

	 	None

	 	Optional parameters:

	 	None

	 	Encoding considerations:

	 	The syntax of the SPARQL Query Language is expressed over code points in Unicode
	 [UNICODE]. The encoding is always UTF-8 [RFC3629].

	 	Unicode code points may also be expressed using an \uXXXX (U+0 to U+FFFF)
	 or \UXXXXXXXX syntax (for U+10000 onwards) where X is a hexadecimal digit [0-9A-F]

	 	Security considerations:

	 	See SPARQL Query appendix C, Security Considerations
	 as well as RFC 3629
	 [RFC3629] section 7, Security Considerations.

	 	Interoperability considerations:

	 	There are no known interoperability issues.

	 	Published specification:

	 	This specification.

	 	Applications which use this media type:

	 	No known applications currently use this media type.

	 	Additional information:

	 	Magic number(s):

	 	A SPARQL query may have the string 'PREFIX' (case independent) near the beginning
	 of the document.

	 	File extension(s):

	 	".rq"

	 	Base URI:

	 	The SPARQL 'BASE <IRIref>' term can change the current base URI for relative
	 IRIrefs in the query language that are used sequentially later in the document.

	 	Macintosh file type code(s):

	 	"TEXT"

	 	Person & email address to contact for further information:

	 	public-rdf-dawg-comments@w3.org

	 	Intended usage:

	 	COMMON

	 	Restrictions on usage:

	 	None

	 	Author/Change controller:

	 	The SPARQL 1.1 specification is a work product of the World Wide Web Consortium's
	 SPARQL Working Group. The W3C has change control over these specifications.

	

[bookmark: sec-bibliography]A References

[bookmark: sec-normative-refs]A.1 Normative References

 	[bookmark: CHARMOD][CHARMOD]

 	
 Character
 Model for the World Wide Web 1.0: Fundamentals,
 R. Ishida, F. Yergeau, M. J. Dürst, M. Wolf, T. Texin,
 Editors, W3C Recommendation, 15 February 2005,
 http://www.w3.org/TR/2005/REC-charmod-20050215/ .
 Latest version available at http://www.w3.org/TR/charmod/
 .

 	[bookmark: CONCEPTS][CONCEPTS]

 	
 Resource
 Description Framework (RDF): Concepts and Abstract
 Syntax, G. Klyne, J. J. Carroll, Editors, W3C
 Recommendation, 10 February 2004,
 http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ .
 Latest version available at
 http://www.w3.org/TR/rdf-concepts/ .

 	[bookmark: FUNCOP][FUNCOP]

 	

 XQuery
 1.0 and XPath 2.0 Functions and Operators, J.
 Melton, A. Malhotra, N. Walsh, Editors, W3C Recommendation,
 23 January 2007,
 http://www.w3.org/TR/2007/REC-xpath-functions-20070123/ .
 Latest version available at
 http://www.w3.org/TR/xpath-functions/ .

 	[bookmark: RDF-MT][RDF-MT]

 	
 RDF
 Semantics, P. Hayes, Editor, W3C Recommendation,
 10 February 2004,
 http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ .
 Latest version available
 at http://www.w3.org/TR/rdf-mt/ .

 	[bookmark: rfc3629][RFC3629]

 	RFC 3629
 UTF-8, a transformation
 format of ISO 10646, F. Yergeau November 2003

 	[bookmark: rfc4647][RFC4647]

 	RFC 4647 Matching of Language Tags, A. Phillips, M. Davis September 2006

 	[bookmark: rfc3986][RFC3986]

 	RFC 3986
 Uniform Resource
 Identifier (URI): Generic Syntax, T. Berners-Lee,
 R. Fielding, L. Masinter January 2005

 	[bookmark: rfc3987][RFC3987]

 	RFC 3987 Internationalized Resource Identifiers (IRIs),
 M. Dürst , M. Suignard

 	[bookmark: UNICODE][UNICODE]

 	The Unicode Standard, Version 4. ISBN
 0-321-18578-1, as updated from time to time by the
 publication of new versions. The latest version of Unicode
 and additional information on versions of the standard and of
 the Unicode Character Database is available at
 http://www.unicode.org/unicode/standard/versions/.

 	[bookmark: XML11][XML11]

 	
 Extensible
 Markup Language (XML) 1.1, J. Cowan, J. Paoli, E.
 Maler, C. M. Sperberg-McQueen, F. Yergeau, T. Bray, Editors,
 W3C Recommendation, 4 February 2004,
 http://www.w3.org/TR/2004/REC-xml11-20040204/ .
 Latest
 version available at http://www.w3.org/TR/xml11/ .

 	[bookmark: XPATH20][XPATH20]

 	
 XML Path
 Language (XPath) 2.0, A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, J. Siméon,
 Editors, W3C Recommendation, 23 January 2007,
 http://www.w3.org/TR/2007/REC-xpath20-20070123/ .
 Latest
 version available at http://www.w3.org/TR/xpath20/ .

 	[bookmark: XQUERY][XQUERY]

 	

 XQuery 1.0:
 An XML Query Language, S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, J. Siméon, Editors, W3C Recommendation, 23
 January 2007, http://www.w3.org/TR/2007/REC-xquery-20070123/.
 Latest
 version available at http://www.w3.org/TR/xquery/ .

 	[bookmark: XSDT][XSDT]

 	
 XML
 Schema Part 2: Datatypes Second Edition, P. V.
 Biron, A. Malhotra, Editors, W3C Recommendation, 28 October
 2004, http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ .
 Latest version available at http://www.w3.org/TR/xmlschema-2/.

 Updated 2012 by W3C
 XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes.
 (Latest version available at http://www.w3.org/TR/xmlschema11-2/).

 	[bookmark: BCP47][BCP47]

 	Best Common Practice 47, P. V. Biron, A. Malhotra, Editors, W3C Recommendation, 28 October 2004, http://www.rfc-editor.org/rfc/bcp/bcp47.txt .

[bookmark: sec-non-normative-refs]A.2 Other References

 	[bookmark: CBD][CBD]

 	CBD - Concise
 Bounded Description, Patrick Stickler, Nokia, W3C Member
 Submission, 3 June 2005.

 	[bookmark: DC][DC]

 	
 Expressing
 Simple Dublin Core in RDF/XML
 Dublin Core Dublin Core Metadata
 Initiative Recommendation 2002-07-31.

 	[bookmark: multiset][Multiset]

 	
	Multiset, Wikipedia, The Free Encyclopedia.
	Article as given on October 25, 2007 at http://en.wikipedia.org/w/index.php?title=Multiset&oldid=163605900. The
	latest version of this article is at http://en.wikipedia.org/wiki/Multiset.
	

	

 	[bookmark: SPARQL-XML-RESULTS][SPARQL XML Results]

 	SPARQL Query Results XML Format (Second Edition), D. Beckett, J. Broekstra, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321. Latest version available at http://www.w3.org/TR/rdf-sparql-XMLres.

 	[bookmark: SPARQL-JSON-RESULTS][SPARQL JSON Results]

 	SPARQL 1.1 Query Results JSON Format, A. Seaborne, Editor, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321. Latest version available at http://www.w3.org/TR/sparql11-results-json.

 	[bookmark: SPARQL-CSV-TSV-RESULTS][SPARQL CSV and TSV Result]

 	SPARQL 1.1 Query Results CSV and TSV Formats, A. Seaborne, Editor, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321. Latest version available at http://www.w3.org/TR/sparql11-results-csv-tsv.

 	[bookmark: SPROT][SPROT]

 	SPARQL 1.1 Protocol, L. Feigenbaum, G. Williams, K. Clark, E. Torres, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321. Latest version available at http://www.w3.org/TR/sparql11-protocol.

 	[bookmark: TURTLE][TURTLE]

 	Turtle:
Terse RDF Triple Language, E Prud'hommeaux, G Carothers, Editors, W3C Candidate Recommendation, 19 February 2013, http://www.w3.org/TR/2013/CR-turtle-20130219/. Latest version available at http://www.w3.org/TR/turtle/.

 	[bookmark: UCNR][UCNR]

 	
 RDF Data
 Access Use Cases and Requirements, K. Clark,
 Editor, W3C Working Draft, 25 March 2005,
 http://www.w3.org/TR/2005/WD-rdf-dawg-uc-20050325/ .
 Latest version available at
 http://www.w3.org/TR/rdf-dawg-uc/ .

 	[bookmark: UCNR2][UCNR2]

 	
 SPARQL New Features and Rationale,
 Kjetil Kjernsmo, Alexandre Passant, Editors,
	W3C Working Draft, 2 July 2009,
	http://www.w3.org/TR/2009/WD-sparql-features-20090702/ .
 Latest version available at http://www.w3.org/TR/sparql-features/ .

 	[bookmark: UNISEC][UNISEC]

 	Unicode Security
 Considerations, Mark Davis, Michel Suignard

 	[bookmark: VCARD][VCARD]

 	
 Representing vCard Objects in RDF/XML,
 Renato Iannella,
 W3C Note,
 22 February 2001,
 http://www.w3.org/TR/2001/NOTE-vcard-rdf-20010222/ .
 Latest version is available at http://www.w3.org/TR/vcard-rdf .

 	[bookmark: WEBARCH][WEBARCH]

 	
 Architecture of the World Wide Web, Volume One,
 I. Jacobs, N. Walsh, Editors,
 W3C Recommendation,
 15 December 2004,
 http://www.w3.org/TR/2004/REC-webarch-20041215/ .
 Latest version is available at http://www.w3.org/TR/webarch/ .

 	[bookmark: UNIID][UNIID]

 	

 Identifier
 and Pattern Syntax 4.1.0, Mark Davis, Unicode
 Standard Annex #31, 25 March 2005,
 http://www.unicode.org/reports/tr31/tr31-5.html .
 Latest
 version available at http://www.unicode.org/reports/tr31/
 .

Change Log
Changes since Proposed Recommendation
	Fixed error in example of inverse property path

Changes since Last Call
The following are the corrections made since last publication:
	Grammar: DISTINCT for paths had been left in the grammar - removed.
	Restore translation of BIND as per text in previous publications (first and second last call).

Since SPARQL 1.0
The new features in SPARQL 1.1 Query are:
	
 Aggregates

	
 Subqueries

	
 Negation

	
 Expressions in the SELECT clause

	
 Property Paths

	
 Assignment

	
 A short form for CONSTRUCT

	
 An expanded set of functions and operators

[image: W3C]

[bookmark: title]SPARQL 1.1 Update

[bookmark: w3c-doctype]W3C Recommendation 21 March 2013
	This version:
	
			http://www.w3.org/TR/2013/REC-sparql11-update-20130321/
		
	Latest version:
	
			http://www.w3.org/TR/sparql11-update/
		
	Previous version:
	http://www.w3.org/TR/2012/PR-sparql11-update-20121108/
	Editors:
	Paul Gearon
	Alexandre Passant, DERI Galway at the National University of Ireland, Galway, Ireland <alexandre.passant@deri.org>
	Axel Polleres, Siemens AG <axel.polleres@siemens.com>

Please refer to the errata for this document, which may
 include some normative corrections.
See also translations.
Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract
This document describes SPARQL 1.1 Update, an update
 language for RDF graphs. It uses a syntax derived from the SPARQL Query Language for RDF. Update
 operations are performed on a collection of graphs in a Graph Store.
 Operations are provided to update, create, and remove RDF graphs in a Graph Store.

[bookmark: status]Status of this Document
May Be Superseded
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
Set of Documents
This document is one of eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:
	SPARQL 1.1 Overview
	SPARQL 1.1 Query Language
	SPARQL 1.1 Update (this document)
	SPARQL1.1 Service Description
	SPARQL 1.1 Federated Query
	SPARQL 1.1 Query Results JSON Format
	SPARQL 1.1 Query Results CSV and TSV Formats
	SPARQL Query Results XML Format (Second Edition)
	SPARQL 1.1 Entailment Regimes
	SPARQL 1.1 Protocol
	SPARQL 1.1 Graph Store HTTP Protocol

No Substantive Changes
There have been no substantive changes to this document since the previous version. Minor editorial changes, if any, are detailed in the change log and visible in the color-coded diff.
Please Send Comments
Please send any comments to public-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document by the SPARQL Working Group is complete, comments may be addressed in the errata or in future revisions. Open discussion is welcome at public-sparql-dev@w3.org (public archive).
Endorsed By W3C
This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.
Patents
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents
1 Introduction

 1.1 Document Conventions

 1.1.1 Language Form

 1.1.2 Terminology

2 The Graph Store

 2.1 Graph Store and SPARQL Query Services

 2.2 SPARQL 1.1 Update Services

 2.3 Entailment and Consistency

3 SPARQL 1.1 Update Language

 3.1 Graph Update

 3.1.1 INSERT DATA

 3.1.2 DELETE DATA

 3.1.3 DELETE/INSERT

 3.1.3.1 DELETE (Informative)

 3.1.3.2 INSERT (Informative)

 3.1.3.3 DELETE WHERE

 3.1.4 LOAD

 3.1.5 CLEAR

 3.2 Graph Management

 3.2.1 CREATE

 3.2.2 DROP

 3.2.3 COPY

 3.2.4 MOVE

 3.2.5 ADD

4 SPARQL Update Formal Model

 4.1 General Definitions

 4.1.1 Graph Store

 4.1.2 Abstract Update Operation

 4.2 Auxiliary Definitions

 4.2.1 Dataset-UNION

 4.2.2 Dataset-DIFF

 4.2.3 Dataset(QuadPattern, μ, DS, GS)

 4.2.4 Dataset(QuadPattern, P, DS, GS)

 4.3 Graph Update Operations

 4.3.1 Insert Data Operation

 4.3.2 Delete Data Operation

 4.3.3 Delete Insert Operation

 4.3.4 Load Operation

 4.3.5 Clear Operation

 4.4 Graph Management Operations

 4.4.1 Create Operation

 4.4.2 Drop Operation

 4.5 Mapping Update Requests to the Formal Model

5 Conformance

[bookmark: appendices]Appendices
A Security Considerations (Informative)

B Internet Media Type, File Extension and Macintosh File Type

C SPARQL 1.1 Update Grammar

D References

 D.1 Normative References

 D.2 Other References

[bookmark: sec-intro]1 Introduction
SPARQL 1.1 Update is
 intended to be a standard language for specifying and executing updates to RDF
 graphs in a Graph Store.
SPARQL 1.1 Update provides the following facilities:
	Insert triples into an RDF graph in the Graph Store.
	Delete triples from an RDF graph in the Graph Store.
	Load an RDF graph into the Graph Store.
	Clear an RDF graph in the Graph Store.
	Create a new RDF graph in a Graph Store.
	Drop an RDF graph from a Graph Store.
	Copy, move, or add the content of one RDF graph in the Graph Store to another.
	Perform a group of update operations as a single action.

This document is particularly related to the following other specification documents:
	SPARQL 1.1 Query Language
	SPARQL 1.1 Graph Store HTTP Protocol
	SPARQL 1.1 Protocol for RDF

 SPARQL 1.1 Update is a companion language and envisaged to be used in conjunction with the SPARQL 1.1 Query language. The present document refers to the grammar and several definitions from the SPARQL 1.1 Query language specification.
The SPARQL 1.1 Graph Store HTTP Protocol specification employs the HTTP protocol to perform update operations using standard HTTP methods, such as PUT and DELETE. While providing a simple and well known API, it is necessarily restricted in its operations due to the limited set of methods in the HTTP protocol. In contrast, SPARQL 1.1 Update permits multiple modifications in a single operation, and can use complex SPARQL queries for constructing data to be inserted, or choosing data to be deleted. Also, the use of an update language facilitates operations over proprietary APIs and connections that may not involve HTTP.
The SPARQL 1.1 Protocol for RDF specification describes a means of conveying SPARQL 1.1 Query and SPARQL 1.1 Update operations from clients to a SPARQL query processing service, and for returning appropriate results. Together with the SPARQL 1.1 Query and SPARQL 1.1 Update (this document) specifications, these form an alternative to the SPARQL 1.1 Graph Store HTTP Protocol with comprehensive, though more complex functionality.

[bookmark: documentConventions]1.1 Document Conventions

[bookmark: languageForm]1.1.1 Language Form
The operations in this document contain language forms describing their use. These are meant as illustrative forms of the formal grammar described in the SPARQL 1.1 Query document. Any discrepancies between the language forms in this document and the grammar in SPARQL 1.1 Query will defer to the formal grammar in SPARQL 1.1 Query.
Language forms are shown informally in this document as for instance:
(WITH IRIref)?
((DeleteClause InsertClause?) | InsertClause)
(USING (NAMED)? IRIref)*
WHERE GroupGraphPattern
Unlike other forms of EBNF where square brackets denote optionality, here [] is
 used for blank nodes, as in SPARQL Query. | is used to denote alternatives, () is used for grouping terms, ? indicates 0 or 1 occurrence of a term, * indicates 0 or more occurrences, and + indicates 1 or more occurrences.
BOLD indicates language keywords. Italics indicate syntactic items defined in the SPARQL 1.1 Query Grammar, where we occasionally refer to productions by links. Unitalicized text indicates a local term that will have a more complex (and exact) definition in the formal grammar.
Example update requests are shown as follows:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT { <http://example/egbook> dc:title "This is an example title" } WHERE {}
Note:
PREFIX definitions and the syntax for IRIs in update requests in general follow the same conventions as in the SPARQL1.1 Query Language.
Data is shown in Turtle syntax as follows:
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/books/> .
:book0 dc:title "SPARQL Tutorial" .

[bookmark: terminology]1.1.2 Terminology
When this document uses the words MUST,
MUST NOT, SHOULD, SHOULD NOT, MAY
and recommended, and the words appear as emphasized text, they must be interpreted as
described in RFC 2119 [RFC2119].
The following terms are also in use throughout this document:
	[bookmark: operation]Operation - An action to be performed that results in the modification of data in a Graph Store expressible as a single command, e.g. INSERT or DELETE.
	[bookmark: request]Request - A sequence of zero or more operations that is sent to a Graph Store. When using the SPARQL 1.1 Protocol for RDF a request will be one HTTP POST.

The following terms are also used in this document as defined in the SPARQL 1.1 Query Language:
	QuadPattern - A syntactic construct that refers to a set of triple patterns, similar to ConstructTriples, but potentially involving the GRAPH keyword to indicate that a set of triples is to be inserted into/deleted from a named graph.
	QuadData - A QuadPattern without variables.
	GroupGraphPattern - A syntactic construct for referring to a set of triples, possibly with complex constraints.

[bookmark: graphStore]2 The Graph Store
A Graph Store is a mutable container of RDF graphs managed by a single service. Similar to an
RDF Dataset
operated on by the SPARQL 1.1 Query Language, a Graph Store contains one (unnamed) slot holding a default graph and zero or more named slots holding named graphs. Operations MAY specify graphs to be modified, or they MAY rely on a default graph for that operation. Unless overridden (for instance, by the SPARQL protocol), the unnamed graph for the store will be the default graph for any operations on that store. Depending on implementation, the unnamed graph MAY refer to a separate graph, a graph describing the named graphs, a representation of a union of other graphs, etc.
Unlike an RDF Dataset, named graphs can be added to or deleted from a Graph Store. A Graph Store needs not be authoritative for the graphs it contains. That means a Graph Store can keep local copies of RDF graphs defined elsewhere on the Web and modify those copies independently of the original graph.
In the simple case where there is one
unnamed graph and no named graphs, SPARQL 1.1 Update can be used as a graph update language (as opposed to a Graph Store update language).
The information how a Graph Store is accessed is defined in the protocol and Graph Store protocol specs.
A Graph Store is accessible by either an update service (cf. protocol) or via the Graph Store protocol (cf. Graph Store protocol). In either case the Graph Store is hidden behind the service, making it accessible via the URI of a SPARQL update service or via a URI that responds to the Graph Store protocol.

	A formal definition for Graph Stores and how SPARQL 1.1 Update affects them is described in the SPARQL 1.1 Update Formal Model section.

[bookmark: graphStoreQueryServices]2.1 Graph Store and SPARQL Query Services
A service (often referred to by the informal term SPARQL endpoint) that accepts and processes
update requests is referred to as an update service.
There is no presumption that the Graph Store managed by an update service exactly corresponds to any RDF Dataset offered by
some query service.
A query service MAY offer an RDF Dataset formed from graphs that are part of an update service's Graph Store. The graphs in the query service's RDF Dataset MAY be a subset of the graphs in the update service's Graph Store. Furthermore, the query service's RDF Dataset and the update service's Graph Store MAY use different names for the same graphs.

[bookmark: updateServices]2.2 SPARQL 1.1 Update Services
SPARQL 1.1 Update requests are sequences of operations.
Each request SHOULD be treated atomically by a SPARQL 1.1 Update service. The term 'atomically' means that a single request will result in either no effect or a complete effect, regardless of the number of operations that may be present in the request. Any resulting concurrency issues will be a matter for each implementation to consider according to its own architecture. In particular, using the SERVICE keyword in the WHERE clause of operations in an Update request will usually result in a loss of atomicity.
In the case of two different update services, whose respective Graph Stores contain graphs with the same names, there is no presumption that the updates done through one service will be propagated to the other, as the stores are independent entities.
The behaviour of these services with respect to each other (such as automatic synchronization after updates) is implementation dependent.

[bookmark: entailmentConsistency]2.3 Entailment and Consistency
If the store is capable of calculating entailed answers, see SPARQL 1.1 Entailment Regimes, then it is possible for update operations to interact with entailed data.
	 In particular, a DELETE operation may attempt to remove entailed statements without actual effects.
After an update request is completed, a store that performs consistency checking with respect to a particular entailment regime on its graphs MAY check the new state of the Graph Store for consistency. If inconsistency is detected, such a store MAY return an error to the request.
Also of note is that some stores may be capable of performing entailments with respect to an ontology capable of higher level processing, such as RDFS or OWL. Updates may interact with these entailment regimes in these systems.

[bookmark: updateLanguage]3 SPARQL 1.1 Update Language
SPARQL 1.1 Update supports two categories of update operations on a Graph Store:
	Graph Update - addition and removal of triples from some graphs within the Graph Store.
	Graph Management - creating and deletion of graphs within the Graph Store, as well as convenient shortcuts for graph update operations often used during graph management (to add, move, and copy graphs).

A request is a sequence of operations and is terminated by EOF (End of File). Multiple operations are separated by a ';' (semicolon) character. A semicolon after the last operation in a request is optional. Implementations MUST ensure that the operations of a single request are executed in a fashion that guarantees the same effects as executing them sequentially in the order they appear in the request.
Operations all result either in success or failure. A failure result MAY be accompanied by extra information, indicating that some portion of the operations in the request were successful. This document does not stipulate the exact form of the result, as that will be dependent on the interface being used, for instance the SPARQL 1.1 protocol via HTTP or a programmatic API. If multiple operations are present in a single request, then a result of failure from any operation MUST abort the sequence of operations, causing the subsequent operations to be ignored.
The formal semantics of the following operations is defined in Section 4 of this document.

[bookmark: graphUpdate]3.1 Graph Update
Graph update operations change existing graphs in the Graph Store but do
 not explicitly delete nor create them. Non-empty inserts into non-existing graphs will, however, implicitly create those graphs, i.e., an implementation fulfilling an update request SHOULD silently an automatically create graphs that do not exist before triples are inserted into them, and MUST return with failure if it fails to do so for any reason. (For example, the implementation may have insufficient resources, or an implementation may only provide an update service over a fixed set of graphs and the implicitly created graph is not within this fixed set). An implementation MAY remove graphs that are left empty after triples are removed from them.

If a graph is created implicitly by an update operation, then the behavior of the Graph Store MUST be functionally equivalent to its
behavior if the graph had been created explicitly by a CREATE operation.

SPARQL 1.1 Update provides these graph update operations:
	
 The INSERT DATA operation adds some triples, given inline in the request, into a graph. This SHOULD create the destination graph if it does not exist. If the graph does not exist and it can not be created for any reason, then a failure MUST be returned.
	
	
		The DELETE DATA operation removes some triples, given inline in the request, if the respective graph contains those.
	
	
		The fundamental pattern-based actions for graph updates are INSERT and DELETE (which can co-occur in a single DELETE/INSERT operation).
These actions consist of groups of triples to be deleted and
groups of triples to be added. The specification of the triples is based on
query patterns.
	The difference between INSERT / DELETE
and INSERT DATA / DELETE DATA is that INSERT
DATA and DELETE DATA do not substitute bindings into a template from a pattern. The
DATA forms require concrete data (triple templates containing variables within DELETE DATA and INSERT DATA operations are disallowed and blank nodes are disallowed within DELETE DATA, see Notes 8+9 in the grammar).
Having specific operations for concrete data means that a request can be streamed so that large,
pure-data updates can be done.
	
	
		The LOAD operation reads the contents of a document representing
a graph into a graph in the Graph Store.
	
	
		The CLEAR operation removes all the triples in (one or more) graphs.
	

[bookmark: insertData]3.1.1 INSERT DATA
The INSERT DATA operation adds some triples, given inline in the request, into the Graph Store:
INSERT DATA QuadData

where QuadData are formed by TriplesTemplates, i.e., sets of triple patterns, optionally wrapped into a GRAPH block.
 (GRAPH VarOrIri)? { TriplesTemplate? }

Variables in QuadDatas are disallowed in INSERT DATA requests (see Notes 8 in the grammar). That is, the INSERT DATA statement only allows to insert ground triples. Blank nodes in QuadDatas are assumed to be disjoint from the blank nodes in the Graph Store, i.e., will be inserted with "fresh" blank nodes.
If no graph is described in the QuadData, then the default graph is presumed. If data is inserted into a graph that does not exist in the Graph Store, it SHOULD be created (there may be implementations providing an update service over a fixed set of graphs which in such case MUST return with failure for update requests that insert data into an unallowed graph).
Note that a triple MAY be considered to be "processed" with no action if that triple already exists in the graph. Further, note that
INSERT DATA { GRAPH <g> {} } ...
does not create <g>. If a user intends to just create a graph, then the graph management operations (CREATE/LOAD) may be used prior to any insertion operations.
Example 1: [bookmark: example_1]Adding some triples to a graph
This snippet
describes two RDF triples to be inserted into the default graph of the Graph Store.
PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA
{
 <http://example/book1> dc:title "A new book" ;
 dc:creator "A.N.Other" .
}
Data before:
Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .

<http://example/book1> ns:price 42 .
Data after:
Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .

<http://example/book1> ns:price 42 .
<http://example/book1> dc:title "A new book" .
<http://example/book1> dc:creator "A.N.Other" .
Example 2:
[bookmark: example_2]This SPARQL 1.1 Update request adds a triple to provide the price of a book. As opposed to the previous example, which affected the default graph, the requested change happens in the named graph identified by the IRI http://example/bookStore.
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
INSERT DATA
{ GRAPH <http://example/bookStore> { <http://example/book1> ns:price 42 } }

Data before:
Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
<http://example/book1> dc:title "Fundamentals of Compiler Design" .

Data after:
Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .
<http://example/book1> dc:title "Fundamentals of Compiler Design" .
<http://example/book1> ns:price 42 .

[bookmark: deleteData]3.1.2 DELETE DATA
The DELETE DATA operation removes some triples, given inline in the request, if the respective graphs in the Graph Store contain those:
DELETE DATA QuadData

QuadData denotes triples to be removed and is as described in INSERT DATA, with the difference that in a DELETE DATA operation neither variables nor blank nodes are allowed (see Notes 8+9 in the grammar).
As with INSERT DATA, DELETE DATA is meant for deletion of ground triples data which is why QuadData that contains variables or blank nodes is disallowed in DELETE DATA operations. The DELETE/INSERT operation can be used to remove triples containing blank nodes.
Note that the deletion of non-existing triples has no effect, i.e., triples in the QuadData that did not exist in the Graph Store are ignored. Blank nodes are not permitted in the QuadData, as these do not match any existing data.
Example 3: Removing triples from a graph
[bookmark: example_3]This request describes 2 triples to be removed from the default graph of the Graph Store.
PREFIX dc: <http://purl.org/dc/elements/1.1/>

DELETE DATA
{
 <http://example/book2> dc:title "David Copperfield" ;
 dc:creator "Edmund Wells" .
}
Data before:
Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .

<http://example/book2> ns:price 42 .
<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .
Data after:
Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .

<http://example/book2> ns:price 42 .
Example 4:
[bookmark: example_4]This SPARQL 1.1 Update request consists of two operations, including a triple to be deleted and a triple to be added (used here to correct a book title). As opposed to the previous example, which affected the default graph, the requested change happens in the named graph identified by the IRI http://example/bookStore.
PREFIX dc: <http://purl.org/dc/elements/1.1/>
DELETE DATA
{ GRAPH <http://example/bookStore> { <http://example/book1> dc:title "Fundamentals of Compiler Desing" } } ;

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA
{ GRAPH <http://example/bookStore> { <http://example/book1> dc:title "Fundamentals of Compiler Design" } }

Data before:
Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
<http://example/book1> dc:title "Fundamentals of Compiler Desing" .

Data after:
Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
<http://example/book1> dc:title "Fundamentals of Compiler Design" .

[bookmark: deleteInsert]3.1.3 DELETE/INSERT
The DELETE/INSERT operation can be used to remove or add triples from/to the Graph Store based on bindings for a query pattern specified in a WHERE clause:
(WITH IRIref)?
((DeleteClause InsertClause?) | InsertClause)
(USING (NAMED)? IRIref)*
WHERE GroupGraphPattern
The DeleteClause and InsertClause forms can be broken down as follows:
DeleteClause ::= DELETE QuadPattern
InsertClause ::= INSERT QuadPattern

This operation identifies data with the WHERE clause, which will be used to compute solution sequences of bindings for a set of variables. The bindings for each solution are then substituted into the DELETE template to remove triples, and then in the INSERT template to create new triples. If any solution produces a triple containing an unbound variable or an illegal RDF construct, such as a literal in a subject or predicate position, then that triple is not included when processing the operation: INSERT will not instantiate new data in the output graph, and DELETE will not remove anything. The graphs used for computing a solution sequence may be different to the graphs modified with the DELETE and INSERT templates.
The WITH clause defines the graph that will be modified or matched against
for any of the subsequent elements (in DELETE, INSERT, or WHERE clauses)
if they do not specify a graph explicitly. If not provided, then the default graph of the Graph Store (or an explicitly declared dataset in the WHERE clause) will be assumed. That is, a WITH clause may be viewed as syntactic sugar for wrapping both the QuadPatterns in subsequent DELETE and INSERT clauses, and likewise the GroupGraphPattern in the subsequent WHERE clause into GRAPH patterns. This can be used to avoid refering to the same graph multiple times in a single operation.
Following the optional WITH clause are the INSERT
 and/or DELETE clauses. The deletion of the triples happens before the insertion. The pattern in the WHERE clause is evaluated only once, before the delete part of the operation is performed. The overall processing model is that the pattern is executed, the results used to instantiate the DELETE template, the deletes performed, the results used again to instantiate the INSERT template, and the inserts performed.
If the DELETE clause is omitted, then the operation only inserts data (see INSERT). If the INSERT clause is omitted, then the operation only removes data (see DELETE). The grammar does not permit both DELETE and INSERT to be omitted in the same operation.
The USING and USING NAMED clauses affect the RDF Dataset used while evaluating the WHERE clause. This describes a dataset in the same way as FROM and FROM NAMED clauses describe RDF Datasets in the SPARQL 1.1 Query Language. The keyword USING instead of FROM in update requests is to avoid possible ambiguities which could arise from writing "DELETE FROM". That is, the GroupGraphPattern in the WHERE clause will be matched against the dataset described by explicit USING or USING NAMED clauses, if specified, and against the Graph Store otherwise.
The WITH clause provides a convenience for when an operation primarily refers to a single graph. If a graph name is specified in a WITH clause, then - for the purposes of evaluating the WHERE clause - this will define an RDF Dataset containing a default graph with the specified name, but only in the absence of USING or USING NAMED clauses. In the presence of one or more graphs referred to in USING clauses and/or USING NAMED clauses, the WITH clause will be ignored while evaluating the WHERE clause.
The GroupGraphPattern in the WHERE clause is evaluated as in a SPARQL query "SELECT * WHERE GroupGraphPattern"
and all the solution bindings are applied to the preceding DELETE and INSERT templates for defining the triples to be deleted from or inserted into the Graph Store.
Again, QuadPatterns are formed by TriplesTemplates, i.e., sets of triple patterns, optionally wrapped into a GRAPH block, where the GRAPH clause indicates the named graph in the Graph Store to be updated; on any TripleTemplates without a GRAPH clause, the INSERT or DELETE clauses applies to the graph specified by the WITH clause, or the default graph of the Graph Store if no WITH clause is present.
To illustrate the use of the WITH clause, an operation of the general form:
WITH <g1> DELETE { a b c } INSERT { x y z } WHERE { ... }
is considered equivalent to:
DELETE { GRAPH <g1> { a b c } } INSERT { GRAPH <g1> { x y z } } USING <g1> WHERE { ... }
Note that explicit GRAPH clauses override a WITH clause. WITH provides a fallback to specify a graph (different from the default graph) to use when one is not explicitly stipulated via GRAPH.
Deleting triples that are not present, or from a graph that is not present will have no effect and will result in success. Blank nodes are prohibited in a DELETE template, since using a new blank node in a DELETE template would lead to nothing being deleted, as a new blank node cannot match anything in the Graph Store. It should be noted that this restriction is not in the EBNF for the DeleteClause itself, but made explicit in Note 9 to the grammar.
If an operation tries to insert into a graph that does not exist, then that graph SHOULD be created; again, there may be implementations providing an update service over a fixed set of graphs which in such case MUST return with failure for update requests that would create an unallowed graph. If no data is to be inserted, then no graph will be created. Particularly, note that
INSERT ... { GRAPH <g> {} } ...
does not create <g>. If a user intends to create a graph regardless of the data to be inserted, then the graph management operations (CREATE/LOAD) may be used prior to any insertion operations.
Blank nodes that appear in an INSERT clause operate similarly to blank nodes in the template of a CONSTRUCT query, i.e., they are re-instantiated for any solution of the WHERE clause; refer to Templates with Blank Nodes in SPARQL Query 1.1 and to the formal semantics of DELETE/INSERT below for details. Blank nodes in the WHERE clause match data in the same way as for any SPARQL Query.
Example 5:
[bookmark: example_5]An example to update the graph http://example/addresses to rename all people with the given name "Bill" to "William".
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

WITH <http://example/addresses>
DELETE { ?person foaf:givenName 'Bill' }
INSERT { ?person foaf:givenName 'William' }
WHERE
 { ?person foaf:givenName 'Bill'
 }
Data before:
Graph: http://example/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/president25> foaf:givenName "Bill" .
<http://example/president25> foaf:familyName "McKinley" .
<http://example/president27> foaf:givenName "Bill" .
<http://example/president27> foaf:familyName "Taft" .
<http://example/president42> foaf:givenName "Bill" .
<http://example/president42> foaf:familyName "Clinton" .
Data after:
Graph: http://example/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/president25> foaf:givenName "William" .
<http://example/president25> foaf:familyName "McKinley" .
<http://example/president27> foaf:givenName "William" .
<http://example/president27> foaf:familyName "Taft" .
<http://example/president42> foaf:givenName "William" .
<http://example/president42> foaf:familyName "Clinton" .

[bookmark: delete]3.1.3.1 DELETE (Informative)
(WITH IRIref)?
DELETE QuadPattern
(USING (NAMED)? IRIref)*
WHERE GroupGraphPattern

The DELETE operation is a form of the DELETE/INSERT
 operation having no INSERT section. A compliant implementation of DELETE/INSERT will already implement this operation correctly. The DELETE operation is described here separately for clarity. Analogous to DELETE/INSERT, deleting triples that are not present, or from a graph that is not present will have no effect and will result in success.
If any DELETE template specifies a GRAPH then this will be the graph affected. Otherwise, the operation will be applied to the graph specified in the WITH clause, if one was specified, or the default graph otherwise.
The WHERE clause identifies data in existing graphs, and creates bindings to be used by the template. The graphs to apply the GroupGraphPattern follow the same rules as for DELETE/INSERT.
Example 6:
[bookmark: example_6]This example request deletes all records of old books (with date before year 1970) from the store's default graph:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

DELETE
 { ?book ?p ?v }
WHERE
 { ?book dc:date ?date .
 FILTER (?date > "1970-01-01T00:00:00-02:00"^^xsd:dateTime)
 ?book ?p ?v
 }
The pattern in WHERE is matched against the Graph Store. The resulting sequence of solutions to the WHERE clause is used to instantiate the triple patterns in the DELETE template similar to CONSTRUCT in SPARQL 1.1 Query. The resulting triples are then removed from the Graph Store.
Data before:
Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example/book1> dc:title "Principles of Compiler Design" .
<http://example/book1> dc:date "1977-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book2> ns:price 42 .
<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .
<http://example/book2> dc:date "1948-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book3> dc:title "SPARQL 1.1 Tutorial" .
Data after:
Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example/book2> ns:price 42 .
<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .
<http://example/book2> dc:date "1948-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book3> dc:title "SPARQL 1.1 Tutorial" .
Example 7:
[bookmark: example_7]This example request removes all statements about anything with a given name of "Fred" from the graph http://example/addresses. A WITH clause is present, meaning that graph http://example/addresses is both the one from which triples are being removed and the one which the WHERE clause is matched against.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

WITH <http://example/addresses>
DELETE { ?person ?property ?value }
WHERE { ?person ?property ?value ; foaf:givenName 'Fred' }

Data before:
Graph: http://example/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

<http://example/fred> a foaf:Person .
<http://example/fred> foaf:givenName "Fred" .
<http://example/fred> foaf:mbox <mailto:fred@example> .
Data after:
Graph: http://example/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

Another example of DELETE is provided in the final example in the following section which demonstrates multiple operations combining an INSERT with a DELETE.

[bookmark: insert]3.1.3.2 INSERT (Informative)
(WITH IRIref)?
INSERT QuadPattern
(USING (NAMED)? IRIref)*
WHERE GroupGraphPattern

The INSERT operation is a form of the DELETE/INSERT
 operation having no DELETE section. A compliant implementation of DELETE/INSERT will already implement this operation correctly. The INSERT operation is described here separately for clarity.
If the INSERT template specifies GRAPH blocks then these will be the graphs affected. Otherwise, the operation will be applied to the default graph, or, respectively, to the graph specified in the WITH clause,
if one was specified.
If no USING (NAMED) clause is present, then the pattern in the WHERE clause will be matched against the Graph Store, otherwise against the dataset specified by the USING (NAMED) clauses. The matches against the WHERE clause create bindings to be applied to the template for determining triples to be inserted (following the same rules as for DELETE/INSERT).
If any instantiation arising from the solution sequence produces a triple containing an unbound variable or an illegal RDF construct, such as a literal in subject or predicate position, then that triple is not inserted. The template can contain triples with no variables (known as ground or explicit triples), and these will also be inserted, provided that the solution sequence is not empty.
Example 8:
[bookmark: example_8]This example copies triples from one named graph to another named graph based on a pattern:
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

INSERT
 { GRAPH <http://example/bookStore2> { ?book ?p ?v } }
WHERE
 { GRAPH <http://example/bookStore>
 { ?book dc:date ?date .
 FILTER (?date > "1970-01-01T00:00:00-02:00"^^xsd:dateTime)
 ?book ?p ?v
 } }	
Data before:
Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example/book1> dc:title "Fundamentals of Compiler Design" .
<http://example/book1> dc:date "1977-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book2> ns:price 42 .
<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .
<http://example/book2> dc:date "1948-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book3> dc:title "SPARQL 1.1 Tutorial" .
Graph: http://example/bookStore2
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example/book4> dc:title "SPARQL 1.0 Tutorial" .
Data after:
Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example/book1> dc:title "Fundamentals of Compiler Design" .
<http://example/book1> dc:date "1977-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book2> ns:price 42 .
<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .
<http://example/book2> dc:date "1948-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book3> dc:title "SPARQL 1.1 Tutorial" .
Graph: http://example/bookStore2
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example/book1> dc:title "Fundamentals of Compiler Design" .
<http://example/book1> dc:date "1977-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book4> dc:title "SPARQL 1.0 Tutorial" .
Example 9:
[bookmark: example_9]This example copies triples of name and email from one named graph to another. Some individuals may not have an address, but the name is copied regardless:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

INSERT
 { GRAPH <http://example/addresses>
 {
 ?person foaf:name ?name .
 ?person foaf:mbox ?email
 } }
WHERE
 { GRAPH <http://example/people>
 {
 ?person foaf:name ?name .
 OPTIONAL { ?person foaf:mbox ?email }
 } }
Data before:
Graph: http://example/people
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: >http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

_:a rdf:type foaf:Person .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@example.com> .

_:b rdf:type foaf:Person .
_:b foaf:name "Bob" .
Graph: http://example/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
Data after:
Graph: http://example/people
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: >http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

_:a rdf:type foaf:Person .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@example.com> .

_:b rdf:type foaf:Person .
_:b foaf:name "Bob" .
Graph: http://example/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@example.com> .

_:b foaf:name "Bob" .
Example 10:
[bookmark: example_10]This example request first copies triples from one named graph to another named graph based on a pattern; triples about all the copied objects that are classified as Physical Objects are then deleted. This demonstrates two operations in a single request, both of which share common PREFIX definitions.
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcmitype: <http://purl.org/dc/dcmitype/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

INSERT
 { GRAPH <http://example/bookStore2> { ?book ?p ?v } }
WHERE
 { GRAPH <http://example/bookStore>
 { ?book dc:date ?date .
 FILTER (?date < "2000-01-01T00:00:00-02:00"^^xsd:dateTime)
 ?book ?p ?v
 }
 } ;

WITH <http://example/bookStore>
DELETE
 { ?book ?p ?v }
WHERE
 { ?book dc:date ?date ;
 dc:type dcmitype:PhysicalObject .
 FILTER (?date < "2000-01-01T00:00:00-02:00"^^xsd:dateTime)
 ?book ?p ?v
 }

Data before:
Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dcmitype: <http://purl.org/dc/dcmitype/> .

<http://example/book1> dc:title "Fundamentals of Compiler Design" .
<http://example/book1> dc:date "1996-01-01T00:00:00-02:00"^^xsd:dateTime .
<http://example/book1> a dcmitype:PhysicalObject .

<http://example/book3> dc:title "SPARQL 1.1 Tutorial" .
Graph: http://example/bookStore2
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example/book4> dc:title "SPARQL 1.0 Tutorial" .
Data after:
Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dcmitype: <http://purl.org/dc/dcmitype/> .

<http://example/book3> dc:title "SPARQL 1.1 Tutorial" .
Graph: http://example/bookStore2
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dcmitype: <http://purl.org/dc/dcmitype/> .

<http://example/book1> dc:title "Fundamentals of Compiler Design" .
<http://example/book1> dc:date "1996-01-01T00:00:00-02:00"^^xsd:dateTime .
<http://example/book1> a dcmitype:PhysicalObject .

<http://example/book4> dc:title "SPARQL 1.0 Tutorial" .

[bookmark: deleteWhere]3.1.3.3 DELETE WHERE
DELETE WHERE QuadPattern

The DELETE WHERE operation is a shortcut form for the DELETE/INSERT operation where bindings matched by the WHERE clause are used to define the triples in a graph that will be deleted. Analogous to DELETE/INSERT, deleting triples that are not present, or from a graph that is not present will have no effect and will result in success.
The QuadPattern is used both as a pattern for matching against triples and graphs, and as the template for deletion. If any TripleTemplates within the QuadPattern appear in the scope of a GRAPH clause then this will determine the graph that that template is matched on, and also the graph from which any matching triples will be removed. Any TripleTemplates not in the scope of a GRAPH clause will be matched against/removed from the default graph.
Example 11:
[bookmark: example_11]This example request removes all statements about anything with a given name of "Fred" from the default graph:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DELETE WHERE { ?person foaf:givenName 'Fred';
 ?property ?value }

Data before:
Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

<http://example/fred> a foaf:Person .
<http://example/fred> foaf:givenName "Fred" .
<http://example/fred> foaf:mbox <mailto:fred@example> .
Data after:
Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .
Example 12:
[bookmark: example_12]This example request removes both statements naming some resource "Fred" in the graph http://example.com/names, and also statements about that resource from the graph http://example/addresses (assuming that some of the resources in the graph http://example.com/names have corresponding triples in the graph http://example/addresses).
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DELETE WHERE {
 GRAPH <http://example.com/names> {
 ?person foaf:givenName 'Fred' ;
 ?property1 ?value1
 }
 GRAPH <http://example.com/addresses> {
 ?person ?property2 ?value2
 }
}

Graph: http://example.com/names
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .

<http://example/fred> a foaf:Person .
<http://example/fred> foaf:givenName "Fred" .
Graph: http://example.com/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> foaf:mbox <mailto:bill@example> .

<http://example/fred> foaf:mbox <mailto:fred@example> .
Data after:
Graph: http://example.com/names
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .

Graph: http://example.com/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> foaf:mbox <mailto:bill@example> .

[bookmark: load]3.1.4 LOAD
The LOAD operation reads an RDF document from a IRI and inserts its triples into the specified graph in the Graph Store. The specified destination graph SHOULD be created if required; again, implementations providing an update service over a fixed set of graphs MUST return with failure for a request that would create a disallowed graph. If the destination graph already exists, then no data in that graph will be removed.
LOAD (SILENT)? IRIref_from (INTO GRAPH IRIref_to)?
IRIref_from specifies the IRI of a document such that a store will be able to identify, locate and read the document.
The most common form will be URLs with the http IRI schemes. Once the document has been read, the resulting triples will be inserted into the destination graph named by the IRI referred to by IRIref_to.
If no destination graph IRI (IRIref_to) is provided to load the triples into, then the data will be loaded into the default graph.

In case no RDF data can be retrieved (as opposed to the empty graph being retrieved) from the IRI denoted by IRIref_from, or in case the retrieval method returns an error (such as, for instance an HTTP error code), the SPARQL 1.1 Update service SHOULD return failure and the status of the Graph Store SHOULD remain in the same status as prior to the request; in case the keyword SILENT is present, however, the operation will still return success and the status of the Graph Store is not specified by the present document: implementations may create the destination graph or not and partially load data, in case of a transmission error where partial data has been received (which itself may be legal RDF).

[bookmark: clear]3.1.5 CLEAR
The CLEAR operation removes all the triples in the specified graph(s) in the Graph Store.
CLEAR (SILENT)? (GRAPH IRIref | DEFAULT | NAMED | ALL)
Here, the DEFAULT keyword is used to remove all triples in the default graph of the Graph Store, the NAMED keyword is used to remove all triples in all named graphs of the Graph Store and the ALL keyword is used to remove all triples in all graphs of the Graph Store. The GRAPH keyword is used to remove all triples from a graph denoted by IRIref.
This operation is not required to remove the empty graphs from the Graph Store, but an implementation MAY decide to do so.
Remove all triples from a specified graph.
CLEAR GRAPH IRIref
in principle has the same effect as:
Remove all triples from the graph named with the IRI denoted by IRIref.
DELETE { GRAPH IRIref { ?s ?p ?o } } WHERE { GRAPH IRIref { ?s ?p ?o } }
Note:
For services which form the default graph from the union of other graphs, CLEAR DEFAULT may have further implications which we leave unspecified here.
If the store records the existence of empty graphs, then the SPARQL 1.1 Update service, by default,
 SHOULD return failure if the specified graph does not exist. If SILENT
 is present, the result of the operation will always be success.
Stores that do not record empty graphs will always return success.

[bookmark: graphManagement]3.2 Graph Management
Graph management operations allow creating, destroying, moving and copying named graphs in the Graph Store, or adding the contents of one graph to another. Operations for creation and destruction are not required to result in any actions, since Graph Stores are not required to record the existence of empty named graphs.
The default graph in a Graph Store always exists.
SPARQL 1.1 Update provides these graph management operations:
	
		The CREATE operation creates a new graph in stores that support empty graphs.
	
	
		The DROP operation removes a graph and all of its contents.
	
	
		The COPY operation modifies a graph to contain a copy of another.
	
	
		The MOVE operation moves all of the data from one graph into another.
	
	
		The ADD operation reproduces all data from one graph into another.
	

[bookmark: create]3.2.1 CREATE
This operation creates a graph in the Graph Store:
CREATE (SILENT)? GRAPH IRIref
For stores that record empty graphs, this will create a new empty graph in the store with a name specified by the IRI.
 If the graph already exists, then a failure SHOULD be returned, except when the SILENT keyword is used; in either case, the contents of already existing graphs remain unchanged. If the graph may not be created, then a failure MUST be returned, except when the SILENT keyword is used.
Stores that do not record empty named graphs will always return success on creation of a non-existing graph.

[bookmark: drop]3.2.2 DROP
DROP (SILENT)? (GRAPH IRIref | DEFAULT | NAMED | ALL)
The DROP operation removes the specified graph(s) from the Graph Store.
The GRAPH keyword is used to remove a graph denoted by IRIref, the DEFAULT keyword is used to remove the default graph from the Graph Store, the NAMED keyword is used to remove all named graphs from the Graph Store, and the ALL keyword is used to remove all graphs from the Graph Store, i.e., resetting the store.
After successful completion of this
operation, the specified graphs are no longer available for further graph update
operations.
However, in case the DEFAULT graph of the Graph Store is dropped, implementations MUST restore it after it was removed, i.e., DROP DEFAULT is equivalent to CLEAR DEFAULT.
If the store records the existence of empty graphs, then the SPARQL 1.1 Update service, by default,
 SHOULD return failure if the specified named graph does not exist. If SILENT
 is present, the result of the operation will always be success.
Stores that do not record empty graphs will always return success.

[bookmark: copy]3.2.3 COPY
The COPY operation is a shortcut for inserting all data from an input graph into a destination graph. Data from the input graph is not affected, but data from the destination graph, if any, is removed before insertion.
COPY (SILENT)? ((GRAPH)? IRIref_from | DEFAULT) TO ((GRAPH)? IRIref_to | DEFAULT)
is similar in operation to:
DROP SILENT (GRAPH IRIref_to | DEFAULT);
 INSERT { (GRAPH IRIref_to)? { ?s ?p ?o } } WHERE { (GRAPH IRIref_from)? { ?s ?p ?o } }
The difference between COPY and the DROP/INSERT combination is that if COPY is used to copy a graph onto itself then no operation will be performed and the data will be left as it was. Using DROP/INSERT in this situation would result in an empty graph.

		If the destination graph does not exist, it will be created.
		By default, the service MAY return failure if the input graph does not exist.
		If SILENT is present, the result of the operation will always be success.
		
Example 13:
[bookmark: example_13]This example request copies all statements from the default graph to a named graph:
COPY DEFAULT TO <http://example.org/named>
Data before:
Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .
Graph http://example.org/named
<http://example/fred> a foaf:Person .
<http://example/fred> foaf:givenName "Fred" .
Data after:
Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .
Graph http://example.org/named
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .
Note that the original content in http://example.org/named is lost by a COPY operation.

[bookmark: move]3.2.4 MOVE
The MOVE operation is a shortcut for moving all data from an input graph into a destination graph. The input graph is removed after insertion and data from the destination graph, if any, is removed before insertion.
MOVE (SILENT)? ((GRAPH)? IRIref_from | DEFAULT) TO ((GRAPH)? IRIref_to | DEFAULT)
is similar in operation to:
DROP SILENT (GRAPH IRIref_to | DEFAULT);
 INSERT { (GRAPH IRIref_to)? { ?s ?p ?o } } WHERE { (GRAPH IRIref_from)? { ?s ?p ?o } };
DROP (GRAPH IRIref_from | DEFAULT)
The difference between MOVE and the DROP/INSERT/DROP combination is that if MOVE is used to move a graph onto itself then no operation will be performed and the data will be left as it was. Using DROP/INSERT/DROP in this situation would result in the graph being removed.

		If the destination graph does not exist, it will be created.
 By default, the service MAY return failure if the input graph does not exist.
		If SILENT is present, the result of the operation will always be success.
		
Example 14:
[bookmark: example_14]This example request moves all statements from the default graph into a named graph:
MOVE DEFAULT TO <http://example.org/named>
Data before:
Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .
Graph http://example.org/named
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/fred> a foaf:Person .
<http://example/fred> foaf:givenName "Fred" .
Data after:
Default graph

Graph http://example.org/named
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .
Note that the original content in http://example.org/named is lost by a MOVE operation.

[bookmark: add]3.2.5 ADD
The ADD operation is a shortcut for inserting all data from an input graph into a destination graph. Data from the input graph is not affected, and initial data from the destination graph, if any, is kept intact.
ADD (SILENT)? ((GRAPH)? IRIref_from | DEFAULT) TO ((GRAPH)? IRIref_to | DEFAULT)
is equivalent to:
INSERT { (GRAPH IRIref_to)? { ?s ?p ?o } } WHERE { (GRAPH IRIref_from)? { ?s ?p ?o } }

		If the destination graph does not exist, it will be created.
 By default, the service MAY return failure if the input graph does not exist.
		If SILENT is present, the result of the operation will always be success.
		
Example 15:
[bookmark: example_15]This example request adds all statements from the default graph to a named graph:
ADD DEFAULT TO <http://example.org/named>
Data before:
Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .
Graph http://example.org/named
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/fred> a foaf:Person .
Data after:
Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .
Graph http://example.org/named
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/fred> a foaf:Person .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

[bookmark: formalModel]4 SPARQL Update Formal Model
This section formally defines the semantics of Update Operations by describing their effects in terms of transformations of the Graph Store.

[bookmark: formalModelGeneral]4.1 General Definitions

[bookmark: def_graphstore]4.1.1 Graph Store
[bookmark: defn_graphStore]Definition: Graph Store

		A Graph Store GS is a mutable container of RDF graphs. It has one unnamed (default) slot and zero or more named slots. The unnamed slot holds an RDF graph; each named slot is a pair of a graph and an associated IRI. The Graph Store can be viewed as a mutable RDF Dataset.
	
GS = {DG, (iri1, G1), ... , (irin, Gn) }
where
	the default graph DG is the RDF graph associated with the unnamed slot
	n ≥ 0 and for each 1 ≤ i ≤ n, Gi is an RDF graph associated with the named slot identified by IRI irii
	 all IRIs are distinct, i.e., i≠j implies irii≠irij

Note:
We will use GS for the Graph Store, but sometimes also - synonymously - for the RDF Dataset corresponding to the current Graph Store content in subsequent definitions. For convenience, we will also sometimes write GS = {DG} union {(irii, Gi) | 1 ≤ i ≤ n} as an alternative mathematical notation for GS = {DG, (iri1, G1), ... , (irin, Gn) } in subsequent definitions.

[bookmark: def_updateoperation]4.1.2 Abstract Update Operation
[bookmark: defn_updateOperation]Definition: Update Operation

		An Update Operation Op is an atomic operation that accepts some arguments Args and transforms a Graph Store GS to another Graph Store GS', denoted as
	
Op(GS, Args) = GS'
By 'atomic operation' we mean that the operation performs the described transformation of the Graph Store either completely or leaves the Graph Store unchanged, i.e., the result is either GS' or GS (in case of error).
An Update Operation can create new slots and new RDF graphs, or can remove existing slots and the corresponding graphs. It can also alter the state of each slot individually.

We will define the semantics of each concrete update operation in terms of concrete instances of this abstract update operation definition.

[bookmark: formalModelAuxiliary]4.2 Auxiliary Definitions
In the following we present auxiliary functions and basic operations for creating the union, and
difference of RDF Datasets. The concrete update operations will
be defined in terms of those basic operations.
Note:
In the following definitions, we write 'union', 'intersect' and 'minus' to denote the respective set operations (union, intersection, and set difference).

[bookmark: def_datasetUnion]4.2.1 Dataset-UNION
This basic operation creates the union of two RDF Datasets.
[bookmark: defn_datasetUnion]Definition: Dataset-UNION

		Let DS={DG} union {(irii, Gi) | 1 ≤ i ≤ n} and DS' = {DG'} union {(iri'j, G'j) | 1 ≤ j ≤ m} be two RDF Datasets. Let further graphNames(DS) = { irii | 1 ≤ i ≤ n} and graphNames(DS') = {iri'j | 1 ≤ j ≤ m}. The Dataset-UNION between DS and DS' is defined as follows:
	
Dataset-UNION(DS, DS') = {DG union DG'} union {(iri, G) | iri in graphNames(DS) union graphNames(DS')}
and G defined as
	Gi for iri = irii such that irii in graphNames(DS) minus graphNames(DS')
	Gj for iri = iri'j such that irij in graphNames(DS') minus graphNames(DS)
	Gi union Gj for iri = irii = iri'j in graphNames(DS) intersect graphNames(DS')

where union between graphs is defined as set-union of triples in those graphs.

Note:
Note that, in the following, whenever we write Dataset-UNION(X) where X = {DS1,DS2,... ,DSn} is a set of datasets, we understand this as a shorthand for Dataset-UNION(DS1, Dataset-UNION(DS2, ... , Dataset-UNION(DSn,{})...)).

[bookmark: def_datasetDiff]4.2.2 Dataset-DIFF
This operation removes the triples of a given dataset from another dataset.
[bookmark: defn_datasetDiff]Definition: Dataset-DIFF

		Let DS={DG} union {(irii, Gi) | 1 ≤ i ≤ n} and DS' = {DG'} union {(iri'j, G'j) | 1 ≤ j ≤ m}) be two RDF Datasets. Let further graphNames(DS) = { irii | 1 ≤ i ≤ n} and graphNames(DS') = {iri'j | 1 ≤ j ≤ m}. The Dataset-DIFF between DS and DS' is defined as follows:
	
Dataset-DIFF(DS, DS') = {DG minus DG'} union { (iri, G) | iri in graphNames(DS) })
and G defined as
	Gi for iri = irii such that irii in graphNames(DS) minus graphNames(DS')
	Gi minus G'j for iri = irii = iri'j in graphNames(DS) intersect graphNames(DS')

where Gi minus G'j is defined as set-difference over the sets of triples in the two graphs.

[bookmark: def_datasetQuadPattern]4.2.3 Dataset(QuadPattern, μ, DS, GS)
The following auxiliary function constructs an RDF Dataset from a QuadPattern, given a solution mapping and an RDF Dataset.
Let μ be a solution mapping, DS={DG} union {(irii, Gi) | 1 ≤ i ≤ n} be an RDF Dataset and GS be the current state of the Graph Store. DS is distinguished from GS as they may differ, for instance, due to the use of USING [NAMED] to modify DS.
For a QuadPattern of the form
	'{}'

Dataset(QuadPattern, μ, DS, GS) = {{}} i.e., the empty dataset consisting only of an empty default graph.

	'{' TriplesTemplate? '}'

 Dataset(QuadPattern, μ, DS, GS) is the Dataset consisting of only a default graph composed by all valid RDF triples obtained from substituting the variables in skμ(TriplesTemplate) according to μ and combining these triples into a single RDF graph by set union.

	'GRAPH' VarOrIri '{' TriplesTemplate? '}'

Dataset(QuadPattern, μ, DS, GS) is the Dataset consisting of an empty default graph, plus - in case μ(VarOrIri) yields a valid IRI - a named graph (μ(VarOrIri), G) such that G is composed by all valid RDF triples obtained from substituting the variables in skμ(TriplesTemplate) according to μ and combining these triples into a single RDF graph by set union.

	'{' QuadPattern1 QuadPattern2 '}'

Dataset(QuadPattern, μ , DS, GS) = Dataset-UNION (Dataset(QuadPattern1, μ, DS, GS) , Dataset(QuadPattern2, μ, DS, GS))

Here, skμ(TriplesTemplate) stands for replacing any blank nodes occurring in the TriplesTemplate with a new, unique blank node (unique to the current update request and to each μ and different from any blank nodes used in DS or in GS).

The function skμ guarantees that "fresh" blank nodes in the QuadPattern are re-instantiated "per solution" μ (analogous to the treatment of blank nodes in CONSTRUCT templates in the SPARQL1.1 Query Language); cf. also the respective remarks on scoping of blank nodes within requests in the SPARQL grammar.

[bookmark: def_datasetPattern]4.2.4 Dataset(QuadPattern, P, DS, GS)
The following auxiliary function constructs an RDF Dataset from a QuadPattern, given a graph pattern and an RDF Dataset.
Let P be a Graph Pattern and DS={DG} union {(irii, Gi) | 1 ≤ i ≤ n} be an RDF Dataset and GS be the current state of the Graph Store. Then
Dataset(QuadPattern, P, DS, GS) = Dataset-UNION({ Dataset(QuadPattern, μ, DS, GS) | μ in eval'(DS(DG),P) })
i.e., the union over all μ such that μ is in the solutions of P over dataset DS.
Here, eval'() is defined exactly like the evaluation function eval() in the SPARQL1.1 Query Language, with the only exception, that - as opposed to the treatment of blank nodes in BGP matching for SPARQL1.1 Query - here the scoping graph SG used for BGP matching is equal to the active graph,
i.e., blank nodes from the active graph are preserved in solutions.

The definition of eval'() guarantees that co-referent blank nodes in DS are not "lost" during pattern evaluation, cf. Treatment of Blank Nodes in SPARQL1.1 Query. The latter is necessary to ensure that blank nodes in DS can be matched against existing blank nodes in GS to remove/add triples. In order to illustrate matching against existing blank nodes in the Graph Store,
the following update request removes all triples with blank node as subject.
DELETE { ?S ?P ?O . } WHERE { ?S ?P ?O . FILTER (isBlank(?S)) }
Data before:
Default graph
@prefix : <http://example.com/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:b a foaf:Person .
:s a foaf:Person .

Data after:
Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

:s a foaf:Person .

[bookmark: formalModelGraphUpdate]4.3 Graph Update Operations

[bookmark: def_insertdataoperation]4.3.1 Insert Data Operation
[bookmark: defn_insertDataOperation]Definition: Insert Data Operation
A Insert Data Operation is an Update Operation in which new triples, given as a (ground) QuadPattern, are added in the Graph Store GS, in the default slot or in named slots.
OpInsertData(GS, QuadPattern) = Dataset-UNION(GS, Dataset(QuadPattern,{},GS,GS))
where {} is the empty solution mapping.

[bookmark: def_deletedataoperation]4.3.2 Delete Data Operation
[bookmark: defn_deleteDataOperation]Definition: Delete Data Operation
A Delete Data Operation OpDeleteData is an Update Operation in which triples, given as a (ground) QuadPattern, are removed from the Graph Store GS, from the default slot or from named slots.
OpDeleteData(GS, QuadPattern) = Dataset-DIFF(GS, Dataset(QuadPattern,{},GS,GS))
where {} is the empty solution mapping.

[bookmark: def_deleteinsertoperation]4.3.3 Delete Insert Operation
[bookmark: defn_deleteInsertOperation]Definition: Delete Insert Operation
A Delete Insert Operation OpDeleteInsert is an Update Operation in which (1) triples are deleted from the Graph Store GS, either from the default slot or from named slot(s), and then (2) new triples are added in the Graph Store GS, either in the default slot or in named slot(s). Triples to be removed (and inserted, respectively) are identified by applying the pattern solutions for a Group Graph Pattern P against DS to the QuadPattern QuadPatternDEL (and QuadPatternINS, respectively).
OpDeleteInsert(GS, DS, QuadPatternDEL, QuadPatternINS, P) = Dataset-UNION(Dataset-DIFF(GS, Dataset(QuadPatternDEL,P,DS,GS)), Dataset(QuadPatternINS, P,DS,GS)

[bookmark: def_loadoperation]4.3.4 Load Operation
[bookmark: defn_loadOperation]Definition: Load Operation
A Load Operation OpLoad is an Update Operation in which new triples (from a remote graph) are added in the Graph Store, either in the default slot or in a named slot, if specified.
OpLoad(GS, documentIRI) = Dataset-UNION(GS, { graph(documentIRI) })
OpLoad(GS, documentIRI, iri) = Dataset-UNION(GS, { {}, (iri,graph(documentIRI)) })
where graph(documentIRI) is a function returning the RDF graph serialized by the RDF document retrieved from IRI documentIRI, where blank nodes present in the retrieved graph are supposed to be "standardized apart"; i.e., blank nodes from a loaded graph need to be disjoint with the blank nodes already present in the Graph Store GS.

[bookmark: def_clearOperation]4.3.5 Clear Operation
[bookmark: defn_clearOperation]Definition: Clear Operation
A Clear Operation OpClear is an Update Operation in which triples are deleted from the Graph Store, either from a named slot, the default slot, all named slots or all slots. There are different variants of the Clear Operation, OpClear for clearing a named graph, OpCleardef for clearing the default graph, OpClearnamed for clearing all named graphs, and OpClearall for clearing all graphs including the default graph.
Let GS = {DG} union {(irii, Gi) | 1 ≤ i ≤ n} and graphNames(GS) = { irii | 1 ≤ i ≤ n}, then
OpClear(GS, iri) = GS if iri not in graphNames(GS); otherwise, OpClear(GS, irij) = (GS minus {(irij, Gj)}) union {(irij,{})}, where (irij, Gj) ∈ GS and iri = irij
OpCleardef(GS) = {{}} union {(irii, Gi) | 1 ≤ i ≤ n}
OpClearnamed(GS) = {DG} union {(irii, {}) | 1 ≤ i ≤ n}
OpClearall(GS) = {{}} union {(irii, {}) | 1 ≤ i ≤ n}

Note:
 Since Graph Stores may remove graphs that are left empty, for such Graph Stores any Clear Operation performed on a named graph may be viewed as immediately followed by a Drop Operation, see below.

[bookmark: formalModelGraphMgt]4.4 Graph Management Operations

[bookmark: def_createOperation]4.4.1 Create Operation
[bookmark: defn_createOperation]Definition: Create Operation
A Create Operation OpCreate is an Update Operation in which (1) a new named slot and (2) a new graph G are created in the Graph Store. The new graph is held in the new slot, and is empty. Other slots and graphs are not affected.
Let GS = {DG} union {(irii, Gi) | 1 ≤ i ≤ n} and graphNames(GS) = { irii | 1 ≤ i ≤ n}, then
OpCreate(GS, iri) = GS union {(iri, {})} if iri not in graphNames(GS); otherwise, OpCreate(GS, iri) = GS

Note:
 Since Graph Stores may remove graphs that are left empty, for such Graph Stores any Create Operation performed on an empty or non-existent graph may be viewed as implicitly immediately followed by a Drop Operation (see next subsection), or simply as an operation with no effect.

[bookmark: def_dropOperation]4.4.2 Drop Operation
[bookmark: defn_dropOperation]Definition: Drop Operation
A Drop Operation OpDrop is an Update Operation in which one or more slots (a named slot irii, the default slot, all named slots or all slots) and their corresponding graphs are removed from the Graph Store. There are different variants of the Drop Operation, OpDrop for dropping a named graph, OpDropdef for dropping the default graph (which is equivalent to OpCleardef, since the default graph cannot be removed, but dropping it means only to clear it), OpDropnamed for dropping all named graphs, and OpDropall for dropping all graphs including the default graph.
Let GS = {DG} union {(irii, Gi) | 1 ≤ i ≤ n} and graphNames(GS) = { irii | 1 ≤ i ≤ n}, then
OpDrop(GS, iri) = GS if iri not in graphNames(GS); otherwise, OpDrop(GS, irij) = {DG} union {(irii, Gi) | i ≠ j and 1 ≤ i ≤ n} where iri = irij
OpDropdef(GS) = OpCleardef(GS)
OpDropnamed(GS) = {DG}
OpDropall(GS) = {{}}

[bookmark: mappingRequestsToOperations]4.5 Mapping Update Requests to the Formal Model
In this section we show how to map Update Requests in the SPARQL 1.1. Update Language to Update Operations over the Graph Store as defined earlier in this section. This mapping assumes that in all Update requests, any PREFIXes have been expanded. Moreover, we assume that WITH clauses have been replaced by wrapping both the QuadPatterns in subsequent DELETE and INSERT clauses, and likewise - in the absence of USING and USING NAMED clauses - the GroupGraphPattern in the subsequent WHERE clause, into GRAPH patterns.
The mapping from requests to Update Operations is defined in terms of the recursive translation function Tr(GS,R) which takes the Graphstore GS - as before executing the request - and an update request R as input and exands it to an Update Operation call as shown in the following table. The COPY, MOVE, and ADD operations are not mentioned explicitly here, since they are understood as shortcuts.
Table 1: Mapping from Update Requests to Update Operations
	Update request R 	Tr(GS,R) =
	 R1 ; R2 	 Tr(Tr(GS, R1), R2)
	INSERT DATA QuadData 	OpInsertData(GS, QuadData)
	DELETE DATA QuadData 	OpDeleteData(GS, QuadData)
	DELETE QuadPatternDEL INSERT QuadPatternINS

UsingClause*

WHERE GroupGraphPattern	
OpDeleteInsert(GS, TrDataset(GS,UsingClause*), QuadPatternDEL, QuadPatternINS, GroupGraphPattern)

	DELETE QuadPatternDEL

UsingClause*

WHERE GroupGraphPattern	
OpDeleteInsert(GS, TrDataset(GS,UsingClause*), QuadPatternDEL, {}, GroupGraphPattern)

	INSERT QuadPatternINS

UsingClause*

WHERE GroupGraphPattern	
OpDeleteInsert(GS, TrDataset(GS,UsingClause*), {}, QuadPatternINS, GroupGraphPattern)

	 DELETE WHERE QuadPattern 	
OpDeleteInsert(GS, GS, QuadPattern, {}, QuadPattern)

	 LOAD (SILENT)? IRIref 	
OpLoad(GS, IRIref)

	 LOAD (SILENT)? IRIreffrom INTO GRAPH IRIrefto	
OpLoad(GS, IRIreffrom, IRIrefto)

	 CLEAR (SILENT)? GRAPH IRIref	
OpClear(GS, IRIref)

	 CLEAR (SILENT)? DEFAULT	
OpCleardef(GS)

	 CLEAR (SILENT)? NAMED	
OpClearnamed(GS)

	 CLEAR (SILENT)? ALL	
OpClearall(GS)

	 CREATE (SILENT)? GRAPH IRIref 	
OpCreate(GS, IRIref)

	 DROP (SILENT)? GRAPH IRIref	
OpDrop(GS, IRIref)

	 DROP (SILENT)? DEFAULT	
OpDropdef(GS)

	 DROP (SILENT)? NAMED	
OpDropnamed(GS)

	 DROP (SILENT)? ALL	
OpDropall(GS)

This table uses one auxiliary translation function TrDataset() which constructs a dataset from the optional
set of USING and USING NAMED clauses and is defined as follows:
Table 2: Mapping UsingClauses to RDF Datasets
	Translation Function	Definition
	TrDataset(GS,UsingClause*) = 	
	the RDF Dataset DS described by the UsingClauses, if non-empty
	the RDF Dataset corresponding to the current state of GS, otherwise

Note:
 How exactly an RDF Dataset is obtained from the USING and USING NAMED clauses (e.g. by dereferencing graph name IRIs and trying to retrieve them, or by picking those graphs from the existing Graph Store) is implementation dependent. Particularly, this specification does not mandate
any assumptions about blank node identity beyond the consideration for the analogous FROM and FROM NAMED clauses in Section Specifying RDF Datasets of the SPARQL 1.1 Query Language specification.

[bookmark: conformance]5 Conformance

See appendix B SPARQL 1.1 Update Grammar regarding conformance of SPARQL Update strings.

This specification is intended for use in conjunction with: the SPARQL 1.1 Graph Store HTTP Protocol and the SPARQL 1.1 Protocol for RDF.

[bookmark: security]A Security Considerations (Informative)
Exposing RDF data for update creates many security issues which all deployments must be aware of, and
 consider the risks involved. This submission discusses some of the potential issues. New security
 problems are discovered regularly, and each implementation introduces its own concerns. Consequently
 implementers should be aware that this is only a partial list containing possible issues, and
 cannot be considered complete nor authoritative.
	Write access to data makes it inherently vulnerable to malicious
 access. Standard access and authentication techniques should be used
 in any networked environment. In particular, HTTPS should be used,
 especially when implementing the SPARQL HTTP-based protocols. (i.e.,
 encryption with challenge/response based password presentation,
 encrypted session tokens, etc). Some of the weak points addressed by
 HTTPS are: authentication, active session integrity between client and
 server, preventing replays, preventing continuation of defunct
 sessions.
	SPARQL Update incurs all of the security concerns of SPARQL Query.
 In particular, stores which treat IRIs as dereferenceable need to
 protect against dereferenced IRIs from being used to invoke cross-site
 scripting attacks.
	Implementations will need to enforce their standard permissions scheme
 carefully. Permissions schemes always require careful design, and it is
 important to ensure that privileges in one area are not inadvertently
 applied to other parts of the system.
	Systems that provide both read-only and writable interfaces can be
 subject to injection attacks in the read-only interface. In particular,
 a SPARQL endpoint with a Query service should be careful of injection
 attacks aimed at interacting with an Update service on the same SPARQL endpoint.
 Like any client code, interaction between the query service and the
 update service should ensure correct escaping of strings provided by the user.
	While SPARQL Update and SPARQL Query are separate languages, some
 implementations may choose to offer both at the same SPARQL endpoint.
 In this case, it is important to consider that an Update operation
 may be obscured to masquerade as a query. For instance, a string of
 unicode escapes in a PREFIX clause could be used to hide an Update
 Operation. Therefore, simple syntactic tests are inadequate to
 determine if a string describes a query or an update.

[bookmark: mediaType]B Internet Media Type, File Extension and Macintosh File Type
The Internet Media Type / MIME Type for the SPARQL Update Language is "application/sparql-update".
It is recommended that SPARQL Update files have the extension ".ru" (lowercase)
 on all platforms.
It is recommended that SPARQL Update files stored on Macintosh HFS file systems
 be given a file type of "TEXT".

 	Type name:

 	application

 	Subtype name:

 	sparql-update

 	Required parameters:

 	None

 	Optional parameters:

 	None

 	Encoding considerations:

 	The syntax of the SPARQL Update Language is expressed over code points in Unicode
 [UNICODE]. The encoding is always UTF-8 [RFC3629].

 	Unicode code points may also be expressed using an \uXXXX (U+0 to U+FFFF)
 or \UXXXXXXXX syntax (for U+10000 onwards) where X is a hexadecimal digit [0-9A-F]

 	Security considerations:

 	See SPARQL Update appendix A, Security Considerations
 as well as RFC 3629
 [RFC3629] section 7, Security Considerations.

 	Interoperability considerations:

 	There are no known interoperability issues.

 	Published specification:

 	This specification.

 	Applications which use this media type:

 	No known applications currently use this media type.

 	Additional information:

 	Magic number(s):

 	A SPARQL query may have the string 'PREFIX' (case independent) near the beginning
 of the document.

 	File extension(s):

 	".ru"

 	Base IRI:

 	The SPARQL 'BASE <IRIref>' term can change the current base IRI for relative
 IRIrefs in the query language that are used sequentially later in the document.

 	Macintosh file type code(s):

 	"TEXT"

 	Person & email address to contact for further information:

 	public-rdf-dawg-comments@w3.org

 	Intended usage:

 	COMMON

 	Restrictions on usage:

 	None

 	Author/Change controller:

 	The SPARQL 1.1 specification is a work product of the World Wide Web Consortium's
 SPARQL Working Group. The W3C has change control over these specifications.

[bookmark: grammar]C SPARQL 1.1 Update Grammar
The formal definition for the SPARQL 1.1 Update grammar is provided with the SPARQL 1.1 Query grammar. This is because the grammar for SPARQL 1.1 Update shares most of its structure with SPARQL 1.1 Query.

[bookmark: sec-bibliography]D References

[bookmark: sec-existing-stds]D.1 Normative References
	[bookmark: IANA]IANA-CHARSETS
	(Internet
Assigned Numbers Authority) Official Names for Character Sets,
ed. Keld Simonsen et al. (See http://www.iana.org/assignments/character-sets.)
	[bookmark: rfc3987]RFC3987
	
Internationalized Resource Identifiers (IRIs),
M. Dürst , M. Suignard (See http://www.ietf.org/rfc/rfc3987.txt.)
	[bookmark: RDF-MT]RDF-MT
	RDF Semantics, P. Hayes, Editor, W3C Recommendation,
 10 February 2004, see http://www.w3.org/TR/2004/REC-rdf-mt-20040210/,
 Latest version available
 at http://www.w3.org/TR/rdf-mt/.
 (See http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.)

[bookmark: null]D.2 Other References
	[bookmark: Aho]Aho/Ullman
	Aho, Alfred V., Ravi Sethi, and Jeffrey D.
Ullman. Compilers: Principles, Techniques, and Tools.
Reading: Addison-Wesley, 1986, rpt. corr. 1988.
	[bookmark: ABK]Brüggemann-Klein
	Brüggemann-Klein,
Anne. Formal Models in Document Processing. Habilitationsschrift. Faculty
of Mathematics at the University of Freiburg, 1993. (See ftp://ftp.informatik.uni-freiburg.de/documents/papers/brueggem/habil.ps.)
	[bookmark: ABKDW]Brüggemann-Klein and Wood
	Brüggemann-Klein,
Anne, and Derick Wood. Deterministic Regular Languages.
Universität Freiburg, Institut für Informatik, Bericht 38, Oktober 1991. Extended
abstract in A. Finkel, M. Jantzen, Hrsg., STACS 1992, S. 173-184. Springer-Verlag,
Berlin 1992. Lecture Notes in Computer Science 577. Full version titled One-Unambiguous
Regular Languages in Information and Computation 140 (2): 229-253,
February 1998.
	[bookmark: Clark]Clark
	James Clark.
Comparison of SGML and XML. (See http://www.w3.org/TR/NOTE-sgml-xml-971215.)
	[bookmark: IANA-LANGCODES]IANA-LANGCODES
	(Internet
Assigned Numbers Authority) Registry of Language Tags (See http://www.iana.org/assignments/language-subtag-registry.)
	[bookmark: RFC2141]IETF RFC 2141
	IETF
(Internet Engineering Task Force). RFC 2141: URN Syntax, ed.
R. Moats. 1997. (See http://www.ietf.org/rfc/rfc2141.txt.)
	[bookmark: rfc2376]IETF RFC 3023
	IETF
(Internet Engineering Task Force). RFC 3023: XML Media Types.
eds. M. Murata, S. St.Laurent, D. Kohn. 2001. (See http://www.ietf.org/rfc/rfc3023.txt.)
	[bookmark: rfc2781]IETF RFC 2781
	IETF
(Internet Engineering Task Force). RFC 2781: UTF-16, an encoding
of ISO 10646, ed. P. Hoffman, F. Yergeau. 2000. (See http://www.ietf.org/rfc/rfc2781.txt.)
	[bookmark: rfc3629]IETF RFC 3629
	IETF
(Internet Engineering Task Force). RFC 3629: UTF-8, a transformation
format of ISO 10646, F. Yergeau. November 2003. (See http://www.ietf.org/rfc/rfc3629.txt.)
	[bookmark: ISO639]ISO 639
	(International Organization for Standardization).
ISO 639:1988 (E).
Code for the representation of names of languages. [Geneva]: International
Organization for Standardization, 1988.
	[bookmark: ISO3166]ISO 3166
	(International Organization for Standardization).
ISO 3166-1:1997
(E). Codes for the representation of names of countries and their subdivisions —
Part 1: Country codes [Geneva]: International Organization for
Standardization, 1997.
	[bookmark: ISO8879]ISO 8879
	ISO (International Organization for Standardization). ISO
8879:1986(E). Information processing — Text and Office Systems —
Standard Generalized Markup Language (SGML). First edition —
1986-10-15. [Geneva]: International Organization for Standardization, 1986.
	[bookmark: ISO10744]ISO/IEC 10744
	ISO (International Organization for
Standardization). ISO/IEC 10744-1992 (E). Information technology —
Hypermedia/Time-based Structuring Language (HyTime). [Geneva]:
International Organization for Standardization, 1992. Extended Facilities
Annexe. [Geneva]: International Organization for Standardization, 1996.
	[bookmark: UNICODE]UNICODE
	The Unicode
Consortium. The Unicode Standard, Version 5.0.0.
Boston, MA, Addison-Wesley, 2007. ISBN 0-321-48091-0. (See http://www.unicode.org/unicode/standard/versions/.)
	[bookmark: websgml]WEBSGML
	ISO
(International Organization for Standardization). ISO 8879:1986
TC2. Information technology — Document Description and Processing Languages.
[Geneva]: International Organization for Standardization, 1998. (See http://www.sgmlsource.com/8879/n0029.htm.)
	[bookmark: xml-names]XML Names
	Tim Bray,
Dave Hollander, and Andrew Layman, editors. Namespaces in XML.
Textuality, Hewlett-Packard, and Microsoft. World Wide Web Consortium, 1999. (See http://www.w3.org/TR/xml-names/.)

Change Log
Changes since Proposed Recommendation
	Fixed a broken fragment link into SPARQL 1.1 Query

Changes since Last Call
	Simplified explaining text as per the ban of shared bnodes
 across operations in a request.
	Editorial fix to Definition 4.2.3 and explaining remarks.
	Added explanation of QuadData to "Terminology" section.
	Added comment indicating that existing graphs do not lose
 triples during a LOAD
	 Several minor editorial changes including the removal of
 "(non graph-aware)" since - essentially - every graph store is
 graph-aware.
	Changed SHOULD to MAY in 3.2.3 Copy
	Various editorial

[image: W3C]

[bookmark: title]SPARQL 1.1 Service Description

[bookmark: w3c-doctype]W3C Recommendation 21 March 2013
	This version:
	
			http://www.w3.org/TR/2013/REC-sparql11-service-description-20130321/
		
	Latest version:
	
			http://www.w3.org/TR/sparql11-service-description/
		
	Previous version:
	http://www.w3.org/TR/2012/PR-sparql11-service-description-20121108/
	Editor:
	Gregory Todd Williams, Rensselaer Polytechnic Institute <greg@evilfunhouse.com>

Please refer to the errata for this document, which may
 include some normative corrections.
See also translations.
Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract
This document describes SPARQL service description, a method for
 discovering, and vocabulary for describing SPARQL services made available
 via the
 SPARQL
 1.1 Protocol for RDF [SPROT]. These descriptions
 provide a mechanism by which a client or end user can discover
 information about the SPARQL service such as supported
 extension functions and details about the available dataset.

[bookmark: status]Status of this Document
May Be Superseded
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
Set of Documents
This document is one of eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:
	SPARQL 1.1 Overview
	SPARQL 1.1 Query Language
	SPARQL 1.1 Update
	SPARQL1.1 Service Description (this document)
	SPARQL 1.1 Federated Query
	SPARQL 1.1 Query Results JSON Format
	SPARQL 1.1 Query Results CSV and TSV Formats
	SPARQL Query Results XML Format (Second Edition)
	SPARQL 1.1 Entailment Regimes
	SPARQL 1.1 Protocol
	SPARQL 1.1 Graph Store HTTP Protocol

No Substantive Changes
There have been no substantive changes to this document since the previous version. Minor editorial changes, if any, are detailed in the change log and visible in the color-coded diff.
Please Send Comments
Please send any comments to public-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document by the SPARQL Working Group is complete, comments may be addressed in the errata or in future revisions. Open discussion is welcome at public-sparql-dev@w3.org (public archive).
Endorsed By W3C
This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.
Patents
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents
1 Introduction

 1.1 Terminology

2 Accessing a Service Description

3 Service Description Vocabulary

 3.1 SPARQL Service Description Namespace and OWL Ontology

 3.2 Properties

 3.2.1 sd:endpoint

 3.2.2 sd:feature

 3.2.3 sd:defaultEntailmentRegime

 3.2.4 sd:entailmentRegime

 3.2.5 sd:defaultSupportedEntailmentProfile

 3.2.6 sd:supportedEntailmentProfile

 3.2.7 sd:extensionFunction

 3.2.8 sd:extensionAggregate

 3.2.9 sd:languageExtension

 3.2.10 sd:supportedLanguage

 3.2.11 sd:propertyFeature

 3.2.12 sd:defaultDataset

 3.2.13 sd:availableGraphs

 3.2.14 sd:resultFormat

 3.2.15 sd:inputFormat

 3.2.16 sd:defaultGraph

 3.2.17 sd:namedGraph

 3.2.18 sd:name

 3.2.19 sd:graph

 3.3 Classes

 3.3.1 sd:Service

 3.3.2 sd:Feature

 3.3.3 sd:Language

 3.3.4 sd:Function

 3.3.5 sd:Aggregate

 3.3.6 sd:EntailmentRegime

 3.3.7 sd:EntailmentProfile

 3.3.8 sd:GraphCollection

 3.3.9 sd:Dataset

 3.3.10 sd:Graph

 3.3.11 sd:NamedGraph

 3.4 Instances

 3.4.1 sd:SPARQL10Query

 3.4.2 sd:SPARQL11Query

 3.4.3 sd:SPARQL11Update

 3.4.4 sd:DereferencesURIs

 3.4.5 sd:UnionDefaultGraph

 3.4.6 sd:RequiresDataset

 3.4.7 sd:EmptyGraphs

 3.4.8 sd:BasicFederatedQuery

 3.4.9 Other Instances

4 Example (Informative)

 4.1 RDF/XML Service Description

 4.2 Turtle Service Description

5 Conformance

[bookmark: appendices]Appendix
A References

 A.1 Normative References

 A.2 Other References

[bookmark: intro]1 Introduction
A SPARQL service description lists the features of a SPARQL service made available via the SPARQL
 1.1 Protocol for RDF [SPROT]. This document describes both a method for discovering a service description from a specific SPARQL service and an RDF schema for encoding such descriptions in RDF.

[bookmark: terminology]1.1 Terminology
When this document uses the words MUST, SHOULD and MAY, and the words appear as emphasized text, they must be interpreted as described in [RFC2119].
The following terms are also in use throughout this document:

					SPARQL Service

					Any implementation conforming to the SPARQL 1.1 Protocol for RDF (this document's use of "SPARQL Service" is the same as "SPARQL Protocol service" as defined in the SPARQL 1.1 Protocol) [SPROT].

					SPARQL endpoint

					The URI at which a SPARQL Service listens for requests from clients.

			

[bookmark: accessing]2 Accessing a Service Description
SPARQL services made available via the SPARQL Protocol SHOULD return a service description document at the service endpoint when dereferenced using the HTTP GET operation without any query parameter strings provided. This service description MUST be made available in an RDF serialization, MAY be embedded in (X)HTML by way of RDFa [RDFA], and SHOULD use content negotiation [CONNEG] if available in other RDF representations.

[bookmark: vocab]3 Service Description Vocabulary

[bookmark: namespace]3.1 SPARQL Service Description Namespace and OWL Ontology
The SPARQL service description namespace IRI is:
http://www.w3.org/ns/sparql-service-description#
The prefix used in this document for this namespace is sd.
An RDF encoding of the Service Description ontology is available by HTTP content negotiation from the namespace IRI.

[bookmark: properties]3.2 Properties

[bookmark: sd-endpoint]3.2.1 sd:endpoint
Relates an instance of sd:Service to a SPARQL endpoint that implements the SPARQL Protocol service [SPROT] for the service. The object of the sd:endpoint property is an IRI.
	type:	owl:InverseFunctionalProperty
	domain:	sd:Service

[bookmark: sd-feature]3.2.2 sd:feature
Relates an instance of sd:Service with a resource representing a supported feature.
	domain:	sd:Service
	range:	sd:Feature

[bookmark: sd-defaultEntailmentRegime]3.2.3 sd:defaultEntailmentRegime
Relates an instance of sd:Service with a resource representing an entailment regime used for basic graph pattern matching. This property is intended for use when a single entailment regime by default applies to all graphs in the default dataset of the service. In situations where a different entailment regime applies to a specific graph in the dataset, the sd:entailmentRegime property should be used to indicate this fact in the description of that graph.
	subPropertyOf:	sd:feature
	domain:	sd:Service
	range:	sd:EntailmentRegime

[bookmark: sd-entailmentRegime]3.2.4 sd:entailmentRegime
Relates a named graph description with a resource representing an entailment regime used for basic graph pattern matching over that graph.
	domain:	sd:NamedGraph
	range:	sd:EntailmentRegime

[bookmark: sd-defaultSupportedEntailmentProfile]3.2.5 sd:defaultSupportedEntailmentProfile
Relates an instance of sd:Service with a resource representing a supported profile of the default entailment regime (as declared by sd:defaultEntailmentRegime). Entailment profiles are discussed more in SPARQL 1.1 Entailment Regimes [SPARQLENT].
Note that this specification does not make any conformance requirements on the compatibility of an advertised entailment profile with the advertised entailment regime in a service description. Providing a reasonable combination of values to the sd:entailmentRegime/sd:defaultEntailmentRegime and sd:supportedEntailmentProfile/sd:defaultSupportedEntailmentProfile properties is up to the creator of a service description.
	subPropertyOf:	sd:feature
	domain:	sd:Service
	range:	sd:EntailmentProfile

[bookmark: sd-supportedEntailmentProfile]3.2.6 sd:supportedEntailmentProfile
Relates a named graph description with a resource representing a supported profile of the entailment regime (as declared by sd:entailmentRegime) used for basic graph pattern matching over that graph.
	domain:	sd:NamedGraph
	range:	sd:EntailmentProfile

[bookmark: sd-extensionFunction]3.2.7 sd:extensionFunction
Relates an instance of sd:Service to a function that may be used in a SPARQL SELECT expression or a FILTER, HAVING, GROUP BY, ORDER BY, or BIND clause.
	subPropertyOf:	sd:feature
	domain:	sd:Service
	range:	sd:Function

[bookmark: sd-extensionAggregate]3.2.8 sd:extensionAggregate
Relates an instance of sd:Service to an aggregate that may be used in a SPARQL aggregate query (for instance in a HAVING clause or SELECT expression) besides the standard list of supported aggregates COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE.
	subPropertyOf:	sd:feature
	domain:	sd:Service
	range:	sd:Aggregate

[bookmark: sd-languageExtension]3.2.9 sd:languageExtension
Relates an instance of sd:Service to a resource representing an implemented extension to the SPARQL Query or Update language.
	subPropertyOf:	sd:feature
	domain:	sd:Service
	range:	sd:Feature

[bookmark: sd-supportedLanguage]3.2.10 sd:supportedLanguage
Relates an instance of sd:Service to a SPARQL language (e.g. Query and Update) that it implements.
	subPropertyOf:	sd:feature
	domain:	sd:Service
	range:	sd:Language

[bookmark: sd-propertyFeature]3.2.11 sd:propertyFeature
Relates an instance of sd:Service to a resource representing an implemented feature that extends the SPARQL Query or Update language and that is accessed by using the named property.
	subPropertyOf:	sd:feature
	domain:	sd:Service
	range:	sd:Feature

[bookmark: sd-defaultDataset]3.2.12 sd:defaultDataset
Relates an instance of sd:Service to a description of the default dataset available when no explicit dataset is specified in the query, update request or via protocol parameters.
	type:	owl:InverseFunctionalProperty
	domain:	sd:Service
	range:	sd:Dataset

[bookmark: sd-availableGraphs]3.2.13 sd:availableGraphs
Relates an instance of sd:Service to a description of the graphs which are allowed in the construction of a dataset via the SPARQL Protocol, with FROM/FROM NAMED clauses in a query, or with USING/USING NAMED in an update request, if the service limits the scope of dataset construction.
	domain:	sd:Service
	range:	sd:GraphCollection

[bookmark: sd-resultFormat]3.2.14 sd:resultFormat
Relates an instance of sd:Service to a format that is supported for serializing query results.
URIs for commonly used serialization formats are defined by Unique URIs for File Formats. For formats that do not have an existing URI, the <http://www.w3.org/ns/formats/media_type> and <http://www.w3.org/ns/formats/preferred_suffix> properties defined in that document SHOULD be used to describe the format.
	domain:	sd:Service
	range:	<http://www.w3.org/ns/formats/Format>

[bookmark: sd-inputFormat]3.2.15 sd:inputFormat
Relates an instance of sd:Service to a format that is supported for parsing RDF input; for example, via a SPARQL 1.1 Update LOAD statement, or when URIs are dereferenced in FROM/FROM NAMED/USING/USING NAMED clauses (see also sd:DereferencesURIs below).
URIs for commonly used serialization formats are defined by Unique URIs for File Formats. For formats that do not have an existing URI, the <http://www.w3.org/ns/formats/media_type> and <http://www.w3.org/ns/formats/preferred_suffix> properties defined in that document SHOULD be used to describe the format.
	domain:	sd:Service
	range:	<http://www.w3.org/ns/formats/Format>

[bookmark: sd-defaultGraph]3.2.16 sd:defaultGraph
Relates an instance of sd:Dataset to the description of its default graph.
	domain:	sd:Dataset
	range:	sd:Graph

[bookmark: sd-namedGraph]3.2.17 sd:namedGraph
Relates an instance of sd:GraphCollection (or its subclass sd:Dataset) to the description of one of its named graphs. The description of such a named graph MUST include the sd:name property and MAY include the sd:graph property.
	domain:	sd:GraphCollection
	range:	sd:NamedGraph

[bookmark: sd-name]3.2.18 sd:name
Relates a named graph to the name by which it may be referenced in a FROM/FROM NAMED clause. The object of the sd:name property is an IRI.
	domain:	sd:NamedGraph

[bookmark: sd-graph]3.2.19 sd:graph
Relates a named graph to its graph description.
	domain:	sd:NamedGraph
	range:	sd:Graph

[bookmark: classes]3.3 Classes

[bookmark: sd-Service]3.3.1 sd:Service
An instance of sd:Service represents a SPARQL service made available via the SPARQL Protocol.
	type:	rdfs:Class

[bookmark: sd-Feature]3.3.2 sd:Feature
An instance of sd:Feature represents a feature of a SPARQL service. Specific types of features include functions, aggregates, languages, and entailment regimes and profiles. This document defines five instances of sd:Feature: sd:DereferencesURIs, sd:UnionDefaultGraph, sd:RequiresDataset, sd:EmptyGraphs, and sd:BasicFederatedQuery.
	type:	rdfs:Class

[bookmark: sd-Language]3.3.3 sd:Language
An instance of sd:Language represents one of the SPARQL languages, including specific configurations providing particular features or extensions. This document defines three instances of sd:Language: sd:SPARQL10Query, sd:SPARQL11Query, and sd:SPARQL11Update.
	type:	rdfs:Class
	subClassOf:	sd:Feature

[bookmark: sd-Function]3.3.4 sd:Function
An instance of sd:Function represents a function that may be used in a SPARQL SELECT expression or a FILTER, HAVING, GROUP BY, ORDER BY, or BIND clause.
	type:	rdfs:Class
	subClassOf:	sd:Feature

[bookmark: sd-Aggregate]3.3.5 sd:Aggregate
An instance of sd:Aggregate represents an aggregate that may be used in a SPARQL aggregate query (for instance in a HAVING clause or SELECT expression) besides the standard list of supported aggregates COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE.
	type:	rdfs:Class
	subClassOf:	sd:Feature

[bookmark: sd-EntailmentRegime]3.3.6 sd:EntailmentRegime
An instance of sd:EntailmentRegime represents an entailment regime used in basic graph pattern matching (as described by SPARQL 1.1 Query Language). URIs for commonly used entailment regimes are defined by Unique URIs for Semantic Web Entailment Regimes [ENTAILMENT].
	type:	rdfs:Class
	subClassOf:	sd:Feature

[bookmark: sd-EntailmentProfile]3.3.7 sd:EntailmentProfile
An instance of sd:EntailmentProfile represents a profile of an entailment regime. An entailment profile MAY impose restrictions on what constitutes valid RDF with respect to entailment. URIs for commonly used entailment profiles are defined by Unique URIs for OWL 2 Profiles [OWL2PROF].
	type:	rdfs:Class
	subClassOf:	sd:Feature

[bookmark: sd-GraphCollection]3.3.8 sd:GraphCollection
An instance of sd:GraphCollection represents a collection of zero or more named graph descriptions. Each named graph description belonging to an sd:GraphCollection MUST be linked with the sd:namedGraph predicate.
	type:	rdfs:Class

[bookmark: sd-Dataset]3.3.9 sd:Dataset
An instance of sd:Dataset represents a RDF Dataset comprised of a default graph and zero or more named graphs.
The default graph of an sd:Dataset MUST be linked with the sd:defaultGraph predicate.
	type:	rdfs:Class
	subClassOf:	sd:GraphCollection

[bookmark: sd-Graph]3.3.10 sd:Graph
An instance of sd:Graph represents the description of an RDF graph.
This document does not define properties with domain sd:Graph. Instead, such instances may be described using other appropriate vocabularies (see example below).
	type:	rdfs:Class

[bookmark: sd-NamedGraph]3.3.11 sd:NamedGraph
An instance of sd:NamedGraph represents a named graph having a name (via sd:name) and an optional graph description (via sd:graph).
	type:	rdfs:Class

[bookmark: instances]3.4 Instances

[bookmark: lang-sparql10query]3.4.1 sd:SPARQL10Query
sd:SPARQL10Query is an sd:Language representing the SPARQL 1.0 Query language [QUERY10].
	type:	sd:Language

[bookmark: lang-sparql11query]3.4.2 sd:SPARQL11Query
sd:SPARQL11Query is an sd:Language representing the SPARQL 1.1 Query language [QUERY11].
	type:	sd:Language

[bookmark: lang-sparql11update]3.4.3 sd:SPARQL11Update
sd:SPARQLUpdate is an sd:Language representing the SPARQL 1.1 Update language [UPDATE11].
	type:	sd:Language

[bookmark: sd-dereferencesuris]3.4.4 sd:DereferencesURIs
sd:DereferencesURIs, when used as the object of the sd:feature property, indicates that a SPARQL service will dereference [AWWW] URIs used in FROM/FROM NAMED and USING/USING NAMED clauses and use the resulting RDF in the dataset during query evaluation.
	type:	sd:Feature

[bookmark: sd-uniondefaultgraph]3.4.5 sd:UnionDefaultGraph
sd:UnionDefaultGraph, when used as the object of the sd:feature property, indicates that the default graph of the dataset used during query and update evaluation (when an explicit dataset is not specified) is comprised of the union of all the named graphs in that dataset.
	type:	sd:Feature

[bookmark: sd-requiresdataset]3.4.6 sd:RequiresDataset
sd:RequiresDataset, when used as the object of the sd:feature property, indicates that the SPARQL service requires an explicit dataset declaration (based on either FROM/FROM NAMED clauses in a query, USING/USING NAMED clauses in an update, or the appropriate SPARQL Protocol parameters).
	type:	sd:Feature

[bookmark: sd-emptygraphs]3.4.7 sd:EmptyGraphs
sd:EmptyGraphs, when used as the object of the sd:feature property, indicates that the underlying graph store supports empty graphs. A graph store that supports empty graphs MUST NOT remove graphs that are left empty after triples are removed from them. (See 3.1 Graph Update in SPARQL 1.1 Update.)
	type:	sd:Feature

[bookmark: sd-basicfederatedquery]3.4.8 sd:BasicFederatedQuery
sd:BasicFederatedQuery, when used as the object of the sd:feature property, indicates that the SPARQL service supports basic federated query using the SERVICE keyword as defined by SPARQL 1.1 Federation Extensions [SPARQLFED].
	type:	sd:Feature

[bookmark: other-instances]3.4.9 Other Instances
Apart from the instances listed above, custom extensions and other documents may define further instance URIs usable within service descriptions; the following documents also list instance URIs that may be used with some of the properties defined in the previous sections:
	Unique URIs for Semantic Web Entailment Regimes [ENTAILMENT] (members of the class sd:EntailmentRegime usable with the properties sd:defaultEntailmentRegime and sd:entailmentRegime)
	Unique URIs for OWL 2 Profiles [OWL2PROF] (members of the class sd:EntailmentProfile usable with the properties sd:defaultSupportedEntailmentProfile and sd:supportedEntailmentProfile)
	Unique URIs for File Formats [FORMATS] (members of the class <http://www.w3.org/ns/formats/Format> usable with the properties sd:resultFormat and sd:inputFormat)

[bookmark: example]4 Example (Informative)
The following HTTP traces illustrate the retrieval of a service description from the SPARQL endpoint http://www.example/sparql/.
This RDF describes a SPARQL service available at the URL http://www.example/sparql/ that supports the SPARQL 1.1 Query language. The service will dereference URLs used in FROM/FROM NAMED clauses, supports both the RDF/XML and Turtle serialization formats, supports the http://example.org/Distance extension function, and has a dataset with a default graph and one named graph, both described using the voiD vocabulary [VOID]. The default graph contains 100 triples and supports RDFS entailment while the graph named http://www.example/named-graph contains 2000 triples and supports OWL2 RL entailment.

[bookmark: example-rdfxml]4.1 RDF/XML Service Description
Given the HTTP request:
GET /sparql/ HTTP/1.1
Host: www.example

the SPARQL service responds with an RDF/XML encoded service description (no content negotiation or RDFa encoding is used):
HTTP/1.1 200 OK
Date: Fri, 09 Oct 2009 17:31:12 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/rdf+xml

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:sd="http://www.w3.org/ns/sparql-service-description#"
 xmlns:prof="http://www.w3.org/ns/owl-profile/"
 xmlns:void="http://rdfs.org/ns/void#">
 <sd:Service>
 <sd:endpoint rdf:resource="http://www.example/sparql/"/>
 <sd:supportedLanguage rdf:resource="http://www.w3.org/ns/sparql-service-description#SPARQL11Query"/>
 <sd:resultFormat rdf:resource="http://www.w3.org/ns/formats/RDF_XML"/>
 <sd:resultFormat rdf:resource="http://www.w3.org/ns/formats/Turtle"/>
 <sd:feature rdf:resource="http://www.w3.org/ns/sparql-service-description#DereferencesURIs"/>
 <sd:defaultEntailmentRegime rdf:resource="http://www.w3.org/ns/entailment/RDFS"/>
 <sd:extensionFunction>
 <sd:Function rdf:about="http://example.org/Distance"/>
 </sd:extensionFunction>
 <sd:defaultDataset>
 <sd:Dataset>
 <sd:defaultGraph>
 <sd:Graph>
 <void:triples rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">100</void:triples>
 </sd:Graph>
 </sd:defaultGraph>
 <sd:namedGraph>
 <sd:NamedGraph>
 <sd:name rdf:resource="http://www.example/named-graph"/>
 <sd:entailmentRegime rdf:resource="http://www.w3.org/ns/entailment/OWL-RDF-Based"/>
 <sd:supportedEntailmentProfile rdf:resource="http://www.w3.org/ns/owl-profile/RL"/>
 <sd:graph>
 <sd:Graph>
 <void:triples rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">2000</void:triples>
 </sd:Graph>
 </sd:graph>
 </sd:NamedGraph>
 </sd:namedGraph>
 </sd:Dataset>
 </sd:defaultDataset>
 </sd:Service>
</rdf:RDF>

[bookmark: example-turtle]4.2 Turtle Service Description
Given the HTTP request:
GET /sparql/ HTTP/1.1
Host: www.example
Accept: text/turtle

the SPARQL service responds with a Turtle [TURTLE] encoded service description:
HTTP/1.1 200 OK
Date: Fri, 09 Oct 2009 17:31:12 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: text/turtle

@prefix sd: <http://www.w3.org/ns/sparql-service-description#> .
@prefix ent: <http://www.w3.org/ns/entailment/> .
@prefix prof: <http://www.w3.org/ns/owl-profile/> .
@prefix void: <http://rdfs.org/ns/void#> .

[] a sd:Service ;
 sd:endpoint <http://www.example/sparql/> ;
 sd:supportedLanguage sd:SPARQL11Query ;
 sd:resultFormat <http://www.w3.org/ns/formats/RDF_XML>, <http://www.w3.org/ns/formats/Turtle> ;
 sd:extensionFunction <http://example.org/Distance> ;
 sd:feature sd:DereferencesURIs ;
 sd:defaultEntailmentRegime ent:RDFS ;
 sd:defaultDataset [
 a sd:Dataset ;
 sd:defaultGraph [
 a sd:Graph ;
 void:triples 100
] ;
 sd:namedGraph [
 a sd:NamedGraph ;
 sd:name <http://www.example/named-graph> ;
 sd:entailmentRegime ent:OWL-RDF-Based ;
 sd:supportedEntailmentProfile prof:RL ;
 sd:graph [
 a sd:Graph ;
 void:triples 2000
]
]
] .

<http://example.org/Distance> a sd:Function .

[bookmark: conformance]5 Conformance
A SPARQL service conformant with this specification:
	MUST return RDF content when the service endpoint URL is accessed as described in section 2 Accessing a Service Description.
	The RDF content returned from dereferencing a service endpoint URL <service-endpoint-URL> MUST include at least one triple matching: ?service sd:endpoint <service-endpoint-URL> .

	The RDF content returned MUST make use of the vocabulary defined in this document in accordance with the usage specified in section 3 Service Description Vocabulary.

[bookmark: sec-bibliography]A References

[bookmark: sec-normative-refs]A.1 Normative References

						[bookmark: CONNEG][CONNEG]

						
						Hypertext Transfer Protocol -- HTTP/1.1, Content Negotiation,
						Fielding, et al., IETF. June 1999. This document is http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html .
					

						[bookmark: RFC2119][RFC2119]

						
						Key words for use in RFCs to Indicate Requirement Levels,
						S. Bradner, IETF. March 1997. This document is http://www.ietf.org/rfc/rfc2119.txt .
					

						[bookmark: QUERY10][QUERY10]

						
						SPARQL Query Language for RDF, E. Prud'hommeaux and Andy Seaborne, Editors, W3C Recommendation, 15 January 2008. This document is http://www.w3.org/TR/rdf-sparql-query/ .
					

						[bookmark: QUERY11][QUERY11]

						SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

						[bookmark: SPROT][SPROT]

						SPARQL 1.1 Protocol, L. Feigenbaum, G. Williams, K. Clark, E. Torres, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321. Latest version available at http://www.w3.org/TR/sparql11-protocol.

						[bookmark: UPDATE11][UPDATE11]

						SPARQL 1.1 Update, P. Gearon, A. Passant, A. Polleres, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-update-20130321. Latest version available at http://www.w3.org/TR/sparql11-update.

				

[bookmark: sec-non-normative-refs]A.2 Other References

						[bookmark: AWWW][AWWW]

						
						Architecture of the World Wide Web, Volume One, I. Jacobs and N. Walsh, Editors, W3C Recommendation, 15 December 2004. http://www.w3.org/TR/webarch/ .
					

					
						[bookmark: ENTAILMENT][ENTAILMENT]

						
						Unique URIs for Semantic Web Entailment Regimes
					

					
						[bookmark: FORMATS][FORMATS]

						
						Unique URIs for File Formats
					

					
						[bookmark: OWL2PROF][OWL2PROF]

						
						Unique URIs for OWL 2 Profiles
					

					
						[bookmark: RDFA][RDFA]

						
						RDFa in XHTML: Syntax and Processing, B. Adida, M. Birbeck, S. McCarron, and S. Pemberton, Editors, W3C Recommendation, 14 October 2008. http://www.w3.org/TR/rdfa-syntax/ .
					

					
						[bookmark: SPARQLENT][SPARQLENT]

						SPARQL 1.1 Entailment Regimes, B. Glimm, C. Ogbuji, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-entailment-20130321. Latest version available at http://www.w3.org/TR/sparql11-entailment.

					
						[bookmark: SPARQLFED][SPARQLFED]

						SPARQL 1.1 Federated Query, E. Prud'hommeaux, C. Buil-Aranda, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-federated-query.

					
						[bookmark: TURTLE][TURTLE]

						Turtle:
Terse RDF Triple Language, E Prud'hommeaux, G Carothers, Editors, W3C Candidate Recommendation, 19 February 2013, http://www.w3.org/TR/2013/CR-turtle-20130219/. Latest version available at http://www.w3.org/TR/turtle/.

					
						[bookmark: VOID][VOID]

						
						Describing Linked Datasets with the voiD Vocabulary,
						K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao, Authors, W3C Interest Group Note, 3 March 2011, http://www.w3.org/TR/2011/NOTE-void-20110303/ .
						Latest version available at http://www.w3.org/TR/void/ .
					

				

Change Log
Changes since Proposed Recommendation
	Changed example to remove unused namespace prefix

Changes since Last Call
	Aligned terminology with Protocol document and improved wording regarding SD access
	Clarified usage of sd:availableGraphs based on comment
	Updated references; moved changelog; hid cvs log

[image: W3C]

[bookmark: title]SPARQL 1.1 Federated Query

[bookmark: w3c-doctype]W3C Recommendation 21 March 2013
	This version:
	
 http://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/

	Latest version:
	
 http://www.w3.org/TR/sparql11-federated-query/

	Previous version:
	http://www.w3.org/TR/2012/PR-sparql11-federated-query-20121108/
	Editors:
	Eric Prud'hommeaux, W3C <eric@w3.org>
	Carlos Buil-Aranda, Universidad Politécnica de Madrid <cbuil@delicias.dia.fi.upm.es>
	Contributors:
	Andy Seaborne, The Apache Software Foundation
	Axel Polleres, Siemens AG <axel.polleres@siemens.com>
	Lee Feigenbaum, Cambridge Semantics <lee@thefigtrees.net>
	Gregory Todd Williams, Rensselaer Polytechnic Institute <greg@evilfunhouse.com>

Please refer to the errata for this document, which may
 include some normative corrections.
See also translations.
Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract

	RDF is a directed, labeled graph data format for representing information
	in the Web. SPARQL can be used to express queries
	across diverse data sources, whether the data is stored natively as RDF or
	viewed as RDF via middleware. This specification defines the syntax and semantics of SPARQL 1.1
Federated Query extension for executing queries distributed over different SPARQL endpoints. The SERVICE keyword extends SPARQL 1.1 to support queries that merge data distributed across the Web.

[bookmark: status]Status of this Document
May Be Superseded
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
Set of Documents
This document is one of eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:
	SPARQL 1.1 Overview
	SPARQL 1.1 Query Language
	SPARQL 1.1 Update
	SPARQL1.1 Service Description
	SPARQL 1.1 Federated Query (this document)
	SPARQL 1.1 Query Results JSON Format
	SPARQL 1.1 Query Results CSV and TSV Formats
	SPARQL Query Results XML Format (Second Edition)
	SPARQL 1.1 Entailment Regimes
	SPARQL 1.1 Protocol
	SPARQL 1.1 Graph Store HTTP Protocol

No Substantive Changes
There have been no substantive changes to this document since the previous version. Minor editorial changes, if any, are detailed in the change log and visible in the color-coded diff.
Please Send Comments
Please send any comments to public-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document by the SPARQL Working Group is complete, comments may be addressed in the errata or in future revisions. Open discussion is welcome at public-sparql-dev@w3.org (public archive).
Endorsed By W3C
This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.
Patents
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents
1 Introduction

 1.1 Document Conventions

 1.1.1 Namespaces

 1.1.2 Result Descriptions

 1.1.3 Terminology

2 SPARQL 1.1 Federated Query Extension

 2.1 Simple query to a remote SPARQL endpoint

 2.2 SPARQL query with OPTIONAL to two remote SPARQL endpoints

 2.3 Service Execution Failure

 2.4 Interplay of SERVICE and VALUES (Informative)

3 SPARQL 1.1 Simple Federation Extension: semantics

 3.1 Translation to the SPARQL Algebra

 3.2 SPARQL 1.1 Simple Federation Extension Algebra

 3.2.1 SERVICE Examples

4 SERVICE Variables (Informative)

5 Conformance

6 Security Considerations (Informative)

[bookmark: appendices]Appendices
A References

 A.1 Normative References

 A.2 Other References

B Acknowledgements

C CVS History (Last Call and after)

[bookmark: introduction]1 Introduction

The growing number of SPARQL query services offer data consumers an opportunity to merge data distributed across the Web. This specification defines the syntax and semantics of the SERVICE extension to the SPARQL 1.1 Query Language. This extension allows a query author to direct a portion of a query to a particular SPARQL endpoint. Results are returned to the federated query processor and are combined with results from the rest of the query.

[bookmark: docConventions]1.1 Document Conventions

[bookmark: docNamespaces]1.1.1 Namespaces
This document uses the same namespaces as from the SPARQL 1.1 Query document.

[bookmark: docResultDesc]1.1.2 Result Descriptions
Result sets are illustrated in tabular form as in the SPARQL 1.1 Query document.

[bookmark: table39]	x	y	z
	"Alice"	<http://example/a>	

A 'binding' is a pair (variable,
RDF term). There are three
variables:
x, y and z (shown as column headers). Each
solution is shown as one row in the body of the table. Here, there is a single
solution, in which variable x is bound to "Alice", variable
y is bound to http://example/a, and variable z
is not bound to an RDF term. Variables are not required to be bound in a
solution.

[bookmark: docTerminology]1.1.3 Terminology
The following terms are defined in
SPARQL 1.1 Query Language [SQRY] and reused in this document:
	IRI (corresponds to the Concepts and Abstract Syntax term RDF URI reference)
	Solution Mapping
	Solution Sequence

[bookmark: service]2 SPARQL 1.1 Federated Query Extension

The SERVICE keyword instructs a federated query processor to invoke a portion of a SPARQL query against a remote SPARQL endpoint. This section presents examples of how to use the SERVICE keyword. The following sections define the syntax and semantics of this extension.

[bookmark: simpleService]2.1 Simple query to a remote SPARQL endpoint
This example shows how to query a remote SPARQL endpoint and join the returned data with the data from the local RDF Dataset. Consider a query to find the names of the people we know. Data about the names of various people is available at the http://people.example.org/sparql endpoint:
 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix : <http://example.org/> .

 :people15 foaf:name "Alice" .
 :people16 foaf:name "Bob" .
 :people17 foaf:name "Charles" .
 :people18 foaf:name "Daisy" .

 and one wants to combine with a local FOAF file http://example.org/myfoaf.rdf that contains the single triple:

 <http://example.org/myfoaf/I> <http://xmlns.com/foaf/0.1/knows> <http://example.org/people15> .
Query:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
FROM <http://example.org/myfoaf.rdf>
WHERE
{
 <http://example.org/myfoaf/I> foaf:knows ?person .
 SERVICE <http://people.example.org/sparql> {
 ?person foaf:name ?name . }
}
This query, on the data above, has one solution:
Query Result:
[bookmark: table1]	name
	"Alice"

[bookmark: optionalTwoServices]2.2 SPARQL query with OPTIONAL to two remote SPARQL endpoints

	Imagine we want to query people and optionally obtain their interests and the names of people they know. Imagine for instance, two endpoints containing data about people:
Data in the default graph at remote SPARQL endpoint: http://people.example.org/sparql

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix : <http://example.org/> .

 :people15 foaf:name "Alice" .
 :people16 foaf:name "Bob" .
 :people17 foaf:name "Charles" .
 :people17 foaf:interest <http://www.w3.org/2001/sw/rdb2rdf/> .

and data in the default graph the remote SPARQL endpoint: http://people2.example.org/sparql

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix : <http://example.org/> .

 :people15 foaf:knows :people18 .
 :people18 foaf:name "Mike" .
 :people17 foaf:knows :people19 .
 :people19 foaf:name "Daisy" .

Query:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?interest ?known
WHERE
{
 SERVICE <http://people.example.org/sparql> {
 ?person foaf:name ?name .
 OPTIONAL {
 ?person foaf:interest ?interest .
 SERVICE <http://people2.example.org/sparql> {
 ?person foaf:knows ?known . } }
 }
}
This query, on the data above, has three solutions:
Query Result:
[bookmark: table03]	person	interest	known
	"Alice"		
	"Bob"		
	"Charles"	<http://www.w3.org/2001/sw/rdb2rdf/>	<http://example.org/people19>

Notice that in the query above there is a nested SERVICE in the OPTIONAL clause. This query requires the SPARQL query service at http://people.example.org/sparql to support basic federated query.

[bookmark: serviceFailure]2.3 Service Execution Failure

 The execution of a SERVICE pattern may fail due to several reasons: the remote service may be down, the service IRI may not be dereferenceable, or the endpoint may return an error to the query. Normally, under such circumstances the invoked query containing a SERVICE pattern fails as a whole. Queries may explicitly allow failed SERVICE requests with the use of the SILENT keyword. The SILENT keyword indicates that errors encountered while accessing a remote SPARQL endpoint should be ignored while processing the query. The failed SERVICE clause is treated as if it had a result of a single solution with no bindings.

 In the following query the SILENT keyword is present. If the remote SPARQL endpoint is not available because the SPARQL endpoint does not exist, it is down or it is not accessible the query will return a solution sequence of one empty solution mapping. If the SILENT keyword is not present, the query will stop and return the error.
Data in <http://people.example.org/sparql> endpoint:
 <http://example.org/people15> <http://xmlns.com/foaf/0.1/name> "Charles" .
Query:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE
{
 SERVICE SILENT <http://people.example.org/sparql> {
 <http://example.org/people15> foaf:name ?name . }
}
Query result if an error occurs while querying the remote SPARQL endpoint:
[bookmark: table2]	name
	

[bookmark: values]2.4 Interplay of SERVICE and VALUES (Informative)

 SPARQL 1.1 Query includes the VALUES clause (VALUES), which can be used to provide an unordered solution sequence that is joined with the results of the query evaluation. Implementers of SPARQL 1.1 Federated Query may use the VALUES clause to constrain the results received from a remote endpoint based on solution bindings from evaluating other parts of the query.
The following example shows how SERVICE and VALUES can work together. Suppose a query that asks for all instances of foaf:Person in the default graph and also their known people in the remote endpoint http://example.org/sparql:
Data in the default graph:

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix : <http://example.org/> .

 :a a foaf:Person ;
 foaf:name "Alan" ;
 foaf:mbox; "alan@example.org" .
 :b a foaf:Person ;
 foaf:name "Bob" ;
 foaf:mbox "bob@example.org" .

and data in the default graph the remote SPARQL endpoint http://example.org/sparql:

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix : <http://example.org/> .

 :a foaf:knows :b .
 :b foaf:knows :c .
 :c foaf:knows :a .
 :a foaf:interest "SPARQL 1.1 Basic Federated Query" .
 :b foaf:interest "SPARQL 1.1 Query" .
 :c foaf:interest "RDB2RDF Direct mapping" .

Query:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?s
{
 ?s a foaf:Person .
 SERVICE <http://example.org/sparql> {?s foaf:knows ?o }
}

 When the original query is executed naively, with an unconstrained service call the endpoint may return more results than necessary. It may also happen that the SPARQL endpoint will not return all of them. Many existing SPARQL endpoints have restrictions in the number of results they return and may miss the ones matching subjects ?s from the local default graph. Thus, an implementation of a query planner for federated queries may decide to decompose the query into two queries instead, where first the bindings from the local default graph are evaluated:
Query:
PREFIX : <http://example.org/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?s
{
 ?s a foaf:Person
}

This query, on the data above, has two solutions:
Query Result:
[bookmark: table04a]	s
	<http://example.org/a>
	<http://example.org/b>

Next, dispatch to the remote endpoint <http://example.org/sparql> a constrained query with the solutions for ?s:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX : <http://example.org/>
SELECT * {?s foaf:knows ?o } VALUES (?s) { (:a) (:b) }
The query process involving SERVICE limits the data returned to the data it needs for the overall query:
Query:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?s ?o
{
 ?s a foaf:Person
 SERVICE <http://example.org/sparql> {?s foaf:knows ?o }
}

This query, on the data above using VALUES, has the expected two solutions to the overall query:
Query Result:
[bookmark: table04b]	s	o
	<http://example.org/a>	<http://example.org/b>
	<http://example.org/b>	<http://example.org/c>

[bookmark: fedSemantics]3 SPARQL 1.1 Simple Federation Extension: semantics

[bookmark: defn_service]3.1 Translation to the SPARQL Algebra
The SERVICE extension is defined as an additional type of GroupGraphPattern, with an accompanying addition to SPARQL Query 1.1's Transform (syntax form):

 If the form is GroupGraphPattern

 From the Translate Graph Patterns section of [SPARQL 1.1 Query Language] we extend the transformation of GroupGraphPattern to define the transformation of SERVICE patterns:

Let FS := the empty set
Let G := the empty pattern, Z, a basic graph pattern which is the empty set.
Let SilentOp := boolean, indicating SERVICE error behavior.

For each element E in the GroupGraphPattern
 If E is of the form FILTER(expr)
 FS := FS ∪ {expr}
 End

 If E is of the form OPTIONAL{P}
 Let A := Transform(P)
 If A is of the form Filter(F, A2)
 G := LeftJoin(G, A2, F)
 Else
 G := LeftJoin(G, A, true)
 End
 End

 If E is of the form MINUS{P}
 G := Minus(G, Transform(P))
 End

 If E is of the form BIND(expr AS var)
 G := Extend(G, var, expr)
 End

 If E is any other form
 Let A := Transform(E)
 G := Join(G, A)
 End

 If E is of the form SERVICE [SILENT] IRI {P}
 Let G := Join(G, Service(IRI, Transform(P), SilentOp))
 End

 End

If FS is not empty:
 Let X := Conjunction of expressions in FS
 G := Filter(X, G)

The result is G.

[bookmark: algebra_service]3.2 SPARQL 1.1 Simple Federation Extension Algebra
The evaluation of SERVICE is defined in terms of the SPARQL Results [RESULTS] returned by a SPARQL Protocol [SPROT] execution of the nested graph pattern:
Definition: [bookmark: defn_evalService]Evaluation of a Service Pattern

	
	Let 	iri be an IRI,
	Ω0 the solution set with one empty solution, and
	SilentOp be a boolean variable to indicate that SERVICE execution should ignore errors when true.

then:

eval(D(G), Service(IRI,P,SilentOp)) = Invocation(iri, P, SilentOp)

	where: Invocation(IRI, P, SilentOp) is 	the multiset of solution mappings corresponding to the results of executing query SELECT * WHERE Q against the service endpoint with IRI iri where Q is the serialization of P in SPARQL syntax, in case of a successful service invocation according to the SPARQL protocol, and otherwise
	Ω0. in case SilentOp is true, and otherwise
	error.

[bookmark: algebra_service_examples]3.2.1 SERVICE Examples
In the folowing section we introduce two examples showing the evaluation of SERVICE patterns in the SPARQL algebra:
Example: a SERVICE graph pattern in a series of joins:

	 ... WHERE { { ?s :p1 ?v1 } SERVICE <srvc> {?s :p2 ?v2 } { ?s :p3 ?v2 } }
	

	 Join(Service(<srvc>,

	 BGP(?s :p2 ?v2), false),

	 BGP(?s :p3 ?v2))
	

Example: a SERVICE SILENT graph pattern in a series of joins:

	 ... WHERE { { ?s :p1 ?v1 } SERVICE SILENT <srvc> {?s :p2 ?v2 } { ?s :p3 ?v2 } }
	

	 Join(Service(<srvc>,

	 BGP(?s :p2 ?v2), true),

	 BGP(?s :p3 ?v2))
	

[bookmark: variableService]4 SERVICE Variables (Informative)
In the this section we do not present official evaluation semantics for the SPARQL pattern SERVICE VAR. We only provide indications about how the evaluation of the SPARQL pattern SERVICE VAR can be evaluated.
A variable used in place of a service IRI indicates that the service call for any solution depends on that variable's binding in that solution. For instance, the default graph may contain data about which services contain data about project endpoints. We assume the following data on various projects that contains information about SPARQL endpoints where data about these projects (using the DOAP vocabulary) can be queried from:
@prefix void: <http://rdfs.org/ns/void#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix doap: <http://usefulinc.com/ns/doap#> .

[] dc:subject "Querying RDF" ;
 void:sparqlEndpoint <http://projects1.example.org/sparql> .
[] dc:subject "Querying RDF remotely" ;
 void:sparqlEndpoint <http://projects2.example.org/sparql> .
[] dc:subject "Updating RDF remotely" ;
 void:sparqlEndpoint <http://projects3.example.org/sparql> .

Data in the default graph at remote SPARQL endpoint http://projects2.example.org/sparql:
_:project1 doap:name "Query remote RDF Data" .
_:project1 doap:created "2011-02-12"^^xsd:date .
_:project2 doap:name "Querying multiple SPARQL endpoints" .
_:project2 doap:created "2011-02-13"^^xsd:date .

Data in the default graph at remote SPARQL endpoint http://projects3.example.org/sparql:
_:project3 doap:name "Update remote RDF Data" .
_:project3 doap:created "2011-02-14"^^xsd:date .

We now want to query the project names of projects on the subject "remote":
PREFIX void: <http://rdfs.org/ns/void#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX doap: <http://usefulinc.com/ns/doap#>

SELECT ?service ?projectName
WHERE {
 # Find the service with subject "remote".
 ?p dc:subject ?projectSubject ;
 void:sparqlEndpoint ?service .
 FILTER regex(?projectSubject, "remote")

 # Query that service projects.
 SERVICE ?service {
 ?project doap:name ?projectName . }
}

In the following table we present the intuitive solutions for this query with the data above:
Query Result:
[bookmark: tableResultsVarEndpoint]	service	title
	<http://projects2.example.org/sparql>	"Query remote RDF Data"
	<http://projects2.example.org/sparql>	"Querying multiple SPARQL endpoints"
	<http://projects3.example.org/sparql>	"Update remote RDF Data"

A SERVICE clause involving a variable can be executed as a series of separate invocations of SPARQL query services. The results of each invocation are combined using union.
The query engine must determine the possible target SPARQL query services. The exact mechanism for doing this is not defined in this document. Execution order may also be used to determine the list of services to to be tried. The example above suggests a specific order of execution: evaluating the basic graph pattern and filter outside the SERVICE block first will yield bindings for ?service which may then be used to evaluate the SERVICE block:
?p dc:subject ?projectSubject ;
 void:sparqlEndpoint ?service
 FILTER regex(?projectSubject, "remote")
Once ?service has been evaluated it is possible to execute SERVICE for each value of ?service:
SERVICE ?service {
?project doap:name ?projectName . }
Note that blank nodes are unique to any document which serializes them. Also, SERVICE calls depend on the SPARQL Protocol [SPROT] which transfers serialized RDF documents making blank nodes unique between service calls.

[bookmark: conformance]5 Conformance
See section 4 SPARQL 1.1 Federated Query Grammar regarding conformance of
 SPARQL Query strings that include the SPARQL 1.1 Federated Query Extensions. See section 3.1 Definition of SERVICE for conformance of query results for the SERVICE keyword.
This specification is intended for use in conjunction with the SPARQL 1.1 Query Language. See that specification for its conformance criteria.

[bookmark: security]6 Security Considerations (Informative)
SPARQL queries using SERVICE imply that a URI will
 be dereferenced, and that the result will be incorporated into a working data set. All of the security issues
 of SPARQL Protocol 1.1 [SPROT] Section 3.1
 SPARQL 1.1 Query [SQRY] Section 21, and
 Uniform Resource Identifier
 (URI): Generic Syntax [RFC3986] Section 7 should be considered.

[bookmark: sec-bibliography]A References

[bookmark: sec-normative-refs]A.1 Normative References

			[bookmark: SQRY][SQRY]

			SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

			[bookmark: SPROT][SPROT]

			SPARQL 1.1 Protocol, L. Feigenbaum, G. Williams, K. Clark, E. Torres, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321. Latest version available at http://www.w3.org/TR/sparql11-protocol.

			[bookmark: CHARMOD][CHARMOD]

			
		Character
 Model for the World Wide Web 1.0: Fundamentals,
 R. Ishida, F. Yergeau, M. J. Düst, M. Wolf, T. Texin,
 Editors, W3C Recommendation, 15 February 2005,
 http://www.w3.org/TR/2005/REC-charmod-20050215/ .
		Latest version available at http://www.w3.org/TR/charmod/
 .

			[bookmark: rfc3629][RFC3629]

			RFC 3629
		UTF-8, a transformation
 format of ISO 10646, F. Yergeau November 2003

			[bookmark: rfc3986][RFC3986]

			RFC 3986
		Uniform Resource
 Identifier (URI): Generic Syntax, T. Berners-Lee,
 R. Fielding, L. Masinter January 2005

			[bookmark: rfc3987][RFC3987]

			RFC
 3987, "Internationalized Resource Identifiers (IRIs)", M.
 Dürst , M. Suignard

			[bookmark: UNICODE][UNICODE]

			The Unicode Standard, Version 4. ISBN
 0-321-18578-1, as updated from time to time by the
 publication of new versions. The latest version of Unicode
 and additional information on versions of the standard and of
 the Unicode Character Database is available at
		http://www.unicode.org/unicode/standard/versions/.

			[bookmark: XML11][XML11]

			
		Extensible
 Markup Language (XML) 1.1, J. Cowan, J. Paoli, E.
 Maler, C. M. Sperberg-McQueen, F. Yergeau, T. Bray, Editors,
 W3C Recommendation, 4 February 2004,
 http://www.w3.org/TR/2004/REC-xml11-20040204/ .
		Latest
 version available at http://www.w3.org/TR/xml11/ .

		[bookmark: BCP47][BCP47]

		Best Common Practice 47, P. V. Biron, A. Malhotra, Editors, W3C Recommendation, 28 October 2004, http://www.rfc-editor.org/rfc/bcp/bcp47.txt .

	

[bookmark: sec-non-normative-refs]A.2 Other References

			[bookmark: RESULTS][RESULTS]

			SPARQL Query Results XML Format (Second Edition), D. Beckett, J. Broekstra, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321. Latest version available at http://www.w3.org/TR/rdf-sparql-XMLres.

			[bookmark: TURTLE][TURTLE]

			Turtle:
Terse RDF Triple Language, E Prud'hommeaux, G Carothers, Editors, W3C Candidate Recommendation, 19 February 2013, http://www.w3.org/TR/2013/CR-turtle-20130219/. Latest version available at http://www.w3.org/TR/turtle/.

[bookmark: sec-acknowledgements]B Acknowledgements
The SPARQL 1.1 Federated Query document is a product of the whole of the W3C SPARQL Working Group, and our thanks for discussions, comments and reviews go to all present and past members.
In addition, we have had comments and discussions with many people through the working group comments list. All comments go to making a better document. Carlos would also like to particularly thank Jorge Pérez, Oscar Corcho and Marcelo Arenas for their discussions on the syntax and semantics of the Federated query extension.

[bookmark: sec-cvsLog]C CVS History (Last Call and after)

Change Log
Changes since Proposed Recommendation
	None

Changes since Last Call
	Updated references, fix DOAP URL
	Changed the word "BINDINGS" to "VALUES" to match change in Query Specification.

[image: W3C]

[bookmark: title]SPARQL 1.1 Query Results JSON Format

[bookmark: w3c-doctype]W3C Recommendation 21 March 2013
	This version:
	
 http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/

	Latest version:
	
 http://www.w3.org/TR/sparql11-results-json/

	Previous version:
	http://www.w3.org/TR/2012/PR-sparql11-results-json-20121108/
	Editor:
	Andy Seaborne, The Apache Software Foundation
	Previous Editors:
	Kendall Grant Clark, UMD Mindswap
	Lee Feigenbaum, IBM
	Elias Torres, IBM

Please refer to the errata for this document, which may
 include some normative corrections.
See also translations.
Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract

 SPARQL is a set of standards for the
 query and update of RDF data, along with ways to access such data over the web.
 This document describes the representation of SELECT and ASK query results using
 JSON.

[bookmark: status]Status of This Document
May Be Superseded
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
Set of Documents
This document is one of eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:
	SPARQL 1.1 Overview
	SPARQL 1.1 Query Language
	SPARQL 1.1 Update
	SPARQL1.1 Service Description
	SPARQL 1.1 Federated Query
	SPARQL 1.1 Query Results JSON Format (this document)
	SPARQL 1.1 Query Results CSV and TSV Formats
	SPARQL Query Results XML Format (Second Edition)
	SPARQL 1.1 Entailment Regimes
	SPARQL 1.1 Protocol
	SPARQL 1.1 Graph Store HTTP Protocol

No Substantive Changes
There have been no substantive changes to this document since the previous version. Minor editorial changes, if any, are detailed in the change log and visible in the color-coded diff.
Please Send Comments
Please send any comments to public-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document by the SPARQL Working Group is complete, comments may be addressed in the errata or in future revisions. Open discussion is welcome at public-sparql-dev@w3.org (public archive).
Endorsed By W3C
This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.
Patents
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents
1 Introduction

2 JSON Results Object

3 Variable Binding Results

 3.1 "head"

 3.1.1 "vars"

 3.1.2 "link"

 3.2 "results"

 3.2.1 "bindings"

 3.2.2 Encoding RDF terms

4 Boolean Results

 4.1 "head"

 4.1.1 "link"

 4.2 "boolean"

5 Example

6 Internet Media Type, File Extension and Macintosh File Type

[bookmark: appendices]Appendix
A References

 A.1 Normative References

 A.2 Other References

[bookmark: introduction]1 Introduction
This document describes how to serialize SPARQL results (SELECT and ASK query forms)
 in a JSON format.
 The format is designed to be a complete representation of the information
 in the query results. The results of a SELECT query are serilialized as
 an array, where each array element is one "row" of the query results;
 the results of an ASK query give the boolean value of the query result.

An Internet Media Type is provied for application/sparql-results+json.

 There is also a SPARQL Query Results XML Format
 [SRX] which follows a similar design pattern but uses XML as the serialization.

 Unless otherwise noted in the section heading, all sections
 and appendices in this document are normative.

[bookmark: json-result-object]2 JSON Results Object
The results of a SPARQL Query are serialized in JSON as a single top-level JSON object. This object has a "head" member and either a "results" member or a "boolean" member, depending on the query form.

This example shows the results of a SELECT query. The query solutions are represented in an array which is the value of the "bindings" key, in turn part of an object that is the value of the "results" key:
{
 "head": { "vars": ["book" , "title"]
 } ,
 "results": {
 "bindings": [
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book6" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Half-Blood Prince" }
 } ,
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book7" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Deathly Hallows" }
 } ,
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book5" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Order of the Phoenix" }
 } ,
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book4" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Goblet of Fire" }
 } ,
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book2" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Chamber of Secrets" }
 } ,
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book3" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Prisoner Of Azkaban" }
 } ,
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book1" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Philosopher's Stone" }
 }
]
 }
}
This example shows the result from an ASK query:
{
 "head" : { } ,
 "boolean" : true
}
Other keys, with different names, may be present in the JSON Results Object
 but are not defined by this specification.

[bookmark: select-results-form]3 Variable Binding Results
The results of a SPARQL SELECT query are serialized as
 an array of bindings of variables. The value of the "head" key is an array of all variables projected in the query's SELECT clause.

[bookmark: select-head]3.1 "head"
The "head" member gives the variables mentioned in the results and
 may contain a "link" member.
{
"head" {
 "vars" : [...] ,
 "link" : [...] }

[bookmark: select-vars]3.1.1 "vars"

 The "vars" member is an array giving the names of the variables used in the results.
 These are the projected variables from the query.
 A variable is not necessarily given a value in every query solution of the results.

"vars" : ["book" , "title"]
The order of variable names should correspond to the variables in the SELECT clause of the query,
 unless the query is of the form SELECT * in which case order is not significant.

[bookmark: select-link]3.1.2 "link"
The optional "link" member gives an array
 of URIs, as strings, to refer for further information.
 The format and content of these link references is not
 defined by this document.
"link" : ["http://example/dataset/metadata.ttl"]

[bookmark: select-results]3.2 "results"
The value of the "results" member is an object with a single key, "bindings".

[bookmark: select-bindings]3.2.1 "bindings"
The value of the "bindings" member is an array with zero
 or more elements, one element per query solution.
 Each query solution is a JSON object. Each key
 of this object is a variable name from the query solution. The value for
 a given variable name is a JSON object that
 encodes the variable's bound value, an RDF term.
 There are zero elements in the array if the query returned an
 empty solution sequence.
 Variables names do not include the initial "?" or "$" character.
 Each variable name that appears as a key within the "bindings" array will have appeared in the "vars"
 array in the results header.
A variable does not appear in an array element if it is
 not bound in that particular query solution.

The order of elements in the bindings array reflects the order, if any,
 of the query solution sequence.
"bindings" : [
 {
 "a" : { ... } ,
 "b" : { ... }
 } ,
 {
 "a" : { ... } ,
 "b" : { ... }
 }
]
If the query returns no solutions, an empty array is used.

"bindings" : []

[bookmark: select-encode-terms]3.2.2 Encoding RDF terms
An RDF term (IRI, literal or blank node) is encoded as a JSON object.
 All aspects of the RDF term are represented. The JSON object has
 a "type" member and other members depending on the
 specific kind of RDF term.
	RDF Term	JSON form
	IRI I	{"type": "uri", "value": "I"}
	Literal S	{"type": "literal","value": "S"}
	Literal S with language tag L	{ "type": "literal", "value": "S", "xml:lang": "L"}
	Literal S with datatype IRI D	{ "type": "literal", "value": "S", "datatype": "D"}
	Blank node, label B	{"type": "bnode", "value": "B"}

The blank node label is scoped to the results object.
 That is, two blank nodes with the same label in a single SPARQL Results
 JSON object are the same blank node. This is not an indication of any
 internal system identifier the SPARQL processor may use.
 Use of the same label in another SPARQL Results
 JSON object does not imply it is the same blank node.

[bookmark: ask-result-form]4 Boolean Results
The results of a SPARQL ASK query are serialized as
 a boolean value, giving the result of the query evaluation.

[bookmark: ask-head]4.1 "head"

[bookmark: ask-link]4.1.1 "link"
The "link" member has the same format as the SELECT "link" member.

[bookmark: ask-boolean]4.2 "boolean"
The result of an ASK query form are encoded by the "boolean" member,
 which takes either the JSON value true or the JSON value false.
"boolean" : true

[bookmark: example]5 Example
This section is not normative.
The following JSON is a serialization of the XML document output.srx:
{
 "head": {
 "link": [
 "http://www.w3.org/TR/rdf-sparql-XMLres/example.rq"
],
 "vars": [
 "x",
 "hpage",
 "name",
 "mbox",
 "age",
 "blurb",
 "friend"
]
 },
 "results": {
 "bindings": [
 {
 "x" : { "type": "bnode", "value": "r1" },

 "hpage" : { "type": "uri", "value": "http://work.example.org/alice/" },

 "name" : { "type": "literal", "value": "Alice" } ,

		 "mbox" : { "type": "literal", "value": "" } ,

 "blurb" : {
 "datatype": "http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral",
 "type": "literal",
 "value": "<p xmlns=\"http://www.w3.org/1999/xhtml\">My name is alice</p>"
 },

 "friend" : { "type": "bnode", "value": "r2" }
 },
 {
 "x" : { "type": "bnode", "value": "r2" },

 "hpage" : { "type": "uri", "value": "http://work.example.org/bob/" },

 "name" : { "type": "literal", "value": "Bob", "xml:lang": "en" },

 "mbox" : { "type": "uri", "value": "mailto:bob@work.example.org" },

 "friend" : { "type": "bnode", "value": "r1" }
 }
]
 }
}

[bookmark: content-type]6 Internet Media Type, File Extension and Macintosh File Type
The Internet Media Type / MIME Type for the SPARQL Query Results JSON Format
 is "application/sparql-results+json".
It is recommended that SPARQL Query Results JSON Format files have the extension ".srj" (all
 lowercase) on all platforms.
It is recommended that SPARQL Query Results JSON Format files stored on Macintosh HFS file
 systems be given a file type of "TEXT".
This information that follows is intended to be submitted to the IESG
 for review, approval, and registration with IANA.

 	Type name:

 	application

 	Subtype name:

 	sparql-results+json

 	Required parameters:

 	None

 	Optional parameters:

 	None

 	Encoding considerations:

 	The encoding considerations of the SPARQL Query Results JSON
 Format is identical to those of the "application/json" as specified in
 [JSON-RFC].

 	Security considerations:

 	SPARQL query results uses URIs. See Section 7 of [RFC3986].

 SPARQL query results uses IRIs. See Section 8 of [RFC3987].

 The security considerations of the SPARQL Query Results JSON
 Format is identical to those of the "application/json" as specified in
 [JSON-RFC].

 	Interoperability considerations:

 	There are no known interoperability issues.

 	Published specification:

 	http://www.w3.org/TR/sparql11-results-json/

 	Applications which use this media type:

 	No known applications currently use this media type.

 	Additional information:

 	Magic number(s):

 	n/a

 	File extension(s):

 	".srj"

 	Macintosh file type code(s):

 	"TEXT"

 	Person & email address to contact for further information:

 	Andy Seaborne <public-rdf-dawg-comments@w3.org>

 	Intended usage:

 	COMMON

 	Restrictions on usage:

 	None

 	Author/Change controller:

 	The SPARQL specification is a work product of the World Wide Web
 Consortium's SPARQL Working Group. The W3C has change
 control over these specifications.

[bookmark: sec-bibliography]A References

[bookmark: sec-normative-refs]A.1 Normative References

 	
 [bookmark: JSON-RFC][JSON-RFC]

 	
 RFC 4627,

 The application/json Media Type for JavaScript Object Notation (JSON),

 D. Crockford,

 http://www.ietf.org/rfc/rfc4627.txt

 	
 [bookmark: RFC3986][RFC3986]

 	
 RFC 3986,

 Uniform Resource Identifier (URI): Generic Syntax,

 T. Berners-Lee, R. Fielding, L. Masinter,

 http://www.ietf.org/rfc/rfc3986.txt

 	
 [bookmark: RFC3987][RFC3987]

 	
 RFC 3987,

 Internationalized Resource Identifiers (IRIs),

 M. Dürst, M. Suignard,

 http://www.ietf.org/rfc/rfc3987.txt

[bookmark: sec-non-normative-refs]A.2 Other References

 	
 [bookmark: SRX][SRX]

 	SPARQL Query Results XML Format (Second Edition), D. Beckett, J. Broekstra, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321. Latest version available at http://www.w3.org/TR/rdf-sparql-XMLres.

Change Log
Changes since Proposed Recommendation
	None

Changes since Last Call
	Fix typo in example.
	Update references

 [image: W3C]

 SPARQL 1.1 Query Results CSV and TSV Formats

 W3C Recommendation 21 March 2013

 	This version:
	http://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321/

 	Latest published version:
	http://www.w3.org/TR/sparql11-results-csv-tsv/

 	Previous version:
 	http://www.w3.org/TR/PR-sparql11-results-csv-tsv-20121108/

 	Editor:
	Andy Seaborne, The Apache Software Foundation

 Please refer to the errata for this document, which may include some normative corrections.
See also translations.

 Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

 Abstract

	 The formats CSV [RFC4180] (comma separated values)
 and TSV [IANA-TSV] (tab separated values)
	 provide simple, easy to process formats for the transmission of tabular data.
	 They are supported as input datat formats to many tools, particularly spreadsheets.
	 This document describes their use for expressing SPARQL query results from
	 SELECT queries.
	

Status of This Document
May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is one of eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:

	SPARQL 1.1 Overview

	SPARQL 1.1 Query Language

	SPARQL 1.1 Update

	SPARQL1.1 Service Description

	SPARQL 1.1 Federated Query

	SPARQL 1.1 Query Results JSON Format

	SPARQL 1.1 Query Results CSV and TSV Formats

	SPARQL Query Results XML Format (Second Edition)

	SPARQL 1.1 Entailment Regimes

	SPARQL 1.1 Protocol

	SPARQL 1.1 Graph Store HTTP Protocol

No Substantive Changes

There have been no substantive changes to this document since the previous version. Minor editorial changes, if any, are detailed in the change log and visible in the color-coded diff.

Please Send Comments
Please send any comments to public-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document by the SPARQL Working Group is complete, comments may be addressed in the errata or in future revisions. Open discussion is welcome at public-sparql-dev@w3.org (public archive).

Endorsed By W3C

This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction	1.1 Example

	2. Transmission issues using CSV and TSV Formats
	3. CSV - Comma Separated values	3.1 Serializing the Results Table
	3.2 Serializing RDF Terms
	3.3 Example of CSV-Serialized Results

	4. TSV - Tab Separated values	4.1 Serializing the Results Table
	4.2 Serializing RDF Terms
	4.3 Example of TSV-Serialized Results

	A. References	A.1 Normative References
	A.2 Non-normative References

	B. References	B.1 Normative references
	B.2 Informative references

1. Introduction

 This document describes CSV and TSV formats for expressing
 the results of a SPARQL SELECT query.
 They provide lowest common denominator
 formats between systems using different
 implementation technologies.

 Other formats for expression SPARQL results are the
 SPARQL XML Results Format [RDF-SPARQL-XMLRES]
 and SPARQL JSON Results Format

 [SPARQL11-JSON-RES].
 Each format is useful in different application scenarios.

 The SPARQL Results CSV Results Format is a lossy encoding
 of a table of results. It does not encode all the details of
 each RDF term in the results but instead just gives a string
 without indicating the type of the term (IRI, Literal, Literal
 with datatype, Literal with language, or blank node). This makes
 it simple to consume data, such as text and numbers, in
 applications without needing to understand the details
 of RDF. In some applications, guesses as to which
 elements are hyperlinks are made pragmatically, for example,
 guessing that strings starting "http://" are links.

 The SPARQL Results TSV Results Format does encode the details
 of RDF terms in the results table by using the syntax that SPARQL

 [SPARQL11-QUERY]
 and Turtle [TURTLE] use. An application receiving a TSV-encoded
 results set can
 split each line into elements of the result row, and extract
 all the details it wishes to process of the RDF terms by
 simple string processing, without a complete XML or JSON parser
 required by the more complex SPARQL result formats.

 When this document uses the words must, must not, should, should
 not, may and recommended, they must be interpreted as described in
 RFC 2119 [RFC2119].

 1.1 Example

 The following artificial example is used to illustrate the
 features of serializing results in each format.

 	x
 	literal
 	Comment (not part of the table)

 	<http://example/x>
 	String
 	An IRI and a string consisting of
characters S-t-r-i-n-g

 	<http://example/x>
 	String-with-dquote"
 	String with a double quote in it.

 	_:b0
 	Blank node
 	Blank node

 	
 	Missing 'x'
 	No RDF term for the x column

 	
 	
 	This row has no terms in it.

 	<http://example/x>
 	
 	No term in the literal column.

 	_:b1
 	"String-with-lang"@en
 	An RDF literal with a language tag

 	_:b1
 	123
 	An RDF literal, datatype xsd:integer,
and lexical form 123.

2. Transmission issues using CSV and TSV Formats

 The SPARQL results formats described here
 confirm to the formal specifications of the
 relevant formats, Comma Separated values (CSV) [RFC4180] and
 Tab Separated Value (TSV) [IANA-TSV].

 Systems providing these formats should note that the content types for CSV is
 text/csv and for TSV text/tab-separated-values.
 Being text/*, the default character set is US-ASCII.
 The charset parameter should be used in conjunction
 with SPARQL Results; UTF-8 is recommended: text/csv; charset=utf-8 and
 text/tab-separated-values; charset=utf-8.

 The end-of-line in CSV is CRLF i.e.
 Unicode codepoints 13 (0x0D) and 10 (0x0A).

 The end-of-line in TSV is EOL i.e.
 Unicode codepoint 10 (0x0A).

 Applications reading these formats are advised to cope with
 both CRLF and LF as end of line markers
 and not rely on conformance to the formal specifications.

3. CSV - Comma Separated values

 In the SPARQL Results CSV Format,
 the results table is serialized as one line listing the variables
 in the results, using the CSV header line,
 followed by one line for each query solution
 (a line may end up split by newlines in the data).
 Values in the results are strings, for URIs, literals and blank nodes,
 together with numbers when the literals are of numeric XSD
 datatype.

 3.1 Serializing the Results Table

 The first line of a SPARQL CSV Results Format response
 is the header line giving the names of the variables
 used in the result set. The header line consists of the
 variable names, without leading ?, separated by commas.

 While the text/csv format does not require a header row,
 the SPARQL CSV Results Format must use a header row.
 If the content type parameter header is used,
 it must be header=present.

 The remaining rows are the values of the results,
 with each binding determined by the position in the row,
 corresponding to the entry in the header line.

 If a variable is not bound, an empty field is used (e.g. ,,).
 Each row must have the same number of fields,
 with each field corresponding to a binding to the variable
 in the header line in the same field position.

 3.2 Serializing RDF Terms

 The entry in each field is the string corresponding to the RDF term value.
 (c.f. SPARQL STR()) without syntax to denote what kind of
 term it is. The encoding quoting rules of CSV format must be
 used.

 Blank nodes use the _:label form from Turtle and SPARQL.
 Use of the same label indicates the same blank node within the
 results but has no significance outside
 the results.

 Fields containing any of
 " (QUOTATION MARK, code point 34, 0x22 in Unicode[UNICODE]),
 , (COMMA, code point 44, 0x2C),
 LF (code point 10, 0x0A) or
 CR (code point 13, 0x0D)
 must be quoted using the quoting mechanism
 of RFC4180 [RFC4180]. Fields are limited by a pair of
 quotation marks "
 (code point 0x22).
 Within quote strings,
 all characters except ",
 including new line characters have their exact meaning -
 newlines do not end a CSV record.
 "

 is written using a pair of quotation marks
 "".

 The standard CSV format does not distinguish between missing
 values and empty strings.
 The SPARQL 1.1 CSV Results Format uses the same representation
 for unbound variables as for variables bound to an empty string
 literal. The other SPARQL Result formats (based on JSON, TSV or XML)
 can be used if this distinction is required.

 3.3 Example of CSV-Serialized Results

 x,literal
http://example/x,String
http://example/x,"String-with-dquote"""
_:b0,Blank node
,Missing 'x'
,
http://example/x,
_:b1,String-with-lang
_:b1,123

4. TSV - Tab Separated values

 In the SPARQL Results TSV Format,
 the results table is serialized as one line listing the variables
 in the results, followed by one line for each query solution.
 All RDF terms used in the format are encoded in the format
 specified by Turtle [TURTLE] except that the
 triple quoted forms for the lexical part of literals
 must not be used. These forms would allow raw newlines and
 tabs that form part of the TSV format. A TSV format SPARQL result
 set must use the single quoted literal forms, together with
 any necessary escapes such as \t,
 \n and \r.

 4.1 Serializing the Results Table

 The results table is serialized as one line listing the variables
 in the results, followed by one line for each query solution.
 This first line is required by the TSV format [IANA-TSV],
 unlike CSV, where it is optional.

 Variables are serialized in SPARQL syntax, using question mark
 ? character followed by the variable name.

 Each row of the result set is serialized by sequence of
 RDF terms in SPARQL syntax, separated by a tab
 (Horizontal Tab, Unicode codepoint 9) character.

 If a variable is not bound in a row, an empty field is used.
 Each row must have the same number of fields, corresponding to the variables
 listed in the first row.

 4.2 Serializing RDF Terms

 The SPARQL Results TSV Results Format serializes
 RDF terms in the results table by using the syntax that SPARQL

 [SPARQL11-QUERY]
 and Turtle [TURTLE] use.

 IRIs enclosed in <...>,
 literals are enclosed with double quotes "..."
 or single quotes ' ...'
 with optional @lang or ^^ for datatype.
 The quotes around the lexical
 form is required.
 Tab, newline and carriage return characters (Unicode codepoints
 0x09, 0x0A (line feed) and 0x0D (Carriage Return))
 are encoded in strings as
 \t, \n and \r respectively.
 The long string forms using triple quotes """ and
 ''' must not be used.

 The abbreviated forms for numbers (XSD integers, decimals and doubles)
 should be used.

 Blank nodes use the _:label form from Turtle and SPARQL.
 Use of the same label indicates the same blank node within the
 results but has no significance outside
 the results.

 4.3 Example of TSV-Serialized Results

 Writing <TAB> for a raw tab character (Unicode
code point 9):

 ?x<TAB>?literal
<http://example/x><TAB>"String"
<http://example/x><TAB>"String-with-dquote\""

_:blank0<TAB>"Blank node"
<TAB>"Missing 'x'"
<TAB>
<http://example/x><TAB>
_:blank1<TAB>"String-with-lang"@en
_:blank1<TAB>123

A. References

 This section includes references not yet included in the standard biblio DB

 A.1 Normative References

 	SPARQL11-JSON-RES

 	SPARQL 1.1 Query Results JSON Format, A. Seaborne, Editor, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321. Latest version available at http://www.w3.org/TR/sparql11-results-json.

 	SPARQL11-QUERY

 	SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

 A.2 Non-normative References

 Change Log

 Changes since Proposed Recommendation

 	None

 Changes since Last Call

 	None.

B. References
B.1 Normative references
	[IANA-TSV]
	Paul Lindner. Definition of tab-separated-values (tsv) June 1993. IANA Media Type Registration. URL: http://www.iana.org/assignments/media-types/text/tab-separated-values

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC4180]
	Y. Shafranovich. Common Format and MIME Type for Comma-Separated Values (CSV) Files October 2005. Internet RFC 3987. URL: http://www.ietf.org/rfc/rfc4180.txt

	[TURTLE]
	David Beckett, Tim Berners-Lee. Turtle: Terse RDF Triple Language. January 2008. W3C Team Submission. URL: http://www.w3.org/TeamSubmission/turtle/

B.2 Informative references
	[RDF-SPARQL-XMLRES]
	Jeen Broekstra; Dave Beckett. SPARQL Query Results XML Format. 15 January 2008. W3C Recommendation. URL: http://www.w3.org/TR/2008/REC-rdf-sparql-XMLres-20080115

	[UNICODE]
	The Unicode Consortium. The Unicode Standard. 2003. Defined by: The Unicode Standard, Version 4.0 (Boston, MA, Addison-Wesley, ISBN 0-321-18578-1), as updated from time to time by the publication of new versions URL: http://www.unicode.org/unicode/standard/versions/enumeratedversions.html

 [image: W3C]

 SPARQL Query Results XML Format (Second Edition)

 [bookmark: w3c-doctype]W3C Recommendation 21 March 2013

 	This version:

 	http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321/

 	Latest version:

 	http://www.w3.org/TR/rdf-sparql-XMLres/

 	Previous version:

 	http://www.w3.org/TR/2012/PER-rdf-sparql-XMLres-20121108/

 	Previous Recommendation:

 	http://www.w3.org/TR/2008/REC-rdf-sparql-XMLres-20080115/

 	Second Edition Editor:

 	Sandro Hawke

 	Editors:

		Dave Beckett, Institute for Learning and Research Technology (ILRT), University of Bristol

		Jeen Broekstra, Information Systems Group, Eindhoven University of Technology

Please refer to the errata for this document, which may include some normative corrections.

See also translations.

Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

 [bookmark: abstract]Abstract

 RDF is a flexible, extensible way to represent information
 about World Wide Web resources. It is used to represent, among
 other things, personal information, social networks, metadata
 about digital artifacts like music and images, as well as
 provide a means of integration over disparate sources of
 information. A standardized query language for RDF data with
 multiple implementations offers developers and end users a way
 to write and to consume the results of queries across this wide
 range of information.

 This document describes an XML format for the variable binding
 and boolean results formats provided by the
 SPARQL
 query language for RDF, developed by the
 W3C RDF Data Access
 Working Group (DAWG), part of the
 Semantic Web Activity
 as described in the
 activity statement .

Status of This Document
May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is one of eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:

	SPARQL 1.1 Overview

	SPARQL 1.1 Query Language

	SPARQL 1.1 Update

	SPARQL1.1 Service Description

	SPARQL 1.1 Federated Query

	SPARQL 1.1 Query Results JSON Format

	SPARQL 1.1 Query Results CSV and TSV Formats

	SPARQL Query Results XML Format (Second Edition)

	SPARQL 1.1 Entailment Regimes

	SPARQL 1.1 Protocol

	SPARQL 1.1 Graph Store HTTP Protocol

No Substantive Changes

There have been no substantive changes to this document since the previous version. Minor editorial changes, if any, are detailed in the change log and visible in the color-coded diff.

Please Send Comments
Please send any comments to public-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document by the SPARQL Working Group is complete, comments may be addressed in the errata or in future revisions. Open discussion is welcome at public-sparql-dev@w3.org (public archive).

Endorsed By W3C

This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

 [bookmark: contents]Table of Contents

 	
 1. Introduction

 	
 2. Definition

 	
 2.1. Document Element

 	
 2.2. Header

 	
 2.3. Results

 	
 3. Examples

 	
 4. XML Schemas

 	
 5. Internet Media Type, File Extension and Macintosh File Type

 	
 6. References

 1. [bookmark: introduction]Introduction

The
SPARQL Query Language for RDF
[SPARQL-QUERY]
defines several Query Result Forms
(SPARQL Query section 10).
This document defines a SPARQL Results Document
that encodes
the variable binding query results from SELECT queries
(SPARQL Query section 10.2)
and boolean query results from ASK queries
(SPARQL Query section 10.5)
in
XML
[XML].

There are two other results formats which follow a similar design but do not use XML: SPARQL 1.1 Query Results JSON Format [SRJ] and SPARQL 1.1 Query Results CSV and TSV Formats [SRC].

 [bookmark: definition]2. Definition

 Definition:
 [bookmark: defn-srd]SPARQL Results Document

 A SPARQL Results Document is an
 XML document that is valid with respect to either the
 RELAX NG XML Schema or the W3C XML Schema in
 Section 4.

 [bookmark: docElement]2.1. Document Element

The SPARQL Results Document
begins with sparql document element in the
http://www.w3.org/2005/sparql-results# namespace,
written as follows:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 ...
</sparql>

Inside the sparql element are two sub-elements,
head and
a results element (either results or boolean)
which must appear in that order.

[bookmark: head]2.2. Header

The head element is the first child element of
the sparql element.

For a variable binding query result, head must contain a
sequence of elements describing the set of
Query Variable
names in the
Solution Sequence
(here called query results).

The order of the variable names in the sequence is the order of
the variable names given to the argument of the SELECT
statement in the SPARQL query. If SELECT * is used, the
order of the names is undefined.

Inside the head element, the ordered sequence of
variable names chosen are used to create empty child elements
variable with the variable name as the value of an
attribute name giving a document like this:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

 <head>
 <variable name="x"/>
 <variable name="hpage"/>
 <variable name="name"/>
 <variable name="mbox"/>
 <variable name="blurb"/>
 </head>
...
</sparql>

For a boolean query result, no elements are required inside
head and variable must not be present.

For any query result, head may also contain
link child elements with an href attribute
containing a relative URI that provides a link to some additional
metadata about the query results. The relative URI is resolved
against the in-scope base URI which is usually the query results
format document URI. link elements must appear after
any variable elements that are present.

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

 <head>
 ...
 <link href="metadata.rdf"/>
 </head>
...
</sparql>

[bookmark: results]2.3. Results

The second child-element of sparql
must appear after head and is either
results or boolean.
It is written even if the query results are empty.

[bookmark: vb-results]2.3.1. Variable Binding Results

The results element contains the complete sequence of
query results.

For each
Query Solution
in the query results, a result
child-element of results is added giving
a document like:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 ... head ...

 <results>
 <result>...
 </result>
 <result>...
 </result>
 ...
 </results>

</sparql>

Each result element corresponds to one Query
Solution in a result and contains child elements (in no particular order) for each Query
Variable that appears in the solution. It
is used to record how the query variables bind to RDF
Terms.

Each binding inside a solution is written as an element
binding as a child of result with the query
variable name as the value of the name attribute. So for a
result binding two variables x and hpage it would
look like:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="x"/>
 <variable name="hpage"/>
 </head>

 <results>
 <result>
 <binding name="x"> ... </binding>
 <binding name="hpage"> ... </binding>
 </result>

 <result>
 <binding name="x"> ... </binding>
 <binding name="hpage"> ... </binding>
 </result>
 ...
 </results>

</sparql>

The value of a query variable binding, which is an RDF Term, is
included as the content of the binding as follows:

	RDF URI Reference U

	<binding><uri>U</uri></binding>

	RDF Literal S

	<binding><literal>S</literal></binding>

	RDF Literal S with language L

	<binding><literal
xml:lang="L">S</literal></binding>

	RDF Typed Literal S with datatype URI D

	<binding><literal
datatype="D">S</literal></binding>

	Blank Node label I

	<binding><bnode>I</bnode></binding>

If, for a particular solution, a variable is unbound, no
binding element for that variable is included in the
result element.

Note: The blank node label I is scoped
to the result set XML document and need not have any association to
the blank node label for that RDF Term in the query graph.

An example of a query solution encoded in this format is as follows:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

 <head>
 <variable name="x"/>
 <variable name="hpage"/>
 <variable name="name"/>
 <variable name="age"/>
 <variable name="mbox"/>
 <variable name="friend"/>
 </head>

 <results>

 <result>
 <binding name="x">
	<bnode>r2</bnode>
 </binding>
 <binding name="hpage">
	<uri>http://work.example.org/bob/</uri>
 </binding>
 <binding name="name">
	<literal xml:lang="en">Bob</literal>
 </binding>
 <binding name="age">
	<literal datatype="http://www.w3.org/2001/XMLSchema#integer">30</literal>
 </binding>
 <binding name="mbox">
	<uri>mailto:bob@work.example.org</uri>
 </binding>
 </result>

 ...
 </results>

</sparql>

[bookmark: boolean-results]2.3.2. Boolean Results

A boolean result is written as the element content of a
boolean child-element of the sparql
element directly after a head,
containing either true or false as follows:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 ... head ...

 <boolean>true</boolean>

</sparql>

 [bookmark: examples]3. Examples

 [bookmark: vb-examples]3.1. Variable Binding Results Examples

 An example SELECT SPARQL Query in
 example.rq operating
 on query graph Turtle/N3 data in data.n3
 providing ordered variable binding query results written in XML
 in output.srx.

 This XML can be transformed into XHTML using the
 sample XML Query script result-to-html.xq
 giving output-xquery.html or with
 XSLT sheet result-to-html.xsl
 giving output-xslt.html

 [bookmark: boolean-examples]3.2. Boolean Results Examples

 An example ASK SPARQL Query in
 example2.rq operating
 on query graph Turtle/N3 data in data.n3
 provides a boolean query result written in XML
 in output2.srx.

 This XML can be transformed into XHTML using the
 sample XML Query script result-to-html.xq
 giving output-xquery2.html or with
 XSLT sheet result-to-html.xsl
 giving output-xslt2.html

 [bookmark: schemas]4. XML Schemas

 There are normative XML schemas provided in the following formats:

 	RELAX NG[RELAXNG] Compact[RELAXNG-COMPACT] in result.rnc

 	RELAX NG XML in result.rng

 	W3C XML Schema[XMLSCHEMA-1] in result.xsd

 Note: this schema is machine-generated from the RELAX NG XML schema.

If W3C XML Schema is used, an xsi:schemaLocation
attribute can be used pointing to the schema as follows:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2007/SPARQL/result.xsd">

 ...

</sparql>

 [bookmark: mime]5. Internet Media Type, File Extension and Macintosh File Type

The Internet Media Type / MIME Type for the SPARQL Query Results XML
Format is "application/sparql-results+xml".

It is recommended that result files have the extension ".srx" (all
lowercase) on all platforms.

It is recommended that result files stored on Macintosh HFS file
systems be given a file type of "TEXT".

[bookmark: mime-form]Internet Media Type Registration Form

	Type name:

	 application

	Subtype name:

	 sparql-results+xml

	Required parameters:

	 None

	Optional parameters:

	 "charset": This parameter has identical semantics to the charset
 parameter of the "application/xml" media type as
 specified in [RFC3023], section 3.2.

	Encoding considerations:

	 Identical to those of "application/xml" as specified in [RFC3023],
 section 3.2.

	Security considerations:

	
SPARQL query results uses URIs. See Section 7 of [RFC3986].

SPARQL query results uses IRIs. See Section 8 of [RFC3987].

As this media type uses the "+xml" convention, it shares the same
 security considerations as described in [RFC3023], section 10.

	Interoperability considerations:

	 There are no known interoperability issues.

	Published specification:

	 This specification.

	Applications which use this media type:

	 No known applications currently use this media type.

	Additional information:

	Magic number(s):

	 As specified for "application/xml" in [RFC3023], section 3.2.

	File extension(s):

	 ".srx"

	Fragment identifiers:

	 Identical to that of "application/xml" as described in RFC 3023
 [RFC3023], section 5.

	Base URI:

	 As specified in [RFC3023], section 6.

	Macintosh file type code(s):

	 "TEXT"

	Person & email address to contact for further information:

	 Dave Beckett, Eric Prud'hommeaux <public-rdf-dawg-comments@w3.org>

	Intended usage:

	 COMMON

	Restrictions on usage:

	 None

	Author/Change controller:

	 The SPARQL specification is a work product of the World Wide Web
 Consortium's RDF Data Access Working Group. The W3C has change
 control over these specifications.

[bookmark: mime-references]References

[bookmark: mime-rfc-3023][RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media Types",
 RFC 3023, January 2001.

[bookmark: mime-rfc-3986][RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

[bookmark: mime-rfc-3987][RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, January 2005.

 [bookmark: references]6. References

 	
 [bookmark: ref-xml][XML]

 	
 Extensible Markup Language (XML) 1.0, Third Edition, T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F. Yergeau, Editors, W3C Recommendation, 4 February 2004. This document is http://www.w3.org/TR/2004/REC-xml-20040204 . The latest version is available at http://www.w3.org/TR/REC-xml .

 	
 [bookmark: ref-sparql-query][SPARQL-QUERY]

 	SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

 	
 [bookmark: ref-relaxng][RELAXNG]

 	RELAX NG Specification, James Clark and MURATA Makoto, Editors, OASIS Committee Specification, 3 December 2001. This document is http://www.oasis-open.org/committees/relax-ng/spec-20011203.html . The latest version is available at http://www.oasis-open.org/committees/relax-ng/spec.html .

 	
 [bookmark: ref-relaxng-nx][RELAXNG-COMPACT]

 	RELAX NG Compact Syntax, James Clark, Editor. OASIS Committee Specification, 21 November 2002. This document is http://www.oasis-open.org/committees/relax-ng/compact-20021121.html .

 	
 [bookmark: ref-xmlschema-1][XMLSCHEMA-1]

 	
 XML Schema Part 1: Structures Second Edition, D. Beech, N. Mendelsohn, M. Maloney, H. S. Thompson, Editors, W3C Recommendation, 28 October 2004. This document is http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ . The latest version is available at http://www.w3.org/TR/xmlschema-1/ .

 	
 [bookmark: ref-srj][SRJ]

 	SPARQL 1.1 Query Results JSON Format, A. Seaborne, Editor, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321. Latest version available at http://www.w3.org/TR/sparql11-results-json.

 	
 [bookmark: ref-src][SRC]

 	SPARQL 1.1 Query Results CSV and TSV Formats, A. Seaborne, Editor, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321. Latest version available at http://www.w3.org/TR/sparql11-results-csv-tsv.

 Change Log

 Changes since Proposed Edited Recommendation

 	Removed statement that IANA had not processed registration

 Changes since 2008 Recommendation

 	Mention the JSON and CSV/TSV results formats

 	Make in the examples point to maintainable versions

[image: W3C]

[bookmark: title]SPARQL 1.1 Entailment Regimes

[bookmark: w3c-doctype]W3C Recommendation 21 March 2013
	This version:
	
 http://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/

	Latest version:
	
 http://www.w3.org/TR/sparql11-entailment/

	Previous version:
	http://www.w3.org/TR/2013/PR-sparql11-entailment-20130129/
	Editors:
	Birte Glimm, Universität Ulm
	Chimezie Ogbuji, Invited Expert
	Contributors:
	Sandro Hawke, W3C
	Ivan Herman, W3C
	Bijan Parsia, University of Manchester
	Axel Polleres, Siemens AG
	Andy Seaborne, The Apache Software Foundation

Please refer to the errata for this document, which may
 include some normative corrections.
See also translations.
Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract
SPARQL is a query language and a protocol for data that is stored natively
 as RDF or viewed as RDF via middleware.

 The main mechanism for computing query results in SPARQL is subgraph
 matching: RDF triples in both the queried RDF data and the query
 pattern are interpreted as nodes and edges of directed graphs, and
 the resulting query graph is matched to the data graph using variables
 as wild cards. Various W3C standards, including RDF and OWL, provide
 semantic interpretations for RDF graphs that allow additional RDF
 statements to be inferred from explicitly given assertions. Many
 applications that rely on these semantics require a query language
 such as SPARQL, but in order to use SPARQL, basic graph pattern
 matching has to be defined using semantic entailment relations instead
 of explicitly given graph structures. There are different possible ways
 of defining a basic graph pattern matching extension for an entailment
 relation. This document specifies one such way for a range of standard
 semantic web entailment relations.

 Such extensions of the SPARQL semantics are called
 entailment regimes within this document. An entailment regime
 defines not only which entailment relation is used, but also which
 queries and graphs are well-formed for the regime, how the entailment
 is used (since there are potentially different meaningful ways to use
 the same entailment relation), and what kinds of errors
 can arise. The entailment relations used in this document are standard
 entailment relations in the semantic web: RDF entailment, RDFS entailment, D-entailment, OWL Direct and RDF-Based Semantics entailment, and RIF Core entailment.

[bookmark: status]Status of this Document
May Be Superseded
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
Set of Documents
This document is one of eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:
	SPARQL 1.1 Overview
	SPARQL 1.1 Query Language
	SPARQL 1.1 Update
	SPARQL1.1 Service Description
	SPARQL 1.1 Federated Query
	SPARQL 1.1 Query Results JSON Format
	SPARQL 1.1 Query Results CSV and TSV Formats
	SPARQL Query Results XML Format (Second Edition)
	SPARQL 1.1 Entailment Regimes (this document)
	SPARQL 1.1 Protocol
	SPARQL 1.1 Graph Store HTTP Protocol

No Substantive Changes
There have been no substantive changes to this document since the previous version. Minor editorial changes, if any, are detailed in the change log and visible in the color-coded diff.
Please Send Comments
Please send any comments to public-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document by the SPARQL Working Group is complete, comments may be addressed in the errata or in future revisions. Open discussion is welcome at public-sparql-dev@w3.org (public archive).
Endorsed By W3C
This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.
Patents
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents
1 Introduction

 1.1 Document Conventions

 1.1.1 Graph Syntax

 1.1.2 Namespaces

 1.1.3 Preliminary Definitions

 1.1.4 Result Descriptions

 1.2 Effects of Different Entailment Regimes

 1.3 Extensions to Basic Graph Pattern Matching

 1.4 Parts of an Entailment Regime

2 RDF Entailment Regime

3 General Notes on Entailment Regimes (Informative)

 3.1 Blank Nodes in the Queried Graph

 3.2 Answers from Axiomatic Triples

 3.3 Literals in the Subject Position

 3.4 Boolean Queries

 3.5 Aggregates and Blank Nodes

4 RDFS Entailment Regime

 4.1 Inconsistencies (Informative)

 4.1.1 Effects of Unchecked Inconsistencies

5 D-Entailment Regime

 5.1 The D-Entailment Regime

 5.2 XML Schema Datatypes and Canonical Lexical Representations

6 OWL 2 RDF-Based Semantics Entailment Regime

 6.1 Entailments under the OWL 2 RDF-Based Semantics (Informative)

 6.2 Restriction on Solutions

 6.3 Computing Query Answers under the RDF-Based Semantics (Informative)

 6.4 OWL 2 Profiles and Entailment Checkers

 6.4.1 OWL 2 DL

 6.4.2 The OWL 2 EL Profile

 6.4.3 The OWL 2 QL Profile

 6.4.4 The OWL 2 RL Profile

 6.4.5 Computing Query Answers for the OWL 2 RL Profile with RDF-Based Semantics (Informative)

7 OWL 2 Direct Semantics Entailment Regime

 7.1 Introduction

 7.1.1 OWL Import Directives

 7.1.2 Extended Grammar for OWL 2 Direct Semantics BGPs

 7.1.3 Variable Typing

 7.2 The OWL 2 Direct Semantics Entailment Regime

 7.3 Restrictions on Solutions (Informative)

 7.3.1 BGP Constraints for OWL 2 DL

 7.3.2 Queries with Variables in Literal Positions

 7.4 Higher-Order Queries (Informative)

 7.5 OWL 2 Entailment Checkers and Profiles

8 RIF Core Entailment

 8.1 (Simple) RIF Core Entailment Regime

 8.2 Custom Rulesets for Common Vocabulary Interpretations (Informative)

 8.3 Finite Answer Set Conditions (Informative)

 8.4 Referencing a RIF Document

 8.4.1 Semantics of rif:usedWithProfile

 8.4.2 Dereferencing RIF Documents (Informative)

 8.4.2.1 HTTP Dereferencing

 8.4.2.2 Encoding RIF documents within named graphs in the dataset

9 Entailment Regimes and Data Sets (Informative)

10 Entailment Regimes and Property Paths (Informative)

 10.1 Limitations of Property Paths in Combination with Entailment Regimes

11 Entailment Regimes and Updates (Informative)

[bookmark: appendices]Appendices
A References

 A.1 Normative References

 A.2 Other References

B Appendix: Mapping from BGPs to the extended OWL 2 Structural Specification

 B.1 Parsing BGPs into Objects of the Extended OWL 2 Structural Specification

C Appendix: Proofs

D Change Summary

[bookmark: sec-intro]1 Introduction
The SPARQL 1.1 Query specification [SPARQL 1.1 Query] defines the evaluation of a basic graph pattern by
 means of subgraph matching. This form of basic graph pattern evaluation is also called simple entailment since it can equally be defined in terms of the
 simple entailment relation between RDF graphs. In order to use more elaborate entailment relations,
 which also allow for retrieving solutions that implicitly follow from the queried graph, this document defines several entailment regimes.
 An entailment regime specifies how an entailment relation such as RDF Schema entailment can be used to redefine the evaluation of basic graph
 patterns from a SPARQL query making use of SPARQL's extension point for basic graph pattern matching. In order to satisfy the conditions that SPARQL
 places on extensions to basic graph pattern matching, an entailment regime specifies conditions that limit the number of entailments that contribute
 solutions for a basic graph pattern. For example, only a finite number of the infinitely many axiomatic triples can contribute solutions under the RDF Schema entailment regime.
 The entailment relations used in this document are common semantic web entailment relations: RDF entailment, RDF Schema entailment, D-Entailment,
 OWL 2 RDF-Based Semantics entailment,
 OWL 2 Direct Semantics entailment, and
 RIF-Simple entailment.
References to RDF or RDFS entailment rules from the RDF Semantics
 specification are used in Section 1.2, 3.1, 3.2, and 4.1 in an informative way and implementations are not expected to implement these rules as they are used here.

[bookmark: Conventions]1.1 Document Conventions
Throughout the document, certain conventions are used, which are outlined below.

[bookmark: syntax]1.1.1 Graph Syntax
This document uses the Turtle [TURTLE] data format to show triples explicitly. This notation uses a node identifier (nodeID)
 convention to indicate blank nodes in the triples of a graph. While node identifiers such as _:xxx serve to identify blank nodes in
 the surface syntax, these expressions are not considered to be the label of the graph node they identify; they are not names, and do not occur
 in the actual graph. In particular, the RDF graphs described by two Turtle documents which differ only by renaming their blank node
 identifiers will be understood to be equivalent. This renaming convention should be understood as applying only to whole documents, since
 renaming the node identifiers in part of a document may result in a document describing a different RDF graph. A blank node may also anonymously (without an explicit identifier) be denoted with [].
IRIs are written enclosed in < and > and may be absolute RDF IRI References or relative to the current base
 IRI. IRIs may also be abbreviated by using Turtle's @prefix directive that allows declaring a short prefix name for a long prefix
 of repeated IRIs. Once a prefix such as @prefix foo: <http://example.org/ns#> . is defined, any mention of an IRI later in the
 document may use a qualified name that starts foo: to stand for the longer IRI. For example, the qualified name foo:bar is a
 shorthand for the IRI <http://example.org/ns#bar>.
For example, the following triples use prefixes and abbreviated IRIs and also the non-abbreviated IRI <book2>, which
 is relative to the base IRI of the document.
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
:book1 dc:title "SPARQL Tutorial" .
<book2> dc:title "Turtle Tutorial" .
Standard Turtle abbreviations are taken to be expanded into their full form in
 the queried graph and the query. Since the entailment regimes use the vocabulary of the queried graph to constrain the solutions, this means that,
 e.g., when a is used in a predicate position it is considered to be expanded to rdf:type before the query is answered.
 Similarly, abbreviations for lists etc. in the queried graph are considered to be expanded into their full form. For example, if a Turtle document contains
 a list of the form (ex:a ex:b), it is assumed that vocabulary of the queried graph contains rdf:first,
 rdf:rest, and rdf:nil because the expanded form of the list is
 [rdf:first ex:a; rdf:rest [rdf:first ex:b; rdf:rest rdf:nil]].

[bookmark: namespaces]1.1.2 Namespaces
Examples assume the following namespace prefix bindings unless otherwise stated:
	Prefix	IRI
	rdf:	<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
	rdfs:	<http://www.w3.org/2000/01/rdf-schema#>
	owl:	<http://www.w3.org/2002/07/owl#>
	xsd:	<http://www.w3.org/2001/XMLSchema#>
	rif:	<www.w3.org/2007/rif#>

In the interests of brevity, the prefix ex: is also used in the examples. The prefix is assumed to be bound to an exemplary IRI
 such as <http://www.example.org/>.

[bookmark: prelims]1.1.3 Preliminary Definitions
This document uses the same definitions as the
 SPARQL Query Language specification. Important terms are recaptured below for clarity.
 In the case of any differences, the SPARQL Query Language definitions are the normative ones.
The term I denotes the set of all IRIs, RDF-L the set of all RDF Literals, and RDF-B the set of all blank nodes in RDF graphs.
The set of RDF Terms, RDF-T, is I ∪ RDF-L ∪ RDF-B.
The set of query variables is denoted as V and V is assumed to be countable, infinite, and disjoint from RDF-T.
 A triple pattern is a member of the set:
	(RDF-T ∪ V) x (I ∪ V) x (RDF-T ∪ V),

A basic graph pattern (BGP) is a set of triple patterns.
A pattern instance mapping P is the combination of an RDF instance mapping σ and solution mapping μ. For a BGP x, P(x)
 denotes the result of replacing blank nodes b in x for which σ is defined with σ(b) and all variables v in x for which μ is
 defined with μ(v), denoted P(x) = μ(σ(x)).

[bookmark: resultDesc]1.1.4 Result Descriptions
Result sets are illustrated in tabular form.
[bookmark: table0]	x	y	z
	"Alice"	<http://example/a>	

A 'binding' is a pair (variable, RDF term). In this result set, there are three
 variables: x, y, and z (shown as column headers). Each solution is shown as one row in the body of the
 table. Here, there is a single solution, in which variable x is bound to "Alice", variable y is
 bound to <http://example/a>, and variable z is not bound to an RDF term. Variables are not required to be bound
 in a solution.
Sometimes solutions are annotated with the name of a solution mapping so that the explanatory text can refer to the solution mapping and
 explain or justify certain solutions. For example, in the results table below, the only solution is given by the solution mapping
 μ1:
[bookmark: table01]		x	y	z
	μ1	"Alice"	<http://example/a>	

[bookmark: entEffects]1.2 Effects of Different Entailment Regimes
The SPARQL Query specification already envisages that SPARQL can be used with entailment regimes other than simple entailment. To illustrate the
 differences between simple, RDF, and RDFS entailment, consider the following data:
(1) ex:book1 rdf:type ex:Publication .
(2) ex:book2 rdf:type ex:Article .
(3) ex:Article rdfs:subClassOf ex:Publication .
(4) ex:publishes rdfs:range ex:Publication .
(5) ex:MITPress ex:publishes ex:book3 .
[image: RDF graph for the example on effects of different entailment regimes]

 Figure 1: A graphical representation of the RDF graph for the example where green dashed lines indicate RDF-entailed triples and red dashed lines indicate triples that are also RDFS-entailed.
Consider, for example, the following query:
SELECT ?prop WHERE { ?prop rdf:type rdf:Property }
Under simple entailment the query has an empty answer when querying the above graph. Under RDF entailment, the
 RDF rule rdf1 can be used on (5) to
 derive the triple ex:publishes rdf:type rdf:Property which means that ex:publishes is a valid binding for
 ?prop and will be returned as an answer for the query from a system that uses RDF entailment.
The following query asks for a list of all publications:
SELECT ?pub WHERE { ?pub rdf:type ex:Publication }
Clearly, ex:book1 is an answer due to triple (1). Intuitively, we can expect that ex:book2 is also a publication
 because it is an article (2) and all articles are publications (3). Even ex:book3 is a publication because it is published by MIT Press
 (5) and everything that is published is a publication (4). Under simple and RDF entailment, ex:book1 is the only answer because a
 system that uses simple entailment will not perform any of the reasoning steps that were required to find that ex:book2 and
 ex:book3 are publications. Under simple entailment, the basic graph pattern ?pub rdf:type ex:Publication is
 mapped to the queried graph and variables act as a kind of wild-card, e.g., by mapping ?pub to ex:book1 the BGP matches.
 RDF already supports a few inferences, but not those that are required to derive that ex:book2 and ex:book3 are
 publications. In order to retrieve ex:book2 and ex:book3, one would need a system that supports at least RDFS entailment.
 RDFS entailment rules can be used to
 illustrate which new consequences can be derived from the given data. For example, the rule rdfs9 can be applied to the triples (3) and (2) to
 derive
(6) ex:book2 rdf:type ex:Publication .
The rule rdfs3 can be applied to (4) and (5) to derive
(7) ex:book3 rdf:type ex:Publication .
The triples (6) and (7) can then be used to find that ex:book2 and ex:book3 are also answers to the query under an RDFS
 entailment regime.

The OWL 2 Web Ontology Language allows for even more inferences and the Rule Interchange Format RIF
 allows for customizing the inferences by specifying custom rule sets. The remainder of this document specifies correct answers for different entailment regimes using SPARQL's extension mechanism for Basic Graph Pattern Matching.

[bookmark: bgpMatchingExtensions]1.3 Extensions to Basic Graph Pattern Matching
The SPARQL Query specification [SPARQL 1.1 Query] gives a set of conditions that have to be met
 when extending the basic graph pattern matching beyond simple entailment:
An entailment regime specifies
	A subset of RDF graphs called well-formed for the regime
	An entailment relation between subsets of well-formed graphs and well-formed graphs.

Since the OWL 2 Direct Semantics is, for example, only defined for certain well-formed RDF graphs, the first condition can be used to define
 an OWL 2 Direct Semantics entailment regime only over those RDF graphs that represent an OWL 2 DL ontology. For the entailment relations mentioned
 in the second condition, this specification uses entailment relations that are already specified and used on the semantic web such as RDF(S)
 entailment or OWL Direct Semantics entailment.
SPARQL Query further defines a set of conditions for extensions of the basic
 graph pattern matching. These conditions do not cover the case of inconsistent graphs. An inconsistent graph is one for which no interpretation
 exists that satisfies all conditions of the semantics that is used. The issue is discussed in more detail in Section
 3.1, which also provides an example for an RDFS-inconsistent graph. Since inconsistent graphs entail any triple, special care has to be taken to
 address the situation. The effect of a query on an inconsistent graph is covered by the particular entailment regimes and, for each regime, the
 relevant details can be found in the corresponding section for that entailment regime. The SPARQL Query conditions for using a logical entailment relation
 E, such as RDFS entailment, instead of subgraph matching for the case of a consistent active graph are repeated below for clarity. An overview of
 how the different entailment regimes satisfy these conditions follows.

	[bookmark: condition1]The scoping graph, SG, corresponding to any
 E-consistent active graph AG is uniquely specified up to RDF graph equivalence and is E-equivalent to AG.
	[bookmark: condition2]For any basic graph pattern BGP and pattern instance mapping P, P(BGP) is well-formed for E.
	[bookmark: condition3]For any scoping graph SG and answer set
 {P1 ... Pn} for a basic graph pattern BGP, and where {BGP1 BGPn} is a set of basic graph
 patterns all equivalent to BGP, none of which share any blank nodes with any other or with SG
 SG E-entails (SG ∪ P1(BGP1) ∪ ... ∪ Pn(BGPn))

 These conditions do not fully determine the set of possible answers, since RDF allows unlimited amounts of redundancy. In addition, therefore,
 the following must hold.
	[bookmark: condition4]Each SPARQL extension MUST provide conditions on answer sets which guarantee that the set of
 triples obtained by instantiating BGP with each solution μ is uniquely specified up to RDF graph equivalence, and SHOULD
 provide further conditions to prevent trivial infinite answers as appropriate to the regime.

This specification does not change any of the existing entailment relations, but rather defines the vocabulary from which possible answers can be
 taken and defines certain conditions which guarantee that query answers are finite for most entailment regimes herein (with the exception of RIF, where finiteness is not always guaranteed, see details below in Section 8.3). The set of legal graphs, i.e., graphs that can
 be queried, is also unrestricted apart from the restriction to graphs that are legal under the entailment regime in question. For example, under the RDFS
 entailment regime, one can query all legal RDF graphs, while under OWL 2 Direct Semantics, one can query all graphs that correspond to legal OWL 2
 DL ontologies. Further, it is defined which queries are legal and how illegal queries, illegal graphs, and inconsistencies are handled. All defined
 entailment regimes satisfy the above conditions as follows:
	All entailment regimes specified here use the same definition of a scoping
 graph as given for simple entailment. Thus, the required equivalence is immediate.

	Only mappings that, when applied to the BGP, yield a set of RDF triples that are well-formed for E are legal solution mappings and
 included in the answer. For example, under RDFS entailment, any SPARQL query is legal, but queries that require literals as a binding for a
 variable in a subject position have no answer because all mappings that result in a set of RDFS entailed triples are not well-formed RDF since
 RDF forbids literals in the subject position. Similarly, for OWL 2 Direct Semantics entailment, a query might have no answer because all possible bindings
 might result in RDF triples that are not well-formed for OWL 2 DL.

	This condition prevents the reuse of blank nodes between query answers unless those blank nodes are really the same in the queried
 graph. Under this restriction no accidental co-references among blank nodes are introduced. All entailment regimes use the same definition of a
 scoping graph as simple entailment. The condition is satisfied since a form
 of Skolemization is used to restrict the answers containing blank nodes.
	This point is very important since infinite answers are easily possible under all the considered regimes. For example, already under RDF and
 RDFS entailment, even the empty graph entails an infinite number of axiomatic triples such as
 rdf:_1 rdf:type rdf:Property, rdf:_2 rdf:type rdf:Property, ... Thus, a query with BGP { ?x rdf:type
 rdf:Property . } would, without further restrictions, have infinitely many answers. Such answers are to be understood as trivial infinite
 answers. Other sources of trivial infinite answers are answers that only differ in blank node labels. In order to exclude such sources of
 infinity, the entailment regimes will define a (finite) vocabulary from which bindings can be taken. These restrictions are explained in greater
 detail in the following sections.

[bookmark: entRegimeParts]1.4 Parts of an Entailment Regime

 Each entailment regime is defined in a table describing the following items:
 	Name: A name for the entailment regime, usually the same as the entailment relation used to define the evaluation of a basic graph pattern.
	IRI: The IRI for the regime, which can be used in the service description of a SPARQL endpoint. The IRI for a SPARQL endpoint can be related via the property sd:defaultEntailmentRegime to the IRI of an entailment regime which applies per default to
 graphs queried via this endpoint. Additionally, the property sd:entailmentRegime can be used to relate a particular named graph with an entailment regime that is different from the otherwise used default entailment regime.
	Legal Graphs: Describes which graphs are legal for the regime.
	Legal Queries: Describes which queries are legal for the regime.
	Illegal Handling: Describes what happens in case of an illegal graph or query.
	Entailment: Specifies which entailment relation is used in the evaluation of basic graph patterns.
	Inconsistency: Defines what happens if the queried graph is inconsistent under the used semantics.
	Query Answers: Defines how a basic graph pattern is evaluated, i.e., what the solutions are for a given graph and basic graph pattern of a query.

[bookmark: RDFEntRegime]2 RDF Entailment Regime
RDF entailment is closest to simple entailment in that it provides only few additional answers and RDF is not expressive enough to express
 inconsistencies. RDF does, however, entail an infinite set of axiomatic triples and the entailment regime specifies conditions that address the
 fourth condition on extensions of basic graph pattern matching. Further explanations are given in the informative sections following the main definition of the regime.
	Name	RDF
	IRI	http://www.w3.org/ns/entailment/RDF
	Legal Graphs	Any legal RDF graph.
	Legal Queries	Any legal SPARQL query.
	Illegal Handling	In case the query is illegal (syntax errors), the system MUST raise a
 MalformedQuery fault. In case the queried graph is illegal
 (syntax errors), the system MUST raise a QueryRequestRefused fault.
	Entailment	RDF Entailment [RDF Semantics]
	Inconsistency	RDF graphs are always RDF consistent and no inconsistency handling is required.
	Query Answers	Let G be the queried RDF graph, BGP be a basic graph pattern, V(BGP) the set of variables in BGP, B(BGP) the set of blank nodes in BGP, SG
 the scoping graph for G and BGP, sk(SG) a
 Skolemization of SG with respect to a vocabulary disjoint from the vocabulary of SG
 and BGP. Applying sk to a term t, written sk(t), yields sk(t) if sk is defined for t and t otherwise; applying sk to a BGP, written sk(BGP),
 replaces each blank node b in BGP for which sk is defined with sk(b). The set
 rdfV contains the URI references of the RDF vocabulary and rdfV-Minus is the set of URI
 references in rdfV minus URI references of the form rdf:_n with n in {1, 2, ... }.

 A solution mapping μ is a possible solution for BGP from G under RDF entailment if dom(μ) = V(BGP) and there is an RDF
 instance mapping σ from B(BGP) to RDF-T such that dom(σ)=B(BGP) and the pattern instance mapping P=(μ, σ) is such that
 P(BGP) are well-formed RDF triples that are RDF entailed by SG.

 A possible solution μ is a solution for BGP from SG under RDF entailment if:

 (C1) The RDF triples sk(P(BGP)) are ground and RDF entailed by sk(SG).

 (C2) For each variable x in V(BGP), μ(x) occurs in SG or in rdfV-Minus.

 The multiplicity of μ in the multiset of solutions is the maximal number of distinct RDF instance mappings σ that yield a pattern
 instance mapping P = (μ, σ) for which μ is a solution.

Please note that legal answers under RDF entailment are defined in a two-stage process. Intuitively, the possible answers are all
 answers that one would expect under RDF entailment, i.e., all mappings such that instantiating the basic graph patterns with them results in RDF
 triples that are RDF entailed by the queried graph. The set of possible answers is, however, not necessarily finite. The next step defines which of the
 possible answers are actually returned as answers to the query. In this step, we restrict answers to those that correspond to ground triples that are
 entailed by the Skolemized scoping graph (C1). This limits infinite answers from blank nodes, while still preserving most users' expectations of the
 cardinality of the answers. Condition (C2) further makes sure that the query answer contains only finitely many of the axiomatic triples. The two
 restrictions are further explained in the next section.

[bookmark: GeneralNotes]3 General Notes on Entailment Regimes (Informative)
The entailment regimes defined in this document are all defined analogously to the RDF entailment regime above. This section explains, therefore, the
 rationale behind the definition and the conditions (C1) and (C2), which are to a large extent shared among all the defined entailment regimes. Possible
 differences or additional constraints for the following regimes are defined in the respective sections.

[bookmark: bnodes]3.1 Blank Nodes in the Queried Graph
[bookmark: C1-Restriction]The third condition for extensions of basic graph pattern matching requires that if blank node names are returned as
 bindings for a variable, then the same blank node name occurs in different solutions only if it corresponds to the same blank node in the graph. To
 illustrate why this is required, consider the following graphs, which are also illustrated in Figure 2:
	G:	ex:a ex:b _:c . 	G1:	ex:a ex:b _:b1 . 	G2:	ex:a ex:b _:b2 . 	G3:	ex:a ex:b _:b1 .
	 	_:d ex:e ex:f .	 	_:b2 ex:e ex:f .	 	_:b1 ex:e ex:f .	 	_:b1 ex:e ex:f .

[image: RDF graph for the example on bank node handling by entailment regimes]

 Figure 2: A graphical representation of the RDF graphs for the example on blank nodes in the queried graph.
The graph G simply entails G1 and G2, but not G3 where the two blank nodes are identified. Now
 consider a basic graph pattern BGP:
ex:a ex:b ?x . ?y ex:e ex:f .
When taking just the possible answers, without applying condition (C1) and (C2), a solution multiset for BGP would include
[bookmark: tablenoc1c2]		x	y
	μ1	_:b1	_:b2
	μ2	_:b2	_:b1

Thus, we have μ1(BGP)=G1 and μ2(BGP)=G2, and both solutions are entailed
 by G. In fact, the set of possible solutions is clearly infinite in this case, which is problematic with respect to condition 4 from the SPARQL Query specification since the use of different blank node labels is considered a trivial source
 of infinite answers. Furthermore, condition 3 requires that G ∪ μ1(BGP) ∪
 μ2(BGP) is also entailed by G, and this is not the case in the example since this union contains G3.
 The reason is that the solutions have unintended co-references of blank nodes that condition 3 does not allow. SPARQL’s basic subgraph matching
 semantics respects these conditions by requiring solution mappings to refer to blank nodes that actually occur in the active graph, which essentially
 treats blank nodes as (Skolem) constants.
The use of Skolemization in the definition of an entailment regime makes this understanding of blank nodes explicit while still allowing for
 inferred triples that are not necessarily present in the queried graph. For the above example, condition (C1) works as follows: let
 skol be a prefix that denotes a fresh IRI not occurring in G and let sk(G) be the following (Skolemized)
 graph:
ex:a ex:b skol:c .
skol:d ex:e ex:f .
The Skolem function maps _:c to skol:c and _:d to skol:d. In order to satisfy (C1), the only
 blank nodes that can be used in the range of μ are _:c and _:d, since other blank nodes will either cause
 sk(μ(BGP)) to be non-ground since sk is not defined for the blank nodes or they might be Skolemized to terms not occurring in G,
 leading to non-entailed triples sk(μ(BGP)). Furthermore, we can only use a solution mapping that maps x to _:c and
 y to _:d because otherwise the entailment does not hold, assuming that G is actually the scoping graph.
 Note, however, that the scoping graph SG could equally be a graph that is RDF-equivalent to G, but possibly with renamed
 blank nodes. In this case, the solution could contain a blank node other than _:c, but importantly there is just one solution under
 condition (C1).
 Clearly, the Skolemized blank nodes should not occur in query results themselves, i.e., instead of skol:c it is expected that
 _:c is returned in the solution sequence; the Skolemization is just a way of defining conditions on possible solutions.

Note that (C1) still permits derived solutions. If we assume RDFS entailment (RDF
 entailment is too weak to infer any meaningful consequences) and assume that G additionally contains the triple
ex:b rdfs:subPropertyOf ex:b' .
the BGP
ex:a ex:b' ?x . ?y ex:e ex:f .
still yields the same one solution.
Materialization is a common implementation technique (e.g., for the RDF or RDFS regime) and it is worth pointing out that new blank nodes introduced in the
 saturation process are not to be returned in the solutions. Consider the following graph and RDFS entailment
ex:s ex:p "<a/>"^^rdf:XMLLiteral .
If the system were to follow the RDFS inference rules the saturation process would result in the
 triples
ex:s ex:p _:lit .
_:lit rdf:type rdfs:Literal .
being added to the graph, where _:lit is a blank node allocated to the literal "<a/>"^^rdf:XMLLiteral. The BGP
 ?x rdf:type rdfs:Literal would have an empty answer. The blank node _:lit is not returned because it is not part of the
 queried graph. The Skolem function is, therefore, not defined for _:lit and a solution that maps x to _:lit
 will not yield a ground triple as required by (C1). Note, however, that the entailment regimes do not prescribe any particular implementation
 technique. Thus, one can use materialization in which the saturated graph contains literals in the subject position of triples or blank nodes in the
 predicate position in order to implement complete RDFS reasoning [RDFSENTAILMENT], although only mappings that instantiate the BGP
 into well-formed such RDF triples can constitute solutions. Instead of materializing inferences, techniques based on query rewriting are equally
 possible to implement the regime.

[bookmark: axiomaticTriples]3.2 Answers from Axiomatic Triples
The following example mainly illustrates the use of condition (C2). Consider the query
SELECT ?x WHERE { ?x rdf:type rdf:Property }
against a (scoping) graph containing only the triples
ex:a ex:b ex:c .
ex:d rdf:type rdf:Bag .
ex:d rdf:_1 ex:a .
One of the possible solutions is
[bookmark: table3]		x
	μ1	ex:b

since ex:a ex:b ex:c RDF entails
 ex:b a rdf:Property (see also the RDF entailment rule rdf1).
 Further, the axiomatic triples give possible solutions such as
[bookmark: table4]		x
	μ2	rdf:type
	μ3	rdf:subject
	μ4	rdf:_1
	μ5	rdf:_2
		...

There are even more possible answers since ex:b rdf:type rdf:Property RDF entails _:exb1 rdf:type rdf:Property for
 some blank node _:exb1 allocated to ex:b, i.e.,
 _:exb1 is a possible solution. As shown above, condition (C1) prevents such possible solutions from newly introduced blank nodes to be
 returned as solutions. To limit the answers from the axiomatic triples condition (C2) is used:
(C2) For each variable x in V(BGP), μ(x) occurs in SG or in rdfV-Minus.
The possible answers μ2 to μ5 are considered here in greater detail. Since all these solution mappings
 lead to (ground) axiomatic triples when instantiating the BGP, (C1) is trivially satisfied.
	For the possible solution μ2, since
 μ2(x)=rdf:type occurs in SG (and also in rdfV-Minus), condition (C2) is also satisfied and this solution
 mapping is a solution.
	For the possible solution μ3, although μ3(x)=rdf:subject does not occur in SG, it occurs in rdfV-Minus
 and this possible solution mapping is, therefore, also returned as an answer.
	For the possible solution μ4, since μ4(x)=rdf:_1 occurs in SG, this is a solution.
	For the possible solution μ5, since μ5(x)=rdf:_2 occurs neither in SG nor in rdfV-Minus, this solution mapping is not a solution.

Similar arguments as for rdf:_2 can be used for rdf:_n with n > 2. Thus the query answer contains ex:b,
 rdf:_1, and the subjects of RDF axiomatic triples of the form X rdf:type rdf:Property with X in rdfV-Minus.

[bookmark: literalSubjects]3.3 Literals in the Subject Position
Please note that solution mappings that map variables that occur in the subject position of the basic graph pattern BGP to literals will not be
 returned as solutions. Indeed, although there might be a pattern instance mapping P for the solution mapping such that P(BGP) is RDF entailed by the
 queried graph, but P(BGP) is not well-formed as required (see also the SPARQL triple patterns definition). For example, given a query
SELECT ?x WHERE { ?x rdf:type rdf:XMLLiteral }
even the empty graph would RDF entail all statements
xxx rdf:type rdf:XMLLiteral
for xxx a well-formed RDF XML
 literal, but any solution that maps x to an XML literal such as "<a>abc"^^rdf:XMLLiteral would result
 in a triple that is not a valid RDF triple.
Please note that triples with literals in the subject positions are currently not considered well-formed RDF, but this might change in future versions of RDF. If literals were allowed in the subject position, condition (C2) would still guarantee finite answers.

[bookmark: booleanQueries]3.4 Boolean Queries
The two conditions (C1) and (C2) also have an effect on the answers to Boolean queries. For Boolean queries that contain variables, e.g.,
ASK { ?x rdf:type rdf:Property }
The query answer is yes (true) if there is at least one solution mapping (i.e., a solution that satisfies also conditions (C1)
 and (C2)) and it is no (false) otherwise. For example, if the queried graph is the empty graph, the query pattern has four solution
 triples from rdfV-Minus and hence the answer is true. For Boolean queries without variables the situation is slightly different. Consider, for
 example, the query
ASK { rdf:type rdf:type rdf:Property }
against the empty graph. Since rdf:type rdf:type rdf:Property is an axiomatic triple, even the empty graph RDF entails the triple. We have
 two possible outcomes for such a Boolean query: there is a solution sequence containing a mapping (μ) where μ has an empty domain (it
 does not map any variable to anything) or there is only an empty solution sequence (). In the first case, the query answer is
 yes (true), whereas in the second case the query answer is no (false). Since (C2) only operates on the variables in the
 query, only (C1) is relevant in this case. Since neither the BGP nor the queried (empty) graph contains a blank node, also (C1) holds and the query
 answer is yes (true).
Note that even though rdf:_n is not in rdfV-Minus for any n, this means that queries such as
 ASK { rdf:_n a rdf:Property } will always be answered with yes (true) even if rdf:_n does not occur in the
 scoping graph.

[bookmark: aggregates]3.5 Aggregates and Blank Nodes
SPARQL 1.1 Query allows for aggregates in queries such as COUNT, MIN, etc. Aggregates apply expressions over groups of
 solutions, e.g., by counting the number of solutions. Thus, aggregation is layered on top of basic graph pattern matching and all solutions computed
 for the basic graph pattern of the query and the entailment regime in use are passed on to the algebra functions. For the RDF (and RDFS) entailment
 regime this means that since blank nodes are treated as Skolem constants due to condition (C1), each blank node contributes one value for the
 aggregates. Assume, for example, the query
SELECT ?publication (COUNT(?author) AS ?numAuthors)
WHERE { ?author ex:writes ?publication . }
GROUP BY ?publication
evaluated over the data:
_:a1 ex:writes ex:book1 .
ex:author2 ex:writes ex:book1 .
_:a1 ex:writesBook ex:book2 .
ex:author3 ex:writesBook ex:book2 .
_:a4 ex:writesBook ex:book2 .
ex:writesBook rdfs:subPropertyOf ex:writes .
Under simple and RDF entailment, basic graph pattern matching finds two solutions:
[bookmark: aggregateExample]		author	publication
	μ1	_:a1	ex:book1
	μ2	ex:author2	ex:book1

The results are then grouped and aggregated by algebra operators. In this case, there is
 only one group for ex:book1 and the authors for the group are counted due to the COUNT aggregate over
 author resulting in the query answer:
[bookmark: table3_1]	publication	numAuthors
	ex:book1	2

RDFS further gives semantics to rdfs:subPropertyOf and the basic graph pattern matching under RDFS entailment finds five solution
 mappings:
[bookmark: aggregateExample2]		author	publication
	μ1	_:a1	ex:book1
	μ2	ex:author2	ex:book1
	μ3	_:a1	ex:book2
	μ4	ex:author3	ex:book2
	μ5	_:a4	ex:book2

These solutions are then processed by the algebra operators. Again, the authors for each book (now there are two groups) are counted due to the
 COUNT aggregate over author, which leads to the following result for the query under RDFS entailment:
[bookmark: table3_2]	publication	numAuthors
	ex:book1	2
	ex:book2	3

Note that the algebra operator just takes the solutions returned by the basic graph pattern matching mechanism. If, for example, blank nodes
 should not be counted or counted only once, this would mean that in general the entailment regimes must be modified to return no blank nodes or
 collapse blank nodes in results. A consequence of this would be that, for instance, under a such modified entailment regime for RDF(S) one could get less results than with
 simple entailment. For example, if no blank nodes were to be returned, then the books would have just one author under non-simple entailment.

[bookmark: RDFSEntRegime]4 RDFS Entailment Regime
Under RDFS entailment there are not only more entailments than with just RDF, which result in possibly more query answers, but RDF graphs can also be
 inconsistent under RDFS interpretations. Without any restrictions, this can result in infinite solutions since an inconsistent graph RDFS entails any
 consequence. The restrictions to guarantee finite query answers are the same as for RDF and they are repeated here so that the description of the
 entailment regime is self-contained. Note that, as apposed to the general condition 1, in this entailment regime the definition of the scoping graph also covers the case when the queried graph is RDFS-inconsistent.
	Name	RDFS
	IRI	http://www.w3.org/ns/entailment/RDFS
	Legal Graphs	Any legal RDF graph.
	Legal Queries	Any legal SPARQL query.
	Illegal Handling	In case the query is illegal (syntax errors), the system MUST raise a
 MalformedQuery fault. In case the queried graph is illegal
 (syntax errors), the system MUST raise a QueryRequestRefused fault.
	Entailment	RDFS
 Entailment [RDF Semantics]
	Inconsistency	The scoping graph is graph-equivalent to the active graph even if the active graph is
 RDFS-inconsistent. If the active graph is
 RDFS-inconsistent, an implementation MAY raise a QueryRequestRefused fault or issue a warning and it
 SHOULD generate such a fault or warning if, in the course of processing, it determines that the data or query is not compatible
 with the request. In the presence of an inconsistency the conditions on solutions still guarantee that answers are finite.

	Query Answers	Let G be the queried RDF graph, BGP be a basic graph pattern, V(BGP) the set of variables in BGP, B(BGP) the set of blank nodes in BGP, SG
 the scoping graph for G and BGP, sk(SG) a
 Skolemization of SG with respect to a vocabulary disjoint from the vocabulary of SG
 and BGP. Applying sk to a term t, written sk(t), yields sk(t) if sk is defined for t and t otherwise; applying sk to a BGP, written sk(BGP),
 replaces each blank node b in BGP for which sk is defined with sk(b). The set rdfsV contains the URI references of the RDFS vocabulary and rdfsV-Minus is the set of URI references in rdfsV minus URI
 references of the form rdf:_n with n in {1, 2, ... }.

 A solution mapping μ is a possible solution for BGP from G under RDFS entailment if dom(μ) = V(BGP) and there is an RDF
 instance mapping σ from B(BGP) to RDF-T such that dom(σ)=B(BGP) and the pattern instance mapping P=(μ, σ) is such that
 P(BGP) are well-formed RDF triples that are RDFS entailed by SG.

 A possible solution μ is a solution for BGP from SG under RDFS entailment if:

 (C1) The RDF triples sk(P(BGP)) are ground and RDFS entailed by sk(SG).

 (C2) For each variable x in V(BGP), μ(x) occurs in SG or in rdfsV-Minus.

 The multiplicity of μ in the multiset of solutions is the maximal number of distinct RDF instance mappings σ that yield a pattern
 instance mapping P = (μ, σ) for which μ is a solution.

As under RDF entailment, answers under RDFS entailment are defined in a two-stage process. Possible answers are all answers that one would expect
 under RDFS entailment, i.e., all mappings such that instantiating the basic graph patterns with them results in RDF triples that are RDFS entailed
 by the queried graph. To obtain always a finite set of answers, analogous conditions (C1) and (C2) as for the RDF entailment regime are used.

[bookmark: inconsistencies]4.1 Inconsistencies (Informative)
An RDFS-inconsistent graph RDFS entails any graph, but there are limited possibilities to express an inconsistency
 in RDFS. Every inconsistency is due to a literal of type rdf:XMLLiteral, where the lexical form is a malformed XML string, e.g.,
ex:a ex:b "<"^^rdf:XMLLiteral .
in combination with a range restriction on the property, e.g.,
ex:b rdfs:range rdf:XMLLiteral .
The first triple alone does not cause an inconsistency. It only requires that the literal "<"^^rdf:XMLLiteral is interpreted
 as something that is not in the extension of rdfs:Literal. Since rdfs:Literal contains rdf:XMLLiteral,
 the second triple together with the first one results in an inconsistency. The following example illustrates that an inconsistency is not always
 as directly visible as in the example above and one might need to apply some inference rules to detect it. For example, consider the following triples
 (numbers are only given to explain the inferences later):
(1) ex:a rdfs:subClassOf rdfs:Literal .
(2) ex:b rdfs:range ex:a .
(3) ex:c rdfs:subPropertyOf ex:b.
(4) ex:d ex:c "<"^^rdf:XMLLiteral .
Here we can derive an inconsistency as follows:
(5) ex:d ex:b "<"^^rdf:XMLLiteral . (e.g., by applying rule rdfs7 to (3) and (4))
(6) "<"^^rdf:XMLLiteral rdf:type ex:a. (e.g., by applying rule rdfs3 to (2) and (5))
(7) "<"^^rdf:XMLLiteral rdf:type rdfs:Literal . (e.g., by applying rule rdfs9 to (1) and (6))
At this point, the inconsistency can be detected since "<" is not a valid lexical form for an RDF XML literal and has to be
 interpreted as some element that is NOT in rdfs:Literal, but at the same time it should be of type rdfs:Literal. The
 triple derived last is characteristic for an RDFS inconsistency.

[bookmark: uncheckedInconsistencies]4.1.1 Effects of Unchecked Inconsistencies
Please note that the above definition of the RDFS entailment regimes does not require that systems MUST generate an
 error or a warning in the case of an inconsistency, but systems MAY generate an error or warning. A system
 SHOULD generate such an error or warning if, in the course of processing, it determines that the data or query is not
 compatible with the request.
If a system did not raise an error for an inconsistent active graph, it will most likely just return answers that would be answers from a
 consistent subgraph of the active graph. Since the scoping graph is taken to be equivalent to the active graph irrespective of inconsistencies,
 a query could still have infinitely many possible answers because an inconsistent graph (trivially) entails any RDF triple. Conditions (C1)
 and (C2) guarantee, however, finiteness even when a system tries to generate all answers without checking for consistency. In particular condition
 (C2) restricts query answers such that only answers over the (finite) vocabulary of the queried graph plus the finite subset of the RDFS
 vocabulary in rdfsV-Minus are returned.
The above definition of the RDFS entailment regime is chosen such that it can be implemented efficiently. Consider, for example, a
 default graph containing the following triples
ex:b ex:s ex:y1 .
ex:b ex:s ex:y2 .
...
ex:b ex:s ex:y10000 .
ex:a ex:d "<"^^rdf:XMLLiteral .
ex:d rdfs:range rdf:XMLLiteral .
and a query
SELECT * WHERE { ex:b ex:r ?x . ?x ex:s ?y }
which requires a join operation in the query processor. This graph is RDFS-inconsistent due to the last two triples, but the query processor
 might know (after parsing) that there is no ex:r property at all in the graph. Thus, the processor knows that it does not have to
 evaluate the query. However, if a consistency check was required, the processor would have to parse and process the query nevertheless and
 return an error. Such a test could be very costly (there could be more than 10,000 ex:b ex:s ex:yn tuples).
Another motivation comes from queries that require a union. For example, the query
SELECT * WHERE { {BGP1} UNION {BGP2} }
can be executed by dispatching BGP1 and BGP2 in parallel to some processing element, streaming results back to the caller from either
 side of the UNION as they become available. The use of HTTP for streaming results places some constraints on what can be done, e.g., the error
 or success code must be transmitted before starting streaming the results. However, discovering the inconsistency from the dispatched
 processors might be too late for the main processor to communicate the error back to the client in a conformant manner.

[bookmark: DEntRegime]5 D-Entailment Regime
[bookmark: d-entailment]The D-entailment regime is defined for datatyped interpretations, which give semantics to datatypes. A
 datatype is an entity characterized by a set of character strings called lexical
 forms and a mapping from that set to a set of values. Formally, a datatype d is defined by three items:
	a non-empty set of character strings called the lexical space of d;
	a non-empty set called the value space of d;
	a mapping from the lexical space of d to the value space of d, called the lexical-to-value mapping of d.

Datatyped interpretations for an RDF graph are relativized to a datatype map: A datatype map
 D is a set of pairs consisting of a URI reference and a datatype such that no URI reference appears twice in the set, i.e., D can be regarded as a
 function from a set of URI references to a set of datatypes.
While the datatypes often have a single lexical representation for each data value (i.e., each value in the datatype's value space is denoted by a
 single representation in its lexical space), this is not always the case. A canonical mapping is a prescribed subset of the inverse of a
 lexical mapping, which is one-to-one and whose domain (where possible) is the entire range of the lexical mapping (the value space). Thus a canonical
 mapping selects one lexical representation for each value in the value space. The canonical representation of a value in the value space of a
 datatype is the lexical representation associated with that value by the datatype's canonical mapping.

[bookmark: CanonicalLit]5.1 The D-Entailment Regime
[bookmark: CanonicalLiteral]It is possible to define one datatype as a refinement of another one. For example, in the XML Schema Datatypes specification [XML Schema Datatypes], the datatype
 long is derived from the datatype integer, which is itself derived from decimal. The datatype
 decimal is a primitive type, i.e., it is not a refinement of another datatype. The canonical representation of
 a data value does, however, not define a datatype. For example, the two literals "2"^^xsd:integer and "2"^^xsd:long both
 represent the data value 2. This raises the question which literals should be returned in query answers. Let D be a datatype map containing
 xsd:decimal, xsd:integer and xsd:long. We further assume the queried graph to contains the triple
ex:s ex:p "01"^^xsd:long .
and a query
SELECT * WHERE { ex:s ex:p ?x }
The graph D-entails any triple ex:s ex:p "l"^^dt where dt is a datatype for which the value space contains 1 and where
 l is a valid lexical form for the value 1. Thus, even if we restrict to the canonical represenations, we still get at least the 3 solutions
 "1.0"^^xsd:decimal, "1"^^xsd:integer, and "1"^^xsd:long. If D contains further datatypes that contain 1 in their
 value space, we would get further solutions.
The D-entailment regime assumes, therefore, that for each literal there is a well-defined canonical literal. For D a datatype map, a canonical
 datatype mapping maps each data value v that occurs in the data space of a datatype dt from D to a unique datatype
 dc such that the value space of dc contains v. Given a literal "l"^^dt, the canonical literal for
 "l"^^dt is "lc"^^dc, where lc is the canonical representation for the data value that "l" represents
 and dc is the canonical datatype for the data value. For the XML Schema Datatypes one can, for example, use the primitive type as the
 canonical datatype.

Apart from the datatype support, the entailment regime is a straightforward extension of the RDF and RDFS entailment regimes and the same conditions
 are used to guarantee the finiteness of the result set, only adapted such that the vocabulary also includes the datatype URIs from the datatype map.
 Furthermore, all literals in solutions must be the canonical representation of the corresponding data value. The use of D-entailment means that further
 inconsistencies could arise due to datatype clashes and the same mechanisms as for handling inconsistencies as in the RDFS entailment regime are
 applied.
	Name	D-Entailment
	IRI	http://www.w3.org/ns/entailment/D
	Legal Graphs	Any legal RDF graph.
	Legal Queries	Any legal SPARQL query.
	Illegal Handling	In case the query is illegal (syntax errors), the system MUST raise a
 MalformedQuery fault. In case the queried graph is illegal
 (syntax errors), the system MUST raise a QueryRequestRefused fault.
	Entailment	D-Entailment [RDF Semantics]
	Inconsistency	The scoping graph is graph-equivalent to the active graph even if the active graph is
 D-inconsistent. If the active graph is
 D-inconsistent with respect to the datatype map D, an implementation
 MAY raise a QueryRequestRefused fault or
 issue a warning and it SHOULD generate such a fault or warning if, in the course of processing, it determines that the data or
 query is not compatible with the request. In the presence of an inconsistency the conditions on solutions still guarantee that answers are finite.

	Query Answers	Systems MUST provide a means to determine which datatype map they assume and whether they impose any limits on datatype
 lexical forms; such information could, for example, be listed in supporting documentation. A canonical literal MUST be
 defined for all literals that use a datatype from the datatype map.

 Let D be the supported datatype map, G the queried RDF graph, BGP be a basic graph pattern,
 V(BGP) the set of variables in BGP, B(BGP) the set of blank nodes in BGP, SG the scoping graph for G and BGP, sk(SG) a Skolemization of SG with respect to a vocabulary disjoint from the vocabulary of SG and
 BGP. Applying sk to a term t, written sk(t), yields sk(t) if sk is defined for t and t otherwise; applying sk to a BGP, written sk(BGP), replaces
 each blank node b in BGP for which sk is defined with sk(b). The set Lit(SG) is the set of all literals "lc"^^dc such that
 "l"^^dt occurs in SG and "lc"^^dc is the canonical literal for "l"^^dt. The set dV contains the URI references of the RDFS vocabulary plus the datatype names, i.e., the URI references, for the
 datatypes in D; dV-Minus is the set of URI references in dV minus URI references of the form rdf:_n with n in {1, 2,
 ... }.

 A solution mapping μ is a possible solution for BGP from G under D-entailment if dom(μ) = V(BGP) and there is an RDF instance
 mapping σ from B(BGP) to RDF-T such that dom(σ)=B(BGP) and the pattern instance mapping P=(μ, σ) is such that P(BGP) are
 well-formed RDF triples that are D-entailed by SG.

 A possible solution μ is a solution for BGP from SG under D-entailment if:

 (C1) The RDF triples sk(P(BGP)) are ground and D-entailed by sk(SG).

 (C2) For each variable x in V(BGP), if μ(x) is a literal with "lc"^^dc the canonical literal for μ(x), then "lc"^^dc is in Lit(SG) and μ(x) occurs in SG or in dV-Minus otherwise.

 The multiplicity of μ in the multiset of solutions is the maximal number of distinct RDF instance mappings σ that yield a pattern
 instance mapping P = (μ, σ) for which μ is a solution.

[bookmark: canonicalRep]5.2 XML Schema Datatypes and Canonical Lexical Representations
Most XML Schema Datatypes [XML Schema Datatypes] can be used with the D-Entailment regime. The canonical mapping, which is defined
 for all XML Schema Datatypes, is used as a means to achive finite answers. Infinite answers can otherwise occur if a datatype has infinitely many
 different lexical forms for a data value. For example, in the decimal datatype from the XML
 Schema Datatypes all of the following lexical forms represent the same value:
	100.5
	+100.5
	0100.5
	100.50
	100.500
	100.5000

For the above data values, the canonical lexical form
 is: 100.5. For the values
	100
	+100
	0100
	100.0
	100.00
	100.000

the canonical lexical form is: 100 according to XSD 1.1. XSD
 1.1 defines that, for data values that are integers, the canonical representation has no decimal point and no fractional part.
 This is different in XSD 1.0. XSD 1.0 always requires a decimal point for the canonical representation
 of a decimal value. Thus, although 1.0 and 1 denote the same value, the canonical form would be
 1.0 for a decimal. For integer, however, XSD 1.0 requires
 that the canonical form has no fraction digits and no decimal point. Thus, the canonical representation must be 1,
 which is strange since 1 and 1.0 denote the same value and integers are decimals. For this reason,
 XSD 1.1 seems better suited for use with SPARQL entailment regimes.
Non-primitive datatypes in the XSD are always based on some primitive datatype, e.g., integer, byte, and short are all based on decimal
 and are obtained by restricting the value space to values without decimal point for integer and by further specifying minimal
 and maximal values for byte and short. Thus, if "2"^^xsd:integer, "+02"^^xsd:short, and
 "+2"^^xsd:byte occur in SG and we assume that the canonical datatype is the primitive type according to XSD 1.1, then all three
 literals contribute "2"^^xsd:decimal to Lit(SG).
Condition (C2) uses the set Lit(SG) to make sure that only the canonical literals can occur in solutions, which guarantees finiteness of the answers.
 For example, if the queried graph contains
ex:s ex:p "0100.50"^^xsd:decimal .
ex:s ex:p "100.00"^^xsd:decimal .
ex:s ex:p "+100"^^xsd:short .
and the BGP is
ex:s ex:p ?x
then Lit(SG) contains "100.5"^^xsd:decimal (from the first triple) and "100"^^xsd:decimal (from
 the second and third triple since the primitive type underlying short is decimal and 100.00 is the same value as 100). The BGP
 evaluation yields two answers with ?x binding once to "100.5"^^xsd:decimal and once to
 "100"^^xsd:decimal. Without such a restriction, one could get infinitely many answers since solutions that bind
 ?x "0100"^^xsd:decimal, "00100"^^xsd:decimal, etc. or to "100"^^xsd:integer
 or"00100"^^xsd:short equally result in entailed triples.
Implementations will typically achieve the desired behavior by transforming the lexical
 forms of data values into a canonicalized form when loading an RDF graph.

[bookmark: OWLRDFBSEntRegime]6 OWL 2 RDF-Based Semantics Entailment Regime
In contrast to the RDF and RDFS semantics, an RDF graph does no longer admit a unique canonical model that can be used to compute answers under the
 RDF-Based and Direct Semantics of OWL, i.e., one can no longer imagine queries to act on a unique "completed" version of the active graph.
 This affects the reasoning algorithms, but has only little effect on the definition of the OWL entailment regimes.
The OWL 2 RDF-Based Semantics entailment regime assumes that queries are answered with respect to an
 OWL 2 RDF-Based datatype map D.
	Name	OWL 2 RDF-Based Semantics
	IRI	http://www.w3.org/ns/entailment/OWL-RDF-Based
	Legal Graphs	Any legal RDF graph.
	Legal Queries	Any legal SPARQL query.
	Illegal Handling	In case the query is illegal (syntax errors), the system MUST raise a
 MalformedQuery fault. In case the queried graph is illegal
 (syntax errors), the system MUST raise a QueryRequestRefused fault.
	Entailment	OWL 2 RDF-Based Entailment [OWL 2 RDF-Based Semantics]
	Inconsistency	The scoping graph is graph-equivalent to the active graph even if the active graph is
 OWL 2 RDF-Based inconsistent. If the active graph is
 OWL 2 RDF-Based inconsistent with respect to D, an implementation
 MAY raise a QueryRequestRefused fault or
 issue a warning and it SHOULD generate such a fault or warning if, in the course of processing, it determines that the data or
 query is not compatible with the request. In the presence of an inconsistency the conditions on solutions still guarantee that answers are finite.

	Query Answers	Systems MUST provide a means to determine which datatype map they assume and whether they impose any limits on datatype
 lexical forms; such information could, for example, be listed in supporting documentation. A canonical literal MUST be
 defined for all literals that use a datatype from the
 datatype map.

 Let D be a finite OWL 2 RDF-Based datatype map, G the queried
 RDF graph, BGP be a basic graph pattern, V(BGP) the set of variables in BGP, B(BGP) the set of blank nodes in BGP, SG the
 scoping graph for G and BGP, sk(SG) a
 Skolemization of SG with respect to a vocabulary disjoint from the vocabulary of SG
 and BGP. Applying sk to a term t, written sk(t), yields sk(t) if sk is defined for t and t otherwise; applying sk to a BGP, written sk(BGP),
 replaces each blank node b in BGP for which sk is defined with sk(b). The set Lit(SG) is the set of all literals "lc"^^dc such that
 "l"^^dt occurs in SG and "lc"^^dc is the canonical literal for "l"^^dt. The set owl2V contains the URI references of the OWL 2 RDF-based vocabulary, which is taken to
 include the RDF and RDFS vocabularies and the OWL 2 datatype names and
 facet names; owl2V-Minus is
 the set of URI references in owl2V minus URI references of the form rdf:_n with n in {1, 2, ... }.

 A solution mapping μ is a possible solution for BGP from G under OWL 2 RDF-Based entailment if dom(μ) = V(BGP) and there is an
 RDF instance mapping σ from B(BGP) to RDF-T such that dom(σ)=B(BGP) and the pattern instance mapping P=(μ, σ) is such that
 P(BGP) are well-formed RDF triples that are OWL 2 RDF-Based entailed by SG with respect to owl2V and D.

 A possible solution μ is a solution for BGP from SG under OWL 2 RDF-Based entailment with respect owl2V and D if:

 (C1) The RDF triples sk(P(BGP)) are ground and OWL 2 RDF-Based entailed by sk(SG) with respect to D.

 (C2) For each variable x in V(BGP), if μ(x) is a literal, then μ(x) is in Lit(SG) and μ(x) occurs in SG or in owl2V-Minus otherwise.

 The multiplicity of μ in the multiset of solutions is the maximal number of distinct RDF instance mappings σ that yield a pattern
 instance mapping P = (μ, σ) for which μ is a solution.

The OWL 2 RDF-Based entailment regime is a straightforward extension of the RDF, RDFS, and D-entailment regimes and the same conditions (adapted to work
 with the a finite subset of the OWL 2 RDF-Based vocabulary) are used to guarantee the finiteness of the result set.

[bookmark: OWLRDFBSEntailments]6.1 Entailments under the OWL 2 RDF-Based Semantics (Informative)
Before the restrictions on solutions are explained, a general note about the RDF-Based Semantics is given. The OWL 2 RDF-Based Semantics treats classes as individuals that refer to elements of the domain. Each such element is then associated with a subset
 of the domain, called the class extension. This means that semantic conditions on class extensions are only applicable to those classes that are
 actually represented by an element of the domain which can lead to less consequences than expected. An example is given by the following graph G
ex:a rdf:type ex:C
and basic graph pattern BGP
?x a [rdf:type owl:Class ; owl:unionOf (ex:C ex:D)]
The graph G states that ex:a has type ex:C, while the BGP asks for instances of the complex class denoting the union of
 ex:C and ex:D. One might expect that a solution mapping μ that maps x to ex:a is a solution, but this
 is not the case under the OWL 2 RDF-Based Semantics (see also [OWL 2 RDF-Based Semantics], Sec. 7.1). It is guaranteed that the union of the class
 extensions for ex:C and ex:D exists as a subset of the domain; no statement in G implies, however, that this union is the
 class extension of any domain element. Thus, μ(BGP) is not entailed by G. The entailment holds, however, when the statement
ex:E owl:unionOf (ex:C ex:D)
is added to G. In the OWL 2 Direct Semantics, in contrast, classes denote sets and not domain elements, so G entails μ(BGP) under the Direct
 Semantics where, formally, G must first be extended with an ontology header to become well-formed.

[bookmark: OWLRDFBSRestrictions]6.2 Restriction on Solutions
[bookmark: C2-RDF-Based]In this section the restrictions on solutions are explained. As the previously defined regimes, a Skolemization of the queried graph and the BGP
 is used to limit answers that just differ in blank node labels (C1). An explanation for this restriction is given in the General Notes section. Under OWL 2 RDF-Based Semantics the axiomatic triples are not included and owl2V-Minus
 could equally be replaced by owl2V. The lexical representation for data values are restricted as explained for the case of D-entailment. Infiniteness can, however, not only arise due to different lexical representations of one and the same data
 value as in the case of the D-entailment regime. Consider, for example, an ontology containing the following axiom:
ex:x owl:sameAs "5"^^xsd:decimal .
A query, which asks for all things that are different to ex:x then has infinitely
 many possible answers since any literal different from 5 will satisfy the constraints. This can be formulated by the following query:
SELECT ?l WHERE { ex:x owl:differentFrom ?l .}
Note that triples which are seemingly unrelated to the query can still influence the query results. For example, if we add to the queried ontology the triple:
ex:Mary ex:hasAge "6"^^xsd:int .
Then the query no longer has an empty answer but returns one answer with binding "6"^^xsd:int for l.

[bookmark: OWLRDFBSComputing]6.3 Computing Query Answers under the RDF-Based Semantics (Informative)
The standard reasoning problems in OWL under the OWL 2 RDF-Based Semantics are semidecidable, which means that although the query answers are
 guaranteed to be finite, it cannot be guaranteed that the computation of the query results will finish in a finite amount of time. Guaranteed
 termination might be achieved by returning an incomplete solution sequence for certain queries.

[bookmark: OWL2-RDFBS-Profiles]6.4 OWL 2 Profiles and Entailment Checkers
The OWL 2 Profiles specification [OWL 2 Profiles] describes several syntactic restrictions for OWL ontologies. For ontologies that fall into these fragments, specialized implementation techniques can be used, which often result in a better performance.

[bookmark: OWL2DL]6.4.1 OWL 2 DL
OWL 2 DL describes the largest subset of RDF graphs for which the OWL 2 Direct Semantics is defined. Systems that support OWL 2 DL can also
 handle ontologies that satisfy the restrictions of the OWL 2 EL, QL, and RL profiles because these profiles are even more restrictive.

[bookmark: OWL2EL]6.4.2 The OWL 2 EL Profile
OWL 2 EL is particularly useful in applications employing ontologies that contain very large numbers of properties and/or classes. The profile
 captures the expressive power used by many ontologies and is a subset of OWL 2 DL for which the basic reasoning problems can be performed in
 time that is polynomial with respect to the size of the ontology.

[bookmark: OWL2QL]6.4.3 The OWL 2 QL Profile
OWL 2 QL is aimed at applications that use very large volumes of instance data, and where query answering is the most important reasoning task.
 In OWL 2 QL, conjunctive query answering can be implemented using conventional relational database systems. Using a suitable reasoning technique,
 sound and complete conjunctive query answering can be performed in LOGSPACE with respect to the size of the data (assertions). As in OWL 2 EL,
 polynomial time algorithms can be used to implement the ontology consistency and class expression subsumption reasoning problems.

[bookmark: OWL2RLDS]6.4.4 The OWL 2 RL Profile
[bookmark: OWL2RL]OWL 2 RL defines a syntactic subset of OWL 2 DL, which is amenable to
 implementation using rule-based technologies.

The OWL 2 RDF-Based Semantics can, in general, be used with arbitrary RDF graphs (OWL 2 Full ontologies) and, therefore, with all above described profiles. Taking this into account, the OWL 2 Conformance [OWL 2 Conformance] document specifies five different kinds of entailment checkers, which can all be used with the RDF-Based Semantics:
	OWL 2 Full entailment checkers, which take OWL 2 Full ontology documents as input;
	OWL 2 DL entailment checkers, which takes OWL 2 DL ontology documents as input;
	OWL 2 EL entailment checkers, which takes OWL 2 EL ontology documents as input;
	OWL 2 QL entailment checkers, which takes OWL 2 QL ontology documents as input;
	OWL 2 RL entailment checkers, which takes OWL 2 Full ontology documents as input.

The OWL 2 RL entailment checker is slightly different in that OWL 2 RL entailment checkers work, as OWL 2 Full entailment checkers, on OWL 2 Full Ontologies, whereas the others make restrictions on the allowed input. The first four entailment checkers should not return Unknown when checking entailment on the respective allowed inputs. OWL 2 RL entailment checkers should not return Unknown under the RDF-Based Semantics if it is possible to derive True using the OWL 2 RL/RDF rules.
SPARQL 1.1 Service Descriptions can be used to describe what kind of entailment checker is used in the backgroud to answer SPARQL queries. In addition to specifying the used semantics by relating the IRI of the endpoint via the property sd:defaultEntailmentRegime or sd:entailmentRegime to the IRI of the entailment regime, one can relate the endpoint IRI via the property sd:defaultSupportedEntailmentProfile or sd:supportedEntailmentProfile to one of the following profile IRIs:
	http://www.w3.org/ns/owl-profile/Full for OWL 2 Full entailment checkers;
	http://www.w3.org/ns/owl-profile/DL for OWL 2 DL entailment checkers;
	http://www.w3.org/ns/owl-profile/EL for OWL 2 EL entailment checkers;
	http://www.w3.org/ns/owl-profile/QL for OWL 2 QL entailment checkers;
	http://www.w3.org/ns/owl-profile/RL for OWL 2 RL entailment checkers.

The property sd:supportedEntailmentProfile is used to indicate that a different profile applies to a certain named graph. Together with the semantics, this indictaes which type of OWL entailment checker is used to answer the queries.

[bookmark: OWL2RLRDFBSComputing]6.4.5 Computing Query Answers for the OWL 2 RL Profile with RDF-Based Semantics (Informative)
For the OWL 2 RL profile, the OWL 2 RL/RDF rules can be used to compute the answers to a query. In this case, the above definition of query
 answers can be simplified:
Let G be the queried RDF graph, BGP a basic graph pattern, SG the scoping graph for G and BGP, R the OWL 2 RL/RDF rules
 [OWL 2 Profiles], and FO(SG) the translation of SG into a first-order theory according to the OWL 2 Profiles specification
 [OWL 2 Profiles], i.e., each triple s p o in SG is represented by a predicate T(s, p, o) in FO(SG). Let
 P=(μ, σ) a pattern instance mapping. The solution mapping μ is a possible solution for BGP from G if dom(μ) = V(BGP),
 dom(σ)=B(BGP) and FO(SG) union R entails FO(P(BGP)) under the standard first-order semantics.
Condition (C1) does not need to be applied in this case because blank nodes are treated as constants under the first-order semantics anyway.
 OWL 2 RL implementations are not required to include the axiomatic triples of RDF and RDFS, but they may do so. Thus, in most cases, condition (C2)
 does not have to be applied. Imposing (C2) does not, however, do any harm and guarantees finiteness should the problematic axiomatic triples be
 inferred and also guards the behavior on inconsistent ontologies.
The fact that (C2) also takes the OWL 2 RDF-Based vocabulary into account means that query answers that use terms not present in the scoping graph
 may be returned, too. Consider, for example, an ontology containing only the triples:
_:o1 rdf:type owl:ontology .
ex:C rdf:type owl:Class .
ex:D rdf:type owl:Class .
ex:C rdfs:subClassOf ex:D .
ex:D rdfs:subClassOf ex:C .
The first three triples are required for a valid OWL 2 RL ontology and introduce an identifier for the ontology (_:o1) and
 typing information (ex:C and ex:D are classes). The ontology entails ex:C owl:equivalentClass ex:D and the
 OWL RL rule scm-eqc2 derives
 this consequence from the ontology. Since owl:equivalentClass is in owl2V-Minus, the query
SELECT ?rel WHERE { ex:C ?rel ex:D . }
has the answers:
[bookmark: table10]	rel
	rdfs:subClassOf
	owl:equivalentClass

[bookmark: OWLDSEnRegime]7 OWL 2 Direct Semantics Entailment Regime
Intuitively, in the OWL 2 Direct Semantics entailment regime the queried graph must correspond to an OWL 2 DL ontology. The basic graph pattern of
 the query must correspond to an extended OWL 2 DL ontology, allowing variables in place of class names, object property names, datatype property names,
 individual names, or literals. Solutions are mappings of variables into IRIs, blank nodes, or literals for which the instantiated basic graph pattern
 corresponds to a set of OWL 2 DL axioms or an OWL 2 DL ontology that is compatible with the queried ontology and also entailed by it under the OWL 2
 Direct Semantics.

[bookmark: OWLDSIntro]7.1 Introduction
For the OWL 2 Direct Semantics entailment regime, semantic conditions are defined with respect to ontology structures (i.e., instances of the
 Ontology class as defined in the OWL 2 structural specification [OWL 2 Structural Specification]). Given an RDF graph G, the ontology structure for G,
 denoted O(G), is obtained by mapping the
 queried RDF graph into an OWL 2 ontology [OWL 2 Mapping to RDF Graphs]. This mapping is only defined for OWL 2 DL ontologies, i.e., ontologies
 that satisfy certain syntactic conditions.
An OWL 2 DL ontology contains a set of axioms. In this section, OWL axioms are stated both in Turtle and in the functional-style syntax (FSS) that is
 used in the OWL 2 structural specification [OWL 2 Structural Specification]. A FSS axiom can correspond to several RDF triples, and the RDF triples might contain
 auxiliary blank nodes that are not part of the corresponding OWL objects and are not visible in the corresponding FSS axiom. For example, the triples
ex:Peter rdf:type _:x .
_:x rdf:type owl:Restriction ;
 owl:onProperty ex:hasFather ;
 owl:someValuesFrom ex:Person .

corresponds to FSS syntax axiom
ClassAssertion(ObjectSomeValuesFrom(ex:hasFather ex:Person) ex:Peter)
The FSS may still contain blank nodes, but these correspond to OWL individuals
 that have no explicit names and are called anonymous
 individuals. For example, the triple
ex:Peter ex:hasBrother _:y .
corresponds to the FSS axiom
ObjectPropertyAssertion(ex:hasBrother ex:Peter _:y)
While parsing an input document (containing RDF triples) into an OWL ontology, it can be necessary to rename
 blank nodes/anonymous individuals and there is no guarantee that the blank node identifier _:y from the above triple is used as an
 identifier for Peter's brother in the ontology structure. Thus, the above RDF triple could also be represented by the OWL axiom
ObjectPropertyAssertion(ex:hasBrother ex:Peter _:somethingelse)
Some RDF triples that are well-formed for OWL 2 DL are mapped to OWL 2 DL axioms that carry no semantics. Axioms (triples) that carry no semantics
 are
	Annotations,
	Entity Declarations,
	Ontology Properties (imports, ontology IRIs).

Such axioms are called non-logical axioms, whereas axioms that do carry semantics under OWL 2 Direct Semantics are called logical
 axioms.

[bookmark: OWLDSImports]7.1.1 OWL Import Directives
[bookmark: OWLImports]OWL provides an import directive, which allows one ontology to incorporate axioms from another ontology. Thus, if the queried RDF graph G contains
 a triple of the form
ont owl:imports imported .
where ont is the ontology IRI or a blank node that identifies the ontology, and imported is the IRI of the imported
 ontology, then the canonical parsing
 process defined for OWL 2 ontologies makes sure that the axioms from directly and indirectly imported ontologies are taken into account.
As said above, an import directive is a non-logical statement under the OWL 2 Direct Semantics, i.e., whether the statement is present in the
 ontology obtained by the parsing process or not has no effect on the logical consequences of the ontology. The statement does, however, influence the
 outcome of mapping an RDF graph into an OWL ontology. In the process of mapping a graph G into the ontology structure O(G) the directly and
 indirectly imported axioms are taken into account.

[bookmark: OWLDSExtGrammar]7.1.2 Extended Grammar for OWL 2 Direct Semantics BGPs
[bookmark: extendedStructuralSpec]SPARQL 1.1 Query [SPARQL 1.1 Query] is only defined for basic graph patterns using a triple-based syntax. For OWL 2 Direct Semantics, an
 alternative syntax for BGPs based on the functional-style syntax or other popular OWL syntaxes seems natural, but is not part of this
 specification.
Since the OWL 2 Direct Semantics is defined in terms of OWL objects, it is necessary to map from the triple-based BGP representation into an OWL
 object representation that additionally allows for variables. The appendix precisely specifies how the OWL 2 mapping
 from RDF graphs [OWL 2 Mapping to RDF Graphs] can be extended to basic graph patterns. The
 result of this mapping is an instance of an extended OWL 2 DL grammar, where the productions for Class, ObjectProperty,
 DataProperty, Individual, and Literal of the OWL 2
 functional-style syntax grammar [OWL 2 Structural Specification] are extended to alternatively produce variables, i.e., instances of the Var production from the SPARQL
 grammar.

 Class := IRI | Var

 ObjectProperty := IRI | Var

 DataProperty := IRI | Var

 Individual := NamedIndividual | AnonymousIndividual | Var

 Literal := typedLiteral | stringLiteralNoLanguage | stringLiteralWithLanguage | Var

[bookmark: VarTyping]7.1.3 Variable Typing
The Direct Semantics entailment regime requires extra triples in a basic graph pattern that give typing information for the variables. Let
 x be a variable from BGP. If BGP contains a triple ?x rdf:type TYPE, where TYPE is one of
 owl:Class, owl:ObjectProperty, owl:DatatypeProperty, or owl:NamedIndividual, ?x is
 declared to be of type TYPE. BGP satisfies the typing constraints of the entailment regime if no variable is declared as being
 of more than one type. Without type declarations for variables, parsing a BGP into ontology structures would be very difficult.
 Consider the following query
SELECT ?s ?p ?o WHERE { ?s ?p ?o }
Without any restrictions this query could be a query for
	object property assertions of the form ObjectPropertyAssertion(?p ?s ?o)
	data property assertions of the form DataPropertyAssertion(?p ?s ?o)
	inverse object properties, i.e., the BGP maps to ObjectInverseOf(?o) where s maps to a blank node and
 p to owl:inverseOf,
	subclasses, i.e., the BGP maps to SubClassOf(?s ?o) where p binds to rdfs:subClassOf,
	equivalent classes, i.e., the BGP maps to EquivalentClasses(?s ?o) where p binds to
 owl:equivalentClass,
	disjoint classes, i.e., the BGP maps to DisjointClasses(?s ?o) where p binds to owl:disjointWith,

	...

In order to answer the query without any typing constraints, all possible ways of mapping the BGP into ontology structures have to be considered.
 Even if variables can only occur in the position of function parameters of the functional-style syntax, the BGP from the above query can still be
 mapped to ObjectPropertyAssertion(?p ?s ?o), DataPropertyAssertion(?p ?s ?o), or
 AnnotationAssertion(?p ?s ?o) without variable typing information.
The inclusion of type declarations from the queried ontology means that at least the non-variable terms in the query can be disambiguated
 without additional typing information in the query. For example, the BGP of the query
SELECT ?x WHERE { ?x ex:p ?y }
is parsed into
ObjectPropertyAssertion(ex:p ?x ?y)
if ex:p is declared as an object property in the queried ontology and into
DataPropertyAssertion(ex:p ?x ?y)
if ex:p is declared as a data property.
Note that variable declarations are local to a basic graph pattern, i.e., a declaration in one BGP is not visible within another BGP and, within different BGPs, variables can also be declared to be of different types.

[bookmark: OWLDSEntRegime]7.2 The OWL 2 Direct Semantics Entailment Regime
	Name	OWL 2 Direct Semantics
	IRI	http://www.w3.org/ns/entailment/OWL-Direct
	Legal Graphs	Any RDF graph which can be mapped into an OWL 2 DL ontology document.
	Legal Queries	Let Q be a legal SPARQL query, BGP a basic graph pattern in Q, G the queried graph, and O(G) the ontology for G. A basic graph pattern is legal
 for O(G) if it satisfies the typing constraints of the entailment regime and can be mapped into an OWL ontology or a
 set of OWL axioms from the extended OWL structural specification using the declarations from O(G). The query Q
 is legal for the regime and O(G) if all basic graph patterns in Q are legal for O(G).

	Illegal Handling	In case the query is illegal due to syntax errors, the system MUST raise a
 MalformedQuery fault. In case the queried graph is illegal
 due to syntax errors, the system MUST raise a QueryRequestRefused fault. If the queried ontology is not an OWL
 2 DL ontology or the query is not legal for the ontology, the system MAY refuse the query and raise a
 QueryRequestRefused error.
	Entailment	OWL 2 Direct Semantics [OWL 2 Direct Semantics]
	Inconsistency	If the queried ontology is inconsistent under OWL 2 Direct Semantics, the system MUST raise an
 error.
	Query Answers	Systems MUST provide a means to determine which datatype map they assume and whether they impose any limits on datatype
 lexical forms; such information could, for example, be listed in supporting documentation. A canonical literal MUST be
 defined for all literals that use a datatype from the
 datatype map.

 Let G be a legal RDF graph for the entailment regime, BGP a legal basic graph pattern, V(BGP) the set of variables in BGP, SG the scoping graph for G and BGP, O(SG) the ontology for SG, sk a total mapping from
 anonymous individuals in O(SG) to IRIs from a vocabulary disjoint from the vocabulary of O(SG) and BGP, sk(O(SG)) the resulting
 Skolemization of O(SG). Applying sk to a term t, written sk(t), yields sk(t) if sk
 is defined for t and t otherwise; applying sk to a BGP, written sk(BGP), replaces each blank node b in BGP for which sk is defined with sk(b).
 The set Lit(SG) is the set of all literals "lc"^^dc such that
 "l"^^dt occurs in SG and "lc"^^dc is the canonical literal for "l"^^dt.

 Let OE(BGP) be the ontology obtained by mapping BGP into the extension of the OWL 2 structural
 specification. Let Ax be a function that takes an ontology O from the extended structural specification and returns all axioms in O. Let
 Ax(BGP) be the axioms in OE(BGP), and AI(BGP) the set of anonymous individuals in OE(BGP). The set owl2V contains the URI references of the OWL 2 RDF-Based vocabulary, which is taken to include the RDF and RDFS
 vocabularies and the OWL 2 datatype names and facet names; owl2V-Minus is the set of URI references in owl2V minus URI
 references of the form rdf:_n with n in {1, 2, ... }.

 A solution mapping μ is a possible solution for BGP from G under the OWL 2 Direct Semantics if dom(μ) = V(BGP) and there is
 an RDF instance mapping σ from AI(BGP) to RDF-T such that dom(σ)=AI(BGP) and the pattern instance mapping P=(μ, σ) is such
 that P(BGP) are well-formed RDF triples that are legal for the regime (i.e., P(BGP) is a variable-free and legal basic graph pattern for O(SG))
 and OWL 2 Direct Semantics entailed by O(SG).

 A possible solution μ is a solution for BGP from SG under OWL 2 Direct Semantics if:

 (C1) Each logical axiom ax in sk(OE(P(BGP))) is ground and entailed by sk(O(SG)) under the OWL 2 Direct Semantics.

 (C2) For each variable x in V(BGP), if μ(x) is a literal, then μ(x) is in Lit(SG) and μ(x) occurs in O(SG) or in
 owl2V-Minus otherwise.

 (C3) Adding all axioms in OE(P(BGP)) to O(SG) results in a valid OWL 2 DL ontology.

 The multiplicity of μ in the multiset of solutions is the maximal number of distinct RDF instance mappings σ that yield a pattern
 instance mapping P = (μ, σ) for which μ is a solution.

[bookmark: OWLDSRestrictions]7.3 Restrictions on Solutions (Informative)
In this section the restrictions on solutions are explained. As the previously defined regimes, a Skolemization of the queried graph and the BGP
 is used to limit answers that just differ in blank node labels (C1). An explanation for this restriction is given in the RDF
 entailment regime section.
Condition (C2) is also applied as in the previously defined regimes and guarantees finite answers. The use of owl2V-Minus is purely for consistency
 with the other regimes, but could be omitted completely since under the Direct Semantics there are no axiomatic triples and variables can only bind to
 built-in terms that are also built-in entities. Built-in entities such as owl:Thing are assumed to be present in any ontology (see Table 5 [OWL 2 Structural Specification]), i.e., O(SG) automatically includes declarations
 for these built-in entities. As under the OWL 2 RDF-Based Semantics, (C2) prevents infinite answers that could otherwise
 come from the very powerful datatype reasoning. An example that illustrates this is given in the OWL 2 RDF-Based
 Semantics entailment regime section. An explanation for the restriction to canonical forms of literals is given in the D-entailment regime.

[bookmark: OWLDSConstraints]7.3.1 BGP Constraints for OWL 2 DL
Condition (C3) requires that the axioms from the instantiated BGP satisfy the restrictions for OWL 2 DL ontologies, i.e., if they where added to
 the queried ontology, then the resulting ontology satisfies the restrictions of OWL 2 DL. These restrictions are in place to guarantee that the
 key reasoning tasks in OWL 2 with Direct Semantics are decidable. For example, for owl:topDataProperty, the following requirement has to be met in OWL 2 DL:
	The owl:topDataProperty property occurs in Ax only in the superDataPropertyExpression part of SubDataPropertyOf
 axioms.

(C3) guarantees that the restrictions that are applied to the queried ontology are equally applied to the query. Since an OWL reasoner for the
 Direct Semantics might have to work with the axioms in O(SG) and the axioms from O(BGP) simultaneously, this condition also prevents that, for
 example, a non-simple property from O(SG) is used in a FunctionalObjectProperty axioms or within a cardinality restriction in O(BGP). This would
 violate the restrictions on non-simple properties.

[bookmark: OWLDSLiteralVars]7.3.2 Queries with Variables in Literal Positions
Individuals can be related to a data value although this is not explicitly stated and the actual value might not occur in any axiom of the
 ontology. Although the example given for the RDF-Based Semantics cannot be used under the Direct Semantics, other examples can cause infinite answers without condition (C2). For example, consider an ontology with a data property
 ex:dp containing the axiom
ClassAssertion(DataExactCardinality(2 ex:dp DatatypeRestriction(xsd:int xsd:minExclusive "5"^^xsd:int xsd:maxExclusive "8"^^xsd:int)) ex:Peter)
The axiom states that Peter has exactly 2 ex:dp successors and these successors have to be integers greater than 5 and less than 8,
 which means that one successor must have the value 6 and the other one the value 7. This axiom can be expressed in Turtle as
ex:Peter a [
 a owl:Restriction ;
 owl:onProperty ex:dp ;
 owl:qualifiedCardinality "2"^^xsd:nonNegativeInteger ;
 owl:onDataRange [
 a rdfs:Datatype ;
 owl:onDatatype xsd:int ;
 owl:withRestrictions (
 [xsd:minExclusive "5"^^xsd:int]
 [xsd:maxExclusive "8"^^xsd:int]
)
]
]
Under OWL 2 Direct Semantics, an ontology containing the above axiom entails DataPropertyAssertion(ex:dp ex:Peter "6"^^xsd:int)
 and DataPropertyAssertion(ex:dp ex:Peter "7"^^xsd:int), which is ex:Peter ex:dp "6"^^xsd:int and
 ex:Peter ex:dp "7"^^xsd:int in Turtle, respectively. If the values 6 and 7 do not occur in other axioms, then restriction (C2)
 prevents such possible answers from actually being part of the
 solutions since the values occur neither in the ontology nor in the vocabulary owl2V-Minus. Consider, for example, the following query against
 the above ontology:
SELECT ?s ?d WHERE { ?s ex:dp ?d }

 where the BGP is mapped to the following FSS element:
DataPropertyAssertion(ex:dp ?s ?d)
This query has an empty answer. Assume now, that the ontology is extended with the assertion:
DataPropertyAssertion(ex:dp ex:Mary "6"^^xsd:int)
in Turtle:
ex:Mary ex:dp "6"^^xsd:int .
The same query has now two answers:
[bookmark: table11]	s	d
	ex:Peter	"6"^^xsd:int
	ex:Mary	"6"^^xsd:int

Adding an assertion that is not related to the assertion regarding ex:Peter, causes ex:Peter to also appears among
 the answers since "6"^^xsd:int occurs now in the queried ontology and (C2) is satisfied for both answers.
Since there are infinitely many data values, (C2) has the advantage that a SPARQL endpoint can compute the
 answers to a query with BGP ex:Peter ex:dp ?x by replacing all possible data values for x with values that occur in
 the ontology. Since there still might be many literals that have to be tested and no goal directed procedure is currently known, systems might
 choose to use incomplete reasoning regarding literals and only return explicitly asserted literal values (such as
 DataPropertyAssertion(ex:dp ex:Mary "6"^^xsd:int) above) or enrich the explicitly asserted values with subproperty reasoning and
 sameAs individual reasoning. Systems SHOULD state in their accompanying documentation when incomplete reasoning is used.

[bookmark: OWLDSHigherOrder]7.4 Higher-Order Queries (Informative)
OWL's Direct Semantics is rooted in standard First-Order Logic, but it might seem as if the OWL Direct Semantics entailment regime goes beyond First-Order queries.
 For example, one can use the BGP
 ?x rdfs:subClassOf ?y to query for pairs of sub and superclasses. This is, variables can bind to classes (representing sets of
 individuals) and not just to individuals or data values. Queries in which variables are used in positions of a First-Order Logic quantifier, will,
 however, be illegal since such queries cannot be mapped to OWL objects as required. For example, the following (illegal) query
 asks whether some or all brothers of Peter are persons:
SELECT ?x WHERE {
 ex:Peter rdf:type [
 rdf:type owl:Restriction ;
 owl:onProperty ex:hasBrother ;
 ?x ex:Person .
]
}

In functional-style syntax the BGP of the query corresponds to the axiom
ClassAssertion(?x(ex:hasBrother ex:Person) ex:Peter)
Here the variable occurs in the position of a quantifier and not just in the position of OWL entities such as class names or individual names.

Due to the restriction that variables can only bind to terms from a finite vocabulary, any query can be reduced to a finite set of Boolean queries
 that can be answered under OWL's First-Order semantics. For example, the subclass query above can be answered, by asking for all pairs of class names
 from the queried ontology, whether the instantiated (hence, variable-free) pattern is entailed by the queried ontology under the OWL Direct Semantics.
 Thus, the SPARQL queries in the entailment regime still have a First-Order semantics.

[bookmark: OWL2ProfilesDS]7.5 OWL 2 Entailment Checkers and Profiles
The OWL 2 Direct Semantics is not defined for arbitrary RDF graphs, but only for graphs that satisfy the OWL 2 DL constraints. The OWL 2 profiles
 further restrict the allowed inputs. As for the RDF-Based Semantics, SPARQL 1.1 Service Descriptions can be used to describe what kind of entailment checkers is used in the backgroud to answer SPARQL queries. In addition to specifying the used semantics by relating the IRI of the endpoint via the property sd:defaultEntailmentRegime or sd:entailmentRegime to the IRI of the entailment regime, one can relate the endpoint IRI via the property sd:defaultSupportedEntailmentProfile or sd:supportedEntailmentProfile to one of the following profile IRIs:
	http://www.w3.org/ns/owl-profile/DL for OWL 2 DL entailment checkers;
	http://www.w3.org/ns/owl-profile/EL for OWL 2 EL entailment checkers;
	http://www.w3.org/ns/owl-profile/QL for OWL 2 QL entailment checkers;
	http://www.w3.org/ns/owl-profile/RL for OWL 2 RL entailment checkers.

The profile IRI together with the semantics then indicates what kind of entailment checker is used in the backgroud and what syntactic restrictions this tool makes.

[bookmark: RIFCoreEnt]8 RIF Core Entailment
The RIF RDF Compatibility document [RIF RDF] specifies the interoperation between RIF and the data and ontology languages RDF,
 RDF Schema, and OWL. Interoperation is defined with respect to the semantics of RIF-RDF combinations. RIF-RDF combinations (or simply,
 combinations) consist of a RIF document and a set of RDF graphs. For the purpose of RIF Core entailment, we will only be concerned
 with combinations involving the single RDF graph comprised of the Skolemization of the merge of the scoping graph and any graphs imported from the RIF document.
 The scoping graph considered does not include the statement that refers to the RIF document (more on this in 8.4). The semantics of combinations are defined in terms of pairs of RIF and RDF interpretations. Each pairing is governed by a number of
 conditions that maintain a correspondence between RIF semantic structures (interpretations) and RDF interpretations. This maintained
 correspondence ensures the proper interpretation of names. It also maintains a correspondence between RDF triples of the form s p o, RIF frames of the
 form s[p->o], and their respective terms.
These conditions are enforced on a
 common RIF-RDF interpretation that is the basis for the standard model-theoretic notions of satisfiability and entailment with
 respect to common RIF-RDF interpretations, and when they are a model of a combination. A common RIF-RDF interpretation
 satisfies a combination if the semantic multi-structure
 (the first component of the common interpretation) is a RIF BLD
 model of the RIF document and the simple interpretation satisfies the RDF graph(s) in the combination. Such a common RIF-RDF
 interpretation can also be said to satisfy generalized
 RDF graphs that are (intuitively) those RDF graphs satisfied by the simple interpretation modified to correspond with the
 interpretation of the RIF document. The RIF-Simple-entails relationship builds on this and is the basis for the semantics of
 answers to queries using this entailment regime. Other similar RIF entailment relationships can be built for profiles such as those that
 have already been defined in this document as entailment regimes (RDF, RDFS, OWL Direct and RDF-Based Semantics, etc.). In addition and as described in [OWL2-RL-RIF],
 an OWL 2 RL ontology can be mapped to a customized RIF Core rule set.
The compatibility document defines 3 additional notions of RIF satisfiability with respect to a combination that builds on simple entailment: RIF-RDF, RIF-RDFS, and RIF-D satisfiability. We define answers with respect to RDF graphs that are RIF-Simple-entailed by the combination formed from the (Skolemized) scoping graph and a referenced RIF-Core [RIF Core] document. These additional notions of RIF satisfiability can similarly be used as the basis for more expressive RIF Core entailment regimes.

[bookmark: SimpeRIFCoreEntRegime]8.1 (Simple) RIF Core Entailment Regime
	Name	(Simple) RIF Core Entailment Regime
	IRI	http://www.w3.org/ns/entailment/RIF

	Legal Graphs	RDF graphs containing a triple with rif:usedWithProfile as predicate (see 8.4) and
 where the imported RIF document is safe and does not include a binary Import statement with a profile other than Simple.
 If the RIF document imports RDF graphs, they must also use the Simple profile and these graphs are considered along with a version of the scoping graph formed without this single triple.
	Legal Queries	Any legal SPARQL query.
	Illegal Handling	In case the query is illegal (syntax errors), the system MUST raise a
 MalformedQuery fault. In case the queried graph is illegal
 (syntax errors), the system MUST raise a QueryRequestRefused fault.
	Entailment	RIF-Simple entailment [RIF RDF]
	Inconsistency	As with the RDF entailment regime, any legal RDF graph (by itself) is satisfiable; no explicit inconsistency handling is required.
	Query Answers	Let G be the merge of the queried RDF graph (without the rif:usedWithProfile statement) along with any RDF graphs included in the referenced RIF Core document, BGP be a basic graph pattern, V(BGP) the set of variables in BGP, B(BGP) the set of blank nodes in BGP, SG the
 scoping graph for G and BGP, and sk(SG) a Skolemization of SG with respect to a vocabulary disjoint from the vocabulary of SG and BGP.
 Applying sk to a term t, written sk(t), yields sk(t) if sk is defined for t and t
 otherwise; applying sk to a BGP, written sk(BGP), replaces each blank node b in BGP for which sk is defined with sk(b).

 A solution mapping μ is a solution for BGP from G under RIF-Simple entailment if dom(μ) = V(BGP) and there is an RDF
 instance mapping σ from B(BGP) to RDF-T such that dom(σ)=B(BGP) and the pattern instance mapping P=(μ, σ) is such
 that sk(P(BGP)) are ground, well-formed RDF triples that are RIF-Simple entailed by the
 RIF-RDF combination formed with
 the safe RIF Core document referenced from SG via the object of the rif:usedWithProfile statement.

 The multiplicity of μ in the multiset of solutions is the maximal number of distinct RDF instance mappings σ that yield a pattern
 instance mapping P = (μ, σ) for which μ is a solution.

For example, consider the Class_Membership
 test case from the RIF test cases repository comprised of the following RDF graph and imported RIF Core document (in the
 presentation syntax):
(1) ex:Adrian ex:isChildOf ex:Uwe .
(2) ex:Adrian rdf:type ex:Male .
(3) ex:Uwe rdf:type ex:Male .
(4) <Class_Membership_rule.rifps> rif:usedWithProfile <http://www.w3.org/ns/entailment/Simple> .

Group (
 Forall ?X ?Y (
 ?Y [ex:isFatherOf -> ?X] :- And(?X [ex:isChildOf -> ?Y]
 ?Y [rdf:type -> ex:Male]
)
)
)
The SPARQL query below can be dispatched against the graph using the (Simple) RIF Core Entailment Regime:
SELECT ?father ?child WHERE { ?father ex:isFatherOf ?child . }
producing the single solution:
[bookmark: table11RIF]		father	child
	μ1	ex:Uwe	ex:Adrian

This follows from the fact that the result of applying a pattern instance mapping comprised of the solution μ1 above and an empty mapping
 for blank nodes against the BGP in the query, i.e., sk(P(?father ex:isFatherOf ?child)), is RIF-Simple entailed by the RIF-RDF combination formed
from the RIF Core document and a graph comprised of just statements (1)-(3).

[bookmark: RIFCustomRuleSets]8.2 Custom Rulesets for Common Vocabulary Interpretations (Informative)
RDF vocabulary such as RDFS and OWL 2 RL can be interpreted within this entailment regime through the use of custom
 rulesets. For example, RDFS entailment can be implemented by using the RRDFS ruleset specified in [RIF RDF].
 Similarly, the RIF Core rules in [OWL2-RL-RIF] can be used to capture an axiomatization of OWL 2 RL.

[bookmark: RIFFiniteAnswers]8.3 Finite Answer Set Conditions (Informative)
Traditionally, one of the ways to ensure that the underlying decision problems associated with a Horn clause
 knowledge representation are decidable is to prevent the use of function symbols. RIF-Core's
 syntax permits built-in functions in the body of
 a rule. A Horn Clause query is said to be safe it it has a finite set of answers. In order to ensure
 that a Horn Clause logic programming language is complete (i.e., it guarantees all answers to every query)
 it is necessary to test whether a given query is safe [SAFETY].
Certain safety conditions on logic programs
 permit the use of cyclic references between built-in function symbols defined by an external procedure.
 RIF-Core's notion of strong safety facilitates the ability to construct a
 finite grounding which addresses both components of condition C4 regarding
 SPARQL extensions and their solution sets: uniqueness and finiteness.

Consider the following strongly safe RIF Core document, scoping graph, and query, for which an answer set can be determined from the unique, minimal, and finite RIF-RDF model of the combination (despite the use of a built-in predicate). In this query, the user asks for all hospital episodes (or visits) and the various health care events they subsume (as indicated by the ex:hasHospitalization predicate). The ex:hasHospitalization predicate is defined (in the strongly safe RIF Core document) as a relation between a health care event with the larger hospital encounter event it is a part of based on the ordering of the dates associated with the events. The ordering constraint is enforced through the use of the pred:dateTime-greater-than and pred:dateTime-less-than external built-in predicates.
Forall ?x ?y ?z ?u
 (?EVT[ex:hasHospitalization -> ?HOSP]
 :- And(?HOSP # ex:HospitalEncounter
 ?HOSP [ex:startsNoEarlierThan -> ?ENCOUNTER_START
 ex:stopsNoLaterThan -> ?ENCOUNTER_STOP]
 ?EVT # ex:HealthCareEvent
 ?EVT [ex:startsNoEarlierThan -> ?EVT_START_MIN]
 pred:dateTime-greater-than(xsd:dateTime(?EVT_START_MIN) xsd:dateTime(?ENCOUNTER_START))
 pred:dateTime-less-than(xsd:dateTime(?EVT_START_MIN) xsd:dateTime(?ENCOUNTER_STOP)))
)

(1) <.. path to above document ..> rif:usedWithProfile <http://www.w3.org/ns/entailment/Simple>.
(2) ex:Operation1 rdf:type ex:HealthCareEvent;
(3) ex:startsNoEarlierThan "2000-12-01T05:00:00"^^xsd:dateTime ;
(4) ex:startsNoEarlierThan "2000-12-11T16:31:00"^^xsd:dateTime .
(5) ex:Episode1 rdf:type ex:HospitalEncounter;
(6) ex:startsNoEarlierThan "2000-11-31T12:00:00"^^xsd:dateTime ;
(7) ex:stopsNoEarlierThan "2000-12-26T05:36:00"^^xsd:dateTime .
(8) ex:XRay1 rdf:type ex:HealthCareEvent;
(9) ex:startsNoEarlierThan "1960-01-10T03:00:00"^^xsd:dateTime ;
(10) ex:stopsNoEarlierThan "1960-01-11T07:00:00"^^xsd:dateTime .
SELECT ?EVT ?HOSP WHERE { ?EVT ex:hasHospitalization ?HOSP }
This should result in the following bindings as a result of the rules and the triples (2)-(7) from a SPARQL service that implements the RIF Core entailment regime:
	EVT	HOSP
	ex:Operation1	ex:Episode1

[bookmark: RIFDocReferences]8.4 Referencing a RIF Document
RIF RDF and OWL Compatibility [RIF RDF] defines the entailments of combinations (R, G) where R (a RIF rule set) includes an import of G (an RDF graph).
For the inverse of such a reference, i.e., the import of a RIF document into an RDF graph the designated RDF predicate rif:usedWithProfile enables an import to be specified from the graph G instead of from R.
In the simple usage the graph G is a plain RDF graph and rif:usedWithProfile is used to combine that graph with one or more externally defined RIF rule sets. In this usage each subject of a rif:usedWithProfile assertion should be the URI for a RIF rule set (which may be encoded in RIF-XML or RIF-in-RDF) and the object should be an import profile as defined in RIF RDF and OWL Compatibility [RIF RDF].
The semantics of rif:usedWithProfile is explained in the following subsection.

[bookmark: RIFUsedWithProfile]8.4.1 Semantics of rif:usedWithProfile
A RIF-aware processor shall treat any RDF graph G as a RIF-RDF or RIF-OWL combination (see [RIF RDF]) as follows:
Let G' be the graph obtained from G by removing all triples with predicate rif:usedWithProfile. Then G is to be treated by a RIF-aware processor as the ruleset R:
 Document (
 Imports(R1')
 ...
 Imports(Rn')
 Imports(G' P1)
 ...
 Imports(G' Pn)
)

where Ri and Pi are the subjects/objects respectively of triples of form:
 Ri rif:usedWithProfile Pi .
and Ri' is the RIF document corresponding to an IRI Reference Ri.
Remark: Note that the fact that G' is treated as being imported with all profiles P1 ... Pn enforces G' to be treated according to the highest profiles among P1 ... Pn, see also Section 5.2 of [RIF RDF].

[bookmark: RIFDereferencing]8.4.2 Dereferencing RIF Documents (Informative)
Note that this specification does not define how an RDF store refers to or stores the RIF document Ri' corresponding to a IRI Reference Ri. Alternative methods include, but are not limited to:
	HTTP dereferencing
	Encoding RIF documents within named graphs within the dataset

We will sketch both methods in the following.

[bookmark: RIFHTTPDereferencing]8.4.2.1 HTTP Dereferencing
This method assumes that Ri is an HTTP dereferenceable IRI which returns a RIF/XML document Ri'.

[bookmark: RIFDocsAsNamedGraphs]8.4.2.2 Encoding RIF documents within named graphs in the dataset
In some scenarios, one may want to access RIF rulesets from the same RDF store where the queried RDF graphs are stored.
This method therefore needs an encoding of RIF documents into an RDF graph, such as for instance the one sketched in [RIF-in-RDF], which allows to store RIF documents as RDF graphs within the data store and retrieve the RIF ruleset encoded in an RDF graph by a respective mapping (such as the inverse mapping XTr described in Section 6 of [RIF-in-RDF]). Since RDF datasets already provide a mechanism for accessing an RDF graph by an identifying IRI, in this setting, RDF encoded RIF documents Ri' can simply be made available as named graphs with graph name Ri within the dataset.
For instance, assuming that the IRI reference <http://example.org/r1> denotes an RDF encoded RIF document consisting of the single RIF rule as follows
 Document(
 Prefix(foaf <http://xmlns.com/foaf/0.1/>)
 Prefix(rel <http://purl.org/vocab/relationship/>)

 Group
 (
 Forall ?S ?O (
 ?S [foaf:knows ?O] :- ?S [rel:worksWith ?O]
)
)
)

which can be encoded in RDF according to [RIF-in-RDF] as follows:
 @prefix : <http://www.w3.org/2007/rif#> .
 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix rel: <http://purl.org/vocab/relationship/> .

 <http://example.org/r1> a :Document;
 :directives () ;
 :payload [rdf:type :Group ;
 :sentences (
 [rdf:type :Forall;
 :formula [a :Implies ;
 :if [rdf:type :Frame ;
 :object [rdf:type :Var; :varname "S"] ;
 :slots ([rdf:type :Slot; :slotkey [
 rdf:type :Const ;
 :constIRI "http://purl.org/vocab/relationship/worksWith"];
 :slotvalue [rdf:type :Var; :varname "O"]])
];
 :then [rdf:type :Frame ;
 :object [rdf:type :Var; :varname "S"] ;
 :slots ([rdf:type :Slot; :slotkey [
 rdf:type :Const ;
 :constIRI "http://xmlns.com/foaf/0.1/knows"];
 :slotvalue [rdf:type :Var; :varname "O"]])
]] ;
 :vars ([rdf:type :Var; :varname "S"] [rdf:type :Var; :varname "O"])])
] .

Let the dataset consist of the single named graph <http://example.org/r1>
and the default graph consist of the two triples
 @prefix : <http://www.example.org/> .
 @prefix rel: <http://purl.org/vocab/relationship/> .
 @prefix rif: <http://www.w3.org/2007/rif#> .

 :bob rel:worksWith :alice .
 <http://example.org/r1> rif:usedWithProfile <http://www.w3.org/ns/entailment/Simple> .

then the SPARQL query
 SELECT *
 WHERE { ?S ?P ?O }

returns
[bookmark: tableRESULTRIF]	S	P	O
	:bob	foaf:knows	:alice
	:bob	rel:worksWith	:alice

Note that in such a setting, where the RDF-encoded RIF rulesets are stored as named graphs in the dataset, one can also pose queries against the RDF encoding of the RIF ruleset itself, e.g. asking for variable names used in the ruleset <r1>:
 PREFIX rif: <http://www.example.org/>
 SELECT DISTINCT ?N
 WHERE { GRAPH <r1> { [rif:varname ?N] } }

[bookmark: tableRESULTRIFmeta]	N
	"S"
	"O"

[bookmark: DataSets]9 Entailment Regimes and Data Sets (Informative)
Many RDF data stores hold multiple RDF graphs and applications can make queries that involve information from more than one graph. This section
 clarifies how entailment regimes behave in the presence of named graphs.
As defined in the SPARQL specification, a SPARQL query is executed against an RDF
 Dataset which represents a collection of graphs. An RDF Dataset comprises one graph, the default graph, which does not have a name, and zero or more
 named graphs, where each named graph is identified by an IRI. The graph that is used for matching a basic graph pattern is the active graph. Under an
 entailment regime E other than simple entailment, we do not only consider the triples that are in the graph, but also triples that are E-entailed by the
 graph. The entailed triples must, however, be E-entailed by the active graph and not by a merge of the triples in all graphs. This follows from
 conditions 1 and 3 of the conditions on extensions for basic graph matching.
For example, we consider a data set which consists of an empty default graph, a named graph graphA with IRI http://example.org/a.rdf,
 and a named graph graphB with IRI http://example.org/b.rdf. The named graphs contain the following data:
http://example.org/a.rdf:
ex:p rdfs:domain ex:A .
http://example.org/b.rdf:
ex:x ex:p ex:y .
If we ask the following query under RDFS entailment
SELECT ?g WHERE { GRAPH ?g { ?inst rdf:type ex:A } }
the answer sequence is empty because neither the default graph, nor the named graphs on their own entail a triple that would provide the required
 binding for ?inst.
In order to evaluate a query over the merge of the triples in the named graphs, one can use several FROM clauses, which result in the
 creation of a fresh default graph for the query that contains a merge of the triples, e.g.,
SELECT ?inst FROM <http://example.org/a.rdf> FROM <http://example.org/b.rdf> WHERE { ?inst rdf:type ex:A }
has the answer { (inst, ex:x) }. One cannot merge triples from several sources into a named graph (they will always be merged into a fresh
 default graph) and such an extension would require changes to the conditions for extensions of basic graph pattern matching in the existing SPARQL query
 language specification.

[bookmark: PropertyPaths]10 Entailment Regimes and Property Paths (Informative)
[bookmark: property-path]SPARQL 1.1 introduces property paths, which allow for using path expressions in
 place of the predicate of a triple pattern. Such path expressions describe a possible route through the active graph. For an example, assume the
 following data in the default graph:
ex:a rdf:type ex:C .
ex:C rdfs:subClassOf ex:D .
ex:a ex:p1 ex:b .
ex:b ex:p2 ex:c .
ex:p2 rdfs:subPropertyOf ex:p3 .
and the following query:
SELECT ?type ?c WHERE { ex:a rdf:type ?x . ?x rdfs:subClassOf* ?type . ex:a ex:p1/ex:p3 ?c }
The WHERE clause of the above query contains one triple pattern and two property path patterns. For the query processing, the property path patterns are
 first translated to algebra objects and then, where possible,
 simplified, i.e., they are rewritten with the purpose of eliminating path
 expressions in a semantics preserving way. For the above query, the algebra translation of the two property path expressions
 rdfs:subClassOf* and ex:p1/ex:p3 yields:
ZeroOrMorePath(link(rdfs:subClassOf))

 and
seq(link(ex:p1), link(ex:p3))

 the translation and simplification then yields:
Path(?x, ZeroOrMorePath(link(rdfs:subClassOf)), ?type)

 and the triple pattern
ex:a ex:p1 ?tmp1 . ?tmp1 ex:p3 ?c .
with ?tmp1 a fresh variable. The latter property path has been simplified into two triples patterns, whereas the first one remained a
 property path pattern. Since the extension point for redefining basic graph pattern matching is only for basic graph
 patterns, the entailment regimes do not specify any behavior for property path algebra objects such as Path(.) and the specific operators
 such as ZeroOrMorePath(.). Thus, systems that employ an entailment regime can either reject
 queries with property path expressions that cannot be eliminated or employ the evaluation as defined in the evaluation semantics of the SPARQL 1.1 Query specification. For the latter case,
 evaluating Path(?x, ZeroOrMorePath(link(rdfs:subClassOf)), ?type) yields
[bookmark: resultUnion]	x	type
	ex:a	ex:a
	ex:b	ex:b
	ex:c	ex:c
	ex:C	ex:C
	ex:D	ex:D
	ex:C	ex:D

The evaluation of Bgp(ex:a rdf:type ?x) now depends on the entailment regime that is used. We assume, for this example, that
 RDFS entailment is used. Thus, the evaluation yields
[bookmark: resultBgpOne]	x
	ex:C
	ex:D

We can now compute the join to obtain
[bookmark: firstJoin]	x	type
	ex:C	ex:C
	ex:D	ex:D
	ex:C	ex:D

Evaluating Bgp(ex:a ex:p1 ?tmp1 . ?tmp1 ex:p3 ?c) would yield an empty solution set under simple entailment (i.e., standard subgraph
 matching). Under RDFS entailment we get, however,
[bookmark: bgp2]	tmp1	c
	ex:b	ex:c

We can now compute the final result for the query pattern under RDFS entailment by joining the last two solution sets:
[bookmark: secondJoin]	x	type	tmp1	c
	ex:C	ex:C	ex:b	ex:c
	ex:D	ex:D	ex:b	ex:c
	ex:C	ex:D	ex:b	ex:c

The overall query result can then be obtained by projecting x and tmp1 away.
[bookmark: project]	type	c
	ex:C	ex:c
	ex:D	ex:c
	ex:D	ex:c

In the presence of a particular entailment regime, path expressions are sometimes redundant as their semantics is already captured by the entailment
 relation. This is
 often the case when applying path expressions to terms of the special vocabulary for the entailment regime that is used. In the above example,
 rdfs:subClassOf is already treated as a reflexive and transitive relation under RDFS entailment. Thus, the first BGP
 Bgp(ex:a rdf:type ?x) already yields both the explicitly stated type ex:C as well as the RDFS entailed type ex:D.
 For this reason, the solution that binds type to D occurs twice, whereas under simple entailment, it would only occur once
 disregarding the fact that the second property path from the query has no solutions under simple entailment. In order to avoid the additional solution
 the query pattern
ex:a rdf:type ?x . ex:a ex:p1/ex:p3 ?c
can be used. This also avoids the computation of several intermediate results.

[bookmark: PropertyPathsLimitations]10.1 Limitations of Property Paths in Combination with Entailment Regimes
Since property paths are evaluated without entailment, the evaluation
 under an entailment regime can yield counter-intuitive results. Assuming the use of the RDFS entailment regime and the query
SELECT * WHERE { ?s (ex:p3+) ?o }
over the above given example data, the result is empty. Although the data contains ex:b ex:p2 ex:c and
 ex:p2 rdfs:subPropertyOf ex:p3, which under RDFS entailment implies ex:b ex:p3 ex:c, this fact is not used since the arbitrary
 length path expression ex:p+ is evaluated with simple entailment, i.e., via subgraph matching on the input data.
Since property path evaluation works directly on the active graph, the OWL Direct Semantics entailment regime is unlikely to support queries where
 the query pattern contains path expressions since systems that apply the Direct Semantics of OWL do not work with the graph directly, but translate the
 triples into OWL structural objects. Combining the other entailment regimes with property path expressions is, however, relatively straightforward.
Future versions of SPARQL may define further extensions to the handling of property paths together with entailment regimes that handle property paths
 in a specific way, which is why the present section is kept informative.

[bookmark: Updates]11 Entailment Regimes and Updates (Informative)
SPARQL 1.1 also describes an update language (see SPARQL 1.1/Update and
 SPARQL 1.1/HTTP RDF Update), which can be used to add, modify, or delete data in an RDF
 graph. Support for SPARQL 1.1/Update and SPARQL 1.1/HTTP RDF Update is optional. SPARQL endpoints that use an entailment regime other than simple
 entailment may support update queries, but the exact behavior of the system for such queries is not covered by this specification. SPARQL endpoints
 that use an entailment regime other than simple entailment and that do support update queries should describe the system behavior in the system's documentation.

[bookmark: sec-bibliography]A References

[bookmark: sec-existing-stds]A.1 Normative References
	[bookmark: OWL2Conformance]OWL 2 Conformance
	
 OWL 2 Web Ontology Language Conformance, eds. Michael Smith, Ian Horrocks, Markus Krötzsch, Birte Glimm. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-owl2-conformance-20091027/.)
	[bookmark: OWL2DS]OWL 2 Direct Semantics
	
 OWL 2 Web Ontology Language Direct Semantics, eds. Boris Motik, Peter F. Patel-Schneider, Bernardo Cuenca Grau. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/.)
	[bookmark: RDF2OWLMAPPING]OWL 2 Mapping to RDF Graphs
	
 OWL 2 Web Ontology Language Mapping to RDF Graphs, eds. Peter F. Patel-Schneider, Boris Motik. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/.)
	[bookmark: OWL2Profiles]OWL 2 Profiles
	
 OWL 2 Web Ontology Language Profiles, eds. Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, Carsten Lutz. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/.)
	[bookmark: OWL2RDFBS]OWL 2 RDF-Based Semantics
	
 OWL 2 Web Ontology Language RDF-Based Semantics, ed. Michael Schneider. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/.)
	[bookmark: OWL2]OWL 2 Structural Specification
	
 OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax, eds. Boris Motik, Peter F. Patel-Schneider, Bijan Parsia. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/.)
	[bookmark: RDF-Concepts]RDF Concepts
	
 Resource Description Framework (RDF): Concepts and Abstract Syntax, eds. Graham Klyne and Jeremy J. Carroll. W3C Recommendation 10 February 2004.
 (See http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.)
	[bookmark: RDF-PlainLiteral]RDF Plain Literal
	
 rdf:PlainLiteral: A Datatype for RDF Plain Literals, eds. Jie Bao, Sandro Hawke, Boris Motik, Peter F. Patel-Schneider, Axel Polleres. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-rdf-plain-literal-20091027/.)
	[bookmark: RDFMT]RDF Semantics
	
 RDF Semantics, ed. Patrick Hayes. W3C Recommendation 10 February 2004.
 (See http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.)
	[bookmark: RIF-Core]RIF Core
	
 RIF Core Dialect (Second Edition), eds. Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke, Axel Polleres, and Dave Reynolds. W3C Recommendation 5 February 2013
 (See http://www.w3.org/TR/rif-core/.)
	[bookmark: RIF-RDF]RIF RDF
	
 RIF RDF and OWL Compatibility (Second Edition), ed. Jos de Bruijn. W3C Recommendation 5 February 2013
 (See http://www.w3.org/TR/rif-rdf-owl/.)
	[bookmark: SPARQL11]SPARQL 1.1 Query
	SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.
	[bookmark: XSD]XML Schema Datatypes
	
 W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, eds. David Peterson, Shudi (Sandy) Gao 高殊镝, Ashok Malhotra, C. M. Sperberg-McQueen, Henry S. Thompson. W3C Recommendation 5 April 2012.
 (See http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/.)

[bookmark: null]A.2 Other References
	[bookmark: ANSWERSET-SW]ANSWERSET-SW
	
 Answer-Set Programming for the Semantic Web. PhD thesis, Roman Schindlauer. Vienna University of Technology, Austria, December 2006.
 (See http://www.kr.tuwien.ac.at/staff/former_staff/roman/papers/thesis.pdf.)
	[bookmark: OWL2-RL-RIF]OWL2-RL-RIF
	
 OWL 2 RL in RIF, eds. Dave Reynolds. W3C Working Group Note 22 June 2010
 (See http://www.w3.org/TR/2010/NOTE-rif-owl-rl-20100622/.)
	[bookmark: RDFSENTAILMENT]RDFSENTAILMENT
	
 Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary, ed. Herman J. ter Horst. Journal of Web Semantics, 3(2-3):79-115, 2005.

	[bookmark: RIF-in-RDF]RIF-in-RDF
	
 RIF In RDF, eds. Sandro Hawke, Axel Polleres. W3C Working Group Note 12 May 2011.
 (See http://www.w3.org/TR/2011/NOTE-rif-in-rdf-20110512/.)
	[bookmark: SAFETY]SAFETY
	
 Safety of recursive Horn clauses with infinite relations, R. Ramakrishnan, F. Bancilhon, and A. Silberschatz. ACM New York, NY 1987.
 (See http://portal.acm.org/citation.cfm?doid=28659.28694.)
	[bookmark: STABLEMODEL]STABLEMODEL
	
 Stable models and an alternative logic programming paradigm, eds. Victor W. Marek, Miroslaw Truszczynski. Arxiv preprint / Citeseer, 1998.
 (See http://arxiv.org/abs/cs.LO/9809032.)
	[bookmark: TURTLE]TURTLE
	Turtle:
Terse RDF Triple Language, E Prud'hommeaux, G Carothers, Editors, W3C Candidate Recommendation, 19 February 2013, http://www.w3.org/TR/2013/CR-turtle-20130219/. Latest version available at http://www.w3.org/TR/turtle/. (See http://www.w3.org/TR/turtle/.)

[bookmark: AppendixMapping]B Appendix: Mapping from BGPs to the extended OWL 2 Structural Specification
[bookmark: OWL2parsingBGPs]This appendix specifies how a legal basic graph pattern BGP of a SPARQL query can be parsed into the extension of the OWL 2 Structural
 specification [OWL 2 Structural Specification]. Let x be a variable from BGP. If BGP contains a triple ?x rdf:type TYPE or $x rdf:type TYPE, where
 TYPE is one of owl:Class, owl:ObjectProperty, owl:DatatypeProperty, or
 owl:NamedIndividual, x is declared to be of type TYPE. BGP satisfies the typing constraints of
 the entailment regime if no variable is declared as being of more than one type.
For the purpose of this parsing process, we assume that BGP is seen as an RDF graph G which may also contain variables in any
 position. A tool MAY implement these steps in any way it chooses; however, the results MUST be structurally equivalent to the ones defined in the following sections, where
 structural equivalence is taken to be extended in the natural way to also allow for variables, i.e., the definition of structural equivalence is
 as follows:
Objects o1 and o2 from the extended structural specification are structurally
 equivalent if the following conditions hold:
	 If o1 and o2 are atomic values, such as strings or integers, they are structurally equivalent if they are equal according to the notion of equality of the respective UML type.
	 If o1 and o2 are variables, they are structurally equivalent if they are equal according to the notion of string equality.
	 If o1 and o2 are unordered associations without repetitions, they are structurally equivalent if each element of o1 is structurally equivalent to some element of o2 and vice versa.
	 If o1 and o2 are ordered associations with repetitions, they are structurally equivalent if they contain the same number of elements and each element of o1 is structurally equivalent to the element of o2 with the same index.
	 If o1 and o2 are instances of UML classes from the structural specification, they are structurally equivalent if
 	 both o1 and o2 are instances of the same UML class, and
	 each association of o1 is structurally equivalent to the corresponding association of o2 and vice versa.

The following table defines the steps that are involved in the mapping process from basic graph patterns to extended OWL objects.
	 CP 1	 If BGP contains no triple of the form x rdf:type owl:Ontology for x an IRI or a blank node, then extend BGP with
 _:x rdf:type owl:Ontology for _:x a fresh blank node not occurring in BGP and SG.
	 CP 2	 Compute Decl(BGP) as specified in Section 3.1
 of the OWL 2 Mapping to RDF graphs specification with the difference that import statements do not result in the addition of triples. Initialize
 AllDecl(BGP) as the union of Decl(BGP) and declarations from O(SG), i.e., AllDecl(DSG) where DSG is the ontology document from
 which O(SG) is obtained.

	 CP 3	 Create an instance OE(BGP) that corresponds to an instance of the Ontology class from the extended grammar for the OWL 2 Direct Semantics. That is, the UML
 classes are taken to be extended such that entities can also be variables.
	 CP 4	 Analyze BGP and populate OE(BGP) by instantiating appropriate classes from the extended structural specification. Use the
 declarations in AllDecl(BGP) to disambiguate IRIs and variables if needed. It MUST be possible to
 disambiguate all IRIs and variables. Variables that are not declared as being of some type occur either only in individual positions or only in
 literal positions; otherwise BGP is not legal for the regime.

A canonical definition for Step CP 4 is given in the following section.

[bookmark: OWLParsing]B.1 Parsing BGPs into Objects of the Extended OWL 2 Structural Specification
Parsing BGPs into OWL objects as required in CP 4 follows closely the parsing process described in Section 3.2 of [OWL 2 Mapping to RDF Graphs]. This document only
 states where the parsing differs from the mapping as defined by OWL 2. The main
 difference is that IRIs, anonymous individuals, and literals can also be variables. Thus, the notation used in the mapping specification is
 taken to be extended as follows:
	 *:x denotes an IRI or a variable;
	 _:x denotes a blank node;
	 x denotes a blank node, an IRI or a variable;
	 lt denotes a literal or a variable; and
	 xlt denotes a blank node, an IRI, a literal, or a variable.

Note that as for the OWL 2 mapping, variations of the above scheme are also taken to be defined as above, e.g., *:y or
 *:xi instead of *:x also denote an IRIs or a variables. Further, _:x remains unchanged and
 does not represent a variable.
The functions CE(x), DR(x), OPE(x), and DPE(x) extend the respective functions in the
 section Mapping to
 RDF graphs [OWL 2 Mapping to RDF Graphs] to map into instances of the extended grammar for OWL 2 Direct Semantics BGPs, i.e.,
 the functions also take variables as input and they map to objects that correspond to the extended structural specification for BGPs. The
 functions are initialized as in Table 9 of [OWL 2 Mapping to RDF Graphs] for non-variable declarations (*:x is not a variable)
 and extended for the case where *:x is a variable as follows:
	 If AllDecl(G) contains this declaration...
 	 ...then perform this assignment.

	 Declaration(Class(*:x))
 	 CE(*:x) := a class variable with name *:x

	 Declaration(Datatype(*:x))
 	 DR(*:x) := a datatype variable with name *:x

	 Declaration(ObjectProperty(*:x))
 	 OPE(*:x) := an object property variable with name *:x

	 Declaration(DataProperty(*:x))
 	 DPE(*:x) := a data property variable with name *:x

	 Declaration(AnnotationProperty(*:x))
 	 AP(*:x) := an annotation property with name *:x

Parsing then continues as described in [OWL 2 Mapping to RDF Graphs] with the modification that objects can contain variables. Variables are
 not allowed in the mapping for facet restrictions in the last column of Table 12 for *:wi and the n
 that denotes a non-negative integer in cardinality restrictions is not redefined, i.e., it cannot be replaced by a variable.

[bookmark: AppendixProofs]C Appendix: Proofs
The SPARQL Query specification [SPARQL 1.1 Query] lists four conditions that entailment regimes that extend the standard simple entailment must
 satisfy. The different conditions are considered below for all entailment regimes in this document.
1 -- The scoping graph, SG, corresponding to any consistent active graph AG is
 uniquely specified up to RDF graph equivalence and is E-equivalent to AG.
All entailment regimes use the same definition of scoping graph as simple entailment, i.e., the scoping graph is graph-equivalent to the active graph
 AG of the data set DS for the query but shares no blank nodes with DS or with the basic graph pattern of the query. The same scoping graph is used for
 all solutions to a single query. Thus, E-equivalence to AG up to RDF graph equivalence is immediate. In case AG is inconsistent, it is not required that
 a scoping graph is defined and although most of the regimes define SG also in the presence of an inconsistency, it is not required that the above
 condition is satisfied.
2 -- For any basic graph pattern BGP and pattern instance mapping P, P(BGP) is well-formed for E.
BGPs that can only be instantiated into malformed triples, e.g., because they require a literal in the subject position, do not have a valid pattern
 instance mapping and the condition is satisfied. Only the OWL 2 Direct Semantics regimes restricts the well-formedness of the queried graph and the
 basic graph patterns further. Since graphs and queries that are malformed for OWL 2 Direct Semantics are rejected with errors and, thus, do not have
 pattern instance mappings, the condition is satisfied.
3 -- For any scoping graph SG and answer set {P1 ... Pn}
 for a basic graph pattern BGP, and where {BGP1 BGPn} is a set of basic graph patterns all equivalent to BGP, none of
 which share any blank nodes with any other or with SG
	 SG E-entails (SG union P1(BGP1) union ... union Pn(BGPn))

Before giving a proof, the following example illustrates how this condition could be violated. Assume SG contains the triples:
ex:s ex:p _:b1 .
_:b2 ex:p ex:o

 and the BGP of the query is
?x ex:p ?y
The graph (even simply) entails the triple ex:s ex:p _:1 and also the triple _:1 ex:p ex:o. If we were to take
 P1: ?x/ex:s, ?y/_:1 and P2: ?x/_:1, ?y/ex:o, then, since BGP does not contain
 blank nodes, we can take any two copies BGP1, BGP2 of BGP and we would have to show (only considering the two example solutions):
SG E-entails (SG union P1(BGP1) union P2(BGP2)) =

 { ex:s ex:p _:b1 . _:b2 ex:p ex:o } E-entails { ex:s ex:p _:b1 . _:b2 ex:p ex:o . ex:s ex:p _:1 . _:1 ex:p ex:o }

This is clearly not the case because SG does not entail ex:s ex:p _:1 . _:1 ex:p ex:o. The use of the same blank node identifier across
 several solutions is only valid if also the corresponding blank nodes in SG are identical.
All the entailment regimes satisfy this restriction since blank nodes are treated as Skolem constants, i.e., although both of the triples in the
 above example are possible solutions, these are not part of the actual solutions.
4 -- Each SPARQL extension MUST provide conditions on answer sets which guarantee that the set of triples obtained by
 instantiating BGP with each solution μ is uniquely specified up to RDF graph equivalence, and SHOULD provide further
 conditions to prevent trivial infinite answers as appropriate to the regime.
All entailment regimes, but the RIF entailment regime, require that bindings are only taken from a vocabulary defined for the regime. Since the defined vocabularies are finite, it is immediate
 that any BGP over any AG results in finite answers. The answer set is unique up to RDF graph equivalence since the entailed answers can only vary in
 their blank node identifiers, which still preserves graph equivalence. For the RIF entailment regime finiteness and uniqueness follows from the safety conditions.

[bookmark: changelog]D Change Summary
Changes since Proposed Recommendation
	Updated RIF references, given publication of RIF Second Edition

Changes since Last Call
Since last call, the following changes have been made:
	Since XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes [XML Schema Datatypes] now has recommendation status, the reference to XML
 Schema Part 2: Datatypes Second Edition, eds. Paul V. Biron, Ashok Malhotra (W3C Recommendation 28 October 2004) becomes obsolete as previously
 announced.
	In the informative section "Entailment Regimes and Property Paths", the link to the property path translation in SPARQL Query 1.1 has been fixed and the example has been updated to reflect the new algebra operators that SPARQL 1.1 Query introduced for property path expressions.

Since Candidate Recommendation, the only change has been to remove the "At Risk" notes, which labeled sections of the text which might potentially have been removed during Candidate Recommendation (but were not).

[image: W3C]

[bookmark: title]SPARQL 1.1 Protocol

[bookmark: w3c-doctype]W3C Recommendation 21 March 2013
	This version:
	
			http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
		
	Latest version:
	
			http://www.w3.org/TR/sparql11-protocol/
		
	Previous version:
	http://www.w3.org/TR/2013/PR-sparql11-protocol-20130129/
	Editors:
	Lee Feigenbaum, Cambridge Semantics <lee@thefigtrees.net>
	Gregory Todd Williams, Rensselaer Polytechnic Institute <greg@evilfunhouse.com>
	Kendall Grant Clark, 1st Edition, Clark & Parsia LLC <kendall@clarkparsia.com>
	Elias Torres, 1st Edition, IBM Corporation <eliast@us.ibm.com>

Please refer to the errata for this document, which may
 include some normative corrections.
See also translations.
Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract

The SPARQL Protocol and RDF Query Language (SPARQL) is a
query language and protocol for RDF. This document specifies the SPARQL Protocol; it
describes a means for conveying SPARQL queries and updates to a SPARQL
processing service and returning the results via HTTP to the entity that requested them. This protocol was developed by
the W3C SPARQL Working Group, part of
the Semantic Web Activity as described in
the activity statement .

[bookmark: status]Status of this Document
May Be Superseded
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
Set of Documents
This document is one of eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:
	SPARQL 1.1 Overview
	SPARQL 1.1 Query Language
	SPARQL 1.1 Update
	SPARQL1.1 Service Description
	SPARQL 1.1 Federated Query
	SPARQL 1.1 Query Results JSON Format
	SPARQL 1.1 Query Results CSV and TSV Formats
	SPARQL Query Results XML Format (Second Edition)
	SPARQL 1.1 Entailment Regimes
	SPARQL 1.1 Protocol (this document)
	SPARQL 1.1 Graph Store HTTP Protocol

No Substantive Changes
There have been no substantive changes to this document since the previous version. Minor editorial changes, if any, are detailed in the change log and visible in the color-coded diff.
Please Send Comments
Please send any comments to public-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document by the SPARQL Working Group is complete, comments may be addressed in the errata or in future revisions. Open discussion is welcome at public-sparql-dev@w3.org (public archive).
Endorsed By W3C
This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.
Patents
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents
1 Introduction

 1.1 Document Conventions

 1.2 Terminology

2 SPARQL Protocol Operations

 2.1 query operation

 2.1.1 query via GET

 2.1.2 query via POST with URL-encoded parameters

 2.1.3 query via POST directly

 2.1.4 Specifying an RDF Dataset

 2.1.5 Accepted Response Formats

 2.1.6 Success Responses

 2.1.7 Failure Responses

 2.2 update operation

 2.2.1 update via POST with URL-encoded parameters

 2.2.2 update via POST directly

 2.2.3 Specifying an RDF Dataset

 2.2.4 Success Responses

 2.2.5 Failure Responses

 2.3 Determining the Base IRI

3 Example SPARQL Protocol Requests (informative)

 3.1 Examples of SPARQL Query

 3.1.1 SELECT with service-supplied RDF Dataset

 3.1.2 SELECT with simple RDF Dataset

 3.1.3 CONSTRUCT with simple RDF
 dataset and HTTP content negotiation

 3.1.4 ASK with simple RDF Dataset

 3.1.5 DESCRIBE with simple RDF Dataset

 3.1.6 SELECT with complex RDF Dataset

 3.1.7 SELECT with query-only RDF Dataset

 3.1.8 SELECT with ambiguous RDF Dataset

 3.1.9 SELECT with malformed query fault

 3.1.10 SELECT with query request refused fault

 3.1.11 Long SELECT query using POST with URL encoding

 3.1.12 Long SELECT query using direct POST

 3.1.13 SELECT with internationalization

 3.2 Examples of SPARQL Update

 3.2.1 UPDATE using URL-encoded parameters

 3.2.2 UPDATE using POST directly

 3.2.3 UPDATE specifying dataset and using POST directly

 3.2.4 Multi-operation UPDATE using URL-encoded parameters

 3.2.5 Multi-operation UPDATE specifying dataset and using URL-encoded parameters

 3.2.6 Multi-operation UPDATE specifying dataset and using POST directly

4 Policy Considerations

 4.1 Security

5 Conformance

6 Changes Since Previous Recommendation (Informative)

[bookmark: appendices]Appendix
A References

 A.1 Normative References

 A.2 Other References

[bookmark: intro]1 Introduction

 This document describes the SPARQL 1.1 Protocol, a means of
 conveying SPARQL queries and updates from clients to SPARQL processors.
 The SPARQL Protocol has been designed for compatibility with the SPARQL 1.1 Query
 Language [SPARQL] and with the SPARQL 1.1
 Update Language for RDF. This document is
 primarily intended for software developers interested in implementing
 SPARQL query and update services and clients.

 The SPARQL Protocol consists of two HTTP
 operations: a query operation for performing SPARQL Query
 Language queries and an update operation for performing
 SPARQL Update Language requests. SPARQL Protocol clients send HTTP
 requests to SPARQL Protocol services that handle the request and send
 HTTP responses back to the originating client.
				

				A separate document describes the SPARQL 1.1 Graph Store HTTP Protocol
 which describes the use of HTTP operations for the purpose of managing a collection of graphs in the REST architectural style.
				

[bookmark: conventions]1.1 Document Conventions

					When this document uses the words must,
					must not, should, should not,
					may and recommended, and the words appear as
					emphasized text, they must be interpreted as described in
					RFC 2119 [RFC2119].
				

[bookmark: terminology]1.2 Terminology

 	SPARQL Protocol client

 	An HTTP client (as defined by RFC 2616 [RFC2616]) that sends HTTP requests for SPARQL
 Protocol operations. (Also known as: client)

 	SPARQL Protocol service

 	An HTTP server that services HTTP requests and sends back HTTP
 responses for SPARQL Protocol operations. The URI at which a SPARQL Protocol
 service listens for requests is generally known as a SPARQL endpoint.
 (Also known as: service)

 	SPARQL endpoint

 	The URI at which a SPARQL Protocol service listens for requests
 from SPARQL Protocol clients.

 	SPARQL Protocol operation

 	An HTTP request and response that conform to the protocol defined
 in this document.

 	RDF Dataset

 	A collection of a default graph and zero or more named graphs, as
 defined by the SPARQL 1.1 Query Language.

[bookmark: protocol]2 SPARQL Protocol Operations

 The SPARQL Protocol consists of two operations: query and update.
 A protocol operation defines combinations of:

	The HTTP method by which the request is sent.
	The HTTP query string parameters included in the HTTP request URI.
	The message content included in the HTTP request body.
	The message content included in the HTTP response body.

 The SPARQL 1.1 Protocol is built on top of HTTP. All HTTP requirements
				for requests and responses must be followed.

[bookmark: query-operation]2.1 query operation

 The query operation is used to send a SPARQL query
 to a service and receive the results of the query. The query
 operation MUST be invoked with either the HTTP
 GET or HTTP POST method. Client requests for this operation must include
 exactly one SPARQL query string (parameter name:
 query) and may include
 zero or more default graph URIs (parameter name:
 default-graph-uri) and named graph URIs (parameter
 name: named-graph-uri). The
 response to a query request is either the SPARQL XML Results
 Format, the SPARQL JSON Results Format, the SPARQL CSV/TSV Results Format, or an RDF
 serialization, depending on the query form [SPARQL] and content
 negotiation [RFC2616].

[bookmark: query-summary]	 	HTTP Method	Query String Parameters	Request Content Type	Request Message Body
	query via GET	GET	query (exactly 1)

 default-graph-uri (0 or more)

 named-graph-uri (0 or more)	None	None
	query via URL-encoded POST	POST	None	application/x-www-form-urlencoded	URL-encoded, ampersand-separated query parameters.

 query (exactly 1)

 default-graph-uri (0 or more)

 named-graph-uri (0 or more)
	query via POST directly	POST	default-graph-uri (0 or more)

 named-graph-uri (0 or more)	application/sparql-query	Unencoded SPARQL query string

 The query request's parameters must be sent
 according to one of these three options:

[bookmark: query-via-get]2.1.1 query via GET
Protocol clients may send protocol requests via
 the HTTP GET method. When using the GET method, clients must URL percent encode all parameters and include them as query parameter strings with the names given above [RFC3986].

 HTTP query string parameters must be separated with
 the ampersand (&) character. Clients may include
 the query string parameters in any order.

The HTTP request MUST NOT include a message body.

[bookmark: query-via-post-urlencoded]2.1.2 query via POST with URL-encoded parameters

 Protocol clients may send protocol requests via
 the HTTP POST method by URL encoding the parameters. When using
 this method, clients must URL percent encode [RFC3986] all
 parameters and include them as parameters within the request body
 via the application/x-www-form-urlencoded media type
 with the name given above.
 Parameters must be separated with
 the ampersand (&) character. Clients may include
 the parameters in any order. The content type header of the HTTP
 request must be set to
 application/x-www-form-urlencoded.

[bookmark: query-via-post-direct]2.1.3 query via POST directly

 Protocol clients may send protocol requests via
 the HTTP POST method by including the query directly and unencoded
 as the HTTP request message body. When using this approach, clients
 must include the SPARQL query string, unencoded,
 and nothing else as the message body of the request. Clients
 must set the content type header of the HTTP
 request to application/sparql-query. Clients
 may include the optional
 default-graph-uri and named-graph-uri
 parameters as HTTP query string parameters in the request URI. Note that UTF-8 is the only valid charset here.

[bookmark: dataset]2.1.4 Specifying an RDF Dataset
A SPARQL query is executed against an RDF
 Dataset. The RDF Dataset for a query may be specified either via the
 default-graph-uri and named-graph-uri
 parameters in the SPARQL Protocol or in the SPARQL query string using
					the FROM and FROM NAMED
					keywords.
 If different RDF Datasets are specified in both the protocol request and the
 SPARQL query string, then the SPARQL service must
 execute the query using the RDF Dataset given in the protocol request.
Note that a service may reject a query with HTTP response code
					400 if the service does not allow protocol clients to specify the RDF Dataset.
If an RDF Dataset is not specified in either the protocol request
 or the SPARQL query string, then implementations may
 execute the query against an implementation-defined default RDF
 dataset.

[bookmark: conneg]2.1.5 Accepted Response Formats
Protocol clients should use HTTP content
 negotiation [RFC2616] to request response formats that the client can
 consume. See below for more on potential response formats.

[bookmark: query-success]2.1.6 Success Responses

 The SPARQL Protocol uses the response status codes defined in HTTP to
 indicate the success or failure of an operation. Consult the HTTP
 specification [RFC2616] for detailed definitions of each status code.
 While a protocol service should use a 2XX HTTP
 response code for a successful query, it may
 choose instead to use a 3XX response code as per HTTP.

The response body of a successful query operation with a 2XX response is either:
	a SPARQL Results Document in XML, JSON, or CSV/TSV format (for SPARQL
							Query forms SELECT
							and ASK); or,
	an RDF graph [RDF-CONCEPTS] serialized, for example, in the RDF/XML syntax [RDF-XML], or an equivalent RDF graph serialization, for SPARQL Query forms DESCRIBE and CONSTRUCT).

The content type of the response to a successful query operation must be the media type defined for the format of the response body.

[bookmark: query-failure]2.1.7 Failure Responses
The HTTP response codes applicable to an unsuccessful query operation include:
	400 if the SPARQL query supplied in the request is not a legal sequence of characters in the language defined by the SPARQL grammar; or,
	500 if the service fails to execute the query. SPARQL
 Protocol services may also return a 500 response code if they
 refuse to execute a query. This
 response does not indicate whether the server may or may not
 process a subsequent, identical request or requests.

The response body of a failed query request is
 implementation defined. Implementations may use
 HTTP content negotiation to provide human-readable or
 machine-processable (or both) information about the failed query
 request.
A protocol service may use other 4XX or 5XX HTTP response codes for other failure conditions, as per HTTP.

[bookmark: update-operation]2.2 update operation

 The update operation is used to send a SPARQL update
 request to a service. The
 update operation must be invoked using the HTTP POST
 method.
 Client requests for this operation must include
 exactly one SPARQL update request string (parameter name:
 update) and may include
 zero or more default graph URIs (parameter name:
 using-graph-uri) and named graph URIs (parameter
 name: using-named-graph-uri). The
 response to an update request indicates success or failure of the
 request via HTTP response status code.

[bookmark: update-summary]	 	HTTP Method	Query String Parameters	Request Content Type	Request Message Body
	update via URL-encoded POST	POST	None	application/x-www-form-urlencoded	URL-encoded, ampersand-separated query parameters.

 update (exactly 1)

 using-graph-uri (0 or more)

 using-named-graph-uri (0 or more)
	update via POST directly	POST	using-graph-uri (0 or more)

 using-named-graph-uri (0 or more)	application/sparql-update	Unencoded SPARQL update request string

 The update request's parameters must be sent
 according to one of these two options:

[bookmark: update-via-post-urlencoded]2.2.1 update via POST with URL-encoded parameters

 Protocol clients may send update protocol requests via
 the HTTP POST method by URL encoding the parameters. When using
 this approach, clients must URL percent encode [RFC3986] all
 parameters and include them as parameters within the request body
 via the application/x-www-form-urlencoded media type
 with the name given above.
 Parameters must be separated with
 the ampersand (&) character. Clients may include
 the parameters in any order. The content type header of the HTTP
 request must be set to
 application/x-www-form-urlencoded.

[bookmark: update-via-post-direct]2.2.2 update via POST directly

 Protocol clients may send update protocol requests via
 the HTTP POST method by including the update request directly and unencoded
 as the HTTP request message body. When using this approach, clients
 must include the SPARQL update request string, unencoded,
 and nothing else as the message body of the request. Clients
 must set the content type header of the HTTP
 request to application/sparql-update. Clients
 may include the optional
 using-graph-uri and using-named-graph-uri
 parameters as HTTP query string parameters in the request URI.

[bookmark: update-dataset]2.2.3 Specifying an RDF Dataset
SPARQL Update requests are executed against a Graph Store, a mutable container of RDF graphs managed by a SPARQL service. The WHERE clause of a SPARQL update DELETE/INSERT operation [UPDATE]
 matches against data in an RDF
 Dataset, which is a subset of the Graph Store. The RDF Dataset for an update operation may be specified
 either in the operation string itself
 using the USING, USING NAMED, and/or WITH
					keywords, or it may be specified via the
 using-graph-uri and using-named-graph-uri
 parameters.
It is an error to supply the using-graph-uri or using-named-graph-uri parameters
 when using this protocol to convey a SPARQL 1.1 Update request that contains an operation that uses the
 USING, USING NAMED, or WITH clause.
A SPARQL Update processor should treat each occurrence of the using-graph-uri=g parameter in an
 update protocol operation as if a USING <g> clause were included for every operation in the SPARQL 1.1
 Update request. Similarly, a SPARQL Update processor should treat each occurrence of the using-named-graph-uri=g
 parameter in an update protocol operation as if a USING NAMED <g> clause were included for every operation in
 the SPARQL 1.1 Update request.

[bookmark: update-success]2.2.4 Success Responses

 The SPARQL Protocol uses the response status codes defined in HTTP to
 indicate the success or failure of an operation. Consult the HTTP
 specification [RFC2616] for detailed definitions of each status code.
 While a protocol service should use a 2XX HTTP
 response code for an update request that is successfully processed,
 it may
 choose instead to use a 3XX response code as per HTTP.

The response body of a successful update request is
 implementation defined. Implementations may use
 HTTP content negotiation to provide both human-readable and
 machine-processable information about the completed update
 request.

[bookmark: update-failure]2.2.5 Failure Responses
The HTTP response code for an unsuccessful update request should be:
	400 if the SPARQL update request string is not a legal sequence of
 characters in the language defined by the SPARQL Update grammar; or,
	500 if the service fails to execute the update request. SPARQL
 Protocol services may also return a 500 response code if they
 refuse to execute an update request. This
 response does not indicate whether the server may or may not
 process a subsequent, identical request or requests.

The response body of a failed update request is
 implementation defined. Implementations may use
 HTTP content negotiation to provide human-readable or
 machine-processable (or both) information about the failed update
 request.
A protocol service may use other 4XX or 5XX HTTP response codes for other failure conditions, as per HTTP.

[bookmark: base-iri]2.3 Determining the Base IRI
The BASE keyword in a SPARQL query or a SPARQL
 update request string defines the Base IRI used to resolve relative
 IRIs per Uniform
 Resource Identifier (URI): Generic Syntax [RFC3986] section 5.1.1, "Base URI Embedded in
 Content".
 The SPARQL Protocol
 does not dereference query URIs so section 5.1.3 does not apply.
 Finally, per section 5.1.4, SPARQL Protocol services must define their
 own base URI, which may be the service endpoint.

[bookmark: examples]3 Example SPARQL Protocol Requests (informative)
The following HTTP trace examples illustrate invocation of the
 query and update operations under several different scenarios. Some example traces are abstracted from complete HTTP traces in these ways:
	In some examples the string "EncodedQuery" represents the URL-encoded string equivalent of the SPARQL query string given in the example; the string "UnencodedQuery" represents the exact SPARQL query string given in the example without any encoding.
	For query operation examples, only partial response bodies, containing the query results, are displayed.

[bookmark: query-bindings-http-examples]3.1 Examples of SPARQL Query

[bookmark: select-svcsupplied]3.1.1 SELECT with service-supplied RDF Dataset
This SPARQL query
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?book ?who
WHERE { ?book dc:creator ?who }
is conveyed via HTTP GET to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:
GET /sparql/?query=PREFIX%20dc%3A%20%3Chttp%3A%2F%2Fpurl.org%2Fdc%2Felements%2F1.1%2F%3E%20%0ASELECT%20%3Fbook%20%3Fwho%20%0AWHERE%20%7B%20%3Fbook%20dc%3Acreator%20%3Fwho%20%7D%0A HTTP/1.1
Host: www.example
User-agent: my-sparql-client/0.1
That query against the service-supplied RDF Dataset, executed by
that SPARQL query service, returns the following query result:
HTTP/1.1 200 OK
Date: Fri, 06 May 2005 20:55:12 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

 <head>
 <variable name="book"/>
 <variable name="who"/>
 </head>
 <results>
 <result>
 <binding name="book"><uri>http://www.example/book/book5</uri></binding>
 <binding name="who"><bnode>r29392923r2922</bnode></binding>
 </result>
...
</sparql>

[bookmark: select-simple]3.1.2 SELECT with simple RDF Dataset
This SPARQL query
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?book ?who
WHERE { ?book dc:creator ?who }
is conveyed to the SPARQL query
service, http://www.other.example/sparql/, as illustrated in
this HTTP trace:
GET /sparql/?query=PREFIX%20dc%3A%20%3Chttp%3A%2F%2Fpurl.org%2Fdc%2Felements%2F1.1%2F%3E%20%0ASELECT%20%3Fbook%20%3Fwho%20%0AWHERE%20%7B%20%3Fbook%20dc%3Acreator%20%3Fwho%20%7D%0A&default-graph-uri=http%3A%2F%2Fwww.other.example%2Fbooks HTTP/1.1
Host: www.other.example
User-agent: my-sparql-client/0.1

That query — against the RDF Dataset identified by the value
 of the default-graph-uri
 parameter, http://www.other.example/books — executed
 by that SPARQL query service, returns the following query
 result:
HTTP/1.1 200 OK
Date: Fri, 06 May 2005 20:55:12 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="book"/>
 <variable name="who"/>
 </head>
...
</sparql>

[bookmark: construct-simple]3.1.3 CONSTRUCT with simple RDF
 dataset and HTTP content negotiation
This SPARQL query
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX myfoaf: <http://www.example/jose/foaf.rdf#>

CONSTRUCT { myfoaf:jose foaf:depiction <http://www.example/jose/jose.jpg>.
 myfoaf:jose foaf:schoolHomepage <http://www.edu.example/>.
 ?s ?p ?o.}
WHERE { ?s ?p ?o. myfoaf:jose foaf:nick "Jo".
 FILTER (! (?s = myfoaf:kendall && ?p = foaf:knows && ?o = myfoaf:edd)
 && ! (?s = myfoaf:julia && ?p = foaf:mbox && ?o = <mailto:julia@mail.example>)
	 && ! (?s = myfoaf:julia && ?p = rdf:type && ?o = foaf:Person))
}
is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:
GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fwww.example%2Fjose-foaf.rdf HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1
Accept: text/turtle, application/rdf+xml
With the response illustrated here:
HTTP/1.1 200 OK
Date: Fri, 06 May 2005 20:55:11 GMT
Server: Apache/1.3.29 (Unix)
Connection: close
Content-Type: text/turtle

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix myfoaf: <http://www.example/jose/foaf.rdf#>.

myfoaf:jose foaf:name "Jose Jimeñez";
	 foaf:depiction <http://www.example/jose/jose.jpg>;
 foaf:nick "Jo";
...
Note: registration for the media type text/turtle was started but not completed at the time of this
publication. Please see http://www.w3.org/TR/turtle for the final
registered media type for the Turtle language.

[bookmark: ask-simple]3.1.4 ASK with simple RDF Dataset
This SPARQL query
PREFIX dc: <http://purl.org/dc/elements/1.1/>
ASK WHERE { ?book dc:creator "J.K. Rowling"}
is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:
GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fwww.example%2Fbooks HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1

With the response illustrated here:
HTTP/1.1 200 OK
Date: Fri, 06 May 2005 20:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head></head>
 <boolean>true</boolean>
</sparql>

[bookmark: describe-simple]3.1.5 DESCRIBE with simple RDF Dataset
This SPARQL query
PREFIX books: <http://www.example/book/>
DESCRIBE books:book6
is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated here:
GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fwww.example%2Fbooks HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1
With the response illustrated here:
HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/rdf+xml

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:books="http://www.example/book/"
 xmlns:dc="http://purl.org/dc/elements/1.1/" >
 <rdf:Description rdf:about="http://www.example/book/book6">
 <dc:title>Example Book #6 </dc:title>
 </rdf:Description>
</rdf:RDF>

[bookmark: select-complex]3.1.6 SELECT with complex RDF Dataset
This SPARQL query
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?who ?g ?mbox
WHERE { ?g dc:publisher ?who .
 GRAPH ?g { ?x foaf:mbox ?mbox }
}
is conveyed to the SPARQL query service, http://www.example/sparql/,
 as illustrated here (with line breaks for legibility):
GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fwww.example%2Fpublishers
&default-graph-uri=http%3A%2F%2Fwww.example%2Fmorepublishers&named-graph-uri=http%3A%2F%2Fyour.example%2Ffoaf-alice
&named-graph-uri=http%3A%2F%2Fwww.example%2Ffoaf-bob&named-graph-uri=http%3A%2F%2Fwww.example%2Ffoaf-susan
&named-graph-uri=http%3A%2F%2Fthis.example%2Fjohn%2Ffoaf
Host: www.example
User-agent: sparql-client/0.1
With the response illustrated here:
HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="who"/>
 <variable name="g"/>
 <variable name="mbox"/>
 </head>
...
</sparql>

[bookmark: select-queryonly]3.1.7 SELECT with query-only RDF Dataset
This SPARQL query
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?who ?g ?mbox
FROM <http://www.example/publishers>
FROM NAMED <http://www.example/alice>
FROM NAMED <http://www.example/bob>
WHERE { ?g dc:publisher ?who .
 GRAPH ?g { ?x foaf:mbox ?mbox }
}
is conveyed to the SPARQL query service, http://www.example/sparql/, as illustrated in this
HTTP trace:
GET /sparql/?query=EncodedQuery HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1
With the response illustrated here:
HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
...
</sparql>

[bookmark: select-ambiguous]3.1.8 SELECT with ambiguous RDF Dataset
This SPARQL query
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?who ?g ?mbox
FROM <http://www.example/publishers>
FROM NAMED <http://www.example/john>
FROM NAMED <http://www.example/susan>
WHERE { ?g dc:publisher ?who .
 GRAPH ?g { ?x foaf:mbox ?mbox }
}
is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:
GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fwww.example%2Fmorepublishers
&named-graph-uri=http%3A%2F%2Fwww.example%2Fbob&named-graph-uri=http%3A%2F%2Fwww.example%2Falice HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1
This protocol operation contains an ambiguous RDF Dataset: the dataset specified in the query is different than the one
specified in the protocol (by way of default-graph-uri and named-graph-uri parameters). A
conformant SPARQL Protocol service must resolve this ambiguity by executing the query against the RDF Dataset specified in
the protocol:
HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="who"/>
 <variable name="g"/>
 <variable name="mbox"/>
 </head>
 <results>
 <result>
 <binding name="who">
 	<literal>Bob Hacker</literal>
 </binding>
 <binding name="g">
	<uri>http://www.example/bob</uri>
 </binding>
 <binding name="mbox">
 <uri>mailto:bob@oldcorp.example</uri>
 </binding>
 </result>
 <result>
 <binding name="who">
	<literal>Alice Hacker</literal>
 </binding>
 <binding name="g">
	<uri>http://www.example/alice</uri>
 </binding>
 <binding name="mbox">
	<uri>mailto:alice@work.example</uri>
 </binding>
 </result>
 </results>
</sparql>

[bookmark: select-malformed]3.1.9 SELECT with malformed query fault
This syntactically invalid SPARQL query
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE { ?x foaf:name ?name
ORDER BY ?name }
is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:
GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fwww.example%2Fmorepublishers HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1
With the error response illustrated here:
HTTP/1.1 400 Bad Request
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: text/plain; charset=UTF-8

4:syntax error, unexpected ORDER, expecting '}'

[bookmark: select-refused]3.1.10 SELECT with query request refused fault
This SPARQL query
PREFIX bio: <http://bio.example/schema/#>
SELECT ?valence
FROM <http://another.example/protein-db.rdf>
WHERE { ?x bio:protein ?valence }
ORDER BY ?valence
is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:
GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fanother.example%2Fprotein-db.rdf HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1
With the error response illustrated here:
HTTP/1.1 500 Internal Server Error
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: text/plain

SPARQL Processing Service: Query Request Refused

Your request could not be processed because http://another.example/protein-db.rdf
could not be retrieved within the time alloted.

[bookmark: select-longpost]3.1.11 Long SELECT query using POST with URL encoding
Some SPARQL queries, perhaps machine generated, may be longer than
 can be reliably conveyed by way of the HTTP GET binding described in
 2.1.1 query via GET. In those cases
 the POST binding described in 2.1.2 query via POST with URL-encoded parameters may be used.
 This SPARQL query
PREFIX : <http://www.w3.org/2002/12/cal/icaltzd#>
PREFIX Chi: <http://www.w3.org/2002/12/cal/test/Chiefs.ics#>
PREFIX New: <http://www.w3.org/2002/12/cal/tzd/America/New_York#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?summary
WHERE {
 {
	Chi:D603E2AC-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-09-08T16:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:09:27Z"^^xsd:dateTime;
 :dtstart "2002-09-08T13:00:00"^^New:tz;
 :summary ?summary;
 :uid "D603E2AC-C1C9-11D6-9446-003065F198AC" .
 	}
	UNION
 {
	Chi:D603E90B-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-09-15T16:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:10:19Z"^^xsd:dateTime;
 :dtstart "2002-09-15T13:00:00"^^New:tz;
 :summary ?summary;
 :uid "D603E90B-C1C9-11D6-9446-003065F198AC" .
 	}
	UNION
 {
	Chi:D603ED6E-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-09-22T16:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:11:05Z"^^xsd:dateTime;
 :dtstart "2002-09-22T13:00:00"^^New:tz;
 :summary ?summary;
 :uid "D603ED6E-C1C9-11D6-9446-003065F198AC" .
 	}
	UNION
 {
	Chi:D603F18C-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-09-29T16:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:15:46Z"^^xsd:dateTime;
 :dtstart "2002-09-29T13:00:00"^^New:tz;
 :summary ?summary;
 :uid "D603F18C-C1C9-11D6-9446-003065F198AC" .
 	}
	UNION
 {
	Chi:D603F5B7-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-11-04"^^xsd:date;
 :dtstamp "2002-09-06T03:12:53Z"^^xsd:dateTime;
 :dtstart "2002-11-03"^^xsd:date;
 :summary ?summary;
 :uid "D603F5B7-C1C9-11D6-9446-003065F198AC" .
 	}
	UNION
 {
	Chi:D603F9D7-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-11-10T20:15:00"^^New:tz;
 :dtstamp "2002-09-06T03:14:12Z"^^xsd:dateTime;
 :dtstart "2002-11-10T17:15:00"^^New:tz;
 :summary ?summary;
 :uid "D603F9D7-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D604022C-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-11-17T17:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:14:51Z"^^xsd:dateTime;
 :dtstart "2002-11-17T14:00:00"^^New:tz;
 :summary ?summary;
 :uid "D604022C-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D604065C-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-10-06T19:05:00"^^New:tz;
 :dtstamp "2002-09-06T03:16:54Z"^^xsd:dateTime;
 :dtstart "2002-10-06T16:05:00"^^New:tz;
 :summary ?summary;
 :uid "D604065C-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6040A7E-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-10-13T19:15:00"^^New:tz;
 :dtstamp "2002-09-06T03:17:51Z"^^xsd:dateTime;
 :dtstart "2002-10-13T16:15:00"^^New:tz;
 :summary ?summary;
 :uid "D6040A7E-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6040E96-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-10-20T16:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:18:32Z"^^xsd:dateTime;
 :dtstart "2002-10-20T13:00:00"^^New:tz;
 :summary ?summary;
 :uid "D6040E96-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6041270-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-10-27T17:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:19:15Z"^^xsd:dateTime;
 :dtstart "2002-10-27T14:00:00"^^New:tz;
 :summary ?summary;
 :uid "D6041270-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6041673-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-11-24T20:05:00"^^New:tz;
 :dtstamp "2002-09-06T03:22:09Z"^^xsd:dateTime;
 :dtstart "2002-11-24T17:05:00"^^New:tz;
 :summary ?summary;
 :uid "D6041673-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6041A73-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-12-01T17:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:22:52Z"^^xsd:dateTime;
 :dtstart "2002-12-01T14:00:00"^^New:tz;
 :summary ?summary;
 :uid "D6041A73-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D60421EF-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-12-08T17:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:24:04Z"^^xsd:dateTime;
 :dtstart "2002-12-08T14:00:00"^^New:tz;
 :summary ?summary;
 :uid "D60421EF-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6042660-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-12-15T20:05:00"^^New:tz;
 :dtstamp "2002-09-06T03:25:03Z"^^xsd:dateTime;
 :dtstart "2002-12-15T17:05:00"^^New:tz;
 :summary ?summary;
 :uid "D6042660-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6042A93-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-12-22T17:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:25:47Z"^^xsd:dateTime;
 :dtstart "2002-12-22T14:00:00"^^New:tz;
 :summary ?summary;
 :uid "D6042A93-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6042EDF-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-12-28T21:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:26:51Z"^^xsd:dateTime;
 :dtstart "2002-12-28T18:00:00"^^New:tz;
 :summary ?summary;
 :uid "D6042EDF-C1C9-11D6-9446-003065F198AC" .
 }
}
is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:
POST /sparql/ HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 9461

query=EncodedQuery&default-graph-uri=http%3A%2F%2Fanother.example%2Fcalendar.rdf
With the response illustrated here:
HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="summary"/>
 </head>
 <results>
 <result>
 <binding name="summary">
 <literal>Chiefs vs. Cleveland @ Cleveland Stadium</literal>
 </binding>
 </result>
 <result>
 <binding name="summary">
 <literal>Chiefs vs. Jacksonville @ Arrowhead Stadium</literal>
 </binding>
 </result>
 <result>
 <binding name="summary">
 <literal>Chiefs vs. New England @ Gillette Stadium</literal>
 </binding>
 </result>
 ...
 <result>
 <binding name="summary">
 <literal>Chiefs vs. Oakland @ Network Associates Coliseum</literal>
 </binding>
 </result>
 </results>
</sparql>

[bookmark: select-longpost-direct]3.1.12 Long SELECT query using direct POST
SPARQL queries may also be POSTed directly without URL encoding,
 as described in 2.1.3 query via POST directly.
 The same query used in the previous example is conveyed
to the SPARQL query service, http://www.example/sparql/, as illustrated in this
HTTP trace:
POST /sparql/?default-graph-uri=http%3A%2F%2Fanother.example%2Fcalendar.rdf HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1
Content-Type: application/sparql-query

UnencodedQuery
With the same response as in the previous example.

[bookmark: select-kanji]3.1.13 SELECT with internationalization
SPARQL queries may include internationalized characters or character sets. This SPARQL query
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX 食: <http://www.w3.org/2001/sw/DataAccess/tests/data/i18n/kanji.ttl#>
SELECT ?name ?food
WHERE { [foaf:name ?name ; 食:食べる ?food] . }
is conveyed to the SPARQL query service, http://www.example/sparql/, as illustrated in this HTTP trace:
GET /sparql/?query=PREFIX%20foaf%3A%20%3Chttp%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2F%3E%0APREFIX%20%E9%A3%9F%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2Fsw%2FDataAccess%2Ftests%2Fdata%2Fi18n%2Fkanji.ttl%23%3E%0ASELECT%20%3Fname%20%3Ffood%20%0AWHERE%20%7B%20%5B%20foaf%3Aname%20%3Fname%20%3B%20%E9%A3%9F%3A%E9%A3%9F%E3%81%B9%E3%82%8B%20%3Ffood%20%5D%20.%20%7D
Host: www.example
User-agent: sparql-client/0.1
HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix)
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
...
</sparql>

[bookmark: update-bindings-http-examples]3.2 Examples of SPARQL Update

[bookmark: update-urlencoded-simple]3.2.1 UPDATE using URL-encoded parameters
An example request, which is a serialisation of a request sent to http://localhost:8888/test for the query INSERT DATA { <a> <p> } is shown below using the URL-encoded parameter form.
POST /test HTTP/1.1
Host: localhost:8888
Accept: text/plain
Content-Length: 62
Content-Type: application/x-www-form-urlencoded

update=INSERT%20DATA%20%7B%20%3Ca%3E%20%3Cp%3E%20%3Cb%3E%20%7D

[bookmark: update-direct-simple]3.2.2 UPDATE using POST directly
Update requests may be sent as a POST request with a
						Content-Type of application/sparql-update:
POST /test HTTP/1.1
Host: localhost:8888
Accept: */*
Content-Type: application/sparql-update
Content-Length: 27

INSERT DATA { <a> <p> }

[bookmark: update-direct-simple-dataset]3.2.3 UPDATE specifying dataset and using POST directly

							A dataset for an update request may be specified using the using-graph-uri and using-named-graph-uri parameters.
							The serialisation of an example request sent to http://localhost:8888/test
							and specifying a dataset with default graph http://localhost:8888/people is shown below.
						
POST /test?using-graph-uri=http%3A%2F%2Flocalhost%3A8888%2Fpeople HTTP/1.1
Host: localhost:8888
Accept: */*
Content-Type: application/sparql-update
Content-Length: 136

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DELETE { ?person ?property ?value }
WHERE { ?person ?property ?value ; foaf:givenName 'Fred' }

[bookmark: update-urlencoded-multi]3.2.4 Multi-operation UPDATE using URL-encoded parameters

							A sequence of multiple operations may be included in a single request, separated by a ';' (semicolon).
							The serialisation of an example request sent to http://localhost:8888/test for the query
						
DELETE DATA { <a> <p> <old> } ;
INSERT DATA { <a> <p> <new> }
is shown below using the URL-encoded parameter form.
POST /test HTTP/1.1
Host: localhost:8888
Accept: */*
Content-Type: application/x-www-form-urlencoded
Content-Length: 130

update=DELETE%20DATA%20%7B%20%3Ca%3E%20%3Cp%3E%20%3Cold%3E%20%7D%20%3B%0AINSERT%20DATA%20%7B%20%3Ca%3E%20%3Cp%3E%20%3Cnew%3E%20%7D

[bookmark: update-urlencoded-multi-dataset]3.2.5 Multi-operation UPDATE specifying dataset and using URL-encoded parameters

							When POSTing an update request with URL-encoded parameters, the dataset parameters
							using-graph-uri and using-named-graph-uri are specified
							in the POST body with the serialized request.
							The serialisation of an example request sent to http://localhost:8888/test
							for the query
						
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
INSERT { GRAPH <http://localhost:8888/people> { ?person ?property ?value } }
WHERE { GRAPH ?g { ?person ?property ?value ; foaf:givenName 'Fred' } }

							and specifying a dataset with the named graphs http://localhost:8888/alice/foaf.rdf
							and http://localhost:8888/eve/foaf.rdf is shown below.
						
POST /test HTTP/1.1
Host: localhost:8888
Accept: */*
Content-Type: application/x-www-form-urlencoded
Content-Length: 130

using-named-graph-uri=http%3A%2F%2Flocalhost%3A8888%2Falice%2Ffoaf.rdf&using-named-graph-uri=http%3A%2F%2Flocalhost%3A8888%2Feve%2Ffoaf.rdf&update=PREFIX%20foaf%3A%20%3Chttp%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2F%3E%0AINSERT%20%7B%20GRAPH%20%3Chttp%3A%2F%2Flocalhost%3A8888%2Fpeople%3E%20%7B%20%3Fperson%20%3Fproperty%20%3Fvalue%20%7D%20%7D%0AWHERE%20%7B%20GRAPH%20%3Fg%20%7B%20%3Fperson%20%3Fproperty%20%3Fvalue%20%3B%20foaf%3AgivenName%20%27Fred%27%20%7D%20%7D

[bookmark: update-direct-multi-dataset]3.2.6 Multi-operation UPDATE specifying dataset and using POST directly

							The serialisation of an example request sent to http://localhost:8888/test
							and specifying a dataset with the named graphs http://localhost:8888/alice/foaf.rdf
							and http://localhost:8888/eve/foaf.rdf is shown below.
						
POST /test?using-named-graph-uri=http%3A%2F%2Flocalhost%3A8888%2Falice%2Ffoaf.rdf&using-named-graph-uri=http%3A%2F%2Flocalhost%3A8888%2Feve%2Ffoaf.rdf HTTP/1.1
Host: localhost:8888
Accept: */*
Content-Type: application/sparql-update
Content-Length: 190

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
INSERT { GRAPH <http://localhost:8888/people> { ?person ?property ?value } }
WHERE { GRAPH ?g { ?person ?property ?value ; foaf:givenName 'Fred' } }

[bookmark: policy]4 Policy Considerations

[bookmark: policy-security]4.1 Security
There are at least two possible sources of denial-of-service attacks against SPARQL protocol services. First, under-constrained
queries can result in very large numbers of results, which may require large expenditures of computing resources to process,
assemble, or return. Another possible source are queries containing very complex — either because of resource size, the number
of resources to be retrieved, or a combination of size and number — RDF Dataset descriptions, which the service may be unable
to assemble without significant expenditure of resources, including bandwidth, CPU, or secondary storage. In some cases such
expenditures may effectively constitute a denial-of-service attack. A SPARQL protocol service may place
restrictions on the resources that it retrieves or on the rate at which external resources are retrieved. There may be other sources
of denial-of-service attacks against SPARQL query processing services.

Since a SPARQL protocol service may make HTTP requests of other origin servers on behalf of its clients, it may be used as a
vector of attacks against other sites or services. Thus, SPARQL protocol services may effectively act as proxies for third-party
clients. Such services may place restrictions on the resources that they retrieve or on the rate at which external
resources can be retrieved. SPARQL protocol services may log client requests in such a way as to facilitate tracing
them with regard to third-party origin servers or services.
SPARQL protocol services may choose to detect these and other costly, or otherwise unsafe, queries, impose time
or memory limits on queries, or impose other restrictions to reduce the service's (and other service's) vulnerability to
denial-of-service attacks. They also may refuse to process such query requests.
SPARQL protocol services may remove, insert, and change underlying data via the update operation. To protect against malicious or destructive
updates, implementations may choose not to implement the update operation. Alternatively, implementations may choose to use HTTP authentication mechanisms
or other implementation-defined mechanisms to prevent unauthorized invocations of the update operation.
Different IRIs may have the same appearance. Characters in different scripts may look similar (a Cyrillic "о" may appear similar
to a Latin "o"). A character followed by combining characters may have the same visual representation as another character (LATIN
SMALL LETTER E followed by COMBINING ACUTE ACCENT has the same visual representation as LATIN SMALL LETTER E WITH ACUTE). Users of
SPARQL must take care to construct queries with IRIs that match the IRIs in the data. Further information about matching of similar
characters can be found in Unicode Security Considerations [UNISEC]
and Internationalized Resource Identifiers (IRIs) [RFC3987] Section 8.

[bookmark: conformance]5 Conformance
The status of the parts of SPARQL 1.1 Protocol (this document) is as follows:
	Section 1 Introduction: normative
	Section 2 SPARQL Protocol Operations: normative
	Section 3: Example SPARQL Protocol Requests: informative
	Section 4: Policy Considerations: normative
	Section 5: Conformance: normative
	Section 6: Changes Since Previous Recommendation: informative
	Section A.1: Normative References: normative
	Section A.2: Other References: informative

A [bookmark: conformant-sparql-protocol-service]conformant SPARQL Protocol service:
	must implement either the query operation or the update operation in the way described in this document ("SPARQL 1.1 Protocol");
	may implement both the query and update operations;
	must be consistent with the normative constraints (indicated by [RFC2119] keywords) described in 4. Policy Considerations.

[bookmark: changes]6 Changes Since Previous Recommendation (Informative)
This specification extends and updates the SPARQL Protocol for RDF of January, 2008. The significant changes are:
	Remove the WSDL definition of the protocol in favor of an HTTP-based protocol
	Define an Update operation for issuing SPARQL Update requests
	Updated conformance criteria to accommodate the update operation
	Relaxed the requirements on specific HTTP response codes to allow for other codes as long as they align with HTTP semantics
	Added a variant of the query operation that directly posts a query string in the body of a POST request

[bookmark: sec-bibliography]A References

[bookmark: sec-existing-stds]A.1 Normative References

						[bookmark: sparql][SPARQL]

						SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

					
						[bookmark: update][UPDATE]

						SPARQL 1.1 Update, P. Gearon, A. Passant, A. Polleres, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-update-20130321. Latest version available at http://www.w3.org/TR/sparql11-update.

					
						[bookmark: rdf-concepts][RDF-CONCEPTS]

						
						Resource Description Framework (RDF): Concepts and Abstract Syntax,
						Graham Klyne, Jeremy J. Carroll, Editors,
						W3C (World Wide Web Consortium),
						2004,
						http://www.w3.org/TR/rdf-concepts/ .
					

					
						[bookmark: rdf-xml][RDF-XML]

						
						RDF/XML Syntax Specification (Revised),
						Dave Beckett, Editor,
						W3C (World Wide Web Consortium),
						2004,
						http://www.w3.org/TR/rdf-syntax-grammar/ .
					

					
						[bookmark: rfc2119][RFC2119]

						
						RFC 2119: Key words for use in RFCs to Indicate Requirement Levels,
						Scott Bradner, Editor,
						IETF (Internet Engineering Task Force),
						1997,
						http://www.ietf.org/rfc/rfc2119.txt .
					

					
						[bookmark: rfc2616][RFC2616]

						
						RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1,
						R. Fielding, et al., Editors,
						IETF (Internet Engineering Task Force),
						1999,
						http://www.ietf.org/rfc/rfc2616.txt .
					

						[bookmark: rfc3986][RFC3986]

						
						RFC 3986: Uniform Resource Identifier (URI): Generic Syntax,
						T. Berners-Lee, R. Fielding, L. Masinter, Editors,
						IETF (Internet Engineering Task Force),
						2005,
						http://www.ietf.org/rfc/rfc3986.txt .
					

				

[bookmark: sec-other-references]A.2 Other References

						[bookmark: rfc3987][RFC3987]

						
						RFC 3987: Internationalized Resource Identifiers (IRIs),
						M. Duerst, M. Suignard, Editors,
						IETF (Internet Engineering Task Force),
						2005,
						http://www.ietf.org/rfc/rfc3987.txt .
					

					
						[bookmark: unisec][UNISEC]

						
						Unicode Security Considerations,
						Mark Davis, Michel Suignard, Editors,
						2010,
						http://www.unicode.org/reports/tr36/
					

				

Change Log
Changes since Proposed Recommendation
	None

Changes since Candidate Recommendation
	Fixed typo when referencing the application/x-www-form-urlencoded media type.

Changes since Last Call
	Changed error example to use text/plain instead of text/html.

 [image: W3C]

 SPARQL 1.1 Graph Store HTTP Protocol

 W3C Recommendation 21 March 2013

		This version:

		http://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321/

		Latest version:

		http://www.w3.org/TR/sparql11-http-rdf-update/

 	Previous version:

 	http://www.w3.org/TR/2013/PR-sparql11-http-rdf-update-20130129/
	
		Editor:

		Chimezie Ogbuji, chimezie@gmail.com, Invited Expert

 Please refer to the errata for this document, which may include some normative corrections.
See also translations.

 Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

 [bookmark: abstract]Abstract

 This document describes the use of HTTP operations for the purpose of managing a collection of RDF graphs. This interface is an alternative to the SPARQL 1.1 Update protocol. Most of the operations defined here can be performed using that interface, but for some clients or servers, this interface may be easier to implement or work with. This specification may serve as a non-normative suggestion for HTTP operations on RDF graphs which are managed outside of a SPARQL 1.1 graph store.

 Status of This Document
May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is one of eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:

	SPARQL 1.1 Overview

	SPARQL 1.1 Query Language

	SPARQL 1.1 Update

	SPARQL1.1 Service Description

	SPARQL 1.1 Federated Query

	SPARQL 1.1 Query Results JSON Format

	SPARQL 1.1 Query Results CSV and TSV Formats

	SPARQL Query Results XML Format (Second Edition)

	SPARQL 1.1 Entailment Regimes

	SPARQL 1.1 Protocol

	SPARQL 1.1 Graph Store HTTP Protocol

No Substantive Changes

There have been no substantive changes to this document since the previous version. Minor editorial changes, if any, are detailed in the change log and visible in the color-coded diff.

Please Send Comments
Please send any comments to public-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document by the SPARQL Working Group is complete, comments may be addressed in the errata or in future revisions. Open discussion is welcome at public-sparql-dev@w3.org (public archive).

Endorsed By W3C

This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

 [bookmark: contents]Table of Contents

 	Introduction

 	Terminology

 	Protocol Model

 	Graph Identification

 	4.1Direct Graph Identification

 	4.2 Indirect Graph Identification

 	Graph Management Operations

 	5.1 Status Codes

 	5.2 HTTP GET

 	5.2.1Ambiguity Regarding the Range of HTTP GET (Informative)

 	5.3 HTTP PUT

 	5.4 HTTP DELETE

 	5.5 HTTP POST

 	5.6 HTTP HEAD

 	5.7 HTTP PATCH (Informative)

 	Security Considerations

 	References

 	
 Appendix

 	8.1 Acknowledgements

 1 [bookmark: introduction]Introduction

 This document describes an application protocol for the distributed updating and fetching of RDF graph content in a Graph Store via the mechanics of the Hypertext Transfer Protocol (HTTP) [RFC2616]. In doing so, it appeals to the following interface constraints that emphasize the core, architectural components underlying HTTP:

 	identification of resources (via Request IRI and the IRI of a graph in a Graph Store)

 	manipulation of resources through representations (via the use of an RDF graph representation as input to RDF graph management actions)

 	self-describing messages (via the inherent characteristics of RDF as the framework for a Self-Describing Semantic Web)

 This specification relies on an intuitive interpretation of the underlying HTTP protocol semantics to determine interaction with a Graph Store. Where the meaning of the operations are described, a SPARQL Update equivalent syntax is shown for clarity.

 When this document uses the words MUST, MUST NOT, SHOULD, SHOULD NOT,
 MAY and RECOMMENDED, and the words appear as emphasized text, they must be interpreted as described in
 RFC 2119 [RFC2119].

 2 [bookmark: introduction]Terminology

 The following terminology is used in this document:

 	URI - A Uniform Resource Identifier as defined in [RFC3986].

 	IRI - An Internationalized Resource Identifier as defined in [RFC3987]. Before an IRI found in a document is used by HTTP, the IRI is first converted to a URI.

 	
 Resource - Per [RDF-MT], the referents of RDF URI references are called "resources", but no assumptions are made about their nature. For the sake of this protocol, the [RFC2616] definition is used (unless the term "RDF Resource" is used explicitly): a network-accessible data object or service identified by an IRI.

 	Resolvable URI - A URI whose resource potentially has one or more representations available via invoking HTTP GET on the URI as defined in [WEBARCH].

 	RDF document - A serialization of an RDF Graph into a concrete syntax, typically an RDF/XML or Turtle document.

 	Graph Store - A mutable repository of RDF graphs managed by one or more services [SPARQL-UPDATE].

 	Graph IRI - An IRI involved in this protocol that is specified as a request URI or embedded as the query component of a request URI and corresponds to the IRI of a graph in the underlying Graph Store.

 	RDF graph content - An information resource identified by the graph IRI of a named graph and managed by a server that implements this protocol or
 identified by an indirect operation or the default graph. See [WEBARCH] for further discussion on Resources.

 	RDF payload - The representation [RFC2616] comprised of an RDF document that is sometimes included with the body of invocations of the operations defined here.

 Servers implementing this protocol are HTTP/1.1 servers [RFC2616] and MUST interpret request messages as graph management operations on an underlying Graph Store. The subject of the operation is indicated by the request IRI.

 3 [bookmark: prot-model]Protocol Model

 This protocol specifies the semantics of HTTP operations for managing a Graph Store. In particular, it provides operations
 for removing, creating, and replacing RDF graph content as well as for adding RDF statements to existing RDF graph content. The interface defined here uses IRIs to direct native HTTP operations to an implementation of this protocol which responds by making appropriate
 modifications to the underlying Graph Store. A compliant implementation of this specification MUST accept HTTP
 requests directed at its Graph Store and handle them as specified by this protocol with the exception of security considerations such as those discussed in section 7 and others (Denial-of-Service attacks, etc.)

 4 [bookmark: graph-identification]Graph Identification

 A client using this protocol to manipulate a graph store needs an IRI for each graph. Within the graph store, each graph (except the default graph) is associated with a graph IRI. In some cases ("Direct Graph Identification"), the graph IRIs can be directly used as the request URI of a graph management operation. In other cases ("Indirect Graph Identification"), the Graph Store IRI is used to route the operations onto RDF graph content.

 4.1 [bookmark: direct-graph-identification]Direct Graph Identification

 We recall from [SPARQL] that IRIs for RDF graphs in SPARQL queries identify a resource, and the resource can have a
 representation that serializes that graph (or, more precisely: by an RDF document of the graph)

 Consider the following HTTP request to a server that implements this protocol:

 GET /rdf-graphs/employees HTTP/1.1
 Host: example.com
 Accept: text/turtle; charset=utf-8

 Per [RFC2616], the most common usage of a Request-URI is to identify a resource on an origin server or gateway. In our example,
 the corresponding request, http://example.com/rdf-graphs/employees is meant to identify RDF triples on the example.com server that describe
 employees. In addition, the
 request specifies the GET method, which means that a representation of these triples should be returned. In this case,
 the preferred representation format is text/turtle

 In this way, the server would route operations onto a named graph in a Graph Store via its Graph IRI. However, in using an IRI in this way,
 we are not directly identifying an RDF graph but rather the RDF graph content that is represented by an RDF document, which is a serialization of that graph.
 Intuitively, the set of interpretations that satisfy [RDF-MT] the RDF graph the RDF document serializes can be thought of as this RDF graph content.

 The diagram illustrates this distinction. This diagram illustrates the basic kind of operation where the request URI
 identifies the RDF graph content being manipulated over the protocol. Requests to an implementation of this protocol receive HTTP requests using one of the HTTP methods that is directed at some RDF graph content. Above the arrows indicating the request is the relevant HTTP methods and below is any message body content or additional headers that accompany the request. At the head of the arrows leaving RDF graph content is the message body for the corresponding response.

 [image: Protocol model diagram]

 Figure 1: A diagram of the protocol model for direct graph references.

 4.2 [bookmark: indirect-graph-identification]Indirect Graph Identification

 Despite the convenience of using the request URI to identify RDF graph content for manipulation, it is often the case that:

 	the naming authority associated with the IRI of an RDF graph in a Graph Store is not the same as the server managing the identified RDF content

 	the naming authority is not available

 	the IRI is not dereferenceable (i.e., when dereferenced, it does not produce a RDF graph representation)

 As discussed in [RFC3986], query components are often used to carry identifying information in the form of key / value pairs where the value is another IRI. This protocol leverages this convention and
 provides a specific interface whereby a graph IRI can be embedded within the query component of the request IRI:

 GET /rdf-graph-store?graph=http%3A//www.example.com/other/graph HTTP/1.1
 Host: example.com
 Accept: text/turtle; charset=utf-8

 In the example above, the encoded graph IRI (http://www.example.com/other/graph) is percent-encoded [RFC3986] and indirectly
 identifies RDF triples to manipulate. Any server that implements this protocol and receives a request IRI
 in this form MUST perform the indicated operation on the RDF graph content identified by the IRI embedded in the query component where the IRI is the
 result of percent-decoding the value associated with the graph key. The query string IRI MUST be an absolute IRI and the server MUST
 respond with a 400 Bad Request if it is not. The diagram below illustrates this.

 [image: Protocol model diagram for indirect manipulation]

 Figure 2: A diagram of the protocol model for indirect graph references (uses the same legend as the previous diagramT).

 As indicated in section 3.3 of [RFC3986], the path component (of an IRI) contains data, usually organized in hierarchical form, that, along with data in the
 non-hierarchical query component, serves to identify a resource within the scope of the IRI's scheme and naming authority. As a result, the full request
 IRI identifies the same RDF graph content as does the IRI embedded in the query component.

 A future Working Group may provide additional interfaces for indirectly identifying RDF graph content as well as mechanisms for their discovery.

 In a similar manner, a query component comprised of the string default can be used to indicate that the operation indirectly identifies
 the default graph in the Graph Store. In this way, the example above can be modified to a request for an RDF/XML document that serializes
 the default graph in the Graph Store:

 GET /rdf-graph-store?default HTTP/1.1
 Host: example.com
 Accept: text/turtle; charset=utf-8

 In a request such as:

 GET /rdf-graph-store?graph=http%3A//www.example.com/other/graph HTTP/1.1
 Host: example.com
 Accept: text/turtle; charset=utf-8

 http://www.example.com/rdf-graph-store identifies the Graph Store managed by the HTTP service. In order to dispatch requests
 to manage named or default graphs by embedding them in the query component of the Graph Store URL, the URL will need to be known a priori.

 5 [bookmark: graph-management]Graph Management Operations

 This section describes the use of the HTTP verbs to determine the operations performed on RDF graph content. In places where an equivalent SPARQL Update operation is given,
 <graph_uri> is understood to be either the request IRI or the IRI indirectly specified via the query component as described above. Similarly, in the case of
 an operation that manages the default graph, the SPARQL Update operation will not include any mention of a graph.

 If the Accept header is not provided with a GET request, the server MUST return one of RDF XML, Turtle, or N-Triples. For operations involving an RDF payload (PUT and POST), the server MUST parse the RDF payload according to media type specified in the Content-Type header if it is provided in the request. If the header is not provided, the implementation has a routine that can guess the type by the content of the resource or via the extension of the file it was loaded from, and such a routine reported that the resource was clearly some other document format and not RDF/XML, then the implementation MAY attempt to parse the document using this format. Otherwise, if this header is not provided, the server SHOULD attempt to parse the RDF payload as RDF/XML.

 This protocol also supports the proper handling of operations involving "multipart/form-data" [html4]. In particular,
 section 17.13.4 Form content types discusses how content indicated
 with the multipart/form-data content type are messages containing a series of parts. This protocol supports the submission of multiple
 RDF documents in operations involving some indicated RDF graph content via this mechanism, where each document is uploaded using the standard web form file upload widget. The specifics of this mechanism is discussed in section 5.5 (HTTP POST).

 Developers of implementations of this protocol should refer to [RFC2616] for additional details of appropriate behavior beyond those specified here. Section
 5 only serves to define the behavior specific to the manipulation of RDF graph content. For example, conditional requests that make use of headers such as
 If-Modified-Since that are intended to reduce unnecessary network usage should be handled appropriately by implementations of this protocol per [RFC2616].

 5.1 [bookmark: http-put]Status Codes

Implementations MUST use the response status codes defined in HTTP [RFC2616] to indicate the success or failure of an operation. Developers should consult the HTTP specification for detailed definitions of each status code. For example, in response to operations involving an RDF payload, if
the attempt to parse the RDF payload according to the provided Content-Type fails then the server MUST respond with a 400 Bad Request.

 A request using an unsupported HTTP verb in
 conjunction with a malformed or unsupported request syntax MUST receive a response with a 405 Method Not Allowed. If the RDF graph content identified in the request does not exist in the server,
 and the operation requires that it does, a 404 Not Found response code MUST be provided in the response.

 If a clients issues a POST or PUT with a content type that is not understood by the graph store, the implementation MUST respond with 415 Unsupported Media Type. The use of 401 and 403 is covered later in the section regarding security.

 5.2 [bookmark: http-get]HTTP GET

 A request that uses the HTTP GET method MUST retrieve an RDF payload that is a serialization of the named graph paired with the graph IRI in the Graph Store. Developers of implementations of this protocol should refer to [RFC2616] (section 13) for details on recommended cache-control headers and usage.

 The following two operations are considered to be equivalent

 GET /rdf-graph-store?graph=..graph_uri.. HTTP/1.1
 Host: example.com
 Accept: text/turtle; charset=utf-8

 CONSTRUCT { ?s ?p ?o } WHERE { GRAPH <graph_uri> { ?s ?p ?o } }

 Where the request involves the default query component, the following two operations are equivalent

 GET /rdf-graph-store?default HTTP/1.1
 Host: example.com
 Accept: text/turtle; charset=utf-8

 CONSTRUCT { ?s ?p ?o } WHERE { ?s ?p ?o }

 The response to such request SHOULD be made cacheable wherever possible and in any of the preferred representation formats specified in the Accept request-header field. In the event that the specified representation format is not supported,
 a 406 Not Acceptable response code SHOULD be returned.

 5.2.1 Ambiguity Regarding the Range of HTTP GET (Informative)

 Historically, there has been some ambiguity regarding the nature of what
 is returned from dereferencing an IRI. When an HTTP GET is invoked with a request IRI, what is returned and what is its relation to the resource
 identified by the request IRI? In resolving this ambiguity, the W3C Technical Architecture Group specified a simple rule
 that determines the nature of the resource based on the response code returned. In this protocol, HTTP GET requests
 are used to retrieve a representation of the RDF graph content identified (directly or indirectly) by the request IRI. Graph IRIs identify
 RDF graph content (an information resource) and so such a request should receive a response with a 200 (Ok) which is consistent
 with these rules, the first of which states:

 If an "http" resource responds to a GET request with a 2xx response, then the resource identified by that IRI is an information resource.

 Information resources are resources with essential characteristics that can all be conveyed in a message [WEBARCH]. In this case,
 the characteristics of RDF graph content can be conveyed as RDF payload which serializes the named graph paired with the
 graph IRI in the underlying Graph Store. This protocol provides a means
 for requesting the representation without the need for indirection at the protocol level even if
 the naming authority associated with the IRI of the named RDF graph in the Graph Store is not the same as the
 server managing the identified RDF graph content.

 5.3 [bookmark: http-put]HTTP PUT

 A request that uses the HTTP PUT method MUST store the enclosed RDF payload as RDF graph content. In the examples below, the initial HTTP
 request MUST be understood to have the same effect as the sequence of SPARQL Update operations that follow

 PUT /rdf-graph-store?graph=..graph_uri.. HTTP/1.1
 Host: example.com
 Content-Type: text/turtle

 ... RDF payload ...

 DROP SILENT GRAPH <graph_uri>;
 INSERT DATA { GRAPH <graph_uri> { .. RDF payload .. } }

 In the case where the default graph is targeted (via default query component) for management, the following operations are equivalent

 PUT /rdf-graph-store?default HTTP/1.1
 Host: example.com
 Content-Type: text/turtle

 ... RDF payload ...

 DROP SILENT DEFAULT;
 INSERT DATA { .. RDF payload .. }

 Either the request or the encoded IRI (embedded in the query component) identifies the RDF payload enclosed with the request as RDF graph content.
 The server MUST NOT attempt to apply the request to some other resource. If the identified RDF graph content already exists, the enclosed entity MUST be considered
 as a modified version of the one residing on the origin server. If the identified RDF graph content does not exist and that IRI is capable of being defined as new RDF graph content by the requesting user
 agent, the origin server MUST create the RDF graph content with that IRI in the underlying Graph Store. DROP is needed to remove any previous
 RDF graph content. Developers should refer to [SPARQL-UPDATE] for the specifics of how to handle empty graphs. For implementations that support empty graphs, if the request body is empty and there is sufficient authorization to create a new named graph using the IRI used in the request IRI, then an empty graph would need to be created. Note, this option is only relevant for situations where an empty body is appropriate for the indicated content-type. Otherwise, as described in section 5.1, a 400 Bad Request SHOULD be returned.

 If new RDF graph content is created, the origin server MUST inform the user agent via the 201 Created response. If existing RDF graph content
 is modified, either the 200 OK or 204 No Content response codes MUST be sent to indicate successful completion of the request.
 If the resource could not be created or modified with the request IRI (perhaps due to security considerations), an appropriate error response SHOULD be given that reflects
 the nature of the problem.

 5.4 [bookmark: http-delete]HTTP DELETE

 A request that uses the HTTP DELETE method SHOULD delete the RDF graph content identified by either the request or encoded IRI. This method MAY be overridden
 by human intervention (or other means) on the origin server. If there is no such RDF graph content in the Graph Store, the server MUST respond with a
 404 Not Found response code. An example of when the method may be overridden is in a content management system with optimistic concurrency controls.

 DELETE /rdf-graph-store?graph=..graph_uri.. HTTP/1.1
 Host: example.com

 Is equivalent to:

 DROP GRAPH <graph_uri>

 in the case where a named graph is targeted for management. Otherwise, the following

 DELETE /rdf-graph-store?default HTTP/1.1
 Host: example.com

 is equivalent to

 DROP DEFAULT

 A response code of 200 OK or 204 No Content MUST be given in the response if the operation succeeded or 202 (Accepted) if the action has not
 yet been enacted. However, the server SHOULD NOT indicate success unless, at the time the response is given, it intends to delete
 the RDF graph content or move it to an inaccessible location. In the event the operation is overridden, a response code of 403 Forbidden
 should be returned.

 5.5 [bookmark: http-post]HTTP POST

 A request that uses the HTTP POST method and a request IRI that identifies RDF graph content MUST be understood as a request that the origin server perform an RDF merge of the enclosed
 RDF payload enclosed into the RDF graph content identified by the request or encoded IRI. The following two operations are considered to have the same effect

 POST /rdf-graph-store?graph=..graph_uri.. HTTP/1.1
 Host: example.com
 Content-Type: text/turtle

 ... RDF payload ...

 INSERT DATA { GRAPH <graph_uri> { .. RDF payload .. } }

 In the case where a default graph is targeted for management, the following are equivalent

 POST /rdf-graph-store?default HTTP/1.1
 Host: example.com
 Content-Type: text/turtle

 ... RDF payload ...

 INSERT DATA { .. RDF payload .. }

 As mentioned earlier, "multipart/form-data" can be dispatched to implementations of this protocol. When used with POST this operation MUST be understood as a request that the origin server perform an RDF merge of the graphs - that the documents submitted with the multipart form are a serialization of - into the RDF graph content identified by the request or encoded IRI. In such a case, if the Content-Type is not provided, implementations MAY attempt to determine it from the file's extension rather than respond with 400 Bad Request.

 If the request IRI identifies the underlying Graph Store,
 the origin server MUST create a new RDF graph comprised of the statements in the RDF payload and return a designated graph IRI associated with the new graph.
 The new graph IRI should be specified in the Location HTTP header along with a 201 Created code and be different from the request IRI.

 This scenario is useful for situations where the requesting agent either does not want to specify the graph IRI of a new graph to create
 (via the PUT method) or does not have the appropriate authorization to do so. If the graph IRI does not identify either a Graph Store or RDF graph content, the origin server should respond with a 404 Not Found.

 In either case, if the request body is empty, the implementation SHOULD respond with 204 No Content.

 This protocol is a companion to the use of both SPARQL Update and SPARQL Query over the SPARQL protocol via HTTP POST. Both protocols specify different operations performed via the HTTP POST method.

 5.6 [bookmark: http-get]HTTP HEAD

 When used in this protocol, the HTTP HEAD method is identical to GET except that the server MUST NOT return a message-body in the response. It is meant to be used for
 testing dereferenceable IRIs for validity, accessibility, and recent modification.

 The response to such a request from a server that manages a Graph Store
 MAY be cacheable. If the new field values indicate that the cached RDF graph content differs from the current entity (as would be indicated by a change in Content-Length, Content-MD5, ETag or Last-Modified), then the cache MUST treat the cache entry as stale. As mentioned in the beginning of the previous section, developers should refer to [RFC2616] for the specifics of this.

 5.7 HTTP PATCH (Informative)

 The IETF specified Patch Method for HTTP can be used to request that a set of changes described
 in the request entity be applied to the named graph associated with the graph IRI of the RDF graph content resource identified by the request IRI.

 SPARQL 1.1 Update can be used as a patch document. In particular, SPARQL 1.1 Update requests that manage
 the graph associated with the RDF graph content identified (directly or indirectly) in the request can be used
 as the RDF payload of a HTTP PATCH request to modify it. If a SPARQL 1.1 Update request is used as the RDF payload for a PATCH request that
 makes changes to more than one graph or the graph it modifies is not the one indicated, it would be prudent for the server
 to respond with a 422 Unprocessable Entity status.

 Intuitively, the difference between the PUT and PATCH requests is reflected in the
 way the server processes the enclosed entity to modify the RDF graph content
 given by the request IRI. In a PUT request, the enclosed entity
 is considered to be a modified version of the RDF graph content stored on the
 origin server, and the client is requesting that the stored version
 be replaced. With PATCH, however, the enclosed entity contains a set
 of instructions describing how the RDF graph content residing on the
 origin server should be modified to produce a new version.

 6 [bookmark: security]Security Considerations

 As with any protocol that is implemented as a layer above HTTP, implementations SHOULD take advantage of the many security-related facilities associated with it and are not required to carry out requested graph management operations that may be in contradistinction to a particular security policy in place. For example, when faced with an unauthenticated request to replace system critical RDF statements in a graph through the PUT method, applications may consider responding with the
 401 status code (Unauthorized), indicating that the appropriate authorization is required. In cases where authentication is provided fails to meet the requirements of a particular access control policy, the
 403 status code (Forbidden) can be sent back to the client to indicate this failure to meet the access control policy.

 7 References

7.1
[bookmark: section-Normative-References]Normative References

	RFC2119

	
 RFC 2119: Key words for use in RFCs to Indicate Requirement Levels,
 Scott Bradner, 1997. (See http://www.ietf.org/rfc/rfc2119.txt)

	HTML 4.01

	
 HTML 4.01 Specification,
 D. Raggett, A. Le Hors, and I. Jacobs, 1999. (See http://www.w3.org/TR/html4/)

	RFC3986

	Uniform Resource Identifier (URI): Generic Syntax, Berners-Lee, Fielding, Masinter, January 2005.

	RFC2616

	Hypertext Transfer Protocol - HTTP/1.1. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
June 1999. Available at http://www.ietf.org/rfc/rfc2616.txt.

	
[bookmark: WEBARCH]WEBARCH

	

Architecture of the World Wide Web, Volume One
, N. Walsh, I. Jacobs, Editors, W3C Recommendation, 15 December 2004, http://www.w3.org/TR/2004/REC-webarch-20041215/ . Latest version available at http://www.w3.org/TR/webarch/ .

	RFC3987

	Internationalized Resource Identifiers (IRIs), Duerst, Suignard, January 2005.

	
 [bookmark: SPARQL-UPDATE]SPARQL-UPDATE

 	SPARQL 1.1 Update, P. Gearon, A. Passant, A. Polleres, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-update-20130321. Latest version available at http://www.w3.org/TR/sparql11-update.

7.2
[bookmark: section-informative-references]Informative References

	
 [bookmark: RDF-MT]RDF-MT

 	

 RDF Semantics
 , P. Hayes, Editor, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ . Latest version available at http://www.w3.org/TR/rdf-mt/ .

	
 [bookmark: SPARQL]SPARQL

 	SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C Recommendation, 21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

8 Appendix

Acknowledgements
[bookmark: section-appendix-acknowledgement]

The editor would like to thank the following individuals for their input into the creation of this document:

Sandro Hawke, Birte Glimm, Andy Seaborne, Steve Harris, Arnaud Le Hors, Ivan Mikhailov, David Booth, Simon Johnston, Kjetil Kjernsmo, Gregg Reynolds, Leigh Dodds, Tim Berners-Lee, and Ian Davis

 Change Log

 Changes since Proposed Recommendation

 	None

 Changes since Candidate Recommendation

 	None

 Changes since Last Call

 	Removed reference to REST

rdf-sparql-XMLres/diff.xhtml

 [image: W3C]

 SPARQL Query Results XML Format (Second Edition)

 [bookmark: w3c-doctype]W3C Proposed EditedRecommendation 08 November 201221 March 2013

 		This version:

 		 http://www.w3.org/TR/2012/PER-rdf-sparql-XMLres-20121108/http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321/

 		Latest version:

 		http://www.w3.org/TR/rdf-sparql-XMLres/

 		Previous version:

 		 http://www.w3.org/TR/2008/REC-rdf-sparql-XMLres-20080115/http://www.w3.org/TR/2012/PER-rdf-sparql-XMLres-20121108/

 		Previous Recommendation:

 		http://www.w3.org/TR/2008/REC-rdf-sparql-XMLres-20080115/

 		Second Edition Editor:

 		Sandro Hawke

 		Editors:

			Dave Beckett, Institute for Learning and Research Technology (ILRT), University of Bristol

			Jeen Broekstra, Information Systems Group, Eindhoven University of Technology

Please refer to the errata for this document, which may include some normative corrections.

See also translations.

Copyright ©2012© 2013 W3C ®® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

 [bookmark: abstract]Abstract

 RDF is a flexible, extensible way to represent information
 about World Wide Web resources. It is used to represent, among
 other things, personal information, social networks, metadata
 about digital artifacts like music and images, as well as
 provide a means of integration over disparate sources of
 information. A standardized query language for RDF data with
 multiple implementations offers developers and end users a way
 to write and to consume the results of queries across this wide
 range of information.

 This document describes an XML format for the variable binding
 and boolean results formats provided by the
 SPARQL
 query language for RDF, developed by the
 W3C RDF Data Access
 Working Group (DAWG), part of the
 Semantic Web Activity
 as described in the
 activity statement .

Status of This Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is being published asone of a set of 11 documents:eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:

		SPARQL 1.1 Overview

		SPARQL 1.1 Query Language

		SPARQL 1.1 Update

		SPARQL1.1 Service Description

		SPARQL 1.1 Federated Query

		SPARQL 1.1 Query Results JSON Format

		SPARQL 1.1 Query Results CSV and TSV Formats

		SPARQL Query Results XML Format (Second Edition)

		SPARQL 1.1 Entailment Regimes

		SPARQL 1.1 Protocol

		SPARQL 1.1 Graph Store HTTP Protocol

 Summary ofNo Substantive Changes

There have been no substantive changes to this document since the previous version. For details on anyMinor editorial changes seechanges, if any, are detailed in the change log and visible in the color-coded diff.

 W3C MembersPlease Review By 6 December 2012 The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 6 December 2012. This will allow the Director to assess consensus and determine whetherSend Comments

Please send any comments to issuepublic-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document as a W3C Recommendation. Others are encouragedby the SPARQL Working Group to continue to send reports of implementation experience, and other feedback, to public-rdf-dawg-comments@w3.org (public archive). Reports of any success or difficulty withis complete, comments may be addressed in the test cases are encouraged.errata or in future revisions. Open discussion among developersis welcome at public-sparql-dev@w3.org (public archive).

 Support The advancement ofEndorsed By W3C

This Proposed Edited Recommendation is supporteddocument has been reviewed by the disposition of comments on the previous drafts, the Test Suite ,W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the list of implementations (with test results) . No Endorsement PublicationDirector as a Proposed Edited Recommendation does not imply endorsement by theW3C Membership. ThisRecommendation. It is a draftstable document and may be updated, replacedused as reference material or obsoleted by other documents at any time. Itcited from another document. W3C's role in making the Recommendation is inappropriateto citedraw attention to the specification and to promote its widespread deployment. This document as other than work in progress.enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

 [bookmark: contents]Table of Contents

 		
 1. Introduction

 		
 2. Definition

 		
 2.1. Document Element

 		
 2.2. Header

 		
 2.3. Results

 		
 3. Examples

 		
 4. XML Schemas

 		
 5. Internet Media Type, File Extension and Macintosh File Type

 		
 6. References

 1. [bookmark: introduction]Introduction

The
SPARQL Query Language for RDF
[SPARQL-QUERY]
defines several Query Result Forms
(SPARQL Query section 10).
This document defines a SPARQL Results Document
that encodes
the variable binding query results from SELECT queries
(SPARQL Query section 10.2)
and boolean query results from ASK queries
(SPARQL Query section 10.5)
in
XML
[XML].

There are two other results formats which follow a similar design but do not use XML: SPARQL 1.1 Query Results JSON Format [SRJ] and SPARQL 1.1 Query Results CSV and TSV Formats [SRC].

 [bookmark: definition]2. Definition

 Definition:
 [bookmark: defn-srd]SPARQL Results Document

 A SPARQL Results Document is an
 XML document that is valid with respect to either the
 RELAX NG XML Schema or the W3C XML Schema in
 Section 4.

 [bookmark: docElement]2.1. Document Element

The SPARQL Results Document
begins with sparql document element in the
http://www.w3.org/2005/sparql-results# namespace,
written as follows:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 ...
</sparql>

Inside the sparql element are two sub-elements,
head and
a results element (either results or boolean)
which must appear in that order.

[bookmark: head]2.2. Header

The head element is the first child element of
the sparql element.

For a variable binding query result, head must contain a
sequence of elements describing the set of
Query Variable
names in the
Solution Sequence
(here called query results).

The order of the variable names in the sequence is the order of
the variable names given to the argument of the SELECT
statement in the SPARQL query. If SELECT * is used, the
order of the names is undefined.

Inside the head element, the ordered sequence of
variable names chosen are used to create empty child elements
variable with the variable name as the value of an
attribute name giving a document like this:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

 <head>
 <variable name="x"/>
 <variable name="hpage"/>
 <variable name="name"/>
 <variable name="mbox"/>
 <variable name="blurb"/>
 </head>
...
</sparql>

For a boolean query result, no elements are required inside
head and variable must not be present.

For any query result, head may also contain
link child elements with an href attribute
containing a relative URI that provides a link to some additional
metadata about the query results. The relative URI is resolved
against the in-scope base URI which is usually the query results
format document URI. link elements must appear after
any variable elements that are present.

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

 <head>
 ...
 <link href="metadata.rdf"/>
 </head>
...
</sparql>

[bookmark: results]2.3. Results

The second child-element of sparql
must appear after head and is either
results or boolean.
It is written even if the query results are empty.

[bookmark: vb-results]2.3.1. Variable Binding Results

The results element contains the complete sequence of
query results.

For each
Query Solution
in the query results, a result
child-element of results is added giving
a document like:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 ... head ...

 <results>
 <result>...
 </result>
 <result>...
 </result>
 ...
 </results>

</sparql>

Each result element corresponds to one Query
Solution in a result and contains child elements (in no particular order) for each Query
Variable that appears in the solution. It
is used to record how the query variables bind to RDF
Terms.

Each binding inside a solution is written as an element
binding as a child of result with the query
variable name as the value of the name attribute. So for a
result binding two variables x and hpage it would
look like:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="x"/>
 <variable name="hpage"/>
 </head>

 <results>
 <result>
 <binding name="x"> ... </binding>
 <binding name="hpage"> ... </binding>
 </result>

 <result>
 <binding name="x"> ... </binding>
 <binding name="hpage"> ... </binding>
 </result>
 ...
 </results>

</sparql>

The value of a query variable binding, which is an RDF Term, is
included as the content of the binding as follows:

		RDF URI Reference U

		<binding><uri>U</uri></binding>

		RDF Literal S

		<binding><literal>S</literal></binding>

		RDF Literal S with language L

		<binding><literal
xml:lang="L">S</literal></binding>

		RDF Typed Literal S with datatype URI D

		<binding><literal
datatype="D">S</literal></binding>

		Blank Node label I

		<binding><bnode>I</bnode></binding>

If, for a particular solution, a variable is unbound, no
binding element for that variable is included in the
result element.

Note: The blank node label I is scoped
to the result set XML document and need not have any association to
the blank node label for that RDF Term in the query graph.

An example of a query solution encoded in this format is as follows:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

 <head>
 <variable name="x"/>
 <variable name="hpage"/>
 <variable name="name"/>
 <variable name="age"/>
 <variable name="mbox"/>
 <variable name="friend"/>
 </head>

 <results>

 <result>
 <binding name="x">
	<bnode>r2</bnode>
 </binding>
 <binding name="hpage">
	<uri>http://work.example.org/bob/</uri>
 </binding>
 <binding name="name">
	<literal xml:lang="en">Bob</literal>
 </binding>
 <binding name="age">
	<literal datatype="http://www.w3.org/2001/XMLSchema#integer">30</literal>
 </binding>
 <binding name="mbox">
	<uri>mailto:bob@work.example.org</uri>
 </binding>
 </result>

 ...
 </results>

</sparql>

[bookmark: boolean-results]2.3.2. Boolean Results

A boolean result is written as the element content of a
boolean child-element of the sparql
element directly after a head,
containing either true or false as follows:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 ... head ...

 <boolean>true</boolean>

</sparql>

 [bookmark: examples]3. Examples

 [bookmark: vb-examples]3.1. Variable Binding Results Examples

 An example SELECT SPARQL Query in
 example.rq operating
 on query graph Turtle/N3 data in data.n3
 providing ordered variable binding query results written in XML
 in output.srx.

 This XML can be transformed into XHTML using the
 sample XML Query script result-to-html.xq
 giving output-xquery.html or with
 XSLT sheet result-to-html.xsl
 giving output-xslt.html

 [bookmark: boolean-examples]3.2. Boolean Results Examples

 An example ASK SPARQL Query in
 example2.rq operating
 on query graph Turtle/N3 data in data.n3
 provides a boolean query result written in XML
 in output2.srx.

 This XML can be transformed into XHTML using the
 sample XML Query script result-to-html.xq
 giving output-xquery2.html or with
 XSLT sheet result-to-html.xsl
 giving output-xslt2.html

 [bookmark: schemas]4. XML Schemas

 There are normative XML schemas provided in the following formats:

 		RELAX NG[RELAXNG] Compact[RELAXNG-COMPACT] in result.rnc

 		RELAX NG XML in result.rng

 		W3C XML Schema[XMLSCHEMA-1] in result.xsd

 Note: this schema is machine-generated from the RELAX NG XML schema.

If W3C XML Schema is used, an xsi:schemaLocation
attribute can be used pointing to the schema as follows:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2007/SPARQL/result.xsd">

 ...

</sparql>

 [bookmark: mime]5. Internet Media Type, File Extension and Macintosh File Type

The Internet Media Type / MIME Type for the SPARQL Query Results XML
Format is "application/sparql-results+xml".

It is recommended that result files have the extension ".srx" (all
lowercase) on all platforms.

It is recommended that result files stored on Macintosh HFS file
systems be given a file type of "TEXT".

[bookmark: mime-form] This information that follows has been submitted to the IESG for review, approval, and registration with IANA. The IESG has not responded as of the publication date of this document.Internet Media Type Registration Form

		 To: ietf-types@iana.org Subject: Registration of media type application/sparql-results+xmlType name:

		 application

		Subtype name:

		 sparql-results+xml

		Required parameters:

		 None

		Optional parameters:

		 "charset": This parameter has identical semantics to the charset
 parameter of the "application/xml" media type as
 specified in [RFC3023], section 3.2.

		Encoding considerations:

		 Identical to those of "application/xml" as specified in [RFC3023],
 section 3.2.

		Security considerations:

		
SPARQL query results uses URIs. See Section 7 of [RFC3986].

SPARQL query results uses IRIs. See Section 8 of [RFC3987].

As this media type uses the "+xml" convention, it shares the same
 security considerations as described in [RFC3023], section 10.

		Interoperability considerations:

		 There are no known interoperability issues.

		Published specification:

		 This specification.

		Applications which use this media type:

		 No known applications currently use this media type.

		Additional information:

		Magic number(s):

		 As specified for "application/xml" in [RFC3023], section 3.2.

		File extension(s):

		 ".srx"

		Fragment identifiers:

		 Identical to that of "application/xml" as described in RFC 3023
 [RFC3023], section 5.

		Base URI:

		 As specified in [RFC3023], section 6.

		Macintosh file type code(s):

		 "TEXT"

		Person & email address to contact for further information:

		 Dave Beckett, Eric Prud'hommeaux <public-rdf-dawg-comments@w3.org>

		Intended usage:

		 COMMON

		Restrictions on usage:

		 None

		Author/Change controller:

		 The SPARQL specification is a work product of the World Wide Web
 Consortium's RDF Data Access Working Group. The W3C has change
 control over these specifications.

[bookmark: mime-references]References

[bookmark: mime-rfc-3023][RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media Types",
 RFC 3023, January 2001.

[bookmark: mime-rfc-3986][RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

[bookmark: mime-rfc-3987][RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, January 2005.

 [bookmark: references]6. References

 		
 [bookmark: ref-xml][XML]

 		
 Extensible Markup Language (XML) 1.0, Third Edition, T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F. Yergeau, Editors, W3C Recommendation, 4 February 2004. This document is http://www.w3.org/TR/2004/REC-xml-20040204 . The latest version is available at http://www.w3.org/TR/REC-xml .

 		
 [bookmark: ref-sparql-query][SPARQL-QUERY]

 		SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-query-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

 		
 [bookmark: ref-relaxng][RELAXNG]

 		RELAX NG Specification, James Clark and MURATA Makoto, Editors, OASIS Committee Specification, 3 December 2001. This document is http://www.oasis-open.org/committees/relax-ng/spec-20011203.html . The latest version is available at http://www.oasis-open.org/committees/relax-ng/spec.html .

 		
 [bookmark: ref-relaxng-nx][RELAXNG-COMPACT]

 		RELAX NG Compact Syntax, James Clark, Editor. OASIS Committee Specification, 21 November 2002. This document is http://www.oasis-open.org/committees/relax-ng/compact-20021121.html .

 		
 [bookmark: ref-xmlschema-1][XMLSCHEMA-1]

 		
 XML Schema Part 1: Structures Second Edition, D. Beech, N. Mendelsohn, M. Maloney, H. S. Thompson, Editors, W3C Recommendation, 28 October 2004. This document is http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ . The latest version is available at http://www.w3.org/TR/xmlschema-1/ .

 		
 [bookmark: ref-srj][SRJ]

 		SPARQL 1.1 Query Results JSON Format, A. Seaborne, Editor, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-results-json-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321. Latest version available at http://www.w3.org/TR/sparql11-results-json.

 		
 [bookmark: ref-src][SRC]

 		SPARQL 1.1 Query Results CSV and TSV Formats, A. Seaborne, Editor, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-results-csv-tsv-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321. Latest version available at http://www.w3.org/TR/sparql11-results-csv-tsv.

 Change Log

 Changes since Proposed Edited Recommendation

 		Removed statement that IANA had not processed registration

 Changes since 2008 Recommendation

 		Mention the JSON and CSV/TSV results formats

 		Make in the examples point to maintainable versions

StyleSheets/TR/logo-REC.png
UONEPUBWIWOIY DEA

sparql11-protocol/diff.xhtml
[image: W3C]

[bookmark: title]SPARQL 1.1 Protocol

[bookmark: w3c-doctype]W3C ProposedRecommendation 29 January21 March 2013

		This version:

		
			 http://www.w3.org/TR/2013/PR-sparql11-protocol-20130129/http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
		

		Latest version:

		
			http://www.w3.org/TR/sparql11-protocol/
		

		Previous version:

		 http://www.w3.org/TR/2012/CR-sparql11-protocol-20121108/http://www.w3.org/TR/2013/PR-sparql11-protocol-20130129/

		Editors:

		Lee Feigenbaum, Cambridge Semantics <lee@thefigtrees.net>

		Gregory Todd Williams, Rensselaer Polytechnic Institute <greg@evilfunhouse.com>

		Kendall Grant Clark, 1st Edition, Clark & Parsia LLC <kendall@clarkparsia.com>

		Elias Torres, 1st Edition, IBM Corporation <eliast@us.ibm.com>

Please refer to the errata for this document, which may
 include some normative corrections.

See also translations.

Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract

The SPARQL Protocol and RDF Query Language (SPARQL) is a
query language and protocol for RDF. This document specifies the SPARQL Protocol; it
describes a means for conveying SPARQL queries and updates to a SPARQL
processing service and returning the results via HTTP to the entity that requested them. This protocol was developed by
the W3C SPARQL Working Group, part of
the Semantic Web Activity as described in
the activity statement .

[bookmark: status]Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is one of eleven SPARQL 1.1 Proposed Recommendations:Recommendations produced by the SPARQL Working Group:

		SPARQL 1.1 Overview

		SPARQL 1.1 Query Language

		SPARQL 1.1 Update

		SPARQL1.1 Service Description

		SPARQL 1.1 Federated Query

		SPARQL 1.1 Query Results JSON Format

		SPARQL 1.1 Query Results CSV and TSV Formats

		SPARQL Query Results XML Format (Second Edition)

		SPARQL 1.1 Entailment Regimes

		SPARQL 1.1 Protocol (this document)

		SPARQL 1.1 Graph Store HTTP Protocol

 Summary ofNo Substantive Changes

There have been no substantive changes to this document since the previous version. For details on anyMinor editorial changes seechanges, if any, are detailed in the change log and visible in the color-coded diff.

 W3C MembersPlease Review By 26 February 2013 The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 26 February 2013. This will allow the Director to assess consensus and determine whetherSend Comments

Please send any comments to issuepublic-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document as a W3C Recommendation. Others are encouragedby the SPARQL Working Group to continue to send reports of implementation experience, and other feedback, to public-rdf-dawg-comments@w3.org (public archive). Reports of any success or difficulty withis complete, comments may be addressed in the test cases are encouraged.errata or in future revisions. Open discussion among developersis welcome at public-sparql-dev@w3.org (public archive).

 Support The advancement ofEndorsed By W3C

This Proposed Recommendation is supporteddocument has been reviewed by the disposition of comments on the previous drafts, the Test Suite ,W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the list of implementations (with test results) . No Endorsement PublicationDirector as a Proposed Recommendation does not imply endorsement by theW3C Membership. ThisRecommendation. It is a draftstable document and may be updated, replacedused as reference material or obsoleted by other documents at any time. Itcited from another document. W3C's role in making the Recommendation is inappropriateto citedraw attention to the specification and to promote its widespread deployment. This document as other than work in progress.enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents

1 Introduction

 1.1 Document Conventions

 1.2 Terminology

2 SPARQL Protocol Operations

 2.1 query operation

 2.1.1 query via GET

 2.1.2 query via POST with URL-encoded parameters

 2.1.3 query via POST directly

 2.1.4 Specifying an RDF Dataset

 2.1.5 Accepted Response Formats

 2.1.6 Success Responses

 2.1.7 Failure Responses

 2.2 update operation

 2.2.1 update via POST with URL-encoded parameters

 2.2.2 update via POST directly

 2.2.3 Specifying an RDF Dataset

 2.2.4 Success Responses

 2.2.5 Failure Responses

 2.3 Determining the Base IRI

3 Example SPARQL Protocol Requests (informative)

 3.1 Examples of SPARQL Query

 3.1.1 SELECT with service-supplied RDF Dataset

 3.1.2 SELECT with simple RDF Dataset

 3.1.3 CONSTRUCT with simple RDF
 dataset and HTTP content negotiation

 3.1.4 ASK with simple RDF Dataset

 3.1.5 DESCRIBE with simple RDF Dataset

 3.1.6 SELECT with complex RDF Dataset

 3.1.7 SELECT with query-only RDF Dataset

 3.1.8 SELECT with ambiguous RDF Dataset

 3.1.9 SELECT with malformed query fault

 3.1.10 SELECT with query request refused fault

 3.1.11 Long SELECT query using POST with URL encoding

 3.1.12 Long SELECT query using direct POST

 3.1.13 SELECT with internationalization

 3.2 Examples of SPARQL Update

 3.2.1 UPDATE using URL-encoded parameters

 3.2.2 UPDATE using POST directly

 3.2.3 UPDATE specifying dataset and using POST directly

 3.2.4 Multi-operation UPDATE using URL-encoded parameters

 3.2.5 Multi-operation UPDATE specifying dataset and using URL-encoded parameters

 3.2.6 Multi-operation UPDATE specifying dataset and using POST directly

4 Policy Considerations

 4.1 Security

5 Conformance

6 Changes Since Previous Recommendation (Informative)

[bookmark: appendices]Appendix

A References

 A.1 Normative References

 A.2 Other References

[bookmark: intro]1 Introduction

 This document describes the SPARQL 1.1 Protocol, a means of
 conveying SPARQL queries and updates from clients to SPARQL processors.
 The SPARQL Protocol has been designed for compatibility with the SPARQL 1.1 Query
 Language [SPARQL] and with the SPARQL 1.1
 Update Language for RDF. This document is
 primarily intended for software developers interested in implementing
 SPARQL query and update services and clients.

 The SPARQL Protocol consists of two HTTP
 operations: a query operation for performing SPARQL Query
 Language queries and an update operation for performing
 SPARQL Update Language requests. SPARQL Protocol clients send HTTP
 requests to SPARQL Protocol services that handle the request and send
 HTTP responses back to the originating client.
				

				A separate document describes the SPARQL 1.1 Graph Store HTTP Protocol
 which describes the use of HTTP operations for the purpose of managing a collection of graphs in the REST architectural style.
				

[bookmark: conventions]1.1 Document Conventions

					When this document uses the words must,
					must not, should, should not,
					may and recommended, and the words appear as
					emphasized text, they must be interpreted as described in
					RFC 2119 [RFC2119].
				

[bookmark: terminology]1.2 Terminology

 		SPARQL Protocol client

 		An HTTP client (as defined by RFC 2616 [RFC2616]) that sends HTTP requests for SPARQL
 Protocol operations. (Also known as: client)

 		SPARQL Protocol service

 		An HTTP server that services HTTP requests and sends back HTTP
 responses for SPARQL Protocol operations. The URI at which a SPARQL Protocol
 service listens for requests is generally known as a SPARQL endpoint.
 (Also known as: service)

 		SPARQL endpoint

 		The URI at which a SPARQL Protocol service listens for requests
 from SPARQL Protocol clients.

 		SPARQL Protocol operation

 		An HTTP request and response that conform to the protocol defined
 in this document.

 		RDF Dataset

 		A collection of a default graph and zero or more named graphs, as
 defined by the SPARQL 1.1 Query Language.

[bookmark: protocol]2 SPARQL Protocol Operations

 The SPARQL Protocol consists of two operations: query and update.
 A protocol operation defines combinations of:

		The HTTP method by which the request is sent.

		The HTTP query string parameters included in the HTTP request URI.

		The message content included in the HTTP request body.

		The message content included in the HTTP response body.

 The SPARQL 1.1 Protocol is built on top of HTTP. All HTTP requirements
				for requests and responses must be followed.

[bookmark: query-operation]2.1 query operation

 The query operation is used to send a SPARQL query
 to a service and receive the results of the query. The query
 operation MUST be invoked with either the HTTP
 GET or HTTP POST method. Client requests for this operation must include
 exactly one SPARQL query string (parameter name:
 query) and may include
 zero or more default graph URIs (parameter name:
 default-graph-uri) and named graph URIs (parameter
 name: named-graph-uri). The
 response to a query request is either the SPARQL XML Results
 Format, the SPARQL JSON Results Format, the SPARQL CSV/TSV Results Format, or an RDF
 serialization, depending on the query form [SPARQL] and content
 negotiation [RFC2616].

[bookmark: query-summary]		 		HTTP Method		Query String Parameters		Request Content Type		Request Message Body

		query via GET		GET		query (exactly 1)

 default-graph-uri (0 or more)

 named-graph-uri (0 or more)		None		None

		query via URL-encoded POST		POST		None		application/x-www-form-urlencoded		URL-encoded, ampersand-separated query parameters.

 query (exactly 1)

 default-graph-uri (0 or more)

 named-graph-uri (0 or more)

		query via POST directly		POST		default-graph-uri (0 or more)

 named-graph-uri (0 or more)		application/sparql-query		Unencoded SPARQL query string

 The query request's parameters must be sent
 according to one of these three options:

[bookmark: query-via-get]2.1.1 query via GET

Protocol clients may send protocol requests via
 the HTTP GET method. When using the GET method, clients must URL percent encode all parameters and include them as query parameter strings with the names given above [RFC3986].

 HTTP query string parameters must be separated with
 the ampersand (&) character. Clients may include
 the query string parameters in any order.

The HTTP request MUST NOT include a message body.

[bookmark: query-via-post-urlencoded]2.1.2 query via POST with URL-encoded parameters

 Protocol clients may send protocol requests via
 the HTTP POST method by URL encoding the parameters. When using
 this method, clients must URL percent encode [RFC3986] all
 parameters and include them as parameters within the request body
 via the application/x-www-form-urlencoded media type
 with the name given above.
 Parameters must be separated with
 the ampersand (&) character. Clients may include
 the parameters in any order. The content type header of the HTTP
 request must be set to
 application/x-www-form-urlencoded.

[bookmark: query-via-post-direct]2.1.3 query via POST directly

 Protocol clients may send protocol requests via
 the HTTP POST method by including the query directly and unencoded
 as the HTTP request message body. When using this approach, clients
 must include the SPARQL query string, unencoded,
 and nothing else as the message body of the request. Clients
 must set the content type header of the HTTP
 request to application/sparql-query. Clients
 may include the optional
 default-graph-uri and named-graph-uri
 parameters as HTTP query string parameters in the request URI. Note that UTF-8 is the only valid charset here.

[bookmark: dataset]2.1.4 Specifying an RDF Dataset

A SPARQL query is executed against an RDF
 Dataset. The RDF Dataset for a query may be specified either via the
 default-graph-uri and named-graph-uri
 parameters in the SPARQL Protocol or in the SPARQL query string using
					the FROM and FROM NAMED
					keywords.
 If different RDF Datasets are specified in both the protocol request and the
 SPARQL query string, then the SPARQL service must
 execute the query using the RDF Dataset given in the protocol request.

Note that a service may reject a query with HTTP response code
					400 if the service does not allow protocol clients to specify the RDF Dataset.

If an RDF Dataset is not specified in either the protocol request
 or the SPARQL query string, then implementations may
 execute the query against an implementation-defined default RDF
 dataset.

[bookmark: conneg]2.1.5 Accepted Response Formats

Protocol clients should use HTTP content
 negotiation [RFC2616] to request response formats that the client can
 consume. See below for more on potential response formats.

[bookmark: query-success]2.1.6 Success Responses

 The SPARQL Protocol uses the response status codes defined in HTTP to
 indicate the success or failure of an operation. Consult the HTTP
 specification [RFC2616] for detailed definitions of each status code.
 While a protocol service should use a 2XX HTTP
 response code for a successful query, it may
 choose instead to use a 3XX response code as per HTTP.

The response body of a successful query operation with a 2XX response is either:

		a SPARQL Results Document in XML, JSON, or CSV/TSV format (for SPARQL
							Query forms SELECT
							and ASK); or,

		an RDF graph [RDF-CONCEPTS] serialized, for example, in the RDF/XML syntax [RDF-XML], or an equivalent RDF graph serialization, for SPARQL Query forms DESCRIBE and CONSTRUCT).

The content type of the response to a successful query operation must be the media type defined for the format of the response body.

[bookmark: query-failure]2.1.7 Failure Responses

The HTTP response codes applicable to an unsuccessful query operation include:

		400 if the SPARQL query supplied in the request is not a legal sequence of characters in the language defined by the SPARQL grammar; or,

		500 if the service fails to execute the query. SPARQL
 Protocol services may also return a 500 response code if they
 refuse to execute a query. This
 response does not indicate whether the server may or may not
 process a subsequent, identical request or requests.

The response body of a failed query request is
 implementation defined. Implementations may use
 HTTP content negotiation to provide human-readable or
 machine-processable (or both) information about the failed query
 request.

A protocol service may use other 4XX or 5XX HTTP response codes for other failure conditions, as per HTTP.

[bookmark: update-operation]2.2 update operation

 The update operation is used to send a SPARQL update
 request to a service. The
 update operation must be invoked using the HTTP POST
 method.
 Client requests for this operation must include
 exactly one SPARQL update request string (parameter name:
 update) and may include
 zero or more default graph URIs (parameter name:
 using-graph-uri) and named graph URIs (parameter
 name: using-named-graph-uri). The
 response to an update request indicates success or failure of the
 request via HTTP response status code.

[bookmark: update-summary]		 		HTTP Method		Query String Parameters		Request Content Type		Request Message Body

		update via URL-encoded POST		POST		None		application/x-www-form-urlencoded		URL-encoded, ampersand-separated query parameters.

 update (exactly 1)

 using-graph-uri (0 or more)

 using-named-graph-uri (0 or more)

		update via POST directly		POST		using-graph-uri (0 or more)

 using-named-graph-uri (0 or more)		application/sparql-update		Unencoded SPARQL update request string

 The update request's parameters must be sent
 according to one of these two options:

[bookmark: update-via-post-urlencoded]2.2.1 update via POST with URL-encoded parameters

 Protocol clients may send update protocol requests via
 the HTTP POST method by URL encoding the parameters. When using
 this approach, clients must URL percent encode [RFC3986] all
 parameters and include them as parameters within the request body
 via the application/x-www-form-urlencoded media type
 with the name given above.
 Parameters must be separated with
 the ampersand (&) character. Clients may include
 the parameters in any order. The content type header of the HTTP
 request must be set to
 application/x-www-form-urlencoded.

[bookmark: update-via-post-direct]2.2.2 update via POST directly

 Protocol clients may send update protocol requests via
 the HTTP POST method by including the update request directly and unencoded
 as the HTTP request message body. When using this approach, clients
 must include the SPARQL update request string, unencoded,
 and nothing else as the message body of the request. Clients
 must set the content type header of the HTTP
 request to application/sparql-update. Clients
 may include the optional
 using-graph-uri and using-named-graph-uri
 parameters as HTTP query string parameters in the request URI.

[bookmark: update-dataset]2.2.3 Specifying an RDF Dataset

SPARQL Update requests are executed against a Graph Store, a mutable container of RDF graphs managed by a SPARQL service. The WHERE clause of a SPARQL update DELETE/INSERT operation [UPDATE]
 matches against data in an RDF
 Dataset, which is a subset of the Graph Store. The RDF Dataset for an update operation may be specified
 either in the operation string itself
 using the USING, USING NAMED, and/or WITH
					keywords, or it may be specified via the
 using-graph-uri and using-named-graph-uri
 parameters.

It is an error to supply the using-graph-uri or using-named-graph-uri parameters
 when using this protocol to convey a SPARQL 1.1 Update request that contains an operation that uses the
 USING, USING NAMED, or WITH clause.

A SPARQL Update processor should treat each occurrence of the using-graph-uri=g parameter in an
 update protocol operation as if a USING <g> clause were included for every operation in the SPARQL 1.1
 Update request. Similarly, a SPARQL Update processor should treat each occurrence of the using-named-graph-uri=g
 parameter in an update protocol operation as if a USING NAMED <g> clause were included for every operation in
 the SPARQL 1.1 Update request.

[bookmark: update-success]2.2.4 Success Responses

 The SPARQL Protocol uses the response status codes defined in HTTP to
 indicate the success or failure of an operation. Consult the HTTP
 specification [RFC2616] for detailed definitions of each status code.
 While a protocol service should use a 2XX HTTP
 response code for an update request that is successfully processed,
 it may
 choose instead to use a 3XX response code as per HTTP.

The response body of a successful update request is
 implementation defined. Implementations may use
 HTTP content negotiation to provide both human-readable and
 machine-processable information about the completed update
 request.

[bookmark: update-failure]2.2.5 Failure Responses

The HTTP response code for an unsuccessful update request should be:

		400 if the SPARQL update request string is not a legal sequence of
 characters in the language defined by the SPARQL Update grammar; or,

		500 if the service fails to execute the update request. SPARQL
 Protocol services may also return a 500 response code if they
 refuse to execute an update request. This
 response does not indicate whether the server may or may not
 process a subsequent, identical request or requests.

The response body of a failed update request is
 implementation defined. Implementations may use
 HTTP content negotiation to provide human-readable or
 machine-processable (or both) information about the failed update
 request.

A protocol service may use other 4XX or 5XX HTTP response codes for other failure conditions, as per HTTP.

[bookmark: base-iri]2.3 Determining the Base IRI

The BASE keyword in a SPARQL query or a SPARQL
 update request string defines the Base IRI used to resolve relative
 IRIs per Uniform
 Resource Identifier (URI): Generic Syntax [RFC3986] section 5.1.1, "Base URI Embedded in
 Content".
 The SPARQL Protocol
 does not dereference query URIs so section 5.1.3 does not apply.
 Finally, per section 5.1.4, SPARQL Protocol services must define their
 own base URI, which may be the service endpoint.

[bookmark: examples]3 Example SPARQL Protocol Requests (informative)

The following HTTP trace examples illustrate invocation of the
 query and update operations under several different scenarios. Some example traces are abstracted from complete HTTP traces in these ways:

		In some examples the string "EncodedQuery" represents the URL-encoded string equivalent of the SPARQL query string given in the example; the string "UnencodedQuery" represents the exact SPARQL query string given in the example without any encoding.

		For query operation examples, only partial response bodies, containing the query results, are displayed.

[bookmark: query-bindings-http-examples]3.1 Examples of SPARQL Query

[bookmark: select-svcsupplied]3.1.1 SELECT with service-supplied RDF Dataset

This SPARQL query

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?book ?who
WHERE { ?book dc:creator ?who }

is conveyed via HTTP GET to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:

GET /sparql/?query=PREFIX%20dc%3A%20%3Chttp%3A%2F%2Fpurl.org%2Fdc%2Felements%2F1.1%2F%3E%20%0ASELECT%20%3Fbook%20%3Fwho%20%0AWHERE%20%7B%20%3Fbook%20dc%3Acreator%20%3Fwho%20%7D%0A HTTP/1.1
Host: www.example
User-agent: my-sparql-client/0.1

That query against the service-supplied RDF Dataset, executed by
that SPARQL query service, returns the following query result:

HTTP/1.1 200 OK
Date: Fri, 06 May 2005 20:55:12 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

 <head>
 <variable name="book"/>
 <variable name="who"/>
 </head>
 <results>
 <result>
 <binding name="book"><uri>http://www.example/book/book5</uri></binding>
 <binding name="who"><bnode>r29392923r2922</bnode></binding>
 </result>
...
</sparql>

[bookmark: select-simple]3.1.2 SELECT with simple RDF Dataset

This SPARQL query

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?book ?who
WHERE { ?book dc:creator ?who }

is conveyed to the SPARQL query
service, http://www.other.example/sparql/, as illustrated in
this HTTP trace:

GET /sparql/?query=PREFIX%20dc%3A%20%3Chttp%3A%2F%2Fpurl.org%2Fdc%2Felements%2F1.1%2F%3E%20%0ASELECT%20%3Fbook%20%3Fwho%20%0AWHERE%20%7B%20%3Fbook%20dc%3Acreator%20%3Fwho%20%7D%0A&default-graph-uri=http%3A%2F%2Fwww.other.example%2Fbooks HTTP/1.1
Host: www.other.example
User-agent: my-sparql-client/0.1

That query — against the RDF Dataset identified by the value
 of the default-graph-uri
 parameter, http://www.other.example/books — executed
 by that SPARQL query service, returns the following query
 result:

HTTP/1.1 200 OK
Date: Fri, 06 May 2005 20:55:12 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="book"/>
 <variable name="who"/>
 </head>
...
</sparql>

[bookmark: construct-simple]3.1.3 CONSTRUCT with simple RDF
 dataset and HTTP content negotiation

This SPARQL query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX myfoaf: <http://www.example/jose/foaf.rdf#>

CONSTRUCT { myfoaf:jose foaf:depiction <http://www.example/jose/jose.jpg>.
 myfoaf:jose foaf:schoolHomepage <http://www.edu.example/>.
 ?s ?p ?o.}
WHERE { ?s ?p ?o. myfoaf:jose foaf:nick "Jo".
 FILTER (! (?s = myfoaf:kendall && ?p = foaf:knows && ?o = myfoaf:edd)
 && ! (?s = myfoaf:julia && ?p = foaf:mbox && ?o = <mailto:julia@mail.example>)
	 && ! (?s = myfoaf:julia && ?p = rdf:type && ?o = foaf:Person))
}

is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:

GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fwww.example%2Fjose-foaf.rdf HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1
Accept: text/turtle, application/rdf+xml

With the response illustrated here:

HTTP/1.1 200 OK
Date: Fri, 06 May 2005 20:55:11 GMT
Server: Apache/1.3.29 (Unix)
Connection: close
Content-Type: text/turtle

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix myfoaf: <http://www.example/jose/foaf.rdf#>.

myfoaf:jose foaf:name "Jose Jimeñez";
	 foaf:depiction <http://www.example/jose/jose.jpg>;
 foaf:nick "Jo";
...

Note: registration for the media type text/turtle was started but not completed at the time of this
publication. Please see http://www.w3.org/TR/turtle for the final
registered media type for the Turtle language.

[bookmark: ask-simple]3.1.4 ASK with simple RDF Dataset

This SPARQL query

PREFIX dc: <http://purl.org/dc/elements/1.1/>
ASK WHERE { ?book dc:creator "J.K. Rowling"}

is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:

GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fwww.example%2Fbooks HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1

With the response illustrated here:

HTTP/1.1 200 OK
Date: Fri, 06 May 2005 20:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head></head>
 <boolean>true</boolean>
</sparql>

[bookmark: describe-simple]3.1.5 DESCRIBE with simple RDF Dataset

This SPARQL query

PREFIX books: <http://www.example/book/>
DESCRIBE books:book6

is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated here:

GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fwww.example%2Fbooks HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1

With the response illustrated here:

HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/rdf+xml

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:books="http://www.example/book/"
 xmlns:dc="http://purl.org/dc/elements/1.1/" >
 <rdf:Description rdf:about="http://www.example/book/book6">
 <dc:title>Example Book #6 </dc:title>
 </rdf:Description>
</rdf:RDF>

[bookmark: select-complex]3.1.6 SELECT with complex RDF Dataset

This SPARQL query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?who ?g ?mbox
WHERE { ?g dc:publisher ?who .
 GRAPH ?g { ?x foaf:mbox ?mbox }
}

is conveyed to the SPARQL query service, http://www.example/sparql/,
 as illustrated here (with line breaks for legibility):

GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fwww.example%2Fpublishers
&default-graph-uri=http%3A%2F%2Fwww.example%2Fmorepublishers&named-graph-uri=http%3A%2F%2Fyour.example%2Ffoaf-alice
&named-graph-uri=http%3A%2F%2Fwww.example%2Ffoaf-bob&named-graph-uri=http%3A%2F%2Fwww.example%2Ffoaf-susan
&named-graph-uri=http%3A%2F%2Fthis.example%2Fjohn%2Ffoaf
Host: www.example
User-agent: sparql-client/0.1

With the response illustrated here:

HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="who"/>
 <variable name="g"/>
 <variable name="mbox"/>
 </head>
...
</sparql>

[bookmark: select-queryonly]3.1.7 SELECT with query-only RDF Dataset

This SPARQL query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?who ?g ?mbox
FROM <http://www.example/publishers>
FROM NAMED <http://www.example/alice>
FROM NAMED <http://www.example/bob>
WHERE { ?g dc:publisher ?who .
 GRAPH ?g { ?x foaf:mbox ?mbox }
}

is conveyed to the SPARQL query service, http://www.example/sparql/, as illustrated in this
HTTP trace:

GET /sparql/?query=EncodedQuery HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1

With the response illustrated here:

HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
...
</sparql>

[bookmark: select-ambiguous]3.1.8 SELECT with ambiguous RDF Dataset

This SPARQL query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?who ?g ?mbox
FROM <http://www.example/publishers>
FROM NAMED <http://www.example/john>
FROM NAMED <http://www.example/susan>
WHERE { ?g dc:publisher ?who .
 GRAPH ?g { ?x foaf:mbox ?mbox }
}

is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:

GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fwww.example%2Fmorepublishers
&named-graph-uri=http%3A%2F%2Fwww.example%2Fbob&named-graph-uri=http%3A%2F%2Fwww.example%2Falice HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1

This protocol operation contains an ambiguous RDF Dataset: the dataset specified in the query is different than the one
specified in the protocol (by way of default-graph-uri and named-graph-uri parameters). A
conformant SPARQL Protocol service must resolve this ambiguity by executing the query against the RDF Dataset specified in
the protocol:

HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="who"/>
 <variable name="g"/>
 <variable name="mbox"/>
 </head>
 <results>
 <result>
 <binding name="who">
 	<literal>Bob Hacker</literal>
 </binding>
 <binding name="g">
	<uri>http://www.example/bob</uri>
 </binding>
 <binding name="mbox">
 <uri>mailto:bob@oldcorp.example</uri>
 </binding>
 </result>
 <result>
 <binding name="who">
	<literal>Alice Hacker</literal>
 </binding>
 <binding name="g">
	<uri>http://www.example/alice</uri>
 </binding>
 <binding name="mbox">
	<uri>mailto:alice@work.example</uri>
 </binding>
 </result>
 </results>
</sparql>

[bookmark: select-malformed]3.1.9 SELECT with malformed query fault

This syntactically invalid SPARQL query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE { ?x foaf:name ?name
ORDER BY ?name }

is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:

GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fwww.example%2Fmorepublishers HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1

With the error response illustrated here:

HTTP/1.1 400 Bad Request
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: text/plain; charset=UTF-8

4:syntax error, unexpected ORDER, expecting '}'

[bookmark: select-refused]3.1.10 SELECT with query request refused fault

This SPARQL query

PREFIX bio: <http://bio.example/schema/#>
SELECT ?valence
FROM <http://another.example/protein-db.rdf>
WHERE { ?x bio:protein ?valence }
ORDER BY ?valence

is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:

GET /sparql/?query=EncodedQuery&default-graph-uri=http%3A%2F%2Fanother.example%2Fprotein-db.rdf HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1

With the error response illustrated here:

HTTP/1.1 500 Internal Server Error
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: text/plain

SPARQL Processing Service: Query Request Refused

Your request could not be processed because http://another.example/protein-db.rdf
could not be retrieved within the time alloted.

[bookmark: select-longpost]3.1.11 Long SELECT query using POST with URL encoding

Some SPARQL queries, perhaps machine generated, may be longer than
 can be reliably conveyed by way of the HTTP GET binding described in
 2.1.1 query via GET. In those cases
 the POST binding described in 2.1.2 query via POST with URL-encoded parameters may be used.
 This SPARQL query

PREFIX : <http://www.w3.org/2002/12/cal/icaltzd#>
PREFIX Chi: <http://www.w3.org/2002/12/cal/test/Chiefs.ics#>
PREFIX New: <http://www.w3.org/2002/12/cal/tzd/America/New_York#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?summary
WHERE {
 {
	Chi:D603E2AC-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-09-08T16:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:09:27Z"^^xsd:dateTime;
 :dtstart "2002-09-08T13:00:00"^^New:tz;
 :summary ?summary;
 :uid "D603E2AC-C1C9-11D6-9446-003065F198AC" .
 	}
	UNION
 {
	Chi:D603E90B-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-09-15T16:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:10:19Z"^^xsd:dateTime;
 :dtstart "2002-09-15T13:00:00"^^New:tz;
 :summary ?summary;
 :uid "D603E90B-C1C9-11D6-9446-003065F198AC" .
 	}
	UNION
 {
	Chi:D603ED6E-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-09-22T16:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:11:05Z"^^xsd:dateTime;
 :dtstart "2002-09-22T13:00:00"^^New:tz;
 :summary ?summary;
 :uid "D603ED6E-C1C9-11D6-9446-003065F198AC" .
 	}
	UNION
 {
	Chi:D603F18C-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-09-29T16:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:15:46Z"^^xsd:dateTime;
 :dtstart "2002-09-29T13:00:00"^^New:tz;
 :summary ?summary;
 :uid "D603F18C-C1C9-11D6-9446-003065F198AC" .
 	}
	UNION
 {
	Chi:D603F5B7-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-11-04"^^xsd:date;
 :dtstamp "2002-09-06T03:12:53Z"^^xsd:dateTime;
 :dtstart "2002-11-03"^^xsd:date;
 :summary ?summary;
 :uid "D603F5B7-C1C9-11D6-9446-003065F198AC" .
 	}
	UNION
 {
	Chi:D603F9D7-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-11-10T20:15:00"^^New:tz;
 :dtstamp "2002-09-06T03:14:12Z"^^xsd:dateTime;
 :dtstart "2002-11-10T17:15:00"^^New:tz;
 :summary ?summary;
 :uid "D603F9D7-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D604022C-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-11-17T17:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:14:51Z"^^xsd:dateTime;
 :dtstart "2002-11-17T14:00:00"^^New:tz;
 :summary ?summary;
 :uid "D604022C-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D604065C-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-10-06T19:05:00"^^New:tz;
 :dtstamp "2002-09-06T03:16:54Z"^^xsd:dateTime;
 :dtstart "2002-10-06T16:05:00"^^New:tz;
 :summary ?summary;
 :uid "D604065C-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6040A7E-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-10-13T19:15:00"^^New:tz;
 :dtstamp "2002-09-06T03:17:51Z"^^xsd:dateTime;
 :dtstart "2002-10-13T16:15:00"^^New:tz;
 :summary ?summary;
 :uid "D6040A7E-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6040E96-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-10-20T16:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:18:32Z"^^xsd:dateTime;
 :dtstart "2002-10-20T13:00:00"^^New:tz;
 :summary ?summary;
 :uid "D6040E96-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6041270-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-10-27T17:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:19:15Z"^^xsd:dateTime;
 :dtstart "2002-10-27T14:00:00"^^New:tz;
 :summary ?summary;
 :uid "D6041270-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6041673-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-11-24T20:05:00"^^New:tz;
 :dtstamp "2002-09-06T03:22:09Z"^^xsd:dateTime;
 :dtstart "2002-11-24T17:05:00"^^New:tz;
 :summary ?summary;
 :uid "D6041673-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6041A73-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-12-01T17:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:22:52Z"^^xsd:dateTime;
 :dtstart "2002-12-01T14:00:00"^^New:tz;
 :summary ?summary;
 :uid "D6041A73-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D60421EF-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-12-08T17:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:24:04Z"^^xsd:dateTime;
 :dtstart "2002-12-08T14:00:00"^^New:tz;
 :summary ?summary;
 :uid "D60421EF-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6042660-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-12-15T20:05:00"^^New:tz;
 :dtstamp "2002-09-06T03:25:03Z"^^xsd:dateTime;
 :dtstart "2002-12-15T17:05:00"^^New:tz;
 :summary ?summary;
 :uid "D6042660-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6042A93-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-12-22T17:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:25:47Z"^^xsd:dateTime;
 :dtstart "2002-12-22T14:00:00"^^New:tz;
 :summary ?summary;
 :uid "D6042A93-C1C9-11D6-9446-003065F198AC" .
 }
	UNION
 {
	Chi:D6042EDF-C1C9-11D6-9446-003065F198AC a :Vevent;
 :dtend "2002-12-28T21:00:00"^^New:tz;
 :dtstamp "2002-09-06T03:26:51Z"^^xsd:dateTime;
 :dtstart "2002-12-28T18:00:00"^^New:tz;
 :summary ?summary;
 :uid "D6042EDF-C1C9-11D6-9446-003065F198AC" .
 }
}

is conveyed to the SPARQL query
service, http://www.example/sparql/, as illustrated in this
HTTP trace:

POST /sparql/ HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 9461

query=EncodedQuery&default-graph-uri=http%3A%2F%2Fanother.example%2Fcalendar.rdf

With the response illustrated here:

HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="summary"/>
 </head>
 <results>
 <result>
 <binding name="summary">
 <literal>Chiefs vs. Cleveland @ Cleveland Stadium</literal>
 </binding>
 </result>
 <result>
 <binding name="summary">
 <literal>Chiefs vs. Jacksonville @ Arrowhead Stadium</literal>
 </binding>
 </result>
 <result>
 <binding name="summary">
 <literal>Chiefs vs. New England @ Gillette Stadium</literal>
 </binding>
 </result>
 ...
 <result>
 <binding name="summary">
 <literal>Chiefs vs. Oakland @ Network Associates Coliseum</literal>
 </binding>
 </result>
 </results>
</sparql>

[bookmark: select-longpost-direct]3.1.12 Long SELECT query using direct POST

SPARQL queries may also be POSTed directly without URL encoding,
 as described in 2.1.3 query via POST directly.
 The same query used in the previous example is conveyed
to the SPARQL query service, http://www.example/sparql/, as illustrated in this
HTTP trace:

POST /sparql/?default-graph-uri=http%3A%2F%2Fanother.example%2Fcalendar.rdf HTTP/1.1
Host: www.example
User-agent: sparql-client/0.1
Content-Type: application/sparql-query

UnencodedQuery

With the same response as in the previous example.

[bookmark: select-kanji]3.1.13 SELECT with internationalization

SPARQL queries may include internationalized characters or character sets. This SPARQL query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX 食: <http://www.w3.org/2001/sw/DataAccess/tests/data/i18n/kanji.ttl#>
SELECT ?name ?food
WHERE { [foaf:name ?name ; 食:食べる ?food] . }

is conveyed to the SPARQL query service, http://www.example/sparql/, as illustrated in this HTTP trace:

GET /sparql/?query=PREFIX%20foaf%3A%20%3Chttp%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2F%3E%0APREFIX%20%E9%A3%9F%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2Fsw%2FDataAccess%2Ftests%2Fdata%2Fi18n%2Fkanji.ttl%23%3E%0ASELECT%20%3Fname%20%3Ffood%20%0AWHERE%20%7B%20%5B%20foaf%3Aname%20%3Fname%20%3B%20%E9%A3%9F%3A%E9%A3%9F%E3%81%B9%E3%82%8B%20%3Ffood%20%5D%20.%20%7D
Host: www.example
User-agent: sparql-client/0.1

HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 12:48:25 GMT
Server: Apache/1.3.29 (Unix)
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
...
</sparql>

[bookmark: update-bindings-http-examples]3.2 Examples of SPARQL Update

[bookmark: update-urlencoded-simple]3.2.1 UPDATE using URL-encoded parameters

An example request, which is a serialisation of a request sent to http://localhost:8888/test for the query INSERT DATA { <a> <p> } is shown below using the URL-encoded parameter form.

POST /test HTTP/1.1
Host: localhost:8888
Accept: text/plain
Content-Length: 62
Content-Type: application/x-www-form-urlencoded

update=INSERT%20DATA%20%7B%20%3Ca%3E%20%3Cp%3E%20%3Cb%3E%20%7D

[bookmark: update-direct-simple]3.2.2 UPDATE using POST directly

Update requests may be sent as a POST request with a
						Content-Type of application/sparql-update:

POST /test HTTP/1.1
Host: localhost:8888
Accept: */*
Content-Type: application/sparql-update
Content-Length: 27

INSERT DATA { <a> <p> }

[bookmark: update-direct-simple-dataset]3.2.3 UPDATE specifying dataset and using POST directly

							A dataset for an update request may be specified using the using-graph-uri and using-named-graph-uri parameters.
							The serialisation of an example request sent to http://localhost:8888/test
							and specifying a dataset with default graph http://localhost:8888/people is shown below.
						

POST /test?using-graph-uri=http%3A%2F%2Flocalhost%3A8888%2Fpeople HTTP/1.1
Host: localhost:8888
Accept: */*
Content-Type: application/sparql-update
Content-Length: 136

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DELETE { ?person ?property ?value }
WHERE { ?person ?property ?value ; foaf:givenName 'Fred' }

[bookmark: update-urlencoded-multi]3.2.4 Multi-operation UPDATE using URL-encoded parameters

							A sequence of multiple operations may be included in a single request, separated by a ';' (semicolon).
							The serialisation of an example request sent to http://localhost:8888/test for the query
						

DELETE DATA { <a> <p> <old> } ;
INSERT DATA { <a> <p> <new> }

is shown below using the URL-encoded parameter form.

POST /test HTTP/1.1
Host: localhost:8888
Accept: */*
Content-Type: application/x-www-form-urlencoded
Content-Length: 130

update=DELETE%20DATA%20%7B%20%3Ca%3E%20%3Cp%3E%20%3Cold%3E%20%7D%20%3B%0AINSERT%20DATA%20%7B%20%3Ca%3E%20%3Cp%3E%20%3Cnew%3E%20%7D

[bookmark: update-urlencoded-multi-dataset]3.2.5 Multi-operation UPDATE specifying dataset and using URL-encoded parameters

							When POSTing an update request with URL-encoded parameters, the dataset parameters
							using-graph-uri and using-named-graph-uri are specified
							in the POST body with the serialized request.
							The serialisation of an example request sent to http://localhost:8888/test
							for the query
						

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
INSERT { GRAPH <http://localhost:8888/people> { ?person ?property ?value } }
WHERE { GRAPH ?g { ?person ?property ?value ; foaf:givenName 'Fred' } }

							and specifying a dataset with the named graphs http://localhost:8888/alice/foaf.rdf
							and http://localhost:8888/eve/foaf.rdf is shown below.
						

POST /test HTTP/1.1
Host: localhost:8888
Accept: */*
Content-Type: application/x-www-form-urlencoded
Content-Length: 130

using-named-graph-uri=http%3A%2F%2Flocalhost%3A8888%2Falice%2Ffoaf.rdf&using-named-graph-uri=http%3A%2F%2Flocalhost%3A8888%2Feve%2Ffoaf.rdf&update=PREFIX%20foaf%3A%20%3Chttp%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2F%3E%0AINSERT%20%7B%20GRAPH%20%3Chttp%3A%2F%2Flocalhost%3A8888%2Fpeople%3E%20%7B%20%3Fperson%20%3Fproperty%20%3Fvalue%20%7D%20%7D%0AWHERE%20%7B%20GRAPH%20%3Fg%20%7B%20%3Fperson%20%3Fproperty%20%3Fvalue%20%3B%20foaf%3AgivenName%20%27Fred%27%20%7D%20%7D

[bookmark: update-direct-multi-dataset]3.2.6 Multi-operation UPDATE specifying dataset and using POST directly

							The serialisation of an example request sent to http://localhost:8888/test
							and specifying a dataset with the named graphs http://localhost:8888/alice/foaf.rdf
							and http://localhost:8888/eve/foaf.rdf is shown below.
						

POST /test?using-named-graph-uri=http%3A%2F%2Flocalhost%3A8888%2Falice%2Ffoaf.rdf&using-named-graph-uri=http%3A%2F%2Flocalhost%3A8888%2Feve%2Ffoaf.rdf HTTP/1.1
Host: localhost:8888
Accept: */*
Content-Type: application/sparql-update
Content-Length: 190

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
INSERT { GRAPH <http://localhost:8888/people> { ?person ?property ?value } }
WHERE { GRAPH ?g { ?person ?property ?value ; foaf:givenName 'Fred' } }

[bookmark: policy]4 Policy Considerations

[bookmark: policy-security]4.1 Security

There are at least two possible sources of denial-of-service attacks against SPARQL protocol services. First, under-constrained
queries can result in very large numbers of results, which may require large expenditures of computing resources to process,
assemble, or return. Another possible source are queries containing very complex — either because of resource size, the number
of resources to be retrieved, or a combination of size and number — RDF Dataset descriptions, which the service may be unable
to assemble without significant expenditure of resources, including bandwidth, CPU, or secondary storage. In some cases such
expenditures may effectively constitute a denial-of-service attack. A SPARQL protocol service may place
restrictions on the resources that it retrieves or on the rate at which external resources are retrieved. There may be other sources
of denial-of-service attacks against SPARQL query processing services.

Since a SPARQL protocol service may make HTTP requests of other origin servers on behalf of its clients, it may be used as a
vector of attacks against other sites or services. Thus, SPARQL protocol services may effectively act as proxies for third-party
clients. Such services may place restrictions on the resources that they retrieve or on the rate at which external
resources can be retrieved. SPARQL protocol services may log client requests in such a way as to facilitate tracing
them with regard to third-party origin servers or services.

SPARQL protocol services may choose to detect these and other costly, or otherwise unsafe, queries, impose time
or memory limits on queries, or impose other restrictions to reduce the service's (and other service's) vulnerability to
denial-of-service attacks. They also may refuse to process such query requests.

SPARQL protocol services may remove, insert, and change underlying data via the update operation. To protect against malicious or destructive
updates, implementations may choose not to implement the update operation. Alternatively, implementations may choose to use HTTP authentication mechanisms
or other implementation-defined mechanisms to prevent unauthorized invocations of the update operation.

Different IRIs may have the same appearance. Characters in different scripts may look similar (a Cyrillic "о" may appear similar
to a Latin "o"). A character followed by combining characters may have the same visual representation as another character (LATIN
SMALL LETTER E followed by COMBINING ACUTE ACCENT has the same visual representation as LATIN SMALL LETTER E WITH ACUTE). Users of
SPARQL must take care to construct queries with IRIs that match the IRIs in the data. Further information about matching of similar
characters can be found in Unicode Security Considerations [UNISEC]
and Internationalized Resource Identifiers (IRIs) [RFC3987] Section 8.

[bookmark: conformance]5 Conformance

The status of the parts of SPARQL 1.1 Protocol (this document) is as follows:

		Section 1 Introduction: normative

		Section 2 SPARQL Protocol Operations: normative

		Section 3: Example SPARQL Protocol Requests: informative

		Section 4: Policy Considerations: normative

		Section 5: Conformance: normative

		Section 6: Changes Since Previous Recommendation: informative

		Section A.1: Normative References: normative

		Section A.2: Other References: informative

A [bookmark: conformant-sparql-protocol-service]conformant SPARQL Protocol service:

		must implement either the query operation or the update operation in the way described in this document ("SPARQL 1.1 Protocol");

		may implement both the query and update operations;

		must be consistent with the normative constraints (indicated by [RFC2119] keywords) described in 4. Policy Considerations.

[bookmark: changes]6 Changes Since Previous Recommendation (Informative)

This specification extends and updates the SPARQL Protocol for RDF of January, 2008. The significant changes are:

		Remove the WSDL definition of the protocol in favor of an HTTP-based protocol

		Define an Update operation for issuing SPARQL Update requests

		Updated conformance criteria to accommodate the update operation

		Relaxed the requirements on specific HTTP response codes to allow for other codes as long as they align with HTTP semantics

		Added a variant of the query operation that directly posts a query string in the body of a POST request

[bookmark: sec-bibliography]A References

[bookmark: sec-existing-stds]A.1 Normative References

							[bookmark: sparql][SPARQL]

							SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-query-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

					
							[bookmark: update][UPDATE]

							SPARQL 1.1 Update, P. Gearon, A. Passant, A. Polleres, Editors, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-update-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-update-20130321. Latest version available at http://www.w3.org/TR/sparql11-update.

					
							[bookmark: rdf-concepts][RDF-CONCEPTS]

							
						Resource Description Framework (RDF): Concepts and Abstract Syntax,
						Graham Klyne, Jeremy J. Carroll, Editors,
						W3C (World Wide Web Consortium),
						2004,
						http://www.w3.org/TR/rdf-concepts/ .
					

					
							[bookmark: rdf-xml][RDF-XML]

							
						RDF/XML Syntax Specification (Revised),
						Dave Beckett, Editor,
						W3C (World Wide Web Consortium),
						2004,
						http://www.w3.org/TR/rdf-syntax-grammar/ .
					

					
							[bookmark: rfc2119][RFC2119]

							
						RFC 2119: Key words for use in RFCs to Indicate Requirement Levels,
						Scott Bradner, Editor,
						IETF (Internet Engineering Task Force),
						1997,
						http://www.ietf.org/rfc/rfc2119.txt .
					

					
							[bookmark: rfc2616][RFC2616]

							
						RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1,
						R. Fielding, et al., Editors,
						IETF (Internet Engineering Task Force),
						1999,
						http://www.ietf.org/rfc/rfc2616.txt .
					

							[bookmark: rfc3986][RFC3986]

							
						RFC 3986: Uniform Resource Identifier (URI): Generic Syntax,
						T. Berners-Lee, R. Fielding, L. Masinter, Editors,
						IETF (Internet Engineering Task Force),
						2005,
						http://www.ietf.org/rfc/rfc3986.txt .
					

				

[bookmark: sec-other-references]A.2 Other References

							[bookmark: rfc3987][RFC3987]

							
						RFC 3987: Internationalized Resource Identifiers (IRIs),
						M. Duerst, M. Suignard, Editors,
						IETF (Internet Engineering Task Force),
						2005,
						http://www.ietf.org/rfc/rfc3987.txt .
					

					
							[bookmark: unisec][UNISEC]

							
						Unicode Security Considerations,
						Mark Davis, Michel Suignard, Editors,
						2010,
						http://www.unicode.org/reports/tr36/
					

				

Change Log

Changes since Last Call Changed error example to use text/plain instead of text/html.Proposed Recommendation

		None

Changes since Candidate Recommendation

		Fixed typo when referencing the application/x-www-form-urlencoded media type.

Changes since Last Call

		Changed error example to use text/plain instead of text/html.

sparql11-http-rdf-update/ProtocolModelIndirect.jpg
PUT / DELETE / POST

RDF payload (optional)
ey ((RDF Graph Content) <——— _.encoded IRl

-—
conditional headers

il Tormhs..enooded IR

sparql11-http-rdf-update/diff.xhtml

 [image: W3C]

 SPARQL 1.1 Graph Store HTTP Protocol

 W3C ProposedRecommendation 29 January21 March 2013

			This version:

			 http://www.w3.org/TR/2013/PR-sparql11-http-rdf-update-20130129/http://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321/

			Latest version:

			http://www.w3.org/TR/sparql11-http-rdf-update/

 		Previous version:

 		 http://www.w3.org/TR/2012/CR-sparql11-http-rdf-update-20121108//http://www.w3.org/TR/2013/PR-sparql11-http-rdf-update-20130129/

	
			Editor:

			Chimezie Ogbuji, chimezie@gmail.com, Invited Expert

 Please refer to the errata for this document, which may include some normative corrections.

See also translations.

 Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

 [bookmark: abstract]Abstract

 This document describes the use of HTTP operations for the purpose of managing a collection of RDF graphs. This interface is an alternative to the SPARQL 1.1 Update protocol. Most of the operations defined here can be performed using that interface, but for some clients or servers, this interface may be easier to implement or work with. This specification may serve as a non-normative suggestion for HTTP operations on RDF graphs which are managed outside of a SPARQL 1.1 graph store.

 Status of This Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is one of eleven SPARQL 1.1 Proposed Recommendations:Recommendations produced by the SPARQL Working Group:

		SPARQL 1.1 Overview

		SPARQL 1.1 Query Language

		SPARQL 1.1 Update

		SPARQL1.1 Service Description

		SPARQL 1.1 Federated Query

		SPARQL 1.1 Query Results JSON Format

		SPARQL 1.1 Query Results CSV and TSV Formats

		SPARQL Query Results XML Format (Second Edition)

		SPARQL 1.1 Entailment Regimes

		SPARQL 1.1 Protocol

		SPARQL 1.1 Graph Store HTTP Protocol

 Summary ofNo Substantive Changes

There have been no substantive changes to this document since the previous version. For details on anyMinor editorial changes seechanges, if any, are detailed in the change log and visible in the color-coded diff.

 W3C MembersPlease Review By 26 February 2013 The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 26 February 2013. This will allow the Director to assess consensus and determine whetherSend Comments

Please send any comments to issuepublic-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document as a W3C Recommendation. Others are encouragedby the SPARQL Working Group to continue to send reports of implementation experience, and other feedback, to public-rdf-dawg-comments@w3.org (public archive). Reports of any success or difficulty withis complete, comments may be addressed in the test cases are encouraged.errata or in future revisions. Open discussion among developersis welcome at public-sparql-dev@w3.org (public archive).

 Support The advancement ofEndorsed By W3C

This Proposed Recommendation is supporteddocument has been reviewed by the disposition of comments on the previous drafts, the Test Suite ,W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the list of implementations (with test results) . No Endorsement PublicationDirector as a Proposed Recommendation does not imply endorsement by theW3C Membership. ThisRecommendation. It is a draftstable document and may be updated, replacedused as reference material or obsoleted by other documents at any time. Itcited from another document. W3C's role in making the Recommendation is inappropriateto citedraw attention to the specification and to promote its widespread deployment. This document as other than work in progress.enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

 [bookmark: contents]Table of Contents

 		Introduction

 		Terminology

 		Protocol Model

 		Graph Identification

 		4.1Direct Graph Identification

 		4.2 Indirect Graph Identification

 		Graph Management Operations

 		5.1 Status Codes

 		5.2 HTTP GET

 		5.2.1Ambiguity Regarding the Range of HTTP GET (Informative)

 		5.3 HTTP PUT

 		5.4 HTTP DELETE

 		5.5 HTTP POST

 		5.6 HTTP HEAD

 		5.7 HTTP PATCH (Informative)

 		Security Considerations

 		References

 		
 Appendix

 		8.1 Acknowledgements

 1 [bookmark: introduction]Introduction

 This document describes an application protocol for the distributed updating and fetching of RDF graph content in a Graph Store via the mechanics of the Hypertext Transfer Protocol (HTTP) [RFC2616]. In doing so, it appeals to the following interface constraints that emphasize the core, architectural components underlying HTTP:

 		identification of resources (via Request IRI and the IRI of a graph in a Graph Store)

 		manipulation of resources through representations (via the use of an RDF graph representation as input to RDF graph management actions)

 		self-describing messages (via the inherent characteristics of RDF as the framework for a Self-Describing Semantic Web)

 This specification relies on an intuitive interpretation of the underlying HTTP protocol semantics to determine interaction with a Graph Store. Where the meaning of the operations are described, a SPARQL Update equivalent syntax is shown for clarity.

 When this document uses the words MUST, MUST NOT, SHOULD, SHOULD NOT,
 MAY and RECOMMENDED, and the words appear as emphasized text, they must be interpreted as described in
 RFC 2119 [RFC2119].

 2 [bookmark: introduction]Terminology

 The following terminology is used in this document:

 		URI - A Uniform Resource Identifier as defined in [RFC3986].

 		IRI - An Internationalized Resource Identifier as defined in [RFC3987]. Before an IRI found in a document is used by HTTP, the IRI is first converted to a URI.

 		
 Resource - Per [RDF-MT], the referents of RDF URI references are called "resources", but no assumptions are made about their nature. For the sake of this protocol, the [RFC2616] definition is used (unless the term "RDF Resource" is used explicitly): a network-accessible data object or service identified by an IRI.

 		Resolvable URI - A URI whose resource potentially has one or more representations available via invoking HTTP GET on the URI as defined in [WEBARCH].

 		RDF document - A serialization of an RDF Graph into a concrete syntax, typically an RDF/XML or Turtle document.

 		Graph Store - A mutable repository of RDF graphs managed by one or more services [SPARQL-UPDATE].

 		Graph IRI - An IRI involved in this protocol that is specified as a request URI or embedded as the query component of a request URI and corresponds to the IRI of a graph in the underlying Graph Store.

 		RDF graph content - An information resource identified by the graph IRI of a named graph and managed by a server that implements this protocol or
 identified by an indirect operation or the default graph. See [WEBARCH] for further discussion on Resources.

 		RDF payload - The representation [RFC2616] comprised of an RDF document that is sometimes included with the body of invocations of the operations defined here.

 Servers implementing this protocol are HTTP/1.1 servers [RFC2616] and MUST interpret request messages as graph management operations on an underlying Graph Store. The subject of the operation is indicated by the request IRI.

 3 [bookmark: prot-model]Protocol Model

 This protocol specifies the semantics of HTTP operations for managing a Graph Store. In particular, it provides operations
 for removing, creating, and replacing RDF graph content as well as for adding RDF statements to existing RDF graph content. The interface defined here uses IRIs to direct native HTTP operations to an implementation of this protocol which responds by making appropriate
 modifications to the underlying Graph Store. A compliant implementation of this specification MUST accept HTTP
 requests directed at its Graph Store and handle them as specified by this protocol with the exception of security considerations such as those discussed in section 7 and others (Denial-of-Service attacks, etc.)

 4 [bookmark: graph-identification]Graph Identification

 A client using this protocol to manipulate a graph store needs an IRI for each graph. Within the graph store, each graph (except the default graph) is associated with a graph IRI. In some cases ("Direct Graph Identification"), the graph IRIs can be directly used as the request URI of a graph management operation. In other cases ("Indirect Graph Identification"), the Graph Store IRI is used to route the operations onto RDF graph content.

 4.1 [bookmark: direct-graph-identification]Direct Graph Identification

 We recall from [SPARQL] that IRIs for RDF graphs in SPARQL queries identify a resource, and the resource can have a
 representation that serializes that graph (or, more precisely: by an RDF document of the graph)

 Consider the following HTTP request to a server that implements this protocol:

 GET /rdf-graphs/employees HTTP/1.1
 Host: example.com
 Accept: text/turtle; charset=utf-8

 Per [RFC2616], the most common usage of a Request-URI is to identify a resource on an origin server or gateway. In our example,
 the corresponding request, http://example.com/rdf-graphs/employees is meant to identify RDF triples on the example.com server that describe
 employees. In addition, the
 request specifies the GET method, which means that a representation of these triples should be returned. In this case,
 the preferred representation format is text/turtle

 In this way, the server would route operations onto a named graph in a Graph Store via its Graph IRI. However, in using an IRI in this way,
 we are not directly identifying an RDF graph but rather the RDF graph content that is represented by an RDF document, which is a serialization of that graph.
 Intuitively, the set of interpretations that satisfy [RDF-MT] the RDF graph the RDF document serializes can be thought of as this RDF graph content.

 The diagram illustrates this distinction. This diagram illustrates the basic kind of operation where the request URI
 identifies the RDF graph content being manipulated over the protocol. Requests to an implementation of this protocol receive HTTP requests using one of the HTTP methods that is directed at some RDF graph content. Above the arrows indicating the request is the relevant HTTP methods and below is any message body content or additional headers that accompany the request. At the head of the arrows leaving RDF graph content is the message body for the corresponding response.

 [image: Protocol model diagram]

 Figure 1: A diagram of the protocol model for direct graph references.

 4.2 [bookmark: indirect-graph-identification]Indirect Graph Identification

 Despite the convenience of using the request URI to identify RDF graph content for manipulation, it is often the case that:

 		the naming authority associated with the IRI of an RDF graph in a Graph Store is not the same as the server managing the identified RDF content

 		the naming authority is not available

 		the IRI is not dereferenceable (i.e., when dereferenced, it does not produce a RDF graph representation)

 As discussed in [RFC3986], query components are often used to carry identifying information in the form of key / value pairs where the value is another IRI. This protocol leverages this convention and
 provides a specific interface whereby a graph IRI can be embedded within the query component of the request IRI:

 GET /rdf-graph-store?graph=http%3A//www.example.com/other/graph HTTP/1.1
 Host: example.com
 Accept: text/turtle; charset=utf-8

 In the example above, the encoded graph IRI (http://www.example.com/other/graph) is percent-encoded [RFC3986] and indirectly
 identifies RDF triples to manipulate. Any server that implements this protocol and receives a request IRI
 in this form MUST perform the indicated operation on the RDF graph content identified by the IRI embedded in the query component where the IRI is the
 result of percent-decoding the value associated with the graph key. The query string IRI MUST be an absolute IRI and the server MUST
 respond with a 400 Bad Request if it is not. The diagram below illustrates this.

 [image: Protocol model diagram for indirect manipulation]

 Figure 2: A diagram of the protocol model for indirect graph references (uses the same legend as the previous diagramT).

 As indicated in section 3.3 of [RFC3986], the path component (of an IRI) contains data, usually organized in hierarchical form, that, along with data in the
 non-hierarchical query component, serves to identify a resource within the scope of the IRI's scheme and naming authority. As a result, the full request
 IRI identifies the same RDF graph content as does the IRI embedded in the query component.

 A future Working Group may provide additional interfaces for indirectly identifying RDF graph content as well as mechanisms for their discovery.

 In a similar manner, a query component comprised of the string default can be used to indicate that the operation indirectly identifies
 the default graph in the Graph Store. In this way, the example above can be modified to a request for an RDF/XML document that serializes
 the default graph in the Graph Store:

 GET /rdf-graph-store?default HTTP/1.1
 Host: example.com
 Accept: text/turtle; charset=utf-8

 In a request such as:

 GET /rdf-graph-store?graph=http%3A//www.example.com/other/graph HTTP/1.1
 Host: example.com
 Accept: text/turtle; charset=utf-8

 http://www.example.com/rdf-graph-store identifies the Graph Store managed by the HTTP service. In order to dispatch requests
 to manage named or default graphs by embedding them in the query component of the Graph Store URL, the URL will need to be known a priori.

 5 [bookmark: graph-management]Graph Management Operations

 This section describes the use of the HTTP verbs to determine the operations performed on RDF graph content. In places where an equivalent SPARQL Update operation is given,
 <graph_uri> is understood to be either the request IRI or the IRI indirectly specified via the query component as described above. Similarly, in the case of
 an operation that manages the default graph, the SPARQL Update operation will not include any mention of a graph.

 If the Accept header is not provided with a GET request, the server MUST return one of RDF XML, Turtle, or N-Triples. For operations involving an RDF payload (PUT and POST), the server MUST parse the RDF payload according to media type specified in the Content-Type header if it is provided in the request. If the header is not provided, the implementation has a routine that can guess the type by the content of the resource or via the extension of the file it was loaded from, and such a routine reported that the resource was clearly some other document format and not RDF/XML, then the implementation MAY attempt to parse the document using this format. Otherwise, if this header is not provided, the server SHOULD attempt to parse the RDF payload as RDF/XML.

 This protocol also supports the proper handling of operations involving "multipart/form-data" [html4]. In particular,
 section 17.13.4 Form content types discusses how content indicated
 with the multipart/form-data content type are messages containing a series of parts. This protocol supports the submission of multiple
 RDF documents in operations involving some indicated RDF graph content via this mechanism, where each document is uploaded using the standard web form file upload widget. The specifics of this mechanism is discussed in section 5.5 (HTTP POST).

 Developers of implementations of this protocol should refer to [RFC2616] for additional details of appropriate behavior beyond those specified here. Section
 5 only serves to define the behavior specific to the manipulation of RDF graph content. For example, conditional requests that make use of headers such as
 If-Modified-Since that are intended to reduce unnecessary network usage should be handled appropriately by implementations of this protocol per [RFC2616].

 5.1 [bookmark: http-put]Status Codes

Implementations MUST use the response status codes defined in HTTP [RFC2616] to indicate the success or failure of an operation. Developers should consult the HTTP specification for detailed definitions of each status code. For example, in response to operations involving an RDF payload, if
the attempt to parse the RDF payload according to the provided Content-Type fails then the server MUST respond with a 400 Bad Request.

 A request using an unsupported HTTP verb in
 conjunction with a malformed or unsupported request syntax MUST receive a response with a 405 Method Not Allowed. If the RDF graph content identified in the request does not exist in the server,
 and the operation requires that it does, a 404 Not Found response code MUST be provided in the response.

 If a clients issues a POST or PUT with a content type that is not understood by the graph store, the implementation MUST respond with 415 Unsupported Media Type. The use of 401 and 403 is covered later in the section regarding security.

 5.2 [bookmark: http-get]HTTP GET

 A request that uses the HTTP GET method MUST retrieve an RDF payload that is a serialization of the named graph paired with the graph IRI in the Graph Store. Developers of implementations of this protocol should refer to [RFC2616] (section 13) for details on recommended cache-control headers and usage.

 The following two operations are considered to be equivalent

 GET /rdf-graph-store?graph=..graph_uri.. HTTP/1.1
 Host: example.com
 Accept: text/turtle; charset=utf-8

 CONSTRUCT { ?s ?p ?o } WHERE { GRAPH <graph_uri> { ?s ?p ?o } }

 Where the request involves the default query component, the following two operations are equivalent

 GET /rdf-graph-store?default HTTP/1.1
 Host: example.com
 Accept: text/turtle; charset=utf-8

 CONSTRUCT { ?s ?p ?o } WHERE { ?s ?p ?o }

 The response to such request SHOULD be made cacheable wherever possible and in any of the preferred representation formats specified in the Accept request-header field. In the event that the specified representation format is not supported,
 a 406 Not Acceptable response code SHOULD be returned.

 5.2.1 Ambiguity Regarding the Range of HTTP GET (Informative)

 Historically, there has been some ambiguity regarding the nature of what
 is returned from dereferencing an IRI. When an HTTP GET is invoked with a request IRI, what is returned and what is its relation to the resource
 identified by the request IRI? In resolving this ambiguity, the W3C Technical Architecture Group specified a simple rule
 that determines the nature of the resource based on the response code returned. In this protocol, HTTP GET requests
 are used to retrieve a representation of the RDF graph content identified (directly or indirectly) by the request IRI. Graph IRIs identify
 RDF graph content (an information resource) and so such a request should receive a response with a 200 (Ok) which is consistent
 with these rules, the first of which states:

 If an "http" resource responds to a GET request with a 2xx response, then the resource identified by that IRI is an information resource.

 Information resources are resources with essential characteristics that can all be conveyed in a message [WEBARCH]. In this case,
 the characteristics of RDF graph content can be conveyed as RDF payload which serializes the named graph paired with the
 graph IRI in the underlying Graph Store. This protocol provides a means
 for requesting the representation without the need for indirection at the protocol level even if
 the naming authority associated with the IRI of the named RDF graph in the Graph Store is not the same as the
 server managing the identified RDF graph content.

 5.3 [bookmark: http-put]HTTP PUT

 A request that uses the HTTP PUT method MUST store the enclosed RDF payload as RDF graph content. In the examples below, the initial HTTP
 request MUST be understood to have the same effect as the sequence of SPARQL Update operations that follow

 PUT /rdf-graph-store?graph=..graph_uri.. HTTP/1.1
 Host: example.com
 Content-Type: text/turtle

 ... RDF payload ...

 DROP SILENT GRAPH <graph_uri>;
 INSERT DATA { GRAPH <graph_uri> { .. RDF payload .. } }

 In the case where the default graph is targeted (via default query component) for management, the following operations are equivalent

 PUT /rdf-graph-store?default HTTP/1.1
 Host: example.com
 Content-Type: text/turtle

 ... RDF payload ...

 DROP SILENT DEFAULT;
 INSERT DATA { .. RDF payload .. }

 Either the request or the encoded IRI (embedded in the query component) identifies the RDF payload enclosed with the request as RDF graph content.
 The server MUST NOT attempt to apply the request to some other resource. If the identified RDF graph content already exists, the enclosed entity MUST be considered
 as a modified version of the one residing on the origin server. If the identified RDF graph content does not exist and that IRI is capable of being defined as new RDF graph content by the requesting user
 agent, the origin server MUST create the RDF graph content with that IRI in the underlying Graph Store. DROP is needed to remove any previous
 RDF graph content. Developers should refer to [SPARQL-UPDATE] for the specifics of how to handle empty graphs. For implementations that support empty graphs, if the request body is empty and there is sufficient authorization to create a new named graph using the IRI used in the request IRI, then an empty graph would need to be created. Note, this option is only relevant for situations where an empty body is appropriate for the indicated content-type. Otherwise, as described in section 5.1, a 400 Bad Request SHOULD be returned.

 If new RDF graph content is created, the origin server MUST inform the user agent via the 201 Created response. If existing RDF graph content
 is modified, either the 200 OK or 204 No Content response codes MUST be sent to indicate successful completion of the request.
 If the resource could not be created or modified with the request IRI (perhaps due to security considerations), an appropriate error response SHOULD be given that reflects
 the nature of the problem.

 5.4 [bookmark: http-delete]HTTP DELETE

 A request that uses the HTTP DELETE method SHOULD delete the RDF graph content identified by either the request or encoded IRI. This method MAY be overridden
 by human intervention (or other means) on the origin server. If there is no such RDF graph content in the Graph Store, the server MUST respond with a
 404 Not Found response code. An example of when the method may be overridden is in a content management system with optimistic concurrency controls.

 DELETE /rdf-graph-store?graph=..graph_uri.. HTTP/1.1
 Host: example.com

 Is equivalent to:

 DROP GRAPH <graph_uri>

 in the case where a named graph is targeted for management. Otherwise, the following

 DELETE /rdf-graph-store?default HTTP/1.1
 Host: example.com

 is equivalent to

 DROP DEFAULT

 A response code of 200 OK or 204 No Content MUST be given in the response if the operation succeeded or 202 (Accepted) if the action has not
 yet been enacted. However, the server SHOULD NOT indicate success unless, at the time the response is given, it intends to delete
 the RDF graph content or move it to an inaccessible location. In the event the operation is overridden, a response code of 403 Forbidden
 should be returned.

 5.5 [bookmark: http-post]HTTP POST

 A request that uses the HTTP POST method and a request IRI that identifies RDF graph content MUST be understood as a request that the origin server perform an RDF merge of the enclosed
 RDF payload enclosed into the RDF graph content identified by the request or encoded IRI. The following two operations are considered to have the same effect

 POST /rdf-graph-store?graph=..graph_uri.. HTTP/1.1
 Host: example.com
 Content-Type: text/turtle

 ... RDF payload ...

 INSERT DATA { GRAPH <graph_uri> { .. RDF payload .. } }

 In the case where a default graph is targeted for management, the following are equivalent

 POST /rdf-graph-store?default HTTP/1.1
 Host: example.com
 Content-Type: text/turtle

 ... RDF payload ...

 INSERT DATA { .. RDF payload .. }

 As mentioned earlier, "multipart/form-data" can be dispatched to implementations of this protocol. When used with POST this operation MUST be understood as a request that the origin server perform an RDF merge of the graphs - that the documents submitted with the multipart form are a serialization of - into the RDF graph content identified by the request or encoded IRI. In such a case, if the Content-Type is not provided, implementations MAY attempt to determine it from the file's extension rather than respond with 400 Bad Request.

 If the request IRI identifies the underlying Graph Store,
 the origin server MUST create a new RDF graph comprised of the statements in the RDF payload and return a designated graph IRI associated with the new graph.
 The new graph IRI should be specified in the Location HTTP header along with a 201 Created code and be different from the request IRI.

 This scenario is useful for situations where the requesting agent either does not want to specify the graph IRI of a new graph to create
 (via the PUT method) or does not have the appropriate authorization to do so. If the graph IRI does not identify either a Graph Store or RDF graph content, the origin server should respond with a 404 Not Found.

 In either case, if the request body is empty, the implementation SHOULD respond with 204 No Content.

 This protocol is a companion to the use of both SPARQL Update and SPARQL Query over the SPARQL protocol via HTTP POST. Both protocols specify different operations performed via the HTTP POST method.

 5.6 [bookmark: http-get]HTTP HEAD

 When used in this protocol, the HTTP HEAD method is identical to GET except that the server MUST NOT return a message-body in the response. It is meant to be used for
 testing dereferenceable IRIs for validity, accessibility, and recent modification.

 The response to such a request from a server that manages a Graph Store
 MAY be cacheable. If the new field values indicate that the cached RDF graph content differs from the current entity (as would be indicated by a change in Content-Length, Content-MD5, ETag or Last-Modified), then the cache MUST treat the cache entry as stale. As mentioned in the beginning of the previous section, developers should refer to [RFC2616] for the specifics of this.

 5.7 HTTP PATCH (Informative)

 The IETF specified Patch Method for HTTP can be used to request that a set of changes described
 in the request entity be applied to the named graph associated with the graph IRI of the RDF graph content resource identified by the request IRI.

 SPARQL 1.1 Update can be used as a patch document. In particular, SPARQL 1.1 Update requests that manage
 the graph associated with the RDF graph content identified (directly or indirectly) in the request can be used
 as the RDF payload of a HTTP PATCH request to modify it. If a SPARQL 1.1 Update request is used as the RDF payload for a PATCH request that
 makes changes to more than one graph or the graph it modifies is not the one indicated, it would be prudent for the server
 to respond with a 422 Unprocessable Entity status.

 Intuitively, the difference between the PUT and PATCH requests is reflected in the
 way the server processes the enclosed entity to modify the RDF graph content
 given by the request IRI. In a PUT request, the enclosed entity
 is considered to be a modified version of the RDF graph content stored on the
 origin server, and the client is requesting that the stored version
 be replaced. With PATCH, however, the enclosed entity contains a set
 of instructions describing how the RDF graph content residing on the
 origin server should be modified to produce a new version.

 6 [bookmark: security]Security Considerations

 As with any protocol that is implemented as a layer above HTTP, implementations SHOULD take advantage of the many security-related facilities associated with it and are not required to carry out requested graph management operations that may be in contradistinction to a particular security policy in place. For example, when faced with an unauthenticated request to replace system critical RDF statements in a graph through the PUT method, applications may consider responding with the
 401 status code (Unauthorized), indicating that the appropriate authorization is required. In cases where authentication is provided fails to meet the requirements of a particular access control policy, the
 403 status code (Forbidden) can be sent back to the client to indicate this failure to meet the access control policy.

 7 References

7.1
[bookmark: section-Normative-References]Normative References

		RFC2119

		
 RFC 2119: Key words for use in RFCs to Indicate Requirement Levels,
 Scott Bradner, 1997. (See http://www.ietf.org/rfc/rfc2119.txt)

		HTML 4.01

		
 HTML 4.01 Specification,
 D. Raggett, A. Le Hors, and I. Jacobs, 1999. (See http://www.w3.org/TR/html4/)

		RFC3986

		Uniform Resource Identifier (URI): Generic Syntax, Berners-Lee, Fielding, Masinter, January 2005.

		RFC2616

		Hypertext Transfer Protocol - HTTP/1.1. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
June 1999. Available at http://www.ietf.org/rfc/rfc2616.txt.

		
[bookmark: WEBARCH]WEBARCH

		

Architecture of the World Wide Web, Volume One
, N. Walsh, I. Jacobs, Editors, W3C Recommendation, 15 December 2004, http://www.w3.org/TR/2004/REC-webarch-20041215/ . Latest version available at http://www.w3.org/TR/webarch/ .

		RFC3987

		Internationalized Resource Identifiers (IRIs), Duerst, Suignard, January 2005.

		
 [bookmark: SPARQL-UPDATE]SPARQL-UPDATE

 		SPARQL 1.1 Update, P. Gearon, A. Passant, A. Polleres, Editors, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-update-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-update-20130321. Latest version available at http://www.w3.org/TR/sparql11-update.

7.2
[bookmark: section-informative-references]Informative References

		
 [bookmark: RDF-MT]RDF-MT

 		

 RDF Semantics
 , P. Hayes, Editor, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ . Latest version available at http://www.w3.org/TR/rdf-mt/ .

		
 [bookmark: SPARQL]SPARQL

 		SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-query-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

8 Appendix

Acknowledgements
[bookmark: section-appendix-acknowledgement]

The editor would like to thank the following individuals for their input into the creation of this document:

Sandro Hawke, Birte Glimm, Andy Seaborne, Steve Harris, Arnaud Le Hors, Ivan Mikhailov, David Booth, Simon Johnston, Kjetil Kjernsmo, Gregg Reynolds, Leigh Dodds, Tim Berners-Lee, and Ian Davis

 Change Log

 Changes since Proposed Recommendation

 		None

 Changes since Candidate Recommendation

 		None

 Changes since Last Call

 		Removed reference to REST

 Changes since Candidate Recommendation None

sparql11-entailment/bnodeExample.png
Sgess|ong)eg

sparql11-overview/diff.xhtml
[image: W3C]

[bookmark: title]SPARQL 1.1 Overview

[bookmark: w3c-doctype]W3C ProposedRecommendation 08 November 201221 March 2013

		This version:

		
			 http://www.w3.org/TR/2012/PR-sparql11-overview-20121108/http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
		

		Latest version:

		
			http://www.w3.org/TR/sparql11-overview/
		

		Previous version:

		 http://www.w3.org/TR/2012/WD-sparql11-overview-20120501/http://www.w3.org/TR/2012/PR-sparql11-overview-20121108/

		Editor:

		The W3C SPARQL Working Group, see Acknowledgements <public-rdf-dawg-comments@w3.org>

Please refer to the errata for this document, which may
 include some normative corrections.

See also translations.

Copyright © 2012 © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract

This document is an overview of SPARQL 1.1. It provides an introduction to a set of W3C specifications that facilitate querying and manipulating RDF graph content on the Web or in an RDF store.

[bookmark: status]Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is being published asone of a set of 11 documents:eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:

		SPARQL 1.1 Overview (this document)

		SPARQL 1.1 Query Language

		SPARQL 1.1 Update

		SPARQL1.1 Service Description

		SPARQL 1.1 Federated Query

		SPARQL 1.1 Query Results JSON Format

		SPARQL 1.1 Query Results CSV and TSV Formats

		SPARQL Query Results XML Format (Second Edition)

		SPARQL 1.1 Entailment Regimes

		SPARQL 1.1 Protocol

		SPARQL 1.1 Graph Store HTTP Protocol

 Summary ofNo Substantive Changes

There have been no substantive changes to this document since the previous version. For details on anyMinor editorial changes seechanges, if any, are detailed in the change log and visible in the color-coded diff.

 W3C MembersPlease Review By 6 December 2012 The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 6 December 2012. This will allow the Director to assess consensus and determine whetherSend Comments

Please send any comments to issuepublic-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document as a W3C Recommendation. Others are encouragedby the SPARQL Working Group to continue to send reports of implementation experience, and other feedback, to public-rdf-dawg-comments@w3.org (public archive). Reports of any success or difficulty withis complete, comments may be addressed in the test cases are encouraged.errata or in future revisions. Open discussion among developersis welcome at public-sparql-dev@w3.org (public archive).

 Support The advancement ofEndorsed By W3C

This Proposed Recommendation is supporteddocument has been reviewed by the disposition of comments on the previous drafts, the Test Suite ,W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the list of implementations (with test results) . No Endorsement PublicationDirector as a Proposed Recommendation does not imply endorsement by theW3C Membership. ThisRecommendation. It is a draftstable document and may be updated, replacedused as reference material or obsoleted by other documents at any time. Itcited from another document. W3C's role in making the Recommendation is inappropriateto citedraw attention to the specification and to promote its widespread deployment. This document as other than work in progress.enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents

1 Introduction

 1.1 Example

2 SPARQL 1.1 Query Language

3 Different query results formats supported by SPARQL 1.1 (XML, JSON, CSV, TSV)

4 SPARQL 1.1 Federated Query

5 SPARQL 1.1 Entailment Regimes

6 SPARQL 1.1 Update Language

7 SPARQL 1.1 Protocol for RDF

8 SPARQL 1.1 Service Description

9 SPARQL 1.1 Graph Store HTTP Protocol

10 Acknowledgements

11 References

[bookmark: sec-intro]1 Introduction

SPARQL 1.1 is a set of specifications that provide languages and protocols to query and manipulate RDF graph content on the Web or in an RDF store. The standard comprises the following specifications:

		SPARQL 1.1 Query Language - A query language for RDF.

		SPARQL 1.1 Query Results JSON Format and SPARQL 1.1 Query Results CSV and TSV Formats - Apart from the standard SPARQL Query Results XML Format [SPARQL-XML-Result], SPARQL 1.1 now allows three alternative popular formats to exchange answers to SPARQL queries, namely JSON, CSV (comma separated values) and TSV (tab separated values) which are described in these two documents.

		SPARQL 1.1 Federated Query - A specification defining an extension of the SPARQL 1.1 Query Language for executing queries distributed over different SPARQL endpoints.

		SPARQL 1.1 Entailment Regimes - A specification defining the semantics of SPARQL queries under entailment regimes such as RDF Schema, OWL, or RIF.

		SPARQL 1.1 Update Language - An update language for RDF graphs.

		SPARQL 1.1 Protocol for RDF - A protocol defining means for conveying arbitrary SPARQL queries and update requests to a SPARQL service.

		SPARQL 1.1 Service Description - A specification defining a method for discovering and a vocabulary for describing SPARQL services.

		SPARQL 1.1 Graph Store HTTP Protocol - As opposed to the full SPARQL protocol, this specification defines minimal means for managing RDF graph content directly via common HTTP operations.

		 Using SPARQL 1.1 with RDF 1.1 - SPARQL 1.1 is based on the Resource Description Framework (RDF) specifications in their 2004 version. This document describes the Working Group's latest understanding of how SPARQL 1.1 is to be used with RDF 1.1 and/or other specification currently being developed by the RDF Working Group.SPARQL 1.1 Test Cases - A suite of tests, helpful for understanding corner cases in the specification and assessing whether a system is SPARQL 1.1 conformant

[bookmark: Example]1.1 Example

In the following, we will illustrate the use of SPARQL's languages, protocols, and related specifications with a small example.

Some RDF graph published on the Web at the URL 'http://example.org/alice' contains personal information about Alice and her social contacts. We use Turtle [Turtle] syntax here for illustration.

Graph: http://example.org/alice

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

 <http://example.org/alice#me> a foaf:Person .
 <http://example.org/alice#me> foaf:name "Alice" .
 <http://example.org/alice#me> foaf:mbox <mailto:alice@example.org> .
 <http://example.org/alice#me> foaf:knows <http://example.org/bob#me> .
 <http://example.org/bob#me> foaf:knows <http://example.org/alice#me> .
 <http://example.org/bob#me> foaf:name "Bob" .
 <http://example.org/alice#me> foaf:knows <http://example.org/charlie#me> .
 <http://example.org/charlie#me> foaf:knows <http://example.org/alice#me> .
 <http://example.org/charlie#me> foaf:name "Charlie" .
 <http://example.org/alice#me> foaf:knows <http://example.org/snoopy> .
 <http://example.org/snoopy> foaf:name "Snoopy"@en .

With SPARQL 1.1 one can query such graphs, load them into RDF stores and manipulate them in various ways.

[bookmark: sparql11-query]2 SPARQL 1.1 Query Language

Assuming the graph data from above is loaded into a SPARQL service (i.e., an HTTP service endpoint that can process SPARQL queries), the SPARQL 1.1 Query Language can be used to formulate queries ranging from simple graph pattern matching to complex queries. For instance, one can ask using a SPARQL SELECT query for names of persons and the number of their friends:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name (COUNT(?friend) AS ?count)
WHERE {
 ?person foaf:name ?name .
 ?person foaf:knows ?friend .
} GROUP BY ?person ?name

Just like in the earlier SPARQL1.0 specification [SPARQL-Query] from 2008, complex queries may include union, optional query parts, and filters; new features like value aggregation, path expressions, nested queries, etc. have been added in SPARQL 1.1. Apart from SELECT queries - which return variable bindings - SPARQL supports ASK queries - i.e. boolean "yes/no" queries - and CONSTRUCT queries - by which new RDF graphs can be constructed from a query result; all the new query language features of SPARQL 1.1 are likewise usable in ASK and CONSTRUCT queries.

Compared to SPARQL1.0, SPARQL 1.1 adds a number of new features to the query language, including subqueries, value assignment, path expressions, or aggregates - such as COUNT, as used in the above example query - etc.

The SPARQL 1.1 Query Language document defines the syntax and semantics of SPARQL 1.1 queries and provides various examples for their usage.

[bookmark: sparql11-results]3 Different query results formats supported by SPARQL 1.1 (XML, JSON, CSV, TSV)

Results of SELECT queries in SPARQL comprise bags of mappings from variables to RDF terms, often conveniently represented in tabular form. For instance, the query from Section 2 has the following results:

		?name
		?count

		"Alice"
		3

		"Bob"
		1

		"Charlie"
		1

In order to exchange these results in machine-readable form, SPARQL supports four common exchange formats, namely the Extensible Markup Language (XML), the JavaScript Object Notation (JSON), Comma Separated Values (CSV), and Tab Separated Values (TSV). These results formats are described in three different documents:

		 the SPARQL Query Results XML Format (please, particularly note that the SPARQL 1.1 WG has made some minor Errata to this specification),

		 the SPARQL 1.1 Query Results JSON Format, and

		 the SPARQL 1.1 Query Results CSV and TSV Formats

These documents specify details of how particular solutions and RDF terms occurring in solutions are encoded in the respective target formats.

The results of our example query, in these three formats look as follows.

XML:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="name"/>
 <variable name="count"/>
 </head>
 <results>
 <result>
 <binding name="name">
 <literal>Alice</literal>
 </binding>
 <binding name="count">
 <literal datatype="http://www.w3.org/2001/XMLSchema#integer">3</literal>
 </binding>
 </result>
 <result>
 <binding name="name">
 <literal>Bob</literal>
 </binding>
 <binding name="count">
 <literal datatype="http://www.w3.org/2001/XMLSchema#integer">1</literal>
 </binding>
 </result>
 <result>
 <binding name="name">
 <literal>Charlie</literal>
 </binding>
 <binding name="count">
 <literal datatype="http://www.w3.org/2001/XMLSchema#integer">1</literal>
 </binding>
 </result>
 </results>
</sparql>

JSON:

{
 "head": {
 "vars": ["name" , "count"]
 } ,
 "results": {
 "bindings": [
 {
 "name": { "type": "literal" , "value": "Alice" } ,
 "count": { "datatype": "http://www.w3.org/2001/XMLSchema#integer" , "type": "typed-literal" , "value": "3" }
 } ,
 {
 "name": { "type": "literal" , "value": "Bob" } ,
 "count": { "datatype": "http://www.w3.org/2001/XMLSchema#integer" , "type": "typed-literal" , "value": "1" }
 } ,
 {
 "name": { "type": "literal" , "value": "Charlie" } ,
 "count": { "datatype": "http://www.w3.org/2001/XMLSchema#integer" , "type": "typed-literal" , "value": "1" }
 }
]
 }
}

CSV:

name,count
Alice,3
Bob,1
Charlie,1

TSV:

?name<TAB>?count
"Alice"<TAB>3
"Bob"<TAB>1
"Charlie"<TAB>1

(Note: tab characters are visually marked with '<TAB>' here for illustration only.)

[bookmark: sparql11-federated-query]4 SPARQL 1.1 Federated Query

The SPARQL 1.1 Federated Query document describes an extension of the basic SPARQL 1.1 Query Language to explicitly delegate certain subqueries to different SPARQL endpoints.

For instance, in our example, one may want to know whether there is anyone among Alice's friends with the same name as the resource identified by the IRI <http://dbpedia.org/resource/Snoopy> at DBpedia. This can be done by combining a query for the names of friends with a remote call to the SPARQL endpoint at http://dbpedia.org/sparql finding out the name of <http://dbpedia.org/resource/Snoopy> using the SERVICE keyword as follows:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
 <http://example.org/alice#me> foaf:knows [foaf:name ?name] .
 SERVICE <http://dbpedia.org/sparql> { <http://dbpedia.org/resource/Snoopy> foaf:name ?name }
}

with the following result:

		?name

		"Snoopy"@en

Here, the first part of the pattern in the WHERE part is still matched against the local SPARQL service, whereas the evaluation of the pattern following the SERVICE keyword is delegated to the respective remote SPARQL service.

[bookmark: sparql11-entailment]5 SPARQL 1.1 Entailment Regimes

SPARQL could be used together with ontological information in the form of, for example, RDF Schema or OWL axioms.
For instance, let us assume that - apart from the data about Alice - some ontological information in the form
of RDF Schema [RDF-Schema] and OWL [OWL2-Overview]
constructs defining the FOAF vocabulary is loaded into our example SPARQL service.

The FOAF ontology: (only an excerpt given)

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 ...
 foaf:name rdfs:subPropertyOf rdfs:label .
 ...

The following query asks for labels of persons:

SELECT ?label
WHERE { ?person rdfs:label ?label }

A SPARQL engine that does not consider any special entailment regimes (on top of standard simple entailment) would not return any results for this query, whereas an RDF Schema aware query engine will return

		?label

		"Alice"

		"Bob"

		"Charlie"

		"Snoopy"@en

since foaf:name is a sub-property of rdfs:label.

The SPARQL 1.1 Entailment Regimes specification defines which answers should be given under which entailment regime, specifying entailment regimes for RDF, RDF Schema, D-Entailment [RDF-MT], OWL [OWL2-Overview], and RIF [RIF-Overview].

[bookmark: sparql11-update]6 SPARQL 1.1 Update Language

The SPARQL 1.1 Update specification defines the syntax and semantics of SPARQL 1.1 update requests and provides various examples for their usage. Update operations can consist of several sequential requests and are performed on a collection of graphs in a Graph Store. Operations are provided to update, create and remove RDF graphs in a Graph Store.

For instance, the following request inserts a new friend of Alice named Dorothy into the default graph of our example SPARQL service and thereafter deletes all names of Alice's friends with an English language tag.

PREFIX foaf: <http://xmlns.com/foaf/0.1/> .

INSERT DATA { <http://www.example.org/alice#me> foaf:knows [foaf:name "Dorothy"]. } ;
DELETE { ?person foaf:name ?mbox }
WHERE { <http://www.example.org/alice#me> foaf:knows ?person .
 ?person foaf:name ?name FILTER (lang(?name) = "EN") .}

As the second operation shows, insertions and deletions can be dependent on the results of queries to the Graph Store; the respective syntax used in the WHERE part is derived from the SPARQL 1.1 Query Language.

[bookmark: sparql11-protocol]7 SPARQL 1.1 Protocol for RDF

The SPARQL 1.1 Protocol for RDF defines how to transfer SPARQL 1.1 queries and update requests to a SPARQL service via HTTP. It also defines how to map requests to HTTP GET and POST operations and what respective HTTP responses to such requests should look like.

For instance, the query from Section 3 above issued against a SPARQL query service hosted at http://www.example.org/sparql/ could according to this specification be wrapped into an HTTP GET request (where the query string is URI-encoded):

GET /sparql/?query=PREFIX%20foaf%3A%20%3Chttp%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2F%3E%0ASELECT%20%3Fname%20%28COUNT%28%3Ffriend%29%20AS%20%3Fcount%29%0AWHERE%20%7B%20%0A%20%20%20%20%3Fperson%20foaf%3Aname%20%3Fname%20.%20%0A%20%20%20%20%3Fperson%20foaf%3Aknows%20%3Ffriend%20.%20%0A%7D%20GROUP%20BY%20%3Fperson%20%3Fname HTTP/1.1
Host: www.example.org
User-agent: my-sparql-client/0.1

Details about response encoding and different operations for query and update requests, as well as supported HTTP methods, are described in the Protocol specification.

[bookmark: sparql11-service-description]8 SPARQL 1.1 Service Description

The SPARQL 1.1 Service Description document describes a method for discovering and an RDF vocabulary for describing SPARQL services made available via the SPARQL 1.1 Protocol for RDF.

According to this specification, a service endpoint, when accessed via an HTTP GET operation without further (query or update request) parameters should return an RDF description of the service provided. For instance, the following HTTP request:

GET /sparql/ HTTP/1.1
Host: www.example.org

issued against the SPARQL endpoint hosted at http://www.example.org/sparql/ should return an RDF description, using the Service Description vocabulary. Such a description provides, for instance, information about the default dataset of the respective endpoint, or about SPARQL query language features and entailment regimes that are supported.

[bookmark: sparql11-graphstore-http-protocol]9 SPARQL 1.1 Graph Store HTTP Protocol

For many applications and services that deal with RDF data, the full SPARQL 1.1 Update language might not be required. To this end, the SPARQL 1.1 Graph Store HTTP Protocol provides means to perform certain operations to manage collections of graphs directly via HTTP operations.

For instance, the first part of the update request in Section 4 above is a simple insertion of triples into an RDF graph. On a service supporting this protocol, such insertion can - instead of via a SPARQL 1.1 update request - directly be performed via an HTTP POST operation taking the RDF triples to be inserted as payload:

POST /rdf-graphs/service?graph=http%3A%2F%2Fwww.example.org%2Falice HTTP/1.1
Host: example.org
Content-Type: text/turtle
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://www.example.org/alice#me> foaf:knows [foaf:name "Dorothy"] .

Other direct HTTP operations for modifying (e.g. to use HTTP PUT to replace an entire graph, or HTTP DELETE to drop an RDF graph) or retrieving (via HTTP GET) RDF graphs are described in the SPARQL 1.1 Graph Store HTTP Protocol specification, which can be viewed as a lightweight alternative to the SPARQL 1.1 protocol in combination with the full SPARQL 1.1 Query and SPARQL 1.1 Update languages.

[bookmark: Acknowledgements]10 Acknowledgements

The members of the W3C SPARQL Working group who actively contributed to the SPARQL 1.1 specifications are:

		 Carlos Buil Aranda, Universidad Politécnica de Madrid

		 Olivier Corby, Institut National de Recherche en Informatique et en Automatique (INRIA)

		 Souripriya Das, Oracle Corporation

		 Lee Feigenbaum, Cambridge Semantics

		 Paul Gearon, Revelytix Inc

		 Birte Glimm, Universität Ulm

		 Steve Harris, Garlik Ltd

		 Sandro Hawke, W3C

		 Ivan Herman, W3C

		 Nicholas Humfrey, BBC

		 Nico Michaelis, Dreamlab Technologies AG

		 Chimezie Ogbuji, Invited Expert

		 Matthew Perry, Oracle Corporation

		 Alexandre Passant, DERI, National University of Ireland, Galway

		 Axel Polleres, Siemens AG

		 Eric Prud'hommeaux, W3C

		 Andy Seaborne, The Apache Software Foundation

		 Gregory Todd Williams, Rensselaer Polytechnic Institute

[bookmark: sec-bibliography]11 References

		[bookmark: SPARQL-XML-Result]SPARQL-XML-Result

		SPARQL Query Results XML Format (Second Edition), D. Beckett, J. Broekstra, Editors, W3C Proposed EditedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PER-rdf-sparql-XMLres-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321. Latest version available at http://www.w3.org/TR/rdf-sparql-XMLres. (See http://www.w3.org/TR/rdf-sparql-XMLres/.)

		[bookmark: RDF-Schema]RDF-Schema

		RDF Vocabulary Description Language 1.0: RDF Schema
,
ed. Dan Brickley and R.V. Guha, W3C Recommendation 10 February 2004 (See http://www.w3.org/TR/rdf-schema/.)

		[bookmark: RDF-MT]RDF-MT

		RDF Semantics
,
ed. Pat Hayes, W3C Recommendation 10 February 2004 (See http://www.w3.org/TR/rdf-mt/.)

		[bookmark: OWL2-Overview]OWL2-Overview

		OWL 2 Web Ontology Language
Document Overview,
W3C OWL Working Group, W3C Recommendation 27 October 2009 (See http://www.w3.org/TR/owl2-overview/.)

		[bookmark: RIF-Overview]RIF-Overview

		RIF Overview,
ed. Michael Kifer and Harold Boley, W3C Working Group Note 22 June 2010 (See http://www.w3.org/TR/rif-overview/.)

		[bookmark: Turtle]Turtle

		Turtle - Terse RDF Triple Language,
ed Eric Prud'hommeaux and Gavin Carothers, Working Draft 09 August 2011. (See http://www.w3.org/TR/turtle/.)

		[bookmark: SPARQL10-Query]SPARQL10-Query

		SPARQL Query Language for RDF,
ed. Eric Prud'hommeaux and Andy Seaborne, W3C Recommendation 15 January 2008 (See http://www.w3.org/TR/rdf-sparql-query/.)

Change Log

Changes since Proposed Recommendation

		Removed reference to obsolete document

Changes since Last Call

		Remove use of term "REST"; updated references.

nav.xhtml

 SPARQL 1.1

 Table of Content

 		
 Cover

 		
 Table of Contents

 		
 SPARQL 1.1 Overview

 		
 SPARQL 1.1 Query Language

 		
 Different query results formats supported by SPARQL 1.1 (XML, JSON, CSV, TSV)

 		
 SPARQL 1.1 Federated Query

 		
 SPARQL 1.1 Entailment Regimes

 		
 SPARQL 1.1 Update Language

 		
 SPARQL 1.1 Protocol for RDF

 		
 SPARQL 1.1 Service Description

 		
 SPARQL 1.1 Graph Store HTTP Protocol

 		
 Acknowledgements

 		
 References

 		
 SPARQL 1.1 Query Language

 		
 Introduction

 		
 Making Simple Queries (Informative)

 		
 RDF Term Constraints (Informative)

 		
 SPARQL Syntax

 		
 Graph Patterns

 		
 Including Optional Values

 		
 Matching Alternatives

 		
 Negation

 		
 Property Paths

 		
 Assignment

 		
 Aggregates

 		
 Subqueries

 		
 RDF Dataset

 		
 Basic Federated Query

 		
 Solution Sequences and Modifiers

 		
 Query Forms

 		
 Expressions and Testing Values

 		
 Definition of SPARQL

 		
 SPARQL Grammar

 		
 Conformance

 		
 Security Considerations (Informative)

 		
 Internet Media Type, File Extension and Macintosh File Type

 		
 SPARQL 1.1 Update

 		
 Introduction

 		
 The Graph Store

 		
 SPARQL 1.1 Update Language

 		
 SPARQL Update Formal Model

 		
 Conformance

 		
 SPARQL 1.1 Service Description

 		
 Introduction

 		
 Accessing a Service Description

 		
 Service Description Vocabulary

 		
 Example (Informative)

 		
 Conformance

 		
 SPARQL 1.1 Federated Query

 		
 Introduction

 		
 SPARQL 1.1 Federated Query Extension

 		
 SPARQL 1.1 Simple Federation Extension: semantics

 		
 SERVICE Variables (Informative)

 		
 Conformance

 		
 Security Considerations (Informative)

 		
 SPARQL 1.1 Query Results JSON Format

 		
 Introduction

 		
 JSON Results Object

 		
 Variable Binding Results

 		
 Boolean Results

 		
 Example

 		
 Internet Media Type, File Extension and Macintosh File Type

 		
 SPARQL 1.1 Query Results CSV and TSV Formats

 		
 Introduction

 		
 Transmission issues using CSV and TSV Formats

 		
 CSV - Comma Separated values

 		
 TSV - Tab Separated values

 		
 References

 		
 References

 		
 SPARQL Query Results XML Format (Second Edition)

 		
 Introduction

 		
 Definition

 		
 Examples

 		
 XML Schemas

 		
 Internet Media Type, File Extension and Macintosh File Type

 		
 References

 		
 SPARQL 1.1 Entailment Regimes

 		
 Introduction

 		
 RDF Entailment Regime

 		
 General Notes on Entailment Regimes (Informative)

 		
 RDFS Entailment Regime

 		
 D-Entailment Regime

 		
 OWL 2 RDF-Based Semantics Entailment Regime

 		
 OWL 2 Direct Semantics Entailment Regime

 		
 RIF Core Entailment

 		
 Entailment Regimes and Data Sets (Informative)

 		
 Entailment Regimes and Property Paths (Informative)

 		
 Entailment Regimes and Updates (Informative)

 		
 SPARQL 1.1 Protocol

 		
 Introduction

 		
 SPARQL Protocol Operations

 		
 Example SPARQL Protocol Requests (informative)

 		
 Policy Considerations

 		
 Conformance

 		
 Changes Since Previous Recommendation (Informative)

 		
 SPARQL 1.1 Graph Store HTTP Protocol

sparql11-results-csv-tsv/diff.xhtml

 [image: W3C]

 SPARQL 1.1 Query Results CSV and TSV Formats

 W3C ProposedRecommendation 08 November 201221 March 2013

 		This version:

		 http://www.w3.org/TR/2012/PR-sparql11-results-csv-tsv-20121108/http://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321/

 		Latest published version:

		http://www.w3.org/TR/sparql11-results-csv-tsv/

 		Previous version:

 		 http://www.w3.org/TR/2012/WD-sparql11-results-csv-tsv-20120501/http://www.w3.org/TR/PR-sparql11-results-csv-tsv-20121108/

 		Editor:

		Andy Seaborne, The Apache Software Foundation

 Please refer to the errata for this document, which may include some normative corrections.

See also translations.

 Copyright © 20122013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

 Abstract

	 The formats CSV [RFC4180] (comma separated values)
 and TSV [IANA-TSV] (tab separated values)
	 provide simple, easy to process formats for the transmission of tabular data.
	 They are supported as input datat formats to many tools, particularly spreadsheets.
	 This document describes their use for expressing SPARQL query results from
	 SELECT queries.
	

Status of This Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is being published asone of a set of 11 documents:eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:

		SPARQL 1.1 Overview

		SPARQL 1.1 Query Language

		SPARQL 1.1 Update

		SPARQL1.1 Service Description

		SPARQL 1.1 Federated Query

		SPARQL 1.1 Query Results JSON Format

		SPARQL 1.1 Query Results CSV and TSV Formats

		SPARQL Query Results XML Format (Second Edition)

		SPARQL 1.1 Entailment Regimes

		SPARQL 1.1 Protocol

		SPARQL 1.1 Graph Store HTTP Protocol

 Summary ofNo Substantive Changes

There have been no substantive changes to this document since the previous version. For details on anyMinor editorial changes seechanges, if any, are detailed in the change log and visible in the color-coded diff.

 W3C MembersPlease Review By 6 December 2012 The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 6 December 2012. This will allow the Director to assess consensus and determine whetherSend Comments

Please send any comments to issuepublic-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document as a W3C Recommendation. Others are encouragedby the SPARQL Working Group to continue to send reports of implementation experience, and other feedback, to public-rdf-dawg-comments@w3.org (public archive). Reports of any success or difficulty withis complete, comments may be addressed in the test cases are encouraged.errata or in future revisions. Open discussion among developersis welcome at public-sparql-dev@w3.org (public archive).

 Support The advancement ofEndorsed By W3C

This Proposed Recommendation is supporteddocument has been reviewed by the disposition of comments on the previous drafts, the Test Suite ,W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the list of implementations (with test results) . No Endorsement PublicationDirector as a Proposed Recommendation does not imply endorsement by theW3C Membership. ThisRecommendation. It is a draftstable document and may be updated, replacedused as reference material or obsoleted by other documents at any time. Itcited from another document. W3C's role in making the Recommendation is inappropriateto citedraw attention to the specification and to promote its widespread deployment. This document as other than work in progress.enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

Table of Contents

		1. Introduction		1.1 Example

		2. Transmission issues using CSV and TSV Formats

		3. CSV - Comma Separated values		3.1 Serializing the Results Table

		3.2 Serializing RDF Terms

		3.3 Example of CSV-Serialized Results

		4. TSV - Tab Separated values		4.1 Serializing the Results Table

		4.2 Serializing RDF Terms

		4.3 Example of TSV-Serialized Results

		A. References		A.1 Normative References

		A.2 Non-normative References

		B. References		B.1 Normative references

		B.2 Informative references

1. Introduction

 This document describes CSV and TSV formats for expressing
 the results of a SPARQL SELECT query.
 They provide lowest common denominator
 formats between systems using different
 implementation technologies.

 Other formats for expression SPARQL results are the
 SPARQL XML Results Format [RDF-SPARQL-XMLRES]
 and SPARQL JSON Results Format

 [SPARQL11-JSON-RES].
 Each format is useful in different application scenarios.

 The SPARQL Results CSV Results Format is a lossy encoding
 of a table of results. It does not encode all the details of
 each RDF term in the results but instead just gives a string
 without indicating the type of the term (IRI, Literal, Literal
 with datatype, Literal with language, or blank node). This makes
 it simple to consume data, such as text and numbers, in
 applications without needing to understand the details
 of RDF. In some applications, guesses as to which
 elements are hyperlinks are made pragmatically, for example,
 guessing that strings starting "http://" are links.

 The SPARQL Results TSV Results Format does encode the details
 of RDF terms in the results table by using the syntax that SPARQL

 [SPARQL11-QUERY]
 and Turtle [TURTLE] use. An application receiving a TSV-encoded
 results set can
 split each line into elements of the result row, and extract
 all the details it wishes to process of the RDF terms by
 simple string processing, without a complete XML or JSON parser
 required by the more complex SPARQL result formats.

 When this document uses the words must, must not, should, should
 not, may and recommended, they must be interpreted as described in
 RFC 2119 [RFC2119].

 1.1 Example

 The following artificial example is used to illustrate the
 features of serializing results in each format.

 		x
 		literal
 		Comment (not part of the table)

 		<http://example/x>
 		String
 		An IRI and a string consisting of
characters S-t-r-i-n-g

 		<http://example/x>
 		String-with-dquote"
 		String with a double quote in it.

 		_:b0
 		Blank node
 		Blank node

 		
 		Missing 'x'
 		No RDF term for the x column

 		
 		
 		This row has no terms in it.

 		<http://example/x>
 		
 		No term in the literal column.

 		_:b1
 		"String-with-lang"@en
 		An RDF literal with a language tag

 		_:b1
 		123
 		An RDF literal, datatype xsd:integer,
and lexical form 123.

2. Transmission issues using CSV and TSV Formats

 The SPARQL results formats described here
 confirm to the formal specifications of the
 relevant formats, Comma Separated values (CSV) [RFC4180] and
 Tab Separated Value (TSV) [IANA-TSV].

 Systems providing these formats should note that the content types for CSV is
 text/csv and for TSV text/tab-separated-values.
 Being text/*, the default character set is US-ASCII.
 The charset parameter should be used in conjunction
 with SPARQL Results; UTF-8 is recommended: text/csv; charset=utf-8 and
 text/tab-separated-values; charset=utf-8.

 The end-of-line in CSV is CRLF i.e.
 Unicode codepoints 13 (0x0D) and 10 (0x0A).

 The end-of-line in TSV is EOL i.e.
 Unicode codepoint 10 (0x0A).

 Applications reading these formats are advised to cope with
 both CRLF and LF as end of line markers
 and not rely on conformance to the formal specifications.

3. CSV - Comma Separated values

 In the SPARQL Results CSV Format,
 the results table is serialized as one line listing the variables
 in the results, using the CSV header line,
 followed by one line for each query solution
 (a line may end up split by newlines in the data).
 Values in the results are strings, for URIs, literals and blank nodes,
 together with numbers when the literals are of numeric XSD
 datatype.

 3.1 Serializing the Results Table

 The first line of a SPARQL CSV Results Format response
 is the header line giving the names of the variables
 used in the result set. The header line consists of the
 variable names, without leading ?, separated by commas.

 While the text/csv format does not require a header row,
 the SPARQL CSV Results Format must use a header row.
 If the content type parameter header is used,
 it must be header=present.

 The remaining rows are the values of the results,
 with each binding determined by the position in the row,
 corresponding to the entry in the header line.

 If a variable is not bound, an empty field is used (e.g. ,,).
 Each row must have the same number of fields,
 with each field corresponding to a binding to the variable
 in the header line in the same field position.

 3.2 Serializing RDF Terms

 The entry in each field is the string corresponding to the RDF term value.
 (c.f. SPARQL STR()) without syntax to denote what kind of
 term it is. The encoding quoting rules of CSV format must be
 used.

 Blank nodes use the _:label form from Turtle and SPARQL.
 Use of the same label indicates the same blank node within the
 results but has no significance outside
 the results.

 Fields containing any of
 " (QUOTATION MARK, code point 34, 0x22 in Unicode[UNICODE]),
 , (COMMA, code point 44, 0x2C),
 LF (code point 10, 0x0A) or
 CR (code point 13, 0x0D)
 must be quoted using the quoting mechanism
 of RFC4180 [RFC4180]. Fields are limited by a pair of
 quotation marks "
 (code point 0x22).
 Within quote strings,
 all characters except ",
 including new line characters have their exact meaning -
 newlines do not end a CSV record.
 "

 is written using a pair of quotation marks
 "".

 The standard CSV format does not distinguish between missing
 values and empty strings.
 The SPARQL 1.1 CSV Results Format uses the same representation
 for unbound variables as for variables bound to an empty string
 literal. The other SPARQL Result formats (based on JSON, TSV or XML)
 can be used if this distinction is required.

 3.3 Example of CSV-Serialized Results

 x,literal
http://example/x,String
http://example/x,"String-with-dquote"""
_:b0,Blank node
,Missing 'x'
,
http://example/x,
_:b1,String-with-lang
_:b1,123

4. TSV - Tab Separated values

 In the SPARQL Results TSV Format,
 the results table is serialized as one line listing the variables
 in the results, followed by one line for each query solution.
 All RDF terms used in the format are encoded in the format
 specified by Turtle [TURTLE] except that the
 triple quoted forms for the lexical part of literals
 must not be used. These forms would allow raw newlines and
 tabs that form part of the TSV format. A TSV format SPARQL result
 set must use the single quoted literal forms, together with
 any necessary escapes such as \t,
 \n and \r.

 4.1 Serializing the Results Table

 The results table is serialized as one line listing the variables
 in the results, followed by one line for each query solution.
 This first line is required by the TSV format [IANA-TSV],
 unlike CSV, where it is optional.

 Variables are serialized in SPARQL syntax, using question mark
 ? character followed by the variable name.

 Each row of the result set is serialized by sequence of
 RDF terms in SPARQL syntax, separated by a tab
 (Horizontal Tab, Unicode codepoint 9) character.

 If a variable is not bound in a row, an empty field is used.
 Each row must have the same number of fields, corresponding to the variables
 listed in the first row.

 4.2 Serializing RDF Terms

 The SPARQL Results TSV Results Format serializes
 RDF terms in the results table by using the syntax that SPARQL

 [SPARQL11-QUERY]
 and Turtle [TURTLE] use.

 IRIs enclosed in <...>,
 literals are enclosed with double quotes "..."
 or single quotes ' ...'
 with optional @lang or ^^ for datatype.
 The quotes around the lexical
 form is required.
 Tab, newline and carriage return characters (Unicode codepoints
 0x09, 0x0A (line feed) and 0x0D (Carriage Return))
 are encoded in strings as
 \t, \n and \r respectively.
 The long string forms using triple quotes """ and
 ''' must not be used.

 The abbreviated forms for numbers (XSD integers, decimals and doubles)
 should be used.

 Blank nodes use the _:label form from Turtle and SPARQL.
 Use of the same label indicates the same blank node within the
 results but has no significance outside
 the results.

 4.3 Example of TSV-Serialized Results

 Writing <TAB> for a raw tab character (Unicode
code point 9):

 ?x<TAB>?literal
<http://example/x><TAB>"String"
<http://example/x><TAB>"String-with-dquote\""

_:blank0<TAB>"Blank node"
<TAB>"Missing 'x'"
<TAB>
<http://example/x><TAB>
_:blank1<TAB>"String-with-lang"@en
_:blank1<TAB>123

A. References

 This section includes references not yet included in the standard biblio DB

 A.1 Normative References

 		SPARQL11-JSON-RES

 		SPARQL 1.1 Query Results JSON Format, A. Seaborne, Editor, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-results-json-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321. Latest version available at http://www.w3.org/TR/sparql11-results-json.

 		SPARQL11-QUERY

 		SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-query-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

 A.2 Non-normative References

 Change Log

 Changes since Proposed Recommendation

 		None

 Changes since Last Call

 		None.

B. References

B.1 Normative references

		[IANA-TSV]

		Paul Lindner. Definition of tab-separated-values (tsv) June 1993. IANA Media Type Registration. URL: http://www.iana.org/assignments/media-types/text/tab-separated-values

		[RFC2119]

		S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

		[RFC4180]

		Y. Shafranovich. Common Format and MIME Type for Comma-Separated Values (CSV) Files October 2005. Internet RFC 3987. URL: http://www.ietf.org/rfc/rfc4180.txt

		[TURTLE]

		David Beckett, Tim Berners-Lee. Turtle: Terse RDF Triple Language. January 2008. W3C Team Submission. URL: http://www.w3.org/TeamSubmission/turtle/

B.2 Informative references

		[RDF-SPARQL-XMLRES]

		Jeen Broekstra; Dave Beckett. SPARQL Query Results XML Format. 15 January 2008. W3C Recommendation. URL: http://www.w3.org/TR/2008/REC-rdf-sparql-XMLres-20080115

		[UNICODE]

		The Unicode Consortium. The Unicode Standard. 2003. Defined by: The Unicode Standard, Version 4.0 (Boston, MA, Addison-Wesley, ISBN 0-321-18578-1), as updated from time to time by the publication of new versions URL: http://www.unicode.org/unicode/standard/versions/enumeratedversions.html

StyleSheets/TR/logo-WG-Note.png
10N dnous) SUPlOAA DEAM

sparql11-query/diff.xhtml
[image: W3C]

[bookmark: title]SPARQL 1.1 Query Language

[bookmark: w3c-doctype]W3C ProposedRecommendation 08 November 201221 March 2013

		This version:

		
 http://www.w3.org/TR/2012/PR-sparql11-query-20121108/http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

		Latest version:

		
 http://www.w3.org/TR/sparql11-query/

		Previous version:

		 http://www.w3.org/TR/2012/WD-sparql11-query-20120724/http://www.w3.org/TR/2012/PR-sparql11-query-20121108/

		Editors:

		Steve Harris, Garlik, a part of Experian

		Andy Seaborne, The Apache Software Foundation

		Previous Editor:

		Eric Prud'hommeaux, W3C

Please refer to the previouserrata for this document, are also available.which may
 include some normative corrections.

See also translations.

Copyright © 2012 © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract

 RDF is a directed, labeled graph data format for representing information
 in the Web. This specification defines the syntax and semantics of the
 SPARQL query language for RDF. SPARQL can be used to express queries
 across diverse data sources, whether the data is stored natively as RDF or
 viewed as RDF via middleware. SPARQL contains capabilities for querying
 required and optional graph patterns along with their conjunctions and
 disjunctions. SPARQL also supports aggregation, subqueries, negation,
 creating values by expressions, extensible value testing, and constraining queries
 by source RDF graph. The results of SPARQL queries can be result
 sets or RDF graphs.

[bookmark: status]Status of This Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is being published asone of a set of 11 documents:eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:

		SPARQL 1.1 Overview

		SPARQL 1.1 Query Language (this document)

		SPARQL 1.1 Update

		SPARQL1.1 Service Description

		SPARQL 1.1 Federated Query

		SPARQL 1.1 Query Results JSON Format

		SPARQL 1.1 Query Results CSV and TSV Formats

		SPARQL Query Results XML Format (Second Edition)

		SPARQL 1.1 Entailment Regimes

		SPARQL 1.1 Protocol

		SPARQL 1.1 Graph Store HTTP Protocol

 Summary ofNo Substantive Changes

There have been no substantive changes to this document since the previous version. For details on anyMinor editorial changes seechanges, if any, are detailed in the change log and visible in the color-coded diff.

 W3C MembersPlease Review By 6 December 2012 The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 6 December 2012. This will allow the Director to assess consensus and determine whetherSend Comments

Please send any comments to issuepublic-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document as a W3C Recommendation. Others are encouragedby the SPARQL Working Group to continue to send reports of implementation experience, and other feedback, to public-rdf-dawg-comments@w3.org (public archive). Reports of any success or difficulty withis complete, comments may be addressed in the test cases are encouraged.errata or in future revisions. Open discussion among developersis welcome at public-sparql-dev@w3.org (public archive).

 Support The advancement ofEndorsed By W3C

This Proposed Recommendation is supporteddocument has been reviewed by the disposition of comments on the previous drafts, the Test Suite ,W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the list of implementations (with test results) . No Endorsement PublicationDirector as a Proposed Recommendation does not imply endorsement by theW3C Membership. ThisRecommendation. It is a draftstable document and may be updated, replacedused as reference material or obsoleted by other documents at any time. Itcited from another document. W3C's role in making the Recommendation is inappropriateto citedraw attention to the specification and to promote its widespread deployment. This document as other than work in progress.enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents

1 Introduction

 1.1 Document Outline

 1.2 Document Conventions

 1.2.1 Namespaces

 1.2.2 Data Descriptions

 1.2.3 Result Descriptions

 1.2.4 Terminology

2 Making Simple Queries (Informative)

 2.1 Writing a Simple Query

 2.2 Multiple Matches

 2.3 Matching RDF Literals

 2.3.1 Matching Literals with Language Tags

 2.3.2 Matching Literals with Numeric Types

 2.3.3 Matching Literals with Arbitrary Datatypes

 2.4 Blank Node Labels in Query Results

 2.5 Creating Values with Expressions

 2.6 Building RDF Graphs

3 RDF Term Constraints (Informative)

 3.1 Restricting the Value of Strings

 3.2 Restricting Numeric Values

 3.3 Other Term Constraints

4 SPARQL Syntax

 4.1 RDF Term Syntax

 4.1.1 Syntax for IRIs

 4.1.1.1 Prefixed Names

 4.1.1.2 Relative IRIs

 4.1.2 Syntax for Literals

 4.1.3 Syntax for Query Variables

 4.1.4 Syntax for Blank Nodes

 4.2 Syntax for Triple Patterns

 4.2.1 Predicate-Object Lists

 4.2.2 Object Lists

 4.2.3 RDF Collections

 4.2.4 rdf:type

5 Graph Patterns

 5.1 Basic Graph Patterns

 5.1.1 Blank Node Labels

 5.1.2 Extending Basic Graph Pattern Matching

 5.2 Group Graph Patterns

 5.2.1 Empty Group Pattern

 5.2.2 Scope of Filters

 5.2.3 Group Graph Pattern Examples

6 Including Optional Values

 6.1 Optional Pattern Matching

 6.2 Constraints
in Optional Pattern Matching

 6.3 Multiple Optional Graph
Patterns

7 Matching Alternatives

8 Negation

 8.1 Filtering Using Graph Patterns

 8.1.1 Testing For the Absence of a Pattern

 8.1.2 Testing For the Presence of a Pattern

 8.2 Removing Possible Solutions

 8.3 Relationship and differences between NOT EXISTS and MINUS

 8.3.1 Example: Sharing of variables

 8.3.2 Example: Fixed pattern

 8.3.3 Example: Inner FILTERs

9 Property Paths

 9.1 Property Path Syntax

 9.2 Examples

 9.3 Property Paths and Equivalent Patterns

 9.4 Arbitrary Length Path Matching

10 Assignment

 10.1 BIND: Assigning to Variables

 10.2 VALUES: Providing inline data

 10.2.1 VALUES syntax

 10.2.2 VALUES Examples

11 Aggregates

 11.1 Aggregate Example

 11.2 GROUP BY

 11.3 HAVING

 11.4 Aggregate Projection Restrictions

 11.5 Aggregate Example (with errors)

12 Subqueries

13 RDF Dataset

 13.1 Examples of RDF Datasets

 13.2 Specifying RDF Datasets

 13.2.1 Specifying the Default Graph

 13.2.2 Specifying Named Graphs

 13.2.3 Combining FROM and FROM NAMED

 13.3 Querying the Dataset

 13.3.1 Accessing Graph Names

 13.3.2 Restricting by Graph
 IRI

 13.3.3 Restricting Possible Graph IRIs

 13.3.4 Named and Default
Graphs

14 Basic Federated Query

15 Solution Sequences and Modifiers

 15.1 ORDER BY

 15.2 Projection

 15.3 Duplicate Solutions

 15.4 OFFSET

 15.5 LIMIT

16 Query Forms

 16.1 SELECT

 16.1.1 Projection

 16.1.2 SELECT Expressions

 16.2 CONSTRUCT

 16.2.1 Templates with Blank Nodes

 16.2.2 Accessing Graphs in the RDF Dataset

 16.2.3 Solution Modifiers and CONSTRUCT

 16.2.4 CONSTRUCT WHERE

 16.3 ASK

 16.4 DESCRIBE (Informative)

 16.4.1 Explicit IRIs

 16.4.2 Identifying Resources

 16.4.3 Descriptions of Resources

17 Expressions and Testing Values

 17.1 Operand Data Types

 17.2 Filter Evaluation

 17.2.1 Invocation

 17.2.2 Effective Boolean Value (EBV)

 17.3 Operator Mapping

 17.3.1 Operator Extensibility

 17.4 Function Definitions

 17.4.1 Functional Forms

 17.4.1.1 bound

 17.4.1.2 IF

 17.4.1.3 COALESCE

 17.4.1.4 NOT EXISTS and EXISTS

 17.4.1.5 logical-or

 17.4.1.6 logical-and

 17.4.1.7 RDFterm-equal

 17.4.1.8 sameTerm

 17.4.1.9 IN

 17.4.1.10 NOT IN

 17.4.2 Functions on RDF Terms

 17.4.2.1 isIRI

 17.4.2.2 isBlank

 17.4.2.3 isLiteral

 17.4.2.4 isNumeric

 17.4.2.5 str

 17.4.2.6 lang

 17.4.2.7 datatype

 17.4.2.8 IRI

 17.4.2.9 BNODE

 17.4.2.10 STRDT

 17.4.2.11 STRLANG

 17.4.2.12 UUID

 17.4.2.13 STRUUID

 17.4.3 Functions on Strings

 17.4.3.1 Strings in SPARQL Functions

 17.4.3.1.1 String arguments

 17.4.3.1.2 Argument Compatibility Rules

 17.4.3.1.3 String Literal Return Type

 17.4.3.2 STRLEN

 17.4.3.3 SUBSTR

 17.4.3.4 UCASE

 17.4.3.5 LCASE

 17.4.3.6 STRSTARTS

 17.4.3.7 STRENDS

 17.4.3.8 CONTAINS

 17.4.3.9 STRBEFORE

 17.4.3.10 STRAFTER

 17.4.3.11 ENCODE_FOR_URI

 17.4.3.12 CONCAT

 17.4.3.13 langMatches

 17.4.3.14 REGEX

 17.4.3.15 REPLACE

 17.4.4 Functions on Numerics

 17.4.4.1 abs

 17.4.4.2 round

 17.4.4.3 ceil

 17.4.4.4 floor

 17.4.4.5 RAND

 17.4.5 Functions on Dates and Times

 17.4.5.1 now

 17.4.5.2 year

 17.4.5.3 month

 17.4.5.4 day

 17.4.5.5 hours

 17.4.5.6 minutes

 17.4.5.7 seconds

 17.4.5.8 timezone

 17.4.5.9 tz

 17.4.6 Hash Functions

 17.4.6.1 MD5

 17.4.6.2 SHA1

 17.4.6.3 SHA256

 17.4.6.4 SHA384

 17.4.6.5 SHA512

 17.5 XPath Constructor Functions

 17.6 Extensible Value Testing

18 Definition of SPARQL

 18.1 Initial Definitions

 18.1.1 RDF Terms

 18.1.2 Simple Literal

 18.1.3 RDF Dataset

 18.1.4 Query Variables

 18.1.5 Triple Patterns

 18.1.6 Basic Graph Patterns

 18.1.7 Property Path Patterns

 18.1.8 Solution Mapping

 18.1.9 Solution Sequence Modifiers

 18.1.10 SPARQL Query

 18.2 Translation to the SPARQL Algebra

 18.2.1 Variable Scope

 18.2.2 Converting Graph Patterns

 18.2.2.1 Expand Syntax Forms

 18.2.2.2 Collect FILTER Elements

 18.2.2.3 Translate Property Path Expressions

 18.2.2.4 Translate Property Path Patterns

 18.2.2.5 Translate Basic Graph Patterns

 18.2.2.6 Translate Graph Patterns

 18.2.2.7 Filters of Group

 18.2.2.8 Simplification step

 18.2.3 Examples of Mapped Graph Patterns

 18.2.4 Converting Groups, Aggregates, HAVING, final VALUES clause and SELECT Expressions

 18.2.4.1 Grouping and Aggregation

 18.2.4.2 HAVING

 18.2.4.3 VALUES

 18.2.4.4 SELECT Expressions

 18.2.5 Converting Solution Modifiers

 18.2.5.1 ORDER BY

 18.2.5.2 Projection

 18.2.5.3 DISTINCT

 18.2.5.4 REDUCED

 18.2.5.5 OFFSET and LIMIT

 18.2.5.6 Final Algebra Expression

 18.3 Basic Graph Patterns

 18.3.1 SPARQL Basic Graph Pattern Matching

 18.3.2 Treatment of Blank Nodes

 18.4 Property Path Patterns

 18.5 SPARQL Algebra

 18.5.1 Aggregate Algebra

 18.5.1.1 Set Functions

 18.5.1.2 Count

 18.5.1.3 Sum

 18.5.1.4 Avg

 18.5.1.5 Min

 18.5.1.6 Max

 18.5.1.7 GroupConcat

 18.5.1.8 Sample

 18.6 Evaluation Semantics

 18.7 Extending SPARQL Basic Graph Matching

 18.7.1 Notes

19 SPARQL Grammar

 19.1 SPARQL Request String

 19.2 Codepoint Escape Sequences

 19.3 White Space

 19.4 Comments

 19.5 IRI References

 19.6 Blank Nodes and Blank Node Labels

 19.7 Escape sequences in strings

 19.8 Grammar

20 Conformance

21 Security Considerations (Informative)

22 Internet Media Type, File Extension and Macintosh File Type

[bookmark: appendices]Appendix

A References

 A.1 Normative References

 A.2 Other References

[bookmark: introduction]1 Introduction

 RDF is a directed, labeled graph data format for representing information
 in the Web. RDF is often used to represent, among other things, personal
 information, social networks, metadata about digital artifacts, as well as
 to provide a means of integration over disparate sources of information.
 This specification defines the syntax and semantics of the SPARQL query
 language for RDF.

 The SPARQL query language for RDF is designed to meet the use cases and requirements
 identified by the RDF Data Access Working Group in

 RDF Data Access Use
 Cases and Requirements [UCNR] and

 SPARQL New Features and Rationale
 [UCNR2].

[bookmark: docOutline]1.1 Document Outline

Unless otherwise noted in the section heading, all sections and appendices in this document are normative.

This section of the document, section 1, introduces the SPARQL query
language specification. It presents the organization of this specification
document and the conventions used throughout the specification.

Section 2 of the specification introduces the SPARQL query language itself
via a series of example queries and query results. Section 3 continues
the introduction of the SPARQL query language with more examples that
demonstrate SPARQL's ability to express constraints on the RDF terms that
appear in a query's results.

Section 4 presents details of the SPARQL query language's syntax. It is a
companion to the full grammar of the language and defines how grammatical
constructs represent IRIs, blank nodes, literals, and variables. Section 4
also defines the meaning of several grammatical constructs that serve as
syntactic sugar for more verbose expressions.

Section 5 introduces basic graph patterns and group graph patterns, the
building blocks from which more complex SPARQL query patterns are
constructed. Sections 6, 7, and 8 present constructs that combine SPARQL
graph patterns into larger graph patterns. In particular, Section 6
introduces the ability to make portions of a query optional; Section 7
introduces the ability to express the disjunction of alternative graph
patterns; and Section 8 introduces patterns to test for the absense of information.

Section 9 adds property paths to graph pattern matching, giving
a compact representation of queries and also the ability to match arbitrary length paths in the graph.

Section 10 describes the forms of assignment possible in SPARQL.

Sections 11 introduces the mechanism to group and aggregate results,
which can be incorporated as subqueries as described in Section 12.

Section 13 introduces the ability to constrain portions of a
query to particular source graphs. Section 13 also presents SPARQL's
mechanism for defining the source graphs for a query.

Section 14 refers to the separate document
SPARQL 1.1 Federated Query.

Section 15 defines the constructs that affect the solutions of a query by
ordering, slicing, projecting, limiting, and removing duplicates from a
sequence of solutions.

Section 16 defines the four types of SPARQL queries that produce results
in different forms.

Section 17 defines SPARQL's extensible value testing and expression framework.
It presents the functions and operators that can be used to constrain the
values that appear in a query's results and also calculate new values to be returned by a query.

Section 18 is a formal definition of the evaluation of SPARQL graph
patterns and solution modifiers.

Section 19 contains the normative definition of the syntax for the
SPARQL query and SPARQL update languages,
as given by a grammar expressed in EBNF notation.

[bookmark: docConventions]1.2 Document Conventions

[bookmark: docNamespaces]1.2.1 Namespaces

In this document, examples assume the following namespace prefix bindings unless
otherwise stated:

		Prefix		IRI

		rdf:		http://www.w3.org/1999/02/22-rdf-syntax-ns#

		rdfs:		http://www.w3.org/2000/01/rdf-schema#

		xsd:		http://www.w3.org/2001/XMLSchema#

		fn:		http://www.w3.org/2005/xpath-functions#

		sfn:		http://www.w3.org/ns/sparql#

[bookmark: docDataDesc]1.2.2 Data Descriptions

This document uses the
Turtle [TURTLE]
data format to show each triple explicitly. Turtle allows IRIs to be abbreviated with prefixes:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
:book1 dc:title "SPARQL Tutorial" .

[bookmark: docResultDesc]1.2.3 Result Descriptions

Result sets are illustrated in tabular form.

[bookmark: table39]		x		y		z

		"Alice"		<http://example/a>		

A 'binding' is a pair (variable,
RDF term). In this result set, there are three
variables:
x, y and z (shown as column headers). Each
solution is shown as one row in the body of the table. Here, there is a single
solution, in which variable x is bound to "Alice", variable
y is bound to <http://example/a>, and variable z
is not bound to an RDF term. Variables are not required to be bound in a
solution.

[bookmark: docTerminology]1.2.4 Terminology

The SPARQL language includes IRIs, a subset of RDF URI References that omits spaces. Note that all IRIs
 in SPARQL queries are absolute; they may or may not include a fragment identifier [RFC3987, section 3.1]. IRIs include URIs [RFC3986] and URLs. The abbreviated
 forms (relative IRIs and prefixed names) in the SPARQL syntax are resolved to produce absolute
 IRIs.

The following terms are defined in
RDF
 Concepts and Abstract Syntax [CONCEPTS] and used
in SPARQL:

		IRI (corresponds to the Concepts and Abstract Syntax term "RDF URI reference")

		literal

		lexical form

		plain literal

		language tag

		typed literal

		datatype IRI (corresponds to the Concepts and Abstract Syntax term "datatype URI")

		blank node

In addition, we define the following terms:

		RDF Term, which includes IRIs, blank nodes and literals

		Simple Literal, which covers literals without language tag or datatype IRI

[bookmark: basicpatterns]2 Making Simple Queries (Informative)

Most forms of SPARQL query contain a set of triple patterns called a basic graph pattern. Triple patterns are like RDF triples except that each of the subject, predicate and object may be a variable. A basic graph pattern matches a subgraph of the RDF data when RDF terms from that subgraph may be substituted for the variables and the result is RDF graph equivalent to the subgraph.

[bookmark: WritingSimpleQueries]2.1 Writing a Simple Query

The example below shows a SPARQL query to find the title of a book from the
given data graph. The query consists of two parts:
the SELECT clause identifies
the variables to appear in the query results, and the WHERE clause
provides the basic graph pattern to match against the data graph. The basic graph pattern in this example
consists of a single triple pattern with a single variable (?title) in the object position.

Data:

<http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> "SPARQL Tutorial" .

Query:

SELECT ?title
WHERE
{
 <http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> ?title .
}

This query, on the data above, has one solution:

Query Result:

[bookmark: table109]		title

		"SPARQL Tutorial"

[bookmark: MultipleMatches]2.2 Multiple Matches

The result of a query is a solution sequence, corresponding to the ways in which
the query's graph pattern matches the data. There may be
zero, one or multiple solutions to a query.

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Johnny Lee Outlaw" .
_:a foaf:mbox <mailto:jlow@example.com> .
_:b foaf:name "Peter Goodguy" .
_:b foaf:mbox <mailto:peter@example.org> .
_:c foaf:mbox <mailto:carol@example.org> .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE
 { ?x foaf:name ?name .
 ?x foaf:mbox ?mbox }

Query Result:

		name		mbox

		"Johnny Lee Outlaw"		<mailto:jlow@example.com>

		"Peter Goodguy"		<mailto:peter@example.org>

Each solution gives one way in which the selected variables can be bound
to RDF terms so that the query pattern matches the data. The result set gives
all the possible solutions. In the above example,
the following two subsets of the data provided the two matches.

 _:a foaf:name "Johnny Lee Outlaw" .
 _:a foaf:box <mailto:jlow@example.com> .

 _:b foaf:name "Peter Goodguy" .
 _:b foaf:box <mailto:peter@example.org> .

This is a basic graph pattern match; all the
variables used in the query pattern must be bound in every solution.

[bookmark: matchingRDFLiterals]2.3 Matching RDF Literals

The data below contains three RDF literals:

@prefix dt: <http://example.org/datatype#> .
@prefix ns: <http://example.org/ns#> .
@prefix : <http://example.org/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:x ns:p "cat"@en .
:y ns:p "42"^^xsd:integer .
:z ns:p "abc"^^dt:specialDatatype .

Note that, in Turtle, "cat"@en is an RDF literal with a lexical form "cat" and a language tag "en"; "42"^^xsd:integer is a typed literal with the datatype http://www.w3.org/2001/XMLSchema#integer; and "abc"^^dt:specialDatatype is a typed literal with the datatype http://example.org/datatype#specialDatatype.

This RDF data is the data graph for the query examples in sections 2.3.1–2.3.3.

[bookmark: matchLangTags]2.3.1 Matching Literals with Language Tags

Language tags in SPARQL are expressed using @ and the
 language tag, as defined in Best Common Practice 47 [BCP47].

This following query has no solution because "cat" is not the
 same RDF literal as "cat"@en:

SELECT ?v WHERE { ?v ?p "cat" }

		 v

but the query below will find a solution where variable v is bound to
 :x because the language tag is specified and matches the given data:

SELECT ?v WHERE { ?v ?p "cat"@en }

		v

		<http://example.org/ns#x>

[bookmark: matchNumber]2.3.2 Matching Literals with Numeric Types

Integers in a SPARQL query indicate an RDF typed literal with the datatype
 xsd:integer. For example: 42 is a shortened form
 of "42"^^<http://www.w3.org/2001/XMLSchema#integer>.

The pattern in the following query has a solution with variable v
 bound to :y.

SELECT ?v WHERE { ?v ?p 42 }

[bookmark: table60]		v

		<http://example.org/ns#y>

Section 4.1.2 defines SPARQL shortened forms for xsd:float and xsd:double.

[bookmark: matchArbDT]2.3.3 Matching Literals with Arbitrary Datatypes

The following query has a solution with variable v bound to
 :z. The query processor does not have to have any understanding
 of the values in the space of the datatype. Because the lexical form and
 datatype IRI both match, the literal matches.

SELECT ?v WHERE { ?v ?p "abc"^^<http://example.org/datatype#specialDatatype> }

[bookmark: table61]		v

		<http://example.org/ns#z>

[bookmark: BlankNodesInResults]2.4 Blank Node Labels in Query Results

 Query results can contain blank nodes. Blank nodes in the example
 result sets in this document are written in the form
 "_:" followed by a blank node label.

Blank node labels are scoped to a result set (see
"SPARQL
Query Results XML Format" and
"SPARQL 1.1 Query Results JSON Format")
or, for the CONSTRUCT query
form, the result graph.
Use of the same label within a
result set indicates the same blank node.

 Data:
 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:b foaf:name "Bob" .

 Query:
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?x ?name
WHERE { ?x foaf:name ?name }

[bookmark: table56]		x		name

		_:c		"Alice"

		_:d		"Bob"

The results above could equally be given with different blank node labels because
 the labels in the results only indicate whether RDF terms in the solutions are
 the same or different.

[bookmark: table57]		x		name

		_:r		"Alice"

		_:s		"Bob"

These two results have the same information: the blank nodes used to match the
query are different in the two solutions. There need not be any relation between a
label
_:a in the result set and a blank node in the data graph
with the same label.

An application writer should not expect blank node labels in a query to refer to a particular blank node in the data.

[bookmark: CreatingValuesWithExpressions]2.5 Creating Values with Expressions

SPARQL 1.1 allows to create values from complex expressions.
 The queries below show how to the CONCAT function
	can be used to concatenate first names and last names from foaf data, then assign
	the value using an expression in the SELECT clause
	and also assign the value by using the BIND form.

 Data:
 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:givenName "John" .
_:a foaf:surname "Doe" .

 Query:
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT (CONCAT(?G, " ", ?S) AS ?name)
WHERE { ?P foaf:givenName ?G ; foaf:surname ?S }

 Query:
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
 ?P foaf:givenName ?G ;
 foaf:surname ?S
 BIND(CONCAT(?G, " ", ?S) AS ?name)
}

[bookmark: table59]		name

		"John Doe"

[bookmark: constructGraph]2.6 Building RDF Graphs

SPARQL has several query forms.
The SELECT query form
returns variable bindings. The CONSTRUCT query form
returns an RDF graph. The graph is built based on a template
which is used to generate RDF triples based on the results of matching
the graph pattern of the query.

Data:

@prefix org: <http://example.com/ns#> .

_:a org:employeeName "Alice" .
_:a org:employeeId 12345 .

_:b org:employeeName "Bob" .
_:b org:employeeId 67890 .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX org: <http://example.com/ns#>

CONSTRUCT { ?x foaf:name ?name }
WHERE { ?x org:employeeName ?name }

Results:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:x foaf:name "Alice" .
_:y foaf:name "Bob" .

which can be serialized in
 RDF/XML as:

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 >
 <rdf:Description>
 <foaf:name>Alice</foaf:name>
 </rdf:Description>
 <rdf:Description>
 <foaf:name>Bob</foaf:name>
 </rdf:Description>
</rdf:RDF>

[bookmark: termConstraint]3 RDF Term Constraints (Informative)

Graph pattern matching produces a solution sequence, where each solution has a set of bindings of variables to RDF terms. SPARQL FILTERs
 restrict solutions to those for which the filter expression evaluates to TRUE.

This section provides an informal introduction to SPARQL FILTERs; their semantics are defined in section 'Expressions and Testing Values' where there is a comprehensive function library. The examples in this section share one input graph:

 Data:
 @prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .

[bookmark: restrictString]3.1 Restricting the Value of Strings

SPARQL FILTER functions like regex can test RDF literals. regex matches only string literals.
 regex can be used to match the lexical forms of other literals by
 using the str
 function.

Query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { ?x dc:title ?title
 FILTER regex(?title, "^SPARQL")
 }

Query Result:

[bookmark: table63]		title

		"SPARQL Tutorial"

Regular expression matches may be made case-insensitive with the "i"
 flag.

Query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { ?x dc:title ?title
 FILTER regex(?title, "web", "i")
 }

Query Result:

[bookmark: table64]		title

		"The Semantic Web"

The regular expression language is defined by XQuery 1.0 and XPath 2.0 Functions and Operators and is based on XML Schema Regular Expressions.

[bookmark: restrictNumber]3.2 Restricting Numeric Values

SPARQL FILTERs can restrict on arithmetic expressions.

Query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?title ?price
WHERE { ?x ns:price ?price .
 FILTER (?price < 30.5)
 ?x dc:title ?title . }

Query Result:

[bookmark: table58]		title		price

		"The Semantic Web"		23

By constraining the price variable, only :book2 matches
the query because only :book2 has a price less than 30.5,
as the filter condition requires.

[bookmark: otherTermConstraints]3.3 Other Term Constraints

In addition to numeric types, SPARQL supports
	types xsd:string, xsd:boolean and xsd:dateTime
	(see Operand Data Types).
	Section Operator Mapping describes the operators
	and section Function Definitions the functions that can be
	that can be applied to RDF terms.

[bookmark: sparqlSyntax]4 SPARQL Syntax

This section covers the syntax used by SPARQL for
RDF terms and triple patterns. The full grammar
is given in section 19.

[bookmark: syntaxTerms]4.1 RDF Term Syntax

[bookmark: QSynIRI]4.1.1 Syntax for IRIs

The iri production designates the set of IRIs [RFC3987]; IRIs are a generalization of URIs [RFC3986] and are fully compatible with URIs and URLs. The PrefixedName production designates a prefixed name. The mapping from a prefixed name to an IRI is described below. IRI references (relative or absolute IRIs) are designated by the IRIREF production, where the '<' and '>' delimiters do not form part of the IRI reference. Relative IRIs match the irelative-ref reference in section 2.2 ABNF for IRI References and IRIs in [RFC3987] and are resolved to IRIs as described below.

The set of RDF terms defined in RDF Concepts and Abstract Syntax
 includes RDF URI references while SPARQL terms include IRIs. RDF URI
 references containing "<", ">", '"' (double
quote), space, "{", "}", "|",
"\", "^", and
"`" are not IRIs. The behavior of a SPARQL query against RDF
 statements composed of such RDF URI references is not defined.

[bookmark: prefNames]4.1.1.1 Prefixed Names

The PREFIX keyword associates a prefix label with an IRI. A prefixed
name is a prefix label and a local part, separated by a colon ":".
A prefixed name is mapped to an IRI by concatenating the IRI associated with the prefix and the local part.
The prefix label or the local part may be empty.
Note that SPARQL local names allow leading digits while XML local names do not.
SPARQL local names also allow the non-alphanumeric characters allowed in IRIs
via backslash character escapes (e.g. ns:id\=123).
SPARQL local names have more syntactic restrictions than CURIEs.

[bookmark: relIRIs]4.1.1.2 Relative IRIs

Relative IRIs are combined with base IRIs as per
Uniform Resource Identifier
(URI): Generic Syntax [RFC3986] using only the basic
algorithm in section 5.2. Neither Syntax-Based Normalization nor Scheme-Based Normalization
(described in sections 6.2.2 and 6.2.3 of RFC3986) are performed. Characters additionally
allowed in IRI references are treated in the same way that unreserved characters
are treated in URI references, per section 6.5 of
Internationalized Resource
Identifiers (IRIs) [RFC3987].

The BASE keyword defines the Base IRI used to resolve relative IRIs
per RFC3986 section 5.1.1, "Base URI Embedded in Content". Section 5.1.2, "Base
URI from the Encapsulating Entity" defines how the Base IRI may come from an encapsulating
document, such as a SOAP envelope with an xml:base directive or a mime multipart
document with a Content-Location header. The "Retrieval URI" identified in 5.1.3,
Base "URI from the Retrieval URI", is the URL from which a particular SPARQL query
was retrieved. If none of the above specifies the Base URI, the default Base URI
(section 5.1.4, "Default Base URI") is used.

The following fragments are some of the different ways to write the same IRI:

<http://example.org/book/book1>

BASE <http://example.org/book/>
<book1>

PREFIX book: <http://example.org/book/>
book:book1

[bookmark: QSynLiterals]4.1.2 Syntax for Literals

The general syntax for literals is a string (enclosed in either double
quotes, "...", or single quotes, '...'), with either an optional
language tag (introduced by @) or an optional datatype IRI or prefixed
name (introduced by ^^).

As a convenience, integers can be written directly (without quotation marks and an explicit datatype IRI) and are interpreted as typed
literals of datatype xsd:integer; decimal numbers for which there is '.'
in the number but no exponent are interpreted as xsd:decimal; and
numbers with exponents are interpreted as xsd:double. Values of
type xsd:boolean can also be written as true or
false.

To facilitate writing literal values which themselves contain quotation marks
or which are long and contain newline characters, SPARQL provides an additional
quoting construct in which literals are enclosed in three single- or double-quotation
marks.

Examples of literal syntax in SPARQL include:

		"chat"

		'chat'@fr with language tag "fr"

		"xyz"^^<http://example.org/ns/userDatatype>

		"abc"^^appNS:appDataType

		'''The librarian said, "Perhaps you would enjoy 'War and Peace'."'''

		1, which is the same as "1"^^xsd:integer

		1.3, which is the same as "1.3"^^xsd:decimal

		1.300, which is the same as "1.300"^^xsd:decimal

		1.0e6, which is the same as "1.0e6"^^xsd:double

		true, which is the same as "true"^^xsd:boolean

		false, which is the same as "false"^^xsd:boolean

 Tokens matching the productions INTEGER, DECIMAL, DOUBLE and
 BooleanLiteral are equivalent to a typed
 literal with the lexical value of the token and the corresponding
 datatype (xsd:integer, xsd:decimal, xsd:double, xsd:boolean).

[bookmark: QSynVariables]4.1.3 Syntax for Query Variables

A query variable is marked by the use of either "?" or "$";
	 the "?" or "$" is not part of the variable name.
	 In a query, $abc and ?abc identify the same variable. The
	 possible names for variables are given in the
	 SPARQL grammar.

[bookmark: QSynBlankNodes]4.1.4 Syntax for Blank Nodes

Blank
nodes in graph patterns act as variables, not as references to specific blank nodes in the
data being queried.

Blank nodes are indicated by either the label form, such as "_:abc", or the abbreviated form "[]". A blank
node that is used in only one place in the query syntax can be indicated with
[]. A unique blank node will be used to form the triple
pattern. Blank node labels are written as "_:abc" for a blank node with
label "abc". The same blank node label cannot be used
 in two different basic graph patterns in the same query.

The [:p :v] construct can be used in triple patterns. It creates
a blank node label which is used as the subject of all contained predicate-object
pairs. The created blank node can also be used in further triple patterns in the
subject and object positions.

The following two forms

[:p "v"] .

[] :p "v" .

allocate a unique blank node label (here "b57") and are equivalent
to writing:

_:b57 :p "v" .

This allocated blank node label can be used as the subject or object of further
triple patterns. For example, as a subject:

[:p "v"] :q "w" .

which is equivalent to the two triples:

_:b57 :p "v" .
_:b57 :q "w" .

and as an object:

:x :q [:p "v"] .

which is equivalent to the two triples:

:x :q _:b57 .
_:b57 :p "v" .

Abbreviated blank node syntax can be combined with other abbreviations for
common
subjects and common predicates.

 [foaf:name ?name ;
 foaf:mbox <mailto:alice@example.org>]

This is the same as writing the following basic graph pattern for some uniquely
allocated blank node label, "b18":

 _:b18 foaf:name ?name .
 _:b18 foaf:mbox <mailto:alice@example.org> .

[bookmark: QSynTriples]4.2 Syntax for Triple Patterns

Triple Patterns are written as subject,
predicate and object; there are abbreviated ways of writing some common triple pattern
constructs.

The following examples express the same query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { <http://example.org/book/book1> dc:title ?title }

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://example.org/book/>

SELECT $title
WHERE { :book1 dc:title $title }

BASE <http://example.org/book/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT $title
WHERE { <book1> dc:title ?title }

[bookmark: predObjLists]4.2.1 Predicate-Object Lists

Triple patterns with a common subject can be written so that the subject is only
written once and is used for more than one triple pattern by employing the ";"
notation.

 ?x foaf:name ?name ;
 foaf:mbox ?mbox .

This is the same as writing the triple patterns:

 ?x foaf:name ?name .
 ?x foaf:mbox ?mbox .

[bookmark: objLists]4.2.2 Object Lists

If triple patterns share both subject and predicate, the objects may be separated
by ",".

 ?x foaf:nick "Alice" , "Alice_" .

is the same as writing the triple patterns:

 ?x foaf:nick "Alice" .
 ?x foaf:nick "Alice_" .

Object lists can be combined with predicate-object lists:

 ?x foaf:name ?name ; foaf:nick "Alice" , "Alice_" .

is equivalent to:

 ?x foaf:name ?name .
 ?x foaf:nick "Alice" .
 ?x foaf:nick "Alice_" .

[bookmark: collections]4.2.3 RDF Collections

RDF collections can be written in triple patterns using the syntax "(element1 element2 ...)". The
form "()" is an alternative for the IRI
http://www.w3.org/1999/02/22-rdf-syntax-ns#nil.
When used with collection elements, such as (1 ?x 3 4), triple patterns
with blank nodes are allocated for the collection. The blank node at the head
of the collection can be used as a subject or object in other triple patterns. The blank nodes allocated by the collection syntax do not occur elsewhere in the query.

(1 ?x 3 4) :p "w" .

is syntactic sugar for (noting that b0, b1, b2 and b3 do not occur anywhere else in the
query):

 _:b0 rdf:first 1 ;
 rdf:rest _:b1 .
 _:b1 rdf:first ?x ;
 rdf:rest _:b2 .
 _:b2 rdf:first 3 ;
 rdf:rest _:b3 .
 _:b3 rdf:first 4 ;
 rdf:rest rdf:nil .
 _:b0 :p "w" .

RDF collections can be nested and can involve other syntactic forms:

(1 [:p :q] (2)) .

is syntactic sugar for:

 _:b0 rdf:first 1 ;
 rdf:rest _:b1 .
 _:b1 rdf:first _:b2 .
 _:b2 :p :q .
 _:b1 rdf:rest _:b3 .
 _:b3 rdf:first _:b4 .
 _:b4 rdf:first 2 ;
 rdf:rest rdf:nil .
 _:b3 rdf:rest rdf:nil .

[bookmark: abbrevRdfType]4.2.4 rdf:type

The keyword "a" can be used as a predicate in a triple pattern and
is an alternative for the IRI
http://www.w3.org/1999/02/22-rdf-syntax-ns#type.
This keyword is case-sensitive.

 ?x a :Class1 .
 [a :appClass] :p "v" .

is syntactic sugar for:

 ?x rdf:type :Class1 .
 _:b0 rdf:type :appClass .
 _:b0 :p "v" .

[bookmark: GraphPattern]5 Graph Patterns

SPARQL is based around graph pattern matching. More complex graph patterns
can be formed by combining smaller patterns in various ways:

		Basic Graph Patterns,
 where a set of triple
 patterns must match

		Group Graph Pattern, where a set of graph
 patterns must all match

		Optional Graph patterns, where additional patterns
 may extend the solution

		Alternative Graph Pattern, where two or more possible
 patterns are tried

		Patterns on Named Graphs, where patterns are matched
 against named graphs

In this section we describe the two forms that combine patterns by
conjunction: basic graph patterns, which combine triples patterns, and group
graph patterns, which combine all other graph patterns.

The outer-most graph pattern in a query is called the query pattern. It is grammatically identified by GroupGraphPattern in

		[17] 		WhereClause		 ::= 		'WHERE'? GroupGraphPattern

[bookmark: BasicGraphPatterns]5.1 Basic Graph Patterns

Basic graph patterns are sets of triple patterns. SPARQL graph pattern
matching is defined in terms of combining the results from matching basic graph patterns.

A sequence of triple patterns, with optional filters, comprises a single
basic graph pattern. Any other graph pattern terminates a basic graph pattern.

[bookmark: bgpBNodeLabels]5.1.1 Blank Node Labels

When using blank nodes of the form _:abc, labels for blank
nodes are scoped to the basic graph pattern. A label can be used in only a
single basic graph pattern in any query.

[bookmark: bgpExtend]5.1.2 Extending Basic Graph Pattern Matching

SPARQL evaluates basic graph patterns using subgraph matching, which
	 is defined for simple entailment. SPARQL can be extended to
	 other forms of entailment given certain conditions
	 as described below.
	 The document SPARQL 1.1 Entailment Regimes
	 describes several specific entailment regimes.

[bookmark: GroupPatterns]5.2 Group Graph Patterns

In a SPARQL query string, a group graph pattern is delimited with braces:
{}. For example, this query's query pattern is a group graph pattern of one basic
graph pattern.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE {
 ?x foaf:name ?name .
 ?x foaf:mbox ?mbox .
 }

 The same solutions would be obtained from a query that grouped the triple patterns
 into two basic graph patterns. For example, the query below has a different
 structure but would yield the same solutions as the previous query:
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { { ?x foaf:name ?name . }
 { ?x foaf:mbox ?mbox . }
 }

[bookmark: emptyGroupPattern]5.2.1 Empty Group Pattern

The group pattern:

{ }

matches any graph (including the empty graph) with one solution that does not bind any
variables. For example:

SELECT ?x
WHERE {}

matches with one solution in which variable x is not bound.

[bookmark: scopeFilters]5.2.2 Scope of Filters

A constraint, expressed by the keyword FILTER, is a
restriction on solutions over the whole group in which the filter appears. The
following patterns all have the same solutions:

 { ?x foaf:name ?name .
 ?x foaf:mbox ?mbox .
 FILTER regex(?name, "Smith")
 }

 { FILTER regex(?name, "Smith")
 ?x foaf:name ?name .
 ?x foaf:mbox ?mbox .
 }

 { ?x foaf:name ?name .
 FILTER regex(?name, "Smith")
 ?x foaf:mbox ?mbox .
 }

[bookmark: groupExamples]5.2.3 Group Graph Pattern Examples

 {
 ?x foaf:name ?name .
 ?x foaf:mbox ?mbox .
 }

is a group of one basic graph pattern and that basic graph pattern consists
 of two triple patterns.

 {
 ?x foaf:name ?name . FILTER regex(?name, "Smith")
 ?x foaf:mbox ?mbox .
 }

is a group of one basic graph pattern and a filter, and that basic graph
pattern consists of two triple patterns; the filter does not break the
basic graph pattern into two basic graph patterns.

 {
 ?x foaf:name ?name .
 {}
 ?x foaf:mbox ?mbox .
 }

is a group of three elements, a basic graph pattern of one triple pattern,
an empty group, and another basic graph pattern of one triple pattern.

[bookmark: optionals]6 Including Optional Values

Basic graph patterns allow applications to make queries where the entire query
pattern must match for there to be a solution. For every solution of a query containing only group graph patterns with at least one basic graph pattern,
every variable is bound to an RDF Term in a solution. However, regular,
complete structures cannot be assumed in all RDF graphs. It is useful to be able
to have queries that allow information to be added to the solution where the information
is available, but do not reject the solution because some part of the query
pattern does not match. Optional matching provides this facility: if the optional
part does not match, it creates no bindings but does not eliminate
the solution.

[bookmark: OptionalMatching]6.1 Optional Pattern Matching

Optional parts of the graph pattern may be specified syntactically with the OPTIONAL
keyword applied to a graph pattern:

pattern OPTIONAL { pattern }

The syntactic form:

{ OPTIONAL { pattern } }

is equivalent to:

{ { } OPTIONAL { pattern } }

The OPTIONAL keyword is left-associative :

pattern OPTIONAL { pattern } OPTIONAL { pattern }

is the same as:

{ pattern OPTIONAL { pattern } } OPTIONAL { pattern }

In an optional match, either the optional graph pattern matches a graph, thereby
defining and adding bindings to one or more solutions, or it leaves a solution unchanged without adding
any additional bindings.

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

_:a rdf:type foaf:Person .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@example.com> .
_:a foaf:mbox <mailto:alice@work.example> .

_:b rdf:type foaf:Person .
_:b foaf:name "Bob" .

 Query:PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { ?x foaf:name ?name .
 OPTIONAL { ?x foaf:mbox ?mbox }
 }

With the data above, the query result is:

[bookmark: table92]		name		mbox

		"Alice"		<mailto:alice@example.com>

		"Alice"		<mailto:alice@work.example>

		"Bob"		

There is no value of mbox in the solution where the name is
"Bob".

This query finds the names of people in the data. If there is a triple with predicate
mbox and the same subject, a solution will contain the object of that triple
as well. In this example, only a single triple pattern is given in the optional match
part of the query but, in general, the optional part may be any graph pattern. The entire
optional graph pattern must match for the optional graph pattern to affect
the query solution.

[bookmark: OptionalAndConstraints]6.2 Constraints
in Optional Pattern Matching

Constraints can be given in an optional graph pattern. For example:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?title ?price
WHERE { ?x dc:title ?title .
 OPTIONAL { ?x ns:price ?price . FILTER (?price < 30) }
 }

[bookmark: table93]		title		price

		"SPARQL Tutorial"		

		"The Semantic Web"		23

No price appears for the book with title "SPARQL Tutorial" because the optional
graph pattern did not lead to a solution involving the variable "price".

[bookmark: MultipleOptionals]6.3 Multiple Optional Graph
Patterns

Graph patterns are defined recursively. A graph pattern may have zero or more
optional graph patterns, and any part of a query pattern may have an optional part.
In this example, there are two optional graph patterns.

 Data:@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:homepage <http://work.example.org/alice/> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .

 Query:PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox ?hpage
WHERE { ?x foaf:name ?name .
 OPTIONAL { ?x foaf:mbox ?mbox } .
 OPTIONAL { ?x foaf:homepage ?hpage }
 }

Query result:

[bookmark: table94]		name		mbox		hpage

		"Alice"				<http://work.example.org/alice/>

		"Bob"		<mailto:bob@work.example>		

[bookmark: alternatives]7 Matching Alternatives

SPARQL provides a means of combining graph patterns so that one of several alternative
graph patterns may match. If more than one of the alternatives matches, all the
possible pattern solutions are found.

Pattern alternatives are syntactically specified with the UNION keyword.

 Data:@prefix dc10: <http://purl.org/dc/elements/1.0/> .
@prefix dc11: <http://purl.org/dc/elements/1.1/> .

_:a dc10:title "SPARQL Query Language Tutorial" .
_:a dc10:creator "Alice" .

_:b dc11:title "SPARQL Protocol Tutorial" .
_:b dc11:creator "Bob" .

_:c dc10:title "SPARQL" .
_:c dc11:title "SPARQL (updated)" .

 Query:PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT ?title
WHERE { { ?book dc10:title ?title } UNION { ?book dc11:title ?title } }

Query result:

[bookmark: table97]		title

		"SPARQL Protocol Tutorial"

		"SPARQL"

		"SPARQL (updated)"

		"SPARQL Query Language Tutorial"

This query finds titles of the books in the data, whether the title is recorded
 using Dublin Core properties
 from version 1.0 or version 1.1. To determine exactly how the information was
 recorded, a query could use different variables for the two alternatives:

PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT ?x ?y
WHERE { { ?book dc10:title ?x } UNION { ?book dc11:title ?y } }

[bookmark: table98]		x		y

				"SPARQL (updated)"

				"SPARQL Protocol Tutorial"

		"SPARQL"		

		"SPARQL Query Language Tutorial"		

This will return results with the variable x bound for solutions from the left branch of the UNION, and y bound
 for the solutions from the right branch. If neither part of the UNION
 pattern matched, then the graph pattern would not match.

The UNION pattern combines graph patterns; each alternative possibility can contain more
 than one triple
 pattern:

PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT ?title ?author
WHERE { { ?book dc10:title ?title . ?book dc10:creator ?author }
 UNION
 { ?book dc11:title ?title . ?book dc11:creator ?author }
 }

[bookmark: table99]		title		author

		"SPARQL Query Language Tutorial"		"Alice"

		"SPARQL Protocol Tutorial"		"Bob"

This query will only match a book if it has both a title and creator predicate
from the same version of Dublin Core.

[bookmark: negation]8 Negation

The SPARQL query language incorporates two styles of negation, one
 based on filtering results depending on whether a graph pattern does or
 does not match in the context of the query solution being filtered,
 and one based on removing solutions related to another pattern.

[bookmark: neg-pattern]8.1 Filtering Using Graph Patterns

Filtering of query solutions is done within a FILTER
 expression using NOT EXISTS and EXISTS.
 Note that the filter scope rules
 apply to the
 whole group in which the filter appears.

[bookmark: neg-notexists]8.1.1 Testing For the Absence of a Pattern

The NOT EXISTS filter expression tests whether a graph pattern does
 not match the dataset, given the values of variables in the group graph pattern
 in which the filter occurs. It does
 not generate any additional bindings.

Data:

@prefix : <http://example/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

:alice rdf:type foaf:Person .
:alice foaf:name "Alice" .
:bob rdf:type foaf:Person .

Query:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?person
WHERE
{
 ?person rdf:type foaf:Person .
 FILTER NOT EXISTS { ?person foaf:name ?name }
}

Query Result:

		person

		<http://example/bob>

[bookmark: neg-exists]8.1.2 Testing For the Presence of a Pattern

The filter expression EXISTS is also provided.
 It tests whether the pattern can be found in the data;
 it does not generate any additional bindings.

Query:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?person
WHERE
{
 ?person rdf:type foaf:Person .
 FILTER EXISTS { ?person foaf:name ?name }
}

Query Result:

		person

		<http://example/alice>

[bookmark: neg-minus]8.2 Removing Possible Solutions

The other style of negation provided in SPARQL is
 MINUS which evaluates both its arguments,
 then calculates solutions in the left-hand side that are not
 compatible with the solutions on the right-hand side.

 Data:
 @prefix : <http://example/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

:alice foaf:givenName "Alice" ;
 foaf:familyName "Smith" .

:bob foaf:givenName "Bob" ;
 foaf:familyName "Jones" .

:carol foaf:givenName "Carol" ;
 foaf:familyName "Smith" .

 Query:
 PREFIX : <http://example/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?s
WHERE {
 ?s ?p ?o .
 MINUS {
 ?s foaf:givenName "Bob" .
 }
}

Results:

		s

		<http://example/carol>

		<http://example/alice>

[bookmark: neg-notexists-minus]8.3 Relationship and differences between NOT EXISTS and MINUS

NOT EXISTS and MINUS represent two ways of
 thinking about negation, one based on
 testing whether a pattern exists in the data, given the bindings
 already determined by the query pattern,
 and one based on removing matches based on the evaluation of
 two patterns. In some cases they can produce different answers.

[bookmark: neg-example-1]8.3.1 Example: Sharing of variables

@prefix : <http://example/> .
:a :b :c .

SELECT *
{
 ?s ?p ?o
 FILTER NOT EXISTS { ?x ?y ?z }
}

evaluates to a result set with no solutions because { ?x ?y ?z }
 matches given any ?s ?p ?o, so NOT EXISTS { ?x ?y ?z }
 eliminates any solutions.

		s		p		o

whereas with MINUS, there is no shared variable between the
 first part (?s ?p ?o) and the second (?x ?y ?z)
 so no bindings are eliminated.

SELECT *
{
 ?s ?p ?o
 MINUS
 { ?x ?y ?z }
}

Results:

		s		p		o

		<http://example/a>		<http://example/b>		<http://example/c>

[bookmark: neg-example-2]8.3.2 Example: Fixed pattern

Another case is where there is a concrete pattern (no variables) in the example:

PREFIX : <http://example/>
SELECT *
{
 ?s ?p ?o
 FILTER NOT EXISTS { :a :b :c }
}

evaluates to a result set with no query solutions:

 Results:
 		s		p		o

whereas

PREFIX : <http://example/>
SELECT *
{
 ?s ?p ?o
 MINUS { :a :b :c }
}

evaluates to result set with one query solution:

Results:

		s		p		o

		<http://example/a>		<http://example/b>		<http://example/c>

because there is no match of bindings and so no solutions are eliminated.

[bookmark: idp899488]8.3.3 Example: Inner FILTERs

Differences also arise because in a filter, variables from the group are
 in scope. In this example, the FILTER inside
 the NOT EXISTS has access to the value of ?n for the solution being considered.

@prefix : <http://example.com/> .
:a :p 1 .
:a :q 1 .
:a :q 2 .

:b :p 3.0 .
:b :q 4.0 .
:b :q 5.0 .

When using FILTER NOT EXISTS, the test is on each possible solution to ?x :p ?n:

PREFIX : <http://example.com/>
SELECT * WHERE {
 ?x :p ?n
 FILTER NOT EXISTS {
 ?x :q ?m .
 FILTER(?n = ?m)
 }
}

		x		n

		<http://example.com/b>		3.0

whereas with MINUS, the FILTER inside the pattern does not have a value for ?n and it is always unbound:

PREFIX : <http://example/>
SELECT * WHERE {
 ?x :p ?n
 MINUS {
 ?x :q ?m .
 FILTER(?n = ?m)
 }
}

		x		n

		<http://example.com/b>		3.0

		<http://example.com/a>		1

[bookmark: propertypaths]9 Property Paths

A property path is a possible route through a graph between two graph nodes.
 A trivial case is a property path of length exactly 1, which is a triple pattern.
 The ends of the path may be RDF terms or variables. Variables
 can not be used as part of the path itself, only the ends.

 Property paths allow for more concise expressions for
 some SPARQL basic graph patterns and they also add the ability
 to match connectivity of two resources by an arbitrary length path.

[bookmark: pp-language]9.1 Property Path Syntax

In the description below, iri is either an IRI written
 in full or abbreviated by a prefixed name, or the keyword a.
 elt is a path element, which may itself
 be composed of path constructs.

		Syntax Form		Property Path Expression Name		Matches

		iri		PredicatePath		 An IRI. A path of length one.

		^elt		InversePath		Inverse path (object to subject).

		elt1 / elt2		SequencePath		A sequence path of elt1 followed by elt2.

		 elt1 | elt2		AlternativePath		A alternative path of elt1 or elt2 (all possibilities are tried).

		elt*		ZeroOrMorePath		A path that connects the subject and object of the path by zero or more matches of elt.

		elt+		OneOrMorePath		A path that connects the subject and object of the path by one or more matches of elt.

		elt?		ZeroOrOnePath		A path that connects the subject and object of the path by zero or one matches of elt.

		!iri or !(iri1| ...|irin)		NegatedPropertySet		Negated property set. An IRI which is not one of irii.
	 !iri is short for !(iri).
	

		!^iri or !(^iri1| ...|^irin)		NegatedPropertySet		Negated property set where the excluded matches are based on reversed path.

	 That is, not one of iri1...irin as reverse paths.
	 !^iri is short for !(^iri).

		
	 !(iri1| ...|irij|^irij+1| ...|^irin)		NegatedPropertySet		
	 A combination of forward and reverse properties in a negated property set.
	

		(elt)		 		A group path elt, brackets control precedence.

The order of IRIs, and reverse IRIs, in a negated property set is not significant
 and they can occur in a mixed order.

The precedence of the syntax forms is, from highest to lowest:

		IRI, prefixed names

		Negated property sets

		Groups

		Unary operators *, ? and +

		Unary ^ inverse links

		Binary operator /

		Binary operator |

Precedence is left-to-right within groups.

[bookmark: propertypath-examples]9.2 Examples

Alternatives: Match one or both possibilities

 { :book1 dc:title|rdfs:label ?displayString }

which could have writen:

 { :book1 <http://purl.org/dc/elements/1.1/title> | <http://www.w3.org/2000/01/rdf-schema#label> ?displayString }

Sequence: Find the name of any people that Alice knows.

 {
 ?x foaf:mbox <mailto:alice@example> .
 ?x foaf:knows/foaf:name ?name .
 }

Sequence: Find the names of people 2 "foaf:knows" links away.

 {
 ?x foaf:mbox <mailto:alice@example> .
 ?x foaf:knows/foaf:knows/foaf:name ?name .
 }

This is the same as the SPARQL query:

 SELECT ?x ?name
 {
 ?x foaf:mbox <mailto:alice@example> .
 ?x foaf:knows [foaf:knows [foaf:name ?name]].
 }

or, with explicit variables:

 SELECT ?x ?name
 {
 ?x foaf:mbox <mailto:alice@example> .
 ?x foaf:knows ?a1 .
 ?a1 foaf:knows ?a2 .
 ?a2 foaf:name ?name .
 }

Filtering duplicates: Because someone Alice knows may well know Alice, the example above may
 include Alice herself. This could be avoided with:

 { ?x foaf:mbox <mailto:alice@example> .
 ?x foaf:knows/foaf:knows ?y .
 FILTER (?x != ?y)
 ?y foaf:name ?name
 }

	Inverse Property Paths: These two are the same query: the second is just reversing the property
	direction which swaps the roles of subject and object.

 { ?x foaf:mbox <mailto:alice@example> }

 { <mailto:alice@example> ^foaf:mbox ?x }

Inverse Path Sequence: Find all the people who know someone ?x knows.

 {
 ?x foaf:knows/^foaf:knows ?y .
 FILTER(?x != ?y)
 }

which is equivalent to (?gen1 is a system generated variable):

 {
 ?x foaf:knows ?gen1 .
 ?gen1 foaf:knows?y foaf:knows ?gen1 .
 FILTER(?x != ?y)
 }

Arbitrary length match: Find the names of all the people that can be reached from Alice by foaf:knows:

 {
 ?x foaf:mbox <mailto:alice@example> .
 ?x foaf:knows+/foaf:name ?name .
 }

Alternatives in an arbitrary length path:

 { ?ancestor (ex:motherOf|ex:fatherOf)+ <#me> }

	Arbitrary length path match: Some forms of limited inference are possible as well.
	For example, for RDFS, all types
 and supertypes of a resource:

 { <http://example/thing> rdf:type/rdfs:subClassOf* ?type }

All resources and all their inferred types:

 { ?x rdf:type/rdfs:subClassOf* ?type }

Subproperty:

 { ?x ?p ?v . ?p rdfs:subPropertyOf* :property }

Negated Property Paths: Find nodes connected but not by rdf:type (either way round):

 { ?x !(rdf:type|^rdf:type) ?y }

Elements in an RDF collection:

 { :list rdf:rest*/rdf:first ?element }

Note: This path expression does not guarantee the order of the results.

[bookmark: propertypath-syntaxforms]9.3 Property Paths and Equivalent Patterns

	SPARQL property paths treat the RDF triples as a directed, possibly cyclic, graph
	with named edges. Some property paths are equivalent to a
	translation into triple patterns
	and SPARQL UNION graph patterns. Evaluation of a property path expression can lead
	to duplicates because any variables introduced in the equivalent pattern are not part
	of the results and are not already used elsewhere. They are hidden by implicit
	projection of the results to just the variables given in the query.

For example, on the data:

@prefix : <http://example/> .

:order :item :z1 .
:order :item :z2 .

:z1 :name "Small" .
:z1 :price 5 .

:z2 :name "Large" .
:z2 :price 5 .

Query:

PREFIX : <http://example/>
SELECT *
{ ?s :item/:price ?x . }

Results:

		s		x

		<http://example/order>		5

		<http://example/order>		5

whereas if the query were written out to include the intermediate variable
	(?_a), no rows in the results are duplicates:

PREFIX : <http://example/>
SELECT *
{ ?s :item ?_a .
 ?_a :price ?x . }

Results:

		s		_a		x

		<http://example/order>		<http://example/z1>		5

		<http://example/order>		<http://example/z2>		5

The equivalance to graphs patterns is particularly significant
 when query also involves an aggregation operation. The total cost
 of the order can be found with

 PREFIX : <http://example/>
 SELECT (sum(?x) AS ?total)
 {
 :order :item/:price ?x
 }

		total

		10

[bookmark: propertypath-arbitrary-length]9.4 Arbitrary Length Path Matching

	Connectivity between the subject and object by a property path
	of arbitrary length can be found using the "zero or more"
	property path operator, *, and the "one or more"
	property path operator, +.
	There is also a "zero or one" connectivity property path operator,
	?.

	Each of these operators uses the property path expression
	to try to find a connection between subject and object, using the
	path step a number of times, as restricted by the operator.

	 For example, finding all the the possible types of a resource,
	 including supertypes of resources, can be achieved with:

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 SELECT ?x ?type
 {
 ?x rdf:type/rdfs:subClassOf* ?type
 }

	 Similarly, finding all the people :x connects to via the
	 foaf:knows relationship,

 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 PREFIX : <http://example/>
 SELECT ?person
 {
 :x foaf:knows+ ?person
 }

	 Such connectivity matching does not introduce duplicates (it does not
	 incorporate any count of the number of ways the connection can be made) even
	 if the repeated path itself would otherwise result in duplicates.

	 The graph matched may include cycles. Connectivity matching is defined so that
	 matching cycles does not lead to undefined or infinite results.

[bookmark: assignment]10 Assignment

The value of an expression can be added to a solution mapping by binding a new variable
 to the value of the expression, which is an RDF term.
 The variable can then be used in the query and also can be returned
 in results.

Three syntax forms allow this: the BIND keyword,
 expressions in the
 SELECT clause and expressions in the GROUP BY clause.
 The assignment form is (expression AS ?var).

If the evaluation of the expression produces an error,
 the variable remains unbound for that solution but the query evaluation continues.

Data can also be directly included in a query using
 VALUES for inline data.

[bookmark: bind]10.1 BIND: Assigning to Variables

The BIND form allows a value to be assigned to a variable from a
 basic graph pattern or property path expression. Use of BIND
 ends the preceding basic graph pattern. The variable introduced by
 the BIND clause must not have been used in the group graph
 pattern up to the point of use in BIND.

Example:

Data:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book1 ns:discount 0.2 .

:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .
:book2 ns:discount 0.25 .

Query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>

SELECT ?title ?price
{ ?x ns:price ?p .
 ?x ns:discount ?discount
 BIND (?p*(1-?discount) AS ?price)
 FILTER(?price < 20)
 ?x dc:title ?title .
}

Equivalent query (BIND ends the basic graph pattern;
 the FILTER applies to the whole group graph pattern):

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>

SELECT ?title ?price
{ { ?x ns:price ?p .
 ?x ns:discount ?discount
 BIND (?p*(1-?discount) AS ?price)
 }
 {?x dc:title ?title . }
 FILTER(?price < 20)
}

Results:

		title		price

		 "The Semantic Web"		17.25

[bookmark: inline-data]10.2 VALUES: Providing inline data

Data can be directly written in a graph pattern or added to a query using
 VALUES. VALUES provides inline data as a
 solution sequence
 which are combined with the results of query evaluation by a
 join operation. It can be used by an
 application to provide specific requirements on query results
 and also by SPARQL query engine implementations that provide
 federated query through
 the SERVICE keyword to send a more constrained query to a
 remote query service.

[bookmark: inline-data-syntax]10.2.1 VALUES syntax

VALUES allows multiple variables to be specified in the
	data block; there is a special syntax for the common case of specifying
	just one variable and some values.

In the following example, there is a table of two variables,
	?x and ?y. The second row has no value for
	?y.

VALUES (?x ?y) {
 (:uri1 1)
 (:uri2 UNDEF)
}

Optionally, when there is a single variable and some values:

VALUES ?z { "abc" "def" }

which is the same as using the general form:

VALUES (?z) { ("abc") ("def") }

[bookmark: inline-data-examples]10.2.2 VALUES Examples

A VALUES block of data can appear in a query pattern or
	at the end of a SELECT query, including a
	subquery.

Data:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .

Query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://example.org/book/>
PREFIX ns: <http://example.org/ns#>

SELECT ?book ?title ?price
{
 VALUES ?book { :book1 :book3 }
 ?book dc:title ?title ;
 ns:price ?price .
}

Result:

[bookmark: table110]		book		title		price

		<http://example.org/book/book1>		"SPARQL Tutorial"		42

If a variable has no value for a particular solution in the
 VALUES clause, the keyword UNDEF is used
 instead of an RDF term.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://example.org/book/>
PREFIX ns: <http://example.org/ns#>

SELECT ?book ?title ?price
{
 ?book dc:title ?title ;
 ns:price ?price .
 VALUES (?book ?title)
 { (UNDEF "SPARQL Tutorial")
 (:book2 UNDEF)
 }
}

[bookmark: table111]		book		title		price

		<http://example.org/book/book1>		"SPARQL Tutorial"		42

		<http://example.org/book/book2>		"The Semantic Web"		23

In this example, the VALUES might have been specified
	to execute over the results of the SELECT query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://example.org/book/>
PREFIX ns: <http://example.org/ns#>

SELECT ?book ?title ?price
{
 ?book dc:title ?title ;
 ns:price ?price .
}
VALUES (?book ?title)
{ (UNDEF "SPARQL Tutorial")
 (:book2 UNDEF)
}

This is a different query but, in the example situation, has the same results.

[bookmark: aggregates]11 Aggregates

Aggregates apply expressions over groups of solutions. By default
a solution set consists of a single group, containing all solutions.

Grouping may be specified using the GROUP BY syntax.

Aggregates defined in version 1.1 of SPARQL are
COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE.

Aggregates are used where the querier wishes to see a result which is computed over a group of solutions, rather than a single solution. For example the maximum value that a particular variable takes, rather than each value individually.

[bookmark: aggregateExample]11.1 Aggregate Example

Data:

@prefix : <http://books.example/> .

:org1 :affiliates :auth1, :auth2 .
:auth1 :writesBook :book1, :book2 .
:book1 :price 9 .
:book2 :price 5 .
:auth2 :writesBook :book3 .
:book3 :price 7 .
:org2 :affiliates :auth3 .
:auth3 :writesBook :book4 .
:book4 :price 7 .

Query:

PREFIX : <http://books.example/>
SELECT (SUM(?lprice) AS ?totalPrice)
WHERE {
 ?org :affiliates ?auth .
 ?auth :writesBook ?book .
 ?book :price ?lprice .
}
GROUP BY ?org
HAVING (SUM(?lprice) > 10)

Results:

		totalPrice

		21

This example demonstrates two features of aggregates: GROUP BY, which
 groups query solutions according to one or more expressions (in this case
 ?org), and HAVING, which is analogous to a FILTER
 expression, but operates over groups, rather than individual solutions.

The example is produced by grouping solutions according to the GROUP BY
 expression (i.e. all solutions where ?org takes a particular value appear
 within the same group), and evaluating the Set Function SUM over that group.
 The groups are then filtered by the HAVING expression, which removes
 all groups where SUM(?lprice) is not greater than 10.

In aggregate queries and sub-queries, variables that appear in the
query pattern, but are not in the GROUP BY clause, can only be
projected or used in select expressions if they are aggregated. The
SAMPLE aggregate may be used for this purpose. For details see the
section on Projection Restrictions.

It should be noted that as per functions, aggregate expressions are required to be aliased (again, similar to the BIND clause, using the keyword AS) in order to project them from queries or subqueries. In the example above this is done using the variable ?totalPrice. It is an error for aggregates to project variables with a name already used in other aggregate projections, or in the WHERE clause.

[bookmark: groupby]11.2 GROUP BY

In order to calculate aggregate values for a solution, the solution is first divided into one or more groups, and the aggregate value is calculated for each group.

If aggregates are used in the query level in SELECT,
 HAVING or ORDER BY but the GROUP BY term is not used,
 then this is taken to be a single implicit group, to which all solutions belong.

Within GROUP BY clauses the binding keyword, AS, may be used, such as GROUP BY (?x + ?y AS ?z). This is equivalent to { ... BIND (?x + ?y AS ?z) } GROUP BY ?z.

For example, given a solution sequence S, ({?x→2, ?y→3}, {?x→2, ?y→5}, {?x→6, ?y→7}), we might wish to group the solutions according to the value of ?x, and calculate the average of the values of ?y for each group.

This could be written as:

SELECT (AVG(?y) AS ?avg)
WHERE {
 ?a :x ?x ;
 :y ?y .
}
GROUP BY ?x

[bookmark: having]11.3 HAVING

HAVING operates over grouped solution sets, in the same way that FILTER operates over un-grouped ones.

HAVING expressions have the same evaluation rules as projections from
grouped queries, as described in the following section.

An example of the use of HAVING is given below.

PREFIX : <http://data.example/>
SELECT (AVG(?size) AS ?asize)
WHERE {
 ?x :size ?size
}
GROUP BY ?x
HAVING(AVG(?size) > 10)

This will return average sizes, grouped by the subject, but only where the mean size is greater than 10.

[bookmark: aggregateRestrictions]11.4 Aggregate Projection Restrictions

In a query level which uses aggregates, only expressions consisting of aggregates and constants may be projected, with one exception. When GROUP BY is given with one or more simple expressions consisting of just a variable, those variables may be projected from the level.

For example, the following query is legal as ?x is given as a GROUP BY term.

PREFIX : <http://example.com/data/#>
SELECT ?x (MIN(?y) * 2 AS ?min)
WHERE {
 ?x :p ?y .
 ?x :q ?z .
} GROUP BY ?x (STR(?z))

Note that it would not be legal to project STR(?z) as this is not a simple variable expression. However, with GROUP BY (STR(?z) AS ?strZ) it would be possible to project ?strZ.

Other expressions, not using GROUP BY variables, or aggregates may have non-deterministic values projected from their groups using the SAMPLE aggregate.

[bookmark: aggregateExample2]11.5 Aggregate Example (with errors)

This section shows an example query using aggregation, which demonstrates how errors are handled in results, in the presence of aggregates.

Data:

@prefix : <http://example.com/data/#> .

:x :p 1, 2, 3, 4 .
:y :p 1, _:b2, 3, 4 .
:z :p 1.0, 2.0, 3.0, 4 .

Query:

PREFIX : <http://example.com/data/#>
SELECT ?g (AVG(?p) AS ?avg) ((MIN(?p) + MAX(?p)) / 2 AS ?c)
WHERE {
 ?g :p ?p .
}
GROUP BY ?g

Result:

		g		avg		c

		<http://example.com/data/#x>		2.5		2.5

		<http://example.com/data/#y>				

		<http://example.com/data/#z>		2.5		2.5

Note that the bindings for the :y group is not included in the results as the evaluation of Avg({1, _:b2, 3, 4}), and (_:b2 + 4) / 2 is an error, removing the bindings from the solution.

[bookmark: subqueries]12 Subqueries

Subqueries are a way to embed SPARQL queries within other queries, normally to achieve results which cannot otherwise be achieved, such as limiting the number of results from some sub-expression within the query.

Due to the bottom-up nature of SPARQL query evaluation, the subqueries are evaluated logically first, and the results are projected up to the outer query.

Note that only variables projected out of the subquery will be visible, or
 in scope,
 to the outer query.

Example

Data:

@prefix : <http://people.example/> .

:alice :name "Alice", "Alice Foo", "A. Foo" .
:alice :knows :bob, :carol .
:bob :name "Bob", "Bob Bar", "B. Bar" .
:carol :name "Carol", "Carol Baz", "C. Baz" .

Return a name (the one with the lowest sort order) for all the people that know Alice and have a name.

Query:

PREFIX : <http://people.example/>
PREFIX : <http://people.example/>
SELECT ?y ?minName
WHERE {
 :alice :knows ?y .
 {
 SELECT ?y (MIN(?name) AS ?minName)
 WHERE {
 ?y :name ?name .
 } GROUP BY ?y
 }
}

Results:

		y		minName

		:bob		"B. Bar"

		:carol		"C. Baz"

This result is achieved by first evaluating the inner query:

SELECT ?y (MIN(?name) AS ?minName)
WHERE {
 ?y :name ?name .
} GROUP BY ?y

This produces the following solution sequence:

		y		minName

		:alice		"A. Foo"

		:bob		"B. Bar"

		:carol		"C. Baz"

Which is joined with the results of the outer query:

		y

		:bob

		:carol

[bookmark: rdfDataset]13 RDF Dataset

The RDF data model expresses information as graphs consisting of triples with
subject, predicate and object. Many RDF data stores hold multiple RDF graphs and
record information about each graph, allowing an application to make queries that
involve information from more than one graph.

A SPARQL query is executed against an RDF Dataset which represents a
collection of graphs. An RDF Dataset comprises one graph, the default graph, which
does not have a name, and zero or more named graphs, where each named graph is identified by
an IRI. A SPARQL
query can match different parts of the query pattern against different graphs as
described in section 13.3 Querying the Dataset.

An RDF Dataset may contain zero named graphs; an RDF Dataset always contains one default graph.
A query does not need to involve
matching the default graph; the query can just involve matching named graphs.

The graph that is used for matching a basic graph pattern is the active
graph. In the previous sections, all queries have been shown executed
against a single graph, the default graph of an RDF dataset as the active graph.
The GRAPH keyword is used to make the active graph one of all of
the named graphs in the dataset for part of the query.

[bookmark: exampleDatasets]13.1 Examples of RDF Datasets

The definition of RDF Dataset does not restrict the relationships of named and
default graphs. Information can be repeated in different graphs; relationships between
graphs can be exposed. Two useful arrangements are:

		to have information in the default graph that includes provenance information
 about the named graphs

		to include the information in the named graphs in the default graph as well.

Example 1:# Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example.org/bob> dc:publisher "Bob" .
<http://example.org/alice> dc:publisher "Alice" .

Named graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Bob" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .

Named graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example.org> .

In this example, the default graph contains the names of the publishers of two
named graphs. The triples in the named graphs are not visible in the default graph
in this example.

Example 2:

RDF data can be combined by the
RDF merge
[RDF-MT] of graphs. One possible arrangement of graphs in
an RDF Dataset is to have the default graph be the RDF merge of some or all of
the information in the named graphs.

In this next example, the named graphs contain the same triples as before. The
RDF dataset includes an RDF merge of the named graphs in the default graph, re-labeling
blank nodes to keep them distinct.

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:x foaf:name "Bob" .
_:x foaf:mbox <mailto:bob@oldcorp.example.org> .

_:y foaf:name "Alice" .
_:y foaf:mbox <mailto:alice@work.example.org> .

Named graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Bob" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .

Named graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .

In an RDF merge, blank nodes in the merged graph are not shared with blank
 nodes from the graphs being merged.

[bookmark: specifyingDataset]13.2 Specifying RDF Datasets

A SPARQL query may specify the dataset to be used for matching by using the
FROM clause and the FROM NAMED clause to describe the
RDF dataset. If a query provides such a dataset description, then it is used in
place of any dataset that the query service would use if no dataset description
is provided in a query. The RDF dataset may also be

specified in a SPARQL protocol request, in which case the protocol description
overrides any description in the query itself. A query service may refuse a query
request if the dataset description is not acceptable to the service.

The FROM and FROM NAMED keywords allow a query to specify
an RDF dataset by reference; they indicate that the dataset should include graphs
that are obtained from representations of the resources identified by the given
IRIs (i.e. the absolute form of the given IRI references). The dataset resulting
from a number of FROM and FROM NAMED clauses is:

		a default graph consisting of the RDF merge of the graphs referred to in the
 FROM clauses, and

		a set of (IRI, graph) pairs, one from each FROM NAMED clause.

If there is no FROM clause, but there is one or more FROM NAMED
clauses, then the dataset includes an empty graph for the default graph.

[bookmark: unnamedGraph]13.2.1 Specifying the Default Graph

Each FROM clause contains an IRI that indicates a graph to be
used to form the default graph. This does not put the graph in as a named graph.

In this example, the RDF Dataset contains a single default graph and no named graphs:

Default graph (located at http://example.org/foaf/aliceFoaf)
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
FROM <http://example.org/foaf/aliceFoaf>
WHERE { ?x foaf:name ?name }

[bookmark: table102]		name

		"Alice"

If a query provides more than one FROM clause, providing more than
one IRI to indicate the default graph, then the default graph is the
RDF merge of the
graphs obtained from representations of the resources identified by the given IRIs.

[bookmark: namedGraphs]13.2.2 Specifying Named Graphs

A query can supply IRIs for the named graphs in the RDF Dataset using the
FROM NAMED clause. Each IRI is used to provide one named graph in the
RDF Dataset. Using the same IRI in two or more FROM NAMED clauses results
in one named graph with that IRI appearing in the dataset.

Graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Bob" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .

Graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .

...
FROM NAMED <http://example.org/alice>
FROM NAMED <http://example.org/bob>
...

The FROM NAMED syntax suggests that the IRI identifies the corresponding
graph, but the relationship between an IRI and a graph in an RDF dataset
is indirect. The IRI identifies a resource, and the resource is represented by a
graph (or, more precisely: by a document that serializes a graph). For
further details
see [WEBARCH].

[bookmark: specDataset]13.2.3 Combining FROM and FROM NAMED

The FROM clause and FROM NAMED clause can be used in
the same query.

Default graph (located at http://example.org/dft.ttl)
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example.org/bob> dc:publisher "Bob Hacker" .
<http://example.org/alice> dc:publisher "Alice Hacker" .

Named graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Bob" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .

Named graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example.org> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?who ?g ?mbox
FROM <http://example.org/dft.ttl>
FROM NAMED <http://example.org/alice>
FROM NAMED <http://example.org/bob>
WHERE
{
 ?g dc:publisher ?who .
 GRAPH ?g { ?x foaf:mbox ?mbox }
}

The RDF Dataset for this query contains a default graph and two named graphs.
The GRAPH keyword is described below.

The actions required to construct the dataset are not determined by the
dataset description alone. If an IRI is given twice in a dataset
description, either by using two FROM clauses, or a FROM clause and a
FROM NAMED clause, then it does not assume that exactly one or exactly
two attempts are made to obtain an RDF graph associated with the IRI.
Therefore, no assumptions can be made about blank node identity in
triples obtained from the two occurrences in the dataset description.
In general, no assumptions can be made about the equivalence of the graphs.

[bookmark: queryDataset]13.3 Querying the Dataset

When querying a collection of graphs, the GRAPH keyword is used
to match patterns against named graphs. GRAPH can provide an IRI to select
one graph or use a variable which will range over the IRI of all the named graphs in the query's RDF dataset.

The use of GRAPH changes the active graph for matching
graph patterns within that part of the query. Outside the use of GRAPH,
matching is done using the default graph.

The following two graphs will be used in examples:

Named graph: http://example.org/foaf/aliceFoaf
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
_:a foaf:knows _:b .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .
_:b foaf:nick "Bobby" .
_:b rdfs:seeAlso <http://example.org/foaf/bobFoaf> .

<http://example.org/foaf/bobFoaf>
 rdf:type foaf:PersonalProfileDocument .

Named graph: http://example.org/foaf/bobFoaf
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

_:z foaf:mbox <mailto:bob@work.example> .
_:z rdfs:seeAlso <http://example.org/foaf/bobFoaf> .
_:z foaf:nick "Robert" .

<http://example.org/foaf/bobFoaf>
 rdf:type foaf:PersonalProfileDocument .

[bookmark: accessByLabel]13.3.1 Accessing Graph Names

The query below matches the graph pattern against each of the named graphs in the
 dataset and forms solutions which have the src variable bound to
 IRIs of the graph being matched. The graph pattern is matched with the active
 graph being each of the named graphs in the dataset.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?src ?bobNick
FROM NAMED <http://example.org/foaf/aliceFoaf>
FROM NAMED <http://example.org/foaf/bobFoaf>
WHERE
 {
 GRAPH ?src
 { ?x foaf:mbox <mailto:bob@work.example> .
 ?x foaf:nick ?bobNick
 }
 }

The query result gives the name of the graphs where the information was found
 and the value for Bob's nick:

[bookmark: table105]		src		bobNick

		<http://example.org/foaf/aliceFoaf>		"Bobby"

		<http://example.org/foaf/bobFoaf>		"Robert"

[bookmark: restrictByLabel]13.3.2 Restricting by Graph
 IRI

The query can restrict the matching applied to a specific graph by supplying
 the graph IRI. This sets the active graph to the graph named by the IRI. This query looks for Bob's nick as given in the graph http://example.org/foaf/bobFoaf.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX data: <http://example.org/foaf/>

SELECT ?nick
FROM NAMED <http://example.org/foaf/aliceFoaf>
FROM NAMED <http://example.org/foaf/bobFoaf>
WHERE
 {
 GRAPH data:bobFoaf {
 ?x foaf:mbox <mailto:bob@work.example> .
 ?x foaf:nick ?nick }
 }

which yields a single solution:

[bookmark: table106]		nick

		"Robert"

[bookmark: restrictInQuery]13.3.3 Restricting Possible Graph IRIs

A variable used in the GRAPH clause may also be used in another
 GRAPH clause or in a graph pattern matched against the default graph
 in the dataset.

The query below uses the graph
 with IRI http://example.org/foaf/aliceFoaf to find the profile document
 for Bob; it then matches another pattern against that graph. The pattern in the
 second GRAPH clause finds the blank node (variable w)
 for the person with the same mail box (given by variable mbox) as
 found in the first GRAPH clause (variable whom), because
 the blank node used to match for variable whom from Alice's FOAF
 file is not the same as the blank node in the profile document (they are in different
 graphs).

PREFIX data: <http://example.org/foaf/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?mbox ?nick ?ppd
FROM NAMED <http://example.org/foaf/aliceFoaf>
FROM NAMED <http://example.org/foaf/bobFoaf>
WHERE
{
 GRAPH data:aliceFoaf
 {
 ?alice foaf:mbox <mailto:alice@work.example> ;
 foaf:knows ?whom .
 ?whom foaf:mbox ?mbox ;
 rdfs:seeAlso ?ppd .
 ?ppd a foaf:PersonalProfileDocument .
 } .
 GRAPH ?ppd
 {
 ?w foaf:mbox ?mbox ;
 foaf:nick ?nick
 }
}

[bookmark: table107]		mbox		nick		ppd

		<mailto:bob@work.example>		"Robert"		<http://example.org/foaf/bobFoaf>

Any triple in Alice's FOAF file giving Bob's nick is not used to
provide a nick for Bob because the pattern involving variable nick
is restricted by ppd to a particular Personal Profile Document.

[bookmark: namedAndDefaultGraph]13.3.4 Named and Default
Graphs

Query patterns can involve both the default graph and the named graphs. In this
example, an aggregator has read in a Web resource on two different occasions. Each
time a graph is read into the aggregator, it is given an IRI by the local system.
The graphs are nearly the same but the email address for "Bob" has changed.

In this example, the default graph is being used to record the provenance information and the
RDF data actually read is kept in two separate graphs, each of which is given a
different IRI by the system. The RDF dataset consists of two named graphs and the
information about them.

RDF Dataset:

Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix g: <tag:example.org,2005-06-06:> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

g:graph1 dc:publisher "Bob" .
g:graph1 dc:date "2004-12-06"^^xsd:date .

g:graph2 dc:publisher "Bob" .
g:graph2 dc:date "2005-01-10"^^xsd:date .

Graph: locally allocated IRI: tag:example.org,2005-06-06:graph1
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@oldcorp.example.org> .

Graph: locally allocated IRI: tag:example.org,2005-06-06:graph2
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@newcorp.example.org> .

This query finds email addresses, detailing the name of the person and the
 date the information was discovered.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?name ?mbox ?date
WHERE
 { ?g dc:publisher ?name ;
 dc:date ?date .
 GRAPH ?g
 { ?person foaf:name ?name ; foaf:mbox ?mbox }
 }

The results show that the email address for "Bob" has changed.

[bookmark: table108]		name		mbox		date

		"Bob"		<mailto:bob@oldcorp.example.org>		"2004-12-06"^^xsd:date

		"Bob"		<mailto:bob@newcorp.example.org>		"2005-01-10"^^xsd:date

[bookmark: basic-federated-query]14 Basic Federated Query

This document incorporates the syntax for SPARQL federation extensions.

This feature is defined in the document
 SPARQL 1.1 Federated Query.

[bookmark: solutionModifiers]15 Solution Sequences and Modifiers

Query patterns generate an unordered collection of solutions, each
solution being a partial function from variables to RDF terms.
These solutions are then treated as a sequence (a solution sequence), initially in no specific order;
any sequence modifiers are then applied to create another sequence. Finally, this
latter sequence is used to generate one of the results of a
SPARQL query form.

A solution sequence modifier is one of:

		Order modifier: put the solutions in order

		Projection modifier: choose certain
 variables

		Distinct modifier: ensure solutions in the
 sequence are unique

		Reduced modifier: permit elimination of some non-distinct solutions

		Offset modifier: control where the solutions
 start from in the overall sequence of solutions

		Limit modifier: restrict the number of solutions

Modifiers are applied in the order given by the list above.

[bookmark: modOrderBy]15.1 ORDER BY

The ORDER BY clause establishes the order of a solution sequence.

Following the ORDER BY clause is a sequence of order comparators, composed of an expression and an optional order modifier (either ASC() or DESC()). Each ordering comparator is either ascending (indicated by the ASC() modifier or by no modifier) or descending (indicated by the DESC() modifier).

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE { ?x foaf:name ?name }
ORDER BY ?name

PREFIX : <http://example.org/ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE { ?x foaf:name ?name ; :empId ?emp }
ORDER BY DESC(?emp)

PREFIX : <http://example.org/ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE { ?x foaf:name ?name ; :empId ?emp }
ORDER BY ?name DESC(?emp)

The "<" operator (see the Operator Mapping and 17.3.1 Operator Extensibility) defines
the relative order of pairs of numerics, simple literals, xsd:strings, xsd:booleans
and xsd:dateTimes. Pairs of IRIs are ordered by comparing them as simple literals.

SPARQL also fixes an order between some kinds of RDF terms that would not otherwise be ordered:

		(Lowest) no value assigned to the variable or expression in this solution.

		Blank nodes

		IRIs

		RDF literals

A plain literal is lower than an RDF literal with type xsd:string of the same lexical form.

SPARQL does not define a total ordering of all possible RDF terms. Here are a few examples of pairs of terms for which the relative order is undefined:

		"a" and "a"@en_gb (a simple literal and a literal with a language tag)

		"a"@en_gb and "b"@en_gb (two literals with language tags)

		"a" and "1"^^xsd:integer (a simple literal and a literal with a supported datatype)

		"1"^^my:integer and "2"^^my:integer (two unsupported datatypes)

		"1"^^xsd:integer and "2"^^my:integer (a supported datatype and an unsupported datatype)

This list of variable bindings is in ascending order:

		RDF Term		Reason

				Unbound results sort earliest.

		_:z		Blank nodes follow unbound.

		_:a		There is no relative ordering of blank nodes.

		<http://script.example/Latin>		IRIs follow blank nodes.

		<http://script.example/Кириллица>		The character in the 23rd position, "К", has a unicode codepoint 0x41A, which is higher than 0x4C ("L").

		<http://script.example/漢字> 		The character in the 23rd position, "漢", has a unicode codepoint 0x6F22, which is higher than 0x41A ("К").

		"http://script.example/Latin"		Simple literals follow IRIs.

		"http://script.example/Latin"^^xsd:string		xsd:strings follow simple literals.

The ascending order of two solutions with respect to an ordering comparator is established by substituting the solution bindings into the expressions and comparing them with the "<" operator. The descending order is the reverse of the ascending order.

The relative order of two solutions is the relative order of the two solutions with respect to the first ordering comparator in the sequence. For solutions where the substitutions of the solution bindings produce the same RDF term, the order is the relative order of the two solutions with respect to the next ordering comparator. The relative order of two solutions is undefined if no order expression evaluated for the two solutions produces distinct RDF terms.

Ordering a sequence of solutions always results in a sequence with the same number
of solutions in it.

Using ORDER BY on a solution sequence for a CONSTRUCT or
DESCRIBE query has no direct effect because only SELECT returns
a sequence of results. Used in combination with LIMIT and OFFSET,
ORDER BY can be used to return results generated from a different slice of the solution sequence.
An ASK query does not include ORDER BY, LIMIT or OFFSET.

[bookmark: modProjection]15.2 Projection

The solution sequence can be transformed into one involving only a subset of
the variables. For each solution in the sequence, a new solution is formed using
a specified selection of the variables using the SELECT query form.

The following example shows a query to extract just the names of people described
in an RDF graph using FOAF properties.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE
 { ?x foaf:name ?name }

		name

		"Bob"

		"Alice"

[bookmark: modDuplicates]15.3 Duplicate Solutions

A solution sequence with no DISTINCT or REDUCED query modifier
will preserve duplicate solutions.

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:x foaf:name "Alice" .
_:x foaf:mbox <mailto:alice@example.com> .

_:y foaf:name "Alice" .
_:y foaf:mbox <mailto:asmith@example.com> .

_:z foaf:name "Alice" .
_:z foaf:mbox <mailto:alice.smith@example.com> .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name WHERE { ?x foaf:name ?name }

Results:

		name

		"Alice"

		"Alice"

		"Alice"

The modifiers DISTINCT and REDUCED affect whether duplicates are included in the query results.

[bookmark: modDistinct]15.3.1 DISTINCT

The DISTINCT solution modifier eliminates duplicate solutions.
Only one solution solution that binds the same variables to the same RDF terms is returned from the query.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?name WHERE { ?x foaf:name ?name }

		name

		"Alice"

Note that, per the order of solution sequence modifiers, duplicates are eliminated before either limit or offset is applied.

[bookmark: modReduced]15.3.2 REDUCED

While the DISTINCT modifier ensures that duplicate solutions are eliminated from the solution set, REDUCED simply permits them to be eliminated. The cardinality of any set of variable bindings in a REDUCED solution set is at least one and not more than the cardinality of the solution set with no DISTINCT or REDUCED modifier. For example, using the data above, the query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT REDUCED ?name WHERE { ?x foaf:name ?name }

may have one, two (shown here) or three solutions:

		name

		"Alice"

		"Alice"

[bookmark: modOffset]15.4 OFFSET

OFFSET causes the solutions generated to start after the specified
number of solutions. An OFFSET of zero has no effect.

Using
LIMIT and OFFSET to select different subsets of the query solutions
will not be useful unless the order is made predictable by using ORDER BY.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE { ?x foaf:name ?name }
ORDER BY ?name
LIMIT 5
OFFSET 10

[bookmark: modResultLimit]15.5 LIMIT

The LIMIT clause puts an upper bound on the number of solutions returned. If the
number of actual solutions, after OFFSET is applied, is greater than the limit,
then at most the limit number of solutions will be returned.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE { ?x foaf:name ?name }
LIMIT 20

A LIMIT of 0 would cause no results to be returned. A limit may not be negative.

[bookmark: QueryForms]16 Query Forms

SPARQL has four query forms. These query forms use the solutions from
pattern matching to form result sets or RDF graphs. The query forms are:

 		SELECT

 		Returns all, or a subset of, the variables bound in a query pattern match.

 		CONSTRUCT

 		Returns an RDF graph constructed by substituting variables in a set of triple
 templates.

 		ASK

 		Returns a boolean indicating whether a query pattern matches or not.

 		DESCRIBE

 		Returns an RDF graph that describes the resources found.

Formats such as
SPARQL 1.1 Query Results JSON Format,
SPARQL Query Results XML Format or
SPARQL 1.1 Query Results CSV and TSV Formats

can be used to serialize the result set from a
SELECT query or the boolean result of an ASK query.

[bookmark: select]16.1 SELECT

The SELECT form of results returns variables and their bindings directly. It combines the operations of projecting the required variables with introducing new variable bindings into a query solution.

[bookmark: selectproject]16.1.1 Projection

Specific variables and their bindings are
	 returned when a list of variable names is given in the SELECT clause. The syntax
	 SELECT * is an abbreviation that
	 selects all of the variables that are in-scope
	 at that point in the query. It excludes variables only used in
	 FILTER, in the right-hand side of MINUS,
	 and takes account of subqueries.

Use of SELECT * is only permitted when the
	 query does not have a GROUP BY clause.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:knows _:b .
_:a foaf:knows _:c .

_:b foaf:name "Bob" .

_:c foaf:name "Clare" .
_:c foaf:nick "CT" .	

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?nameX ?nameY ?nickY
WHERE
 { ?x foaf:knows ?y ;
 foaf:name ?nameX .
 ?y foaf:name ?nameY .
 OPTIONAL { ?y foaf:nick ?nickY }
 }

[bookmark: table33]		nameX		nameY		nickY

		"Alice"		"Bob"		

		"Alice"		"Clare"		"CT"

Result sets can be accessed by a local API but also can be serialized into
	 either JSON, XML, CSV or TSV.

SPARQL 1.1 Query Results JSON Format:

{
 "head": {
 "vars": ["nameX" , "nameY" , "nickY"]
 } ,
 "results": {
 "bindings": [
 {
 "nameX": { "type": "literal" , "value": "Alice" } ,
 "nameY": { "type": "literal" , "value": "Bob" }
 } ,
 {
 "nameX": { "type": "literal" , "value": "Alice" } ,
 "nameY": { "type": "literal" , "value": "Clare" } ,
 "nickY": { "type": "literal" , "value": "CT" }
 }
]
 }
}

SPARQL Query
	 Results XML Format:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="nameX"/>
 <variable name="nameY"/>
 <variable name="nickY"/>
 </head>
 <results>
 <result>
 <binding name="nameX">
 <literal>Alice</literal>
 </binding>
 <binding name="nameY">
 <literal>Bob</literal>
 </binding>
 </result>
 <result>
 <binding name="nameX">
 <literal>Alice</literal>
 </binding>
 <binding name="nameY">
 <literal>Clare</literal>
 </binding>
 <binding name="nickY">
 <literal>CT</literal>
 </binding>
 </result>
 </results>
</sparql>

[bookmark: selectExpressions]16.1.2 SELECT Expressions

As well as choosing which variables from the pattern matching are included in
	 the results, the SELECT clause can also introduce new variables. The rules of
	 assignment in SELECT expression are the same as for assignment in BIND.
	 The expression combines variable bindings already in the query solution,
	 or defined earlier in the SELECT clause, to produce a binding in the query solution.

The scoping for (expr AS v) applies immediately. In
	 SELECT expressions, the variable may be used in an expression
	 later in the same SELECT clause and may not be
	 be assigned again in the same SELECT clause.

Example:

Data:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book1 ns:discount 0.2 .

:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .
:book2 ns:discount 0.25 .

Query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?title (?p*(1-?discount) AS ?price)
{ ?x ns:price ?p .
 ?x dc:title ?title .
 ?x ns:discount ?discount
}

Results:

		title		price

		"The Semantic Web"		17.25

		"SPARQL Tutorial"		33.6

New variables can also be used in expressions if they are introduced earlier,
	 syntactically, in the same SELECT clause:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?title (?p AS ?fullPrice) (?fullPrice*(1-?discount) AS ?customerPrice)
{ ?x ns:price ?p .
 ?x dc:title ?title .
 ?x ns:discount ?discount
}

Results:

		title		fullPrice		customerPrice

		"The Semantic Web"		23		17.25

		"SPARQL Tutorial"		42		33.6

[bookmark: construct]16.2 CONSTRUCT

The CONSTRUCT query form returns a single RDF graph specified by
a graph template. The result is an RDF graph formed by taking each query solution
in the solution sequence, substituting for the variables in the graph template,
and combining the triples into a single RDF graph by set union.

If any such instantiation produces a triple containing an unbound variable or
an illegal RDF construct, such as a literal in subject or predicate position, then
that triple is not included in the output RDF graph. The graph template can contain
triples with no variables (known as ground or explicit triples), and these also appear
in the output RDF graph returned by the CONSTRUCT query form.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@example.org> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>
CONSTRUCT { <http://example.org/person#Alice> vcard:FN ?name }
WHERE { ?x foaf:name ?name }

creates vcard properties from the FOAF information:

@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

<http://example.org/person#Alice> vcard:FN "Alice" .

[bookmark: templatesWithBNodes]16.2.1 Templates with Blank Nodes

A template can create an RDF graph containing blank nodes. The blank node labels
are scoped to the template for each solution. If the same label occurs twice in
a template, then there will be one blank node created for each query solution, but
there will be different blank nodes for triples generated by different query
solutions.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:givenname "Alice" .
_:a foaf:family_name "Hacker" .

_:b foaf:firstname "Bob" .
_:b foaf:surname "Hacker" .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

CONSTRUCT { ?x vcard:N _:v .
 _:v vcard:givenName ?gname .
 _:v vcard:familyName ?fname }
WHERE
 {
 { ?x foaf:firstname ?gname } UNION { ?x foaf:givenname ?gname } .
 { ?x foaf:surname ?fname } UNION { ?x foaf:family_name ?fname } .
 }

creates vcard properties corresponding to the FOAF information:

@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

_:v1 vcard:N _:x .
_:x vcard:givenName "Alice" .
_:x vcard:familyName "Hacker" .

_:v2 vcard:N _:z .
_:z vcard:givenName "Bob" .
_:z vcard:familyName "Hacker" .

The use of variable x in the template, which in this example will be bound to
blank nodes with labels _:a and _:b in the data,
causes different blank node labels (_:v1 and _:v2) in the resulting RDF graph.

[bookmark: accessingRdfGraphs]16.2.2 Accessing Graphs in the RDF Dataset

Using CONSTRUCT, it is possible to extract parts or the whole of
graphs from the target RDF dataset. This first example returns the graph (if it
is in the dataset) with IRI label http://example.org/aGraph; otherwise,
it returns an empty graph.

CONSTRUCT { ?s ?p ?o } WHERE { GRAPH <http://example.org/aGraph> { ?s ?p ?o } . }

The access to the graph can be conditional on other information. For example, if the
default graph contains metadata about the named graphs in the dataset, then a query
like the following one can extract one graph based on information about the named
graph:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX app: <http://example.org/ns#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

CONSTRUCT { ?s ?p ?o } WHERE
 {
 GRAPH ?g { ?s ?p ?o } .
 ?g dc:publisher <http://www.w3.org/> .
 ?g dc:date ?date .
 FILTER (app:customDate(?date) > "2005-02-28T00:00:00Z"^^xsd:dateTime) .
 }

where app:customDate identifies an
extension function to turn the date format into an xsd:dateTime
RDF term.

[bookmark: SolModandCONSTRUCT]16.2.3 Solution Modifiers and CONSTRUCT

The solution modifiers of a query affect the results of a CONSTRUCT
query. In this example, the output graph from the CONSTRUCT template
is formed from just two of the solutions from graph pattern matching. The query outputs
a graph with the names of the people with the top two sites, rated by hits. The triples
in the RDF graph are not ordered.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix site: <http://example.org/stats#> .

_:a foaf:name "Alice" .
_:a site:hits 2349 .

_:b foaf:name "Bob" .
_:b site:hits 105 .

_:c foaf:name "Eve" .
_:c site:hits 181 .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX site: <http://example.org/stats#>

CONSTRUCT { [] foaf:name ?name }
WHERE
{ [] foaf:name ?name ;
 site:hits ?hits .
}
ORDER BY desc(?hits)
LIMIT 2

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:x foaf:name "Alice" .
_:y foaf:name "Eve" .

[bookmark: constructWhere]16.2.4 CONSTRUCT WHERE

A short form for the CONSTRUCT query form is provided for the case where the template and
	the pattern are the same and the pattern is just a basic graph pattern
	(no FILTERs and no complex graph patterns are allowed in the short form).
	The keyword WHERE is required in the short form.

The following two queries are the same; the first is a short form of the second.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
CONSTRUCT WHERE { ?x foaf:name ?name }

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT { ?x foaf:name ?name }
WHERE
{ ?x foaf:name ?name }

[bookmark: ask]16.3 ASK

Applications can use the ASK form to test whether or not a query
pattern has a solution. No information is returned about the possible query solutions,
just whether or not a solution exists.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:homepage <http://work.example.org/alice/> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
ASK { ?x foaf:name "Alice" }

true

The SPARQL
 Query Results XML Format form of this result set gives:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head></head>
 <boolean>true</boolean>
</sparql>

On the same data, the following returns no match because Alice's mbox
 is not mentioned.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
ASK { ?x foaf:name "Alice" ;
 foaf:mbox <mailto:alice@work.example> }

false

[bookmark: describe]16.4 DESCRIBE (Informative)

The DESCRIBE form returns a single result RDF graph containing RDF
data about resources. This data is not prescribed by a SPARQL query, where the query
client would need to know the structure of the RDF in the data source, but, instead,
is determined by the SPARQL query processor. The query pattern is used to create
a result set. The DESCRIBE form takes each of the resources identified
in a solution, together with any resources directly named by IRI, and assembles
a single RDF graph by taking a "description" which can come from any
information available including the target RDF Dataset. The
description is determined by the query service. The syntax DESCRIBE *
is an abbreviation that describes all of the variables in a query.

[bookmark: explicitIRIs]16.4.1 Explicit IRIs

The DESCRIBE clause itself can take IRIs to identify the resources.
The simplest DESCRIBE query is just an IRI in the DESCRIBE
clause:

DESCRIBE <http://example.org/>

[bookmark: identifyingResources]16.4.2 Identifying Resources

The resources to be described can also be taken from the bindings to a query variable in a result set. This enables description
of resources whether they are identified by IRI or by blank node in the dataset:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DESCRIBE ?x
WHERE { ?x foaf:mbox <mailto:alice@org> }

The property foaf:mbox is defined as being an inverse functional property
in the FOAF vocabulary. If treated as such, this query will return information about
at most one person. If, however, the query pattern has multiple solutions, the RDF
data for each is the union of all RDF graph descriptions.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DESCRIBE ?x
WHERE { ?x foaf:name "Alice" }

More than one IRI or variable can be given:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DESCRIBE ?x ?y <http://example.org/>
WHERE {?x foaf:knows ?y}

[bookmark: descriptionsOfResources]16.4.3 Descriptions of Resources

The RDF returned is determined by the information publisher.
It may be information the service deems relevant to the resources being described.
It may include information about other resources: for example, the RDF data for a
book may also include details about the author.

A simple query such as

PREFIX ent: <http://org.example.com/employees#>
DESCRIBE ?x WHERE { ?x ent:employeeId "1234" }

might return a description of the employee and some other potentially useful
 details:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0> .
@prefix exOrg: <http://org.example.com/employees#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#>

_:a exOrg:employeeId "1234" ;

 foaf:mbox_sha1sum "bee135d3af1e418104bc42904596fe148e90f033" ;
 vcard:N
 [vcard:Family "Smith" ;
 vcard:Given "John"] .

foaf:mbox_sha1sum rdf:type owl:InverseFunctionalProperty .

which includes the blank node closure for the
vcard vocabulary vcard:N.
Other possible mechanisms for deciding what information to return include Concise
Bounded Descriptions [CBD].

For a vocabulary such as FOAF, where the resources are typically blank nodes,
returning sufficient information to identify a node such as the InverseFunctionalProperty
foaf:mbox_sha1sum as well as information like name and other details recorded
would be appropriate. In the example, the match to the WHERE clause was returned,
but this is not required.

[bookmark: expressions]17 Expressions and Testing Values

SPARQL FILTERs restrict the solutions of a graph pattern match according to a given constraint. Specifically,
 FILTERs eliminate any solutions that, when substituted into the expression, either result in an effective boolean value of false or produce an error. Effective boolean values are defined in section 17.2.2 Effective Boolean Value and errors are defined in XQuery 1.0: An XML Query Language [XQUERY] section 2.3.1, Kinds of Errors. These errors have no effect outside of FILTER evaluation.

RDF literals may have a datatype IRI:

@prefix a: <http://www.w3.org/2000/10/annotation-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

_:a a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:a dc:date "2004-12-31T19:00:00-05:00" .

_:b a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:b dc:date "2004-12-31T19:01:00-05:00"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

The object of the first dc:date triple has no type information. The second has the datatype xsd:dateTime.

SPARQL expressions are constructed according to the grammar and provide access to functions (named by IRI) and operator functions (invoked by keywords and symbols in the SPARQL grammar). SPARQL operators can be used to compare the values of typed literals:

PREFIX a: <http://www.w3.org/2000/10/annotation-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?annot
WHERE { ?annot a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
 ?annot dc:date ?date .
 FILTER (?date > "2005-01-01T00:00:00Z"^^xsd:dateTime) }

The SPARQL operators are listed in section 17.3 and are associated with their productions in the grammar.

In addition, SPARQL provides the ability to invoke arbitrary functions, including a subset of the XPath casting functions, listed in section 17.5. These functions are invoked by name (an IRI) within a SPARQL query. For example:

... FILTER (xsd:dateTime(?date) < xsd:dateTime("2005-01-01T00:00:00Z")) ...

Typographical convention in this section: XPath operators are labeled
 with the prefix op:. XPath operators have no namespace;
 op: is a labeling convention.

[bookmark: operandDataTypes]17.1 Operand Data Types

SPARQL functions and operators operate on RDF terms and SPARQL variables. A subset of these functions and operators are taken from the XQuery 1.0 and XPath 2.0 Functions and Operators [FUNCOP] and have XML Schema typed value arguments and return types.

RDF typed literals passed as arguments to these functions and operators are mapped to XML Schema typed values with a string value of the lexical form and an atomic datatype corresponding to the datatype IRI. The returned typed values are mapped back to RDF typed literals the same way.

SPARQL has additional operators which operate on specific subsets of RDF terms. When referring to a type, the following terms denote a typed literal with the corresponding XML Schema [XSDT] datatype IRI:

		xsd:integer

		xsd:decimal

		xsd:float

		xsd:double

		xsd:string

		xsd:boolean

		xsd:dateTime

The following terms identify additional types used in SPARQL value tests:

		numeric denotes typed literals with datatypes xsd:integer, xsd:decimal, xsd:float, and xsd:double.

		simple literal denotes a plain literal with no language tag.

		RDF term denotes the types IRI, literal, and blank node.

		variable denotes a SPARQL variable.

The following types are derived from numeric types and are valid arguments to functions and operators taking numeric arguments:

		xsd:nonPositiveInteger

		xsd:negativeInteger

		xsd:long

		xsd:int

		xsd:short

		xsd:byte

		xsd:nonNegativeInteger

		xsd:unsignedLong

		xsd:unsignedInt

		xsd:unsignedShort

		xsd:unsignedByte

		xsd:positiveInteger

SPARQL language extensions may treat additional types as being derived from XML schema datatypes.

[bookmark: evaluation]17.2 Filter Evaluation

SPARQL provides a subset of the functions and operators defined by XQuery Operator Mapping. XQuery 1.0 section 2.2.3 Expression Processing describes the invocation of XPath functions. The following rules accommodate the differences in the data and execution models between XQuery and SPARQL:

		Unlike XPath/XQuery, SPARQL functions do not process node sequences. When interpreting the semantics of XPath functions, assume that each argument is a sequence of a single node.

		Functions invoked with an argument of the wrong type will produce a type error. Effective boolean value arguments (labeled "xsd:boolean (EBV)" in the operator mapping table below), are coerced to xsd:boolean using the EBV rules in section 17.2.2.

		Apart from BOUND, COALESCE,
 NOT EXISTS and EXISTS,
 all functions and operators operate on RDF Terms and will produce a type error
 if any arguments are unbound.

		Any expression other than logical-or (||) or logical-and (&&) that encounters an error will produce that error.

		A logical-or that encounters an error on only one branch will return TRUE if the other branch is TRUE and an error if the other branch is FALSE.

		A logical-and that encounters an error on only one branch will return an error if the other branch is TRUE and FALSE if the other branch is FALSE.

		A logical-or or logical-and that encounters errors on both branches will produce either of the errors.

The logical-and and logical-or truth table for true (T), false (F), and error (E) is as follows:

[bookmark: truthTable]		A		B		A || B		A && B

		T		T		T		T

		T		F		T		F

		F		T		T		F

		F		F		F		F

		T		E		T		E

		E		T		T		E

		F		E		E		F

		E		F		E		F

		E		E		E		E

[bookmark: invocation]17.2.1 Invocation

SPARQL defines a syntax for invoking functions on a list of arguments.
 Unless otherwise noted, these are invoked as follows:

		Argument expressions are evaluated, producing argument values.
	The order of argument evaluation is not defined.

		Numeric arguments are promoted as necessary to fit the expected types for that function or operator.

		The function or operator is invoked on the argument values.

If any of these steps fails, the invocation generates an error.
 The effects of errors are defined in Filter Evaluation.

There are also "functional forms" which have different evaluation rules to functions
 as specified by each such form.

[bookmark: ebv]17.2.2 Effective Boolean Value (EBV)

Effective boolean value is used to calculate the arguments to the logical functions logical-and, logical-or, and fn:not, as well as evaluate the result of a FILTER expression.

The XQuery Effective Boolean Value rules rely on the definition of XPath's fn:boolean. The following rules reflect the rules for fn:boolean applied to the argument types present in SPARQL queries:

		The EBV of any literal whose type is xsd:boolean or numeric is false if the lexical form is not valid for that datatype (e.g. "abc"^^xsd:integer).

		If the argument is a typed literal with a datatype of xsd:boolean, and it has a valid lexical form, the EBV is the value of that argument.

		If the argument is a plain literal or a typed literal with a datatype of xsd:string, the EBV is false if the operand value has zero length; otherwise the EBV is true.

		If the argument is a numeric type or a typed literal with a datatype derived from a numeric type, and it has a valid lexical form, the EBV is false if the operand value is NaN or is numerically equal to zero; otherwise the EBV is true.

		All other arguments, including unbound arguments, produce a type error.

An EBV of true is represented as a typed literal with a datatype of xsd:boolean and a lexical value of "true"; an EBV of false is represented as a typed literal with a datatype of xsd:boolean and a lexical value of "false".

[bookmark: OperatorMapping]17.3 Operator Mapping

The SPARQL grammar identifies a set of operators (for instance, &&, *, isIRI) used to construct constraints. The following table associates each of these grammatical productions with the appropriate operands and an operator function defined by either XQuery 1.0 and XPath 2.0 Functions and Operators [FUNCOP] or the SPARQL operators specified in section 17.4. When selecting the operator definition for a given set of parameters, the definition with the most specific parameters applies. For instance, when evaluating xsd:integer = xsd:signedInt, the definition for = with two numeric parameters applies, rather than the one with two RDF terms. The table is arranged so that the upper-most viable candidate is the most specific. Operators invoked without appropriate operands result in a type error.

SPARQL follows XPath's scheme for numeric type promotions and subtype substitution for arguments to numeric operators. The XPath Operator Mapping rules for numeric operands (xsd:integer, xsd:decimal, xsd:float, xsd:double, and types derived from a numeric type) apply to SPARQL operators as well (see XML Path Language (XPath) 2.0 [XPATH20] for definitions of numeric type promotions and subtype substitution). Some of the operators are associated with nested function expressions, e.g. fn:not(op:numeric-equal(A, B)). Note that per the XPath definitions, fn:not and op:numeric-equal produce an error if their argument is an error.

The collation for fn:compare is defined by XPath and identified by http://www.w3.org/2005/xpath-functions/collation/codepoint. This collation allows for string comparison based on code point values. Codepoint string equivalence can be tested with RDF term equivalence.

SPARQL Unary Operators		Operator		Type(A)		Function		Result type

		XQuery Unary Operators

		! A		xsd:boolean (EBV)		fn:not(A)		xsd:boolean

		+ A
	 		numeric		op:numeric-unary-plus(A)		numeric

		- A
	 		numeric		op:numeric-unary-minus(A)		numeric

SPARQL Binary Operators		Operator		Type(A)		Type(B)		Function		Result type

		Logical Connectives

		A || B		xsd:boolean (EBV)		xsd:boolean (EBV)		logical-or(A, B)		xsd:boolean

		A && B		xsd:boolean (EBV)		xsd:boolean (EBV)		logical-and(A, B)		xsd:boolean

		XPath Tests

		A = B		numeric		numeric		op:numeric-equal(A, B)		xsd:boolean

		A = B		simple literal		simple literal		op:numeric-equal(fn:compare(A, B), 0)		xsd:boolean

		A = B		xsd:string		xsd:string		op:numeric-equal(fn:compare(STR(A), STR(B)), 0)		xsd:boolean

		A = B		xsd:boolean		xsd:boolean		op:boolean-equal(A, B)		xsd:boolean

		A = B		xsd:dateTime		xsd:dateTime		op:dateTime-equal(A, B)		xsd:boolean

		A != B		numeric		numeric		fn:not(op:numeric-equal(A, B))		xsd:boolean

		A != B		simple literal		simple literal		fn:not(op:numeric-equal(fn:compare(A, B), 0))		xsd:boolean

		A != B		xsd:string		xsd:string		fn:not(op:numeric-equal(fn:compare(STR(A), STR(B)), 0))		xsd:boolean

		A != B		xsd:boolean		xsd:boolean		fn:not(op:boolean-equal(A, B))		xsd:boolean

		A != B		xsd:dateTime		xsd:dateTime		fn:not(op:dateTime-equal(A, B))		xsd:boolean

		A < B		numeric		numeric		op:numeric-less-than(A, B)		xsd:boolean

		A < B		simple literal		simple literal		op:numeric-equal(fn:compare(A, B), -1)		xsd:boolean

		A < B		xsd:string		xsd:string		op:numeric-equal(fn:compare(STR(A), STR(B)), -1)		xsd:boolean

		A < B		xsd:boolean		xsd:boolean		op:boolean-less-than(A, B)		xsd:boolean

		A < B		xsd:dateTime		xsd:dateTime		op:dateTime-less-than(A, B)		xsd:boolean

		A > B		numeric		numeric		op:numeric-greater-than(A, B)		xsd:boolean

		A > B		simple literal		simple literal		op:numeric-equal(fn:compare(A, B), 1)		xsd:boolean

		A > B		xsd:string		xsd:string		op:numeric-equal(fn:compare(STR(A), STR(B)), 1)		xsd:boolean

		A > B		xsd:boolean		xsd:boolean		op:boolean-greater-than(A, B)		xsd:boolean

		A > B		xsd:dateTime		xsd:dateTime		op:dateTime-greater-than(A, B)		xsd:boolean

		A <= B		numeric		numeric		logical-or(op:numeric-less-than(A, B), op:numeric-equal(A, B))		xsd:boolean

		A <= B		simple literal		simple literal		fn:not(op:numeric-equal(fn:compare(A, B), 1))		xsd:boolean

		A <= B		xsd:string		xsd:string		fn:not(op:numeric-equal(fn:compare(STR(A), STR(B)), 1))		xsd:boolean

		A <= B		xsd:boolean		xsd:boolean		fn:not(op:boolean-greater-than(A, B))		xsd:boolean

		A <= B		xsd:dateTime		xsd:dateTime		fn:not(op:dateTime-greater-than(A, B))		xsd:boolean

		A >= B		numeric		numeric		logical-or(op:numeric-greater-than(A, B), op:numeric-equal(A, B))		xsd:boolean

		A >= B		simple literal		simple literal		fn:not(op:numeric-equal(fn:compare(A, B), -1))		xsd:boolean

		A >= B		xsd:string		xsd:string		fn:not(op:numeric-equal(fn:compare(STR(A), STR(B)), -1))		xsd:boolean

		A >= B		xsd:boolean		xsd:boolean		fn:not(op:boolean-less-than(A, B))		xsd:boolean

		A >= B		xsd:dateTime		xsd:dateTime		fn:not(op:dateTime-less-than(A, B))		xsd:boolean

		XPath Arithmetic

		A * B		numeric		numeric		op:numeric-multiply(A, B)		numeric

		A / B		numeric		numeric		op:numeric-divide(A, B)		numeric; but xsd:decimal if both operands are xsd:integer

		A + B		numeric		numeric		op:numeric-add(A, B)		numeric

		A - B		numeric		numeric		op:numeric-subtract(A, B)		numeric

		SPARQL Tests

		A = B		RDF term		RDF term		RDFterm-equal(A, B)		xsd:boolean

		A != B		RDF term		RDF term		fn:not(RDFterm-equal(A, B))		xsd:boolean

[bookmark: ebv-arg]xsd:boolean function arguments marked with "(EBV)" are coerced to xsd:boolean by evaluating the effective boolean value of that argument.

[bookmark: operatorExtensibility]17.3.1 Operator Extensibility

SPARQL language extensions may provide additional associations between operators and operator functions; this amounts to adding rows to the table above. No additional operator may yield a result that replaces any result other than a type error in the semantics defined above. The consequence of this rule is that SPARQL FILTERs will produce at least the same intermediate bindings after applying a FILTER as an unextended implementation.

Additional mappings of the '<' operator are expected to control the relative ordering of the operands, specifically, when used in an ORDER BY clause.

[bookmark: SparqlOps]17.4 Function Definitions

This section defines the operators and functions
 introduced by the SPARQL Query language. The examples
 show the behavior of the operators as invoked by the
 appropriate grammatical constructs.

[bookmark: func-forms]17.4.1 Functional Forms

[bookmark: func-bound]17.4.1.1 bound

xsd:boolean BOUND (variable var)

Returns true if var is bound to a value. Returns false otherwise. Variables with the value NaN or INF are considered bound.

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:a foaf:givenName "Alice".

_:b foaf:givenName "Bob" .
_:b dc:date "2005-04-04T04:04:04Z"^^xsd:dateTime .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?givenName
 WHERE { ?x foaf:givenName ?givenName .
 OPTIONAL { ?x dc:date ?date } .
 FILTER (bound(?date)) }

Query result:

		givenName

		"Bob"

One may test that a graph pattern is not expressed by specifying an OPTIONAL graph pattern that introduces a variable and testing to see that the variable is not bound. This is called Negation as Failure in logic programming.

This query matches the people with a name but no expressed date:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?name
 WHERE { ?x foaf:givenName ?name .
 OPTIONAL { ?x dc:date ?date } .
 FILTER (!bound(?date)) }

Query result:

		name

		"Alice"

Because Bob's dc:date was known, "Bob" was not a solution to the query.

[bookmark: func-if]17.4.1.2 IF

rdfTerm IF (expression1, expression2, expression3)

The IF function form evaluates the first argument, interprets it as a effective boolean value, then returns the value of expression2 if the EBV is true, otherwise it returns the value of expression3. Only one of expression2 and expression3 is evaluated.
	 If evaluating the first argument raises an error,
	 then an error is raised for the evaluation of the IF expression.

Examples: Suppose ?x = 2, ?z = 0 and ?y is not bound in some query solution:

		IF(?x = 2, "yes", "no")		returns "yes"

		IF(bound(?y), "yes", "no")		returns "no"

		IF(?x=2, "yes", 1/?z)		returns "yes", the expression 1/?z is not evaluated

		IF(?x=1, "yes", 1/?z)		raises an error

		IF("2" > 1, "yes", "no")		raises an error

[bookmark: func-coalesce]17.4.1.3 COALESCE

rdfTerm COALESCE(expression,)

The COALESCE function form returns the RDF term value
 of the first expression that evaluates without error. In SPARQL,
 evaluating an unbound variable raises an error.

If none of the arguments evaluates to an RDF term, an error is raised.
 If no expressions are evaluated without error, an error is raised.

Examples: Suppose ?x = 2 and ?y is not bound in some query solution:

		COALESCE(?x, 1/0)		returns 2, the value of x

		COALESCE(1/0, ?x)		returns 2

		COALESCE(5, ?x)		returns 5

		COALESCE(?y, 3)		returns 3

		COALESCE(?y)		raises an error because y is not bound.

[bookmark: func-filter-exists]17.4.1.4 NOT EXISTS and EXISTS

There is a filter operator EXISTS that takes a graph pattern.
	 EXISTS returns true/false
	 depending on whether
	 the pattern matches the dataset
 given the bindings in the current group graph pattern, the dataset and
	 the active graph at this point in the
	 query evaluation.
 No additional binding of variables occurs. The NOT EXISTS form
 translates into fn:not(EXISTS{...}).

 xsd:boolean NOT EXISTS { pattern }

Returns false if pattern matches. Returns true otherwise.

NOT EXISTS { pattern } is equivalent to fn:not(EXISTS { pattern }).

 xsd:boolean EXISTS { pattern }

Returns true if pattern matches.
 Returns false otherwise.

Variables in the pattern that are bound in the current

 solution mapping take the value that they have from the solution mapping.
 Variables in the pattern pattern that are not bound in the current
 solution mapping take part in pattern matching.

To facilitate this, we introduce a function Exists
	 that evaluates a SPARQL Algebra expression and returns true or false, depending
	 on whether there are any solutions to the pattern, given the solution mapping
	 being tested by the filter operation.

[bookmark: func-logical-or]17.4.1.5 logical-or

 xsd:boolean xsd:boolean left || xsd:boolean right

Returns a logical OR of left and right. Note that logical-or operates on the effective boolean value of its arguments.

Note: see section 17.2, Filter Evaluation, for
 the || operator's treatment of errors.

[bookmark: func-logical-and]17.4.1.6 logical-and

 xsd:boolean xsd:boolean left && xsd:boolean right

Returns a logical AND of left and right. Note that logical-and operates on the effective boolean value of its arguments.

Note: see section 17.2, Filter Evaluation, for
 the && operator's treatment of errors.

[bookmark: func-RDFterm-equal]17.4.1.7 RDFterm-equal

 xsd:boolean RDF term term1 = RDF term term2

Returns TRUE if term1 and term2 are the same RDF term as defined in Resource Description Framework (RDF): Concepts and Abstract Syntax [CONCEPTS]; produces a type error if the arguments are both literal but are not the same RDF term *; returns FALSE otherwise. term1 and term2 are the same if any of the following is true:

		term1 and term2 are equivalent IRIs as defined in 6.4 RDF URI References
 of [CONCEPTS].

		term1 and term2 are equivalent literals as defined in 6.5.1 Literal Equality
 of [CONCEPTS].

		term1 and term2 are the same blank node as described in 6.6 Blank Nodes
 of [CONCEPTS].

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Ms A.".
_:b foaf:mbox <mailto:alice@work.example> .

This query finds the people who have multiple foaf:name triples:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name1 ?name2
WHERE { ?x foaf:name ?name1 ;
 foaf:mbox ?mbox1 .
 ?y foaf:name ?name2 ;
 foaf:mbox ?mbox2 .
 FILTER (?mbox1 = ?mbox2 && ?name1 != ?name2)
 }

Query result:

		name1		name2

		"Alice"		"Ms A."

		"Ms A."		"Alice"

In this query for documents that were annotated at a specific date and time (New Year's Day 2005, measures in timezone +00:00), the RDF terms are not the same, but have equivalent values:

@prefix a: <http://www.w3.org/2000/10/annotation-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

_:b a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:b dc:date "2004-12-31T19:00:00-05:00"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

PREFIX a: <http://www.w3.org/2000/10/annotation-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?annotates
WHERE { ?annot a:annotates ?annotates .
 ?annot dc:date ?date .
 FILTER (?date = xsd:dateTime("2005-01-01T00:00:00Z"))
 }

		annotates

		<http://www.w3.org/TR/rdf-sparql-query/>

* Invoking RDFterm-equal on two typed literals tests for
 equivalent values. An extended implementation may have support for additional datatypes. An implementation processing a query that tests for equivalence on unsupported datatypes (and non-identical lexical form and datatype IRI) returns an error, indicating that it was unable to determine whether or not the values are equivalent. For example, an unextended implementation will produce an error when testing either

 "iiii"^^my:romanNumeral = "iv"^^my:romanNumeral or
 "iiii"^^my:romanNumeral != "iv"^^my:romanNumeral.

[bookmark: func-sameTerm]17.4.1.8 sameTerm

 xsd:boolean sameTerm (RDF term term1, RDF term term2)

Returns TRUE if term1 and term2 are the same RDF term as defined in Resource Description Framework (RDF): Concepts and Abstract Syntax [CONCEPTS]; returns FALSE otherwise.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Ms A.".
_:b foaf:mbox <mailto:alice@work.example> .

This query finds the people who have multiple foaf:name triples:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name1 ?name2
WHERE { ?x foaf:name ?name1 ;
 foaf:mbox ?mbox1 .
 ?y foaf:name ?name2 ;
 foaf:mbox ?mbox2 .
 FILTER (sameTerm(?mbox1, ?mbox2) && !sameTerm(?name1, ?name2))
 }

Query result:

		name1		name2

		"Alice"		"Ms A."

		"Ms A."		"Alice"

Unlike RDFterm-equal, sameTerm can be used to test for non-equivalent typed literals with unsupported datatypes:

@prefix : <http://example.org/WMterms#> .
@prefix t: <http://example.org/types#> .

_:c1 :label "Container 1" .
_:c1 :weight "100"^^t:kilos .
_:c1 :displacement "100"^^t:liters .

_:c2 :label "Container 2" .
_:c2 :weight "100"^^t:kilos .
_:c2 :displacement "85"^^t:liters .

_:c3 :label "Container 3" .
_:c3 :weight "85"^^t:kilos .
_:c3 :displacement "85"^^t:liters .

PREFIX : <http://example.org/WMterms#>
PREFIX t: <http://example.org/types#>

SELECT ?aLabel1 ?bLabel
WHERE { ?a :label ?aLabel .
 ?a :weight ?aWeight .
 ?a :displacement ?aDisp .

 ?b :label ?bLabel .
 ?b :weight ?bWeight .
 ?b :displacement ?bDisp .

 FILTER (sameTerm(?aWeight, ?bWeight) && !sameTerm(?aDisp, ?bDisp)) }

		aLabel		bLabel

		"Container 1"		"Container 2"

		"Container 2"		"Container 1"

The test for boxes with the same weight may also be done with the '=' operator (RDFterm-equal) as the test for "100"^^t:kilos = "85"^^t:kilos will result in an error, eliminating that potential solution.

[bookmark: func-in]17.4.1.9 IN

boolean rdfTerm IN (expression, ...)

The IN operator tests whether the RDF term on the
 left-hand side is found in the values of list of expressions
 on the right-hand side.
 The test is done with "=" operator, which tests for the same value, as
 determined by the operator mapping.

A list of zero terms on the right-hand side is legal.

Errors in comparisons cause the IN expression
 to raise an error if the RDF term being tested is not found
 elsewhere in the list of terms.

The IN operator is equivalent to the SPARQL expression:

(lhs = expression1) || (lhs = expression2) || ...

Examples:

		2 IN (1, 2, 3)		true

		2 IN ()		false

		2 IN (<http://example/iri>, "str", 2.0)		true

		2 IN (1/0, 2)		true

		2 IN (2, 1/0)		true

		2 IN (3, 1/0)		raises an error

[bookmark: func-not-in]17.4.1.10 NOT IN

boolean rdfTerm NOT IN (expression, ...)

The NOT IN operator tests whether the RDF term on the
 left-hand side is not found in the values of list of expressions
 on the right-hand side.
 The test is done with "!=" operator, which tests for not the same value, as
 determined by the operator mapping.

A list of zero terms on the right-hand side is legal.

Errors in comparisons cause the NOT IN expression
 to raise an error if the RDF term being tested is not found
 to be in the list elsewhere in the list of terms.

The NOT IN operator is equivalent to the SPARQL expression:

(lhs != expression1) && (lhs != expression2) && ...

NOT IN (...) is equivalent to !(IN (...)).

Examples:

		2 NOT IN (1, 2, 3)		false

		2 NOT IN ()		true

		2 NOT IN (<http://example/iri>, "str", 2.0)		false

		2 NOT IN (1/0, 2)		false

		2 NOT IN (2, 1/0)		false

		2 NOT IN (3, 1/0)		raises an error

[bookmark: func-rdfTerms]17.4.2 Functions on RDF Terms

[bookmark: func-isIRI]17.4.2.1 isIRI

 xsd:boolean isIRI (RDF term term)
 xsd:boolean isURI (RDF term term)

Returns true if term is an IRI. Returns false otherwise. isURI is an alternate spelling for the isIRI operator.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .
_:b foaf:mbox "bob@work.example" .

This query matches the people with a name and an mbox which is an IRI:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
 WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 FILTER isIRI(?mbox) }

Query result:

		name		mbox

		"Alice"		<mailto:alice@work.example>

[bookmark: func-isBlank]17.4.2.2 isBlank

 xsd:boolean isBlank (RDF term term)

Returns true if term is a blank node. Returns false otherwise.

@prefix a: <http://www.w3.org/2000/10/annotation-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:a dc:creator "Alice B. Toeclips" .

_:b a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:b dc:creator _:c .
_:c foaf:given "Bob".
_:c foaf:family "Smith".

This query matches the people with a dc:creator which uses
 predicates from the FOAF vocabulary to express the name.

PREFIX a: <http://www.w3.org/2000/10/annotation-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?given ?family
WHERE { ?annot a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
 ?annot dc:creator ?c .
 OPTIONAL { ?c foaf:given ?given ; foaf:family ?family } .
 FILTER isBlank(?c)
}

Query result:

		given		family

		"Bob"		"Smith"

In this example, there were two objects of dc:creator predicates, but only one (_:c) was a blank node.

[bookmark: func-isLiteral]17.4.2.3 isLiteral

 xsd:boolean isLiteral (RDF term term)

Returns true if term is a literal. Returns false otherwise.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .
_:b foaf:mbox "bob@work.example" .

This query is similar to the one in 17.4.2.1 except that is matches the people with a name and an mbox which is a literal. This could be used to look for erroneous data (foaf:mbox should only have an
 IRI as its object).

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 FILTER isLiteral(?mbox) }

Query result:

		name		mbox

		"Bob"		"bob@work.example"

[bookmark: func-isNumeric]17.4.2.4 isNumeric

 xsd:boolean isNumeric (RDF term term)

Returns true if term is a numeric value. Returns false otherwise.
 term
 is numeric if it has an appropriate datatype (see the section Operand Data Types) and has a valid lexical form, making it
 a valid argument to functions and operators
 taking numeric arguments.

Examples:

		isNumeric(12)		true

		isNumeric("12")		false

		isNumeric("12"^^xsd:nonNegativeInteger)		true

		isNumeric("1200"^^xsd:byte)		false

		isNumeric(<http://example/>)		false

[bookmark: func-str]17.4.2.5 str

 simple literal STR (literal ltrl)
 simple literal STR (IRI rsrc)

Returns the lexical form of ltrl (a literal); returns the codepoint representation of rsrc (an IRI). This is useful for examining parts of an IRI, for instance, the host-name.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@home.example> .

This query selects the set of people who use their work.example address in their foaf profile:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
 WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 FILTER regex(str(?mbox), "@work\\.example$") }

Query result:

		name		mbox

		"Alice"		<mailto:alice@work.example>

[bookmark: func-lang]17.4.2.6 lang

 simple literal LANG (literal ltrl)

Returns the language tag of ltrl, if it has one. It returns "" if ltrl has no language tag. Note that the RDF data model does not include literals with an empty language tag.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Robert"@en.
_:a foaf:name "Roberto"@es.
_:a foaf:mbox <mailto:bob@work.example> .

This query finds the Spanish foaf:name and foaf:mbox:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
 WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 FILTER (lang(?name) = "es") }

Query result:

		name		mbox

		"Roberto"@es		<mailto:bob@work.example>

[bookmark: func-datatype]17.4.2.7 datatype

 iri DATATYPE (literal literal)

Returns the datatype IRI of a literal.

		If the literal is a typed literal, return the datatype IRI.

		If the literal is a simple literal, return xsd:string

		If the literal is literal with a language tag, return rdf:langString

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix eg: <http://biometrics.example/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:a foaf:name "Alice".
_:a eg:shoeSize "9.5"^^xsd:float .

_:b foaf:name "Bob".
_:b eg:shoeSize "42"^^xsd:integer .

This query finds the foaf:name and foaf:shoeSize of everyone with a shoeSize that is an integer:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX eg: <http://biometrics.example/ns#>
SELECT ?name ?shoeSize
 WHERE { ?x foaf:name ?name ; eg:shoeSize ?shoeSize .
 FILTER (datatype(?shoeSize) = xsd:integer) }

Query result:

		name		shoeSize

		"Bob"		42

In SPARQL 1.0, the
 DATATYPE function was not defined for literals with a language tag.
 Therefore, an unextended implementation would raise an error when DATATYPE
 was called with a literal with a language tag. Operator extensibility allows implementations to
 return a result rather than raise an error. SPARQL 1.1 defines the result of
 DATATYPE applied to a literal with a language tag to be
 rdf:langString.

 The SPARQL Working Group is using rdf:langString based on the latest Working Drafts of the RDF Working Group. This usage should be considered experimental (and non-normative) until/unless rdf:langString becomes part of an updated RDF Recommendation.

[bookmark: func-iri]17.4.2.8 IRI

 iri IRI(simple literal)
 iri IRI(xsd:string)
 iri IRI(iri)
 iri URI(simple literal)
 iri URI(xsd:string)
 iri URI(iri)

The IRI function constructs an IRI by resolving the string argument
 (see RFC 3986
	 and RFC 3987
 or any later RFC that superceeds RFC 3986 or RFC 3987).
	 The IRI is resolved against the base IRI of the query and must result
 in an absolute IRI.

The URI function is a synonym for IRI.

If the function is passed an IRI, it returns the IRI unchanged.

Passing any RDF term other than a simple literal, xsd:string or an IRI is an error.

An implementation MAY normalize the IRI.

Examples:

		IRI("http://example/")		<http://example/>

		IRI(<http://example/>)		<http://example/>

[bookmark: func-bnode]17.4.2.9 BNODE

blank node BNODE()

blank node BNODE(simple literal)

blank node BNODE(xsd:string)

The BNODE function constructs a blank node that is distinct
 from all blank nodes in the dataset being queried and distinct
 from all blank nodes created by calls to this constructor
 for other query solutions. If the no argument form is used,
 every call results in a distinct blank node. If the form with
 a simple literal is used, every call results in distinct blank nodes
 for different simple literals, and the same blank node
 for calls with the same simple literal within expressions for
 one solution mapping.

This functionality is compatible with the treatment
 of blank nodes in SPARQL CONSTRUCT templates.

[bookmark: func-strdt]17.4.2.10 STRDT

literal STRDT(simple literal lexicalForm, IRI datatypeIRI)

The STRDT function constructs a literal with lexical
 form and type as specified by the arguments.

		STRDT("123", xsd:integer)		"123"^^<http://www.w3.org/2001/XMLSchema#integer>

		STRDT("iiii", <http://example/romanNumeral>)		"iiii"^^<http://example/romanNumeral>

[bookmark: func-strlang]17.4.2.11 STRLANG

literal STRLANG(simple literal lexicalForm, simple literal langTag)

The STRLANG function constructs a literal with
 lexical form and language tag as specified by the arguments.

		STRLANG("chat", "en")		"chat"@en

[bookmark: func-uuid]17.4.2.12 UUID

iri UUID()

Return a fresh IRI from the
	 UUID URN scheme.
	 Each call of UUID()
	 returns a different UUID. It must not be the "nil" UUID (all zeroes).
	 The variant and version of the UUID is
	 implementation dependent.

		UUID()		<urn:uuid:b9302fb5-642e-4d3b-af19-29a8f6d894c9>

[bookmark: func-struuid]17.4.2.13 STRUUID

simple literal STRUUID()

Return a string that is the scheme specific part of UUID.
	 That is, as a simple literal, the result of generating a UUID, converting to a
	 simple literal and removing the initial urn:uuid:.
	

		STRUUID()		"73cd4307-8a99-4691-a608-b5bda64fb6c1"

[bookmark: func-strings]17.4.3 Functions on Strings

[bookmark: idp1887976]17.4.3.1 Strings in SPARQL Functions

[bookmark: func-string]17.4.3.1.1 String arguments

Certain functions (e.g. REGEX,
	 STRLEN, CONTAINS)
	 take a string literal as an argument and accept a simple literal,
	 a plain literal with language tag, or a literal with datatype xsd:string.
	 They then act on the lexcial form of the literal.

The term string literal is used in the function descriptions for this.
	 Use of any other RDF term will cause a call to the function to raise an error.

[bookmark: func-arg-compatibility]17.4.3.1.2 Argument Compatibility Rules

The functions
	 STRSTARTS,
	 STRENDS,
	 CONTAINS,
	 STRBEFORE and
	 STRAFTER take two arguments.
	 These arguments must be compatible otherwise invocation of
	 one of these functions raises an error.
	

Compatibility of two arguments is defined as:
	

		The arguments are simple literals or literals typed as xsd:string

		The arguments are plain literals with identical language tags

		The first argument is a plain literal with language tag
		and the second argument is a simple literal or literal typed as xsd:string

		Argument1		Argument2		Compatible?

		"abc"		"b"		yes

		"abc"		"b"^^xsd:string		yes

		"abc"^^xsd:string		"b"		yes

		"abc"^^xsd:string		"b"^^xsd:string		yes

		"abc"@en		"b"		yes

		"abc"@en		"b"^^xsd:string		yes

		"abc"@en		"b"@en		yes

		"abc"@fr		"b"@ja		no

		"abc"		"b"@ja		no

		"abc"		"b"@en		no

		"abc"^^xsd:string		"b"@en		no

[bookmark: idp1915512]17.4.3.1.3 String Literal Return Type

Functions that return a string literal do so with the string literal
	 of the same kind as the first argument (simple literal, plain literal
	 with same language tag, xsd:string). This includes SUBSTR,
	 STRBEFORE and
	 STRAFTER.

The function CONCAT returns a string literal
	 based on the details of all its arguments.

[bookmark: func-strlen]17.4.3.2 STRLEN

xsd:integer STRLEN(string literal str)

The strlen function corresponds to the
	 XPath fn:string-length
	 function and returns an xsd:integer equal to the length
	 in characters of the lexical form of the literal.

		strlen("chat")		4

		strlen("chat"@en)		4

		strlen("chat"^^xsd:string)		4

[bookmark: func-substr]17.4.3.3 SUBSTR

string literal SUBSTR(string literal source, xsd:integer startingLoc)

string literal SUBSTR(string literal source, xsd:integer startingLoc, xsd:integer length)

The substr function corresponds to the XPath
	 fn:substring
	 function and returns a literal of the same kind (simple literal, literal with language tag,
	 xsd:string typed literal) as the source input parameter but
	 with a lexical form formed from the substring of the lexcial form of the source.

The arguments startingLoc and length may be derived types of xsd:integer.

The index of the first character in a strings is 1.

		substr("foobar", 4)		"bar"

		substr("foobar"@en, 4)		"bar"@en

		substr("foobar"^^xsd:string, 4)		"bar"^^xsd:string

		substr("foobar", 4, 1)		"b"

		substr("foobar"@en, 4, 1)		"b"@en

		substr("foobar"^^xsd:string, 4, 1)		"b"^^xsd:string

[bookmark: func-ucase]17.4.3.4 UCASE

string literal UCASE(string literal str)

The UCASE function corresponds to the XPath
	 fn:upper-case function.
	 It returns a string literal whose lexical form is the upper case of the
	 lexcial form of the argument.

		ucase("foo")		"FOO"

		ucase("foo"@en)		"FOO"@en

		ucase("foo"^^xsd:string)		"FOO"^^xsd:string

[bookmark: func-lcase]17.4.3.5 LCASE

string literal LCASE(string literal str)

The LCASE function corresponds to the XPath
	 fn:lower-case function.
	 It returns a string literal whose lexical form is the lower case of the
	 lexcial form of the argument.

		lcase("BAR")		"bar"

		lcase("BAR"@en)		"bar"@en

		lcase("BAR"^^xsd:string)		"bar"^^xsd:string

[bookmark: func-strstarts]17.4.3.6 STRSTARTS

xsd:boolean STRSTARTS(string literal arg1, string literal arg2)

The STRSTARTS function corresponds to the XPath
	 fn:starts-with function.
	 The arguments must be argument compatible
	 otherwise an error is raised.

For such input pairs, the function returns true if the lexical form of arg1
	 starts with the lexical form of arg2, otherwise it returns false.

		strStarts("foobar", "foo")		true

		strStarts("foobar"@en, "foo"@en)		true

		strStarts("foobar"^^xsd:string, "foo"^^xsd:string)		true

		strStarts("foobar"^^xsd:string, "foo")		true

		strStarts("foobar", "foo"^^xsd:string)		true

		strStarts("foobar"@en, "foo")		true

		strStarts("foobar"@en, "foo"^^xsd:string)		true

[bookmark: func-strends]17.4.3.7 STRENDS

xsd:boolean STRENDS(string literal arg1, string literal arg2)

The STRENDS function corresponds to the XPath
	 fn:ends-with function.
	 The arguments must be argument compatible
	 otherwise an error is raised.

For such input pairs, the function returns true if the lexical form of arg1
	 ends with the lexical form of arg2, otherwise it returns false.

		strEnds("foobar", "bar")		true

		strEnds("foobar"@en, "bar"@en)		true

		strEnds("foobar"^^xsd:string, "bar"^^xsd:string)		true

		strEnds("foobar"^^xsd:string, "bar")		true

		strEnds("foobar", "bar"^^xsd:string)		true

		strEnds("foobar"@en, "bar")		true

		strEnds("foobar"@en, "bar"^^xsd:string)		true

[bookmark: func-contains]17.4.3.8 CONTAINS

xsd:boolean CONTAINS(string literal arg1, string literal arg2)

The CONTAINS function corresponds to the XPath
	 fn:contains.
	 The arguments must be argument compatible
	 otherwise an error is raised.

		contains("foobar", "bar")		true

		contains("foobar"@en, "foo"@en)		true

		contains("foobar"^^xsd:string, "bar"^^xsd:string)		true

		contains("foobar"^^xsd:string, "foo")		true

		contains("foobar", "bar"^^xsd:string)		true

		contains("foobar"@en, "foo")		true

		contains("foobar"@en, "bar"^^xsd:string)		true

[bookmark: func-strbefore]17.4.3.9 STRBEFORE

literal STRBEFORE(string literal arg1, string literal arg2)

The STRBEFORE function corresponds to the XPath
	 fn:substring-before function.
	 The arguments must be argument compatible
	 otherwise an error is raised.

	 For compatible arguments, if the lexical part of the second argument
	 occurs as a substring of the lexical part of the first argument, the
	 function returns a literal of the same kind as the first argument
	 arg1 (simple literal, plain literal same language tag, xsd:string).
	 The lexical form of
	 the result is the substring of the lexical form of arg1
	 that precedes the first occurrence of
	 the lexical form of arg2.
	 If the lexical form of arg2
	 is the empty string, this is considered to be a match and the lexical
	 form of the result is the empty string.
	

	 If there is no such occurrence, an empty simple literal is returned.
	

		strbefore("abc","b")		"a"

		strbefore("abc"@en,"bc")		"a"@en

		strbefore("abc"@en,"b"@cy)		error

		strbefore("abc"^^xsd:string,"")		""^^xsd:string

		strbefore("abc","xyz")		""

		strbefore("abc"@en, "z"@en)		""

		strbefore("abc"@en, "z")		""

		strbefore("abc"@en, ""@en)		""@en

		strbefore("abc"@en, "")		""@en

[bookmark: func-strafter]17.4.3.10 STRAFTER

literal STRAFTER(string literal arg1, string literal arg2)

The STRAFTER function corresponds to the XPath
	 fn:substring-after function.
	 The arguments must be argument compatible
	 otherwise an error is raised.

	 For compatible arguments, if the lexical part of the second argument
	 occurs as a substring of the lexical part of the first argument, the
	 function returns a literal of the same kind as the first argument
	 arg1 (simple literal, plain literal same language tag, xsd:string).

	 The lexical form of
	 the result is the substring of the lexcial form of arg1
	 that follows the first occurrence of
	 the lexical form of arg2.
	 If the lexical form of arg2
	 is the empty string, this is considered to be a match and the lexical
	 form of the result is the lexical form of arg1.

	

	 If there is no such occurrence, an empty simple literal is returned.
	

		strafter("abc","b")		"c"

		strafter("abc"@en,"ab")		"c"@en

		strafter("abc"@en,"b"@cy)		error

		strafter("abc"^^xsd:string,"")		"abc"^^xsd:string

		strafter("abc","xyz")		""

		strafter("abc"@en, "z"@en)		""

		strafter("abc"@en, "z")		""

		strafter("abc"@en, ""@en)		"abc"@en

		strafter("abc"@en, "")		"abc"@en

[bookmark: func-encode]17.4.3.11 ENCODE_FOR_URI

simple literal ENCODE_FOR_URI(string literal ltrl)

The ENCODE_FOR_URI function corresponds to the XPath fn:encode-for-uri function.
	 It returns a simple literal with the lexical form obtained from the lexical
	 form of its input after translating reserved characters according to the
	 fn:encode-for-uri function.

		encode_for_uri("Los Angeles")		"Los%20Angeles"

		encode_for_uri("Los Angeles"@en)		"Los%20Angeles"

		encode_for_uri("Los Angeles"^^xsd:string)		"Los%20Angeles"

[bookmark: func-concat]17.4.3.12 CONCAT

string literal CONCAT(string literal ltrl1 ... string literal ltrln)

The CONCAT function corresponds to the XPath fn:concat function. The function accepts string literals as arguments.

The lexical form of the returned literal is obtained by concatenating the lexical forms of its inputs.
	 If all input literals are typed literals of type xsd:string, then the returned literal is also of type xsd:string, if all input literals are plain literals with identical language tag, then the returned literal is a plain literal with the same language tag, in all other cases, the returned literal is a simple literal.

		concat("foo", "bar")		"foobar"

		concat("foo"@en, "bar"@en)		"foobar"@en

		concat("foo"^^xsd:string, "bar"^^xsd:string)		"foobar"^^xsd:string

		concat("foo", "bar"^^xsd:string)		"foobar"

		concat("foo"@en, "bar")		"foobar"

		concat("foo"@en, "bar"^^xsd:string)		"foobar"

[bookmark: func-langMatches]17.4.3.13 langMatches

 xsd:boolean langMatches (simple literal language-tag, simple literal language-range)

Returns true if language-tag (first argument) matches language-range (second argument) per the basic filtering scheme defined in [RFC4647] section 3.3.1. language-range is a basic language range per Matching of Language Tags [RFC4647] section 2.1. A language-range of "*" matches any non-empty language-tag string.

@prefix dc: <http://purl.org/dc/elements/1.1/> .

_:a dc:title "That Seventies Show"@en .
_:a dc:title "Cette Série des Années Soixante-dix"@fr .
_:a dc:title "Cette Série des Années Septante"@fr-BE .
_:b dc:title "Il Buono, il Bruto, il Cattivo" .

This query uses
 langMatches and
 lang
 to find the French titles for the show known in English as "That Seventies Show":

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
 WHERE { ?x dc:title "That Seventies Show"@en ;
 dc:title ?title .
 FILTER langMatches(lang(?title), "FR") }

Query result:

		title

		"Cette Série des Années Soixante-dix"@fr

		"Cette Série des Années Septante"@fr-BE

The idiom langMatches(lang(?v), "*") will not match literals without a language tag as lang(?v) will return an empty string, so

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
 WHERE { ?x dc:title ?title .
 FILTER langMatches(lang(?title), "*") }

will report all of the titles with a language tag:

		title

		"That Seventies Show"@en

		"Cette Série des Années Soixante-dix"@fr

		"Cette Série des Années Septante"@fr-BE

[bookmark: func-regex]17.4.3.14 REGEX

 xsd:boolean REGEX (string literal text, simple literal pattern)
 xsd:boolean REGEX (string literal text, simple literal pattern, simple literal flags)

Invokes the XPath fn:matches function to match text against a regular expression pattern. The regular expression language is defined in XQuery 1.0 and XPath 2.0 Functions and Operators section 7.6.1 Regular Expression Syntax [FUNCOP].

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice".
_:b foaf:name "Bob" .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
 WHERE { ?x foaf:name ?name
 FILTER regex(?name, "^ali", "i") }

Query result:

		name

		"Alice"

[bookmark: func-replace]17.4.3.15 REPLACE

 string literal REPLACE (string literal arg, simple literal pattern, simple literal replacement)
 string literal REPLACE (string literal arg, simple literal pattern, simple literal replacement, simple literal flags)

The REPLACE function corresponds to the XPath
	 fn:replace function.
	 It replaces each non-overlapping occurrence of the regular expression pattern with the replacement string.
	 Regular expession matching may involve modifier flags. See REGEX.
	

		replace("abcd", "b", "Z")		"aZcd"

		replace("abab", "B", "Z","i")		"aZaZ"

		replace("abab", "B.", "Z","i")		"aZb"

[bookmark: func-numerics]17.4.4 Functions on Numerics

[bookmark: func-abs]17.4.4.1 abs

 numeric ABS (numeric term)

Returns the absolute value of arg.
	 An error is raised if arg is not a numeric value.

This function is the same as
	 fn:numeric-abs
	 for terms with a datatype from XDM.
	

		abs(1)		1

		abs(-1.5)		1.5

[bookmark: func-round]17.4.4.2 round

 numeric ROUND (numeric term)

Returns the number with no fractional part that is closest to the argument.
	 If there are two such numbers, then the one that is closest to
	 positive infinity is returned.
	 An error is raised if arg is not a numeric value.

This function is the same as
	 fn:numeric-round
	 for terms with a datatype from XDM.
	

		round(2.4999)		2.0

		round(2.5)		3.0

		round(-2.5)		-2.0

[bookmark: func-ceil]17.4.4.3 ceil

 numeric CEIL (numeric term)

Returns the smallest (closest to negative infinity) number
	 with no fractional part that is not less than the value of arg.
	 An error is raised if arg is not a numeric value.

This function is the same as
	 fn:numeric-ceil
	 for terms with a datatype from XDM.
	

		ceil(10.5)		11.0

		ceil(-10.5)		-10.0

[bookmark: func-floor]17.4.4.4 floor

 numeric FLOOR (numeric term)

Returns the largest (closest to positive infinity) number
	 with no fractional part that is not greater than the value of arg.
	 An error is raised if arg is not a numeric value.

This function is the same as
	 fn:numeric-floor
	 for terms with a datatype from XDM.
	

		floor(10.5)		10.0

		floor(-10.5)		-11.0

[bookmark: idp2130040]17.4.4.5 RAND

 xsd:double RAND ()

Returns a pseudo-random number between 0 (inclusive) and 1.0e0 (exclusive).
	 Different numbers can be produced every time this function is invoked.
	 Numbers should be produced with approximately equal probability.

		rand()		"0.31221030831984886"^^xsd:double

[bookmark: func-date-time]17.4.5 Functions on Dates and Times

[bookmark: func-now]17.4.5.1 now

 xsd:dateTime NOW ()

Returns an XSD dateTime value for the current query execution.
	 All calls to this function in any one query execution must return the same
	 value. The exact moment returned is not specified.

		now()		"2011-01-10T14:45:13.815-05:00"^^xsd:dateTime

[bookmark: func-year]17.4.5.2 year

 xsd:integer YEAR (xsd:dateTime arg)

Returns the year part of arg as an integer.

This function corresponds to
	 fn:year-from-dateTime.

		year("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)		2011

[bookmark: func-month]17.4.5.3 month

 xsd:integer MONTH (xsd:dateTime arg)

Returns the month part of arg as an integer.

This function corresponds to
	 fn:month-from-dateTime.

		month("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)		1

[bookmark: func-day]17.4.5.4 day

 xsd:integer DAY (xsd:dateTime arg)

Returns the day part of arg as an integer.

This function corresponds to
	 fn:day-from-dateTime.

		day("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)		10

[bookmark: func-hours]17.4.5.5 hours

 xsd:integer HOURS (xsd:dateTime arg)

Returns the hours part of arg as an integer.
	 The value is as given in the lexical form of the XSD dateTime.

This function corresponds to
	 fn:hours-from-dateTime.

		hours("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)		14

[bookmark: func-minutes]17.4.5.6 minutes

 xsd:integer MINUTES (xsd:dateTime arg)

Returns the minutes part of the lexical form of arg.
	 The value is as given in the lexical form of the XSD dateTime.

This function corresponds to
	 fn:minutes-from-dateTime.

		minutes("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)		45

[bookmark: func-seconds]17.4.5.7 seconds

 xsd:decimal SECONDS (xsd:dateTime arg)

Returns the seconds part of the lexical form of arg.

This function corresponds to
	 fn:seconds-from-dateTime.

		seconds("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)		13.815

[bookmark: func-timezone]17.4.5.8 timezone

 xsd:dayTimeDuration TIMEZONE (xsd:dateTime arg)

Returns the timezone part of arg as an xsd:dayTimeDuration.
	 Raises an error if there is no timezone.

This function corresponds to
	 fn:timezone-from-dateTime except for the treatment of literals
	 with no timezone.

		timezone("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)		"-PT5H"^^xsd:dayTimeDuration

		timezone("2011-01-10T14:45:13.815Z"^^xsd:dateTime)		"PT0S"^^xsd:dayTimeDuration

		timezone("2011-01-10T14:45:13.815"^^xsd:dateTime)		error

[bookmark: func-tz]17.4.5.9 tz

 simple literal TZ (xsd:dateTime arg)

Returns the timezone part of arg as a simple literal.
	 Returns the empty string if there is no timezone.

		tz("2011-01-10T14:45:13.815-05:00"^^xsd:dateTime)		"-05:00"

		tz("2011-01-10T14:45:13.815Z"^^xsd:dateTime)		"Z"

		tz("2011-01-10T14:45:13.815"^^xsd:dateTime)		""

[bookmark: func-hash]17.4.6 Hash Functions

[bookmark: func-md5]17.4.6.1 MD5

 simple literal MD5 (simple literal arg)

 simple literal MD5 (xsd:string arg)

Returns the MD5 checksum, as a hex digit string, calculated on the
	 UTF-8 representation of the simple literal or lexical form of the
	 xsd:string. Hex digits SHOULD be in lower case.

		MD5("abc")		"900150983cd24fb0d6963f7d28e17f72"

		MD5("abc"^^xsd:string)		"900150983cd24fb0d6963f7d28e17f72"

[bookmark: func-sha1]17.4.6.2 SHA1

 simple literal SHA1 (simple literal arg)

 simple literal SHA1 (xsd:string arg)

Returns the SHA1 checksum, as a hex digit string, calculated on the
	 UTF-8 representation of the simple literal or lexical form of the
	 xsd:string. Hex digits SHOULD be in lower case.

		SHA1("abc")		"a9993e364706816aba3e25717850c26c9cd0d89d"

		SHA1("abc"^^xsd:string)		"a9993e364706816aba3e25717850c26c9cd0d89d"

[bookmark: func-sha256]17.4.6.3 SHA256

 simple literal SHA256 (simple literal arg)

 simple literal SHA256 (xsd:string arg)

Returns the SHA256 checksum, as a hex digit string, calculated on the
	 UTF-8 representation of the simple literal or lexical form of the
	 xsd:string. Hex digits SHOULD be in lower case.

		SHA256("abc")		"ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"

		SHA256("abc"^^xsd:string)		"ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"

[bookmark: func-sha384]17.4.6.4 SHA384

 simple literal SHA384 (simple literal arg)

 simple literal SHA384 (xsd:string arg)

Returns the SHA384 checksum, as a hex digit string, calculated on the
	 UTF-8 representation of the simple literal or lexical form of the
	 xsd:string. Hex digits SHOULD be in lower case.

		SHA384("abc")		"cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7"

		SHA384("abc"^^xsd:string)		"cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7"

[bookmark: func-sha512]17.4.6.5 SHA512

 simple literal SHA512 (simple literal arg)

 simple literal SHA512 (xsd:string arg)

Returns the SHA512 checksum, as a hex digit string, calculated on the
	 UTF-8 representation of the simple literal or lexical form of the
	 xsd:string. Hex digits SHOULD be in lower case.

		SHA512("abc")		"ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f"

		SHA512("abc"^^xsd:string)		"ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f"

[bookmark: FunctionMapping]17.5 XPath Constructor Functions

SPARQL imports a subset of the XPath constructor functions defined in XQuery 1.0 and XPath 2.0 Functions and Operators [FUNCOP] in section 17.1 Casting from primitive types to primitive types. SPARQL constructors include all of the XPath constructors for the SPARQL operand datatypes plus the additional datatypes imposed by the RDF data model. Casting in SPARQL is performed by calling a constructor function for the target type on an operand of the source type.

XPath defines only the casts from one XML Schema datatype to another. The remaining casts are defined as follows:

		Casting an IRI to an xsd:string produces a typed literal with a lexical value of the codepoints comprising the IRI, and a datatype of xsd:string.

		Casting a simple literal to any XML Schema datatype is defined as the product of casting an xsd:string with the string value equal to the lexical value of the literal to the target datatype.

The table below summarizes the casting operations that are always allowed (Y), never allowed (N) and dependent on the lexical value (M). For example, a casting operation from an xsd:string (the first row) to an xsd:float (the second column) is dependent on the lexical value (M).

bool = xsd:boolean

dbl = xsd:double

flt = xsd:float

dec = xsd:decimal

int = xsd:integer

dT = xsd:dateTime

str = xsd:string

IRI = IRI

ltrl = simple literal

		From \ To		str		flt		dbl		dec		int		dT		bool

		str		Y		M		M		M		M		M		M

		flt		Y		Y		Y		M		M		N		Y

		dbl		Y		Y		Y		M		M		N		Y

		dec		Y		Y		Y		Y		Y		N		Y

		int		Y		Y		Y		Y		Y		N		Y

		dT		Y		N		N		N		N		Y		N

		bool		Y		Y		Y		Y		Y		N		Y

		IRI		Y		N		N		N		N		N		N

		ltrl		Y		M		M		M		M		M		M

[bookmark: extensionFunctions]17.6 Extensible Value Testing

It should be noted that any function or operator that is specified
to return an error under some conditions is a valid extension point.
That is, an implementation may return a non-error value in these
error cases, and still be conformant with this recommendation.

A PrimaryExpression grammar rule can be a call to an extension function named by an IRI. An extension function takes some number of RDF terms as arguments and returns an RDF term. The semantics of these functions are identified by the IRI that identifies the function.

SPARQL queries using extension functions are likely to have limited interoperability.

As an example, consider a function called func:even:

 xsd:boolean func:even (numeric value)

This function would be invoked in a FILTER as such:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX func: <http://example.org/functions#>
SELECT ?name ?id
WHERE { ?x foaf:name ?name ;
 func:empId ?id .
 FILTER (func:even(?id)) }

For a second example, consider a function aGeo:distance that calculates the distance between two points, which is used here to find the places near Grenoble:

 xsd:double aGeo:distance (numeric x1, numeric y1, numeric x2, numeric y2)

PREFIX aGeo: <http://example.org/geo#>

SELECT ?neighbor
WHERE { ?a aGeo:placeName "Grenoble" .
 ?a aGeo:locationX ?axLoc .
 ?a aGeo:locationY ?ayLoc .

 ?b aGeo:placeName ?neighbor .
 ?b aGeo:locationX ?bxLoc .
 ?b aGeo:locationY ?byLoc .

 FILTER (aGeo:distance(?axLoc, ?ayLoc, ?bxLoc, ?byLoc) < 10) .
 }

An extension function might be used to test some
 application datatype not supported by the core SPARQL specification, it might
 be a transformation between datatype formats, for example into an XSD dateTime
 RDF term from another date format.

[bookmark: sparqlDefinition]18 Definition of SPARQL

This section defines the correct behavior for evaluation of graph patterns
 and solution modifiers, given a query string and an RDF
 dataset. It does not imply a SPARQL implementation must use the process defined
 here.

The outcome of executing a SPARQL query is defined by a series of steps,
 starting from the SPARQL query as a string, turning that string into an
 abstract syntax form, then turning the abstract syntax into a SPARQL
 abstract query comprising operators from the SPARQL algebra.
 This abstract query is then evaluated on an RDF dataset.

[bookmark: initDefinitions]18.1 Initial Definitions

[bookmark: sparqlBasicTerms]18.1.1 RDF Terms

SPARQL is defined in terms of IRIs [RFC3987].
 IRIs are a subset of RDF URI References that omits the use of spaces.

Definition: [bookmark: defn_RDFTerm]RDF TermLet I be the set of all IRIs.

 Let RDF-L be the set of all RDF Literals

 Let RDF-B be the set of all blank nodes in RDF graphs

The set of RDF Terms, RDF-T, is I ∪ RDF-L ∪ RDF-B.

This definition of RDF Term collects together
 several basic notions from the
 RDF data model,
 but updated to refer to IRIs
 rather than RDF URI references.

[bookmark: simple_literal]18.1.2 Simple Literal

Definition: [bookmark: defn_SimpleLiteral]Simple Literal

The set of Simple Literals is the set of all RDF Literals with no language tag or datatype IRI.

[bookmark: sparqlDataset]18.1.3 RDF Dataset

Definition: [bookmark: defn_RDFDataset]RDF Dataset
 An RDF dataset is a set:

 { G, (<u1>, G1), (<u2>, G2), . . .
 (<un>, Gn) }

 where G and each Gi are graphs, and each <ui> is
 an IRI.
 Each <ui> is distinct.

G is called the default graph. (<ui>, Gi) are called
 named graphs.

Definition: [bookmark: defn_ActiveGraph]Active GraphThe active graph is the graph from the dataset used for basic
 graph pattern matching.

[bookmark: defn_RDFDatasetMerge]Definition: RDF Dataset Merge

Let DS1 =
	 { G1, (<u11>, G11), (<u12>, G12), . . .
	 (<u1n>, G1n) },

	 and DS2 =
	 { G2, (<u21>, G21), (<u22>, G22), . . .
	 (<u2m>, G2m) }

	 then we define the RDF Dataset Merge of DS1 and DS2 to be:

	 DS={ G, (<u1>, G1), (<u2>, G2), . . .
	 (<uk>, Gk) }

	 where:

Write N1 for { <u1j> j = 1 to n }

	 Write N2 for { <u2j> j = 1 to m }

	

		G is the merge of G1 and G2

		(<ui>, Gi) where <ui> is in N1 but not in N2

		(<ui>, Gi) where <ui> is in N2 but not in N1

		(<ui>, Gi) where <ui> is equal to <uj> in N1 and equal to <uk> in N2 and Gi is the merge of G1j and G2k

[bookmark: sparqlQueryVariables]18.1.4 Query Variables

Definition: [bookmark: defn_QueryVariable]Query VariableA query variable is a member of the set V
 where V is infinite and disjoint from RDF-T.

[bookmark: sparqlTriplePatterns]18.1.5 Triple Patterns

Definition: [bookmark: defn_TriplePattern]Triple PatternA triple pattern is member of the set:

 (RDF-T ∪ V) x (I ∪ V) x (RDF-T ∪ V)

This definition of Triple Pattern includes literal subjects. This has been noted by RDF-core.

"[The RDF core Working Group] noted that it is aware of no reason why literals should
not be subjects and a future WG with a less restrictive charter may
extend the syntaxes to allow literals as the subjects of statements."

Because RDF graphs may not contain literal subjects, any SPARQL triple pattern with a literal as subject will fail
 to match on any RDF graph.

[bookmark: sparqlBasicGraphPatterns]18.1.6 Basic Graph Patterns

Definition: [bookmark: defn_BasicGraphPattern]Basic Graph PatternA Basic Graph Pattern is a
 set of Triple Patterns.

The empty graph pattern is a basic graph pattern which is the empty set.

[bookmark: sparqlPropertyPaths]18.1.7 Property Path Patterns

Definition: [bookmark: defn_PropertyPath]Property PathA Property Path is a sequence of triples, ti in sequence ST, with n = length(ST)-1, such that, for i=0 to n,
 the object of ti is the same term as the subject of ti+1.

We call the subject of t0 the start of the path.

We call the object of tn the end of the path.

A Property Path is a path in graph G if each ti is a triple of G.

A property path does not span multiple graphs in a dataset.

Definition: [bookmark: defn_PropertyPathExpr]Property Path ExpressionA property path expression is an expression using the property path forms described above.

Definition: [bookmark: defn_PropertyPathPattern]Property Path PatternLet PP be the set of all property path expressions.
 A property path pattern is a member of the set:

 (RDF-T ∪ V) x PP x (RDF-T ∪ V)

A Property Path Pattern is a generalization of a
 Triple Pattern
 to include a property path expression
 in the property position.

[bookmark: sparqlSolutions]18.1.8 Solution Mapping

A solution mapping is a mapping from a set of variables to a set of RDF terms.
 We use the term 'solution' where it is clear.

Definition: [bookmark: defn_sparqlSolutionMapping]Solution MappingA solution mapping, μ, is a partial function μ : V -> RDF-T.

The domain of μ, dom(μ), is the subset of V where μ is defined.

Definition: [bookmark: defn_sparqlSolutionSequence]Solution SequenceA solution sequence is a list of solutions, possibly unordered.

Write expr(μ) for the value of the expression expr,
	 using the terms for variables given by μ.
	 Evaluation may result in an error.

[bookmark: sparqlSolMod]18.1.9 Solution Sequence Modifiers

Definition: [bookmark: defn_SolutionModifier]Solution Sequence ModifierA solution sequence modifier is one of:

		

 Order By modifier: put the solutions in order

		

 Projection modifier: choose certain variables

		

 Distinct modifier: ensure solutions in the sequence are unique

		

 Reduced modifier: permit any non-distinct solutions to be eliminated

		

 Offset modifier: control where the solutions start from in
 the overall sequence of solutions

		

 Limit modifier: restrict the number of solutions

[bookmark: idp2427544]18.1.10 SPARQL Query

Definition: [bookmark: defn_SPARQLQuery]SPARQL QueryA SPARQL Abstract Query is a tuple (E, DS, QF) where:

		E is a SPARQL algebra expression

		DS is an RDF Dataset

		QF is a query form

Definition: [bookmark: defn_QueryUnit]Query LevelA query level is a graph pattern, a set of group and aggregation, and a set of solution modifiers.

A query is a tree of "query levels", where each subquery
	 forms one query level in the tree.

[bookmark: sparqlQuery]18.2 Translation to the SPARQL Algebra

This section defines the process of converting graph patterns and solution
 modifiers in a SPARQL query string into a SPARQL algebra expression. The process described
 converts one level of query nesting, as formed by subqueries using the nested
 SELECT syntax and is applied recursively on subqueries. Each level consists of graph
 pattern matching and filtering, followed by the application of solution modifiers.

The SPARQL query string is parsed and the abbreviations for IRIs and triple patterns given in
 section 4 are applied.
 At this point the abstract syntax tree is composed of:

		Patterns		Modifiers		Query Forms		Other

		RDF terms		DISTINCT		SELECT		VALUES

		Property path expression		REDUCED		CONSTRUCT		SERVICE

		Property path patterns		Projection		DESCRIBE		

		Groups		ORDER BY		ASK		

		OPTIONAL		LIMIT		 		

		UNION		OFFSET		 		

		GRAPH		Select expressions		 		

		BIND		 		 		

		GROUP BY		 		 		

		HAVING		 		 		

		MINUS		 		 		

		FILTER		 		 		

The result of converting such an abstract syntax tree is a SPARQL query that
 uses the following symbols in the SPARQL algebra:

		Graph Pattern		Solution Modifiers		Property Path

		BGP 		ToList		PredicatePath

		Join		OrderBy		InversePath

		LeftJoin		Project		SequencePath

		Filter		Distinct		AlernativePath

		Union		Reduced		ZeroOrMorePath

		Graph		Slice		OneOrMorePath

		Extend		ToMultiSet		ZeroOrOnePath

		Minus		 		NegatedPropertySet

		Group		 		

		Aggregation		 		

		AggregateJoin		 		

Slice is the combination of OFFSET and LIMIT.

ToList is used where conversion from the results of graph pattern
 matching to sequences occurs.

ToMultiSet is used where conversion from a solution sequence
 to a multiset occurs.

[bookmark: variableScope]18.2.1 Variable Scope

We define a variable to be in-scope if there is a way for
 a variable to be in the domain of a solution mapping at that point
 in the execution of the SPARQL algebra for the query.
 The definition below provides a way of determing this from the
 abstract syntax of a query.

Note that a subquery with a projection can hide variables;
 use of a variable in FILTER, or in MINUS does not cause a variable
 to be in-scope outside of those forms.

Let P, P1, P2 be graph patterns and E, E1,...En be expressions.
 A variable v is in-scope if:

		Syntax Form		In-scope variables

		Basic Graph Pattern (BGP)		v occurs in the BGP

		Path 		v occurs in the path

		Group { P1 P2 ... }		v is in-scope if it is in-scope in one or more of P1, P2, ...

		GRAPH term { P }		v is term or v is in-scope in P

		{ P1 } UNION { P2 }		v is in-scope in P1 or in-scope in P2

		OPTIONAL {P}		v is in-scope in P

		SERVICE term {P}		v is term or v is in-scope in P

		BIND (expr AS v)		v is in-scope

		SELECT .. v .. { P }		v is in-scope

		SELECT ... (expr AS v)		v is in-scope

		GROUP BY (expr AS v)		v is in-scope

		SELECT * { P }		v is in-scope in P

		VALUES v { values }		v is in-scope

		VALUES varlist { values }		v is in-scope if v is in varlist

The variable v must not be in-scope at the point of the (expr AS v)
	 form. The scoping for (expr AS v) applies immediately in
 SELECT expressions.

In BIND (expr AS v) requires that the variable v is
	 not in-scope from the preceeding elements in the group graph pattern in which it is used.

In SELECT, the variable v must not be in-scope
	 in the graph pattern of the SELECT clause, nor used in another
	 select expression earlier in the clause.

[bookmark: convertGraphPattern]18.2.2 Converting Graph Patterns

This section describes the process for translating a SPARQL graph
 pattern into a SPARQL algebra expression. This process is applied to
	 the group graph pattern (the unit between {...} delimiters)
	 forming the WHERE clause of a query, and recursively
	 to each syntactic element within the group graph pattern. The result of
	 the translation is a SPARQL algebra expression.
	

In summary, the steps are applied as follows:

		
	 Expand syntax forms
	 for IRIs, literals and triple patterns.
	

		Translate property path expressions

		Convert some property path patterns to triples

		Collect the FILTERs in the group

		Translate Basic Graph Patterns

		Translate the remaining graph patterns in the group

		Add in Filters

		Simplify the algebra expression

We write

	 translate(graph pattern)
	

for the algorthm described here to translate graph patterns.
	

 The working group notes that in SPARQL 1.0, the point at which the simplification step is
	 applied leads to ambiguous transformation
 of queries involving a doubly nested filter and pattern in an optional:
	 OPTIONAL { { ... FILTER (... ?x ...) } }..

This is illustrated by two non-normative test cases:

		
 Simplification applied after all transformations or not at all.

		
 Simplification applied during transformation.

Applying the simpification step after all the translation of graph patterns
	 is the preferred reading.

[bookmark: sparqlExpandForms]18.2.2.1 Expand Syntax Forms

Expand abbreviations for IRIs and triple patterns given in
 section 4.

[bookmark: sparqlCollectFilters]18.2.2.2 Collect FILTER Elements

	 FILTER expressions apply to the whole group graph pattern
	 in which they appear. The algebra operators to perform filtering are
	 added to the group after translation of each group element. We collect
	 the filters together here and remove them from group, then
	 apply
	 them to the whole translated group graph pattern.
	

In this step, we also translate graph patterns within FILTER
	 expressions EXISTS and
	 NOT EXISTS.
	

Let FS := empty set

For each form FILTER(expr) in the group graph pattern:
 In expr, replace NOT EXISTS{P} with fn:not(exists(translate(P)))
 In expr, replace EXISTS{P} with exists(translate(P))
 FS := FS ∪ {expr}
 End

The set of filter expressions FS is used later.

[bookmark: sparqlTranslatePathExpressions]18.2.2.3 Translate Property Path Expressions

The following table gives the translation of property paths
	 expressions from SPARQL syntax to terms in the SPARQL algebra.
	 This applies to all elements of a property path expression recursively.

The next step after this one
	 translates certain forms to triple patterns,
	 and these are converted later to basic graph patterns by adjacency
	 (without intervening group pattern delimiters { and })
	 or other syntax forms. Overall, SPARQL syntax property paths of just
	 an IRI become triple patterns and these are aggregated into basic graph patterns.

Notes:

		The order of forms IRI and ^IRI in negated property sets is not relevant.

We introduce the following symbols:

		link

		inv

		alt

		seq

		ZeroOrMorePath

		OneOrMorePath

		ZeroOrOnePath

		NPS (for NegatedPropertySet)

		Syntax Form (path)		Algebra (path)

		iri		link(iri)

		^path		inv(path)

		!(:iri1|...|:irin)		NPS({:iri1 ... :irin})

		!(^:iri1|...|^:irin)		inv(NPS({:iri1 ... :irin}))

		!(:iri1|...|:irii|^:irii+1|...|^:irim) 		alt(NPS({:iri1 ...:irii}),

		 inv(NPS({:irii+1, ..., :irim})))
		

		path1 / path2		seq(path1, path2)

		path1 | path2		alt(path1, path2)

		path*		ZeroOrMorePath(path)

		path+		OneOrMorePath(path)

		path?		ZeroOrOnePath(path)

[bookmark: sparqlTranslatePathPatterns]18.2.2.4 Translate Property Path Patterns

	 The previous step translated property path expressions.
	 This step translates property path patterns,
	 which are a subject end point, property path expression and object end point,
	 into triple patterns or wraps in a general algebra operation for path evaluation.
	

Notes:

		X and Y are RDF terms or variables.

		?V is a fresh variable.

		P and Q are path expressions.

		These are only applied to property path patterns, not within property path expressions.

		Translations earlier in the table are applied in preference to the last translation.

		
		The final translation simply wraps any remaining property path expression to
		use a common form Path(...).
	

		Algebra (path)		Translation

		X link(iri) Y		X iri Y

		X inv(iri) Y		Y iri X

		X seq(P, Q) Y		X P ?V . ?V Q P

		X P Y		Path(X, P, Y)

Examples of the whole path translation process
	 (?_V is a fresh variable):

		?s :p/:q ?o
	

		 ?s :p ?_V .

 ?_V :q ?o
	

		?s :p* ?o
	

		Path(?s, ZeroOrMorePath(link(:p)), ?o)
	

		:list rdf:rest*/rdf:first ?member
	

		Path(:list, ZeroOrMorePath(link(rdf:rest)), ?_V) .

		?_V rdf:first ?member
	

[bookmark: sparqlTranslateBasicGraphPatterns]18.2.2.5 Translate Basic Graph Patterns

After translating property paths, any adjacent triple patterns are collected together
	 to form a basic graph pattern BGP(triples).

[bookmark: sparqlTranslateGraphPatterns]18.2.2.6 Translate Graph Patterns

Next, we translate each remaining graph pattern form, recursively applying the translation process.

 If the form is
 GroupOrUnionGraphPattern

Let A := undefined

For each element G in the GroupOrUnionGraphPattern
 If A is undefined
 A := Translate(G)
 Else
 A := Union(A, Translate(G))
 End

The result is A

 If the form is GraphGraphPattern

If the form is GRAPH IRI GroupGraphPattern
 The result is Graph(IRI, Translate(GroupGraphPattern))

If the form is GRAPH Var GroupGraphPattern
 The result is Graph(Var, Translate(GroupGraphPattern))

	 If the form is GroupGraphPattern:

Let FS := the empty set
Let G := the empty pattern, a basic graph pattern which is the empty set.

For each element E in the GroupGraphPattern

 If E is of the form OPTIONAL{P}
 Let A := Translate(P)
 If A is of the form Filter(F, A2)
 G := LeftJoin(G, A2, F)
 Else
 G := LeftJoin(G, A, true)
 End
 End

 If E is of the form MINUS{P}
 G := Minus(G, Translate(P))
 End

 If E is of the form BIND(expr AS var)
 G := Extend(G, var, expr)
 End

 If E is any other form
 Let A := Translate(E)
 G := Join(G, A)
 End

 End

The result is G.

	 If the form is InlineData

	

The result is a multiset of solution mappings 'data'.

		data is formed by forming a solution mapping
		from the variable in the corresponding position in list of variables
		(or single variable),
		omitting a binding if the BindingValue is the word UNDEF.
	

	 If the form is SubSelect

	

The result is ToMultiset(Translate(SubSelect))

[bookmark: sparqlAddFilters]18.2.2.7 Filters of Group

After the group has been translated, the filter expressions are
	 added so they wil apply to the whole of the rest of the group:

If FS is not empty
 Let G := output of preceding step
 Let X := Conjunction of expressions in FS
 G := Filter(X, G)
 End

[bookmark: sparqlSimplification]18.2.2.8 Simplification step

Some groups of one graph pattern become join(Z, A),
	 where Z is the empty basic graph pattern
	 (which is the empty set). These can be replaced by A.
	 The empty graph pattern Z is the identity for join:

Replace join(Z, A) by A
Replace join(A, Z) by A

[bookmark: sparqlAlgebraExamples]18.2.3 Examples of Mapped Graph Patterns

The second form of a rewrite example is the first with empty group joins removed by
 the simplification step.

Example: group with a basic graph pattern consisting of a single triple
 pattern:

 { ?s ?p ?o }

 Join(Z,
 BGP(?s ?p ?o))

 BGP(?s ?p ?o)

Example: group with a basic graph pattern consisting of two triple patterns:

 { ?s :p1 ?v1 ; :p2 ?v2 }

 BGP(?s :p1 ?v1 . ?s :p2 ?v2)

Example: group consisting of a union of two basic graph patterns:

 { { ?s :p1 ?v1 } UNION {?s :p2 ?v2 } }

 Union(Join(Z, BGP(?s :p1 ?v1)),

 Join(Z, BGP(?s :p2 ?v2)))

 Union(BGP(?s :p1 ?v1) , BGP(?s :p2 ?v2))

Example: group consisting of a union of a union and a basic graph pattern:

 { { ?s :p1 ?v1 } UNION {?s :p2 ?v2 } UNION {?s :p3 ?v3 } }

 Union(

 Union(Join(Z, BGP(?s :p1 ?v1)),

 Join(Z, BGP(?s :p2 ?v2)))
 ,

 Join(Z, BGP(?s :p3 ?v3)))

 Union(

 Union(BGP(?s :p1 ?v1) ,

 BGP(?s :p2 ?v2),

 BGP(?s :p3 ?v3))

Example: group consisting of a basic graph pattern and an optional graph
 pattern:

 { ?s :p1 ?v1 OPTIONAL {?s :p2 ?v2 } }

 LeftJoin(

 Join(Z, BGP(?s :p1 ?v1)),

 Join(Z, BGP(?s :p2 ?v2)),

 true)

 LeftJoin(BGP(?s :p1 ?v1), BGP(?s :p2 ?v2), true)

Example: group consisting of a basic graph pattern and two optional graph
 patterns:

 { ?s :p1 ?v1 OPTIONAL {?s :p2 ?v2 } OPTIONAL { ?s :p3 ?v3 } }

 LeftJoin(

 LeftJoin(

 BGP(?s :p1 ?v1),

 BGP(?s :p2 ?v2),

 true) ,

 BGP(?s :p3 ?v3),

 true)

Example: group consisting of a basic graph pattern and an optional graph
 pattern with a filter:

 { ?s :p1 ?v1 OPTIONAL {?s :p2 ?v2 FILTER(?v1<3) } }

 LeftJoin(

 Join(Z, BGP(?s :p1 ?v1)),

 Join(Z, BGP(?s :p2 ?v2)),

 (?v1<3))

 LeftJoin(

 BGP(?s :p1 ?v1) ,

 BGP(?s :p2 ?v2) ,

 (?v1<3))

Example: group consisting of a union graph pattern and an optional graph
 pattern:

 { {?s :p1 ?v1} UNION {?s :p2 ?v2} OPTIONAL {?s :p3 ?v3} }

 LeftJoin(

 Union(BGP(?s :p1 ?v1),

 BGP(?s :p2 ?v2)) ,

 BGP(?s :p3 ?v3) ,

 true)

Example: group consisting of a basic graph pattern, a filter and an optional
 graph pattern:

 { ?s :p1 ?v1 FILTER (?v1 < 3) OPTIONAL {?s :p2 ?v2} }

 Filter(?v1 < 3 ,

 LeftJoin(BGP(?s :p1 ?v1), BGP(?s :p2 ?v2), true) ,

)

Example: Pattern involving BIND:

 { ?s :p ?v . BIND (2*?v AS ?v2) ?s :p1 ?v2 }
	

	 Join(

	
	 Extend(BGP(?s :p ?v), ?v2, 2*?v) ,

	
	 BGP(?s :p1 ?v2)
)

Example: Pattern involving BIND:

 { ?s :p ?v . {} BIND (2*?v AS ?v2) }
	

	 Join(

	 BGP(?s :p ?v), ?v2, 2*?v) ,

	 Extend({}, ?v2, 2*?v)

)

Example: Pattern involving MINUS:

	 { ?s :p ?v . MINUS {?s :p1 ?v2 } }
	

	 Minus(

	
	 BGP(?s :p ?v)

	
	 BGP(?s :p1 ?v2))

Example: Pattern involving a subquery:

	 { ?s :p ?o . {SELECT DISTINCT ?o {?o ?p ?z} } }
	

	 Join(

	
	 BGP(?s :p ?o) ,

	
	 ToMultiSet(

	
	 Distinct(Project(BGP(?o ?p ?z), {?o})))

	
)

[bookmark: convertGroupAggSelectExpressions]18.2.4 Converting Groups, Aggregates, HAVING, final VALUES clause and SELECT Expressions

In this step, we process clauses on the query level in the following order:

		Grouping

		Aggregates

		HAVING

		VALUES

		Select expressions

[bookmark: sparqlGroupAggregate]18.2.4.1 Grouping and Aggregation

Step: GROUP BY

If the GROUP BY keyword is used, or there is implicit grouping due to the use of aggregates in the projection, then grouping is performed by the Group function. It divides the solution set into groups of one or more solutions, with the same overall cardinality. In case of implicit grouping, a fixed constant (1) is used to group all solutions into a single group.

Step: Aggregates

The aggregation step is applied as a transformation on the query level, replacing aggregate expressions in the query level with Aggregation() algebraic expressions.

The transformation for query levels that use any aggregates is given below:

Let A := the empty sequence
Let Q := the query level being evaluated
Let P := the algebra translation of the GroupGraphPattern of the query level
Let E := [], a list of pairs of the form (variable, expression)

If Q contains GROUP BY exprlist
 Let G := Group(exprlist, P)
Else If Q contains an aggregate in SELECT, HAVING, ORDER BY
 Let G := Group((1), P)
Else
 skip the rest of the aggregate step
 End

Global i := 1 # Initially 1 for each query processed

For each (X AS Var) in SELECT, each HAVING(X), and each ORDER BY X in Q
 For each unaggregated variable V in X
 Replace V with Sample(V)
 End
 For each aggregate R(args ; scalarvals) now in X
 # note scalarvals may be omitted, then it's equivalent to the empty set
 Ai := Aggregation(args, R, scalarvals, G)
 Replace R(...) with aggi in Q
 i := i + 1
 End
 End

For each variable V appearing outside of an aggregate
 Ai := Aggregation(V, Sample, {}, G)
 E := E append (V, aggi)
 i := i + 1
 End

A := Ai, ..., Ai-1
P := AggregateJoin(A)

Note: aggi is a temporary variable. E is then used in 18.2.4.4 for the processing of select
expressions.

Example:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT (SUM(?val) AS ?sum) (COUNT(?a) AS ?count)
WHERE {
 ?a rdf:value ?val .
} GROUP BY ?a

The SUM expression becomes agg1, and the COUNT expression becomes agg2.

Let G := Group((?a), BGP(?a rdf:value ?val))
A1 = Aggregation((?val), Sum, {}, G)
A2 = Aggregation((?a), Count, {}, G)
A := (A1, A2)
Let P := AggregateJoin(A)

[bookmark: sparqlHavingClause]18.2.4.2 HAVING

The HAVING expression is evaluated using the same rules as FILTER(). Note that,
	 due to the logic position in which the HAVING clause is evaluated, expressions projected
	 by the SELECT clause are not visible to the HAVING clause.

Let Q := the query level being evaluated
Let P := the algebra translation of the query level so far

For each HAVING(E) in Q
 P := Filter(E, P)
 End

[bookmark: sparqlAlgebraFinalValues]18.2.4.3 VALUES

If the query has a trailing VALUES clause:

Let P := the algebra translation of the query level so far
P := Join(P, ToMultiSet(data))
 where data is a solution sequence formed from the VALUES clause

The translatation of the data is the same as for inline data.

[bookmark: sparqlSelectExpressions]18.2.4.4 SELECT Expressions

Step: Select expressions

We have two forms of the abstract syntax to consider:

SELECT selItem ... { pattern }
SELECT * { pattern }

Let X := algebra from earlier steps
Let VS := list of all variables visible in the pattern,
 so restricted by sub-SELECT projected variables and GROUP BY variables.
 Not visible: only in filter, exists/not exists, masked by a subselect,
 non-projected GROUP variables, only in the right hand side of MINUS

Let PV := {}, a set of variable names
Note, E is a list of pairs of the form (variable, expression), defined in section 18.2.4

If "SELECT *"
 PV := VS

If "SELECT selItem ...:"
 For each selItem:
 If selItem is a variable
 PV := PV ∪ { variable }
 End
 If selItem is (expr AS variable)
 variable must not appear in VS nor in PV; if it does then generate a syntax error and stop
 PV := PV ∪ { variable }
 E := E append (variable, expr)
 End
 End

For each pair (var, expr) in E
 X := Extend(X, var, expr)
 End

Result is X
The set PV is used later for projection.

The syntax error arises for use of a variable as the named target of AS (e.g.
 ... AS ?x) when the variable is used inside the WHERE clause of the SELECT or
	 if already used as the traget of AS in this SELECT expression.

[bookmark: convertSolMod]18.2.5 Converting Solution Modifiers

Solutions modifiers apply to the processing of a SPARQL query after pattern matching.
 The solution modifiers are applied to a query in the following order:

		Order by

		Projection

		Distinct

		Reduced

		Offset

		Limit

Step: ToList

ToList turns a multiset into a sequence with the same elements and cardinality. There is no implied ordering to
 the sequence; duplicates need not be adjacent.

 Let M := ToList(Pattern)

[bookmark: sparqlOrderBy]18.2.5.1 ORDER BY

If the query string has an ORDER BY clause

 M := OrderBy(M, list of order comparators)

[bookmark: sparqlProjection]18.2.5.2 Projection

The set of projection variables, PV, was calculated in the
	 processing of SELECT expressions.

 M := Project(M, PV)

where vars is the set of variables mentioned in the SELECT
 clause or all named variables that are in-scope
	 in the query if SELECT * used.

[bookmark: sparqlDistinct]18.2.5.3 DISTINCT

If the query contains DISTINCT,

 M := Distinct(M)

[bookmark: sparqlReduced]18.2.5.4 REDUCED

If the query contains REDUCED,

 M := Reduced(M)

[bookmark: sparqlOffsetLimit]18.2.5.5 OFFSET and LIMIT

If the query contains "OFFSET start" or "LIMIT length"

 M := Slice(M, start, length)

 start defaults to 0

 length defaults to (size(M)-start).

[bookmark: sparqlAlgebraOutcome]18.2.5.6 Final Algebra Expression

The overall abstract query is M.

[bookmark: BasicGraphPattern]18.3 Basic Graph Patterns

When matching graph patterns, the possible solutions form a
 multiset [multiset], also known as
 a bag. A multiset is an unordered collection of elements in which each
 element may appear more than once. It is described by a set of elements and a
 cardinality function giving the number of occurrences of each element from the
 set in the multiset.

Write μ for solution mappings.

Write μ0 for the mapping such that dom(μ0) is the empty set.

Write Ω0 for the multiset consisting of exactly the empty mapping μ0, with
 cardinality 1. This is the join identity.

Write μ(x) for the solution mapping variable x to RDF term t : { (x, t) }

Write Ω(x) for the multiset consisting of exactly μ(?x->t), that is, { { (x, t) } } with
 cardinality 1.

Definition: [bookmark: defn_algCompatibleMapping]Compatible MappingsTwo solution mappings μ1 and μ2 are compatible if, for every variable v in
 dom(μ1) and in dom(μ2), μ1(v) = μ2(v).

Here, μ1(v) = μ2(v) means that μ1(v) and μ2(v) are the same RDF term.

If μ1 and μ2 are compatible then μ1 ∪ μ2
 is also a mapping. Write merge(μ1, μ2) for μ1 ∪ μ2

Write card[Ω](μ) for the cardinality of solution mapping μ in a multiset
 of mappings Ω.

[bookmark: BGPsparql]18.3.1 SPARQL Basic Graph Pattern Matching

A basic
 graph pattern is matched against the active graph for that part of the query.
 Basic graph patterns can be instantiated by
 replacing both variables and blank nodes by terms, giving two notions
 of instance. Blank nodes are replaced using an
 RDF
 instance mapping, σ, from blank nodes to RDF terms; variables are
 replaced by a solution mapping from query variables to RDF terms.

Definition: [bookmark: defn_PatternInstanceMapping]Pattern Instance MappingA Pattern Instance Mapping, P, is the combination of an RDF
 instance mapping, σ, and solution mapping, μ. P(x) = μ(σ(x))

For a BGP 'x', P(x) denotes the result of replacing blank
 nodes b in x for which σ is defined with σ(b) and all
 variables v in x for which μ is defined with μ(v).

Any pattern instance mapping defines a unique solution mapping
 and a unique RDF instance mapping obtained by restricting it to query
 variables and blank nodes respectively.

Definition: Basic Graph Pattern MatchingLet BGP be a basic graph pattern and let G be an RDF graph.

μ is a solution for BGP from G when there is a pattern instance
 mapping P such that P(BGP) is a subgraph of G and μ is the restriction of P to
 the query variables in BGP.

card[Ω](μ) = card[Ω](number of distinct RDF instance mappings, σ,
 such that P = μ(σ) is a pattern instance mapping and P(BGP) is a subgraph of G).

If a basic graph pattern is the empty set, then the solution is Ω0.

[bookmark: BGPsparqlBNodes]18.3.2 Treatment of Blank Nodes

This definition allows the solution mapping to bind a variable in a
 basic graph pattern, BGP, to a blank node in G. Since SPARQL treats
 blank node identifiers in a results format document

(SPARQL Query Results XML Format,
SPARQL 1.1 Query Results JSON Format and
SPARQL 1.1 Query Results CSV and TSV Formats)

 as scoped to the document, they
 cannot be understood as identifying nodes in the active graph of the dataset. If DS is
 the dataset of a query, pattern solutions are therefore understood to
 be not from the active graph of DS itself, but from an RDF graph, called the scoping
 graph, which is graph-equivalent to the active graph of DS but shares no blank nodes
 with DS or with BGP. The same scoping graph is used for all solutions
 to a single query. The scoping graph is purely a theoretical
 construct; in practice, the effect is obtained simply by the document
 scope conventions for blank node identifiers.

Since RDF blank nodes allow infinitely many redundant solutions for
 many patterns, there can be infinitely many pattern solutions (obtained
 by replacing blank nodes by different blank nodes). It is necessary,
 therefore, to somehow delimit the solutions for a basic graph pattern. SPARQL uses the
 subgraph match criterion to determine the solutions of a basic graph
 pattern. There is
 one solution for each distinct pattern instance mapping from the basic
 graph pattern to a subset of the active graph.

This is optimized for ease of computation rather
 than redundancy elimination. It allows query results to contain
 redundancies even when the active graph of the dataset is
 lean, and it allows logically
 equivalent datasets to yield different query results.

[bookmark: PropertyPathPatterns]18.4 Property Path Patterns

This section defines the evaluation of
 property path patterns.
 A property path pattern is a subject endpoint (an RDF term or a variable),
 a property path express and an object endpoint.
 The translation of property path expressions
 converts some forms to other SPARQL expressions, such as converting property
 paths of length one to triple patterns, which in turn are combined into basic
 graph patterns. This leaves property path operators ZeroOrOnePath, ZeroOrMorePath,
 OneOrMorePath and NegatedPropertySets and also path expressions contained within these
 operators.

All remaining property path expressions are present in the algebra in the form
 Path(X, path, Y) for endpoints X and Y.
 For example: syntax(:p/:q)* is a ZeroOrMorePath expression involving
 a sequence property path becoming the algebra expession ZeroOrMorePath(seq(link(:p), link(:q))).

[bookmark: pp-eval-notation]Notation

Write

eval(Path(X, PP, Y))

	 for the evaluation of the property path patterns.
	 This produces a multiset of solution mappings μ, each solution mapping having
	 a binding for variables used (each of X and Y can be a variable).
	 Some operators only produce a set of solution mappings.
	

Write

Var(x1, x2, ..., xn) = { xi | i in 1...n and xi is a variable }
for the variables in x1, x2, ..., xn.

Write

		x:term		when x is an RDF term

		x:var		when x is a variable

		x:path		when x is a path expression

	All evaluation is carried out by matching the
	active graph at that point in the
	overall query evaluation. We omit explicitly including the active
	graph in each definition for clarity.

Definition: [bookmark: defn_evalPP_predicate]Evaluation of Predicate Property Path

Let Path(X, link(iri), Y) be an predicate inverse property path pattern,
	using some IRI iri.

	 eval(Path(X, link(iri), Y)) = evaluation of basic graph pattern {X iri Y}

	

If both X and Y are variables, this is the same as:

eval(Path(X:var, link(iri), Y:var)) =
 { (X, xn) (Y, yn) | xn and yn are RDF terms and triple (xn iri yn) is in the active graph }
If X is a variable and Y an RDF term:

eval(Path(X:var, link(iri), Y:term)) =
 { (X, xn) | xn is an RDF term and triple (xn iri Y) is in the active graph }
If X is an RDF term and Y is a variable:

eval(Path(X:term, link(iri), Y:var)) =
 { (Y, yn) | yn is an RDF term and triple (X iri yn) is in the active graph }
If both X and Y are RDF terms:

eval(Path(X:term, link(iri), Y:term)) =
 { μ0 } if triple (X iri Y) is in the active graph
 = { { } }
 = Ω0

eval(Path(X:term, link(iri), Y:term)) =
 { } if triple (X iri Y) is not in the active graph
Informally, evaluating a Predicate Property Path is the same as executing a subquery
 SELECT * { X P Y } at that point in the query evaluation.

Definition: [bookmark: defn_evalPP_inverse]Evaluation of Inverse Property Path

Let P be a property path expression, then:

	 eval(Path(X, inv(P), Y)) = eval(Path(Y, P, X))

	

Definition: [bookmark: defn_evalPP_sequence]Evaluation of Sequence Property Path

	 Let P and Q be property path expressions.
	 Let V be a fresh variable.
	

	 A = Join(eval(Path(X, P, V)), eval(Path(V, Q, Y)))

	 eval(Path(X, seq(P,Q), Y)) = Project(A, Var(X,Y))

	

Informally, this is the same as:

SELECT * { X P _:a . _:a Q Y }

using the fact that a blank node _:a acts like a variable (under simple entailment)
 except it does not appear in the results from SELECT *.

Definition: [bookmark: defn_evalPP_alternative]Evaluation of Alternative Property Path

	 Let P and Q be property path expressions.
	

	 eval(Path(X, alt(P,Q), Y)) = Union(eval(Path(X, P, Y)), eval(Path(X, Q, Y)))

	

Informally, this is the same as:

SELECT * { { X P Y } UNION { X Q Y } }

Definition: [bookmark: defn_nodeSet]Node set of a graph

The node set of a graph G, nodes(G), is:

nodes(G) = { n | n is an RDF term that is used as a subject or object of a triple of G}

Definition: Evaluation of ZeroOrOnePath

eval(Path(X:term, ZeroOrOnePath(P), Y:var)) = { (Y, yn) | yn = X or {(Y, yn)} in eval(Path(X,P,Y)) }

eval(Path(X:var, ZeroOrOnePath(P), Y:term)) = { (X, xn) | xn = Y or {(X, xn)} in eval(Path(X,P,Y)) }

eval(Path(X:term, ZeroOrOnePath(P), Y:term)) =
 { {} } if X = Y or eval(Path(X,P,Y)) is not empty
 { } othewise

eval(Path(X:var, ZeroOrOnePath(P), Y:var)) =
 { (X, xn) (Y, yn) | either (yn in nodes(G) and xn = yn) or {(X,xn), (Y,yn)} in eval(Path(X,P,Y)) }

	We define an auxillary function, ALP, used in the definitions of
	ZeroOrMorePath and OneOrMorePath.
	Note that the algorithm given here serves to specify the feature.
	An implementation is free to implement evaluation by any method that
	produces the same results for the query overall.
	The ZeroOrMorePath and OneOrMorePath forms return matches based
	on distinct nodes connected by the path.

The matching algorithm is based on following all paths, and detecting
 when a graph node (subject or object), has been already visited on the path.

Informally, this algorithm attempts to extend the multiset of results by one
 application of
 path at each step, noting which nodes it has visited
 for this particular path. If a node has been visited for the path
 under consideration, it is not a candidate for another step.

Definition: [bookmark: defn_evalALP_1]Function ALP

Let eval(x:term, path) be the evaluation of 'path', starting at RDF term x,
 and returning a multiset of RDF terms reached
 by repeated matches of path.

ALP(x:term, path) =
 Let V = empty multiset
 ALP(x:term, path, V)
 return is V

V is the set of nodes visited

ALP(x:term, path, V:set of RDF terms) =
 if (x in V) return
 add x to V
 X = eval(x,path)
 For n:term in X
 ALP(n, path, V)
 End

Definition: Evaluation of [bookmark: defn_evalZeroOrMorePath]ZeroOrMorePath

eval(Path(X:term, ZeroOrMorePath(path), vy:var)) =
 { { (vy, n) } | n in ALP(X, path) }

eval(Path(vx:var, ZeroOrMorePath(path), vy:var)) =
 { { (vx, t), (vy, n) } | t in nodes(G), (vy, n) in eval(Path(t, ZeroOrMorePath(path), vy)) }

eval(Path(vx:var, ZeroOrMorePath(path), y:term)) =
 eval(Path(y:term, ZeroOrMorePath(inv(path)), vx:var))

eval(Path(x:term, ZeroOrMorePath(path), y:term)) =
 { { } } if { (vy:var,y) } in eval(Path(x, ZeroOrMorePath(path) vy)
 { } otherwise
	

Definition: Evaluation of [bookmark: defn_evalOneOrMorePath]OneOrMorePath

eval(Path(X, OneOrMorePath(path), Y))

For OneOrMorePath, we take one step of the path then start
recording nodes for results.

eval(Path(x:term, OneOrMorePath(path), vy:var)) =
 Let X = eval(x, path)
 Let V = the empty multiset
 For n in X
 ALP(n, path, V)
 End
 result is V

eval(Path(vx:var, OneOrMorePath(path), vy:var)) =
 { { (vx, t), (vy, n) } | t in nodes(G), (vy, n) in eval(Path(t, OneOrMorePath(path), vy)) }

eval(Path(vx:var, OneOrMorePath(path), y:term)) =
 eval(Path(y:term, OneOrMorePath(inv(path)), vx))

eval(Path(x:term, OneOrMorePath(path), y:term)) =
 { { } } if { (vy:var, y) } in eval(Path(x, OneOrMorePath(path), vy))
 { } otherwise
	

Definition: [bookmark: eval_negatedPropertySet]Evaluation of NegatedPropertySet

Write μ' as the extension of a solution mapping:
μ'(μ,x) = μ(x) if x is a variable
μ'(μ,t) = t if t is a RDF term
	

Let x and y be variables or RDF terms, and S a set of IRIs:

eval(Path(x, NPS(S), y)) = { μ | ∃ triple(μ'(μ,x), p, μ'(μ,y)) in G, such that the IRI of p ∉ S }
	

[bookmark: sparqlAlgebra]18.5 SPARQL Algebra

	 For each remaining symbol in a SPARQL abstract query, we define an operator for
	 evaluation. The SPARQL algebra operators of the same name are
	 used to evaluate SPARQL abstract query nodes as described in the section
	 "Evaluation Semantics".
	 Evaluation of basic graph patterns and property path patterns
	 has been described above.
	

Definition: [bookmark: defn_algFilter]Filter

Let Ω be a multiset of solution mappings and expr be an expression. We define:

Filter(expr, Ω, D(G)) = { μ | μ in Ω and expr(μ) is an expression that has an
 effective boolean value of true }

card[Filter(expr, Ω, D(G))](μ) = card[Ω](μ)

	 Note that evaluating an exists(pattern) expression uses the dataset and active graph, D(G).
	 See the evaluation of filter.
	

Definition: [bookmark: defn_algJoin]Join

Let Ω1 and Ω2 be multisets of solution mappings. We define:

Join(Ω1, Ω2) = { merge(μ1, μ2) | μ1
 in Ω1and μ2 in Ω2, and μ1 and μ2 are
 compatible }

card[Join(Ω1, Ω2)](μ) =

 for each merge(μ1, μ2), μ1
 in Ω1and μ2 in Ω2 such that μ = merge(μ1, μ2),

 sum over (μ1, μ2), card[Ω1](μ1)*card[Ω2](μ2)

It is possible that a solution mapping μ in a Join can arise in different
 solution mappings, μ1and μ2 in the multisets being
 joined. The cardinality of μ is the sum of the cardinalities from all
 possibilities.

Definition: [bookmark: defn_algDiff]Diff

Let Ω1 and Ω2 be multisets of solution mappings
	 and expr be an expression. We define:

Diff(Ω1, Ω2, expr) =
 { μ | μ in Ω1 such that ∀ μ′ in Ω2,
 either μ and μ′ are not compatible or μ and μ'
 are compatible and expr(merge(μ, μ')) has an effective boolean value
 of false }

card[Diff(Ω1, Ω2, expr)](μ) = card[Ω1](μ)

Diff is used internally for the definition of LeftJoin.

Definition: [bookmark: defn_algLeftJoin]LeftJoin

Let Ω1 and Ω2 be multisets of solution mappings and
 expr be an expression. We define:

LeftJoin(Ω1, Ω2, expr) = Filter(expr, Join(Ω1,
 Ω2)) ∪ Diff(Ω1, Ω2, expr)

card[LeftJoin(Ω1, Ω2, expr)](μ) = card[Filter(expr,
 Join(Ω1, Ω2))](μ) + card[Diff(Ω1, Ω2,
 expr)](μ)

Written in full that is:

LeftJoin(Ω1, Ω2, expr) =

 { merge(μ1, μ2) | μ1 in Ω1 and μ2 in
 Ω2, μ1 and μ2 are compatible and expr(merge(μ1,
 μ2)) is true }

 ∪

 { μ1 | μ1 in Ω1, ∀ μ2 in Ω2,
 μ1 and μ2 are not compatible, or Ω2 is empty }

 ∪

 { μ1 | μ1 in Ω1, ∃ μ2 in Ω2,
 μ1 and μ2 are compatible and expr(merge(μ1, μ2)) is false. }

As these are distinct, the cardinality of LeftJoin is cardinality of these individual
 components of the definition.

Definition: [bookmark: defn_algUnion]Union

Let Ω1 and Ω2 be multisets of solution mappings. We define:

Union(Ω1, Ω2) = { μ | μ in Ω1 or μ in
 Ω2 }

card[Union(Ω1, Ω2)](μ) = card[Ω1](μ) + card[Ω2](μ)

Definition: [bookmark: defn_algMinus]Minus

Let Ω1 and Ω2 be multisets of solution mappings. We define:

Minus(Ω1, Ω2) =
 { μ | μ in Ω1 . ∀ μ' in Ω2,
 either μ and μ' are not compatible or dom(μ) and dom(μ') are disjoint }

card[Minus(Ω1, Ω2)](μ) = card[Ω1](μ)

The additional restriction on dom(μ) and dom(μ') is added because otherwise
 if there is a solution mapping in Ω2 that has no variables in
 common with the solution mappings of Ω1, then
 Minus(Ω1, Ω2) would be empty, regardless of
 the rest of Ω2. The empty solution mapping is compatible
 with every other solution mapping so P MINUS {} would otherwise
	be empty for any pattern P.

Definition: [bookmark: defn_extend]ExtendLet μ be a
 solution mapping, Ω a multiset of solution mappings, var a variable
 and expr be an expression, then we define:

Extend(μ, var, expr) = μ ∪ { (var,value) | var not in dom(μ) and value
	 = expr(μ) }

Extend(μ, var, expr) = μ if var not in dom(μ) and expr(μ) is an
	 error

Extend is undefined when var in dom(μ).

Extend(Ω, var, expr) = { Extend(μ, var, expr) | μ in Ω }

Write [x | C] for a sequence of elements where C is a condition on x.

Write card[L](x) to be the cardinality of x in L.

Definition: [bookmark: defn_algToList]ToListLet Ω be a multiset of solution mappings. We define:

ToList(Ω) = a sequence of mappings μ in Ω in any order, with card[Ω](μ) occurrences of
 μ

card[ToList(Ω)](μ) = card[Ω](μ)

Definition: [bookmark: defn_algOrdered]OrderByLet Ψ be a sequence of solution mappings. We define:

[bookmark: defn_algOrderBy]OrderBy(Ψ, condition) = [μ | μ in Ψ and the
 sequence satisfies the ordering condition]

card[OrderBy(Ψ, condition)](μ) =
 card[Ψ](μ)

Definition: [bookmark: defn_algProjection]ProjectLet Ψ be a sequence of solution mappings and PV a set of variables.

For mapping μ, write Proj(μ, PV) to be the restriction of μ to variables in
 PV.

Project(Ψ, PV) = [Proj(Ψ[μ], PV) | μ in Ψ]

card[Project(Ψ, PV)](μ) = card[Ψ](μ)

The order of Project(Ψ, PV) must preserve any ordering given by OrderBy.

Definition: [bookmark: defn_algDistinct]DistinctLet Ψ be a sequence of solution mappings. We define:

Distinct(Ψ) = [μ | μ in Ψ]

card[Distinct(Ψ)](μ) = 1

The order of Distinct(Ψ) must preserve any ordering given by OrderBy.

Definition: [bookmark: defn_algReduced]ReducedLet Ψ be a sequence of solution mappings. We define:

Reduced(Ψ) = [μ | μ in Ψ]

card[Reduced(Ψ)](μ) is between 1 and card[Ψ](μ)

The order of Reduced(Ψ) must preserve any ordering given by OrderBy.

The Reduced solution sequence modifier does not guarantee a defined cardinality.

Definition: [bookmark: defn_algSlice]SliceLet Ψ be a sequence of solution mappings. We define:

[bookmark: defn_algOrderBy2]Slice(Ψ, start, length)[i] = Ψ[start+i] for i = 0
 to (length-1)

Definition: [bookmark: defn_algToMultiSet]ToMultiSetLet Ψ be a solution sequence. We define:

ToMultiSet(Ψ) = { μ | μ in Ψ }

card[ToMultiSet(Ψ)](μ) = card[Ψ](μ)

ListEval is a function which is used to evaluate a list of expressions against a solution and return a list of the resulting values.

[bookmark: defn_algToMultiset]Definition: ToMultiset

ToMultiset turns a sequence into a multiset with the same elements and cardinality as the sequence. The order of the sequence has no effect on the resulting multiset, and duplicates are preserved.

Definition: [bookmark: defn_exists]Exists

exists(pattern) is a function that returns true if the pattern
 evaluates
 to a non-empty solution sequence, given the current solution mapping and active graph
	 at the time of evaluation; otherwise it returns false.

[bookmark: aggregateAlgebra]18.5.1 Aggregate Algebra

Group is a function which groups a solution sequence into multiple solutions, based on some attribute of the solutions.

[bookmark: defn_algGroup]Definition: Group

Group evaluates a list of expressions against a solution sequence, producing a set of partial functions from keys to solution sequences.

Group(exprlist, Ω) = { ListEval(exprlist, μ) → { μ' | μ' in Ω, ListEval(exprlist, μ) = ListEval(exprlist, μ') } | μ in Ω }

Definition: ListEval

ListEval((expr1, ..., exprn), μ) returns a list (e1, ..., en), where ei = expri(μ) or error.

ListEval retains errors resulting from the evaluation of the list elements.

Note that, although the result of a ListEval can be an error, and errors may be used to group, solutions containing error values are removed at projection time.

ListEval((unbound), μ) = (error), as the evaluation of an unbound expression is an error.

Aggregation, a function which calculates a scalar value as an output of the aggregate expression. It is used in the SELECT clause, the HAVING evaluation process, and in ORDER BY (where required). Aggregation calculates aggregated values over groups of solutions, using set functions.

[bookmark: defn_algAggregation]Definition: Aggregation

Let exprlist be a list of expressions or *, func a set function,
scalarvals a set of partial functions (possibly empty) passed from the
aggregate in the query, and let { key1→Ω1, ..., keym→Ωm
} be a multiset of partial functions from keys to solution sequences
as produced by the grouping step.

Aggregation applies the set function func to the given multiset and produces a single value for each key and partition of solutions for that key.

Aggregation(exprlist, func, scalarvals, { key1→Ω1, ..., keym→Ωm })

 = { (key, F(Ω)) | key → Ω in { key1→Ω1, ..., keym→Ωm } }

where

 M(Ω) = { ListEval(exprlist, μ) | μ in Ω }

 F(Ω) = func(M(Ω), scalarvals), for non-DISTINCT

 F(Ω) = func(Distinct(M(Ω)), scalarvals), for DISTINCT

Special Case: when COUNT is used with the expression * the value of F
will be the cardinality of the group solution sequence,
card[Ω], or card[Distinct(Ω)] if the DISTINCT keyword is
present.

scalarvals are used to pass values to the underlying set function,
bypassing the mechanics of the grouping. For example, the aggregate
expression GROUP_CONCAT(?x ; separator="|") has a scalarvals argument
of { "separator" → "|" }.

All aggregates may have the DISTINCT
keyword as the first token in their argument list. If this keyword is
present then first argument to func is Distinct(M).

Example

Given a solution multiset (Ω) with the following values:

		solution		?x		?y		?z

		μ1		1		2		3

		μ2		1		3		4

		μ3		2		5		6

And the query expression SELECT (ex:agg(?y, ?z) AS ?agg) WHERE { ?x ?y ?z } GROUP BY ?x.

We produce G = Group((?x), Ω) = { ((1), { μ1, μ2 }), ((2), { μ3 }) }

And so Aggregation((?y, ?z), ex:agg, {}, G) =

 { ((1), eg:agg({(2, 3), (3, 4)}, {})), ((2), eg:agg({(5, 6)}, {})) }.

Definition: AggregateJoin

Let S1, ..., Sn be a list of sets, where each set Si contains key
to (aggregated) value maps as produced by Aggregate.

Let K = { key | key in dom(Sj) for some 1 <= j <= n } be the set of keys, then
AggregateJoin(S1, ..., Sn) = { agg1→val1, ..., aggn→valn | key in K and key→vali in Si for each 1 <= i <= n }

Flatten is a function which is used to collapse multisets of lists into a multiset, so for example { (1, 2), (3, 4) } becomes { 1, 2, 3, 4 }.

Definition: Flatten

The Flatten(M) function takes a multiset of lists, M {(L1, L2, ...), ...}, and returns the multiset { x | L in M and x in L }.

[bookmark: setFunctions]18.5.1.1 Set Functions

The set functions which underlie SPARQL aggregates all have a common
signature: SetFunc(M), or SetFunc(M, scalarvals) where M is a multiset
of lists, and scalarvals is one or more scalar values that are passed to the
set function indirectly via the (... ; key=value) syntax for aggregates in the SPARQL grammar. The only use of this that is supported by the built-in aggregates in SPARQL Query 1.1 is GROUP_CONCAT, as in GROUP_CONCAT(?x ; separator=", ").

Note that the name "Set Function" is somewhat historical — the arguments to set functions are in fact multisets. The name is retained due to the commonality with SQL Set Functions, which also operate over multisets.

The set functions defined in this document are Count, Sum, Min, Max, Avg, GroupConcat, and Sample — corresponding to the aggregates COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE. Definitions may be found in the following sections. Systems may choose to expand this set using local extensions, using the same notation as for functions and casts. Note that, unless the ; separator is used this requires the parser to know whether some IRI refers to a function, cast, or aggregate before it can determine if there are any errors in a query where aggregates are used.

[bookmark: defn_aggCount]18.5.1.2 Count

Count is a SPARQL set function which counts the number of times a given expression has a bound, and non-error value within the aggregate group.

Definition: Count

xsd:integer Count(multiset M)N = Flatten(M)

remove error elements from N

Count(M) = card[N]

[bookmark: defn_aggSum]18.5.1.3 Sum

Sum is a SPARQL set function that will return the numeric value obtained
by summing the values within the aggregate group. Type promotion happens as per
the op:numeric-add function, applied transitively, (see definition below) so the
value of SUM(?x), in an aggregate group where ?x has values 1 (integer), 2.0e0
(float), and 3.0 (decimal) will be 6.0 (float).

Definition: Sum

numeric Sum(multiset M)The Sum set function is used by the SUM aggregate in the syntax.

Sum(M) = Sum(ToList(Flatten(M))).

Sum(S) = op:numeric-add(S1, Sum(S2..n)) when card[S] > 1

 Sum(S) = op:numeric-add(S1, 0) when card[S] = 1

 Sum(S) = "0"^^xsd:integer when card[S] = 0

In this way, Sum({1, 2, 3}) = op:numeric-add(1, op:numeric-add(2, op:numeric-add(3, 0))).

[bookmark: defn_aggAvg]18.5.1.4 Avg

[bookmark: defn_algAvg]The Avg set function calculates the average value for an expression over
a group. It is defined in terms of Sum and Count.

Definition: Avg

numeric Avg(multiset M)Avg(M) = "0"^^xsd:integer, where Count(M) = 0

Avg(M) = Sum(M) / Count(M), where Count(M) > 0

For example, Avg({1, 2, 3}) = Sum({1, 2, 3})/Count({1, 2, 3}) = 6/3 = 2.

[bookmark: defn_aggMin]18.5.1.5 Min

Min is a SPARQL set functions that returns the minimum value from a group respectively.

It makes use of the SPARQL ORDER BY ordering definition, to allow ordering over arbitrarily typed expressions.

Definition: Min

term Min(multiset M)Min(M) = Min(ToList(Flatten(M)))

Min({}) = error.

The flattened multiset of values passed as an argument is converted to a sequence S, this sequence is ordered as per the ORDER BY ASC clause.

Min(S) = S0

[bookmark: defn_aggMax]18.5.1.6 Max

Max is a SPARQL set function that return the maximum value from a group respectively.

It makes use of the SPARQL ORDER BY ordering definition, to allow ordering over arbitrarily typed expressions.

Definition: Max

term Max(multiset M)Max(M) = Max(ToList(Flatten(M)))

Max({}) = error.

The multiset of values passed as an argument is converted to a sequence S, this sequence is ordered as per the ORDER BY DESC clause.

Max(S) = S0

[bookmark: defn_aggGroupConcat]18.5.1.7 GroupConcat

GroupConcat is a set function which performs a string concatenation
across the values of an expression with a group. The order of the strings is
not specified. The separator character used in the concatenation may be given
with the scalar argument SEPARATOR.

Definition: GroupConcat

literal GroupConcat(multiset M)If the "separator" scalar argument is absent from GROUP_CONCAT then it is taken to be the "space" character, unicode codepoint U+0020.

The multiset of values, M passed as an argument is converted to a sequence S.

GroupConcat(M, scalarvals) = GroupConcat(Flatten(M), scalarvals("separator"))

GroupConcat(S, sep) = "", where |S| = 0

GroupConcat(S, sep) = CONCAT("", S0), where |S| = 1

GroupConcat(S, sep) = CONCAT(S0, sep, GroupConcat(S1..n-1, sep)), where |S| > 1

For example, GroupConcat({"a", "b", "c"}, {"separator" → "."}) = "a.b.c".

[bookmark: defn_aggSample]18.5.1.8 Sample

Sample is a set function which returns an arbitrary value from the multiset passed to it.

Definition: Sample

RDFTerm Sample(multiset M)Sample(M) = v, where v in Flatten(M)

Sample({}) = error

For example, given Sample({"a", "b", "c"}), "a", "b", and "c" are all valid return values. Note that Sample() is not required to be deterministic for a given input, the only restriction is that the output value must be present in the input multiset.

[bookmark: sparqlAlgebraEval]18.6 Evaluation Semantics

We define eval(D(G), algebra expression) as the evaluation of an algebra expression
	with respect to a dataset D having active
 graph G. The active graph is initially the default graph.

D : a dataset
D(G) : D a dataset with active graph G (the one patterns match against)
D[i] : The graph with IRI i in dataset D
P, P1, P2 : graph patterns
L : a solution sequence
F : an expression

Definition: [bookmark: defn_evalBasicGraphPattern]Evaluation of a Basic Graph Patterneval(D(G), BGP) = multiset of solution mappings

See section Basic Graph Patterns

Definition: [bookmark: defn_evalPropertyPathPattern]Evaluation of a Property Path Patterneval(D(G), Path(X, path, Y)) = multiset of solution mappings

See section Property Path Expresions

Definition: [bookmark: defn_evalFilter]Evaluation of Filtereval(D(G), Filter(F, P)) = Filter(F, eval(D(G),P), D(G))

'substitute' is a filter function in support of the evaluation of
	 EXISTS and NOT EXISTS
	 forms which were translated to exists.
	

Definition: [bookmark: defn_substitute]Substitute

Let μ be a solution mapping.

	 substitute(pattern, μ) = the pattern formed by replacing every
	 occurrence of a variable v in pattern by μ(v) for each v in dom(μ)

	

Definition: [bookmark: defn_evalExists]Evaluation of Exists

Let μ be the current solution mapping for a filter and P a graph pattern:

	 The value exists(P), given D(G) is true if and only if eval(D(G), substitute(P, μ)) is a non-empty sequence.
	

Definition: [bookmark: defn_evalJoin]Evaluation of Joineval(D(G), Join(P1, P2)) = Join(eval(D(G), P1), eval(D(G), P2))

Definition: [bookmark: defn_evalLeftJoin]Evaluation of LeftJoineval(D(G), LeftJoin(P1, P2, F)) = LeftJoin(eval(D(G), P1), eval(D(G), P2), F)

Definition: [bookmark: defn_evalUnion]Evaluation of Unioneval(D(G), Union(P1,P2)) = Union(eval(D(G), P1), eval(D(G), P2))

Definition: [bookmark: defn_evalGraph]Evaluation of Graphif IRI is a graph name in D
eval(D(G), Graph(IRI,P)) = eval(D(D[IRI]), P)

if IRI is not a graph name in D
eval(D(G), Graph(IRI,P)) = the empty multiset

eval(D(G), Graph(var,P)) =
 Let R be the empty multiset
 foreach IRI i in D
 R := Union(R, Join(eval(D(D[i]), P) , Ω(?var->i))
 the result is R

The evaluation of graph uses the SPARQL algebra union operator. The
 cardinality of a solution mapping is the sum of the cardinalities of that
 solution mapping in each join operation.

[bookmark: defn_evalGroup]Definition: Evaluation of Group

eval(D(G), Group(exprlist, P)) = Group(exprlist, eval(D(G), P))

[bookmark: defn_evalAggregation]Definition: Evaluation of Aggregation

eval(D(G), Aggregation(exprlist, func, scalarvals, P)) = Aggregation(exprlist, func, scalarvals, eval(D(G), P))

[bookmark: defn_evalAggregateJoin]Definition: Evaluation of AggregateJoin

eval(D(G), AggregateJoin(A1, ..., An)) = AggregateJoin(eval(D(G), A1), ..., eval(D(G), An))

Note that if eval(D(G), Ai) is an error, it is ignored.

Definition: [bookmark: defn_evalExtend]Evaluation of Extendeval(D(G), Extend(P, var, expr)) = Extend(eval(D(G), P), var, expr)

Definition: [bookmark: defn_evalList]Evaluation of ToListeval(D(G), ToList(P)) = ToList(eval(D(G), P))

Definition: [bookmark: defn_evalDistinct]Evaluation of Distincteval(D(G), Distinct(L)) = Distinct(eval(D(G), L))

Definition: [bookmark: defn_evalReduced]Evaluation of Reducedeval(D(G), Reduced(L)) = Reduced(eval(D(G), L))

Definition: [bookmark: defn_evalProject]Evaluation of Projecteval(D(G), Project(L, vars)) = Project(eval(D(G), L), vars)

Definition: [bookmark: defn_evalOrderBy]Evaluation of OrderByeval(D(G), OrderBy(L, condition)) = OrderBy(eval(D(G), L), condition)

Definition: [bookmark: defn_evalToMultiSet]Evaluation of ToMultiSeteval(D(G), ToMultiSet(L)) = ToMultiSet(eval(D), M))

Definition: [bookmark: defn_evalSlice]Evaluation of Sliceeval(D(G), Slice(L, start, length)) = Slice(eval(D(G), L), start, length)

[bookmark: sparqlBGPExtend]18.7 Extending SPARQL Basic Graph Matching

The overall SPARQL design can be used for queries
 which assume a more elaborate form of entailment than simple
 entailment, by re-writing the matching conditions for basic graph
 patterns. Since it is an open research problem to state such
 conditions in a single general form which applies to all forms of
 entailment and optimally eliminates needless or inappropriate
 redundancy, this document only gives necessary conditions which any
 such solution should satisfy. These will need to be extended to full
 definitions for each particular case.

Basic graph patterns stand in the same relation to triple patterns
 that RDF graphs do to RDF triples, and much of the same terminology
 can be applied to them. In particular, two basic graph patterns are
 said to be equivalent if there is a bijection M between the
 terms of the triple patterns that maps blank nodes to blank nodes and
 maps variables, literals and IRIs to themselves, such that a triple (
 s, p, o) is in the first pattern if and only if the triple (M(s),
 M(p), M(o)) is in the second. This definition extends that for RDF
 graph equivalence to basic graph patterns by preserving variable
 names across equivalent patterns.

An entailment regime specifies

		a subset of RDF graphs called well-formed for the regime

		an entailment relation between subsets of well-formed graphs
 and well-formed graphs.

Detailed definitions for querying various entailment regimes can be found in
	SPARQL 1.1 Entailment Regimes.
	

Some entailment regimes can categorize some RDF
 graphs as inconsistent. For example, the RDF graph:

_:x rdf:type xsd:string .
_:x rdf:type xsd:decimal .

is D-inconsistent when D contains the XSD datatypes. The effect of a query
 on an inconsistent graph is not
 covered by this specification, but must be specified by the particular
 SPARQL extension.

An entailment regime E must provide conditions on basic graph pattern
 evaluation such that for any basic graph pattern BGP, any RDF graph G,
 and any evaluation that satisfies the conditions, the resulting
 multiset of solutions is uniquely determined up to RDF graph
 equivalence. We denote the multiset of solutions from evaluating BGP
 over G using E with Eval-E(G, BGP).

 An entailment regime must further satisfy the following conditions:

		For any E-consistent active graph AG, the entailment regime E uniquely
 specifies a scoping graph SG that is
 E-equivalent to AG.

		A set of well-formed graphs for E is specified such that, for any
 basic graph pattern BGP, scoping graph SG, and solution mapping μ in
 Eval-E(SG, BGP), the graph μ(BGP) is well-formed for E.

		For any basic graph pattern BGP and scoping graph SG, if μ1,
 ..., μn in Eval-E(SG, BGP) and BGP1, ...,
 BGPn are basic graph patterns all equivalent to BGP but not
 sharing any blank nodes with each other or with SG, then

 SG E-entails (SG union μ1(BGP1) union ...
 union μn(BGPn))

 These conditions do not fully determine the set of possible answers, since
 RDF allows unlimited amounts of redundancy. In addition, therefore, the
 following must hold.

		 Entailment regimes should provide conditions to prevent trivial
 infinite solution multisets as appropriate to the regime.

[bookmark: sparqlBGPExtend-notes]18.7.1 Notes

(a) SG will often be graph equivalent to AG, but restricting this to
 E-equivalence allows some forms of normalization, for example elimination of
 semantic redundancies, to be applied to the source documents before querying.

(b) The construction in condition 3 ensures that any blank nodes introduced
 by the solution mapping are used in a way which is internally consistent with the
 way that blank nodes occur in SG. This ensures that blank node identifiers occur
 in more than one answer in an answer set only when the blank nodes so identified
 are indeed identical in SG. If the extension does not allow bindings to
 blank nodes, then this condition can be simplified to the condition:

 SG E-entails μ(BGP) for each solution mapping μ.

(c) These conditions do not impose the SPARQL requirement that SG shares no
 blank nodes with AG or BGP. In particular, it allows SG to actually be AG. This
 allows query protocols in which blank node identifiers retain their meaning
 between the query and the source document, or across multiple queries. Such
 protocols are not supported by the current SPARQL protocol specification,
 however.

(d) Since conditions 1 to 3 are only necessary conditions on answers,
 condition 4 allows cases where the set of legal answers can be restricted in
 various ways.
	

(e) None of these conditions refer explicitly to instance mappings on blank
 nodes in BGP. For some entailment regimes, the existential interpretation of
 blank nodes cannot be fully captured by the existence of a single instance
 mapping. These conditions allow such regimes to give blank nodes in query
 patterns a 'fully existential' reading.

It is straightforward to show that SPARQL satisfies these conditions for the
 case where E is simple entailment, given that the SPARQL condition on SG is that
 it is graph-equivalent to AG but shares no blank nodes with AG or BGP (which
 satisfies the first condition). The only condition which is nontrivial is (3).

For every solution mapping μi, there is, by definition of
 basic graph pattern matching, an RDF instance mapping σi such
 that Pi(BGPi) is a subgraph of SG where Pi is
 the pattern instance mapping composed of μi and σi.
 Since BGPi and SG have no blank nodes in common, the ranges of
 σi and μi contain no blank nodes from BGPi;
 therefore, the solution mapping μi and the RDF instance mapping
 σi of Pi commute, so Pi(BGPi)
 = σi(μi(BGPi)). So

P1(BGP1) union ... union Pn(BGPn)

= σ1(μ1(BGP1)) union ... union
 σn(μn(BGPn))

= [σ1 + ... + σn](
 μ1(BGP1) union ... union
 μn(BGPn))

since the domains of the σi RDF instance mappings are all mutually
 exclusive. Since they are also exclusive from SG,

SG union [σ1 + ... + σn](
 μ1(BGP1) union ... union μn(BGPn))

= [σ1 + ... + σn](SG union
 μ1(BGP1) union ... union μn(BGPn))

i.e.

SG union μ1(BGP1) union ... union
 μn(BGPn)

has an instance which is a subgraph of SG, so is simply entailed by SG by the RDF interpolation lemma
 [RDF-MT].

[bookmark: grammar]19 SPARQL Grammar

The SPARQL grammar covers both SPARQL Query and
 SPARQL Update.

[bookmark: queryString]19.1 SPARQL Request String

A [bookmark: defn_SPARQLRequestString]SPARQL Request String
	is a SPARQL Query String or SPARQL Update String and it is a Unicode character string
	(c.f. section 6.1 String concepts of [CHARMOD])
	in the language defined by the following grammar.

A [bookmark: defn_SPARQLQueryString]SPARQL Query String
	start at the QueryUnit production.

A [bookmark: defn_SPARQLUpdateString]SPARQL Update String
	start at the UpdateUnit production.

	 For compatibility with future versions of
	 Unicode, the characters in this string may
	 include Unicode codepoints that are unassigned
	 as of the date of this publication (see
	 Identifier
	 and Pattern Syntax [UNIID] section 4 Pattern Syntax).
	 For productions with excluded character classes
	 (for example [^<>'{}|^`]),
	 the characters are excluded from the range
	#x0 - #x10FFFF.

[bookmark: codepointEscape]19.2 Codepoint Escape Sequences

A SPARQL Query String is processed for codepoint escape sequences before parsing
by the grammar defined in EBNF below. The codepoint escape sequences for a SPARQL
query string are:

[bookmark: table68]		Escape		Unicode code point

		'\u' HEX
 HEX HEX HEX		A Unicode code point in the range U+0 to U+FFFF inclusive corresponding
 to the encoded hexadecimal value.

		'\U' HEX
 HEX HEX HEX
 HEX HEX HEX
 HEX		A Unicode code point in the range U+0 to U+10FFFF inclusive corresponding
 to the encoded hexadecimal value.

where HEX is a hexadecimal character

 [bookmark: HEX]HEX ::= [0-9] | [A-F] | [a-f]

Examples:

<ab\u00E9xy> # Codepoint 00E9 is Latin small e with acute - é
\u03B1:a # Codepoint x03B1 is Greek small alpha - α
a\u003Ab # a:b -- codepoint x3A is colon

Codepoint escape sequences can appear anywhere in the query string. They are
processed before parsing based on the grammar rules and so may be replaced by codepoints
with significance in the grammar, such as ":" marking a prefixed name.

These escape sequences are not included in the grammar below. Only escape sequences
for characters that would be legal at that point in the grammar may be given. For
example, the variable "?x\u0020y" is not legal (\u0020
is a space and is not permitted in a variable name).

[bookmark: whitespace]19.3 White Space

White space (production WS)
is used to separate two terminals which would otherwise be (mis-)recognized as one
terminal. Rule names below in capitals indicate where white space is significant;
these form a possible choice of terminals for constructing a SPARQL parser. White
space is significant in strings. Otherwise, white space is ignored between tokens.

For example:

 ?a<?b&&?c>?d

is the token sequence variable '?a', an IRI '<?b&&?c>',
and variable '?d', not a expression involving the operator '&&'
connecting two expression using '<' (less than) and '>' (greater than).

[bookmark: grammarComments]19.4 Comments

Comments in SPARQL queries take the form of '#', outside an IRI
or string, and continue to the end of line (marked by characters 0x0D
or 0x0A) or end of file if there is no end of line after the comment
marker. Comments are treated as white space.

[bookmark: iriRefs]19.5 IRI References

Text matched by the IRIREF
production and PrefixedName (after
prefix expansion) production, after escape processing, must conform to the generic
syntax of IRI references in section 2.2 of RFC 3987 "ABNF for IRI References and
IRIs" [RFC3987]. For example, the
IRIREF <abc#def> may occur in a
SPARQL query string, but the IRIREF
<abc##def> must not.

Base IRIs declared with the BASE keyword must be absolute
IRIs. A prefix declared with the PREFIX keyword may not
be re-declared in the same query. See section 4.1.1, Syntax
of IRI Terms, for a description of BASE and
PREFIX.

[bookmark: grammarBNodes]19.6 Blank Nodes and Blank Node Labels

Blank nodes can not be used in:

		DELETE WHERE

		DELETE DATA

		a DeleteClause

in a
	 SPARQL Update request.
	

Blank node labels are scoped to the
	 SPARQL Request String
	 in which they occur. Different uses of the same blank node label in a
	 request string refer to the same blank node. Fresh blank nodes are generated for
	 each request; blank nodes can not be referenced by label across requests.
	

The same blank node label can not be used in:

		two basic graph patterns in a SPARQL Query

		two WHERE clauses
	 within a single SPARQL Update request

		two INSERT DATA
	 operations within a single SPARQL Update request

Note that the same blank node label can occur in different
	 QuadPattern clauses
	 in a SPARQL Update request.
	

[bookmark: grammarEscapes]19.7 Escape sequences in strings

In addition to the codepoint escape sequences, the following escape sequences
any string production (e.g.
STRING_LITERAL1,
STRING_LITERAL2,
STRING_LITERAL_LONG1,
STRING_LITERAL_LONG2):

		Escape		Unicode code point

		'\t'		U+0009 (tab)

		'\n'		U+000A (line feed)

		'\r'		U+000D (carriage return)

		'\b'		U+0008 (backspace)

		'\f'		U+000C (form feed)

		'\"'		U+0022 (quotation mark, double quote mark)

		"\'"		U+0027 (apostrophe-quote, single quote mark)

		'\\'		U+005C (backslash)

Examples:

"abc\n"
"xy\rz"
'xy\tz'

[bookmark: sparqlGrammar]19.8 Grammar

The EBNF notation used in the grammar is defined in Extensible Markup Language
	 (XML) 1.1 [XML11] section 6
	 Notation.

Notes:

		Keywords are matched in a case-insensitive manner with the exception of the keyword
	 'a' which, in line with Turtle and N3, is used in place of the IRI
	 rdf:type (in full,
	 http://www.w3.org/1999/02/22-rdf-syntax-ns#type).

		Escape sequences are case sensitive.

		When tokenizing the input and choosing grammar rules, the longest match is chosen.

		The SPARQL grammar is LL(1) when the rules with uppercased names are used as
	 terminals.

		There are two entry points into the grammar: QueryUnit for SPARQL queries,
	 and UpdateUnit for SPARQL Update requests.
	

		In signed numbers, no white space is allowed between the sign and the
	 number. The AdditiveExpression grammar rule
	 allows for this by covering the two cases of an expression followed by a
	 signed number. These produce an addition or subtraction of the unsigned
	 number as appropriate.

		The tokens INSERT DATA, DELETE DATA, DELETE WHERE allow any amount of
	 white space between the words. The single space version is used in the grammar for clarity.
	

		
	 The
	 QuadData and
	 QuadPattern
	 rules both use rule Quads.
	 The rule QuadData,
	 used in
	 INSERT DATA
	 and
	 DELETE DATA,
	 must not allow variables in the quad patterns.
	

		
	 Blank node syntax is not allowed in
	 DELETE WHERE,
	 the DeleteClause
	 for DELETE, nor in
	 DELETE DATA.
	

		
	 Rules for limiting the use of blank node labels are given in section 19.6.
	

		
	 The number of variables in the variable list of
	 VALUES block
	 must be the same as the number of each list of associated values in the
	 DataBlock.
	

		
	 Variables introduced by AS in a SELECT clause
	 must not already be in-scope.
	

		
	 The variable assigned in a BIND clause must not be already
	 in-use within the immediately preceding
	 TriplesBlock within a
	 GroupGraphPattern.
	

		
	 Aggregate functions can be one of the
	 built-in keywords for aggregates or
	 a custom aggregate, which is syntactically a
	 function call.
	 Aggregate functions may only be used in SELECT,
	 HAVING and
	 ORDER BY clauses.
	

		
	 Only custom aggregate functions use the DISTINCT keyword
	 in a function call.
	

		[1] 		[bookmark: rQueryUnit]QueryUnit		 ::= 		Query

		[2] 		[bookmark: rQuery]Query		 ::= 		Prologue
(SelectQuery | ConstructQuery | DescribeQuery | AskQuery)
ValuesClause

		[3] 		[bookmark: rUpdateUnit]UpdateUnit		 ::= 		Update

		[4] 		[bookmark: rPrologue]Prologue		 ::= 		(BaseDecl | PrefixDecl)*

		[5] 		[bookmark: rBaseDecl]BaseDecl		 ::= 		'BASE' IRIREF

		[6] 		[bookmark: rPrefixDecl]PrefixDecl		 ::= 		'PREFIX' PNAME_NS IRIREF

		[7] 		[bookmark: rSelectQuery]SelectQuery		 ::= 		SelectClause DatasetClause* WhereClause SolutionModifier

		[8] 		[bookmark: rSubSelect]SubSelect		 ::= 		SelectClause WhereClause SolutionModifier ValuesClause

		[9] 		[bookmark: rSelectClause]SelectClause		 ::= 		'SELECT' ('DISTINCT' | 'REDUCED')? ((Var | ('(' Expression 'AS' Var ')'))+ | '*')

		[10] 		[bookmark: rConstructQuery]ConstructQuery		 ::= 		'CONSTRUCT' (ConstructTemplate DatasetClause* WhereClause SolutionModifier | DatasetClause* 'WHERE' '{' TriplesTemplate? '}' SolutionModifier)

		[11] 		[bookmark: rDescribeQuery]DescribeQuery		 ::= 		'DESCRIBE' (VarOrIri+ | '*') DatasetClause* WhereClause? SolutionModifier

		[12] 		[bookmark: rAskQuery]AskQuery		 ::= 		'ASK' DatasetClause* WhereClause SolutionModifier

		[13] 		[bookmark: rDatasetClause]DatasetClause		 ::= 		'FROM' (DefaultGraphClause | NamedGraphClause)

		[14] 		[bookmark: rDefaultGraphClause]DefaultGraphClause		 ::= 		SourceSelector

		[15] 		[bookmark: rNamedGraphClause]NamedGraphClause		 ::= 		'NAMED' SourceSelector

		[16] 		[bookmark: rSourceSelector]SourceSelector		 ::= 		iri

		[17] 		[bookmark: rWhereClause]WhereClause		 ::= 		'WHERE'? GroupGraphPattern

		[18] 		[bookmark: rSolutionModifier]SolutionModifier		 ::= 		GroupClause? HavingClause? OrderClause? LimitOffsetClauses?

		[19] 		[bookmark: rGroupClause]GroupClause		 ::= 		'GROUP' 'BY' GroupCondition+

		[20] 		[bookmark: rGroupCondition]GroupCondition		 ::= 		BuiltInCall | FunctionCall | '(' Expression ('AS' Var)? ')' | Var

		[21] 		[bookmark: rHavingClause]HavingClause		 ::= 		'HAVING' HavingCondition+

		[22] 		[bookmark: rHavingCondition]HavingCondition		 ::= 		Constraint

		[23] 		[bookmark: rOrderClause]OrderClause		 ::= 		'ORDER' 'BY' OrderCondition+

		[24] 		[bookmark: rOrderCondition]OrderCondition		 ::= 		 (('ASC' | 'DESC') BrackettedExpression)
| (Constraint | Var)

		[25] 		[bookmark: rLimitOffsetClauses]LimitOffsetClauses		 ::= 		LimitClause OffsetClause? | OffsetClause LimitClause?

		[26] 		[bookmark: rLimitClause]LimitClause		 ::= 		'LIMIT' INTEGER

		[27] 		[bookmark: rOffsetClause]OffsetClause		 ::= 		'OFFSET' INTEGER

		[28] 		[bookmark: rValuesClause]ValuesClause		 ::= 		('VALUES' DataBlock)?

		[29] 		[bookmark: rUpdate]Update		 ::= 		Prologue (Update1 (';' Update)?)?

		[30] 		[bookmark: rUpdate1]Update1		 ::= 		Load | Clear | Drop | Add | Move | Copy | Create | InsertData | DeleteData | DeleteWhere | Modify

		[31] 		[bookmark: rLoad]Load		 ::= 		'LOAD' 'SILENT'? iri ('INTO' GraphRef)?

		[32] 		[bookmark: rClear]Clear		 ::= 		'CLEAR' 'SILENT'? GraphRefAll

		[33] 		[bookmark: rDrop]Drop		 ::= 		'DROP' 'SILENT'? GraphRefAll

		[34] 		[bookmark: rCreate]Create		 ::= 		'CREATE' 'SILENT'? GraphRef

		[35] 		[bookmark: rAdd]Add		 ::= 		'ADD' 'SILENT'? GraphOrDefault 'TO' GraphOrDefault

		[36] 		[bookmark: rMove]Move		 ::= 		'MOVE' 'SILENT'? GraphOrDefault 'TO' GraphOrDefault

		[37] 		[bookmark: rCopy]Copy		 ::= 		'COPY' 'SILENT'? GraphOrDefault 'TO' GraphOrDefault

		[38] 		[bookmark: rInsertData]InsertData		 ::= 		'INSERT DATA' QuadData

		[39] 		[bookmark: rDeleteData]DeleteData		 ::= 		'DELETE DATA' QuadData

		[40] 		[bookmark: rDeleteWhere]DeleteWhere		 ::= 		'DELETE WHERE' QuadPattern

		[41] 		[bookmark: rModify]Modify		 ::= 		('WITH' iri)? (DeleteClause InsertClause? | InsertClause) UsingClause* 'WHERE' GroupGraphPattern

		[42] 		[bookmark: rDeleteClause]DeleteClause		 ::= 		'DELETE' QuadPattern

		[43] 		[bookmark: rInsertClause]InsertClause		 ::= 		'INSERT' QuadPattern

		[44] 		[bookmark: rUsingClause]UsingClause		 ::= 		'USING' (iri | 'NAMED' iri)

		[45] 		[bookmark: rGraphOrDefault]GraphOrDefault		 ::= 		'DEFAULT' | 'GRAPH'? iri

		[46] 		[bookmark: rGraphRef]GraphRef		 ::= 		'GRAPH' iri

		[47] 		[bookmark: rGraphRefAll]GraphRefAll		 ::= 		GraphRef | 'DEFAULT' | 'NAMED' | 'ALL'

		[48] 		[bookmark: rQuadPattern]QuadPattern		 ::= 		'{' Quads '}'

		[49] 		[bookmark: rQuadData]QuadData		 ::= 		'{' Quads '}'

		[50] 		[bookmark: rQuads]Quads		 ::= 		TriplesTemplate? (QuadsNotTriples '.'? TriplesTemplate?)*

		[51] 		[bookmark: rQuadsNotTriples]QuadsNotTriples		 ::= 		'GRAPH' VarOrIri '{' TriplesTemplate? '}'

		[52] 		[bookmark: rTriplesTemplate]TriplesTemplate		 ::= 		TriplesSameSubject ('.' TriplesTemplate?)?

		[53] 		[bookmark: rGroupGraphPattern]GroupGraphPattern		 ::= 		'{' (SubSelect | GroupGraphPatternSub) '}'

		[54] 		[bookmark: rGroupGraphPatternSub]GroupGraphPatternSub		 ::= 		TriplesBlock? (GraphPatternNotTriples '.'? TriplesBlock?)*

		[55] 		[bookmark: rTriplesBlock]TriplesBlock		 ::= 		TriplesSameSubjectPath ('.' TriplesBlock?)?

		[56] 		[bookmark: rGraphPatternNotTriples]GraphPatternNotTriples		 ::= 		GroupOrUnionGraphPattern | OptionalGraphPattern | MinusGraphPattern | GraphGraphPattern | ServiceGraphPattern | Filter | Bind | InlineData

		[57] 		[bookmark: rOptionalGraphPattern]OptionalGraphPattern		 ::= 		'OPTIONAL' GroupGraphPattern

		[58] 		[bookmark: rGraphGraphPattern]GraphGraphPattern		 ::= 		'GRAPH' VarOrIri GroupGraphPattern

		[59] 		[bookmark: rServiceGraphPattern]ServiceGraphPattern		 ::= 		'SERVICE' 'SILENT'? VarOrIri GroupGraphPattern

		[60] 		[bookmark: rBind]Bind		 ::= 		'BIND' '(' Expression 'AS' Var ')'

		[61] 		[bookmark: rInlineData]InlineData		 ::= 		'VALUES' DataBlock

		[62] 		[bookmark: rDataBlock]DataBlock		 ::= 		InlineDataOneVar | InlineDataFull

		[63] 		[bookmark: rInlineDataOneVar]InlineDataOneVar		 ::= 		Var '{' DataBlockValue* '}'

		[64] 		[bookmark: rInlineDataFull]InlineDataFull		 ::= 		(NIL | '(' Var* ')') '{' ('(' DataBlockValue* ')' | NIL)* '}'

		[65] 		[bookmark: rDataBlockValue]DataBlockValue		 ::= 		iri |	RDFLiteral |	NumericLiteral |	BooleanLiteral |	'UNDEF'

		[66] 		[bookmark: rMinusGraphPattern]MinusGraphPattern		 ::= 		'MINUS' GroupGraphPattern

		[67] 		[bookmark: rGroupOrUnionGraphPattern]GroupOrUnionGraphPattern		 ::= 		GroupGraphPattern ('UNION' GroupGraphPattern)*

		[68] 		[bookmark: rFilter]Filter		 ::= 		'FILTER' Constraint

		[69] 		[bookmark: rConstraint]Constraint		 ::= 		BrackettedExpression | BuiltInCall | FunctionCall

		[70] 		[bookmark: rFunctionCall]FunctionCall		 ::= 		iri ArgList

		[71] 		[bookmark: rArgList]ArgList		 ::= 		NIL | '(' 'DISTINCT'? Expression (',' Expression)* ')'

		[72] 		[bookmark: rExpressionList]ExpressionList		 ::= 		NIL | '(' Expression (',' Expression)* ')'

		[73] 		[bookmark: rConstructTemplate]ConstructTemplate		 ::= 		'{' ConstructTriples? '}'

		[74] 		[bookmark: rConstructTriples]ConstructTriples		 ::= 		TriplesSameSubject ('.' ConstructTriples?)?

		[75] 		[bookmark: rTriplesSameSubject]TriplesSameSubject		 ::= 		VarOrTerm PropertyListNotEmpty |	TriplesNode PropertyList

		[76] 		[bookmark: rPropertyList]PropertyList		 ::= 		PropertyListNotEmpty?

		[77] 		[bookmark: rPropertyListNotEmpty]PropertyListNotEmpty		 ::= 		Verb ObjectList (';' (Verb ObjectList)?)*

		[78] 		[bookmark: rVerb]Verb		 ::= 		VarOrIri | 'a'

		[79] 		[bookmark: rObjectList]ObjectList		 ::= 		Object (',' Object)*

		[80] 		[bookmark: rObject]Object		 ::= 		GraphNode

		[81] 		[bookmark: rTriplesSameSubjectPath]TriplesSameSubjectPath		 ::= 		VarOrTerm PropertyListPathNotEmpty |	TriplesNodePath PropertyListPath

		[82] 		[bookmark: rPropertyListPath]PropertyListPath		 ::= 		PropertyListPathNotEmpty?

		[83] 		[bookmark: rPropertyListPathNotEmpty]PropertyListPathNotEmpty		 ::= 		(VerbPath | VerbSimple) ObjectListPath (';' ((VerbPath | VerbSimple) ObjectList)?)*

		[84] 		[bookmark: rVerbPath]VerbPath		 ::= 		Path

		[85] 		[bookmark: rVerbSimple]VerbSimple		 ::= 		Var

		[86] 		[bookmark: rObjectListPath]ObjectListPath		 ::= 		ObjectPath (',' ObjectPath)*

		[87] 		[bookmark: rObjectPath]ObjectPath		 ::= 		GraphNodePath

		[88] 		[bookmark: rPath]Path		 ::= 		PathAlternative

		[89] 		[bookmark: rPathAlternative]PathAlternative		 ::= 		PathSequence ('|' PathSequence)*

		[90] 		[bookmark: rPathSequence]PathSequence		 ::= 		PathEltOrInverse ('/' PathEltOrInverse)*

		[91] 		[bookmark: rPathElt]PathElt		 ::= 		PathPrimary PathMod?

		[92] 		[bookmark: rPathEltOrInverse]PathEltOrInverse		 ::= 		PathElt | '^' PathElt

		[93] 		[bookmark: rPathMod]PathMod		 ::= 		'?' | '*' | '+'

		[94] 		[bookmark: rPathPrimary]PathPrimary		 ::= 		iri | 'a' | '!' PathNegatedPropertySet | '(' Path ')'

		[95] 		[bookmark: rPathNegatedPropertySet]PathNegatedPropertySet		 ::= 		PathOneInPropertySet | '(' (PathOneInPropertySet ('|' PathOneInPropertySet)*)? ')'

		[96] 		[bookmark: rPathOneInPropertySet]PathOneInPropertySet		 ::= 		iri | 'a' | '^' (iri | 'a')

		[97] 		[bookmark: rInteger]Integer		 ::= 		INTEGER

		[98] 		[bookmark: rTriplesNode]TriplesNode		 ::= 		Collection |	BlankNodePropertyList

		[99] 		[bookmark: rBlankNodePropertyList]BlankNodePropertyList		 ::= 		'[' PropertyListNotEmpty ']'

		[100] 		[bookmark: rTriplesNodePath]TriplesNodePath		 ::= 		CollectionPath |	BlankNodePropertyListPath

		[101] 		[bookmark: rBlankNodePropertyListPath]BlankNodePropertyListPath		 ::= 		'[' PropertyListPathNotEmpty ']'

		[102] 		[bookmark: rCollection]Collection		 ::= 		'(' GraphNode+ ')'

		[103] 		[bookmark: rCollectionPath]CollectionPath		 ::= 		'(' GraphNodePath+ ')'

		[104] 		[bookmark: rGraphNode]GraphNode		 ::= 		VarOrTerm |	TriplesNode

		[105] 		[bookmark: rGraphNodePath]GraphNodePath		 ::= 		VarOrTerm |	TriplesNodePath

		[106] 		[bookmark: rVarOrTerm]VarOrTerm		 ::= 		Var | GraphTerm

		[107] 		[bookmark: rVarOrIri]VarOrIri		 ::= 		Var | iri

		[108] 		[bookmark: rVar]Var		 ::= 		VAR1 | VAR2

		[109] 		[bookmark: rGraphTerm]GraphTerm		 ::= 		iri |	RDFLiteral |	NumericLiteral |	BooleanLiteral |	BlankNode |	NIL

		[110] 		[bookmark: rExpression]Expression		 ::= 		ConditionalOrExpression

		[111] 		[bookmark: rConditionalOrExpression]ConditionalOrExpression		 ::= 		ConditionalAndExpression ('||' ConditionalAndExpression)*

		[112] 		[bookmark: rConditionalAndExpression]ConditionalAndExpression		 ::= 		ValueLogical ('&&' ValueLogical)*

		[113] 		[bookmark: rValueLogical]ValueLogical		 ::= 		RelationalExpression

		[114] 		[bookmark: rRelationalExpression]RelationalExpression		 ::= 		NumericExpression ('=' NumericExpression | '!=' NumericExpression | '<' NumericExpression | '>' NumericExpression | '<=' NumericExpression | '>=' NumericExpression | 'IN' ExpressionList | 'NOT' 'IN' ExpressionList)?

		[115] 		[bookmark: rNumericExpression]NumericExpression		 ::= 		AdditiveExpression

		[116] 		[bookmark: rAdditiveExpression]AdditiveExpression		 ::= 		MultiplicativeExpression ('+' MultiplicativeExpression | '-' MultiplicativeExpression | (NumericLiteralPositive | NumericLiteralNegative) (('*' UnaryExpression) | ('/' UnaryExpression))*)*

		[117] 		[bookmark: rMultiplicativeExpression]MultiplicativeExpression		 ::= 		UnaryExpression ('*' UnaryExpression | '/' UnaryExpression)*

		[118] 		[bookmark: rUnaryExpression]UnaryExpression		 ::= 		 '!' PrimaryExpression
|	'+' PrimaryExpression
|	'-' PrimaryExpression
|	PrimaryExpression

		[119] 		[bookmark: rPrimaryExpression]PrimaryExpression		 ::= 		BrackettedExpression | BuiltInCall | iriOrFunction | RDFLiteral | NumericLiteral | BooleanLiteral | Var

		[120] 		[bookmark: rBrackettedExpression]BrackettedExpression		 ::= 		'(' Expression ')'

		[121] 		[bookmark: rBuiltInCall]BuiltInCall		 ::= 		 Aggregate
|	'STR' '(' Expression ')'
|	'LANG' '(' Expression ')'
|	'LANGMATCHES' '(' Expression ',' Expression ')'
|	'DATATYPE' '(' Expression ')'
|	'BOUND' '(' Var ')'
|	'IRI' '(' Expression ')'
|	'URI' '(' Expression ')'
|	'BNODE' ('(' Expression ')' | NIL)
|	'RAND' NIL
|	'ABS' '(' Expression ')'
|	'CEIL' '(' Expression ')'
|	'FLOOR' '(' Expression ')'
|	'ROUND' '(' Expression ')'
|	'CONCAT' ExpressionList
|	SubstringExpression
|	'STRLEN' '(' Expression ')'
|	StrReplaceExpression
|	'UCASE' '(' Expression ')'
|	'LCASE' '(' Expression ')'
|	'ENCODE_FOR_URI' '(' Expression ')'
|	'CONTAINS' '(' Expression ',' Expression ')'
|	'STRSTARTS' '(' Expression ',' Expression ')'
|	'STRENDS' '(' Expression ',' Expression ')'
|	'STRBEFORE' '(' Expression ',' Expression ')'
|	'STRAFTER' '(' Expression ',' Expression ')'
|	'YEAR' '(' Expression ')'
|	'MONTH' '(' Expression ')'
|	'DAY' '(' Expression ')'
|	'HOURS' '(' Expression ')'
|	'MINUTES' '(' Expression ')'
|	'SECONDS' '(' Expression ')'
|	'TIMEZONE' '(' Expression ')'
|	'TZ' '(' Expression ')'
|	'NOW' NIL
|	'UUID' NIL
|	'STRUUID' NIL
|	'MD5' '(' Expression ')'
|	'SHA1' '(' Expression ')'
|	'SHA256' '(' Expression ')'
|	'SHA384' '(' Expression ')'
|	'SHA512' '(' Expression ')'
|	'COALESCE' ExpressionList
|	'IF' '(' Expression ',' Expression ',' Expression ')'
|	'STRLANG' '(' Expression ',' Expression ')'
|	'STRDT' '(' Expression ',' Expression ')'
|	'sameTerm' '(' Expression ',' Expression ')'
|	'isIRI' '(' Expression ')'
|	'isURI' '(' Expression ')'
|	'isBLANK' '(' Expression ')'
|	'isLITERAL' '(' Expression ')'
|	'isNUMERIC' '(' Expression ')'
|	RegexExpression
|	ExistsFunc
|	NotExistsFunc

		[122] 		[bookmark: rRegexExpression]RegexExpression		 ::= 		'REGEX' '(' Expression ',' Expression (',' Expression)? ')'

		[123] 		[bookmark: rSubstringExpression]SubstringExpression		 ::= 		'SUBSTR' '(' Expression ',' Expression (',' Expression)? ')'

		[124] 		[bookmark: rStrReplaceExpression]StrReplaceExpression		 ::= 		'REPLACE' '(' Expression ',' Expression ',' Expression (',' Expression)? ')'

		[125] 		[bookmark: rExistsFunc]ExistsFunc		 ::= 		'EXISTS' GroupGraphPattern

		[126] 		[bookmark: rNotExistsFunc]NotExistsFunc		 ::= 		'NOT' 'EXISTS' GroupGraphPattern

		[127] 		[bookmark: rAggregate]Aggregate		 ::= 		 'COUNT' '(' 'DISTINCT'? ('*' | Expression) ')'
| 'SUM' '(' 'DISTINCT'? Expression ')'
| 'MIN' '(' 'DISTINCT'? Expression ')'
| 'MAX' '(' 'DISTINCT'? Expression ')'
| 'AVG' '(' 'DISTINCT'? Expression ')'
| 'SAMPLE' '(' 'DISTINCT'? Expression ')'
| 'GROUP_CONCAT' '(' 'DISTINCT'? Expression (';' 'SEPARATOR' '=' String)? ')'

		[128] 		[bookmark: ririOrFunction]iriOrFunction		 ::= 		iri ArgList?

		[129] 		[bookmark: rRDFLiteral]RDFLiteral		 ::= 		String (LANGTAG | ('^^' iri))?

		[130] 		[bookmark: rNumericLiteral]NumericLiteral		 ::= 		NumericLiteralUnsigned | NumericLiteralPositive | NumericLiteralNegative

		[131] 		[bookmark: rNumericLiteralUnsigned]NumericLiteralUnsigned		 ::= 		INTEGER |	DECIMAL |	DOUBLE

		[132] 		[bookmark: rNumericLiteralPositive]NumericLiteralPositive		 ::= 		INTEGER_POSITIVE |	DECIMAL_POSITIVE |	DOUBLE_POSITIVE

		[133] 		[bookmark: rNumericLiteralNegative]NumericLiteralNegative		 ::= 		INTEGER_NEGATIVE |	DECIMAL_NEGATIVE |	DOUBLE_NEGATIVE

		[134] 		[bookmark: rBooleanLiteral]BooleanLiteral		 ::= 		'true' |	'false'

		[135] 		[bookmark: rString]String		 ::= 		STRING_LITERAL1 | STRING_LITERAL2 | STRING_LITERAL_LONG1 | STRING_LITERAL_LONG2

		[136] 		[bookmark: riri]iri		 ::= 		IRIREF |	PrefixedName

		[137] 		[bookmark: rPrefixedName]PrefixedName		 ::= 		PNAME_LN | PNAME_NS

		[138] 		[bookmark: rBlankNode]BlankNode		 ::= 		BLANK_NODE_LABEL |	ANON

Productions for terminals:

		[139] 		[bookmark: rIRIREF]IRIREF		 ::= 		'<' ([^<>"{}|^`\]-[#x00-#x20])* '>'

		[140] 		[bookmark: rPNAME_NS]PNAME_NS		 ::= 		PN_PREFIX? ':'

		[141] 		[bookmark: rPNAME_LN]PNAME_LN		 ::= 		PNAME_NS PN_LOCAL

		[142] 		[bookmark: rBLANK_NODE_LABEL]BLANK_NODE_LABEL		 ::= 		'_:' (PN_CHARS_U | [0-9]) ((PN_CHARS|'.')* PN_CHARS)?

		[143] 		[bookmark: rVAR1]VAR1		 ::= 		'?' VARNAME

		[144] 		[bookmark: rVAR2]VAR2		 ::= 		'$' VARNAME

		[145] 		[bookmark: rLANGTAG]LANGTAG		 ::= 		'@' [a-zA-Z]+ ('-' [a-zA-Z0-9]+)*

		[146] 		[bookmark: rINTEGER]INTEGER		 ::= 		[0-9]+

		[147] 		[bookmark: rDECIMAL]DECIMAL		 ::= 		[0-9]* '.' [0-9]+

		[148] 		[bookmark: rDOUBLE]DOUBLE		 ::= 		[0-9]+ '.' [0-9]* EXPONENT | '.' ([0-9])+ EXPONENT | ([0-9])+ EXPONENT

		[149] 		[bookmark: rINTEGER_POSITIVE]INTEGER_POSITIVE		 ::= 		'+' INTEGER

		[150] 		[bookmark: rDECIMAL_POSITIVE]DECIMAL_POSITIVE		 ::= 		'+' DECIMAL

		[151] 		[bookmark: rDOUBLE_POSITIVE]DOUBLE_POSITIVE		 ::= 		'+' DOUBLE

		[152] 		[bookmark: rINTEGER_NEGATIVE]INTEGER_NEGATIVE		 ::= 		'-' INTEGER

		[153] 		[bookmark: rDECIMAL_NEGATIVE]DECIMAL_NEGATIVE		 ::= 		'-' DECIMAL

		[154] 		[bookmark: rDOUBLE_NEGATIVE]DOUBLE_NEGATIVE		 ::= 		'-' DOUBLE

		[155] 		[bookmark: rEXPONENT]EXPONENT		 ::= 		[eE] [+-]? [0-9]+

		[156] 		[bookmark: rSTRING_LITERAL1]STRING_LITERAL1		 ::= 		"'" (([^#x27#x5C#xA#xD]) | ECHAR)* "'"

		[157] 		[bookmark: rSTRING_LITERAL2]STRING_LITERAL2		 ::= 		'"' (([^#x22#x5C#xA#xD]) | ECHAR)* '"'

		[158] 		[bookmark: rSTRING_LITERAL_LONG1]STRING_LITERAL_LONG1		 ::= 		"'''" (("'" | "''")? ([^'\] | ECHAR))* "'''"

		[159] 		[bookmark: rSTRING_LITERAL_LONG2]STRING_LITERAL_LONG2		 ::= 		'"""' (('"' | '""')? ([^"\] | ECHAR))* '"""'

		[160] 		[bookmark: rECHAR]ECHAR		 ::= 		'\' [tbnrf\"']

		[161] 		[bookmark: rNIL]NIL		 ::= 		'(' WS* ')'

		[162] 		[bookmark: rWS]WS		 ::= 		#x20 | #x9 | #xD | #xA

		[163] 		[bookmark: rANON]ANON		 ::= 		'[' WS* ']'

		[164] 		[bookmark: rPN_CHARS_BASE]PN_CHARS_BASE		 ::= 		[A-Z] | [a-z] | [#x00C0-#x00D6] | [#x00D8-#x00F6] | [#x00F8-#x02FF] | [#x0370-#x037D] | [#x037F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

		[165] 		[bookmark: rPN_CHARS_U]PN_CHARS_U		 ::= 		PN_CHARS_BASE | '_'

		[166] 		[bookmark: rVARNAME]VARNAME		 ::= 		(PN_CHARS_U | [0-9]) (PN_CHARS_U | [0-9] | #x00B7 | [#x0300-#x036F] | [#x203F-#x2040])*

		[167] 		[bookmark: rPN_CHARS]PN_CHARS		 ::= 		PN_CHARS_U | '-' | [0-9] | #x00B7 | [#x0300-#x036F] | [#x203F-#x2040]

		[168] 		[bookmark: rPN_PREFIX]PN_PREFIX		 ::= 		PN_CHARS_BASE ((PN_CHARS|'.')* PN_CHARS)?

		[169] 		[bookmark: rPN_LOCAL]PN_LOCAL		 ::= 		(PN_CHARS_U | ':' | [0-9] | PLX) ((PN_CHARS | '.' | ':' | PLX)* (PN_CHARS | ':' | PLX))?

		[170] 		[bookmark: rPLX]PLX		 ::= 		PERCENT | PN_LOCAL_ESC

		[171] 		[bookmark: rPERCENT]PERCENT		 ::= 		'%' HEX HEX

		[172] 		[bookmark: rHEX]HEX		 ::= 		[0-9] | [A-F] | [a-f]

		[173] 		[bookmark: rPN_LOCAL_ESC]PN_LOCAL_ESC		 ::= 		'\' ('_' | '~' | '.' | '-' | '!' | '$' | '&' | "'" | '(' | ')' | '*' | '+' | ',' | ';' | '=' | '/' | '?' | '#' | '@' | '%')

[bookmark: conformance]20 Conformance

See Section 19 SPARQL Grammar regarding conformance of
	SPARQL Query strings, and section
	16 Query Forms for conformance of query results.
	See section 22. Internet Media Type for conformance to
	the application/sparql-query media type.

This specification is intended for use in conjunction with the SPARQL 1.1 Protocol
	[SPROT],
	the SPARQL Query Results XML Format [SPARQL XML Results],
	the SPARQL 1.1 Query Results JSON Format [SPARQL-JSON-Results] and
	the SPARQL 1.1 Query Results CSV and TSV Formats [SPARQL CSV and TSV Results].
	See those specifications for their conformance criteria.

Note that the SPARQL protocol describes a means for conveying SPARQL queries to an SPARQL query processing service and returning the query results to the entity that requested them.

[bookmark: security]21 Security Considerations (Informative)

SPARQL queries using FROM, FROM NAMED, or GRAPH may cause the specified URI to
be dereferenced. This may cause additional use of network, disk or CPU resources
along with associated secondary issues such as denial of service. The security issues
of Uniform Resource Identifier
(URI): Generic Syntax [RFC3986] Section 7 should be considered.
In addition, the contents of file: URIs can in some cases be accessed,
processed and returned as results, providing unintended access to local resources.

SPARQL requests may cause additional requests to be issued from the SPARQL endpoint, such as FROM NAMED. The endpoint is potentially within an organisations firewall or DMZ, and so such queries may be a source of indirection attacks.

The SPARQL language permits extensions, which will have their own security implications.

Multiple IRIs may have the same appearance. Characters in different scripts may
look similar (a Cyrillic "о" may appear similar to a Latin "o"). A character followed
by combining characters may have the same visual representation as another character
(LATIN SMALL LETTER E followed by COMBINING ACUTE ACCENT has the same visual representation
as LATIN SMALL LETTER E WITH ACUTE).

Users of SPARQL must take care to construct queries with IRIs that match the IRIs
in the data. Further information about matching of similar characters can be found
in Unicode Security
Considerations [UNISEC] and
Internationalized Resource
Identifiers (IRIs) [RFC3987] Section 8.

[bookmark: mediaType]22 Internet Media Type, File Extension and Macintosh File Type

The Internet Media Type / MIME Type for the SPARQL Query Language is "application/sparql-query".

It is recommended that sparql query files have the extension ".rq" (lowercase)
 on all platforms.

It is recommended that sparql query files stored on Macintosh HFS file systems
 be given a file type of "TEXT".

	 		Type name:

	 		application

	 		Subtype name:

	 		sparql-query

	 		Required parameters:

	 		None

	 		Optional parameters:

	 		None

	 		Encoding considerations:

	 		The syntax of the SPARQL Query Language is expressed over code points in Unicode
	 [UNICODE]. The encoding is always UTF-8 [RFC3629].

	 		Unicode code points may also be expressed using an \uXXXX (U+0 to U+FFFF)
	 or \UXXXXXXXX syntax (for U+10000 onwards) where X is a hexadecimal digit [0-9A-F]

	 		Security considerations:

	 		See SPARQL Query appendix C, Security Considerations
	 as well as RFC 3629
	 [RFC3629] section 7, Security Considerations.

	 		Interoperability considerations:

	 		There are no known interoperability issues.

	 		Published specification:

	 		This specification.

	 		Applications which use this media type:

	 		No known applications currently use this media type.

	 		Additional information:

	 		Magic number(s):

	 		A SPARQL query may have the string 'PREFIX' (case independent) near the beginning
	 of the document.

	 		File extension(s):

	 		".rq"

	 		Base URI:

	 		The SPARQL 'BASE <IRIref>' term can change the current base URI for relative
	 IRIrefs in the query language that are used sequentially later in the document.

	 		Macintosh file type code(s):

	 		"TEXT"

	 		Person & email address to contact for further information:

	 		public-rdf-dawg-comments@w3.org

	 		Intended usage:

	 		COMMON

	 		Restrictions on usage:

	 		None

	 		Author/Change controller:

	 		The SPARQL 1.1 specification is a work product of the World Wide Web Consortium's
	 SPARQL Working Group. The W3C has change control over these specifications.

	

[bookmark: sec-bibliography]A References

[bookmark: sec-normative-refs]A.1 Normative References

 		[bookmark: CHARMOD][CHARMOD]

 		
 Character
 Model for the World Wide Web 1.0: Fundamentals,
 R. Ishida, F. Yergeau, M. J. Dürst, M. Wolf, T. Texin,
 Editors, W3C Recommendation, 15 February 2005,
 http://www.w3.org/TR/2005/REC-charmod-20050215/ .
 Latest version available at http://www.w3.org/TR/charmod/
 .

 		[bookmark: CONCEPTS][CONCEPTS]

 		
 Resource
 Description Framework (RDF): Concepts and Abstract
 Syntax, G. Klyne, J. J. Carroll, Editors, W3C
 Recommendation, 10 February 2004,
 http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ .
 Latest version available at
 http://www.w3.org/TR/rdf-concepts/ .

 		[bookmark: FUNCOP][FUNCOP]

 		

 XQuery
 1.0 and XPath 2.0 Functions and Operators, J.
 Melton, A. Malhotra, N. Walsh, Editors, W3C Recommendation,
 23 January 2007,
 http://www.w3.org/TR/2007/REC-xpath-functions-20070123/ .
 Latest version available at
 http://www.w3.org/TR/xpath-functions/ .

 		[bookmark: RDF-MT][RDF-MT]

 		
 RDF
 Semantics, P. Hayes, Editor, W3C Recommendation,
 10 February 2004,
 http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ .
 Latest version available
 at http://www.w3.org/TR/rdf-mt/ .

 		[bookmark: rfc3629][RFC3629]

 		RFC 3629
 UTF-8, a transformation
 format of ISO 10646, F. Yergeau November 2003

 		[bookmark: rfc4647][RFC4647]

 		RFC 4647 Matching of Language Tags, A. Phillips, M. Davis September 2006

 		[bookmark: rfc3986][RFC3986]

 		RFC 3986
 Uniform Resource
 Identifier (URI): Generic Syntax, T. Berners-Lee,
 R. Fielding, L. Masinter January 2005

 		[bookmark: rfc3987][RFC3987]

 		RFC 3987 Internationalized Resource Identifiers (IRIs),
 M. Dürst , M. Suignard

 		[bookmark: UNICODE][UNICODE]

 		The Unicode Standard, Version 4. ISBN
 0-321-18578-1, as updated from time to time by the
 publication of new versions. The latest version of Unicode
 and additional information on versions of the standard and of
 the Unicode Character Database is available at
 http://www.unicode.org/unicode/standard/versions/.

 		[bookmark: XML11][XML11]

 		
 Extensible
 Markup Language (XML) 1.1, J. Cowan, J. Paoli, E.
 Maler, C. M. Sperberg-McQueen, F. Yergeau, T. Bray, Editors,
 W3C Recommendation, 4 February 2004,
 http://www.w3.org/TR/2004/REC-xml11-20040204/ .
 Latest
 version available at http://www.w3.org/TR/xml11/ .

 		[bookmark: XPATH20][XPATH20]

 		
 XML Path
 Language (XPath) 2.0, A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, J. Siméon,
 Editors, W3C Recommendation, 23 January 2007,
 http://www.w3.org/TR/2007/REC-xpath20-20070123/ .
 Latest
 version available at http://www.w3.org/TR/xpath20/ .

 		[bookmark: XQUERY][XQUERY]

 		

 XQuery 1.0:
 An XML Query Language, S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, J. Siméon, Editors, W3C Recommendation, 23
 January 2007, http://www.w3.org/TR/2007/REC-xquery-20070123/.
 Latest
 version available at http://www.w3.org/TR/xquery/ .

 		[bookmark: XSDT][XSDT]

 		
 XML
 Schema Part 2: Datatypes Second Edition, P. V.
 Biron, A. Malhotra, Editors, W3C Recommendation, 28 October
 2004, http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ .
 Latest version available at http://www.w3.org/TR/xmlschema-2/.

 Updated 2012 by W3C
 XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes.
 (Latest version available at http://www.w3.org/TR/xmlschema11-2/).

 		[bookmark: BCP47][BCP47]

 		Best Common Practice 47, P. V. Biron, A. Malhotra, Editors, W3C Recommendation, 28 October 2004, http://www.rfc-editor.org/rfc/bcp/bcp47.txt .

[bookmark: sec-non-normative-refs]A.2 Other References

 		[bookmark: CBD][CBD]

 		CBD - Concise
 Bounded Description, Patrick Stickler, Nokia, W3C Member
 Submission, 3 June 2005.

 		[bookmark: DC][DC]

 		
 Expressing
 Simple Dublin Core in RDF/XML
 Dublin Core Dublin Core Metadata
 Initiative Recommendation 2002-07-31.

 		[bookmark: multiset][Multiset]

 		
	Multiset, Wikipedia, The Free Encyclopedia.
	Article as given on October 25, 2007 at http://en.wikipedia.org/w/index.php?title=Multiset&oldid=163605900. The
	latest version of this article is at http://en.wikipedia.org/wiki/Multiset.
	

	

 		[bookmark: SPARQL-XML-RESULTS][SPARQL XML Results]

 		SPARQL Query Results XML Format (Second Edition), D. Beckett, J. Broekstra, Editors, W3C Proposed EditedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PER-rdf-sparql-XMLres-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321. Latest version available at http://www.w3.org/TR/rdf-sparql-XMLres.

 		[bookmark: SPARQL-JSON-RESULTS][SPARQL JSON Results]

 		SPARQL 1.1 Query Results JSON Format, A. Seaborne, Editor, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-results-json-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321. Latest version available at http://www.w3.org/TR/sparql11-results-json.

 		[bookmark: SPARQL-CSV-TSV-RESULTS][SPARQL CSV and TSV Result]

 		SPARQL 1.1 Query Results CSV and TSV Formats, A. Seaborne, Editor, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-results-csv-tsv-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321. Latest version available at http://www.w3.org/TR/sparql11-results-csv-tsv.

 		[bookmark: SPROT][SPROT]

 		SPARQL 1.1 Protocol, L. Feigenbaum, G. Williams, K. Clark, E. Torres, Editors, W3C CandidateRecommendation, 8 November 2012, http://www.w3.org/TR/2012/CR-sparql11-protocol-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321. Latest version available at http://www.w3.org/TR/sparql11-protocol.

 		[bookmark: TURTLE][TURTLE]

 		Turtle:
Terse RDF Triple Language, E Prud'hommeaux, G Carothers, Editors, W3C Working Draft, 10 July 2012, http://www.w3.org/TR/2012/WD-turtle-20120710/.Candidate Recommendation, 19 February 2013, http://www.w3.org/TR/2013/CR-turtle-20130219/. Latest version available at http://www.w3.org/TR/turtle/.

 		[bookmark: UCNR][UCNR]

 		
 RDF Data
 Access Use Cases and Requirements, K. Clark,
 Editor, W3C Working Draft, 25 March 2005,
 http://www.w3.org/TR/2005/WD-rdf-dawg-uc-20050325/ .
 Latest version available at
 http://www.w3.org/TR/rdf-dawg-uc/ .

 		[bookmark: UCNR2][UCNR2]

 		
 SPARQL New Features and Rationale,
 Kjetil Kjernsmo, Alexandre Passant, Editors,
	W3C Working Draft, 2 July 2009,
	http://www.w3.org/TR/2009/WD-sparql-features-20090702/ .
 Latest version available at http://www.w3.org/TR/sparql-features/ .

 		[bookmark: UNISEC][UNISEC]

 		Unicode Security
 Considerations, Mark Davis, Michel Suignard

 		[bookmark: VCARD][VCARD]

 		
 Representing vCard Objects in RDF/XML,
 Renato Iannella,
 W3C Note,
 22 February 2001,
 http://www.w3.org/TR/2001/NOTE-vcard-rdf-20010222/ .
 Latest version is available at http://www.w3.org/TR/vcard-rdf .

 		[bookmark: WEBARCH][WEBARCH]

 		
 Architecture of the World Wide Web, Volume One,
 I. Jacobs, N. Walsh, Editors,
 W3C Recommendation,
 15 December 2004,
 http://www.w3.org/TR/2004/REC-webarch-20041215/ .
 Latest version is available at http://www.w3.org/TR/webarch/ .

 		[bookmark: UNIID][UNIID]

 		

 Identifier
 and Pattern Syntax 4.1.0, Mark Davis, Unicode
 Standard Annex #31, 25 March 2005,
 http://www.unicode.org/reports/tr31/tr31-5.html .
 Latest
 version available at http://www.unicode.org/reports/tr31/
 .

Change Log

Changes since Proposed Recommendation

		Fixed error in example of inverse property path

Changes since Last Call

The following are the corrections made since last publication:

		Grammar: DISTINCT for paths had been left in the grammar - removed.

		Restore translation of BIND as per text in previous publications (first and second last call).

Since SPARQL 1.0

The new features in SPARQL 1.1 Query are:

		
 Aggregates

		
 Subqueries

		
 Negation

		
 Expressions in the SELECT clause

		
 Property Paths

		
 Assignment

		
 A short form for CONSTRUCT

		
 An expanded set of functions and operators

sparql11-entailment/diff.xhtml
[image: W3C]

[bookmark: title]SPARQL 1.1 Entailment Regimes

[bookmark: w3c-doctype]W3C ProposedRecommendation 29 January21 March 2013

		This version:

		
 http://www.w3.org/TR/2013/PR-sparql11-entailment-20130129/http://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/

		Latest version:

		
 http://www.w3.org/TR/sparql11-entailment/

		Previous version:

		 http://www.w3.org/TR/2012/CR-sparql11-entailment-20121108/http://www.w3.org/TR/2013/PR-sparql11-entailment-20130129/

		Editors:

		Birte Glimm, Universität Ulm

		Chimezie Ogbuji, Invited Expert

		Contributors:

		Sandro Hawke, W3C

		Ivan Herman, W3C

		Bijan Parsia, University of Manchester

		Axel Polleres, Siemens AG

		Andy Seaborne, The Apache Software Foundation

Please refer to the errata for this document, which may
 include some normative corrections.

See also translations.

Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract

SPARQL is a query language and a protocol for data that is stored natively
 as RDF or viewed as RDF via middleware.

 The main mechanism for computing query results in SPARQL is subgraph
 matching: RDF triples in both the queried RDF data and the query
 pattern are interpreted as nodes and edges of directed graphs, and
 the resulting query graph is matched to the data graph using variables
 as wild cards. Various W3C standards, including RDF and OWL, provide
 semantic interpretations for RDF graphs that allow additional RDF
 statements to be inferred from explicitly given assertions. Many
 applications that rely on these semantics require a query language
 such as SPARQL, but in order to use SPARQL, basic graph pattern
 matching has to be defined using semantic entailment relations instead
 of explicitly given graph structures. There are different possible ways
 of defining a basic graph pattern matching extension for an entailment
 relation. This document specifies one such way for a range of standard
 semantic web entailment relations.

 Such extensions of the SPARQL semantics are called
 entailment regimes within this document. An entailment regime
 defines not only which entailment relation is used, but also which
 queries and graphs are well-formed for the regime, how the entailment
 is used (since there are potentially different meaningful ways to use
 the same entailment relation), and what kinds of errors
 can arise. The entailment relations used in this document are standard
 entailment relations in the semantic web: RDF entailment, RDFS entailment, D-entailment, OWL Direct and RDF-Based Semantics entailment, and RIF Core entailment.

[bookmark: status]Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is one of eleven SPARQL 1.1 Proposed Recommendations:Recommendations produced by the SPARQL Working Group:

		SPARQL 1.1 Overview

		SPARQL 1.1 Query Language

		SPARQL 1.1 Update

		SPARQL1.1 Service Description

		SPARQL 1.1 Federated Query

		SPARQL 1.1 Query Results JSON Format

		SPARQL 1.1 Query Results CSV and TSV Formats

		SPARQL Query Results XML Format (Second Edition)

		SPARQL 1.1 Entailment Regimes (this document)

		SPARQL 1.1 Protocol

		SPARQL 1.1 Graph Store HTTP Protocol

 Summary ofNo Substantive Changes

There have been no substantive changes to this document since the previous version. For details on anyMinor editorial changes seechanges, if any, are detailed in the change log and visible in the color-coded diff.

 W3C MembersPlease Review By 26 February 2013 The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 26 February 2013. This will allow the Director to assess consensus and determine whetherSend Comments

Please send any comments to issuepublic-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document as a W3C Recommendation. Others are encouragedby the SPARQL Working Group to continue to send reports of implementation experience, and other feedback, to public-rdf-dawg-comments@w3.org (public archive). Reports of any success or difficulty withis complete, comments may be addressed in the test cases are encouraged.errata or in future revisions. Open discussion among developersis welcome at public-sparql-dev@w3.org (public archive).

 Support The advancement ofEndorsed By W3C

This Proposed Recommendation is supporteddocument has been reviewed by the disposition of comments on the previous drafts, the Test Suite ,W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the list of implementations (with test results) . No Endorsement PublicationDirector as a Proposed Recommendation does not imply endorsement by theW3C Membership. ThisRecommendation. It is a draftstable document and may be updated, replacedused as reference material or obsoleted by other documents at any time. Itcited from another document. W3C's role in making the Recommendation is inappropriateto citedraw attention to the specification and to promote its widespread deployment. This document as other than work in progress.enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents

1 Introduction

 1.1 Document Conventions

 1.1.1 Graph Syntax

 1.1.2 Namespaces

 1.1.3 Preliminary Definitions

 1.1.4 Result Descriptions

 1.2 Effects of Different Entailment Regimes

 1.3 Extensions to Basic Graph Pattern Matching

 1.4 Parts of an Entailment Regime

2 RDF Entailment Regime

3 General Notes on Entailment Regimes (Informative)

 3.1 Blank Nodes in the Queried Graph

 3.2 Answers from Axiomatic Triples

 3.3 Literals in the Subject Position

 3.4 Boolean Queries

 3.5 Aggregates and Blank Nodes

4 RDFS Entailment Regime

 4.1 Inconsistencies (Informative)

 4.1.1 Effects of Unchecked Inconsistencies

5 D-Entailment Regime

 5.1 The D-Entailment Regime

 5.2 XML Schema Datatypes and Canonical Lexical Representations

6 OWL 2 RDF-Based Semantics Entailment Regime

 6.1 Entailments under the OWL 2 RDF-Based Semantics (Informative)

 6.2 Restriction on Solutions

 6.3 Computing Query Answers under the RDF-Based Semantics (Informative)

 6.4 OWL 2 Profiles and Entailment Checkers

 6.4.1 OWL 2 DL

 6.4.2 The OWL 2 EL Profile

 6.4.3 The OWL 2 QL Profile

 6.4.4 The OWL 2 RL Profile

 6.4.5 Computing Query Answers for the OWL 2 RL Profile with RDF-Based Semantics (Informative)

7 OWL 2 Direct Semantics Entailment Regime

 7.1 Introduction

 7.1.1 OWL Import Directives

 7.1.2 Extended Grammar for OWL 2 Direct Semantics BGPs

 7.1.3 Variable Typing

 7.2 The OWL 2 Direct Semantics Entailment Regime

 7.3 Restrictions on Solutions (Informative)

 7.3.1 BGP Constraints for OWL 2 DL

 7.3.2 Queries with Variables in Literal Positions

 7.4 Higher-Order Queries (Informative)

 7.5 OWL 2 Entailment Checkers and Profiles

8 RIF Core Entailment

 8.1 (Simple) RIF Core Entailment Regime

 8.2 Custom Rulesets for Common Vocabulary Interpretations (Informative)

 8.3 Finite Answer Set Conditions (Informative)

 8.4 Referencing a RIF Document

 8.4.1 Semantics of rif:usedWithProfile

 8.4.2 Dereferencing RIF Documents (Informative)

 8.4.2.1 HTTP Dereferencing

 8.4.2.2 Encoding RIF documents within named graphs in the dataset

9 Entailment Regimes and Data Sets (Informative)

10 Entailment Regimes and Property Paths (Informative)

 10.1 Limitations of Property Paths in Combination with Entailment Regimes

11 Entailment Regimes and Updates (Informative)

[bookmark: appendices]Appendices

A References

 A.1 Normative References

 A.2 Other References

B Appendix: Mapping from BGPs to the extended OWL 2 Structural Specification

 B.1 Parsing BGPs into Objects of the Extended OWL 2 Structural Specification

C Appendix: Proofs

D Change Summary

[bookmark: sec-intro]1 Introduction

The SPARQL 1.1 Query specification [SPARQL 1.1 Query] defines the evaluation of a basic graph pattern by
 means of subgraph matching. This form of basic graph pattern evaluation is also called simple entailment since it can equally be defined in terms of the
 simple entailment relation between RDF graphs. In order to use more elaborate entailment relations,
 which also allow for retrieving solutions that implicitly follow from the queried graph, this document defines several entailment regimes.
 An entailment regime specifies how an entailment relation such as RDF Schema entailment can be used to redefine the evaluation of basic graph
 patterns from a SPARQL query making use of SPARQL's extension point for basic graph pattern matching. In order to satisfy the conditions that SPARQL
 places on extensions to basic graph pattern matching, an entailment regime specifies conditions that limit the number of entailments that contribute
 solutions for a basic graph pattern. For example, only a finite number of the infinitely many axiomatic triples can contribute solutions under the RDF Schema entailment regime.
 The entailment relations used in this document are common semantic web entailment relations: RDF entailment, RDF Schema entailment, D-Entailment,
 OWL 2 RDF-Based Semantics entailment,
 OWL 2 Direct Semantics entailment, and
 RIF-Simple entailment.

References to RDF or RDFS entailment rules from the RDF Semantics
 specification are used in Section 1.2, 3.1, 3.2, and 4.1 in an informative way and implementations are not expected to implement these rules as they are used here.

[bookmark: Conventions]1.1 Document Conventions

Throughout the document, certain conventions are used, which are outlined below.

[bookmark: syntax]1.1.1 Graph Syntax

This document uses the Turtle [TURTLE] data format to show triples explicitly. This notation uses a node identifier (nodeID)
 convention to indicate blank nodes in the triples of a graph. While node identifiers such as _:xxx serve to identify blank nodes in
 the surface syntax, these expressions are not considered to be the label of the graph node they identify; they are not names, and do not occur
 in the actual graph. In particular, the RDF graphs described by two Turtle documents which differ only by renaming their blank node
 identifiers will be understood to be equivalent. This renaming convention should be understood as applying only to whole documents, since
 renaming the node identifiers in part of a document may result in a document describing a different RDF graph. A blank node may also anonymously (without an explicit identifier) be denoted with [].

IRIs are written enclosed in < and > and may be absolute RDF IRI References or relative to the current base
 IRI. IRIs may also be abbreviated by using Turtle's @prefix directive that allows declaring a short prefix name for a long prefix
 of repeated IRIs. Once a prefix such as @prefix foo: <http://example.org/ns#> . is defined, any mention of an IRI later in the
 document may use a qualified name that starts foo: to stand for the longer IRI. For example, the qualified name foo:bar is a
 shorthand for the IRI <http://example.org/ns#bar>.

For example, the following triples use prefixes and abbreviated IRIs and also the non-abbreviated IRI <book2>, which
 is relative to the base IRI of the document.

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
:book1 dc:title "SPARQL Tutorial" .
<book2> dc:title "Turtle Tutorial" .

Standard Turtle abbreviations are taken to be expanded into their full form in
 the queried graph and the query. Since the entailment regimes use the vocabulary of the queried graph to constrain the solutions, this means that,
 e.g., when a is used in a predicate position it is considered to be expanded to rdf:type before the query is answered.
 Similarly, abbreviations for lists etc. in the queried graph are considered to be expanded into their full form. For example, if a Turtle document contains
 a list of the form (ex:a ex:b), it is assumed that vocabulary of the queried graph contains rdf:first,
 rdf:rest, and rdf:nil because the expanded form of the list is
 [rdf:first ex:a; rdf:rest [rdf:first ex:b; rdf:rest rdf:nil]].

[bookmark: namespaces]1.1.2 Namespaces

Examples assume the following namespace prefix bindings unless otherwise stated:

		Prefix		IRI

		rdf:		<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

		rdfs:		<http://www.w3.org/2000/01/rdf-schema#>

		owl:		<http://www.w3.org/2002/07/owl#>

		xsd:		<http://www.w3.org/2001/XMLSchema#>

		rif:		<www.w3.org/2007/rif#>

In the interests of brevity, the prefix ex: is also used in the examples. The prefix is assumed to be bound to an exemplary IRI
 such as <http://www.example.org/>.

[bookmark: prelims]1.1.3 Preliminary Definitions

This document uses the same definitions as the
 SPARQL Query Language specification. Important terms are recaptured below for clarity.
 In the case of any differences, the SPARQL Query Language definitions are the normative ones.

The term I denotes the set of all IRIs, RDF-L the set of all RDF Literals, and RDF-B the set of all blank nodes in RDF graphs.

The set of RDF Terms, RDF-T, is I ∪ RDF-L ∪ RDF-B.

The set of query variables is denoted as V and V is assumed to be countable, infinite, and disjoint from RDF-T.
 A triple pattern is a member of the set:

		(RDF-T ∪ V) x (I ∪ V) x (RDF-T ∪ V),

A basic graph pattern (BGP) is a set of triple patterns.

A pattern instance mapping P is the combination of an RDF instance mapping σ and solution mapping μ. For a BGP x, P(x)
 denotes the result of replacing blank nodes b in x for which σ is defined with σ(b) and all variables v in x for which μ is
 defined with μ(v), denoted P(x) = μ(σ(x)).

[bookmark: resultDesc]1.1.4 Result Descriptions

Result sets are illustrated in tabular form.

[bookmark: table0]		x		y		z

		"Alice"		<http://example/a>		

A 'binding' is a pair (variable, RDF term). In this result set, there are three
 variables: x, y, and z (shown as column headers). Each solution is shown as one row in the body of the
 table. Here, there is a single solution, in which variable x is bound to "Alice", variable y is
 bound to <http://example/a>, and variable z is not bound to an RDF term. Variables are not required to be bound
 in a solution.

Sometimes solutions are annotated with the name of a solution mapping so that the explanatory text can refer to the solution mapping and
 explain or justify certain solutions. For example, in the results table below, the only solution is given by the solution mapping
 μ1:

[bookmark: table01]				x		y		z

		μ1		"Alice"		<http://example/a>		

[bookmark: entEffects]1.2 Effects of Different Entailment Regimes

The SPARQL Query specification already envisages that SPARQL can be used with entailment regimes other than simple entailment. To illustrate the
 differences between simple, RDF, and RDFS entailment, consider the following data:

(1) ex:book1 rdf:type ex:Publication .
(2) ex:book2 rdf:type ex:Article .
(3) ex:Article rdfs:subClassOf ex:Publication .
(4) ex:publishes rdfs:range ex:Publication .
(5) ex:MITPress ex:publishes ex:book3 .

[image: RDF graph for the example on effects of different entailment regimes]

 Figure 1: A graphical representation of the RDF graph for the example where green dashed lines indicate RDF-entailed triples and red dashed lines indicate triples that are also RDFS-entailed.

Consider, for example, the following query:

SELECT ?prop WHERE { ?prop rdf:type rdf:Property }

Under simple entailment the query has an empty answer when querying the above graph. Under RDF entailment, the
 RDF rule rdf1 can be used on (5) to
 derive the triple ex:publishes rdf:type rdf:Property which means that ex:publishes is a valid binding for
 ?prop and will be returned as an answer for the query from a system that uses RDF entailment.

The following query asks for a list of all publications:

SELECT ?pub WHERE { ?pub rdf:type ex:Publication }

Clearly, ex:book1 is an answer due to triple (1). Intuitively, we can expect that ex:book2 is also a publication
 because it is an article (2) and all articles are publications (3). Even ex:book3 is a publication because it is published by MIT Press
 (5) and everything that is published is a publication (4). Under simple and RDF entailment, ex:book1 is the only answer because a
 system that uses simple entailment will not perform any of the reasoning steps that were required to find that ex:book2 and
 ex:book3 are publications. Under simple entailment, the basic graph pattern ?pub rdf:type ex:Publication is
 mapped to the queried graph and variables act as a kind of wild-card, e.g., by mapping ?pub to ex:book1 the BGP matches.
 RDF already supports a few inferences, but not those that are required to derive that ex:book2 and ex:book3 are
 publications. In order to retrieve ex:book2 and ex:book3, one would need a system that supports at least RDFS entailment.
 RDFS entailment rules can be used to
 illustrate which new consequences can be derived from the given data. For example, the rule rdfs9 can be applied to the triples (3) and (2) to
 derive

(6) ex:book2 rdf:type ex:Publication .

The rule rdfs3 can be applied to (4) and (5) to derive

(7) ex:book3 rdf:type ex:Publication .

The triples (6) and (7) can then be used to find that ex:book2 and ex:book3 are also answers to the query under an RDFS
 entailment regime.

The OWL 2 Web Ontology Language allows for even more inferences and the Rule Interchange Format RIF
 allows for customizing the inferences by specifying custom rule sets. The remainder of this document specifies correct answers for different entailment regimes using SPARQL's extension mechanism for Basic Graph Pattern Matching.

[bookmark: bgpMatchingExtensions]1.3 Extensions to Basic Graph Pattern Matching

The SPARQL Query specification [SPARQL 1.1 Query] gives a set of conditions that have to be met
 when extending the basic graph pattern matching beyond simple entailment:

An entailment regime specifies

		A subset of RDF graphs called well-formed for the regime

		An entailment relation between subsets of well-formed graphs and well-formed graphs.

Since the OWL 2 Direct Semantics is, for example, only defined for certain well-formed RDF graphs, the first condition can be used to define
 an OWL 2 Direct Semantics entailment regime only over those RDF graphs that represent an OWL 2 DL ontology. For the entailment relations mentioned
 in the second condition, this specification uses entailment relations that are already specified and used on the semantic web such as RDF(S)
 entailment or OWL Direct Semantics entailment.

SPARQL Query further defines a set of conditions for extensions of the basic
 graph pattern matching. These conditions do not cover the case of inconsistent graphs. An inconsistent graph is one for which no interpretation
 exists that satisfies all conditions of the semantics that is used. The issue is discussed in more detail in Section
 3.1, which also provides an example for an RDFS-inconsistent graph. Since inconsistent graphs entail any triple, special care has to be taken to
 address the situation. The effect of a query on an inconsistent graph is covered by the particular entailment regimes and, for each regime, the
 relevant details can be found in the corresponding section for that entailment regime. The SPARQL Query conditions for using a logical entailment relation
 E, such as RDFS entailment, instead of subgraph matching for the case of a consistent active graph are repeated below for clarity. An overview of
 how the different entailment regimes satisfy these conditions follows.

		[bookmark: condition1]The scoping graph, SG, corresponding to any
 E-consistent active graph AG is uniquely specified up to RDF graph equivalence and is E-equivalent to AG.

		[bookmark: condition2]For any basic graph pattern BGP and pattern instance mapping P, P(BGP) is well-formed for E.

		[bookmark: condition3]For any scoping graph SG and answer set
 {P1 ... Pn} for a basic graph pattern BGP, and where {BGP1 BGPn} is a set of basic graph
 patterns all equivalent to BGP, none of which share any blank nodes with any other or with SG
 SG E-entails (SG ∪ P1(BGP1) ∪ ... ∪ Pn(BGPn))

 These conditions do not fully determine the set of possible answers, since RDF allows unlimited amounts of redundancy. In addition, therefore,
 the following must hold.

		[bookmark: condition4]Each SPARQL extension MUST provide conditions on answer sets which guarantee that the set of
 triples obtained by instantiating BGP with each solution μ is uniquely specified up to RDF graph equivalence, and SHOULD
 provide further conditions to prevent trivial infinite answers as appropriate to the regime.

This specification does not change any of the existing entailment relations, but rather defines the vocabulary from which possible answers can be
 taken and defines certain conditions which guarantee that query answers are finite for most entailment regimes herein (with the exception of RIF, where finiteness is not always guaranteed, see details below in Section 8.3). The set of legal graphs, i.e., graphs that can
 be queried, is also unrestricted apart from the restriction to graphs that are legal under the entailment regime in question. For example, under the RDFS
 entailment regime, one can query all legal RDF graphs, while under OWL 2 Direct Semantics, one can query all graphs that correspond to legal OWL 2
 DL ontologies. Further, it is defined which queries are legal and how illegal queries, illegal graphs, and inconsistencies are handled. All defined
 entailment regimes satisfy the above conditions as follows:

		All entailment regimes specified here use the same definition of a scoping
 graph as given for simple entailment. Thus, the required equivalence is immediate.

		Only mappings that, when applied to the BGP, yield a set of RDF triples that are well-formed for E are legal solution mappings and
 included in the answer. For example, under RDFS entailment, any SPARQL query is legal, but queries that require literals as a binding for a
 variable in a subject position have no answer because all mappings that result in a set of RDFS entailed triples are not well-formed RDF since
 RDF forbids literals in the subject position. Similarly, for OWL 2 Direct Semantics entailment, a query might have no answer because all possible bindings
 might result in RDF triples that are not well-formed for OWL 2 DL.

		This condition prevents the reuse of blank nodes between query answers unless those blank nodes are really the same in the queried
 graph. Under this restriction no accidental co-references among blank nodes are introduced. All entailment regimes use the same definition of a
 scoping graph as simple entailment. The condition is satisfied since a form
 of Skolemization is used to restrict the answers containing blank nodes.

		This point is very important since infinite answers are easily possible under all the considered regimes. For example, already under RDF and
 RDFS entailment, even the empty graph entails an infinite number of axiomatic triples such as
 rdf:_1 rdf:type rdf:Property, rdf:_2 rdf:type rdf:Property, ... Thus, a query with BGP { ?x rdf:type
 rdf:Property . } would, without further restrictions, have infinitely many answers. Such answers are to be understood as trivial infinite
 answers. Other sources of trivial infinite answers are answers that only differ in blank node labels. In order to exclude such sources of
 infinity, the entailment regimes will define a (finite) vocabulary from which bindings can be taken. These restrictions are explained in greater
 detail in the following sections.

[bookmark: entRegimeParts]1.4 Parts of an Entailment Regime

 Each entailment regime is defined in a table describing the following items:
 		Name: A name for the entailment regime, usually the same as the entailment relation used to define the evaluation of a basic graph pattern.

		IRI: The IRI for the regime, which can be used in the service description of a SPARQL endpoint. The IRI for a SPARQL endpoint can be related via the property sd:defaultEntailmentRegime to the IRI of an entailment regime which applies per default to
 graphs queried via this endpoint. Additionally, the property sd:entailmentRegime can be used to relate a particular named graph with an entailment regime that is different from the otherwise used default entailment regime.

		Legal Graphs: Describes which graphs are legal for the regime.

		Legal Queries: Describes which queries are legal for the regime.

		Illegal Handling: Describes what happens in case of an illegal graph or query.

		Entailment: Specifies which entailment relation is used in the evaluation of basic graph patterns.

		Inconsistency: Defines what happens if the queried graph is inconsistent under the used semantics.

		Query Answers: Defines how a basic graph pattern is evaluated, i.e., what the solutions are for a given graph and basic graph pattern of a query.

[bookmark: RDFEntRegime]2 RDF Entailment Regime

RDF entailment is closest to simple entailment in that it provides only few additional answers and RDF is not expressive enough to express
 inconsistencies. RDF does, however, entail an infinite set of axiomatic triples and the entailment regime specifies conditions that address the
 fourth condition on extensions of basic graph pattern matching. Further explanations are given in the informative sections following the main definition of the regime.

		Name		RDF

		IRI		http://www.w3.org/ns/entailment/RDF

		Legal Graphs		Any legal RDF graph.

		Legal Queries		Any legal SPARQL query.

		Illegal Handling		In case the query is illegal (syntax errors), the system MUST raise a
 MalformedQuery fault. In case the queried graph is illegal
 (syntax errors), the system MUST raise a QueryRequestRefused fault.

		Entailment		RDF Entailment [RDF Semantics]

		Inconsistency		RDF graphs are always RDF consistent and no inconsistency handling is required.

		Query Answers		Let G be the queried RDF graph, BGP be a basic graph pattern, V(BGP) the set of variables in BGP, B(BGP) the set of blank nodes in BGP, SG
 the scoping graph for G and BGP, sk(SG) a
 Skolemization of SG with respect to a vocabulary disjoint from the vocabulary of SG
 and BGP. Applying sk to a term t, written sk(t), yields sk(t) if sk is defined for t and t otherwise; applying sk to a BGP, written sk(BGP),
 replaces each blank node b in BGP for which sk is defined with sk(b). The set
 rdfV contains the URI references of the RDF vocabulary and rdfV-Minus is the set of URI
 references in rdfV minus URI references of the form rdf:_n with n in {1, 2, ... }.

 A solution mapping μ is a possible solution for BGP from G under RDF entailment if dom(μ) = V(BGP) and there is an RDF
 instance mapping σ from B(BGP) to RDF-T such that dom(σ)=B(BGP) and the pattern instance mapping P=(μ, σ) is such that
 P(BGP) are well-formed RDF triples that are RDF entailed by SG.

 A possible solution μ is a solution for BGP from SG under RDF entailment if:

 (C1) The RDF triples sk(P(BGP)) are ground and RDF entailed by sk(SG).

 (C2) For each variable x in V(BGP), μ(x) occurs in SG or in rdfV-Minus.

 The multiplicity of μ in the multiset of solutions is the maximal number of distinct RDF instance mappings σ that yield a pattern
 instance mapping P = (μ, σ) for which μ is a solution.

Please note that legal answers under RDF entailment are defined in a two-stage process. Intuitively, the possible answers are all
 answers that one would expect under RDF entailment, i.e., all mappings such that instantiating the basic graph patterns with them results in RDF
 triples that are RDF entailed by the queried graph. The set of possible answers is, however, not necessarily finite. The next step defines which of the
 possible answers are actually returned as answers to the query. In this step, we restrict answers to those that correspond to ground triples that are
 entailed by the Skolemized scoping graph (C1). This limits infinite answers from blank nodes, while still preserving most users' expectations of the
 cardinality of the answers. Condition (C2) further makes sure that the query answer contains only finitely many of the axiomatic triples. The two
 restrictions are further explained in the next section.

[bookmark: GeneralNotes]3 General Notes on Entailment Regimes (Informative)

The entailment regimes defined in this document are all defined analogously to the RDF entailment regime above. This section explains, therefore, the
 rationale behind the definition and the conditions (C1) and (C2), which are to a large extent shared among all the defined entailment regimes. Possible
 differences or additional constraints for the following regimes are defined in the respective sections.

[bookmark: bnodes]3.1 Blank Nodes in the Queried Graph

[bookmark: C1-Restriction]The third condition for extensions of basic graph pattern matching requires that if blank node names are returned as
 bindings for a variable, then the same blank node name occurs in different solutions only if it corresponds to the same blank node in the graph. To
 illustrate why this is required, consider the following graphs, which are also illustrated in Figure 2:

		G:		ex:a ex:b _:c . 		G1:		ex:a ex:b _:b1 . 		G2:		ex:a ex:b _:b2 . 		G3:		ex:a ex:b _:b1 .

		 		_:d ex:e ex:f .		 		_:b2 ex:e ex:f .		 		_:b1 ex:e ex:f .		 		_:b1 ex:e ex:f .

[image: RDF graph for the example on bank node handling by entailment regimes]

 Figure 2: A graphical representation of the RDF graphs for the example on blank nodes in the queried graph.

The graph G simply entails G1 and G2, but not G3 where the two blank nodes are identified. Now
 consider a basic graph pattern BGP:

ex:a ex:b ?x . ?y ex:e ex:f .

When taking just the possible answers, without applying condition (C1) and (C2), a solution multiset for BGP would include

[bookmark: tablenoc1c2]				x		y

		μ1		_:b1		_:b2

		μ2		_:b2		_:b1

Thus, we have μ1(BGP)=G1 and μ2(BGP)=G2, and both solutions are entailed
 by G. In fact, the set of possible solutions is clearly infinite in this case, which is problematic with respect to condition 4 from the SPARQL Query specification since the use of different blank node labels is considered a trivial source
 of infinite answers. Furthermore, condition 3 requires that G ∪ μ1(BGP) ∪
 μ2(BGP) is also entailed by G, and this is not the case in the example since this union contains G3.
 The reason is that the solutions have unintended co-references of blank nodes that condition 3 does not allow. SPARQL’s basic subgraph matching
 semantics respects these conditions by requiring solution mappings to refer to blank nodes that actually occur in the active graph, which essentially
 treats blank nodes as (Skolem) constants.

The use of Skolemization in the definition of an entailment regime makes this understanding of blank nodes explicit while still allowing for
 inferred triples that are not necessarily present in the queried graph. For the above example, condition (C1) works as follows: let
 skol be a prefix that denotes a fresh IRI not occurring in G and let sk(G) be the following (Skolemized)
 graph:

ex:a ex:b skol:c .
skol:d ex:e ex:f .

The Skolem function maps _:c to skol:c and _:d to skol:d. In order to satisfy (C1), the only
 blank nodes that can be used in the range of μ are _:c and _:d, since other blank nodes will either cause
 sk(μ(BGP)) to be non-ground since sk is not defined for the blank nodes or they might be Skolemized to terms not occurring in G,
 leading to non-entailed triples sk(μ(BGP)). Furthermore, we can only use a solution mapping that maps x to _:c and
 y to _:d because otherwise the entailment does not hold, assuming that G is actually the scoping graph.
 Note, however, that the scoping graph SG could equally be a graph that is RDF-equivalent to G, but possibly with renamed
 blank nodes. In this case, the solution could contain a blank node other than _:c, but importantly there is just one solution under
 condition (C1).
 Clearly, the Skolemized blank nodes should not occur in query results themselves, i.e., instead of skol:c it is expected that
 _:c is returned in the solution sequence; the Skolemization is just a way of defining conditions on possible solutions.

Note that (C1) still permits derived solutions. If we assume RDFS entailment (RDF
 entailment is too weak to infer any meaningful consequences) and assume that G additionally contains the triple

ex:b rdfs:subPropertyOf ex:b' .

the BGP

ex:a ex:b' ?x . ?y ex:e ex:f .

still yields the same one solution.

Materialization is a common implementation technique (e.g., for the RDF or RDFS regime) and it is worth pointing out that new blank nodes introduced in the
 saturation process are not to be returned in the solutions. Consider the following graph and RDFS entailment

ex:s ex:p "<a/>"^^rdf:XMLLiteral .

If the system were to follow the RDFS inference rules the saturation process would result in the
 triples

ex:s ex:p _:lit .
_:lit rdf:type rdfs:Literal .

being added to the graph, where _:lit is a blank node allocated to the literal "<a/>"^^rdf:XMLLiteral. The BGP
 ?x rdf:type rdfs:Literal would have an empty answer. The blank node _:lit is not returned because it is not part of the
 queried graph. The Skolem function is, therefore, not defined for _:lit and a solution that maps x to _:lit
 will not yield a ground triple as required by (C1). Note, however, that the entailment regimes do not prescribe any particular implementation
 technique. Thus, one can use materialization in which the saturated graph contains literals in the subject position of triples or blank nodes in the
 predicate position in order to implement complete RDFS reasoning [RDFSENTAILMENT], although only mappings that instantiate the BGP
 into well-formed such RDF triples can constitute solutions. Instead of materializing inferences, techniques based on query rewriting are equally
 possible to implement the regime.

[bookmark: axiomaticTriples]3.2 Answers from Axiomatic Triples

The following example mainly illustrates the use of condition (C2). Consider the query

SELECT ?x WHERE { ?x rdf:type rdf:Property }

against a (scoping) graph containing only the triples

ex:a ex:b ex:c .
ex:d rdf:type rdf:Bag .
ex:d rdf:_1 ex:a .

One of the possible solutions is

[bookmark: table3]				x

		μ1		ex:b

since ex:a ex:b ex:c RDF entails
 ex:b a rdf:Property (see also the RDF entailment rule rdf1).
 Further, the axiomatic triples give possible solutions such as

[bookmark: table4]				x

		μ2		rdf:type

		μ3		rdf:subject

		μ4		rdf:_1

		μ5		rdf:_2

				...

There are even more possible answers since ex:b rdf:type rdf:Property RDF entails _:exb1 rdf:type rdf:Property for
 some blank node _:exb1 allocated to ex:b, i.e.,
 _:exb1 is a possible solution. As shown above, condition (C1) prevents such possible solutions from newly introduced blank nodes to be
 returned as solutions. To limit the answers from the axiomatic triples condition (C2) is used:

(C2) For each variable x in V(BGP), μ(x) occurs in SG or in rdfV-Minus.

The possible answers μ2 to μ5 are considered here in greater detail. Since all these solution mappings
 lead to (ground) axiomatic triples when instantiating the BGP, (C1) is trivially satisfied.

		For the possible solution μ2, since
 μ2(x)=rdf:type occurs in SG (and also in rdfV-Minus), condition (C2) is also satisfied and this solution
 mapping is a solution.

		For the possible solution μ3, although μ3(x)=rdf:subject does not occur in SG, it occurs in rdfV-Minus
 and this possible solution mapping is, therefore, also returned as an answer.

		For the possible solution μ4, since μ4(x)=rdf:_1 occurs in SG, this is a solution.

		For the possible solution μ5, since μ5(x)=rdf:_2 occurs neither in SG nor in rdfV-Minus, this solution mapping is not a solution.

Similar arguments as for rdf:_2 can be used for rdf:_n with n > 2. Thus the query answer contains ex:b,
 rdf:_1, and the subjects of RDF axiomatic triples of the form X rdf:type rdf:Property with X in rdfV-Minus.

[bookmark: literalSubjects]3.3 Literals in the Subject Position

Please note that solution mappings that map variables that occur in the subject position of the basic graph pattern BGP to literals will not be
 returned as solutions. Indeed, although there might be a pattern instance mapping P for the solution mapping such that P(BGP) is RDF entailed by the
 queried graph, but P(BGP) is not well-formed as required (see also the SPARQL triple patterns definition). For example, given a query

SELECT ?x WHERE { ?x rdf:type rdf:XMLLiteral }

even the empty graph would RDF entail all statements

xxx rdf:type rdf:XMLLiteral

for xxx a well-formed RDF XML
 literal, but any solution that maps x to an XML literal such as "<a>abc"^^rdf:XMLLiteral would result
 in a triple that is not a valid RDF triple.

Please note that triples with literals in the subject positions are currently not considered well-formed RDF, but this might change in future versions of RDF. If literals were allowed in the subject position, condition (C2) would still guarantee finite answers.

[bookmark: booleanQueries]3.4 Boolean Queries

The two conditions (C1) and (C2) also have an effect on the answers to Boolean queries. For Boolean queries that contain variables, e.g.,

ASK { ?x rdf:type rdf:Property }

The query answer is yes (true) if there is at least one solution mapping (i.e., a solution that satisfies also conditions (C1)
 and (C2)) and it is no (false) otherwise. For example, if the queried graph is the empty graph, the query pattern has four solution
 triples from rdfV-Minus and hence the answer is true. For Boolean queries without variables the situation is slightly different. Consider, for
 example, the query

ASK { rdf:type rdf:type rdf:Property }

against the empty graph. Since rdf:type rdf:type rdf:Property is an axiomatic triple, even the empty graph RDF entails the triple. We have
 two possible outcomes for such a Boolean query: there is a solution sequence containing a mapping (μ) where μ has an empty domain (it
 does not map any variable to anything) or there is only an empty solution sequence (). In the first case, the query answer is
 yes (true), whereas in the second case the query answer is no (false). Since (C2) only operates on the variables in the
 query, only (C1) is relevant in this case. Since neither the BGP nor the queried (empty) graph contains a blank node, also (C1) holds and the query
 answer is yes (true).

Note that even though rdf:_n is not in rdfV-Minus for any n, this means that queries such as
 ASK { rdf:_n a rdf:Property } will always be answered with yes (true) even if rdf:_n does not occur in the
 scoping graph.

[bookmark: aggregates]3.5 Aggregates and Blank Nodes

SPARQL 1.1 Query allows for aggregates in queries such as COUNT, MIN, etc. Aggregates apply expressions over groups of
 solutions, e.g., by counting the number of solutions. Thus, aggregation is layered on top of basic graph pattern matching and all solutions computed
 for the basic graph pattern of the query and the entailment regime in use are passed on to the algebra functions. For the RDF (and RDFS) entailment
 regime this means that since blank nodes are treated as Skolem constants due to condition (C1), each blank node contributes one value for the
 aggregates. Assume, for example, the query

SELECT ?publication (COUNT(?author) AS ?numAuthors)
WHERE { ?author ex:writes ?publication . }
GROUP BY ?publication

evaluated over the data:

_:a1 ex:writes ex:book1 .
ex:author2 ex:writes ex:book1 .
_:a1 ex:writesBook ex:book2 .
ex:author3 ex:writesBook ex:book2 .
_:a4 ex:writesBook ex:book2 .
ex:writesBook rdfs:subPropertyOf ex:writes .

Under simple and RDF entailment, basic graph pattern matching finds two solutions:

[bookmark: aggregateExample]				author		publication

		μ1		_:a1		ex:book1

		μ2		ex:author2		ex:book1

The results are then grouped and aggregated by algebra operators. In this case, there is
 only one group for ex:book1 and the authors for the group are counted due to the COUNT aggregate over
 author resulting in the query answer:

[bookmark: table3_1]		publication		numAuthors

		ex:book1		2

RDFS further gives semantics to rdfs:subPropertyOf and the basic graph pattern matching under RDFS entailment finds five solution
 mappings:

[bookmark: aggregateExample2]				author		publication

		μ1		_:a1		ex:book1

		μ2		ex:author2		ex:book1

		μ3		_:a1		ex:book2

		μ4		ex:author3		ex:book2

		μ5		_:a4		ex:book2

These solutions are then processed by the algebra operators. Again, the authors for each book (now there are two groups) are counted due to the
 COUNT aggregate over author, which leads to the following result for the query under RDFS entailment:

[bookmark: table3_2]		publication		numAuthors

		ex:book1		2

		ex:book2		3

Note that the algebra operator just takes the solutions returned by the basic graph pattern matching mechanism. If, for example, blank nodes
 should not be counted or counted only once, this would mean that in general the entailment regimes must be modified to return no blank nodes or
 collapse blank nodes in results. A consequence of this would be that, for instance, under a such modified entailment regime for RDF(S) one could get less results than with
 simple entailment. For example, if no blank nodes were to be returned, then the books would have just one author under non-simple entailment.

[bookmark: RDFSEntRegime]4 RDFS Entailment Regime

Under RDFS entailment there are not only more entailments than with just RDF, which result in possibly more query answers, but RDF graphs can also be
 inconsistent under RDFS interpretations. Without any restrictions, this can result in infinite solutions since an inconsistent graph RDFS entails any
 consequence. The restrictions to guarantee finite query answers are the same as for RDF and they are repeated here so that the description of the
 entailment regime is self-contained. Note that, as apposed to the general condition 1, in this entailment regime the definition of the scoping graph also covers the case when the queried graph is RDFS-inconsistent.

		Name		RDFS

		IRI		http://www.w3.org/ns/entailment/RDFS

		Legal Graphs		Any legal RDF graph.

		Legal Queries		Any legal SPARQL query.

		Illegal Handling		In case the query is illegal (syntax errors), the system MUST raise a
 MalformedQuery fault. In case the queried graph is illegal
 (syntax errors), the system MUST raise a QueryRequestRefused fault.

		Entailment		RDFS
 Entailment [RDF Semantics]

		Inconsistency		The scoping graph is graph-equivalent to the active graph even if the active graph is
 RDFS-inconsistent. If the active graph is
 RDFS-inconsistent, an implementation MAY raise a QueryRequestRefused fault or issue a warning and it
 SHOULD generate such a fault or warning if, in the course of processing, it determines that the data or query is not compatible
 with the request. In the presence of an inconsistency the conditions on solutions still guarantee that answers are finite.

		Query Answers		Let G be the queried RDF graph, BGP be a basic graph pattern, V(BGP) the set of variables in BGP, B(BGP) the set of blank nodes in BGP, SG
 the scoping graph for G and BGP, sk(SG) a
 Skolemization of SG with respect to a vocabulary disjoint from the vocabulary of SG
 and BGP. Applying sk to a term t, written sk(t), yields sk(t) if sk is defined for t and t otherwise; applying sk to a BGP, written sk(BGP),
 replaces each blank node b in BGP for which sk is defined with sk(b). The set rdfsV contains the URI references of the RDFS vocabulary and rdfsV-Minus is the set of URI references in rdfsV minus URI
 references of the form rdf:_n with n in {1, 2, ... }.

 A solution mapping μ is a possible solution for BGP from G under RDFS entailment if dom(μ) = V(BGP) and there is an RDF
 instance mapping σ from B(BGP) to RDF-T such that dom(σ)=B(BGP) and the pattern instance mapping P=(μ, σ) is such that
 P(BGP) are well-formed RDF triples that are RDFS entailed by SG.

 A possible solution μ is a solution for BGP from SG under RDFS entailment if:

 (C1) The RDF triples sk(P(BGP)) are ground and RDFS entailed by sk(SG).

 (C2) For each variable x in V(BGP), μ(x) occurs in SG or in rdfsV-Minus.

 The multiplicity of μ in the multiset of solutions is the maximal number of distinct RDF instance mappings σ that yield a pattern
 instance mapping P = (μ, σ) for which μ is a solution.

As under RDF entailment, answers under RDFS entailment are defined in a two-stage process. Possible answers are all answers that one would expect
 under RDFS entailment, i.e., all mappings such that instantiating the basic graph patterns with them results in RDF triples that are RDFS entailed
 by the queried graph. To obtain always a finite set of answers, analogous conditions (C1) and (C2) as for the RDF entailment regime are used.

[bookmark: inconsistencies]4.1 Inconsistencies (Informative)

An RDFS-inconsistent graph RDFS entails any graph, but there are limited possibilities to express an inconsistency
 in RDFS. Every inconsistency is due to a literal of type rdf:XMLLiteral, where the lexical form is a malformed XML string, e.g.,

ex:a ex:b "<"^^rdf:XMLLiteral .

in combination with a range restriction on the property, e.g.,

ex:b rdfs:range rdf:XMLLiteral .

The first triple alone does not cause an inconsistency. It only requires that the literal "<"^^rdf:XMLLiteral is interpreted
 as something that is not in the extension of rdfs:Literal. Since rdfs:Literal contains rdf:XMLLiteral,
 the second triple together with the first one results in an inconsistency. The following example illustrates that an inconsistency is not always
 as directly visible as in the example above and one might need to apply some inference rules to detect it. For example, consider the following triples
 (numbers are only given to explain the inferences later):

(1) ex:a rdfs:subClassOf rdfs:Literal .
(2) ex:b rdfs:range ex:a .
(3) ex:c rdfs:subPropertyOf ex:b.
(4) ex:d ex:c "<"^^rdf:XMLLiteral .

Here we can derive an inconsistency as follows:

(5) ex:d ex:b "<"^^rdf:XMLLiteral . (e.g., by applying rule rdfs7 to (3) and (4))
(6) "<"^^rdf:XMLLiteral rdf:type ex:a. (e.g., by applying rule rdfs3 to (2) and (5))
(7) "<"^^rdf:XMLLiteral rdf:type rdfs:Literal . (e.g., by applying rule rdfs9 to (1) and (6))

At this point, the inconsistency can be detected since "<" is not a valid lexical form for an RDF XML literal and has to be
 interpreted as some element that is NOT in rdfs:Literal, but at the same time it should be of type rdfs:Literal. The
 triple derived last is characteristic for an RDFS inconsistency.

[bookmark: uncheckedInconsistencies]4.1.1 Effects of Unchecked Inconsistencies

Please note that the above definition of the RDFS entailment regimes does not require that systems MUST generate an
 error or a warning in the case of an inconsistency, but systems MAY generate an error or warning. A system
 SHOULD generate such an error or warning if, in the course of processing, it determines that the data or query is not
 compatible with the request.

If a system did not raise an error for an inconsistent active graph, it will most likely just return answers that would be answers from a
 consistent subgraph of the active graph. Since the scoping graph is taken to be equivalent to the active graph irrespective of inconsistencies,
 a query could still have infinitely many possible answers because an inconsistent graph (trivially) entails any RDF triple. Conditions (C1)
 and (C2) guarantee, however, finiteness even when a system tries to generate all answers without checking for consistency. In particular condition
 (C2) restricts query answers such that only answers over the (finite) vocabulary of the queried graph plus the finite subset of the RDFS
 vocabulary in rdfsV-Minus are returned.

The above definition of the RDFS entailment regime is chosen such that it can be implemented efficiently. Consider, for example, a
 default graph containing the following triples

ex:b ex:s ex:y1 .
ex:b ex:s ex:y2 .
...
ex:b ex:s ex:y10000 .
ex:a ex:d "<"^^rdf:XMLLiteral .
ex:d rdfs:range rdf:XMLLiteral .

and a query

SELECT * WHERE { ex:b ex:r ?x . ?x ex:s ?y }

which requires a join operation in the query processor. This graph is RDFS-inconsistent due to the last two triples, but the query processor
 might know (after parsing) that there is no ex:r property at all in the graph. Thus, the processor knows that it does not have to
 evaluate the query. However, if a consistency check was required, the processor would have to parse and process the query nevertheless and
 return an error. Such a test could be very costly (there could be more than 10,000 ex:b ex:s ex:yn tuples).

Another motivation comes from queries that require a union. For example, the query

SELECT * WHERE { {BGP1} UNION {BGP2} }

can be executed by dispatching BGP1 and BGP2 in parallel to some processing element, streaming results back to the caller from either
 side of the UNION as they become available. The use of HTTP for streaming results places some constraints on what can be done, e.g., the error
 or success code must be transmitted before starting streaming the results. However, discovering the inconsistency from the dispatched
 processors might be too late for the main processor to communicate the error back to the client in a conformant manner.

[bookmark: DEntRegime]5 D-Entailment Regime

[bookmark: d-entailment]The D-entailment regime is defined for datatyped interpretations, which give semantics to datatypes. A
 datatype is an entity characterized by a set of character strings called lexical
 forms and a mapping from that set to a set of values. Formally, a datatype d is defined by three items:

		a non-empty set of character strings called the lexical space of d;

		a non-empty set called the value space of d;

		a mapping from the lexical space of d to the value space of d, called the lexical-to-value mapping of d.

Datatyped interpretations for an RDF graph are relativized to a datatype map: A datatype map
 D is a set of pairs consisting of a URI reference and a datatype such that no URI reference appears twice in the set, i.e., D can be regarded as a
 function from a set of URI references to a set of datatypes.

While the datatypes often have a single lexical representation for each data value (i.e., each value in the datatype's value space is denoted by a
 single representation in its lexical space), this is not always the case. A canonical mapping is a prescribed subset of the inverse of a
 lexical mapping, which is one-to-one and whose domain (where possible) is the entire range of the lexical mapping (the value space). Thus a canonical
 mapping selects one lexical representation for each value in the value space. The canonical representation of a value in the value space of a
 datatype is the lexical representation associated with that value by the datatype's canonical mapping.

[bookmark: CanonicalLit]5.1 The D-Entailment Regime

[bookmark: CanonicalLiteral]It is possible to define one datatype as a refinement of another one. For example, in the XML Schema Datatypes specification [XML Schema Datatypes], the datatype
 long is derived from the datatype integer, which is itself derived from decimal. The datatype
 decimal is a primitive type, i.e., it is not a refinement of another datatype. The canonical representation of
 a data value does, however, not define a datatype. For example, the two literals "2"^^xsd:integer and "2"^^xsd:long both
 represent the data value 2. This raises the question which literals should be returned in query answers. Let D be a datatype map containing
 xsd:decimal, xsd:integer and xsd:long. We further assume the queried graph to contains the triple

ex:s ex:p "01"^^xsd:long .

and a query

SELECT * WHERE { ex:s ex:p ?x }

The graph D-entails any triple ex:s ex:p "l"^^dt where dt is a datatype for which the value space contains 1 and where
 l is a valid lexical form for the value 1. Thus, even if we restrict to the canonical represenations, we still get at least the 3 solutions
 "1.0"^^xsd:decimal, "1"^^xsd:integer, and "1"^^xsd:long. If D contains further datatypes that contain 1 in their
 value space, we would get further solutions.

The D-entailment regime assumes, therefore, that for each literal there is a well-defined canonical literal. For D a datatype map, a canonical
 datatype mapping maps each data value v that occurs in the data space of a datatype dt from D to a unique datatype
 dc such that the value space of dc contains v. Given a literal "l"^^dt, the canonical literal for
 "l"^^dt is "lc"^^dc, where lc is the canonical representation for the data value that "l" represents
 and dc is the canonical datatype for the data value. For the XML Schema Datatypes one can, for example, use the primitive type as the
 canonical datatype.

Apart from the datatype support, the entailment regime is a straightforward extension of the RDF and RDFS entailment regimes and the same conditions
 are used to guarantee the finiteness of the result set, only adapted such that the vocabulary also includes the datatype URIs from the datatype map.
 Furthermore, all literals in solutions must be the canonical representation of the corresponding data value. The use of D-entailment means that further
 inconsistencies could arise due to datatype clashes and the same mechanisms as for handling inconsistencies as in the RDFS entailment regime are
 applied.

		Name		D-Entailment

		IRI		http://www.w3.org/ns/entailment/D

		Legal Graphs		Any legal RDF graph.

		Legal Queries		Any legal SPARQL query.

		Illegal Handling		In case the query is illegal (syntax errors), the system MUST raise a
 MalformedQuery fault. In case the queried graph is illegal
 (syntax errors), the system MUST raise a QueryRequestRefused fault.

		Entailment		D-Entailment [RDF Semantics]

		Inconsistency		The scoping graph is graph-equivalent to the active graph even if the active graph is
 D-inconsistent. If the active graph is
 D-inconsistent with respect to the datatype map D, an implementation
 MAY raise a QueryRequestRefused fault or
 issue a warning and it SHOULD generate such a fault or warning if, in the course of processing, it determines that the data or
 query is not compatible with the request. In the presence of an inconsistency the conditions on solutions still guarantee that answers are finite.

		Query Answers		Systems MUST provide a means to determine which datatype map they assume and whether they impose any limits on datatype
 lexical forms; such information could, for example, be listed in supporting documentation. A canonical literal MUST be
 defined for all literals that use a datatype from the datatype map.

 Let D be the supported datatype map, G the queried RDF graph, BGP be a basic graph pattern,
 V(BGP) the set of variables in BGP, B(BGP) the set of blank nodes in BGP, SG the scoping graph for G and BGP, sk(SG) a Skolemization of SG with respect to a vocabulary disjoint from the vocabulary of SG and
 BGP. Applying sk to a term t, written sk(t), yields sk(t) if sk is defined for t and t otherwise; applying sk to a BGP, written sk(BGP), replaces
 each blank node b in BGP for which sk is defined with sk(b). The set Lit(SG) is the set of all literals "lc"^^dc such that
 "l"^^dt occurs in SG and "lc"^^dc is the canonical literal for "l"^^dt. The set dV contains the URI references of the RDFS vocabulary plus the datatype names, i.e., the URI references, for the
 datatypes in D; dV-Minus is the set of URI references in dV minus URI references of the form rdf:_n with n in {1, 2,
 ... }.

 A solution mapping μ is a possible solution for BGP from G under D-entailment if dom(μ) = V(BGP) and there is an RDF instance
 mapping σ from B(BGP) to RDF-T such that dom(σ)=B(BGP) and the pattern instance mapping P=(μ, σ) is such that P(BGP) are
 well-formed RDF triples that are D-entailed by SG.

 A possible solution μ is a solution for BGP from SG under D-entailment if:

 (C1) The RDF triples sk(P(BGP)) are ground and D-entailed by sk(SG).

 (C2) For each variable x in V(BGP), if μ(x) is a literal with "lc"^^dc the canonical literal for μ(x), then "lc"^^dc is in Lit(SG) and μ(x) occurs in SG or in dV-Minus otherwise.

 The multiplicity of μ in the multiset of solutions is the maximal number of distinct RDF instance mappings σ that yield a pattern
 instance mapping P = (μ, σ) for which μ is a solution.

[bookmark: canonicalRep]5.2 XML Schema Datatypes and Canonical Lexical Representations

Most XML Schema Datatypes [XML Schema Datatypes] can be used with the D-Entailment regime. The canonical mapping, which is defined
 for all XML Schema Datatypes, is used as a means to achive finite answers. Infinite answers can otherwise occur if a datatype has infinitely many
 different lexical forms for a data value. For example, in the decimal datatype from the XML
 Schema Datatypes all of the following lexical forms represent the same value:

		100.5

		+100.5

		0100.5

		100.50

		100.500

		100.5000

For the above data values, the canonical lexical form
 is: 100.5. For the values

		100

		+100

		0100

		100.0

		100.00

		100.000

the canonical lexical form is: 100 according to XSD 1.1. XSD
 1.1 defines that, for data values that are integers, the canonical representation has no decimal point and no fractional part.
 This is different in XSD 1.0. XSD 1.0 always requires a decimal point for the canonical representation
 of a decimal value. Thus, although 1.0 and 1 denote the same value, the canonical form would be
 1.0 for a decimal. For integer, however, XSD 1.0 requires
 that the canonical form has no fraction digits and no decimal point. Thus, the canonical representation must be 1,
 which is strange since 1 and 1.0 denote the same value and integers are decimals. For this reason,
 XSD 1.1 seems better suited for use with SPARQL entailment regimes.

Non-primitive datatypes in the XSD are always based on some primitive datatype, e.g., integer, byte, and short are all based on decimal
 and are obtained by restricting the value space to values without decimal point for integer and by further specifying minimal
 and maximal values for byte and short. Thus, if "2"^^xsd:integer, "+02"^^xsd:short, and
 "+2"^^xsd:byte occur in SG and we assume that the canonical datatype is the primitive type according to XSD 1.1, then all three
 literals contribute "2"^^xsd:decimal to Lit(SG).

Condition (C2) uses the set Lit(SG) to make sure that only the canonical literals can occur in solutions, which guarantees finiteness of the answers.
 For example, if the queried graph contains

ex:s ex:p "0100.50"^^xsd:decimal .
ex:s ex:p "100.00"^^xsd:decimal .
ex:s ex:p "+100"^^xsd:short .

and the BGP is

ex:s ex:p ?x

then Lit(SG) contains "100.5"^^xsd:decimal (from the first triple) and "100"^^xsd:decimal (from
 the second and third triple since the primitive type underlying short is decimal and 100.00 is the same value as 100). The BGP
 evaluation yields two answers with ?x binding once to "100.5"^^xsd:decimal and once to
 "100"^^xsd:decimal. Without such a restriction, one could get infinitely many answers since solutions that bind
 ?x "0100"^^xsd:decimal, "00100"^^xsd:decimal, etc. or to "100"^^xsd:integer
 or"00100"^^xsd:short equally result in entailed triples.

Implementations will typically achieve the desired behavior by transforming the lexical
 forms of data values into a canonicalized form when loading an RDF graph.

[bookmark: OWLRDFBSEntRegime]6 OWL 2 RDF-Based Semantics Entailment Regime

In contrast to the RDF and RDFS semantics, an RDF graph does no longer admit a unique canonical model that can be used to compute answers under the
 RDF-Based and Direct Semantics of OWL, i.e., one can no longer imagine queries to act on a unique "completed" version of the active graph.
 This affects the reasoning algorithms, but has only little effect on the definition of the OWL entailment regimes.

The OWL 2 RDF-Based Semantics entailment regime assumes that queries are answered with respect to an
 OWL 2 RDF-Based datatype map D.

		Name		OWL 2 RDF-Based Semantics

		IRI		http://www.w3.org/ns/entailment/OWL-RDF-Based

		Legal Graphs		Any legal RDF graph.

		Legal Queries		Any legal SPARQL query.

		Illegal Handling		In case the query is illegal (syntax errors), the system MUST raise a
 MalformedQuery fault. In case the queried graph is illegal
 (syntax errors), the system MUST raise a QueryRequestRefused fault.

		Entailment		OWL 2 RDF-Based Entailment [OWL 2 RDF-Based Semantics]

		Inconsistency		The scoping graph is graph-equivalent to the active graph even if the active graph is
 OWL 2 RDF-Based inconsistent. If the active graph is
 OWL 2 RDF-Based inconsistent with respect to D, an implementation
 MAY raise a QueryRequestRefused fault or
 issue a warning and it SHOULD generate such a fault or warning if, in the course of processing, it determines that the data or
 query is not compatible with the request. In the presence of an inconsistency the conditions on solutions still guarantee that answers are finite.

		Query Answers		Systems MUST provide a means to determine which datatype map they assume and whether they impose any limits on datatype
 lexical forms; such information could, for example, be listed in supporting documentation. A canonical literal MUST be
 defined for all literals that use a datatype from the
 datatype map.

 Let D be a finite OWL 2 RDF-Based datatype map, G the queried
 RDF graph, BGP be a basic graph pattern, V(BGP) the set of variables in BGP, B(BGP) the set of blank nodes in BGP, SG the
 scoping graph for G and BGP, sk(SG) a
 Skolemization of SG with respect to a vocabulary disjoint from the vocabulary of SG
 and BGP. Applying sk to a term t, written sk(t), yields sk(t) if sk is defined for t and t otherwise; applying sk to a BGP, written sk(BGP),
 replaces each blank node b in BGP for which sk is defined with sk(b). The set Lit(SG) is the set of all literals "lc"^^dc such that
 "l"^^dt occurs in SG and "lc"^^dc is the canonical literal for "l"^^dt. The set owl2V contains the URI references of the OWL 2 RDF-based vocabulary, which is taken to
 include the RDF and RDFS vocabularies and the OWL 2 datatype names and
 facet names; owl2V-Minus is
 the set of URI references in owl2V minus URI references of the form rdf:_n with n in {1, 2, ... }.

 A solution mapping μ is a possible solution for BGP from G under OWL 2 RDF-Based entailment if dom(μ) = V(BGP) and there is an
 RDF instance mapping σ from B(BGP) to RDF-T such that dom(σ)=B(BGP) and the pattern instance mapping P=(μ, σ) is such that
 P(BGP) are well-formed RDF triples that are OWL 2 RDF-Based entailed by SG with respect to owl2V and D.

 A possible solution μ is a solution for BGP from SG under OWL 2 RDF-Based entailment with respect owl2V and D if:

 (C1) The RDF triples sk(P(BGP)) are ground and OWL 2 RDF-Based entailed by sk(SG) with respect to D.

 (C2) For each variable x in V(BGP), if μ(x) is a literal, then μ(x) is in Lit(SG) and μ(x) occurs in SG or in owl2V-Minus otherwise.

 The multiplicity of μ in the multiset of solutions is the maximal number of distinct RDF instance mappings σ that yield a pattern
 instance mapping P = (μ, σ) for which μ is a solution.

The OWL 2 RDF-Based entailment regime is a straightforward extension of the RDF, RDFS, and D-entailment regimes and the same conditions (adapted to work
 with the a finite subset of the OWL 2 RDF-Based vocabulary) are used to guarantee the finiteness of the result set.

[bookmark: OWLRDFBSEntailments]6.1 Entailments under the OWL 2 RDF-Based Semantics (Informative)

Before the restrictions on solutions are explained, a general note about the RDF-Based Semantics is given. The OWL 2 RDF-Based Semantics treats classes as individuals that refer to elements of the domain. Each such element is then associated with a subset
 of the domain, called the class extension. This means that semantic conditions on class extensions are only applicable to those classes that are
 actually represented by an element of the domain which can lead to less consequences than expected. An example is given by the following graph G

ex:a rdf:type ex:C

and basic graph pattern BGP

?x a [rdf:type owl:Class ; owl:unionOf (ex:C ex:D)]

The graph G states that ex:a has type ex:C, while the BGP asks for instances of the complex class denoting the union of
 ex:C and ex:D. One might expect that a solution mapping μ that maps x to ex:a is a solution, but this
 is not the case under the OWL 2 RDF-Based Semantics (see also [OWL 2 RDF-Based Semantics], Sec. 7.1). It is guaranteed that the union of the class
 extensions for ex:C and ex:D exists as a subset of the domain; no statement in G implies, however, that this union is the
 class extension of any domain element. Thus, μ(BGP) is not entailed by G. The entailment holds, however, when the statement

ex:E owl:unionOf (ex:C ex:D)

is added to G. In the OWL 2 Direct Semantics, in contrast, classes denote sets and not domain elements, so G entails μ(BGP) under the Direct
 Semantics where, formally, G must first be extended with an ontology header to become well-formed.

[bookmark: OWLRDFBSRestrictions]6.2 Restriction on Solutions

[bookmark: C2-RDF-Based]In this section the restrictions on solutions are explained. As the previously defined regimes, a Skolemization of the queried graph and the BGP
 is used to limit answers that just differ in blank node labels (C1). An explanation for this restriction is given in the General Notes section. Under OWL 2 RDF-Based Semantics the axiomatic triples are not included and owl2V-Minus
 could equally be replaced by owl2V. The lexical representation for data values are restricted as explained for the case of D-entailment. Infiniteness can, however, not only arise due to different lexical representations of one and the same data
 value as in the case of the D-entailment regime. Consider, for example, an ontology containing the following axiom:

ex:x owl:sameAs "5"^^xsd:decimal .

A query, which asks for all things that are different to ex:x then has infinitely
 many possible answers since any literal different from 5 will satisfy the constraints. This can be formulated by the following query:

SELECT ?l WHERE { ex:x owl:differentFrom ?l .}

Note that triples which are seemingly unrelated to the query can still influence the query results. For example, if we add to the queried ontology the triple:

ex:Mary ex:hasAge "6"^^xsd:int .

Then the query no longer has an empty answer but returns one answer with binding "6"^^xsd:int for l.

[bookmark: OWLRDFBSComputing]6.3 Computing Query Answers under the RDF-Based Semantics (Informative)

The standard reasoning problems in OWL under the OWL 2 RDF-Based Semantics are semidecidable, which means that although the query answers are
 guaranteed to be finite, it cannot be guaranteed that the computation of the query results will finish in a finite amount of time. Guaranteed
 termination might be achieved by returning an incomplete solution sequence for certain queries.

[bookmark: OWL2-RDFBS-Profiles]6.4 OWL 2 Profiles and Entailment Checkers

The OWL 2 Profiles specification [OWL 2 Profiles] describes several syntactic restrictions for OWL ontologies. For ontologies that fall into these fragments, specialized implementation techniques can be used, which often result in a better performance.

[bookmark: OWL2DL]6.4.1 OWL 2 DL

OWL 2 DL describes the largest subset of RDF graphs for which the OWL 2 Direct Semantics is defined. Systems that support OWL 2 DL can also
 handle ontologies that satisfy the restrictions of the OWL 2 EL, QL, and RL profiles because these profiles are even more restrictive.

[bookmark: OWL2EL]6.4.2 The OWL 2 EL Profile

OWL 2 EL is particularly useful in applications employing ontologies that contain very large numbers of properties and/or classes. The profile
 captures the expressive power used by many ontologies and is a subset of OWL 2 DL for which the basic reasoning problems can be performed in
 time that is polynomial with respect to the size of the ontology.

[bookmark: OWL2QL]6.4.3 The OWL 2 QL Profile

OWL 2 QL is aimed at applications that use very large volumes of instance data, and where query answering is the most important reasoning task.
 In OWL 2 QL, conjunctive query answering can be implemented using conventional relational database systems. Using a suitable reasoning technique,
 sound and complete conjunctive query answering can be performed in LOGSPACE with respect to the size of the data (assertions). As in OWL 2 EL,
 polynomial time algorithms can be used to implement the ontology consistency and class expression subsumption reasoning problems.

[bookmark: OWL2RLDS]6.4.4 The OWL 2 RL Profile

[bookmark: OWL2RL]OWL 2 RL defines a syntactic subset of OWL 2 DL, which is amenable to
 implementation using rule-based technologies.

The OWL 2 RDF-Based Semantics can, in general, be used with arbitrary RDF graphs (OWL 2 Full ontologies) and, therefore, with all above described profiles. Taking this into account, the OWL 2 Conformance [OWL 2 Conformance] document specifies five different kinds of entailment checkers, which can all be used with the RDF-Based Semantics:

		OWL 2 Full entailment checkers, which take OWL 2 Full ontology documents as input;

		OWL 2 DL entailment checkers, which takes OWL 2 DL ontology documents as input;

		OWL 2 EL entailment checkers, which takes OWL 2 EL ontology documents as input;

		OWL 2 QL entailment checkers, which takes OWL 2 QL ontology documents as input;

		OWL 2 RL entailment checkers, which takes OWL 2 Full ontology documents as input.

The OWL 2 RL entailment checker is slightly different in that OWL 2 RL entailment checkers work, as OWL 2 Full entailment checkers, on OWL 2 Full Ontologies, whereas the others make restrictions on the allowed input. The first four entailment checkers should not return Unknown when checking entailment on the respective allowed inputs. OWL 2 RL entailment checkers should not return Unknown under the RDF-Based Semantics if it is possible to derive True using the OWL 2 RL/RDF rules.

SPARQL 1.1 Service Descriptions can be used to describe what kind of entailment checker is used in the backgroud to answer SPARQL queries. In addition to specifying the used semantics by relating the IRI of the endpoint via the property sd:defaultEntailmentRegime or sd:entailmentRegime to the IRI of the entailment regime, one can relate the endpoint IRI via the property sd:defaultSupportedEntailmentProfile or sd:supportedEntailmentProfile to one of the following profile IRIs:

		http://www.w3.org/ns/owl-profile/Full for OWL 2 Full entailment checkers;

		http://www.w3.org/ns/owl-profile/DL for OWL 2 DL entailment checkers;

		http://www.w3.org/ns/owl-profile/EL for OWL 2 EL entailment checkers;

		http://www.w3.org/ns/owl-profile/QL for OWL 2 QL entailment checkers;

		http://www.w3.org/ns/owl-profile/RL for OWL 2 RL entailment checkers.

The property sd:supportedEntailmentProfile is used to indicate that a different profile applies to a certain named graph. Together with the semantics, this indictaes which type of OWL entailment checker is used to answer the queries.

[bookmark: OWL2RLRDFBSComputing]6.4.5 Computing Query Answers for the OWL 2 RL Profile with RDF-Based Semantics (Informative)

For the OWL 2 RL profile, the OWL 2 RL/RDF rules can be used to compute the answers to a query. In this case, the above definition of query
 answers can be simplified:

Let G be the queried RDF graph, BGP a basic graph pattern, SG the scoping graph for G and BGP, R the OWL 2 RL/RDF rules
 [OWL 2 Profiles], and FO(SG) the translation of SG into a first-order theory according to the OWL 2 Profiles specification
 [OWL 2 Profiles], i.e., each triple s p o in SG is represented by a predicate T(s, p, o) in FO(SG). Let
 P=(μ, σ) a pattern instance mapping. The solution mapping μ is a possible solution for BGP from G if dom(μ) = V(BGP),
 dom(σ)=B(BGP) and FO(SG) union R entails FO(P(BGP)) under the standard first-order semantics.

Condition (C1) does not need to be applied in this case because blank nodes are treated as constants under the first-order semantics anyway.
 OWL 2 RL implementations are not required to include the axiomatic triples of RDF and RDFS, but they may do so. Thus, in most cases, condition (C2)
 does not have to be applied. Imposing (C2) does not, however, do any harm and guarantees finiteness should the problematic axiomatic triples be
 inferred and also guards the behavior on inconsistent ontologies.

The fact that (C2) also takes the OWL 2 RDF-Based vocabulary into account means that query answers that use terms not present in the scoping graph
 may be returned, too. Consider, for example, an ontology containing only the triples:

_:o1 rdf:type owl:ontology .
ex:C rdf:type owl:Class .
ex:D rdf:type owl:Class .
ex:C rdfs:subClassOf ex:D .
ex:D rdfs:subClassOf ex:C .

The first three triples are required for a valid OWL 2 RL ontology and introduce an identifier for the ontology (_:o1) and
 typing information (ex:C and ex:D are classes). The ontology entails ex:C owl:equivalentClass ex:D and the
 OWL RL rule scm-eqc2 derives
 this consequence from the ontology. Since owl:equivalentClass is in owl2V-Minus, the query

SELECT ?rel WHERE { ex:C ?rel ex:D . }

has the answers:

[bookmark: table10]		rel

		rdfs:subClassOf

		owl:equivalentClass

[bookmark: OWLDSEnRegime]7 OWL 2 Direct Semantics Entailment Regime

Intuitively, in the OWL 2 Direct Semantics entailment regime the queried graph must correspond to an OWL 2 DL ontology. The basic graph pattern of
 the query must correspond to an extended OWL 2 DL ontology, allowing variables in place of class names, object property names, datatype property names,
 individual names, or literals. Solutions are mappings of variables into IRIs, blank nodes, or literals for which the instantiated basic graph pattern
 corresponds to a set of OWL 2 DL axioms or an OWL 2 DL ontology that is compatible with the queried ontology and also entailed by it under the OWL 2
 Direct Semantics.

[bookmark: OWLDSIntro]7.1 Introduction

For the OWL 2 Direct Semantics entailment regime, semantic conditions are defined with respect to ontology structures (i.e., instances of the
 Ontology class as defined in the OWL 2 structural specification [OWL 2 Structural Specification]). Given an RDF graph G, the ontology structure for G,
 denoted O(G), is obtained by mapping the
 queried RDF graph into an OWL 2 ontology [OWL 2 Mapping to RDF Graphs]. This mapping is only defined for OWL 2 DL ontologies, i.e., ontologies
 that satisfy certain syntactic conditions.

An OWL 2 DL ontology contains a set of axioms. In this section, OWL axioms are stated both in Turtle and in the functional-style syntax (FSS) that is
 used in the OWL 2 structural specification [OWL 2 Structural Specification]. A FSS axiom can correspond to several RDF triples, and the RDF triples might contain
 auxiliary blank nodes that are not part of the corresponding OWL objects and are not visible in the corresponding FSS axiom. For example, the triples

ex:Peter rdf:type _:x .
_:x rdf:type owl:Restriction ;
 owl:onProperty ex:hasFather ;
 owl:someValuesFrom ex:Person .

corresponds to FSS syntax axiom

ClassAssertion(ObjectSomeValuesFrom(ex:hasFather ex:Person) ex:Peter)

The FSS may still contain blank nodes, but these correspond to OWL individuals
 that have no explicit names and are called anonymous
 individuals. For example, the triple

ex:Peter ex:hasBrother _:y .

corresponds to the FSS axiom

ObjectPropertyAssertion(ex:hasBrother ex:Peter _:y)

While parsing an input document (containing RDF triples) into an OWL ontology, it can be necessary to rename
 blank nodes/anonymous individuals and there is no guarantee that the blank node identifier _:y from the above triple is used as an
 identifier for Peter's brother in the ontology structure. Thus, the above RDF triple could also be represented by the OWL axiom

ObjectPropertyAssertion(ex:hasBrother ex:Peter _:somethingelse)

Some RDF triples that are well-formed for OWL 2 DL are mapped to OWL 2 DL axioms that carry no semantics. Axioms (triples) that carry no semantics
 are

		Annotations,

		Entity Declarations,

		Ontology Properties (imports, ontology IRIs).

Such axioms are called non-logical axioms, whereas axioms that do carry semantics under OWL 2 Direct Semantics are called logical
 axioms.

[bookmark: OWLDSImports]7.1.1 OWL Import Directives

[bookmark: OWLImports]OWL provides an import directive, which allows one ontology to incorporate axioms from another ontology. Thus, if the queried RDF graph G contains
 a triple of the form

ont owl:imports imported .

where ont is the ontology IRI or a blank node that identifies the ontology, and imported is the IRI of the imported
 ontology, then the canonical parsing
 process defined for OWL 2 ontologies makes sure that the axioms from directly and indirectly imported ontologies are taken into account.

As said above, an import directive is a non-logical statement under the OWL 2 Direct Semantics, i.e., whether the statement is present in the
 ontology obtained by the parsing process or not has no effect on the logical consequences of the ontology. The statement does, however, influence the
 outcome of mapping an RDF graph into an OWL ontology. In the process of mapping a graph G into the ontology structure O(G) the directly and
 indirectly imported axioms are taken into account.

[bookmark: OWLDSExtGrammar]7.1.2 Extended Grammar for OWL 2 Direct Semantics BGPs

[bookmark: extendedStructuralSpec]SPARQL 1.1 Query [SPARQL 1.1 Query] is only defined for basic graph patterns using a triple-based syntax. For OWL 2 Direct Semantics, an
 alternative syntax for BGPs based on the functional-style syntax or other popular OWL syntaxes seems natural, but is not part of this
 specification.

Since the OWL 2 Direct Semantics is defined in terms of OWL objects, it is necessary to map from the triple-based BGP representation into an OWL
 object representation that additionally allows for variables. The appendix precisely specifies how the OWL 2 mapping
 from RDF graphs [OWL 2 Mapping to RDF Graphs] can be extended to basic graph patterns. The
 result of this mapping is an instance of an extended OWL 2 DL grammar, where the productions for Class, ObjectProperty,
 DataProperty, Individual, and Literal of the OWL 2
 functional-style syntax grammar [OWL 2 Structural Specification] are extended to alternatively produce variables, i.e., instances of the Var production from the SPARQL
 grammar.

 Class := IRI | Var

 ObjectProperty := IRI | Var

 DataProperty := IRI | Var

 Individual := NamedIndividual | AnonymousIndividual | Var

 Literal := typedLiteral | stringLiteralNoLanguage | stringLiteralWithLanguage | Var

[bookmark: VarTyping]7.1.3 Variable Typing

The Direct Semantics entailment regime requires extra triples in a basic graph pattern that give typing information for the variables. Let
 x be a variable from BGP. If BGP contains a triple ?x rdf:type TYPE, where TYPE is one of
 owl:Class, owl:ObjectProperty, owl:DatatypeProperty, or owl:NamedIndividual, ?x is
 declared to be of type TYPE. BGP satisfies the typing constraints of the entailment regime if no variable is declared as being
 of more than one type. Without type declarations for variables, parsing a BGP into ontology structures would be very difficult.
 Consider the following query

SELECT ?s ?p ?o WHERE { ?s ?p ?o }

Without any restrictions this query could be a query for

		object property assertions of the form ObjectPropertyAssertion(?p ?s ?o)

		data property assertions of the form DataPropertyAssertion(?p ?s ?o)

		inverse object properties, i.e., the BGP maps to ObjectInverseOf(?o) where s maps to a blank node and
 p to owl:inverseOf,

		subclasses, i.e., the BGP maps to SubClassOf(?s ?o) where p binds to rdfs:subClassOf,

		equivalent classes, i.e., the BGP maps to EquivalentClasses(?s ?o) where p binds to
 owl:equivalentClass,

		disjoint classes, i.e., the BGP maps to DisjointClasses(?s ?o) where p binds to owl:disjointWith,

		...

In order to answer the query without any typing constraints, all possible ways of mapping the BGP into ontology structures have to be considered.
 Even if variables can only occur in the position of function parameters of the functional-style syntax, the BGP from the above query can still be
 mapped to ObjectPropertyAssertion(?p ?s ?o), DataPropertyAssertion(?p ?s ?o), or
 AnnotationAssertion(?p ?s ?o) without variable typing information.

The inclusion of type declarations from the queried ontology means that at least the non-variable terms in the query can be disambiguated
 without additional typing information in the query. For example, the BGP of the query

SELECT ?x WHERE { ?x ex:p ?y }

is parsed into

ObjectPropertyAssertion(ex:p ?x ?y)

if ex:p is declared as an object property in the queried ontology and into

DataPropertyAssertion(ex:p ?x ?y)

if ex:p is declared as a data property.

Note that variable declarations are local to a basic graph pattern, i.e., a declaration in one BGP is not visible within another BGP and, within different BGPs, variables can also be declared to be of different types.

[bookmark: OWLDSEntRegime]7.2 The OWL 2 Direct Semantics Entailment Regime

		Name		OWL 2 Direct Semantics

		IRI		http://www.w3.org/ns/entailment/OWL-Direct

		Legal Graphs		Any RDF graph which can be mapped into an OWL 2 DL ontology document.

		Legal Queries		Let Q be a legal SPARQL query, BGP a basic graph pattern in Q, G the queried graph, and O(G) the ontology for G. A basic graph pattern is legal
 for O(G) if it satisfies the typing constraints of the entailment regime and can be mapped into an OWL ontology or a
 set of OWL axioms from the extended OWL structural specification using the declarations from O(G). The query Q
 is legal for the regime and O(G) if all basic graph patterns in Q are legal for O(G).

		Illegal Handling		In case the query is illegal due to syntax errors, the system MUST raise a
 MalformedQuery fault. In case the queried graph is illegal
 due to syntax errors, the system MUST raise a QueryRequestRefused fault. If the queried ontology is not an OWL
 2 DL ontology or the query is not legal for the ontology, the system MAY refuse the query and raise a
 QueryRequestRefused error.

		Entailment		OWL 2 Direct Semantics [OWL 2 Direct Semantics]

		Inconsistency		If the queried ontology is inconsistent under OWL 2 Direct Semantics, the system MUST raise an
 error.

		Query Answers		Systems MUST provide a means to determine which datatype map they assume and whether they impose any limits on datatype
 lexical forms; such information could, for example, be listed in supporting documentation. A canonical literal MUST be
 defined for all literals that use a datatype from the
 datatype map.

 Let G be a legal RDF graph for the entailment regime, BGP a legal basic graph pattern, V(BGP) the set of variables in BGP, SG the scoping graph for G and BGP, O(SG) the ontology for SG, sk a total mapping from
 anonymous individuals in O(SG) to IRIs from a vocabulary disjoint from the vocabulary of O(SG) and BGP, sk(O(SG)) the resulting
 Skolemization of O(SG). Applying sk to a term t, written sk(t), yields sk(t) if sk
 is defined for t and t otherwise; applying sk to a BGP, written sk(BGP), replaces each blank node b in BGP for which sk is defined with sk(b).
 The set Lit(SG) is the set of all literals "lc"^^dc such that
 "l"^^dt occurs in SG and "lc"^^dc is the canonical literal for "l"^^dt.

 Let OE(BGP) be the ontology obtained by mapping BGP into the extension of the OWL 2 structural
 specification. Let Ax be a function that takes an ontology O from the extended structural specification and returns all axioms in O. Let
 Ax(BGP) be the axioms in OE(BGP), and AI(BGP) the set of anonymous individuals in OE(BGP). The set owl2V contains the URI references of the OWL 2 RDF-Based vocabulary, which is taken to include the RDF and RDFS
 vocabularies and the OWL 2 datatype names and facet names; owl2V-Minus is the set of URI references in owl2V minus URI
 references of the form rdf:_n with n in {1, 2, ... }.

 A solution mapping μ is a possible solution for BGP from G under the OWL 2 Direct Semantics if dom(μ) = V(BGP) and there is
 an RDF instance mapping σ from AI(BGP) to RDF-T such that dom(σ)=AI(BGP) and the pattern instance mapping P=(μ, σ) is such
 that P(BGP) are well-formed RDF triples that are legal for the regime (i.e., P(BGP) is a variable-free and legal basic graph pattern for O(SG))
 and OWL 2 Direct Semantics entailed by O(SG).

 A possible solution μ is a solution for BGP from SG under OWL 2 Direct Semantics if:

 (C1) Each logical axiom ax in sk(OE(P(BGP))) is ground and entailed by sk(O(SG)) under the OWL 2 Direct Semantics.

 (C2) For each variable x in V(BGP), if μ(x) is a literal, then μ(x) is in Lit(SG) and μ(x) occurs in O(SG) or in
 owl2V-Minus otherwise.

 (C3) Adding all axioms in OE(P(BGP)) to O(SG) results in a valid OWL 2 DL ontology.

 The multiplicity of μ in the multiset of solutions is the maximal number of distinct RDF instance mappings σ that yield a pattern
 instance mapping P = (μ, σ) for which μ is a solution.

[bookmark: OWLDSRestrictions]7.3 Restrictions on Solutions (Informative)

In this section the restrictions on solutions are explained. As the previously defined regimes, a Skolemization of the queried graph and the BGP
 is used to limit answers that just differ in blank node labels (C1). An explanation for this restriction is given in the RDF
 entailment regime section.

Condition (C2) is also applied as in the previously defined regimes and guarantees finite answers. The use of owl2V-Minus is purely for consistency
 with the other regimes, but could be omitted completely since under the Direct Semantics there are no axiomatic triples and variables can only bind to
 built-in terms that are also built-in entities. Built-in entities such as owl:Thing are assumed to be present in any ontology (see Table 5 [OWL 2 Structural Specification]), i.e., O(SG) automatically includes declarations
 for these built-in entities. As under the OWL 2 RDF-Based Semantics, (C2) prevents infinite answers that could otherwise
 come from the very powerful datatype reasoning. An example that illustrates this is given in the OWL 2 RDF-Based
 Semantics entailment regime section. An explanation for the restriction to canonical forms of literals is given in the D-entailment regime.

[bookmark: OWLDSConstraints]7.3.1 BGP Constraints for OWL 2 DL

Condition (C3) requires that the axioms from the instantiated BGP satisfy the restrictions for OWL 2 DL ontologies, i.e., if they where added to
 the queried ontology, then the resulting ontology satisfies the restrictions of OWL 2 DL. These restrictions are in place to guarantee that the
 key reasoning tasks in OWL 2 with Direct Semantics are decidable. For example, for owl:topDataProperty, the following requirement has to be met in OWL 2 DL:

		The owl:topDataProperty property occurs in Ax only in the superDataPropertyExpression part of SubDataPropertyOf
 axioms.

(C3) guarantees that the restrictions that are applied to the queried ontology are equally applied to the query. Since an OWL reasoner for the
 Direct Semantics might have to work with the axioms in O(SG) and the axioms from O(BGP) simultaneously, this condition also prevents that, for
 example, a non-simple property from O(SG) is used in a FunctionalObjectProperty axioms or within a cardinality restriction in O(BGP). This would
 violate the restrictions on non-simple properties.

[bookmark: OWLDSLiteralVars]7.3.2 Queries with Variables in Literal Positions

Individuals can be related to a data value although this is not explicitly stated and the actual value might not occur in any axiom of the
 ontology. Although the example given for the RDF-Based Semantics cannot be used under the Direct Semantics, other examples can cause infinite answers without condition (C2). For example, consider an ontology with a data property
 ex:dp containing the axiom

ClassAssertion(DataExactCardinality(2 ex:dp DatatypeRestriction(xsd:int xsd:minExclusive "5"^^xsd:int xsd:maxExclusive "8"^^xsd:int)) ex:Peter)

The axiom states that Peter has exactly 2 ex:dp successors and these successors have to be integers greater than 5 and less than 8,
 which means that one successor must have the value 6 and the other one the value 7. This axiom can be expressed in Turtle as

ex:Peter a [
 a owl:Restriction ;
 owl:onProperty ex:dp ;
 owl:qualifiedCardinality "2"^^xsd:nonNegativeInteger ;
 owl:onDataRange [
 a rdfs:Datatype ;
 owl:onDatatype xsd:int ;
 owl:withRestrictions (
 [xsd:minExclusive "5"^^xsd:int]
 [xsd:maxExclusive "8"^^xsd:int]
)
]
]

Under OWL 2 Direct Semantics, an ontology containing the above axiom entails DataPropertyAssertion(ex:dp ex:Peter "6"^^xsd:int)
 and DataPropertyAssertion(ex:dp ex:Peter "7"^^xsd:int), which is ex:Peter ex:dp "6"^^xsd:int and
 ex:Peter ex:dp "7"^^xsd:int in Turtle, respectively. If the values 6 and 7 do not occur in other axioms, then restriction (C2)
 prevents such possible answers from actually being part of the
 solutions since the values occur neither in the ontology nor in the vocabulary owl2V-Minus. Consider, for example, the following query against
 the above ontology:

SELECT ?s ?d WHERE { ?s ex:dp ?d }

 where the BGP is mapped to the following FSS element:
DataPropertyAssertion(ex:dp ?s ?d)

This query has an empty answer. Assume now, that the ontology is extended with the assertion:

DataPropertyAssertion(ex:dp ex:Mary "6"^^xsd:int)

in Turtle:

ex:Mary ex:dp "6"^^xsd:int .

The same query has now two answers:

[bookmark: table11]		s		d

		ex:Peter		"6"^^xsd:int

		ex:Mary		"6"^^xsd:int

Adding an assertion that is not related to the assertion regarding ex:Peter, causes ex:Peter to also appears among
 the answers since "6"^^xsd:int occurs now in the queried ontology and (C2) is satisfied for both answers.

Since there are infinitely many data values, (C2) has the advantage that a SPARQL endpoint can compute the
 answers to a query with BGP ex:Peter ex:dp ?x by replacing all possible data values for x with values that occur in
 the ontology. Since there still might be many literals that have to be tested and no goal directed procedure is currently known, systems might
 choose to use incomplete reasoning regarding literals and only return explicitly asserted literal values (such as
 DataPropertyAssertion(ex:dp ex:Mary "6"^^xsd:int) above) or enrich the explicitly asserted values with subproperty reasoning and
 sameAs individual reasoning. Systems SHOULD state in their accompanying documentation when incomplete reasoning is used.

[bookmark: OWLDSHigherOrder]7.4 Higher-Order Queries (Informative)

OWL's Direct Semantics is rooted in standard First-Order Logic, but it might seem as if the OWL Direct Semantics entailment regime goes beyond First-Order queries.
 For example, one can use the BGP
 ?x rdfs:subClassOf ?y to query for pairs of sub and superclasses. This is, variables can bind to classes (representing sets of
 individuals) and not just to individuals or data values. Queries in which variables are used in positions of a First-Order Logic quantifier, will,
 however, be illegal since such queries cannot be mapped to OWL objects as required. For example, the following (illegal) query
 asks whether some or all brothers of Peter are persons:

SELECT ?x WHERE {
 ex:Peter rdf:type [
 rdf:type owl:Restriction ;
 owl:onProperty ex:hasBrother ;
 ?x ex:Person .
]
}

In functional-style syntax the BGP of the query corresponds to the axiom

ClassAssertion(?x(ex:hasBrother ex:Person) ex:Peter)

Here the variable occurs in the position of a quantifier and not just in the position of OWL entities such as class names or individual names.

Due to the restriction that variables can only bind to terms from a finite vocabulary, any query can be reduced to a finite set of Boolean queries
 that can be answered under OWL's First-Order semantics. For example, the subclass query above can be answered, by asking for all pairs of class names
 from the queried ontology, whether the instantiated (hence, variable-free) pattern is entailed by the queried ontology under the OWL Direct Semantics.
 Thus, the SPARQL queries in the entailment regime still have a First-Order semantics.

[bookmark: OWL2ProfilesDS]7.5 OWL 2 Entailment Checkers and Profiles

The OWL 2 Direct Semantics is not defined for arbitrary RDF graphs, but only for graphs that satisfy the OWL 2 DL constraints. The OWL 2 profiles
 further restrict the allowed inputs. As for the RDF-Based Semantics, SPARQL 1.1 Service Descriptions can be used to describe what kind of entailment checkers is used in the backgroud to answer SPARQL queries. In addition to specifying the used semantics by relating the IRI of the endpoint via the property sd:defaultEntailmentRegime or sd:entailmentRegime to the IRI of the entailment regime, one can relate the endpoint IRI via the property sd:defaultSupportedEntailmentProfile or sd:supportedEntailmentProfile to one of the following profile IRIs:

		http://www.w3.org/ns/owl-profile/DL for OWL 2 DL entailment checkers;

		http://www.w3.org/ns/owl-profile/EL for OWL 2 EL entailment checkers;

		http://www.w3.org/ns/owl-profile/QL for OWL 2 QL entailment checkers;

		http://www.w3.org/ns/owl-profile/RL for OWL 2 RL entailment checkers.

The profile IRI together with the semantics then indicates what kind of entailment checker is used in the backgroud and what syntactic restrictions this tool makes.

[bookmark: RIFCoreEnt]8 RIF Core Entailment

The RIF RDF Compatibility document [RIF RDF] specifies the interoperation between RIF and the data and ontology languages RDF,
 RDF Schema, and OWL. Interoperation is defined with respect to the semantics of RIF-RDF combinations. RIF-RDF combinations (or simply,
 combinations) consist of a RIF document and a set of RDF graphs. For the purpose of RIF Core entailment, we will only be concerned
 with combinations involving the single RDF graph comprised of the Skolemization of the merge of the scoping graph and any graphs imported from the RIF document.
 The scoping graph considered does not include the statement that refers to the RIF document (more on this in 8.4). The semantics of combinations are defined in terms of pairs of RIF and RDF interpretations. Each pairing is governed by a number of
 conditions that maintain a correspondence between RIF semantic structures (interpretations) and RDF interpretations. This maintained
 correspondence ensures the proper interpretation of names. It also maintains a correspondence between RDF triples of the form s p o, RIF frames of the
 form s[p->o], and their respective terms.

These conditions are enforced on a
 common RIF-RDF interpretation that is the basis for the standard model-theoretic notions of satisfiability and entailment with
 respect to common RIF-RDF interpretations, and when they are a model of a combination. A common RIF-RDF interpretation
 satisfies a combination if the semantic multi-structure
 (the first component of the common interpretation) is a RIF BLD
 model of the RIF document and the simple interpretation satisfies the RDF graph(s) in the combination. Such a common RIF-RDF
 interpretation can also be said to satisfy generalized
 RDF graphs that are (intuitively) those RDF graphs satisfied by the simple interpretation modified to correspond with the
 interpretation of the RIF document. The RIF-Simple-entails relationship builds on this and is the basis for the semantics of
 answers to queries using this entailment regime. Other similar RIF entailment relationships can be built for profiles such as those that
 have already been defined in this document as entailment regimes (RDF, RDFS, OWL Direct and RDF-Based Semantics, etc.). In addition and as described in [OWL2-RL-RIF],
 an OWL 2 RL ontology can be mapped to a customized RIF Core rule set.

The compatibility document defines 3 additional notions of RIF satisfiability with respect to a combination that builds on simple entailment: RIF-RDF, RIF-RDFS, and RIF-D satisfiability. We define answers with respect to RDF graphs that are RIF-Simple-entailed by the combination formed from the (Skolemized) scoping graph and a referenced RIF-Core [RIF Core] document. These additional notions of RIF satisfiability can similarly be used as the basis for more expressive RIF Core entailment regimes.

[bookmark: SimpeRIFCoreEntRegime]8.1 (Simple) RIF Core Entailment Regime

		Name		(Simple) RIF Core Entailment Regime

		IRI		http://www.w3.org/ns/entailment/RIF

		Legal Graphs		RDF graphs containing a triple with rif:usedWithProfile as predicate (see 8.4) and
 where the imported RIF document is safe and does not include a binary Import statement with a profile other than Simple.
 If the RIF document imports RDF graphs, they must also use the Simple profile and these graphs are considered along with a version of the scoping graph formed without this single triple.

		Legal Queries		Any legal SPARQL query.

		Illegal Handling		In case the query is illegal (syntax errors), the system MUST raise a
 MalformedQuery fault. In case the queried graph is illegal
 (syntax errors), the system MUST raise a QueryRequestRefused fault.

		Entailment		RIF-Simple entailment [RIF RDF]

		Inconsistency		As with the RDF entailment regime, any legal RDF graph (by itself) is satisfiable; no explicit inconsistency handling is required.

		Query Answers		Let G be the merge of the queried RDF graph (without the rif:usedWithProfile statement) along with any RDF graphs included in the referenced RIF Core document, BGP be a basic graph pattern, V(BGP) the set of variables in BGP, B(BGP) the set of blank nodes in BGP, SG the
 scoping graph for G and BGP, and sk(SG) a Skolemization of SG with respect to a vocabulary disjoint from the vocabulary of SG and BGP.
 Applying sk to a term t, written sk(t), yields sk(t) if sk is defined for t and t
 otherwise; applying sk to a BGP, written sk(BGP), replaces each blank node b in BGP for which sk is defined with sk(b).

 A solution mapping μ is a solution for BGP from G under RIF-Simple entailment if dom(μ) = V(BGP) and there is an RDF
 instance mapping σ from B(BGP) to RDF-T such that dom(σ)=B(BGP) and the pattern instance mapping P=(μ, σ) is such
 that sk(P(BGP)) are ground, well-formed RDF triples that are RIF-Simple entailed by the
 RIF-RDF combination formed with
 the safe RIF Core document referenced from SG via the object of the rif:usedWithProfile statement.

 The multiplicity of μ in the multiset of solutions is the maximal number of distinct RDF instance mappings σ that yield a pattern
 instance mapping P = (μ, σ) for which μ is a solution.

For example, consider the Class_Membership
 test case from the RIF test cases repository comprised of the following RDF graph and imported RIF Core document (in the
 presentation syntax):

(1) ex:Adrian ex:isChildOf ex:Uwe .
(2) ex:Adrian rdf:type ex:Male .
(3) ex:Uwe rdf:type ex:Male .
(4) <Class_Membership_rule.rifps> rif:usedWithProfile <http://www.w3.org/ns/entailment/Simple> .

Group (
 Forall ?X ?Y (
 ?Y [ex:isFatherOf -> ?X] :- And(?X [ex:isChildOf -> ?Y]
 ?Y [rdf:type -> ex:Male]
)
)
)

The SPARQL query below can be dispatched against the graph using the (Simple) RIF Core Entailment Regime:

SELECT ?father ?child WHERE { ?father ex:isFatherOf ?child . }

producing the single solution:

[bookmark: table11RIF]				father		child

		μ1		ex:Uwe		ex:Adrian

This follows from the fact that the result of applying a pattern instance mapping comprised of the solution μ1 above and an empty mapping
 for blank nodes against the BGP in the query, i.e., sk(P(?father ex:isFatherOf ?child)), is RIF-Simple entailed by the RIF-RDF combination formed
from the RIF Core document and a graph comprised of just statements (1)-(3).

[bookmark: RIFCustomRuleSets]8.2 Custom Rulesets for Common Vocabulary Interpretations (Informative)

RDF vocabulary such as RDFS and OWL 2 RL can be interpreted within this entailment regime through the use of custom
 rulesets. For example, RDFS entailment can be implemented by using the RRDFS ruleset specified in [RIF RDF].
 Similarly, the RIF Core rules in [OWL2-RL-RIF] can be used to capture an axiomatization of OWL 2 RL.

[bookmark: RIFFiniteAnswers]8.3 Finite Answer Set Conditions (Informative)

Traditionally, one of the ways to ensure that the underlying decision problems associated with a Horn clause
 knowledge representation are decidable is to prevent the use of function symbols. RIF-Core's
 syntax permits built-in functions in the body of
 a rule. A Horn Clause query is said to be safe it it has a finite set of answers. In order to ensure
 that a Horn Clause logic programming language is complete (i.e., it guarantees all answers to every query)
 it is necessary to test whether a given query is safe [SAFETY].

Certain safety conditions on logic programs
 permit the use of cyclic references between built-in function symbols defined by an external procedure.
 RIF-Core's notion of strong safety facilitates the ability to construct a
 finite grounding which addresses both components of condition C4 regarding
 SPARQL extensions and their solution sets: uniqueness and finiteness.

Consider the following strongly safe RIF Core document, scoping graph, and query, for which an answer set can be determined from the unique, minimal, and finite RIF-RDF model of the combination (despite the use of a built-in predicate). In this query, the user asks for all hospital episodes (or visits) and the various health care events they subsume (as indicated by the ex:hasHospitalization predicate). The ex:hasHospitalization predicate is defined (in the strongly safe RIF Core document) as a relation between a health care event with the larger hospital encounter event it is a part of based on the ordering of the dates associated with the events. The ordering constraint is enforced through the use of the pred:dateTime-greater-than and pred:dateTime-less-than external built-in predicates.

Forall ?x ?y ?z ?u
 (?EVT[ex:hasHospitalization -> ?HOSP]
 :- And(?HOSP # ex:HospitalEncounter
 ?HOSP [ex:startsNoEarlierThan -> ?ENCOUNTER_START
 ex:stopsNoLaterThan -> ?ENCOUNTER_STOP]
 ?EVT # ex:HealthCareEvent
 ?EVT [ex:startsNoEarlierThan -> ?EVT_START_MIN]
 pred:dateTime-greater-than(xsd:dateTime(?EVT_START_MIN) xsd:dateTime(?ENCOUNTER_START))
 pred:dateTime-less-than(xsd:dateTime(?EVT_START_MIN) xsd:dateTime(?ENCOUNTER_STOP)))
)

(1) <.. path to above document ..> rif:usedWithProfile <http://www.w3.org/ns/entailment/Simple>.
(2) ex:Operation1 rdf:type ex:HealthCareEvent;
(3) ex:startsNoEarlierThan "2000-12-01T05:00:00"^^xsd:dateTime ;
(4) ex:startsNoEarlierThan "2000-12-11T16:31:00"^^xsd:dateTime .
(5) ex:Episode1 rdf:type ex:HospitalEncounter;
(6) ex:startsNoEarlierThan "2000-11-31T12:00:00"^^xsd:dateTime ;
(7) ex:stopsNoEarlierThan "2000-12-26T05:36:00"^^xsd:dateTime .
(8) ex:XRay1 rdf:type ex:HealthCareEvent;
(9) ex:startsNoEarlierThan "1960-01-10T03:00:00"^^xsd:dateTime ;
(10) ex:stopsNoEarlierThan "1960-01-11T07:00:00"^^xsd:dateTime .

SELECT ?EVT ?HOSP WHERE { ?EVT ex:hasHospitalization ?HOSP }

This should result in the following bindings as a result of the rules and the triples (2)-(7) from a SPARQL service that implements the RIF Core entailment regime:

		EVT		HOSP

		ex:Operation1		ex:Episode1

[bookmark: RIFDocReferences]8.4 Referencing a RIF Document

RIF RDF and OWL Compatibility [RIF RDF] defines the entailments of combinations (R, G) where R (a RIF rule set) includes an import of G (an RDF graph).

For the inverse of such a reference, i.e., the import of a RIF document into an RDF graph the designated RDF predicate rif:usedWithProfile enables an import to be specified from the graph G instead of from R.

In the simple usage the graph G is a plain RDF graph and rif:usedWithProfile is used to combine that graph with one or more externally defined RIF rule sets. In this usage each subject of a rif:usedWithProfile assertion should be the URI for a RIF rule set (which may be encoded in RIF-XML or RIF-in-RDF) and the object should be an import profile as defined in RIF RDF and OWL Compatibility [RIF RDF].

The semantics of rif:usedWithProfile is explained in the following subsection.

[bookmark: RIFUsedWithProfile]8.4.1 Semantics of rif:usedWithProfile

A RIF-aware processor shall treat any RDF graph G as a RIF-RDF or RIF-OWL combination (see [RIF RDF]) as follows:

Let G' be the graph obtained from G by removing all triples with predicate rif:usedWithProfile. Then G is to be treated by a RIF-aware processor as the ruleset R:

 Document (
 Imports(R1')
 ...
 Imports(Rn')
 Imports(G' P1)
 ...
 Imports(G' Pn)
)

where Ri and Pi are the subjects/objects respectively of triples of form:

 Ri rif:usedWithProfile Pi .

and Ri' is the RIF document corresponding to an IRI Reference Ri.

Remark: Note that the fact that G' is treated as being imported with all profiles P1 ... Pn enforces G' to be treated according to the highest profiles among P1 ... Pn, see also Section 5.2 of [RIF RDF].

[bookmark: RIFDereferencing]8.4.2 Dereferencing RIF Documents (Informative)

Note that this specification does not define how an RDF store refers to or stores the RIF document Ri' corresponding to a IRI Reference Ri. Alternative methods include, but are not limited to:

		HTTP dereferencing

		Encoding RIF documents within named graphs within the dataset

We will sketch both methods in the following.

[bookmark: RIFHTTPDereferencing]8.4.2.1 HTTP Dereferencing

This method assumes that Ri is an HTTP dereferenceable IRI which returns a RIF/XML document Ri'.

[bookmark: RIFDocsAsNamedGraphs]8.4.2.2 Encoding RIF documents within named graphs in the dataset

In some scenarios, one may want to access RIF rulesets from the same RDF store where the queried RDF graphs are stored.

This method therefore needs an encoding of RIF documents into an RDF graph, such as for instance the one sketched in [RIF-in-RDF], which allows to store RIF documents as RDF graphs within the data store and retrieve the RIF ruleset encoded in an RDF graph by a respective mapping (such as the inverse mapping XTr described in Section 6 of [RIF-in-RDF]). Since RDF datasets already provide a mechanism for accessing an RDF graph by an identifying IRI, in this setting, RDF encoded RIF documents Ri' can simply be made available as named graphs with graph name Ri within the dataset.

For instance, assuming that the IRI reference <http://example.org/r1> denotes an RDF encoded RIF document consisting of the single RIF rule as follows

 Document(
 Prefix(foaf <http://xmlns.com/foaf/0.1/>)
 Prefix(rel <http://purl.org/vocab/relationship/>)

 Group
 (
 Forall ?S ?O (
 ?S [foaf:knows ?O] :- ?S [rel:worksWith ?O]
)
)
)

which can be encoded in RDF according to [RIF-in-RDF] as follows:

 @prefix : <http://www.w3.org/2007/rif#> .
 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix rel: <http://purl.org/vocab/relationship/> .

 <http://example.org/r1> a :Document;
 :directives () ;
 :payload [rdf:type :Group ;
 :sentences (
 [rdf:type :Forall;
 :formula [a :Implies ;
 :if [rdf:type :Frame ;
 :object [rdf:type :Var; :varname "S"] ;
 :slots ([rdf:type :Slot; :slotkey [
 rdf:type :Const ;
 :constIRI "http://purl.org/vocab/relationship/worksWith"];
 :slotvalue [rdf:type :Var; :varname "O"]])
];
 :then [rdf:type :Frame ;
 :object [rdf:type :Var; :varname "S"] ;
 :slots ([rdf:type :Slot; :slotkey [
 rdf:type :Const ;
 :constIRI "http://xmlns.com/foaf/0.1/knows"];
 :slotvalue [rdf:type :Var; :varname "O"]])
]] ;
 :vars ([rdf:type :Var; :varname "S"] [rdf:type :Var; :varname "O"])])
] .

Let the dataset consist of the single named graph <http://example.org/r1>
and the default graph consist of the two triples

 @prefix : <http://www.example.org/> .
 @prefix rel: <http://purl.org/vocab/relationship/> .
 @prefix rif: <http://www.w3.org/2007/rif#> .

 :bob rel:worksWith :alice .
 <http://example.org/r1> rif:usedWithProfile <http://www.w3.org/ns/entailment/Simple> .

then the SPARQL query

 SELECT *
 WHERE { ?S ?P ?O }

returns

[bookmark: tableRESULTRIF]		S		P		O

		:bob		foaf:knows		:alice

		:bob		rel:worksWith		:alice

Note that in such a setting, where the RDF-encoded RIF rulesets are stored as named graphs in the dataset, one can also pose queries against the RDF encoding of the RIF ruleset itself, e.g. asking for variable names used in the ruleset <r1>:
 PREFIX rif: <http://www.example.org/>
 SELECT DISTINCT ?N
 WHERE { GRAPH <r1> { [rif:varname ?N] } }

[bookmark: tableRESULTRIFmeta]		N

		"S"

		"O"

[bookmark: DataSets]9 Entailment Regimes and Data Sets (Informative)

Many RDF data stores hold multiple RDF graphs and applications can make queries that involve information from more than one graph. This section
 clarifies how entailment regimes behave in the presence of named graphs.

As defined in the SPARQL specification, a SPARQL query is executed against an RDF
 Dataset which represents a collection of graphs. An RDF Dataset comprises one graph, the default graph, which does not have a name, and zero or more
 named graphs, where each named graph is identified by an IRI. The graph that is used for matching a basic graph pattern is the active graph. Under an
 entailment regime E other than simple entailment, we do not only consider the triples that are in the graph, but also triples that are E-entailed by the
 graph. The entailed triples must, however, be E-entailed by the active graph and not by a merge of the triples in all graphs. This follows from
 conditions 1 and 3 of the conditions on extensions for basic graph matching.

For example, we consider a data set which consists of an empty default graph, a named graph graphA with IRI http://example.org/a.rdf,
 and a named graph graphB with IRI http://example.org/b.rdf. The named graphs contain the following data:

http://example.org/a.rdf:

ex:p rdfs:domain ex:A .

http://example.org/b.rdf:

ex:x ex:p ex:y .

If we ask the following query under RDFS entailment

SELECT ?g WHERE { GRAPH ?g { ?inst rdf:type ex:A } }

the answer sequence is empty because neither the default graph, nor the named graphs on their own entail a triple that would provide the required
 binding for ?inst.

In order to evaluate a query over the merge of the triples in the named graphs, one can use several FROM clauses, which result in the
 creation of a fresh default graph for the query that contains a merge of the triples, e.g.,

SELECT ?inst FROM <http://example.org/a.rdf> FROM <http://example.org/b.rdf> WHERE { ?inst rdf:type ex:A }

has the answer { (inst, ex:x) }. One cannot merge triples from several sources into a named graph (they will always be merged into a fresh
 default graph) and such an extension would require changes to the conditions for extensions of basic graph pattern matching in the existing SPARQL query
 language specification.

[bookmark: PropertyPaths]10 Entailment Regimes and Property Paths (Informative)

[bookmark: property-path]SPARQL 1.1 introduces property paths, which allow for using path expressions in
 place of the predicate of a triple pattern. Such path expressions describe a possible route through the active graph. For an example, assume the
 following data in the default graph:

ex:a rdf:type ex:C .
ex:C rdfs:subClassOf ex:D .
ex:a ex:p1 ex:b .
ex:b ex:p2 ex:c .
ex:p2 rdfs:subPropertyOf ex:p3 .

and the following query:

SELECT ?type ?c WHERE { ex:a rdf:type ?x . ?x rdfs:subClassOf* ?type . ex:a ex:p1/ex:p3 ?c }

The WHERE clause of the above query contains one triple pattern and two property path patterns. For the query processing, the property path patterns are
 first translated to algebra objects and then, where possible,
 simplified, i.e., they are rewritten with the purpose of eliminating path
 expressions in a semantics preserving way. For the above query, the algebra translation of the two property path expressions
 rdfs:subClassOf* and ex:p1/ex:p3 yields:

ZeroOrMorePath(link(rdfs:subClassOf))

 and
seq(link(ex:p1), link(ex:p3))

 the translation and simplification then yields:
Path(?x, ZeroOrMorePath(link(rdfs:subClassOf)), ?type)

 and the triple pattern
ex:a ex:p1 ?tmp1 . ?tmp1 ex:p3 ?c .

with ?tmp1 a fresh variable. The latter property path has been simplified into two triples patterns, whereas the first one remained a
 property path pattern. Since the extension point for redefining basic graph pattern matching is only for basic graph
 patterns, the entailment regimes do not specify any behavior for property path algebra objects such as Path(.) and the specific operators
 such as ZeroOrMorePath(.). Thus, systems that employ an entailment regime can either reject
 queries with property path expressions that cannot be eliminated or employ the evaluation as defined in the evaluation semantics of the SPARQL 1.1 Query specification. For the latter case,
 evaluating Path(?x, ZeroOrMorePath(link(rdfs:subClassOf)), ?type) yields

[bookmark: resultUnion]		x		type

		ex:a		ex:a

		ex:b		ex:b

		ex:c		ex:c

		ex:C		ex:C

		ex:D		ex:D

		ex:C		ex:D

The evaluation of Bgp(ex:a rdf:type ?x) now depends on the entailment regime that is used. We assume, for this example, that
 RDFS entailment is used. Thus, the evaluation yields

[bookmark: resultBgpOne]		x

		ex:C

		ex:D

We can now compute the join to obtain

[bookmark: firstJoin]		x		type

		ex:C		ex:C

		ex:D		ex:D

		ex:C		ex:D

Evaluating Bgp(ex:a ex:p1 ?tmp1 . ?tmp1 ex:p3 ?c) would yield an empty solution set under simple entailment (i.e., standard subgraph
 matching). Under RDFS entailment we get, however,

[bookmark: bgp2]		tmp1		c

		ex:b		ex:c

We can now compute the final result for the query pattern under RDFS entailment by joining the last two solution sets:

[bookmark: secondJoin]		x		type		tmp1		c

		ex:C		ex:C		ex:b		ex:c

		ex:D		ex:D		ex:b		ex:c

		ex:C		ex:D		ex:b		ex:c

The overall query result can then be obtained by projecting x and tmp1 away.

[bookmark: project]		type		c

		ex:C		ex:c

		ex:D		ex:c

		ex:D		ex:c

In the presence of a particular entailment regime, path expressions are sometimes redundant as their semantics is already captured by the entailment
 relation. This is
 often the case when applying path expressions to terms of the special vocabulary for the entailment regime that is used. In the above example,
 rdfs:subClassOf is already treated as a reflexive and transitive relation under RDFS entailment. Thus, the first BGP
 Bgp(ex:a rdf:type ?x) already yields both the explicitly stated type ex:C as well as the RDFS entailed type ex:D.
 For this reason, the solution that binds type to D occurs twice, whereas under simple entailment, it would only occur once
 disregarding the fact that the second property path from the query has no solutions under simple entailment. In order to avoid the additional solution
 the query pattern

ex:a rdf:type ?x . ex:a ex:p1/ex:p3 ?c

can be used. This also avoids the computation of several intermediate results.

[bookmark: PropertyPathsLimitations]10.1 Limitations of Property Paths in Combination with Entailment Regimes

Since property paths are evaluated without entailment, the evaluation
 under an entailment regime can yield counter-intuitive results. Assuming the use of the RDFS entailment regime and the query

SELECT * WHERE { ?s (ex:p3+) ?o }

over the above given example data, the result is empty. Although the data contains ex:b ex:p2 ex:c and
 ex:p2 rdfs:subPropertyOf ex:p3, which under RDFS entailment implies ex:b ex:p3 ex:c, this fact is not used since the arbitrary
 length path expression ex:p+ is evaluated with simple entailment, i.e., via subgraph matching on the input data.

Since property path evaluation works directly on the active graph, the OWL Direct Semantics entailment regime is unlikely to support queries where
 the query pattern contains path expressions since systems that apply the Direct Semantics of OWL do not work with the graph directly, but translate the
 triples into OWL structural objects. Combining the other entailment regimes with property path expressions is, however, relatively straightforward.

Future versions of SPARQL may define further extensions to the handling of property paths together with entailment regimes that handle property paths
 in a specific way, which is why the present section is kept informative.

[bookmark: Updates]11 Entailment Regimes and Updates (Informative)

SPARQL 1.1 also describes an update language (see SPARQL 1.1/Update and
 SPARQL 1.1/HTTP RDF Update), which can be used to add, modify, or delete data in an RDF
 graph. Support for SPARQL 1.1/Update and SPARQL 1.1/HTTP RDF Update is optional. SPARQL endpoints that use an entailment regime other than simple
 entailment may support update queries, but the exact behavior of the system for such queries is not covered by this specification. SPARQL endpoints
 that use an entailment regime other than simple entailment and that do support update queries should describe the system behavior in the system's documentation.

[bookmark: sec-bibliography]A References

[bookmark: sec-existing-stds]A.1 Normative References

		[bookmark: OWL2Conformance]OWL 2 Conformance

		
 OWL 2 Web Ontology Language Conformance, eds. Michael Smith, Ian Horrocks, Markus Krötzsch, Birte Glimm. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-owl2-conformance-20091027/.)

		[bookmark: OWL2DS]OWL 2 Direct Semantics

		
 OWL 2 Web Ontology Language Direct Semantics, eds. Boris Motik, Peter F. Patel-Schneider, Bernardo Cuenca Grau. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/.)

		[bookmark: RDF2OWLMAPPING]OWL 2 Mapping to RDF Graphs

		
 OWL 2 Web Ontology Language Mapping to RDF Graphs, eds. Peter F. Patel-Schneider, Boris Motik. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/.)

		[bookmark: OWL2Profiles]OWL 2 Profiles

		
 OWL 2 Web Ontology Language Profiles, eds. Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, Carsten Lutz. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/.)

		[bookmark: OWL2RDFBS]OWL 2 RDF-Based Semantics

		
 OWL 2 Web Ontology Language RDF-Based Semantics, ed. Michael Schneider. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/.)

		[bookmark: OWL2]OWL 2 Structural Specification

		
 OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax, eds. Boris Motik, Peter F. Patel-Schneider, Bijan Parsia. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/.)

		[bookmark: RDF-Concepts]RDF Concepts

		
 Resource Description Framework (RDF): Concepts and Abstract Syntax, eds. Graham Klyne and Jeremy J. Carroll. W3C Recommendation 10 February 2004.
 (See http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.)

		[bookmark: RDF-PlainLiteral]RDF Plain Literal

		
 rdf:PlainLiteral: A Datatype for RDF Plain Literals, eds. Jie Bao, Sandro Hawke, Boris Motik, Peter F. Patel-Schneider, Axel Polleres. W3C Recommendation 27 October 2009.
 (See http://www.w3.org/TR/2009/REC-rdf-plain-literal-20091027/.)

		[bookmark: RDFMT]RDF Semantics

		
 RDF Semantics, ed. Patrick Hayes. W3C Recommendation 10 February 2004.
 (See http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.)

		[bookmark: RIF-Core]RIF Core

		
 RIF Core Dialect (Second Edition), eds. Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke, Axel Polleres, and Dave Reynolds. W3C Recommendation June 20105 February 2013
 (See http://www.w3.org/TR/2010/REC-rif-core-20100622/.)http://www.w3.org/TR/rif-core/.)

		[bookmark: RIF-RDF]RIF RDF

		
 RIF RDF and OWL Compatibility (Second Edition), ed. Jos de Bruijn. W3C Recommendation 22 June 20105 February 2013
 (See http://www.w3.org/TR/2010/REC-rif-rdf-owl-20100622/.)http://www.w3.org/TR/rif-rdf-owl/.)

		[bookmark: SPARQL11]SPARQL 1.1 Query

		SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-query-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

		[bookmark: XSD]XML Schema Datatypes

		
 W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, eds. David Peterson, Shudi (Sandy) Gao 高殊镝, Ashok Malhotra, C. M. Sperberg-McQueen, Henry S. Thompson. W3C Recommendation 5 April 2012.
 (See http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/.)

[bookmark: null]A.2 Other References

		[bookmark: ANSWERSET-SW]ANSWERSET-SW

		
 Answer-Set Programming for the Semantic Web. PhD thesis, Roman Schindlauer. Vienna University of Technology, Austria, December 2006.
 (See http://www.kr.tuwien.ac.at/staff/former_staff/roman/papers/thesis.pdf.)

		[bookmark: OWL2-RL-RIF]OWL2-RL-RIF

		
 OWL 2 RL in RIF, eds. Dave Reynolds. W3C Working Group Note 22 June 2010
 (See http://www.w3.org/TR/2010/NOTE-rif-owl-rl-20100622/.)

		[bookmark: RDFSENTAILMENT]RDFSENTAILMENT

		
 Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary, ed. Herman J. ter Horst. Journal of Web Semantics, 3(2-3):79-115, 2005.

		[bookmark: RIF-in-RDF]RIF-in-RDF

		
 RIF In RDF, eds. Sandro Hawke, Axel Polleres. W3C Working Group Note 12 May 2011.
 (See http://www.w3.org/TR/2011/NOTE-rif-in-rdf-20110512/.)

		[bookmark: SAFETY]SAFETY

		
 Safety of recursive Horn clauses with infinite relations, R. Ramakrishnan, F. Bancilhon, and A. Silberschatz. ACM New York, NY 1987.
 (See http://portal.acm.org/citation.cfm?doid=28659.28694.)

		[bookmark: STABLEMODEL]STABLEMODEL

		
 Stable models and an alternative logic programming paradigm, eds. Victor W. Marek, Miroslaw Truszczynski. Arxiv preprint / Citeseer, 1998.
 (See http://arxiv.org/abs/cs.LO/9809032.)

		[bookmark: TURTLE]TURTLE

		Turtle:
Terse RDF Triple Language, E Prud'hommeaux, G Carothers, Editors, W3C Working Draft, 10 July 2012, http://www.w3.org/TR/2012/WD-turtle-20120710/.Candidate Recommendation, 19 February 2013, http://www.w3.org/TR/2013/CR-turtle-20130219/. Latest version available at http://www.w3.org/TR/turtle/. (See http://www.w3.org/TR/turtle/.)

[bookmark: AppendixMapping]B Appendix: Mapping from BGPs to the extended OWL 2 Structural Specification

[bookmark: OWL2parsingBGPs]This appendix specifies how a legal basic graph pattern BGP of a SPARQL query can be parsed into the extension of the OWL 2 Structural
 specification [OWL 2 Structural Specification]. Let x be a variable from BGP. If BGP contains a triple ?x rdf:type TYPE or $x rdf:type TYPE, where
 TYPE is one of owl:Class, owl:ObjectProperty, owl:DatatypeProperty, or
 owl:NamedIndividual, x is declared to be of type TYPE. BGP satisfies the typing constraints of
 the entailment regime if no variable is declared as being of more than one type.

For the purpose of this parsing process, we assume that BGP is seen as an RDF graph G which may also contain variables in any
 position. A tool MAY implement these steps in any way it chooses; however, the results MUST be structurally equivalent to the ones defined in the following sections, where
 structural equivalence is taken to be extended in the natural way to also allow for variables, i.e., the definition of structural equivalence is
 as follows:

Objects o1 and o2 from the extended structural specification are structurally
 equivalent if the following conditions hold:

		 If o1 and o2 are atomic values, such as strings or integers, they are structurally equivalent if they are equal according to the notion of equality of the respective UML type.

		 If o1 and o2 are variables, they are structurally equivalent if they are equal according to the notion of string equality.

		 If o1 and o2 are unordered associations without repetitions, they are structurally equivalent if each element of o1 is structurally equivalent to some element of o2 and vice versa.

		 If o1 and o2 are ordered associations with repetitions, they are structurally equivalent if they contain the same number of elements and each element of o1 is structurally equivalent to the element of o2 with the same index.

		 If o1 and o2 are instances of UML classes from the structural specification, they are structurally equivalent if
 		 both o1 and o2 are instances of the same UML class, and

		 each association of o1 is structurally equivalent to the corresponding association of o2 and vice versa.

The following table defines the steps that are involved in the mapping process from basic graph patterns to extended OWL objects.

		 CP 1		 If BGP contains no triple of the form x rdf:type owl:Ontology for x an IRI or a blank node, then extend BGP with
 _:x rdf:type owl:Ontology for _:x a fresh blank node not occurring in BGP and SG.

		 CP 2		 Compute Decl(BGP) as specified in Section 3.1
 of the OWL 2 Mapping to RDF graphs specification with the difference that import statements do not result in the addition of triples. Initialize
 AllDecl(BGP) as the union of Decl(BGP) and declarations from O(SG), i.e., AllDecl(DSG) where DSG is the ontology document from
 which O(SG) is obtained.

		 CP 3		 Create an instance OE(BGP) that corresponds to an instance of the Ontology class from the extended grammar for the OWL 2 Direct Semantics. That is, the UML
 classes are taken to be extended such that entities can also be variables.

		 CP 4		 Analyze BGP and populate OE(BGP) by instantiating appropriate classes from the extended structural specification. Use the
 declarations in AllDecl(BGP) to disambiguate IRIs and variables if needed. It MUST be possible to
 disambiguate all IRIs and variables. Variables that are not declared as being of some type occur either only in individual positions or only in
 literal positions; otherwise BGP is not legal for the regime.

A canonical definition for Step CP 4 is given in the following section.

[bookmark: OWLParsing]B.1 Parsing BGPs into Objects of the Extended OWL 2 Structural Specification

Parsing BGPs into OWL objects as required in CP 4 follows closely the parsing process described in Section 3.2 of [OWL 2 Mapping to RDF Graphs]. This document only
 states where the parsing differs from the mapping as defined by OWL 2. The main
 difference is that IRIs, anonymous individuals, and literals can also be variables. Thus, the notation used in the mapping specification is
 taken to be extended as follows:

		 *:x denotes an IRI or a variable;

		 _:x denotes a blank node;

		 x denotes a blank node, an IRI or a variable;

		 lt denotes a literal or a variable; and

		 xlt denotes a blank node, an IRI, a literal, or a variable.

Note that as for the OWL 2 mapping, variations of the above scheme are also taken to be defined as above, e.g., *:y or
 *:xi instead of *:x also denote an IRIs or a variables. Further, _:x remains unchanged and
 does not represent a variable.

The functions CE(x), DR(x), OPE(x), and DPE(x) extend the respective functions in the
 section Mapping to
 RDF graphs [OWL 2 Mapping to RDF Graphs] to map into instances of the extended grammar for OWL 2 Direct Semantics BGPs, i.e.,
 the functions also take variables as input and they map to objects that correspond to the extended structural specification for BGPs. The
 functions are initialized as in Table 9 of [OWL 2 Mapping to RDF Graphs] for non-variable declarations (*:x is not a variable)
 and extended for the case where *:x is a variable as follows:

		 If AllDecl(G) contains this declaration...
 		 ...then perform this assignment.

		 Declaration(Class(*:x))
 		 CE(*:x) := a class variable with name *:x

		 Declaration(Datatype(*:x))
 		 DR(*:x) := a datatype variable with name *:x

		 Declaration(ObjectProperty(*:x))
 		 OPE(*:x) := an object property variable with name *:x

		 Declaration(DataProperty(*:x))
 		 DPE(*:x) := a data property variable with name *:x

		 Declaration(AnnotationProperty(*:x))
 		 AP(*:x) := an annotation property with name *:x

Parsing then continues as described in [OWL 2 Mapping to RDF Graphs] with the modification that objects can contain variables. Variables are
 not allowed in the mapping for facet restrictions in the last column of Table 12 for *:wi and the n
 that denotes a non-negative integer in cardinality restrictions is not redefined, i.e., it cannot be replaced by a variable.

[bookmark: AppendixProofs]C Appendix: Proofs

The SPARQL Query specification [SPARQL 1.1 Query] lists four conditions that entailment regimes that extend the standard simple entailment must
 satisfy. The different conditions are considered below for all entailment regimes in this document.

1 -- The scoping graph, SG, corresponding to any consistent active graph AG is
 uniquely specified up to RDF graph equivalence and is E-equivalent to AG.

All entailment regimes use the same definition of scoping graph as simple entailment, i.e., the scoping graph is graph-equivalent to the active graph
 AG of the data set DS for the query but shares no blank nodes with DS or with the basic graph pattern of the query. The same scoping graph is used for
 all solutions to a single query. Thus, E-equivalence to AG up to RDF graph equivalence is immediate. In case AG is inconsistent, it is not required that
 a scoping graph is defined and although most of the regimes define SG also in the presence of an inconsistency, it is not required that the above
 condition is satisfied.

2 -- For any basic graph pattern BGP and pattern instance mapping P, P(BGP) is well-formed for E.

BGPs that can only be instantiated into malformed triples, e.g., because they require a literal in the subject position, do not have a valid pattern
 instance mapping and the condition is satisfied. Only the OWL 2 Direct Semantics regimes restricts the well-formedness of the queried graph and the
 basic graph patterns further. Since graphs and queries that are malformed for OWL 2 Direct Semantics are rejected with errors and, thus, do not have
 pattern instance mappings, the condition is satisfied.

3 -- For any scoping graph SG and answer set {P1 ... Pn}
 for a basic graph pattern BGP, and where {BGP1 BGPn} is a set of basic graph patterns all equivalent to BGP, none of
 which share any blank nodes with any other or with SG

		 SG E-entails (SG union P1(BGP1) union ... union Pn(BGPn))

Before giving a proof, the following example illustrates how this condition could be violated. Assume SG contains the triples:

ex:s ex:p _:b1 .
_:b2 ex:p ex:o

 and the BGP of the query is
?x ex:p ?y

The graph (even simply) entails the triple ex:s ex:p _:1 and also the triple _:1 ex:p ex:o. If we were to take
 P1: ?x/ex:s, ?y/_:1 and P2: ?x/_:1, ?y/ex:o, then, since BGP does not contain
 blank nodes, we can take any two copies BGP1, BGP2 of BGP and we would have to show (only considering the two example solutions):

SG E-entails (SG union P1(BGP1) union P2(BGP2)) =

 { ex:s ex:p _:b1 . _:b2 ex:p ex:o } E-entails { ex:s ex:p _:b1 . _:b2 ex:p ex:o . ex:s ex:p _:1 . _:1 ex:p ex:o }

This is clearly not the case because SG does not entail ex:s ex:p _:1 . _:1 ex:p ex:o. The use of the same blank node identifier across
 several solutions is only valid if also the corresponding blank nodes in SG are identical.

All the entailment regimes satisfy this restriction since blank nodes are treated as Skolem constants, i.e., although both of the triples in the
 above example are possible solutions, these are not part of the actual solutions.

4 -- Each SPARQL extension MUST provide conditions on answer sets which guarantee that the set of triples obtained by
 instantiating BGP with each solution μ is uniquely specified up to RDF graph equivalence, and SHOULD provide further
 conditions to prevent trivial infinite answers as appropriate to the regime.

All entailment regimes, but the RIF entailment regime, require that bindings are only taken from a vocabulary defined for the regime. Since the defined vocabularies are finite, it is immediate
 that any BGP over any AG results in finite answers. The answer set is unique up to RDF graph equivalence since the entailed answers can only vary in
 their blank node identifiers, which still preserves graph equivalence. For the RIF entailment regime finiteness and uniqueness follows from the safety conditions.

[bookmark: changelog]D Change Summary

Changes since Proposed Recommendation

		Updated RIF references, given publication of RIF Second Edition

Changes since Last Call

Since last call, the following changes have been made:

		Since XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes [XML Schema Datatypes] now has recommendation status, the reference to XML
 Schema Part 2: Datatypes Second Edition, eds. Paul V. Biron, Ashok Malhotra (W3C Recommendation 28 October 2004) becomes obsolete as previously
 announced.

		In the informative section "Entailment Regimes and Property Paths", the link to the property path translation in SPARQL Query 1.1 has been fixed and the example has been updated to reflect the new algebra operators that SPARQL 1.1 Query introduced for property path expressions.

Since Candidate Recommendation, the only change has been to remove the "At Risk" notes, which labeled sections of the text which might potentially have been removed during Candidate Recommendation (but were not).

sparql11-federated-query/diff.xhtml
[image: W3C]

[bookmark: title]SPARQL 1.1 Federated Query

[bookmark: w3c-doctype]W3C ProposedRecommendation 08 November 201221 March 2013

		This version:

		
 http://www.w3.org/TR/2012/PR-sparql11-federated-query-20121108/http://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/

		Latest version:

		
 http://www.w3.org/TR/sparql11-federated-query/

		Previous version:

		 http://www.w3.org/TR/2011/WD-sparql11-federated-query-20111117/http://www.w3.org/TR/2012/PR-sparql11-federated-query-20121108/

		Editors:

		Eric Prud'hommeaux, W3C <eric@w3.org>

		Carlos Buil-Aranda, Universidad Politécnica de Madrid <cbuil@delicias.dia.fi.upm.es>

		Contributors:

		Andy Seaborne, The Apache Software Foundation

		Axel Polleres, DERI Galway at the National University of Ireland, Galway, Ireland <axel.polleres@deri.org>Siemens AG <axel.polleres@siemens.com>

		Lee Feigenbaum, Cambridge Semantics <lee@thefigtrees.net>

		Gregory Todd Williams, Rensselaer Polytechnic Institute <greg@evilfunhouse.com>

Please refer to the errata for this document, which may
 include some normative corrections.

 The previous errata for this document, are also available.See also translations.

 This document is also available in these non-normative formats: XML and XHTML with color-coded revision indicators .Copyright © 2012 © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract

	RDF is a directed, labeled graph data format for representing information
	in the Web. SPARQL can be used to express queries
	across diverse data sources, whether the data is stored natively as RDF or
	viewed as RDF via middleware. This specification defines the syntax and semantics of SPARQL 1.1
Federated Query extension for executing queries distributed over different SPARQL endpoints. The SERVICE keyword extends SPARQL 1.1 to support queries that merge data distributed across the Web.

[bookmark: status]Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is being published asone of a set of 11 documents:eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:

		SPARQL 1.1 Overview

		SPARQL 1.1 Query Language

		SPARQL 1.1 Update

		SPARQL1.1 Service Description

		SPARQL 1.1 Federated Query (this document)

		SPARQL 1.1 Query Results JSON Format

		SPARQL 1.1 Query Results CSV and TSV Formats

		SPARQL Query Results XML Format (Second Edition)

		SPARQL 1.1 Entailment Regimes

		SPARQL 1.1 Protocol

		SPARQL 1.1 Graph Store HTTP Protocol

 Summary ofNo Substantive Changes

There have been no substantive changes to this document since the previous version. For details on anyMinor editorial changes seechanges, if any, are detailed in the change log and visible in the color-coded diff.

 W3C MembersPlease Review By 6 December 2012 The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 6 December 2012. This will allow the Director to assess consensus and determine whetherSend Comments

Please send any comments to issuepublic-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document as a W3C Recommendation. Others are encouragedby the SPARQL Working Group to continue to send reports of implementation experience, and other feedback, to public-rdf-dawg-comments@w3.org (public archive). Reports of any success or difficulty withis complete, comments may be addressed in the test cases are encouraged.errata or in future revisions. Open discussion among developersis welcome at public-sparql-dev@w3.org (public archive).

 Support The advancement ofEndorsed By W3C

This Proposed Recommendation is supporteddocument has been reviewed by the disposition of comments on the previous drafts, the Test Suite ,W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the list of implementations (with test results) . No Endorsement PublicationDirector as a Proposed Recommendation does not imply endorsement by theW3C Membership. ThisRecommendation. It is a draftstable document and may be updated, replacedused as reference material or obsoleted by other documents at any time. Itcited from another document. W3C's role in making the Recommendation is inappropriateto citedraw attention to the specification and to promote its widespread deployment. This document as other than work in progress.enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents

1 Introduction

 1.1 Document Conventions

 1.1.1 Namespaces

 1.1.2 Result Descriptions

 1.1.3 Terminology

2 SPARQL 1.1 Federated Query Extension

 2.1 Simple query to a remote SPARQL endpoint

 2.2 SPARQL query with OPTIONAL to two remote SPARQL endpoints

 2.3 Service Execution Failure

 2.4 Interplay of SERVICE and VALUES (Informative)

3 SPARQL 1.1 Simple Federation Extension: semantics

 3.1 Translation to the SPARQL Algebra

 3.2 SPARQL 1.1 Simple Federation Extension Algebra

 3.2.1 SERVICE Examples

4 SERVICE Variables (Informative)

5 Conformance

6 Security Considerations (Informative)

[bookmark: appendices]Appendices

A References

 A.1 Normative References

 A.2 Other References

B Acknowledgements

C CVS History (Last Call and after)

[bookmark: introduction]1 Introduction

The growing number of SPARQL query services offer data consumers an opportunity to merge data distributed across the Web. This specification defines the syntax and semantics of the SERVICE extension to the SPARQL 1.1 Query Language. This extension allows a query author to direct a portion of a query to a particular SPARQL endpoint. Results are returned to the federated query processor and are combined with results from the rest of the query.

[bookmark: docConventions]1.1 Document Conventions

[bookmark: docNamespaces]1.1.1 Namespaces

This document uses the same namespaces as from the SPARQL 1.1 Query document.

[bookmark: docResultDesc]1.1.2 Result Descriptions

Result sets are illustrated in tabular form as in the SPARQL 1.1 Query document.

[bookmark: table39]		x		y		z

		"Alice"		<http://example/a>		

A 'binding' is a pair (variable,
RDF term). There are three
variables:
x, y and z (shown as column headers). Each
solution is shown as one row in the body of the table. Here, there is a single
solution, in which variable x is bound to "Alice", variable
y is bound to http://example/a, and variable z
is not bound to an RDF term. Variables are not required to be bound in a
solution.

[bookmark: docTerminology]1.1.3 Terminology

The following terms are defined in
SPARQL 1.1 Query Language [SQRY] and reused in this document:

		IRI (corresponds to the Concepts and Abstract Syntax term RDF URI reference)

		Solution Mapping

		Solution Sequence

[bookmark: service]2 SPARQL 1.1 Federated Query Extension

The SERVICE keyword instructs a federated query processor to invoke a portion of a SPARQL query against a remote SPARQL endpoint. This section presents examples of how to use the SERVICE keyword. The following sections define the syntax and semantics of this extension.

[bookmark: simpleService]2.1 Simple query to a remote SPARQL endpoint

This example shows how to query a remote SPARQL endpoint and join the returned data with the data from the local RDF Dataset. Consider a query to find the names of the people we know. Data about the names of various people is available at the http://people.example.org/sparql endpoint:

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix : <http://example.org/> .

 :people15 foaf:name "Alice" .
 :people16 foaf:name "Bob" .
 :people17 foaf:name "Charles" .
 :people18 foaf:name "Daisy" .

 and one wants to combine with a local FOAF file http://example.org/myfoaf.rdf that contains the single triple:

 <http://example.org/myfoaf/I> <http://xmlns.com/foaf/0.1/knows> <http://example.org/people15> .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
FROM <http://example.org/myfoaf.rdf>
WHERE
{
 <http://example.org/myfoaf/I> foaf:knows ?person .
 SERVICE <http://people.example.org/sparql> {
 ?person foaf:name ?name . }
}

This query, on the data above, has one solution:

Query Result:

[bookmark: table1]		name

		"Alice"

[bookmark: optionalTwoServices]2.2 SPARQL query with OPTIONAL to two remote SPARQL endpoints

	Imagine we want to query people and optionally obtain their interests and the names of people they know. Imagine for instance, two endpoints containing data about people:

Data in the default graph at remote SPARQL endpoint: http://people.example.org/sparql

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix : <http://example.org/> .

 :people15 foaf:name "Alice" .
 :people16 foaf:name "Bob" .
 :people17 foaf:name "Charles" .
 :people17 foaf:interest <http://www.w3.org/2001/sw/rdb2rdf/> .

and data in the default graph the remote SPARQL endpoint: http://people2.example.org/sparql

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix : <http://example.org/> .

 :people15 foaf:knows :people18 .
 :people18 foaf:name "Mike" .
 :people17 foaf:knows :people19 .
 :people19 foaf:name "Daisy" .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?interest ?known
WHERE
{
 SERVICE <http://people.example.org/sparql> {
 ?person foaf:name ?name .
 OPTIONAL {
 ?person foaf:interest ?interest .
 SERVICE <http://people2.example.org/sparql> {
 ?person foaf:knows ?known . } }
 }
}

This query, on the data above, has three solutions:

Query Result:

[bookmark: table03]		person		interest		known

		"Alice"				

		"Bob"				

		"Charles"		<http://www.w3.org/2001/sw/rdb2rdf/>		<http://example.org/people19>

Notice that in the query above there is a nested SERVICE in the OPTIONAL clause. This query requires the SPARQL query service at http://people.example.org/sparql to support basic federated query.

[bookmark: serviceFailure]2.3 Service Execution Failure

 The execution of a SERVICE pattern may fail due to several reasons: the remote service may be down, the service IRI may not be dereferenceable, or the endpoint may return an error to the query. Normally, under such circumstances the invoked query containing a SERVICE pattern fails as a whole. Queries may explicitly allow failed SERVICE requests with the use of the SILENT keyword. The SILENT keyword indicates that errors encountered while accessing a remote SPARQL endpoint should be ignored while processing the query. The failed SERVICE clause is treated as if it had a result of a single solution with no bindings.

 In the following query the SILENT keyword is present. If the remote SPARQL endpoint is not available because the SPARQL endpoint does not exist, it is down or it is not accessible the query will return a solution sequence of one empty solution mapping. If the SILENT keyword is not present, the query will stop and return the error.

Data in <http://people.example.org/sparql> endpoint:

 <http://example.org/people15> <http://xmlns.com/foaf/0.1/name> "Charles" .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE
{
 SERVICE SILENT <http://people.example.org/sparql> {
 <http://example.org/people15> foaf:name ?name . }
}

Query result if an error occurs while querying the remote SPARQL endpoint:

[bookmark: table2]		name

		

[bookmark: values]2.4 Interplay of SERVICE and VALUES (Informative)

 SPARQL 1.1 Query includes the VALUES clause (VALUES), which can be used to provide an unordered solution sequence that is joined with the results of the query evaluation. Implementers of SPARQL 1.1 Federated Query may use the VALUES clause to constrain the results received from a remote endpoint based on solution bindings from evaluating other parts of the query.

The following example shows how SERVICE and VALUES can work together. Suppose a query that asks for all instances of foaf:Person in the default graph and also their known people in the remote endpoint http://example.org/sparql:

Data in the default graph:

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix : <http://example.org/> .

 :a a foaf:Person ;
 foaf:name "Alan" ;
 foaf:mbox; "alan@example.org" .
 :b a foaf:Person ;
 foaf:name "Bob" ;
 foaf:mbox "bob@example.org" .

and data in the default graph the remote SPARQL endpoint http://example.org/sparql:

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix : <http://example.org/> .

 :a foaf:knows :b .
 :b foaf:knows :c .
 :c foaf:knows :a .
 :a foaf:interest "SPARQL 1.1 Basic Federated Query" .
 :b foaf:interest "SPARQL 1.1 Query" .
 :c foaf:interest "RDB2RDF Direct mapping" .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?s
{
 ?s a foaf:Person .
 SERVICE <http://example.org/sparql> {?s foaf:knows ?o }
}

 When the original query is executed naively, with an unconstrained service call the endpoint may return more results than necessary. It may also happen that the SPARQL endpoint will not return all of them. Many existing SPARQL endpoints have restrictions in the number of results they return and may miss the ones matching subjects ?s from the local default graph. Thus, an implementation of a query planner for federated queries may decide to decompose the query into two queries instead, where first the bindings from the local default graph are evaluated:

Query:

PREFIX : <http://example.org/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?s
{
 ?s a foaf:Person
}

This query, on the data above, has two solutions:

Query Result:

[bookmark: table04a]		s

		<http://example.org/a>

		<http://example.org/b>

Next, dispatch to the remote endpoint <http://example.org/sparql> a constrained query with the solutions for ?s:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX : <http://example.org/>
SELECT * {?s foaf:knows ?o } VALUES (?s) { (:a) (:b) }

The query process involving SERVICE limits the data returned to the data it needs for the overall query:

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?s ?o
{
 ?s a foaf:Person
 SERVICE <http://example.org/sparql> {?s foaf:knows ?o }
}

This query, on the data above using VALUES, has the expected two solutions to the overall query:

Query Result:

[bookmark: table04b]		s		o

		<http://example.org/a>		<http://example.org/b>

		<http://example.org/b>		<http://example.org/c>

[bookmark: fedSemantics]3 SPARQL 1.1 Simple Federation Extension: semantics

[bookmark: defn_service]3.1 Translation to the SPARQL Algebra

The SERVICE extension is defined as an additional type of GroupGraphPattern, with an accompanying addition to SPARQL Query 1.1's Transform (syntax form):

 If the form is GroupGraphPattern

 From the Translate Graph Patterns section of [SPARQL 1.1 Query Language] we extend the transformation of GroupGraphPattern to define the transformation of SERVICE patterns:

Let FS := the empty set
Let G := the empty pattern, Z, a basic graph pattern which is the empty set.
Let SilentOp := boolean, indicating SERVICE error behavior.

For each element E in the GroupGraphPattern
 If E is of the form FILTER(expr)
 FS := FS ∪ {expr}
 End

 If E is of the form OPTIONAL{P}
 Let A := Transform(P)
 If A is of the form Filter(F, A2)
 G := LeftJoin(G, A2, F)
 Else
 G := LeftJoin(G, A, true)
 End
 End

 If E is of the form MINUS{P}
 G := Minus(G, Transform(P))
 End

 If E is of the form BIND(expr AS var)
 G := Extend(G, var, expr)
 End

 If E is any other form
 Let A := Transform(E)
 G := Join(G, A)
 End

 If E is of the form SERVICE [SILENT] IRI {P}
 Let G := Join(G, Service(IRI, Transform(P), SilentOp))
 End

 End

If FS is not empty:
 Let X := Conjunction of expressions in FS
 G := Filter(X, G)

The result is G.

[bookmark: algebra_service]3.2 SPARQL 1.1 Simple Federation Extension Algebra

The evaluation of SERVICE is defined in terms of the SPARQL Results [RESULTS] returned by a SPARQL Protocol [SPROT] execution of the nested graph pattern:

Definition: [bookmark: defn_evalService]Evaluation of a Service Pattern

	
	Let 		iri be an IRI,

		Ω0 the solution set with one empty solution, and

		SilentOp be a boolean variable to indicate that SERVICE execution should ignore errors when true.

then:

eval(D(G), Service(IRI,P,SilentOp)) = Invocation(iri, P, SilentOp)

	where: Invocation(IRI, P, SilentOp) is 		the multiset of solution mappings corresponding to the results of executing query SELECT * WHERE Q against the service endpoint with IRI iri where Q is the serialization of P in SPARQL syntax, in case of a successful service invocation according to the SPARQL protocol, and otherwise

		Ω0. in case SilentOp is true, and otherwise

		error.

[bookmark: algebra_service_examples]3.2.1 SERVICE Examples

In the folowing section we introduce two examples showing the evaluation of SERVICE patterns in the SPARQL algebra:

Example: a SERVICE graph pattern in a series of joins:

	 ... WHERE { { ?s :p1 ?v1 } SERVICE <srvc> {?s :p2 ?v2 } { ?s :p3 ?v2 } }
	

	 Join(Service(<srvc>,

	 BGP(?s :p2 ?v2), false),

	 BGP(?s :p3 ?v2))
	

Example: a SERVICE SILENT graph pattern in a series of joins:

	 ... WHERE { { ?s :p1 ?v1 } SERVICE SILENT <srvc> {?s :p2 ?v2 } { ?s :p3 ?v2 } }
	

	 Join(Service(<srvc>,

	 BGP(?s :p2 ?v2), true),

	 BGP(?s :p3 ?v2))
	

[bookmark: variableService]4 SERVICE Variables (Informative)

In the this section we do not present official evaluation semantics for the SPARQL pattern SERVICE VAR. We only provide indications about how the evaluation of the SPARQL pattern SERVICE VAR can be evaluated.

A variable used in place of a service IRI indicates that the service call for any solution depends on that variable's binding in that solution. For instance, the default graph may contain data about which services contain data about project endpoints. We assume the following data on various projects that contains information about SPARQL endpoints where data about these projects (using the DOAP vocabulary) can be queried from:

@prefix void: <http://rdfs.org/ns/void#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix doap: <http://usefulinc.com/ns/doap#> .

[] dc:subject "Querying RDF" ;
 void:sparqlEndpoint <http://projects1.example.org/sparql> .
[] dc:subject "Querying RDF remotely" ;
 void:sparqlEndpoint <http://projects2.example.org/sparql> .
[] dc:subject "Updating RDF remotely" ;
 void:sparqlEndpoint <http://projects3.example.org/sparql> .

Data in the default graph at remote SPARQL endpoint http://projects2.example.org/sparql:

_:project1 doap:name "Query remote RDF Data" .
_:project1 doap:created "2011-02-12"^^xsd:date .
_:project2 doap:name "Querying multiple SPARQL endpoints" .
_:project2 doap:created "2011-02-13"^^xsd:date .

Data in the default graph at remote SPARQL endpoint http://projects3.example.org/sparql:

_:project3 doap:name "Update remote RDF Data" .
_:project3 doap:created "2011-02-14"^^xsd:date .

We now want to query the project names of projects on the subject "remote":

PREFIX void: <http://rdfs.org/ns/void#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX doap: <http://usefulinc.com/ns/doap#>

SELECT ?service ?projectName
WHERE {
 # Find the service with subject "remote".
 ?p dc:subject ?projectSubject ;
 void:sparqlEndpoint ?service .
 FILTER regex(?projectSubject, "remote")

 # Query that service projects.
 SERVICE ?service {
 ?project doap:name ?projectName . }
}

In the following table we present the intuitive solutions for this query with the data above:

Query Result:

[bookmark: tableResultsVarEndpoint]		service		title

		<http://projects2.example.org/sparql>		"Query remote RDF Data"

		<http://projects2.example.org/sparql>		"Querying multiple SPARQL endpoints"

		<http://projects3.example.org/sparql>		"Update remote RDF Data"

A SERVICE clause involving a variable can be executed as a series of separate invocations of SPARQL query services. The results of each invocation are combined using union.

The query engine must determine the possible target SPARQL query services. The exact mechanism for doing this is not defined in this document. Execution order may also be used to determine the list of services to to be tried. The example above suggests a specific order of execution: evaluating the basic graph pattern and filter outside the SERVICE block first will yield bindings for ?service which may then be used to evaluate the SERVICE block:

?p dc:subject ?projectSubject ;
 void:sparqlEndpoint ?service
 FILTER regex(?projectSubject, "remote")

Once ?service has been evaluated it is possible to execute SERVICE for each value of ?service:

SERVICE ?service {
?project doap:name ?projectName . }

Note that blank nodes are unique to any document which serializes them. Also, SERVICE calls depend on the SPARQL Protocol [SPROT] which transfers serialized RDF documents making blank nodes unique between service calls.

[bookmark: conformance]5 Conformance

See section 4 SPARQL 1.1 Federated Query Grammar regarding conformance of
 SPARQL Query strings that include the SPARQL 1.1 Federated Query Extensions. See section 3.1 Definition of SERVICE for conformance of query results for the SERVICE keyword.

This specification is intended for use in conjunction with the SPARQL 1.1 Query Language. See that specification for its conformance criteria.

[bookmark: security]6 Security Considerations (Informative)

SPARQL queries using SERVICE imply that a URI will
 be dereferenced, and that the result will be incorporated into a working data set. All of the security issues
 of SPARQL Protocol 1.1 [SPROT] Section 3.1
 SPARQL 1.1 Query [SQRY] Section 21, and
 Uniform Resource Identifier
 (URI): Generic Syntax [RFC3986] Section 7 should be considered.

[bookmark: sec-bibliography]A References

[bookmark: sec-normative-refs]A.1 Normative References

				[bookmark: SQRY][SQRY]

				SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-query-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

				[bookmark: SPROT][SPROT]

				SPARQL 1.1 Protocol, L. Feigenbaum, G. Williams, K. Clark, E. Torres, Editors, W3C CandidateRecommendation, 8 November 2012, http://www.w3.org/TR/2012/CR-sparql11-protocol-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321. Latest version available at http://www.w3.org/TR/sparql11-protocol.

				[bookmark: CHARMOD][CHARMOD]

				
		Character
 Model for the World Wide Web 1.0: Fundamentals,
 R. Ishida, F. Yergeau, M. J. Düst, M. Wolf, T. Texin,
 Editors, W3C Recommendation, 15 February 2005,
 http://www.w3.org/TR/2005/REC-charmod-20050215/ .
		Latest version available at http://www.w3.org/TR/charmod/
 .

				[bookmark: rfc3629][RFC3629]

				RFC 3629
		UTF-8, a transformation
 format of ISO 10646, F. Yergeau November 2003

				[bookmark: rfc3986][RFC3986]

				RFC 3986
		Uniform Resource
 Identifier (URI): Generic Syntax, T. Berners-Lee,
 R. Fielding, L. Masinter January 2005

				[bookmark: rfc3987][RFC3987]

				RFC
 3987, "Internationalized Resource Identifiers (IRIs)", M.
 Dürst , M. Suignard

				[bookmark: UNICODE][UNICODE]

				The Unicode Standard, Version 4. ISBN
 0-321-18578-1, as updated from time to time by the
 publication of new versions. The latest version of Unicode
 and additional information on versions of the standard and of
 the Unicode Character Database is available at
		http://www.unicode.org/unicode/standard/versions/.

				[bookmark: XML11][XML11]

				
		Extensible
 Markup Language (XML) 1.1, J. Cowan, J. Paoli, E.
 Maler, C. M. Sperberg-McQueen, F. Yergeau, T. Bray, Editors,
 W3C Recommendation, 4 February 2004,
 http://www.w3.org/TR/2004/REC-xml11-20040204/ .
		Latest
 version available at http://www.w3.org/TR/xml11/ .

			[bookmark: BCP47][BCP47]

			Best Common Practice 47, P. V. Biron, A. Malhotra, Editors, W3C Recommendation, 28 October 2004, http://www.rfc-editor.org/rfc/bcp/bcp47.txt .

	

[bookmark: sec-non-normative-refs]A.2 Other References

				[bookmark: RESULTS][RESULTS]

				SPARQL Query Results XML Format (Second Edition), D. Beckett, J. Broekstra, Editors, W3C Proposed EditedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PER-rdf-sparql-XMLres-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321. Latest version available at http://www.w3.org/TR/rdf-sparql-XMLres.

				[bookmark: TURTLE][TURTLE]

				Turtle:
Terse RDF Triple Language, E Prud'hommeaux, G Carothers, Editors, W3C Working Draft, 10 July 2012, http://www.w3.org/TR/2012/WD-turtle-20120710/.Candidate Recommendation, 19 February 2013, http://www.w3.org/TR/2013/CR-turtle-20130219/. Latest version available at http://www.w3.org/TR/turtle/.

[bookmark: sec-acknowledgements]B Acknowledgements

The SPARQL 1.1 Federated Query document is a product of the whole of the W3C SPARQL Working Group, and our thanks for discussions, comments and reviews go to all present and past members.

In addition, we have had comments and discussions with many people through the working group comments list. All comments go to making a better document. Carlos would also like to particularly thank Jorge Pérez, Oscar Corcho and Marcelo Arenas for their discussions on the syntax and semantics of the Federated query extension.

[bookmark: sec-cvsLog]C CVS History (Last Call and after)

Change Log

Changes since Proposed Recommendation

		None

Changes since Last Call

		Updated references, fix DOAP URL

		Changed the word "BINDINGS" to "VALUES" to match change in Query Specification.

sparql11-results-json/diff.xhtml
[image: W3C]

[bookmark: title]SPARQL 1.1 Query Results JSON Format

[bookmark: w3c-doctype]W3C ProposedRecommendation 08 November 201221 March 2013

		This version:

		
 http://www.w3.org/TR/2012/PR-sparql11-results-json-20121108/http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/

		Latest version:

		
 http://www.w3.org/TR/sparql11-results-json/

		Previous version:

		 http://www.w3.org/TR/2011/WD-sparql11-results-json-20110913/http://www.w3.org/TR/2012/PR-sparql11-results-json-20121108/

		Editor:

		Andy Seaborne, The Apache Software Foundation

		Previous Editors:

		Kendall Grant Clark, UMD Mindswap

		Lee Feigenbaum, IBM

		Elias Torres, IBM

Please refer to the errata for this document, which may
 include some normative corrections.

See also translations.

Copyright © 2012 © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract

 SPARQL is a set of standards for the
 query and update of RDF data, along with ways to access such data over the web.
 This document describes the representation of SELECT and ASK query results using
 JSON.

[bookmark: status]Status of This Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is being published asone of a set of 11 documents:eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:

		SPARQL 1.1 Overview

		SPARQL 1.1 Query Language

		SPARQL 1.1 Update

		SPARQL1.1 Service Description

		SPARQL 1.1 Federated Query

		SPARQL 1.1 Query Results JSON Format (this document)

		SPARQL 1.1 Query Results CSV and TSV Formats

		SPARQL Query Results XML Format (Second Edition)

		SPARQL 1.1 Entailment Regimes

		SPARQL 1.1 Protocol

		SPARQL 1.1 Graph Store HTTP Protocol

 Summary ofNo Substantive Changes

There have been no substantive changes to this document since the previous version. For details on anyMinor editorial changes seechanges, if any, are detailed in the change log and visible in the color-coded diff.

 W3C MembersPlease Review By 6 December 2012 The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 6 December 2012. This will allow the Director to assess consensus and determine whetherSend Comments

Please send any comments to issuepublic-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document as a W3C Recommendation. Others are encouragedby the SPARQL Working Group to continue to send reports of implementation experience, and other feedback, to public-rdf-dawg-comments@w3.org (public archive). Reports of any success or difficulty withis complete, comments may be addressed in the test cases are encouraged.errata or in future revisions. Open discussion among developersis welcome at public-sparql-dev@w3.org (public archive).

 Support The advancement ofEndorsed By W3C

This Proposed Recommendation is supporteddocument has been reviewed by the disposition of comments on the previous drafts, the Test Suite ,W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the list of implementations (with test results) . No Endorsement PublicationDirector as a Proposed Recommendation does not imply endorsement by theW3C Membership. ThisRecommendation. It is a draftstable document and may be updated, replacedused as reference material or obsoleted by other documents at any time. Itcited from another document. W3C's role in making the Recommendation is inappropriateto citedraw attention to the specification and to promote its widespread deployment. This document as other than work in progress.enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents

1 Introduction

2 JSON Results Object

3 Variable Binding Results

 3.1 "head"

 3.1.1 "vars"

 3.1.2 "link"

 3.2 "results"

 3.2.1 "bindings"

 3.2.2 Encoding RDF terms

4 Boolean Results

 4.1 "head"

 4.1.1 "link"

 4.2 "boolean"

5 Example

6 Internet Media Type, File Extension and Macintosh File Type

[bookmark: appendices]Appendix

A References

 A.1 Normative References

 A.2 Other References

[bookmark: introduction]1 Introduction

This document describes how to serialize SPARQL results (SELECT and ASK query forms)
 in a JSON format.
 The format is designed to be a complete representation of the information
 in the query results. The results of a SELECT query are serilialized as
 an array, where each array element is one "row" of the query results;
 the results of an ASK query give the boolean value of the query result.

An Internet Media Type is provied for application/sparql-results+json.

 There is also a SPARQL Query Results XML Format
 [SRX] which follows a similar design pattern but uses XML as the serialization.

 Unless otherwise noted in the section heading, all sections
 and appendices in this document are normative.

[bookmark: json-result-object]2 JSON Results Object

The results of a SPARQL Query are serialized in JSON as a single top-level JSON object. This object has a "head" member and either a "results" member or a "boolean" member, depending on the query form.

This example shows the results of a SELECT query. The query solutions are represented in an array which is the value of the "bindings" key, in turn part of an object that is the value of the "results" key:

{
 "head": { "vars": ["book" , "title"]
 } ,
 "results": {
 "bindings": [
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book6" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Half-Blood Prince" }
 } ,
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book7" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Deathly Hallows" }
 } ,
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book5" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Order of the Phoenix" }
 } ,
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book4" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Goblet of Fire" }
 } ,
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book2" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Chamber of Secrets" }
 } ,
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book3" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Prisoner Of Azkaban" }
 } ,
 {
 "book": { "type": "uri" , "value": "http://example.org/book/book1" } ,
 "title": { "type": "literal" , "value": "Harry Potter and the Philosopher's Stone" }
 }
]
 }
}

This example shows the result from an ASK query:

{
 "head" : { } ,
 "boolean" : true
}

Other keys, with different names, may be present in the JSON Results Object
 but are not defined by this specification.

[bookmark: select-results-form]3 Variable Binding Results

The results of a SPARQL SELECT query are serialized as
 an array of bindings of variables. The value of the "head" key is an array of all variables projected in the query's SELECT clause.

[bookmark: select-head]3.1 "head"

The "head" member gives the variables mentioned in the results and
 may contain a "link" member.

{
"head" {
 "vars" : [...] ,
 "link" : [...] }

[bookmark: select-vars]3.1.1 "vars"

 The "vars" member is an array giving the names of the variables used in the results.
 These are the projected variables from the query.
 A variable is not necessarily given a value in every query solution of the results.

"vars" : ["book" , "title"]

The order of variable names should correspond to the variables in the SELECT clause of the query,
 unless the query is of the form SELECT * in which case order is not significant.

[bookmark: select-link]3.1.2 "link"

The optional "link" member gives an array
 of URIs, as strings, to refer for further information.
 The format and content of these link references is not
 defined by this document.

"link" : ["http://example/dataset/metadata.ttl"]

[bookmark: select-results]3.2 "results"

The value of the "results" member is an object with a single key, "bindings".

[bookmark: select-bindings]3.2.1 "bindings"

The value of the "bindings" member is an array with zero
 or more elements, one element per query solution.
 Each query solution is a JSON object. Each key
 of this object is a variable name from the query solution. The value for
 a given variable name is a JSON object that
 encodes the variable's bound value, an RDF term.
 There are zero elements in the array if the query returned an
 empty solution sequence.
 Variables names do not include the initial "?" or "$" character.
 Each variable name that appears as a key within the "bindings" array will have appeared in the "vars"
 array in the results header.

A variable does not appear in an array element if it is
 not bound in that particular query solution.

The order of elements in the bindings array reflects the order, if any,
 of the query solution sequence.

"bindings" : [
 {
 "a" : { ... } ,
 "b" : { ... }
 } ,
 {
 "a" : { ... } ,
 "b" : { ... }
 }
]

If the query returns no solutions, an empty array is used.

"bindings" : []

[bookmark: select-encode-terms]3.2.2 Encoding RDF terms

An RDF term (IRI, literal or blank node) is encoded as a JSON object.
 All aspects of the RDF term are represented. The JSON object has
 a "type" member and other members depending on the
 specific kind of RDF term.

		RDF Term		JSON form

		IRI I		{"type": "uri", "value": "I"}

		Literal S		{"type": "literal","value": "S"}

		Literal S with language tag L		{ "type": "literal", "value": "S", "xml:lang": "L"}

		Literal S with datatype IRI D		{ "type": "literal", "value": "S", "datatype": "D"}

		Blank node, label B		{"type": "bnode", "value": "B"}

The blank node label is scoped to the results object.
 That is, two blank nodes with the same label in a single SPARQL Results
 JSON object are the same blank node. This is not an indication of any
 internal system identifier the SPARQL processor may use.
 Use of the same label in another SPARQL Results
 JSON object does not imply it is the same blank node.

[bookmark: ask-result-form]4 Boolean Results

The results of a SPARQL ASK query are serialized as
 a boolean value, giving the result of the query evaluation.

[bookmark: ask-head]4.1 "head"

[bookmark: ask-link]4.1.1 "link"

The "link" member has the same format as the SELECT "link" member.

[bookmark: ask-boolean]4.2 "boolean"

The result of an ASK query form are encoded by the "boolean" member,
 which takes either the JSON value true or the JSON value false.

"boolean" : true

[bookmark: example]5 Example

This section is not normative.

The following JSON is a serialization of the XML document output.srx:

{
 "head": {
 "link": [
 "http://www.w3.org/TR/rdf-sparql-XMLres/example.rq"
],
 "vars": [
 "x",
 "hpage",
 "name",
 "mbox",
 "age",
 "blurb",
 "friend"
]
 },
 "results": {
 "bindings": [
 {
 "x" : { "type": "bnode", "value": "r1" },

 "hpage" : { "type": "uri", "value": "http://work.example.org/alice/" },

 "name" : { "type": "literal", "value": "Alice" } ,

		 "mbox" : { "type": "literal", "value": "" } ,

 "blurb" : {
 "datatype": "http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral",
 "type": "literal",
 "value": "<p xmlns=\"http://www.w3.org/1999/xhtml\">My name is alice</p>"
 },

 "friend" : { "type": "bnode", "value": "r2" }
 },
 {
 "x" : { "type": "bnode", "value": "r2" },

 "hpage" : { "type": "uri", "value": "http://work.example.org/bob/" },

 "name" : { "type": "literal", "value": "Bob", "xml:lang": "en" },

 "mbox" : { "type": "uri", "value": "mailto:bob@work.example.org" },

 "friend" : { "type": "bnode", "value": "r1" }
 }
]
 }
}

[bookmark: content-type]6 Internet Media Type, File Extension and Macintosh File Type

The Internet Media Type / MIME Type for the SPARQL Query Results JSON Format
 is "application/sparql-results+json".

It is recommended that SPARQL Query Results JSON Format files have the extension ".srj" (all
 lowercase) on all platforms.

It is recommended that SPARQL Query Results JSON Format files stored on Macintosh HFS file
 systems be given a file type of "TEXT".

This information that follows is intended to be submitted to the IESG
 for review, approval, and registration with IANA.

 		Type name:

 		application

 		Subtype name:

 		sparql-results+json

 		Required parameters:

 		None

 		Optional parameters:

 		None

 		Encoding considerations:

 		The encoding considerations of the SPARQL Query Results JSON
 Format is identical to those of the "application/json" as specified in
 [JSON-RFC].

 		Security considerations:

 		SPARQL query results uses URIs. See Section 7 of [RFC3986].

 SPARQL query results uses IRIs. See Section 8 of [RFC3987].

 The security considerations of the SPARQL Query Results JSON
 Format is identical to those of the "application/json" as specified in
 [JSON-RFC].

 		Interoperability considerations:

 		There are no known interoperability issues.

 		Published specification:

 		http://www.w3.org/TR/sparql11-results-json/

 		Applications which use this media type:

 		No known applications currently use this media type.

 		Additional information:

 		Magic number(s):

 		n/a

 		File extension(s):

 		".srj"

 		Macintosh file type code(s):

 		"TEXT"

 		Person & email address to contact for further information:

 		Andy Seaborne <public-rdf-dawg-comments@w3.org>

 		Intended usage:

 		COMMON

 		Restrictions on usage:

 		None

 		Author/Change controller:

 		The SPARQL specification is a work product of the World Wide Web
 Consortium's SPARQL Working Group. The W3C has change
 control over these specifications.

[bookmark: sec-bibliography]A References

[bookmark: sec-normative-refs]A.1 Normative References

 		
 [bookmark: JSON-RFC][JSON-RFC]

 		
 RFC 4627,

 The application/json Media Type for JavaScript Object Notation (JSON),

 D. Crockford,

 http://www.ietf.org/rfc/rfc4627.txt

 		
 [bookmark: RFC3986][RFC3986]

 		
 RFC 3986,

 Uniform Resource Identifier (URI): Generic Syntax,

 T. Berners-Lee, R. Fielding, L. Masinter,

 http://www.ietf.org/rfc/rfc3986.txt

 		
 [bookmark: RFC3987][RFC3987]

 		
 RFC 3987,

 Internationalized Resource Identifiers (IRIs),

 M. Dürst, M. Suignard,

 http://www.ietf.org/rfc/rfc3987.txt

[bookmark: sec-non-normative-refs]A.2 Other References

 		
 [bookmark: SRX][SRX]

 		SPARQL Query Results XML Format (Second Edition), D. Beckett, J. Broekstra, Editors, W3C Proposed EditedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PER-rdf-sparql-XMLres-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321. Latest version available at http://www.w3.org/TR/rdf-sparql-XMLres.

Change Log

Changes since Proposed Recommendation

		None

Changes since Last Call

		Fix typo in example.

		Update references

sparql11-http-rdf-update/ProtocolModel.jpg
IRl € Resolvableldentifier

[IRl «§] & Graph Store
~_
¥

PUT / DELETE / POST

FOEbayioad (pfienc) RDF Graph Content

[——
conditional headers

L_. < HTTP request / response
oF Gragh identiies
nterpretedas

serialization of

RDF payload

StyleSheets/TR/logo-CG-Note.png

sparql11-entailment/semantics.png
—’—’

(?d‘f:;rop‘e:h?)
e

Icons/w3c_main.png

Icons/w3c_home.png

sparql11-service-description/diff.xhtml
[image: W3C]

[bookmark: title]SPARQL 1.1 Service Description

[bookmark: w3c-doctype]W3C ProposedRecommendation 08 November 201221 March 2013

		This version:

		
			 http://www.w3.org/TR/2012/PR-sparql11-service-description-20121108/http://www.w3.org/TR/2013/REC-sparql11-service-description-20130321/
		

		Latest version:

		
			http://www.w3.org/TR/sparql11-service-description/
		

		Previous version:

		 http://www.w3.org/TR/2012/WD-sparql11-service-description-20120105/http://www.w3.org/TR/2012/PR-sparql11-service-description-20121108/

		Editor:

		Gregory Todd Williams, Rensselaer Polytechnic Institute <greg@evilfunhouse.com>

Please refer to the errata for this document, which may
 include some normative corrections.

See also translations.

Copyright © 2012 © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract

This document describes SPARQL service description, a method for
 discovering, and vocabulary for describing SPARQL services made available
 via the
 SPARQL
 1.1 Protocol for RDF [SPROT]. These descriptions
 provide a mechanism by which a client or end user can discover
 information about the SPARQL service such as supported
 extension functions and details about the available dataset.

[bookmark: status]Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is being published asone of a set of 11 documents:eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:

		SPARQL 1.1 Overview

		SPARQL 1.1 Query Language

		SPARQL 1.1 Update

		SPARQL1.1 Service Description (this document)

		SPARQL 1.1 Federated Query

		SPARQL 1.1 Query Results JSON Format

		SPARQL 1.1 Query Results CSV and TSV Formats

		SPARQL Query Results XML Format (Second Edition)

		SPARQL 1.1 Entailment Regimes

		SPARQL 1.1 Protocol

		SPARQL 1.1 Graph Store HTTP Protocol

 Summary ofNo Substantive Changes

There have been no substantive changes to this document since the previous version. For details on anyMinor editorial changes seechanges, if any, are detailed in the change log and visible in the color-coded diff.

 W3C MembersPlease Review By 6 December 2012 The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 6 December 2012. This will allow the Director to assess consensus and determine whetherSend Comments

Please send any comments to issuepublic-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document as a W3C Recommendation. Others are encouragedby the SPARQL Working Group to continue to send reports of implementation experience, and other feedback, to public-rdf-dawg-comments@w3.org (public archive). Reports of any success or difficulty withis complete, comments may be addressed in the test cases are encouraged.errata or in future revisions. Open discussion among developersis welcome at public-sparql-dev@w3.org (public archive).

 Support The advancement ofEndorsed By W3C

This Proposed Recommendation is supporteddocument has been reviewed by the disposition of comments on the previous drafts, the Test Suite ,W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the list of implementations (with test results) . No Endorsement PublicationDirector as a Proposed Recommendation does not imply endorsement by theW3C Membership. ThisRecommendation. It is a draftstable document and may be updated, replacedused as reference material or obsoleted by other documents at any time. Itcited from another document. W3C's role in making the Recommendation is inappropriateto citedraw attention to the specification and to promote its widespread deployment. This document as other than work in progress.enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents

1 Introduction

 1.1 Terminology

2 Accessing a Service Description

3 Service Description Vocabulary

 3.1 SPARQL Service Description Namespace and OWL Ontology

 3.2 Properties

 3.2.1 sd:endpoint

 3.2.2 sd:feature

 3.2.3 sd:defaultEntailmentRegime

 3.2.4 sd:entailmentRegime

 3.2.5 sd:defaultSupportedEntailmentProfile

 3.2.6 sd:supportedEntailmentProfile

 3.2.7 sd:extensionFunction

 3.2.8 sd:extensionAggregate

 3.2.9 sd:languageExtension

 3.2.10 sd:supportedLanguage

 3.2.11 sd:propertyFeature

 3.2.12 sd:defaultDataset

 3.2.13 sd:availableGraphs

 3.2.14 sd:resultFormat

 3.2.15 sd:inputFormat

 3.2.16 sd:defaultGraph

 3.2.17 sd:namedGraph

 3.2.18 sd:name

 3.2.19 sd:graph

 3.3 Classes

 3.3.1 sd:Service

 3.3.2 sd:Feature

 3.3.3 sd:Language

 3.3.4 sd:Function

 3.3.5 sd:Aggregate

 3.3.6 sd:EntailmentRegime

 3.3.7 sd:EntailmentProfile

 3.3.8 sd:GraphCollection

 3.3.9 sd:Dataset

 3.3.10 sd:Graph

 3.3.11 sd:NamedGraph

 3.4 Instances

 3.4.1 sd:SPARQL10Query

 3.4.2 sd:SPARQL11Query

 3.4.3 sd:SPARQL11Update

 3.4.4 sd:DereferencesURIs

 3.4.5 sd:UnionDefaultGraph

 3.4.6 sd:RequiresDataset

 3.4.7 sd:EmptyGraphs

 3.4.8 sd:BasicFederatedQuery

 3.4.9 Other Instances

4 Example (Informative)

 4.1 RDF/XML Service Description

 4.2 Turtle Service Description

5 Conformance

[bookmark: appendices]Appendix

A References

 A.1 Normative References

 A.2 Other References

[bookmark: intro]1 Introduction

A SPARQL service description lists the features of a SPARQL service made available via the SPARQL
 1.1 Protocol for RDF [SPROT]. This document describes both a method for discovering a service description from a specific SPARQL service and an RDF schema for encoding such descriptions in RDF.

[bookmark: terminology]1.1 Terminology

When this document uses the words MUST, SHOULD and MAY, and the words appear as emphasized text, they must be interpreted as described in [RFC2119].

The following terms are also in use throughout this document:

						SPARQL Service

						Any implementation conforming to the SPARQL 1.1 Protocol for RDF (this document's use of "SPARQL Service" is the same as "SPARQL Protocol service" as defined in the SPARQL 1.1 Protocol) [SPROT].

						SPARQL endpoint

						The URI at which a SPARQL Service listens for requests from clients.

			

[bookmark: accessing]2 Accessing a Service Description

SPARQL services made available via the SPARQL Protocol SHOULD return a service description document at the service endpoint when dereferenced using the HTTP GET operation without any query parameter strings provided. This service description MUST be made available in an RDF serialization, MAY be embedded in (X)HTML by way of RDFa [RDFA], and SHOULD use content negotiation [CONNEG] if available in other RDF representations.

[bookmark: vocab]3 Service Description Vocabulary

[bookmark: namespace]3.1 SPARQL Service Description Namespace and OWL Ontology

The SPARQL service description namespace IRI is:

http://www.w3.org/ns/sparql-service-description#

The prefix used in this document for this namespace is sd.

An RDF encoding of the Service Description ontology is available by HTTP content negotiation from the namespace IRI.

[bookmark: properties]3.2 Properties

[bookmark: sd-endpoint]3.2.1 sd:endpoint

Relates an instance of sd:Service to a SPARQL endpoint that implements the SPARQL Protocol service [SPROT] for the service. The object of the sd:endpoint property is an IRI.

		type:		owl:InverseFunctionalProperty

		domain:		sd:Service

[bookmark: sd-feature]3.2.2 sd:feature

Relates an instance of sd:Service with a resource representing a supported feature.

		domain:		sd:Service

		range:		sd:Feature

[bookmark: sd-defaultEntailmentRegime]3.2.3 sd:defaultEntailmentRegime

Relates an instance of sd:Service with a resource representing an entailment regime used for basic graph pattern matching. This property is intended for use when a single entailment regime by default applies to all graphs in the default dataset of the service. In situations where a different entailment regime applies to a specific graph in the dataset, the sd:entailmentRegime property should be used to indicate this fact in the description of that graph.

		subPropertyOf:		sd:feature

		domain:		sd:Service

		range:		sd:EntailmentRegime

[bookmark: sd-entailmentRegime]3.2.4 sd:entailmentRegime

Relates a named graph description with a resource representing an entailment regime used for basic graph pattern matching over that graph.

		domain:		sd:NamedGraph

		range:		sd:EntailmentRegime

[bookmark: sd-defaultSupportedEntailmentProfile]3.2.5 sd:defaultSupportedEntailmentProfile

Relates an instance of sd:Service with a resource representing a supported profile of the default entailment regime (as declared by sd:defaultEntailmentRegime). Entailment profiles are discussed more in SPARQL 1.1 Entailment Regimes [SPARQLENT].

Note that this specification does not make any conformance requirements on the compatibility of an advertised entailment profile with the advertised entailment regime in a service description. Providing a reasonable combination of values to the sd:entailmentRegime/sd:defaultEntailmentRegime and sd:supportedEntailmentProfile/sd:defaultSupportedEntailmentProfile properties is up to the creator of a service description.

		subPropertyOf:		sd:feature

		domain:		sd:Service

		range:		sd:EntailmentProfile

[bookmark: sd-supportedEntailmentProfile]3.2.6 sd:supportedEntailmentProfile

Relates a named graph description with a resource representing a supported profile of the entailment regime (as declared by sd:entailmentRegime) used for basic graph pattern matching over that graph.

		domain:		sd:NamedGraph

		range:		sd:EntailmentProfile

[bookmark: sd-extensionFunction]3.2.7 sd:extensionFunction

Relates an instance of sd:Service to a function that may be used in a SPARQL SELECT expression or a FILTER, HAVING, GROUP BY, ORDER BY, or BIND clause.

		subPropertyOf:		sd:feature

		domain:		sd:Service

		range:		sd:Function

[bookmark: sd-extensionAggregate]3.2.8 sd:extensionAggregate

Relates an instance of sd:Service to an aggregate that may be used in a SPARQL aggregate query (for instance in a HAVING clause or SELECT expression) besides the standard list of supported aggregates COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE.

		subPropertyOf:		sd:feature

		domain:		sd:Service

		range:		sd:Aggregate

[bookmark: sd-languageExtension]3.2.9 sd:languageExtension

Relates an instance of sd:Service to a resource representing an implemented extension to the SPARQL Query or Update language.

		subPropertyOf:		sd:feature

		domain:		sd:Service

		range:		sd:Feature

[bookmark: sd-supportedLanguage]3.2.10 sd:supportedLanguage

Relates an instance of sd:Service to a SPARQL language (e.g. Query and Update) that it implements.

		subPropertyOf:		sd:feature

		domain:		sd:Service

		range:		sd:Language

[bookmark: sd-propertyFeature]3.2.11 sd:propertyFeature

Relates an instance of sd:Service to a resource representing an implemented feature that extends the SPARQL Query or Update language and that is accessed by using the named property.

		subPropertyOf:		sd:feature

		domain:		sd:Service

		range:		sd:Feature

[bookmark: sd-defaultDataset]3.2.12 sd:defaultDataset

Relates an instance of sd:Service to a description of the default dataset available when no explicit dataset is specified in the query, update request or via protocol parameters.

		type:		owl:InverseFunctionalProperty

		domain:		sd:Service

		range:		sd:Dataset

[bookmark: sd-availableGraphs]3.2.13 sd:availableGraphs

Relates an instance of sd:Service to a description of the graphs which are allowed in the construction of a dataset via the SPARQL Protocol, with FROM/FROM NAMED clauses in a query, or with USING/USING NAMED in an update request, if the service limits the scope of dataset construction.

		domain:		sd:Service

		range:		sd:GraphCollection

[bookmark: sd-resultFormat]3.2.14 sd:resultFormat

Relates an instance of sd:Service to a format that is supported for serializing query results.

URIs for commonly used serialization formats are defined by Unique URIs for File Formats. For formats that do not have an existing URI, the <http://www.w3.org/ns/formats/media_type> and <http://www.w3.org/ns/formats/preferred_suffix> properties defined in that document SHOULD be used to describe the format.

		domain:		sd:Service

		range:		<http://www.w3.org/ns/formats/Format>

[bookmark: sd-inputFormat]3.2.15 sd:inputFormat

Relates an instance of sd:Service to a format that is supported for parsing RDF input; for example, via a SPARQL 1.1 Update LOAD statement, or when URIs are dereferenced in FROM/FROM NAMED/USING/USING NAMED clauses (see also sd:DereferencesURIs below).

URIs for commonly used serialization formats are defined by Unique URIs for File Formats. For formats that do not have an existing URI, the <http://www.w3.org/ns/formats/media_type> and <http://www.w3.org/ns/formats/preferred_suffix> properties defined in that document SHOULD be used to describe the format.

		domain:		sd:Service

		range:		<http://www.w3.org/ns/formats/Format>

[bookmark: sd-defaultGraph]3.2.16 sd:defaultGraph

Relates an instance of sd:Dataset to the description of its default graph.

		domain:		sd:Dataset

		range:		sd:Graph

[bookmark: sd-namedGraph]3.2.17 sd:namedGraph

Relates an instance of sd:GraphCollection (or its subclass sd:Dataset) to the description of one of its named graphs. The description of such a named graph MUST include the sd:name property and MAY include the sd:graph property.

		domain:		sd:GraphCollection

		range:		sd:NamedGraph

[bookmark: sd-name]3.2.18 sd:name

Relates a named graph to the name by which it may be referenced in a FROM/FROM NAMED clause. The object of the sd:name property is an IRI.

		domain:		sd:NamedGraph

[bookmark: sd-graph]3.2.19 sd:graph

Relates a named graph to its graph description.

		domain:		sd:NamedGraph

		range:		sd:Graph

[bookmark: classes]3.3 Classes

[bookmark: sd-Service]3.3.1 sd:Service

An instance of sd:Service represents a SPARQL service made available via the SPARQL Protocol.

		type:		rdfs:Class

[bookmark: sd-Feature]3.3.2 sd:Feature

An instance of sd:Feature represents a feature of a SPARQL service. Specific types of features include functions, aggregates, languages, and entailment regimes and profiles. This document defines five instances of sd:Feature: sd:DereferencesURIs, sd:UnionDefaultGraph, sd:RequiresDataset, sd:EmptyGraphs, and sd:BasicFederatedQuery.

		type:		rdfs:Class

[bookmark: sd-Language]3.3.3 sd:Language

An instance of sd:Language represents one of the SPARQL languages, including specific configurations providing particular features or extensions. This document defines three instances of sd:Language: sd:SPARQL10Query, sd:SPARQL11Query, and sd:SPARQL11Update.

		type:		rdfs:Class

		subClassOf:		sd:Feature

[bookmark: sd-Function]3.3.4 sd:Function

An instance of sd:Function represents a function that may be used in a SPARQL SELECT expression or a FILTER, HAVING, GROUP BY, ORDER BY, or BIND clause.

		type:		rdfs:Class

		subClassOf:		sd:Feature

[bookmark: sd-Aggregate]3.3.5 sd:Aggregate

An instance of sd:Aggregate represents an aggregate that may be used in a SPARQL aggregate query (for instance in a HAVING clause or SELECT expression) besides the standard list of supported aggregates COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE.

		type:		rdfs:Class

		subClassOf:		sd:Feature

[bookmark: sd-EntailmentRegime]3.3.6 sd:EntailmentRegime

An instance of sd:EntailmentRegime represents an entailment regime used in basic graph pattern matching (as described by SPARQL 1.1 Query Language). URIs for commonly used entailment regimes are defined by Unique URIs for Semantic Web Entailment Regimes [ENTAILMENT].

		type:		rdfs:Class

		subClassOf:		sd:Feature

[bookmark: sd-EntailmentProfile]3.3.7 sd:EntailmentProfile

An instance of sd:EntailmentProfile represents a profile of an entailment regime. An entailment profile MAY impose restrictions on what constitutes valid RDF with respect to entailment. URIs for commonly used entailment profiles are defined by Unique URIs for OWL 2 Profiles [OWL2PROF].

		type:		rdfs:Class

		subClassOf:		sd:Feature

[bookmark: sd-GraphCollection]3.3.8 sd:GraphCollection

An instance of sd:GraphCollection represents a collection of zero or more named graph descriptions. Each named graph description belonging to an sd:GraphCollection MUST be linked with the sd:namedGraph predicate.

		type:		rdfs:Class

[bookmark: sd-Dataset]3.3.9 sd:Dataset

An instance of sd:Dataset represents a RDF Dataset comprised of a default graph and zero or more named graphs.

The default graph of an sd:Dataset MUST be linked with the sd:defaultGraph predicate.

		type:		rdfs:Class

		subClassOf:		sd:GraphCollection

[bookmark: sd-Graph]3.3.10 sd:Graph

An instance of sd:Graph represents the description of an RDF graph.

This document does not define properties with domain sd:Graph. Instead, such instances may be described using other appropriate vocabularies (see example below).

		type:		rdfs:Class

[bookmark: sd-NamedGraph]3.3.11 sd:NamedGraph

An instance of sd:NamedGraph represents a named graph having a name (via sd:name) and an optional graph description (via sd:graph).

		type:		rdfs:Class

[bookmark: instances]3.4 Instances

[bookmark: lang-sparql10query]3.4.1 sd:SPARQL10Query

sd:SPARQL10Query is an sd:Language representing the SPARQL 1.0 Query language [QUERY10].

		type:		sd:Language

[bookmark: lang-sparql11query]3.4.2 sd:SPARQL11Query

sd:SPARQL11Query is an sd:Language representing the SPARQL 1.1 Query language [QUERY11].

		type:		sd:Language

[bookmark: lang-sparql11update]3.4.3 sd:SPARQL11Update

sd:SPARQLUpdate is an sd:Language representing the SPARQL 1.1 Update language [UPDATE11].

		type:		sd:Language

[bookmark: sd-dereferencesuris]3.4.4 sd:DereferencesURIs

sd:DereferencesURIs, when used as the object of the sd:feature property, indicates that a SPARQL service will dereference [AWWW] URIs used in FROM/FROM NAMED and USING/USING NAMED clauses and use the resulting RDF in the dataset during query evaluation.

		type:		sd:Feature

[bookmark: sd-uniondefaultgraph]3.4.5 sd:UnionDefaultGraph

sd:UnionDefaultGraph, when used as the object of the sd:feature property, indicates that the default graph of the dataset used during query and update evaluation (when an explicit dataset is not specified) is comprised of the union of all the named graphs in that dataset.

		type:		sd:Feature

[bookmark: sd-requiresdataset]3.4.6 sd:RequiresDataset

sd:RequiresDataset, when used as the object of the sd:feature property, indicates that the SPARQL service requires an explicit dataset declaration (based on either FROM/FROM NAMED clauses in a query, USING/USING NAMED clauses in an update, or the appropriate SPARQL Protocol parameters).

		type:		sd:Feature

[bookmark: sd-emptygraphs]3.4.7 sd:EmptyGraphs

sd:EmptyGraphs, when used as the object of the sd:feature property, indicates that the underlying graph store supports empty graphs. A graph store that supports empty graphs MUST NOT remove graphs that are left empty after triples are removed from them. (See 3.1 Graph Update in SPARQL 1.1 Update.)

		type:		sd:Feature

[bookmark: sd-basicfederatedquery]3.4.8 sd:BasicFederatedQuery

sd:BasicFederatedQuery, when used as the object of the sd:feature property, indicates that the SPARQL service supports basic federated query using the SERVICE keyword as defined by SPARQL 1.1 Federation Extensions [SPARQLFED].

		type:		sd:Feature

[bookmark: other-instances]3.4.9 Other Instances

Apart from the instances listed above, custom extensions and other documents may define further instance URIs usable within service descriptions; the following documents also list instance URIs that may be used with some of the properties defined in the previous sections:

		Unique URIs for Semantic Web Entailment Regimes [ENTAILMENT] (members of the class sd:EntailmentRegime usable with the properties sd:defaultEntailmentRegime and sd:entailmentRegime)

		Unique URIs for OWL 2 Profiles [OWL2PROF] (members of the class sd:EntailmentProfile usable with the properties sd:defaultSupportedEntailmentProfile and sd:supportedEntailmentProfile)

		Unique URIs for File Formats [FORMATS] (members of the class <http://www.w3.org/ns/formats/Format> usable with the properties sd:resultFormat and sd:inputFormat)

[bookmark: example]4 Example (Informative)

The following HTTP traces illustrate the retrieval of a service description from the SPARQL endpoint http://www.example/sparql/.

This RDF describes a SPARQL service available at the URL http://www.example/sparql/ that supports the SPARQL 1.1 Query language. The service will dereference URLs used in FROM/FROM NAMED clauses, supports both the RDF/XML and Turtle serialization formats, supports the http://example.org/Distance extension function, and has a dataset with a default graph and one named graph, both described using the voiD vocabulary [VOID]. The default graph contains 100 triples and supports RDFS entailment while the graph named http://www.example/named-graph contains 2000 triples and supports OWL2 RL entailment.

[bookmark: example-rdfxml]4.1 RDF/XML Service Description

Given the HTTP request:

GET /sparql/ HTTP/1.1
Host: www.example

the SPARQL service responds with an RDF/XML encoded service description (no content negotiation or RDFa encoding is used):

HTTP/1.1 200 OK
Date: Fri, 09 Oct 2009 17:31:12 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/rdf+xml

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:sd="http://www.w3.org/ns/sparql-service-description#"
 xmlns:prof="http://www.w3.org/ns/owl-profile/"
 xmlns:scovo="http://purl.org/NET/scovo#"xmlns:void="http://rdfs.org/ns/void#">
 <sd:Service>
 <sd:endpoint rdf:resource="http://www.example/sparql/"/>
 <sd:supportedLanguage rdf:resource="http://www.w3.org/ns/sparql-service-description#SPARQL11Query"/>
 <sd:resultFormat rdf:resource="http://www.w3.org/ns/formats/RDF_XML"/>
 <sd:resultFormat rdf:resource="http://www.w3.org/ns/formats/Turtle"/>
 <sd:feature rdf:resource="http://www.w3.org/ns/sparql-service-description#DereferencesURIs"/>
 <sd:defaultEntailmentRegime rdf:resource="http://www.w3.org/ns/entailment/RDFS"/>
 <sd:extensionFunction>
 <sd:Function rdf:about="http://example.org/Distance"/>
 </sd:extensionFunction>
 <sd:defaultDataset>
 <sd:Dataset>
 <sd:defaultGraph>
 <sd:Graph>
 <void:triples rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">100</void:triples>
 </sd:Graph>
 </sd:defaultGraph>
 <sd:namedGraph>
 <sd:NamedGraph>
 <sd:name rdf:resource="http://www.example/named-graph"/>
 <sd:entailmentRegime rdf:resource="http://www.w3.org/ns/entailment/OWL-RDF-Based"/>
 <sd:supportedEntailmentProfile rdf:resource="http://www.w3.org/ns/owl-profile/RL"/>
 <sd:graph>
 <sd:Graph>
 <void:triples rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">2000</void:triples>
 </sd:Graph>
 </sd:graph>
 </sd:NamedGraph>
 </sd:namedGraph>
 </sd:Dataset>
 </sd:defaultDataset>
 </sd:Service>
</rdf:RDF>

[bookmark: example-turtle]4.2 Turtle Service Description

Given the HTTP request:

GET /sparql/ HTTP/1.1
Host: www.example
Accept: text/turtle

the SPARQL service responds with a Turtle [TURTLE] encoded service description:

HTTP/1.1 200 OK
Date: Fri, 09 Oct 2009 17:31:12 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: text/turtle

@prefix sd: <http://www.w3.org/ns/sparql-service-description#> .
@prefix ent: <http://www.w3.org/ns/entailment/> .
@prefix prof: <http://www.w3.org/ns/owl-profile/> .
@prefix scovo: <http://purl.org/NET/scovo#> . @prefixvoid: <http://rdfs.org/ns/void#> .

[] a sd:Service ;
 sd:endpoint <http://www.example/sparql/> ;
 sd:supportedLanguage sd:SPARQL11Query ;
 sd:resultFormat <http://www.w3.org/ns/formats/RDF_XML>, <http://www.w3.org/ns/formats/Turtle> ;
 sd:extensionFunction <http://example.org/Distance> ;
 sd:feature sd:DereferencesURIs ;
 sd:defaultEntailmentRegime ent:RDFS ;
 sd:defaultDataset [
 a sd:Dataset ;
 sd:defaultGraph [
 a sd:Graph ;
 void:triples 100
] ;
 sd:namedGraph [
 a sd:NamedGraph ;
 sd:name <http://www.example/named-graph> ;
 sd:entailmentRegime ent:OWL-RDF-Based ;
 sd:supportedEntailmentProfile prof:RL ;
 sd:graph [
 a sd:Graph ;
 void:triples 2000
]
]
] .

<http://example.org/Distance> a sd:Function .

[bookmark: conformance]5 Conformance

A SPARQL service conformant with this specification:

		MUST return RDF content when the service endpoint URL is accessed as described in section 2 Accessing a Service Description.

		The RDF content returned from dereferencing a service endpoint URL <service-endpoint-URL> MUST include at least one triple matching: ?service sd:endpoint <service-endpoint-URL> .

		The RDF content returned MUST make use of the vocabulary defined in this document in accordance with the usage specified in section 3 Service Description Vocabulary.

[bookmark: sec-bibliography]A References

[bookmark: sec-normative-refs]A.1 Normative References

							[bookmark: CONNEG][CONNEG]

							
						Hypertext Transfer Protocol -- HTTP/1.1, Content Negotiation,
						Fielding, et al., IETF. June 1999. This document is http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html .
					

							[bookmark: RFC2119][RFC2119]

							
						Key words for use in RFCs to Indicate Requirement Levels,
						S. Bradner, IETF. March 1997. This document is http://www.ietf.org/rfc/rfc2119.txt .
					

							[bookmark: QUERY10][QUERY10]

							
						SPARQL Query Language for RDF, E. Prud'hommeaux and Andy Seaborne, Editors, W3C Recommendation, 15 January 2008. This document is http://www.w3.org/TR/rdf-sparql-query/ .
					

							[bookmark: QUERY11][QUERY11]

							SPARQL 1.1 Query Language, S. Harris, A. Seaborne, Editors, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-query-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-query.

							[bookmark: SPROT][SPROT]

							SPARQL 1.1 Protocol, L. Feigenbaum, G. Williams, K. Clark, E. Torres, Editors, W3C CandidateRecommendation, 8 November 2012, http://www.w3.org/TR/2012/CR-sparql11-protocol-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321. Latest version available at http://www.w3.org/TR/sparql11-protocol.

							[bookmark: UPDATE11][UPDATE11]

							SPARQL 1.1 Update, P. Gearon, A. Passant, A. Polleres, Editors, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-update-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-update-20130321. Latest version available at http://www.w3.org/TR/sparql11-update.

				

[bookmark: sec-non-normative-refs]A.2 Other References

							[bookmark: AWWW][AWWW]

							
						Architecture of the World Wide Web, Volume One, I. Jacobs and N. Walsh, Editors, W3C Recommendation, 15 December 2004. http://www.w3.org/TR/webarch/ .
					

					
							[bookmark: ENTAILMENT][ENTAILMENT]

							
						Unique URIs for Semantic Web Entailment Regimes
					

					
							[bookmark: FORMATS][FORMATS]

							
						Unique URIs for File Formats
					

					
							[bookmark: OWL2PROF][OWL2PROF]

							
						Unique URIs for OWL 2 Profiles
					

					
							[bookmark: RDFA][RDFA]

							
						RDFa in XHTML: Syntax and Processing, B. Adida, M. Birbeck, S. McCarron, and S. Pemberton, Editors, W3C Recommendation, 14 October 2008. http://www.w3.org/TR/rdfa-syntax/ .
					

					
							[bookmark: SPARQLENT][SPARQLENT]

							SPARQL 1.1 Entailment Regimes, B. Glimm, C. Ogbuji, Editors, W3C CandidateRecommendation, 8 November 2012, http://www.w3.org/TR/2012/CR-sparql11-entailment-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-entailment-20130321. Latest version available at http://www.w3.org/TR/sparql11-entailment.

					
							[bookmark: SPARQLFED][SPARQLFED]

							SPARQL 1.1 Federated Query, E. Prud'hommeaux, C. Buil-Aranda, Editors, W3C ProposedRecommendation, 8 November 2012, http://www.w3.org/TR/2012/PR-sparql11-federated-query-20121108.21 March 2013, http://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321. Latest version available at http://www.w3.org/TR/sparql11-federated-query.

					
							[bookmark: TURTLE][TURTLE]

							Turtle:
Terse RDF Triple Language, E Prud'hommeaux, G Carothers, Editors, W3C Working Draft, 10 July 2012, http://www.w3.org/TR/2012/WD-turtle-20120710/.Candidate Recommendation, 19 February 2013, http://www.w3.org/TR/2013/CR-turtle-20130219/. Latest version available at http://www.w3.org/TR/turtle/.

					
							[bookmark: VOID][VOID]

							
						Describing Linked Datasets with the voiD Vocabulary,
						K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao, Authors, W3C Interest Group Note, 3 March 2011, http://www.w3.org/TR/2011/NOTE-void-20110303/ .
						Latest version available at http://www.w3.org/TR/void/ .
					

				

Change Log

Changes since Proposed Recommendation

		Changed example to remove unused namespace prefix

Changes since Last Call

		Aligned terminology with Protocol document and improved wording regarding SD access

		Clarified usage of sd:availableGraphs based on comment

		Updated references; moved changelog; hid cvs log

StyleSheets/TR/logo-IG-Note.png
310N dnous) 3sa423U] DEAA

sparql11-update/diff.xhtml
[image: W3C]

[bookmark: title]SPARQL 1.1 Update

[bookmark: w3c-doctype]W3C ProposedRecommendation 08 November 201221 March 2013

		This version:

		
			 http://www.w3.org/TR/2012/PR-sparql11-update-20121108/http://www.w3.org/TR/2013/REC-sparql11-update-20130321/
		

		Latest version:

		
			http://www.w3.org/TR/sparql11-update/
		

		Previous version:

		 http://www.w3.org/TR/2012/WD-sparql11-update-20120105/http://www.w3.org/TR/2012/PR-sparql11-update-20121108/

		Editors:

		Paul Gearon <pgearon@revelytix.com>

		Alexandre Passant, DERI Galway at the National University of Ireland, Galway, Ireland <alexandre.passant@deri.org>

		Axel Polleres, Siemens AG <axel.polleres@siemens.com>

Please refer to the errata for this document, which may
 include some normative corrections.

See also translations.

Copyright © 2012 © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

[bookmark: abstract]Abstract

This document describes SPARQL 1.1 Update, an update
 language for RDF graphs. It uses a syntax derived from the SPARQL Query Language for RDF. Update
 operations are performed on a collection of graphs in a Graph Store.
 Operations are provided to update, create, and remove RDF graphs in a Graph Store.

[bookmark: status]Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is being published asone of a set of 11 documents:eleven SPARQL 1.1 Recommendations produced by the SPARQL Working Group:

		SPARQL 1.1 Overview

		SPARQL 1.1 Query Language

		SPARQL 1.1 Update (this document)

		SPARQL1.1 Service Description

		SPARQL 1.1 Federated Query

		SPARQL 1.1 Query Results JSON Format

		SPARQL 1.1 Query Results CSV and TSV Formats

		SPARQL Query Results XML Format (Second Edition)

		SPARQL 1.1 Entailment Regimes

		SPARQL 1.1 Protocol

		SPARQL 1.1 Graph Store HTTP Protocol

 Summary ofNo Substantive Changes

There have been no substantive changes to this document since the previous version. For details on anyMinor editorial changes seechanges, if any, are detailed in the change log and visible in the color-coded diff.

 W3C MembersPlease Review By 6 December 2012 The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 6 December 2012. This will allow the Director to assess consensus and determine whetherSend Comments

Please send any comments to issuepublic-rdf-dawg-comments@w3.org
 (public
 archive). Although work on this document as a W3C Recommendation. Others are encouragedby the SPARQL Working Group to continue to send reports of implementation experience, and other feedback, to public-rdf-dawg-comments@w3.org (public archive). Reports of any success or difficulty withis complete, comments may be addressed in the test cases are encouraged.errata or in future revisions. Open discussion among developersis welcome at public-sparql-dev@w3.org (public archive).

 Support The advancement ofEndorsed By W3C

This Proposed Recommendation is supporteddocument has been reviewed by the disposition of comments on the previous drafts, the Test Suite ,W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the list of implementations (with test results) . No Endorsement PublicationDirector as a Proposed Recommendation does not imply endorsement by theW3C Membership. ThisRecommendation. It is a draftstable document and may be updated, replacedused as reference material or obsoleted by other documents at any time. Itcited from another document. W3C's role in making the Recommendation is inappropriateto citedraw attention to the specification and to promote its widespread deployment. This document as other than work in progress.enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

[bookmark: contents]Table of Contents

1 Introduction

 1.1 Document Conventions

 1.1.1 Language Form

 1.1.2 Terminology

2 The Graph Store

 2.1 Graph Store and SPARQL Query Services

 2.2 SPARQL 1.1 Update Services

 2.3 Entailment and Consistency

3 SPARQL 1.1 Update Language

 3.1 Graph Update

 3.1.1 INSERT DATA

 3.1.2 DELETE DATA

 3.1.3 DELETE/INSERT

 3.1.3.1 DELETE (Informative)

 3.1.3.2 INSERT (Informative)

 3.1.3.3 DELETE WHERE

 3.1.4 LOAD

 3.1.5 CLEAR

 3.2 Graph Management

 3.2.1 CREATE

 3.2.2 DROP

 3.2.3 COPY

 3.2.4 MOVE

 3.2.5 ADD

4 SPARQL Update Formal Model

 4.1 General Definitions

 4.1.1 Graph Store

 4.1.2 Abstract Update Operation

 4.2 Auxiliary Definitions

 4.2.1 Dataset-UNION

 4.2.2 Dataset-DIFF

 4.2.3 Dataset(QuadPattern, μ, DS, GS)

 4.2.4 Dataset(QuadPattern, P, DS, GS)

 4.3 Graph Update Operations

 4.3.1 Insert Data Operation

 4.3.2 Delete Data Operation

 4.3.3 Delete Insert Operation

 4.3.4 Load Operation

 4.3.5 Clear Operation

 4.4 Graph Management Operations

 4.4.1 Create Operation

 4.4.2 Drop Operation

 4.5 Mapping Update Requests to the Formal Model

5 Conformance

[bookmark: appendices]Appendices

A Security Considerations (Informative)

B Internet Media Type, File Extension and Macintosh File Type

C SPARQL 1.1 Update Grammar

D References

 D.1 Normative References

 D.2 Other References

[bookmark: sec-intro]1 Introduction

SPARQL 1.1 Update is
 intended to be a standard language for specifying and executing updates to RDF
 graphs in a Graph Store.

SPARQL 1.1 Update provides the following facilities:

		Insert triples into an RDF graph in the Graph Store.

		Delete triples from an RDF graph in the Graph Store.

		Load an RDF graph into the Graph Store.

		Clear an RDF graph in the Graph Store.

		Create a new RDF graph in a Graph Store.

		Drop an RDF graph from a Graph Store.

		Copy, move, or add the content of one RDF graph in the Graph Store to another.

		Perform a group of update operations as a single action.

This document is particularly related to the following other specification documents:

		SPARQL 1.1 Query Language

		SPARQL 1.1 Graph Store HTTP Protocol

		SPARQL 1.1 Protocol for RDF

 SPARQL 1.1 Update is a companion language and envisaged to be used in conjunction with the SPARQL 1.1 Query language. The present document refers to the grammar and several definitions from the SPARQL 1.1 Query language specification.

The SPARQL 1.1 Graph Store HTTP Protocol specification employs the HTTP protocol to perform update operations using standard HTTP methods, such as PUT and DELETE. While providing a simple and well known API, it is necessarily restricted in its operations due to the limited set of methods in the HTTP protocol. In contrast, SPARQL 1.1 Update permits multiple modifications in a single operation, and can use complex SPARQL queries for constructing data to be inserted, or choosing data to be deleted. Also, the use of an update language facilitates operations over proprietary APIs and connections that may not involve HTTP.

The SPARQL 1.1 Protocol for RDF specification describes a means of conveying SPARQL 1.1 Query and SPARQL 1.1 Update operations from clients to a SPARQL query processing service, and for returning appropriate results. Together with the SPARQL 1.1 Query and SPARQL 1.1 Update (this document) specifications, these form an alternative to the SPARQL 1.1 Graph Store HTTP Protocol with comprehensive, though more complex functionality.

[bookmark: documentConventions]1.1 Document Conventions

[bookmark: languageForm]1.1.1 Language Form

The operations in this document contain language forms describing their use. These are meant as illustrative forms of the formal grammar described in the SPARQL 1.1 Query document. Any discrepancies between the language forms in this document and the grammar in SPARQL 1.1 Query will defer to the formal grammar in SPARQL 1.1 Query.

Language forms are shown informally in this document as for instance:

(WITH IRIref)?
((DeleteClause InsertClause?) | InsertClause)
(USING (NAMED)? IRIref)*
WHERE GroupGraphPattern

Unlike other forms of EBNF where square brackets denote optionality, here [] is
 used for blank nodes, as in SPARQL Query. | is used to denote alternatives, () is used for grouping terms, ? indicates 0 or 1 occurrence of a term, * indicates 0 or more occurrences, and + indicates 1 or more occurrences.

BOLD indicates language keywords. Italics indicate syntactic items defined in the SPARQL 1.1 Query Grammar, where we occasionally refer to productions by links. Unitalicized text indicates a local term that will have a more complex (and exact) definition in the formal grammar.

Example update requests are shown as follows:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT { <http://example/egbook> dc:title "This is an example title" } WHERE {}

Note:

PREFIX definitions and the syntax for IRIs in update requests in general follow the same conventions as in the SPARQL1.1 Query Language.
Data is shown in Turtle syntax as follows:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/books/> .
:book0 dc:title "SPARQL Tutorial" .

[bookmark: terminology]1.1.2 Terminology

When this document uses the words MUST,
MUST NOT, SHOULD, SHOULD NOT, MAY
and recommended, and the words appear as emphasized text, they must be interpreted as
described in RFC 2119 [RFC2119].

The following terms are also in use throughout this document:

		[bookmark: operation]Operation - An action to be performed that results in the modification of data in a Graph Store expressible as a single command, e.g. INSERT or DELETE.

		[bookmark: request]Request - A sequence of zero or more operations that is sent to a Graph Store. When using the SPARQL 1.1 Protocol for RDF a request will be one HTTP POST.

The following terms are also used in this document as defined in the SPARQL 1.1 Query Language:

		QuadPattern - A syntactic construct that refers to a set of triple patterns, similar to ConstructTriples, but potentially involving the GRAPH keyword to indicate that a set of triples is to be inserted into/deleted from a named graph.

		QuadData - A QuadPattern without variables.

		GroupGraphPattern - A syntactic construct for referring to a set of triples, possibly with complex constraints.

[bookmark: graphStore]2 The Graph Store

A Graph Store is a mutable container of RDF graphs managed by a single service. Similar to an
RDF Dataset
operated on by the SPARQL 1.1 Query Language, a Graph Store contains one (unnamed) slot holding a default graph and zero or more named slots holding named graphs. Operations MAY specify graphs to be modified, or they MAY rely on a default graph for that operation. Unless overridden (for instance, by the SPARQL protocol), the unnamed graph for the store will be the default graph for any operations on that store. Depending on implementation, the unnamed graph MAY refer to a separate graph, a graph describing the named graphs, a representation of a union of other graphs, etc.

Unlike an RDF Dataset, named graphs can be added to or deleted from a Graph Store. A Graph Store needs not be authoritative for the graphs it contains. That means a Graph Store can keep local copies of RDF graphs defined elsewhere on the Web and modify those copies independently of the original graph.

In the simple case where there is one
unnamed graph and no named graphs, SPARQL 1.1 Update can be used as a graph update language (as opposed to a Graph Store update language).

The information how a Graph Store is accessed is defined in the protocol and Graph Store protocol specs.
A Graph Store is accessible by either an update service (cf. protocol) or via the Graph Store protocol (cf. Graph Store protocol). In either case the Graph Store is hidden behind the service, making it accessible via the URI of a SPARQL update service or via a URI that responds to the Graph Store protocol.

	A formal definition for Graph Stores and how SPARQL 1.1 Update affects them is described in the SPARQL 1.1 Update Formal Model section.

[bookmark: graphStoreQueryServices]2.1 Graph Store and SPARQL Query Services

A service (often referred to by the informal term SPARQL endpoint) that accepts and processes
update requests is referred to as an update service.
There is no presumption that the Graph Store managed by an update service exactly corresponds to any RDF Dataset offered by
some query service.
A query service MAY offer an RDF Dataset formed from graphs that are part of an update service's Graph Store. The graphs in the query service's RDF Dataset MAY be a subset of the graphs in the update service's Graph Store. Furthermore, the query service's RDF Dataset and the update service's Graph Store MAY use different names for the same graphs.

[bookmark: updateServices]2.2 SPARQL 1.1 Update Services

SPARQL 1.1 Update requests are sequences of operations.

Each request SHOULD be treated atomically by a SPARQL 1.1 Update service. The term 'atomically' means that a single request will result in either no effect or a complete effect, regardless of the number of operations that may be present in the request. Any resulting concurrency issues will be a matter for each implementation to consider according to its own architecture. In particular, using the SERVICE keyword in the WHERE clause of operations in an Update request will usually result in a loss of atomicity.

In the case of two different update services, whose respective Graph Stores contain graphs with the same names, there is no presumption that the updates done through one service will be propagated to the other, as the stores are independent entities.
The behaviour of these services with respect to each other (such as automatic synchronization after updates) is implementation dependent.

[bookmark: entailmentConsistency]2.3 Entailment and Consistency

If the store is capable of calculating entailed answers, see SPARQL 1.1 Entailment Regimes, then it is possible for update operations to interact with entailed data.
	 In particular, a DELETE operation may attempt to remove entailed statements without actual effects.

After an update request is completed, a store that performs consistency checking with respect to a particular entailment regime on its graphs MAY check the new state of the Graph Store for consistency. If inconsistency is detected, such a store MAY return an error to the request.

Also of note is that some stores may be capable of performing entailments with respect to an ontology capable of higher level processing, such as RDFS or OWL. Updates may interact with these entailment regimes in these systems.

[bookmark: updateLanguage]3 SPARQL 1.1 Update Language

SPARQL 1.1 Update supports two categories of update operations on a Graph Store:

		Graph Update - addition and removal of triples from some graphs within the Graph Store.

		Graph Management - creating and deletion of graphs within the Graph Store, as well as convenient shortcuts for graph update operations often used during graph management (to add, move, and copy graphs).

A request is a sequence of operations and is terminated by EOF (End of File). Multiple operations are separated by a ';' (semicolon) character. A semicolon after the last operation in a request is optional. Implementations MUST ensure that the operations of a single request are executed in a fashion that guarantees the same effects as executing them sequentially in the order they appear in the request.

Operations all result either in success or failure. A failure result MAY be accompanied by extra information, indicating that some portion of the operations in the request were successful. This document does not stipulate the exact form of the result, as that will be dependent on the interface being used, for instance the SPARQL 1.1 protocol via HTTP or a programmatic API. If multiple operations are present in a single request, then a result of failure from any operation MUST abort the sequence of operations, causing the subsequent operations to be ignored.

The formal semantics of the following operations is defined in Section 4 of this document.

[bookmark: graphUpdate]3.1 Graph Update

Graph update operations change existing graphs in the Graph Store but do
 not explicitly delete nor create them. Non-empty inserts into non-existing graphs will, however, implicitly create those graphs, i.e., an implementation fulfilling an update request SHOULD silently an automatically create graphs that do not exist before triples are inserted into them, and MUST return with failure if it fails to do so for any reason. (For example, the implementation may have insufficient resources, or an implementation may only provide an update service over a fixed set of graphs and the implicitly created graph is not within this fixed set). An implementation MAY remove graphs that are left empty after triples are removed from them.

If a graph is created implicitly by an update operation, then the behavior of the Graph Store MUST be functionally equivalent to its
behavior if the graph had been created explicitly by a CREATE operation.

SPARQL 1.1 Update provides these graph update operations:

		
 The INSERT DATA operation adds some triples, given inline in the request, into a graph. This SHOULD create the destination graph if it does not exist. If the graph does not exist and it can not be created for any reason, then a failure MUST be returned.
	

		
		The DELETE DATA operation removes some triples, given inline in the request, if the respective graph contains those.
	

		
		The fundamental pattern-based actions for graph updates are INSERT and DELETE (which can co-occur in a single DELETE/INSERT operation).
These actions consist of groups of triples to be deleted and
groups of triples to be added. The specification of the triples is based on
query patterns.
	The difference between INSERT / DELETE
and INSERT DATA / DELETE DATA is that INSERT
DATA and DELETE DATA do not substitute bindings into a template from a pattern. The
DATA forms require concrete data (triple templates containing variables within DELETE DATA and INSERT DATA operations are disallowed and blank nodes are disallowed within DELETE DATA, see Notes 8+9 in the grammar).
Having specific operations for concrete data means that a request can be streamed so that large,
pure-data updates can be done.
	

		
		The LOAD operation reads the contents of a document representing
a graph into a graph in the Graph Store.
	

		
		The CLEAR operation removes all the triples in (one or more) graphs.
	

[bookmark: insertData]3.1.1 INSERT DATA

The INSERT DATA operation adds some triples, given inline in the request, into the Graph Store:

INSERT DATA QuadData

where QuadData are formed by TriplesTemplates, i.e., sets of triple patterns, optionally wrapped into a GRAPH block.

 (GRAPH VarOrIri)? { TriplesTemplate? }

Variables in QuadDatas are disallowed in INSERT DATA requests (see Notes 8 in the grammar). That is, the INSERT DATA statement only allows to insert ground triples. Blank nodes in QuadDatas are assumed to be disjoint from the blank nodes in the Graph Store, i.e., will be inserted with "fresh" blank nodes.

If no graph is described in the QuadData, then the default graph is presumed. If data is inserted into a graph that does not exist in the Graph Store, it SHOULD be created (there may be implementations providing an update service over a fixed set of graphs which in such case MUST return with failure for update requests that insert data into an unallowed graph).

Note that a triple MAY be considered to be "processed" with no action if that triple already exists in the graph. Further, note that

INSERT DATA { GRAPH <g> {} } ...

does not create <g>. If a user intends to just create a graph, then the graph management operations (CREATE/LOAD) may be used prior to any insertion operations.

Example 1: [bookmark: example_1]Adding some triples to a graph

This snippet
describes two RDF triples to be inserted into the default graph of the Graph Store.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA
{
 <http://example/book1> dc:title "A new book" ;
 dc:creator "A.N.Other" .
}

Data before:

Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .

<http://example/book1> ns:price 42 .

Data after:

Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .

<http://example/book1> ns:price 42 .
<http://example/book1> dc:title "A new book" .
<http://example/book1> dc:creator "A.N.Other" .

Example 2:

[bookmark: example_2]This SPARQL 1.1 Update request adds a triple to provide the price of a book. As opposed to the previous example, which affected the default graph, the requested change happens in the named graph identified by the IRI http://example/bookStore.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
INSERT DATA
{ GRAPH <http://example/bookStore> { <http://example/book1> ns:price 42 } }

Data before:

Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
<http://example/book1> dc:title "Fundamentals of Compiler Design" .

Data after:

Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .
<http://example/book1> dc:title "Fundamentals of Compiler Design" .
<http://example/book1> ns:price 42 .

[bookmark: deleteData]3.1.2 DELETE DATA

The DELETE DATA operation removes some triples, given inline in the request, if the respective graphs in the Graph Store contain those:

DELETE DATA QuadData

QuadData denotes triples to be removed and is as described in INSERT DATA, with the difference that in a DELETE DATA operation neither variables nor blank nodes are allowed (see Notes 8+9 in the grammar).

As with INSERT DATA, DELETE DATA is meant for deletion of ground triples data which is why QuadData that contains variables or blank nodes is disallowed in DELETE DATA operations. The DELETE/INSERT operation can be used to remove triples containing blank nodes.

Note that the deletion of non-existing triples has no effect, i.e., triples in the QuadData that did not exist in the Graph Store are ignored. Blank nodes are not permitted in the QuadData, as these do not match any existing data.

Example 3: Removing triples from a graph

[bookmark: example_3]This request describes 2 triples to be removed from the default graph of the Graph Store.

PREFIX dc: <http://purl.org/dc/elements/1.1/>

DELETE DATA
{
 <http://example/book2> dc:title "David Copperfield" ;
 dc:creator "Edmund Wells" .
}

Data before:

Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .

<http://example/book2> ns:price 42 .
<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .

Data after:

Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .

<http://example/book2> ns:price 42 .

Example 4:

[bookmark: example_4]This SPARQL 1.1 Update request consists of two operations, including a triple to be deleted and a triple to be added (used here to correct a book title). As opposed to the previous example, which affected the default graph, the requested change happens in the named graph identified by the IRI http://example/bookStore.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
DELETE DATA
{ GRAPH <http://example/bookStore> { <http://example/book1> dc:title "Fundamentals of Compiler Desing" } } ;

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA
{ GRAPH <http://example/bookStore> { <http://example/book1> dc:title "Fundamentals of Compiler Design" } }

Data before:

Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
<http://example/book1> dc:title "Fundamentals of Compiler Desing" .

Data after:

Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
<http://example/book1> dc:title "Fundamentals of Compiler Design" .

[bookmark: deleteInsert]3.1.3 DELETE/INSERT

The DELETE/INSERT operation can be used to remove or add triples from/to the Graph Store based on bindings for a query pattern specified in a WHERE clause:

(WITH IRIref)?
((DeleteClause InsertClause?) | InsertClause)
(USING (NAMED)? IRIref)*
WHERE GroupGraphPattern

The DeleteClause and InsertClause forms can be broken down as follows:

DeleteClause ::= DELETE QuadPattern
InsertClause ::= INSERT QuadPattern

This operation identifies data with the WHERE clause, which will be used to compute solution sequences of bindings for a set of variables. The bindings for each solution are then substituted into the DELETE template to remove triples, and then in the INSERT template to create new triples. If any solution produces a triple containing an unbound variable or an illegal RDF construct, such as a literal in a subject or predicate position, then that triple is not included when processing the operation: INSERT will not instantiate new data in the output graph, and DELETE will not remove anything. The graphs used for computing a solution sequence may be different to the graphs modified with the DELETE and INSERT templates.

The WITH clause defines the graph that will be modified or matched against
for any of the subsequent elements (in DELETE, INSERT, or WHERE clauses)
if they do not specify a graph explicitly. If not provided, then the default graph of the Graph Store (or an explicitly declared dataset in the WHERE clause) will be assumed. That is, a WITH clause may be viewed as syntactic sugar for wrapping both the QuadPatterns in subsequent DELETE and INSERT clauses, and likewise the GroupGraphPattern in the subsequent WHERE clause into GRAPH patterns. This can be used to avoid refering to the same graph multiple times in a single operation.

Following the optional WITH clause are the INSERT
 and/or DELETE clauses. The deletion of the triples happens before the insertion. The pattern in the WHERE clause is evaluated only once, before the delete part of the operation is performed. The overall processing model is that the pattern is executed, the results used to instantiate the DELETE template, the deletes performed, the results used again to instantiate the INSERT template, and the inserts performed.

If the DELETE clause is omitted, then the operation only inserts data (see INSERT). If the INSERT clause is omitted, then the operation only removes data (see DELETE). The grammar does not permit both DELETE and INSERT to be omitted in the same operation.

The USING and USING NAMED clauses affect the RDF Dataset used while evaluating the WHERE clause. This describes a dataset in the same way as FROM and FROM NAMED clauses describe RDF Datasets in the SPARQL 1.1 Query Language. The keyword USING instead of FROM in update requests is to avoid possible ambiguities which could arise from writing "DELETE FROM". That is, the GroupGraphPattern in the WHERE clause will be matched against the dataset described by explicit USING or USING NAMED clauses, if specified, and against the Graph Store otherwise.

The WITH clause provides a convenience for when an operation primarily refers to a single graph. If a graph name is specified in a WITH clause, then - for the purposes of evaluating the WHERE clause - this will define an RDF Dataset containing a default graph with the specified name, but only in the absence of USING or USING NAMED clauses. In the presence of one or more graphs referred to in USING clauses and/or USING NAMED clauses, the WITH clause will be ignored while evaluating the WHERE clause.

The GroupGraphPattern in the WHERE clause is evaluated as in a SPARQL query "SELECT * WHERE GroupGraphPattern"
and all the solution bindings are applied to the preceding DELETE and INSERT templates for defining the triples to be deleted from or inserted into the Graph Store.

Again, QuadPatterns are formed by TriplesTemplates, i.e., sets of triple patterns, optionally wrapped into a GRAPH block, where the GRAPH clause indicates the named graph in the Graph Store to be updated; on any TripleTemplates without a GRAPH clause, the INSERT or DELETE clauses applies to the graph specified by the WITH clause, or the default graph of the Graph Store if no WITH clause is present.

To illustrate the use of the WITH clause, an operation of the general form:

WITH <g1> DELETE { a b c } INSERT { x y z } WHERE { ... }

is considered equivalent to:

DELETE { GRAPH <g1> { a b c } } INSERT { GRAPH <g1> { x y z } } USING <g1> WHERE { ... }

Note that explicit GRAPH clauses override a WITH clause. WITH provides a fallback to specify a graph (different from the default graph) to use when one is not explicitly stipulated via GRAPH.

Deleting triples that are not present, or from a graph that is not present will have no effect and will result in success. Blank nodes are prohibited in a DELETE template, since using a new blank node in a DELETE template would lead to nothing being deleted, as a new blank node cannot match anything in the Graph Store. It should be noted that this restriction is not in the EBNF for the DeleteClause itself, but made explicit in Note 9 to the grammar.

If an operation tries to insert into a graph that does not exist, then that graph SHOULD be created; again, there may be implementations providing an update service over a fixed set of graphs which in such case MUST return with failure for update requests that would create an unallowed graph. If no data is to be inserted, then no graph will be created. Particularly, note that

INSERT ... { GRAPH <g> {} } ...

does not create <g>. If a user intends to create a graph regardless of the data to be inserted, then the graph management operations (CREATE/LOAD) may be used prior to any insertion operations.

Blank nodes that appear in an INSERT clause operate similarly to blank nodes in the template of a CONSTRUCT query, i.e., they are re-instantiated for any solution of the WHERE clause; refer to Templates with Blank Nodes in SPARQL Query 1.1 and to the formal semantics of DELETE/INSERT below for details. Blank nodes in the WHERE clause match data in the same way as for any SPARQL Query.

Example 5:

[bookmark: example_5]An example to update the graph http://example/addresses to rename all people with the given name "Bill" to "William".

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

WITH <http://example/addresses>
DELETE { ?person foaf:givenName 'Bill' }
INSERT { ?person foaf:givenName 'William' }
WHERE
 { ?person foaf:givenName 'Bill'
 }

Data before:

Graph: http://example/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/president25> foaf:givenName "Bill" .
<http://example/president25> foaf:familyName "McKinley" .
<http://example/president27> foaf:givenName "Bill" .
<http://example/president27> foaf:familyName "Taft" .
<http://example/president42> foaf:givenName "Bill" .
<http://example/president42> foaf:familyName "Clinton" .

Data after:

Graph: http://example/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/president25> foaf:givenName "William" .
<http://example/president25> foaf:familyName "McKinley" .
<http://example/president27> foaf:givenName "William" .
<http://example/president27> foaf:familyName "Taft" .
<http://example/president42> foaf:givenName "William" .
<http://example/president42> foaf:familyName "Clinton" .

[bookmark: delete]3.1.3.1 DELETE (Informative)

(WITH IRIref)?
DELETE QuadPattern
(USING (NAMED)? IRIref)*
WHERE GroupGraphPattern

The DELETE operation is a form of the DELETE/INSERT
 operation having no INSERT section. A compliant implementation of DELETE/INSERT will already implement this operation correctly. The DELETE operation is described here separately for clarity. Analogous to DELETE/INSERT, deleting triples that are not present, or from a graph that is not present will have no effect and will result in success.

If any DELETE template specifies a GRAPH then this will be the graph affected. Otherwise, the operation will be applied to the graph specified in the WITH clause, if one was specified, or the default graph otherwise.

The WHERE clause identifies data in existing graphs, and creates bindings to be used by the template. The graphs to apply the GroupGraphPattern follow the same rules as for DELETE/INSERT.

Example 6:

[bookmark: example_6]This example request deletes all records of old books (with date before year 1970) from the store's default graph:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

DELETE
 { ?book ?p ?v }
WHERE
 { ?book dc:date ?date .
 FILTER (?date > "1970-01-01T00:00:00-02:00"^^xsd:dateTime)
 ?book ?p ?v
 }

The pattern in WHERE is matched against the Graph Store. The resulting sequence of solutions to the WHERE clause is used to instantiate the triple patterns in the DELETE template similar to CONSTRUCT in SPARQL 1.1 Query. The resulting triples are then removed from the Graph Store.

Data before:

Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example/book1> dc:title "Principles of Compiler Design" .
<http://example/book1> dc:date "1977-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book2> ns:price 42 .
<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .
<http://example/book2> dc:date "1948-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book3> dc:title "SPARQL 1.1 Tutorial" .

Data after:

Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example/book2> ns:price 42 .
<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .
<http://example/book2> dc:date "1948-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book3> dc:title "SPARQL 1.1 Tutorial" .

Example 7:

[bookmark: example_7]This example request removes all statements about anything with a given name of "Fred" from the graph http://example/addresses. A WITH clause is present, meaning that graph http://example/addresses is both the one from which triples are being removed and the one which the WHERE clause is matched against.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

WITH <http://example/addresses>
DELETE { ?person ?property ?value }
WHERE { ?person ?property ?value ; foaf:givenName 'Fred' }

Data before:

Graph: http://example/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

<http://example/fred> a foaf:Person .
<http://example/fred> foaf:givenName "Fred" .
<http://example/fred> foaf:mbox <mailto:fred@example> .

Data after:

Graph: http://example/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

Another example of DELETE is provided in the final example in the following section which demonstrates multiple operations combining an INSERT with a DELETE.

[bookmark: insert]3.1.3.2 INSERT (Informative)

(WITH IRIref)?
INSERT QuadPattern
(USING (NAMED)? IRIref)*
WHERE GroupGraphPattern

The INSERT operation is a form of the DELETE/INSERT
 operation having no DELETE section. A compliant implementation of DELETE/INSERT will already implement this operation correctly. The INSERT operation is described here separately for clarity.

If the INSERT template specifies GRAPH blocks then these will be the graphs affected. Otherwise, the operation will be applied to the default graph, or, respectively, to the graph specified in the WITH clause,
if one was specified.
If no USING (NAMED) clause is present, then the pattern in the WHERE clause will be matched against the Graph Store, otherwise against the dataset specified by the USING (NAMED) clauses. The matches against the WHERE clause create bindings to be applied to the template for determining triples to be inserted (following the same rules as for DELETE/INSERT).

If any instantiation arising from the solution sequence produces a triple containing an unbound variable or an illegal RDF construct, such as a literal in subject or predicate position, then that triple is not inserted. The template can contain triples with no variables (known as ground or explicit triples), and these will also be inserted, provided that the solution sequence is not empty.

Example 8:

[bookmark: example_8]This example copies triples from one named graph to another named graph based on a pattern:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

INSERT
 { GRAPH <http://example/bookStore2> { ?book ?p ?v } }
WHERE
 { GRAPH <http://example/bookStore>
 { ?book dc:date ?date .
 FILTER (?date > "1970-01-01T00:00:00-02:00"^^xsd:dateTime)
 ?book ?p ?v
 } }	

Data before:

Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example/book1> dc:title "Fundamentals of Compiler Design" .
<http://example/book1> dc:date "1977-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book2> ns:price 42 .
<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .
<http://example/book2> dc:date "1948-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book3> dc:title "SPARQL 1.1 Tutorial" .

Graph: http://example/bookStore2
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example/book4> dc:title "SPARQL 1.0 Tutorial" .

Data after:

Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example/book1> dc:title "Fundamentals of Compiler Design" .
<http://example/book1> dc:date "1977-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book2> ns:price 42 .
<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .
<http://example/book2> dc:date "1948-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book3> dc:title "SPARQL 1.1 Tutorial" .

Graph: http://example/bookStore2
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example/book1> dc:title "Fundamentals of Compiler Design" .
<http://example/book1> dc:date "1977-01-01T00:00:00-02:00"^^xsd:dateTime .

<http://example/book4> dc:title "SPARQL 1.0 Tutorial" .

Example 9:

[bookmark: example_9]This example copies triples of name and email from one named graph to another. Some individuals may not have an address, but the name is copied regardless:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

INSERT
 { GRAPH <http://example/addresses>
 {
 ?person foaf:name ?name .
 ?person foaf:mbox ?email
 } }
WHERE
 { GRAPH <http://example/people>
 {
 ?person foaf:name ?name .
 OPTIONAL { ?person foaf:mbox ?email }
 } }

Data before:

Graph: http://example/people
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: >http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

_:a rdf:type foaf:Person .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@example.com> .

_:b rdf:type foaf:Person .
_:b foaf:name "Bob" .

Graph: http://example/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

Data after:

Graph: http://example/people
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: >http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

_:a rdf:type foaf:Person .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@example.com> .

_:b rdf:type foaf:Person .
_:b foaf:name "Bob" .

Graph: http://example/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@example.com> .

_:b foaf:name "Bob" .

Example 10:

[bookmark: example_10]This example request first copies triples from one named graph to another named graph based on a pattern; triples about all the copied objects that are classified as Physical Objects are then deleted. This demonstrates two operations in a single request, both of which share common PREFIX definitions.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcmitype: <http://purl.org/dc/dcmitype/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

INSERT
 { GRAPH <http://example/bookStore2> { ?book ?p ?v } }
WHERE
 { GRAPH <http://example/bookStore>
 { ?book dc:date ?date .
 FILTER (?date < "2000-01-01T00:00:00-02:00"^^xsd:dateTime)
 ?book ?p ?v
 }
 } ;

WITH <http://example/bookStore>
DELETE
 { ?book ?p ?v }
WHERE
 { ?book dc:date ?date ;
 dc:type dcmitype:PhysicalObject .
 FILTER (?date < "2000-01-01T00:00:00-02:00"^^xsd:dateTime)
 ?book ?p ?v
 }

Data before:

Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dcmitype: <http://purl.org/dc/dcmitype/> .

<http://example/book1> dc:title "Fundamentals of Compiler Design" .
<http://example/book1> dc:date "1996-01-01T00:00:00-02:00"^^xsd:dateTime .
<http://example/book1> a dcmitype:PhysicalObject .

<http://example/book3> dc:title "SPARQL 1.1 Tutorial" .

Graph: http://example/bookStore2
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example/book4> dc:title "SPARQL 1.0 Tutorial" .

Data after:

Graph: http://example/bookStore
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dcmitype: <http://purl.org/dc/dcmitype/> .

<http://example/book3> dc:title "SPARQL 1.1 Tutorial" .

Graph: http://example/bookStore2
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dcmitype: <http://purl.org/dc/dcmitype/> .

<http://example/book1> dc:title "Fundamentals of Compiler Design" .
<http://example/book1> dc:date "1996-01-01T00:00:00-02:00"^^xsd:dateTime .
<http://example/book1> a dcmitype:PhysicalObject .

<http://example/book4> dc:title "SPARQL 1.0 Tutorial" .

[bookmark: deleteWhere]3.1.3.3 DELETE WHERE

DELETE WHERE QuadPattern

The DELETE WHERE operation is a shortcut form for the DELETE/INSERT operation where bindings matched by the WHERE clause are used to define the triples in a graph that will be deleted. Analogous to DELETE/INSERT, deleting triples that are not present, or from a graph that is not present will have no effect and will result in success.

The QuadPattern is used both as a pattern for matching against triples and graphs, and as the template for deletion. If any TripleTemplates within the QuadPattern appear in the scope of a GRAPH clause then this will determine the graph that that template is matched on, and also the graph from which any matching triples will be removed. Any TripleTemplates not in the scope of a GRAPH clause will be matched against/removed from the default graph.

Example 11:

[bookmark: example_11]This example request removes all statements about anything with a given name of "Fred" from the default graph:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DELETE WHERE { ?person foaf:givenName 'Fred';
 ?property ?value }

Data before:

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

<http://example/fred> a foaf:Person .
<http://example/fred> foaf:givenName "Fred" .
<http://example/fred> foaf:mbox <mailto:fred@example> .

Data after:

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

Example 12:

[bookmark: example_12]This example request removes both statements naming some resource "Fred" in the graph http://example.com/names, and also statements about that resource from the graph http://example/addresses (assuming that some of the resources in the graph http://example.com/names have corresponding triples in the graph http://example/addresses).

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DELETE WHERE {
 GRAPH <http://example.com/names> {
 ?person foaf:givenName 'Fred' ;
 ?property1 ?value1
 }
 GRAPH <http://example.com/addresses> {
 ?person ?property2 ?value2
 }
}

Graph: http://example.com/names
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .

<http://example/fred> a foaf:Person .
<http://example/fred> foaf:givenName "Fred" .

Graph: http://example.com/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> foaf:mbox <mailto:bill@example> .

<http://example/fred> foaf:mbox <mailto:fred@example> .

Data after:

Graph: http://example.com/names
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .

Graph: http://example.com/addresses
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> foaf:mbox <mailto:bill@example> .

[bookmark: load]3.1.4 LOAD

The LOAD operation reads an RDF document from a IRI and inserts its triples into the specified graph in the Graph Store. The specified destination graph SHOULD be created if required; again, implementations providing an update service over a fixed set of graphs MUST return with failure for a request that would create a disallowed graph. If the destination graph already exists, then no data in that graph will be removed.

LOAD (SILENT)? IRIref_from (INTO GRAPH IRIref_to)?

IRIref_from specifies the IRI of a document such that a store will be able to identify, locate and read the document.
The most common form will be URLs with the http IRI schemes. Once the document has been read, the resulting triples will be inserted into the destination graph named by the IRI referred to by IRIref_to.

If no destination graph IRI (IRIref_to) is provided to load the triples into, then the data will be loaded into the default graph.

In case no RDF data can be retrieved (as opposed to the empty graph being retrieved) from the IRI denoted by IRIref_from, or in case the retrieval method returns an error (such as, for instance an HTTP error code), the SPARQL 1.1 Update service SHOULD return failure and the status of the Graph Store SHOULD remain in the same status as prior to the request; in case the keyword SILENT is present, however, the operation will still return success and the status of the Graph Store is not specified by the present document: implementations may create the destination graph or not and partially load data, in case of a transmission error where partial data has been received (which itself may be legal RDF).

[bookmark: clear]3.1.5 CLEAR

The CLEAR operation removes all the triples in the specified graph(s) in the Graph Store.

CLEAR (SILENT)? (GRAPH IRIref | DEFAULT | NAMED | ALL)

Here, the DEFAULT keyword is used to remove all triples in the default graph of the Graph Store, the NAMED keyword is used to remove all triples in all named graphs of the Graph Store and the ALL keyword is used to remove all triples in all graphs of the Graph Store. The GRAPH keyword is used to remove all triples from a graph denoted by IRIref.
This operation is not required to remove the empty graphs from the Graph Store, but an implementation MAY decide to do so.

Remove all triples from a specified graph.
CLEAR GRAPH IRIref

in principle has the same effect as:

Remove all triples from the graph named with the IRI denoted by IRIref.
DELETE { GRAPH IRIref { ?s ?p ?o } } WHERE { GRAPH IRIref { ?s ?p ?o } }

Note:

For services which form the default graph from the union of other graphs, CLEAR DEFAULT may have further implications which we leave unspecified here.
If the store records the existence of empty graphs, then the SPARQL 1.1 Update service, by default,
 SHOULD return failure if the specified graph does not exist. If SILENT
 is present, the result of the operation will always be success.

Stores that do not record empty graphs will always return success.

[bookmark: graphManagement]3.2 Graph Management

Graph management operations allow creating, destroying, moving and copying named graphs in the Graph Store, or adding the contents of one graph to another. Operations for creation and destruction are not required to result in any actions, since Graph Stores are not required to record the existence of empty named graphs.

The default graph in a Graph Store always exists.

SPARQL 1.1 Update provides these graph management operations:

		
		The CREATE operation creates a new graph in stores that support empty graphs.
	

		
		The DROP operation removes a graph and all of its contents.
	

		
		The COPY operation modifies a graph to contain a copy of another.
	

		
		The MOVE operation moves all of the data from one graph into another.
	

		
		The ADD operation reproduces all data from one graph into another.
	

[bookmark: create]3.2.1 CREATE

This operation creates a graph in the Graph Store:

CREATE (SILENT)? GRAPH IRIref

For stores that record empty graphs, this will create a new empty graph in the store with a name specified by the IRI.
 If the graph already exists, then a failure SHOULD be returned, except when the SILENT keyword is used; in either case, the contents of already existing graphs remain unchanged. If the graph may not be created, then a failure MUST be returned, except when the SILENT keyword is used.

Stores that do not record empty named graphs will always return success on creation of a non-existing graph.

[bookmark: drop]3.2.2 DROP

DROP (SILENT)? (GRAPH IRIref | DEFAULT | NAMED | ALL)

The DROP operation removes the specified graph(s) from the Graph Store.
The GRAPH keyword is used to remove a graph denoted by IRIref, the DEFAULT keyword is used to remove the default graph from the Graph Store, the NAMED keyword is used to remove all named graphs from the Graph Store, and the ALL keyword is used to remove all graphs from the Graph Store, i.e., resetting the store.
After successful completion of this
operation, the specified graphs are no longer available for further graph update
operations.
However, in case the DEFAULT graph of the Graph Store is dropped, implementations MUST restore it after it was removed, i.e., DROP DEFAULT is equivalent to CLEAR DEFAULT.

If the store records the existence of empty graphs, then the SPARQL 1.1 Update service, by default,
 SHOULD return failure if the specified named graph does not exist. If SILENT
 is present, the result of the operation will always be success.

Stores that do not record empty graphs will always return success.

[bookmark: copy]3.2.3 COPY

The COPY operation is a shortcut for inserting all data from an input graph into a destination graph. Data from the input graph is not affected, but data from the destination graph, if any, is removed before insertion.

COPY (SILENT)? ((GRAPH)? IRIref_from | DEFAULT) TO ((GRAPH)? IRIref_to | DEFAULT)

is similar in operation to:

DROP SILENT (GRAPH IRIref_to | DEFAULT);
 INSERT { (GRAPH IRIref_to)? { ?s ?p ?o } } WHERE { (GRAPH IRIref_from)? { ?s ?p ?o } }

The difference between COPY and the DROP/INSERT combination is that if COPY is used to copy a graph onto itself then no operation will be performed and the data will be left as it was. Using DROP/INSERT in this situation would result in an empty graph.

		If the destination graph does not exist, it will be created.
		By default, the service MAY return failure if the input graph does not exist.
		If SILENT is present, the result of the operation will always be success.
		

Example 13:

[bookmark: example_13]This example request copies all statements from the default graph to a named graph:

COPY DEFAULT TO <http://example.org/named>

Data before:

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

Graph http://example.org/named
<http://example/fred> a foaf:Person .
<http://example/fred> foaf:givenName "Fred" .

Data after:

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

Graph http://example.org/named
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

Note that the original content in http://example.org/named is lost by a COPY operation.

[bookmark: move]3.2.4 MOVE

The MOVE operation is a shortcut for moving all data from an input graph into a destination graph. The input graph is removed after insertion and data from the destination graph, if any, is removed before insertion.

MOVE (SILENT)? ((GRAPH)? IRIref_from | DEFAULT) TO ((GRAPH)? IRIref_to | DEFAULT)

is similar in operation to:

DROP SILENT (GRAPH IRIref_to | DEFAULT);
 INSERT { (GRAPH IRIref_to)? { ?s ?p ?o } } WHERE { (GRAPH IRIref_from)? { ?s ?p ?o } };
DROP (GRAPH IRIref_from | DEFAULT)

The difference between MOVE and the DROP/INSERT/DROP combination is that if MOVE is used to move a graph onto itself then no operation will be performed and the data will be left as it was. Using DROP/INSERT/DROP in this situation would result in the graph being removed.

		If the destination graph does not exist, it will be created.
 By default, the service MAY return failure if the input graph does not exist.
		If SILENT is present, the result of the operation will always be success.
		

Example 14:

[bookmark: example_14]This example request moves all statements from the default graph into a named graph:

MOVE DEFAULT TO <http://example.org/named>

Data before:

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

Graph http://example.org/named
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/fred> a foaf:Person .
<http://example/fred> foaf:givenName "Fred" .

Data after:

Default graph

Graph http://example.org/named
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

Note that the original content in http://example.org/named is lost by a MOVE operation.

[bookmark: add]3.2.5 ADD

The ADD operation is a shortcut for inserting all data from an input graph into a destination graph. Data from the input graph is not affected, and initial data from the destination graph, if any, is kept intact.

ADD (SILENT)? ((GRAPH)? IRIref_from | DEFAULT) TO ((GRAPH)? IRIref_to | DEFAULT)

is equivalent to:

INSERT { (GRAPH IRIref_to)? { ?s ?p ?o } } WHERE { (GRAPH IRIref_from)? { ?s ?p ?o } }

		If the destination graph does not exist, it will be created.
 By default, the service MAY return failure if the input graph does not exist.
		If SILENT is present, the result of the operation will always be success.
		

Example 15:

[bookmark: example_15]This example request adds all statements from the default graph to a named graph:

ADD DEFAULT TO <http://example.org/named>

Data before:

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

Graph http://example.org/named
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/fred> a foaf:Person .

Data after:

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

Graph http://example.org/named
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example/fred> a foaf:Person .

<http://example/william> a foaf:Person .
<http://example/william> foaf:givenName "William" .
<http://example/william> foaf:mbox <mailto:bill@example> .

[bookmark: formalModel]4 SPARQL Update Formal Model

This section formally defines the semantics of Update Operations by describing their effects in terms of transformations of the Graph Store.

[bookmark: formalModelGeneral]4.1 General Definitions

[bookmark: def_graphstore]4.1.1 Graph Store

[bookmark: defn_graphStore]Definition: Graph Store

		A Graph Store GS is a mutable container of RDF graphs. It has one unnamed (default) slot and zero or more named slots. The unnamed slot holds an RDF graph; each named slot is a pair of a graph and an associated IRI. The Graph Store can be viewed as a mutable RDF Dataset.
	

GS = {DG, (iri1, G1), ... , (irin, Gn) }

where

		the default graph DG is the RDF graph associated with the unnamed slot

		n ≥ 0 and for each 1 ≤ i ≤ n, Gi is an RDF graph associated with the named slot identified by IRI irii

		 all IRIs are distinct, i.e., i≠j implies irii≠irij

Note:

We will use GS for the Graph Store, but sometimes also - synonymously - for the RDF Dataset corresponding to the current Graph Store content in subsequent definitions. For convenience, we will also sometimes write GS = {DG} union {(irii, Gi) | 1 ≤ i ≤ n} as an alternative mathematical notation for GS = {DG, (iri1, G1), ... , (irin, Gn) } in subsequent definitions.

[bookmark: def_updateoperation]4.1.2 Abstract Update Operation

[bookmark: defn_updateOperation]Definition: Update Operation

		An Update Operation Op is an atomic operation that accepts some arguments Args and transforms a Graph Store GS to another Graph Store GS', denoted as
	

Op(GS, Args) = GS'

By 'atomic operation' we mean that the operation performs the described transformation of the Graph Store either completely or leaves the Graph Store unchanged, i.e., the result is either GS' or GS (in case of error).

An Update Operation can create new slots and new RDF graphs, or can remove existing slots and the corresponding graphs. It can also alter the state of each slot individually.

We will define the semantics of each concrete update operation in terms of concrete instances of this abstract update operation definition.

[bookmark: formalModelAuxiliary]4.2 Auxiliary Definitions

In the following we present auxiliary functions and basic operations for creating the union, and
difference of RDF Datasets. The concrete update operations will
be defined in terms of those basic operations.

Note:

In the following definitions, we write 'union', 'intersect' and 'minus' to denote the respective set operations (union, intersection, and set difference).

[bookmark: def_datasetUnion]4.2.1 Dataset-UNION

This basic operation creates the union of two RDF Datasets.

[bookmark: defn_datasetUnion]Definition: Dataset-UNION

		Let DS={DG} union {(irii, Gi) | 1 ≤ i ≤ n} and DS' = {DG'} union {(iri'j, G'j) | 1 ≤ j ≤ m} be two RDF Datasets. Let further graphNames(DS) = { irii | 1 ≤ i ≤ n} and graphNames(DS') = {iri'j | 1 ≤ j ≤ m}. The Dataset-UNION between DS and DS' is defined as follows:
	

Dataset-UNION(DS, DS') = {DG union DG'} union {(iri, G) | iri in graphNames(DS) union graphNames(DS')}

and G defined as

		Gi for iri = irii such that irii in graphNames(DS) minus graphNames(DS')

		Gj for iri = iri'j such that irij in graphNames(DS') minus graphNames(DS)

		Gi union Gj for iri = irii = iri'j in graphNames(DS) intersect graphNames(DS')

where union between graphs is defined as set-union of triples in those graphs.

Note:

Note that, in the following, whenever we write Dataset-UNION(X) where X = {DS1,DS2,... ,DSn} is a set of datasets, we understand this as a shorthand for Dataset-UNION(DS1, Dataset-UNION(DS2, ... , Dataset-UNION(DSn,{})...)).

[bookmark: def_datasetDiff]4.2.2 Dataset-DIFF

This operation removes the triples of a given dataset from another dataset.

[bookmark: defn_datasetDiff]Definition: Dataset-DIFF

		Let DS={DG} union {(irii, Gi) | 1 ≤ i ≤ n} and DS' = {DG'} union {(iri'j, G'j) | 1 ≤ j ≤ m}) be two RDF Datasets. Let further graphNames(DS) = { irii | 1 ≤ i ≤ n} and graphNames(DS') = {iri'j | 1 ≤ j ≤ m}. The Dataset-DIFF between DS and DS' is defined as follows:
	

Dataset-DIFF(DS, DS') = {DG minus DG'} union { (iri, G) | iri in graphNames(DS) })

and G defined as

		Gi for iri = irii such that irii in graphNames(DS) minus graphNames(DS')

		Gi minus G'j for iri = irii = iri'j in graphNames(DS) intersect graphNames(DS')

where Gi minus G'j is defined as set-difference over the sets of triples in the two graphs.

[bookmark: def_datasetQuadPattern]4.2.3 Dataset(QuadPattern, μ, DS, GS)

The following auxiliary function constructs an RDF Dataset from a QuadPattern, given a solution mapping and an RDF Dataset.

Let μ be a solution mapping, DS={DG} union {(irii, Gi) | 1 ≤ i ≤ n} be an RDF Dataset and GS be the current state of the Graph Store. DS is distinguished from GS as they may differ, for instance, due to the use of USING [NAMED] to modify DS.

For a QuadPattern of the form

		'{}'

Dataset(QuadPattern, μ, DS, GS) = {{}} i.e., the empty dataset consisting only of an empty default graph.

		'{' TriplesTemplate? '}'

 Dataset(QuadPattern, μ, DS, GS) is the Dataset consisting of only a default graph composed by all valid RDF triples obtained from substituting the variables in skμ(TriplesTemplate) according to μ and combining these triples into a single RDF graph by set union.

		'GRAPH' VarOrIri '{' TriplesTemplate? '}'

Dataset(QuadPattern, μ, DS, GS) is the Dataset consisting of an empty default graph, plus - in case μ(VarOrIri) yields a valid IRI - a named graph (μ(VarOrIri), G) such that G is composed by all valid RDF triples obtained from substituting the variables in skμ(TriplesTemplate) according to μ and combining these triples into a single RDF graph by set union.

		'{' QuadPattern1 QuadPattern2 '}'

Dataset(QuadPattern, μ , DS, GS) = Dataset-UNION (Dataset(QuadPattern1, μ, DS, GS) , Dataset(QuadPattern2, μ, DS, GS))

Here, skμ(TriplesTemplate) stands for replacing any blank nodes occurring in the TriplesTemplate with a new, unique blank node (unique to the current update request and to each μ and different from any blank nodes used in DS or in GS).

The function skμ guarantees that "fresh" blank nodes in the QuadPattern are re-instantiated "per solution" μ (analogous to the treatment of blank nodes in CONSTRUCT templates in the SPARQL1.1 Query Language); cf. also the respective remarks on scoping of blank nodes within requests in the SPARQL grammar.

[bookmark: def_datasetPattern]4.2.4 Dataset(QuadPattern, P, DS, GS)

The following auxiliary function constructs an RDF Dataset from a QuadPattern, given a graph pattern and an RDF Dataset.

Let P be a Graph Pattern and DS={DG} union {(irii, Gi) | 1 ≤ i ≤ n} be an RDF Dataset and GS be the current state of the Graph Store. Then

Dataset(QuadPattern, P, DS, GS) = Dataset-UNION({ Dataset(QuadPattern, μ, DS, GS) | μ in eval'(DS(DG),P) })

i.e., the union over all μ such that μ is in the solutions of P over dataset DS.

Here, eval'() is defined exactly like the evaluation function eval() in the SPARQL1.1 Query Language, with the only exception, that - as opposed to the treatment of blank nodes in BGP matching for SPARQL1.1 Query - here the scoping graph SG used for BGP matching is equal to the active graph,
i.e., blank nodes from the active graph are preserved in solutions.

The definition of eval'() guarantees that co-referent blank nodes in DS are not "lost" during pattern evaluation, cf. Treatment of Blank Nodes in SPARQL1.1 Query. The latter is necessary to ensure that blank nodes in DS can be matched against existing blank nodes in GS to remove/add triples. In order to illustrate matching against existing blank nodes in the Graph Store,
the following update request removes all triples with blank node as subject.

DELETE { ?S ?P ?O . } WHERE { ?S ?P ?O . FILTER (isBlank(?S)) }

Data before:

Default graph
@prefix : <http://example.com/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:b a foaf:Person .
:s a foaf:Person .

Data after:

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

:s a foaf:Person .

[bookmark: formalModelGraphUpdate]4.3 Graph Update Operations

[bookmark: def_insertdataoperation]4.3.1 Insert Data Operation

[bookmark: defn_insertDataOperation]Definition: Insert Data Operation

A Insert Data Operation is an Update Operation in which new triples, given as a (ground) QuadPattern, are added in the Graph Store GS, in the default slot or in named slots.

OpInsertData(GS, QuadPattern) = Dataset-UNION(GS, Dataset(QuadPattern,{},GS,GS))

where {} is the empty solution mapping.

[bookmark: def_deletedataoperation]4.3.2 Delete Data Operation

[bookmark: defn_deleteDataOperation]Definition: Delete Data Operation

A Delete Data Operation OpDeleteData is an Update Operation in which triples, given as a (ground) QuadPattern, are removed from the Graph Store GS, from the default slot or from named slots.

OpDeleteData(GS, QuadPattern) = Dataset-DIFF(GS, Dataset(QuadPattern,{},GS,GS))

where {} is the empty solution mapping.

[bookmark: def_deleteinsertoperation]4.3.3 Delete Insert Operation

[bookmark: defn_deleteInsertOperation]Definition: Delete Insert Operation

A Delete Insert Operation OpDeleteInsert is an Update Operation in which (1) triples are deleted from the Graph Store GS, either from the default slot or from named slot(s), and then (2) new triples are added in the Graph Store GS, either in the default slot or in named slot(s). Triples to be removed (and inserted, respectively) are identified by applying the pattern solutions for a Group Graph Pattern P against DS to the QuadPattern QuadPatternDEL (and QuadPatternINS, respectively).

OpDeleteInsert(GS, DS, QuadPatternDEL, QuadPatternINS, P) = Dataset-UNION(Dataset-DIFF(GS, Dataset(QuadPatternDEL,P,DS,GS)), Dataset(QuadPatternINS, P,DS,GS)

[bookmark: def_loadoperation]4.3.4 Load Operation

[bookmark: defn_loadOperation]Definition: Load Operation

A Load Operation OpLoad is an Update Operation in which new triples (from a remote graph) are added in the Graph Store, either in the default slot or in a named slot, if specified.

OpLoad(GS, documentIRI) = Dataset-UNION(GS, { graph(documentIRI) })

OpLoad(GS, documentIRI, iri) = Dataset-UNION(GS, { {}, (iri,graph(documentIRI)) })

where graph(documentIRI) is a function returning the RDF graph serialized by the RDF document retrieved from IRI documentIRI, where blank nodes present in the retrieved graph are supposed to be "standardized apart"; i.e., blank nodes from a loaded graph need to be disjoint with the blank nodes already present in the Graph Store GS.

[bookmark: def_clearOperation]4.3.5 Clear Operation

[bookmark: defn_clearOperation]Definition: Clear Operation

A Clear Operation OpClear is an Update Operation in which triples are deleted from the Graph Store, either from a named slot, the default slot, all named slots or all slots. There are different variants of the Clear Operation, OpClear for clearing a named graph, OpCleardef for clearing the default graph, OpClearnamed for clearing all named graphs, and OpClearall for clearing all graphs including the default graph.

Let GS = {DG} union {(irii, Gi) | 1 ≤ i ≤ n} and graphNames(GS) = { irii | 1 ≤ i ≤ n}, then

OpClear(GS, iri) = GS if iri not in graphNames(GS); otherwise, OpClear(GS, irij) = (GS minus {(irij, Gj)}) union {(irij,{})}, where (irij, Gj) ∈ GS and iri = irij

OpCleardef(GS) = {{}} union {(irii, Gi) | 1 ≤ i ≤ n}

OpClearnamed(GS) = {DG} union {(irii, {}) | 1 ≤ i ≤ n}

OpClearall(GS) = {{}} union {(irii, {}) | 1 ≤ i ≤ n}

Note:

 Since Graph Stores may remove graphs that are left empty, for such Graph Stores any Clear Operation performed on a named graph may be viewed as immediately followed by a Drop Operation, see below.

[bookmark: formalModelGraphMgt]4.4 Graph Management Operations

[bookmark: def_createOperation]4.4.1 Create Operation

[bookmark: defn_createOperation]Definition: Create Operation

A Create Operation OpCreate is an Update Operation in which (1) a new named slot and (2) a new graph G are created in the Graph Store. The new graph is held in the new slot, and is empty. Other slots and graphs are not affected.

Let GS = {DG} union {(irii, Gi) | 1 ≤ i ≤ n} and graphNames(GS) = { irii | 1 ≤ i ≤ n}, then

OpCreate(GS, iri) = GS union {(iri, {})} if iri not in graphNames(GS); otherwise, OpCreate(GS, iri) = GS

Note:

 Since Graph Stores may remove graphs that are left empty, for such Graph Stores any Create Operation performed on an empty or non-existent graph may be viewed as implicitly immediately followed by a Drop Operation (see next subsection), or simply as an operation with no effect.

[bookmark: def_dropOperation]4.4.2 Drop Operation

[bookmark: defn_dropOperation]Definition: Drop Operation

A Drop Operation OpDrop is an Update Operation in which one or more slots (a named slot irii, the default slot, all named slots or all slots) and their corresponding graphs are removed from the Graph Store. There are different variants of the Drop Operation, OpDrop for dropping a named graph, OpDropdef for dropping the default graph (which is equivalent to OpCleardef, since the default graph cannot be removed, but dropping it means only to clear it), OpDropnamed for dropping all named graphs, and OpDropall for dropping all graphs including the default graph.

Let GS = {DG} union {(irii, Gi) | 1 ≤ i ≤ n} and graphNames(GS) = { irii | 1 ≤ i ≤ n}, then

OpDrop(GS, iri) = GS if iri not in graphNames(GS); otherwise, OpDrop(GS, irij) = {DG} union {(irii, Gi) | i ≠ j and 1 ≤ i ≤ n} where iri = irij

OpDropdef(GS) = OpCleardef(GS)

OpDropnamed(GS) = {DG}

OpDropall(GS) = {{}}

[bookmark: mappingRequestsToOperations]4.5 Mapping Update Requests to the Formal Model

In this section we show how to map Update Requests in the SPARQL 1.1. Update Language to Update Operations over the Graph Store as defined earlier in this section. This mapping assumes that in all Update requests, any PREFIXes have been expanded. Moreover, we assume that WITH clauses have been replaced by wrapping both the QuadPatterns in subsequent DELETE and INSERT clauses, and likewise - in the absence of USING and USING NAMED clauses - the GroupGraphPattern in the subsequent WHERE clause, into GRAPH patterns.

The mapping from requests to Update Operations is defined in terms of the recursive translation function Tr(GS,R) which takes the Graphstore GS - as before executing the request - and an update request R as input and exands it to an Update Operation call as shown in the following table. The COPY, MOVE, and ADD operations are not mentioned explicitly here, since they are understood as shortcuts.

Table 1: Mapping from Update Requests to Update Operations
		Update request R 		Tr(GS,R) =

		 R1 ; R2 		 Tr(Tr(GS, R1), R2)

		INSERT DATA QuadData 		OpInsertData(GS, QuadData)

		DELETE DATA QuadData 		OpDeleteData(GS, QuadData)

		DELETE QuadPatternDEL INSERT QuadPatternINS

UsingClause*

WHERE GroupGraphPattern		
OpDeleteInsert(GS, TrDataset(GS,UsingClause*), QuadPatternDEL, QuadPatternINS, GroupGraphPattern)

		DELETE QuadPatternDEL

UsingClause*

WHERE GroupGraphPattern		
OpDeleteInsert(GS, TrDataset(GS,UsingClause*), QuadPatternDEL, {}, GroupGraphPattern)

		INSERT QuadPatternINS

UsingClause*

WHERE GroupGraphPattern		
OpDeleteInsert(GS, TrDataset(GS,UsingClause*), {}, QuadPatternINS, GroupGraphPattern)

		 DELETE WHERE QuadPattern 		
OpDeleteInsert(GS, GS, QuadPattern, {}, QuadPattern)

		 LOAD (SILENT)? IRIref 		
OpLoad(GS, IRIref)

		 LOAD (SILENT)? IRIreffrom INTO GRAPH IRIrefto		
OpLoad(GS, IRIreffrom, IRIrefto)

		 CLEAR (SILENT)? GRAPH IRIref		
OpClear(GS, IRIref)

		 CLEAR (SILENT)? DEFAULT		
OpCleardef(GS)

		 CLEAR (SILENT)? NAMED		
OpClearnamed(GS)

		 CLEAR (SILENT)? ALL		
OpClearall(GS)

		 CREATE (SILENT)? GRAPH IRIref 		
OpCreate(GS, IRIref)

		 DROP (SILENT)? GRAPH IRIref		
OpDrop(GS, IRIref)

		 DROP (SILENT)? DEFAULT		
OpDropdef(GS)

		 DROP (SILENT)? NAMED		
OpDropnamed(GS)

		 DROP (SILENT)? ALL		
OpDropall(GS)

This table uses one auxiliary translation function TrDataset() which constructs a dataset from the optional
set of USING and USING NAMED clauses and is defined as follows:

Table 2: Mapping UsingClauses to RDF Datasets
		Translation Function		Definition

		TrDataset(GS,UsingClause*) = 		
		the RDF Dataset DS described by the UsingClauses, if non-empty

		the RDF Dataset corresponding to the current state of GS, otherwise

Note:

 How exactly an RDF Dataset is obtained from the USING and USING NAMED clauses (e.g. by dereferencing graph name IRIs and trying to retrieve them, or by picking those graphs from the existing Graph Store) is implementation dependent. Particularly, this specification does not mandate
any assumptions about blank node identity beyond the consideration for the analogous FROM and FROM NAMED clauses in Section Specifying RDF Datasets of the SPARQL 1.1 Query Language specification.

[bookmark: conformance]5 Conformance

See appendix B SPARQL 1.1 Update Grammar regarding conformance of SPARQL Update strings.

This specification is intended for use in conjunction with: the SPARQL 1.1 Graph Store HTTP Protocol and the SPARQL 1.1 Protocol for RDF.

[bookmark: security]A Security Considerations (Informative)

Exposing RDF data for update creates many security issues which all deployments must be aware of, and
 consider the risks involved. This submission discusses some of the potential issues. New security
 problems are discovered regularly, and each implementation introduces its own concerns. Consequently
 implementers should be aware that this is only a partial list containing possible issues, and
 cannot be considered complete nor authoritative.

		Write access to data makes it inherently vulnerable to malicious
 access. Standard access and authentication techniques should be used
 in any networked environment. In particular, HTTPS should be used,
 especially when implementing the SPARQL HTTP-based protocols. (i.e.,
 encryption with challenge/response based password presentation,
 encrypted session tokens, etc). Some of the weak points addressed by
 HTTPS are: authentication, active session integrity between client and
 server, preventing replays, preventing continuation of defunct
 sessions.

		SPARQL Update incurs all of the security concerns of SPARQL Query.
 In particular, stores which treat IRIs as dereferenceable need to
 protect against dereferenced IRIs from being used to invoke cross-site
 scripting attacks.

		Implementations will need to enforce their standard permissions scheme
 carefully. Permissions schemes always require careful design, and it is
 important to ensure that privileges in one area are not inadvertently
 applied to other parts of the system.

		Systems that provide both read-only and writable interfaces can be
 subject to injection attacks in the read-only interface. In particular,
 a SPARQL endpoint with a Query service should be careful of injection
 attacks aimed at interacting with an Update service on the same SPARQL endpoint.
 Like any client code, interaction between the query service and the
 update service should ensure correct escaping of strings provided by the user.

		While SPARQL Update and SPARQL Query are separate languages, some
 implementations may choose to offer both at the same SPARQL endpoint.
 In this case, it is important to consider that an Update operation
 may be obscured to masquerade as a query. For instance, a string of
 unicode escapes in a PREFIX clause could be used to hide an Update
 Operation. Therefore, simple syntactic tests are inadequate to
 determine if a string describes a query or an update.

[bookmark: mediaType]B Internet Media Type, File Extension and Macintosh File Type

The Internet Media Type / MIME Type for the SPARQL Update Language is "application/sparql-update".

It is recommended that SPARQL Update files have the extension ".ru" (lowercase)
 on all platforms.

It is recommended that SPARQL Update files stored on Macintosh HFS file systems
 be given a file type of "TEXT".

 		Type name:

 		application

 		Subtype name:

 		sparql-update

 		Required parameters:

 		None

 		Optional parameters:

 		None

 		Encoding considerations:

 		The syntax of the SPARQL Update Language is expressed over code points in Unicode
 [UNICODE]. The encoding is always UTF-8 [RFC3629].

 		Unicode code points may also be expressed using an \uXXXX (U+0 to U+FFFF)
 or \UXXXXXXXX syntax (for U+10000 onwards) where X is a hexadecimal digit [0-9A-F]

 		Security considerations:

 		See SPARQL Update appendix A, Security Considerations
 as well as RFC 3629
 [RFC3629] section 7, Security Considerations.

 		Interoperability considerations:

 		There are no known interoperability issues.

 		Published specification:

 		This specification.

 		Applications which use this media type:

 		No known applications currently use this media type.

 		Additional information:

 		Magic number(s):

 		A SPARQL query may have the string 'PREFIX' (case independent) near the beginning
 of the document.

 		File extension(s):

 		".ru"

 		Base IRI:

 		The SPARQL 'BASE <IRIref>' term can change the current base IRI for relative
 IRIrefs in the query language that are used sequentially later in the document.

 		Macintosh file type code(s):

 		"TEXT"

 		Person & email address to contact for further information:

 		public-rdf-dawg-comments@w3.org

 		Intended usage:

 		COMMON

 		Restrictions on usage:

 		None

 		Author/Change controller:

 		The SPARQL 1.1 specification is a work product of the World Wide Web Consortium's
 SPARQL Working Group. The W3C has change control over these specifications.

[bookmark: grammar]C SPARQL 1.1 Update Grammar

The formal definition for the SPARQL 1.1 Update grammar is provided with the SPARQL 1.1 Query grammar. This is because the grammar for SPARQL 1.1 Update shares most of its structure with SPARQL 1.1 Query.

[bookmark: sec-bibliography]D References

[bookmark: sec-existing-stds]D.1 Normative References

		[bookmark: IANA]IANA-CHARSETS

		(Internet
Assigned Numbers Authority) Official Names for Character Sets,
ed. Keld Simonsen et al. (See http://www.iana.org/assignments/character-sets.)

		[bookmark: rfc3987]RFC3987

		
Internationalized Resource Identifiers (IRIs),
M. Dürst , M. Suignard (See http://www.ietf.org/rfc/rfc3987.txt.)

		[bookmark: RDF-MT]RDF-MT

		RDF Semantics, P. Hayes, Editor, W3C Recommendation,
 10 February 2004, see http://www.w3.org/TR/2004/REC-rdf-mt-20040210/,
 Latest version available
 at http://www.w3.org/TR/rdf-mt/.
 (See http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.)

[bookmark: null]D.2 Other References

		[bookmark: Aho]Aho/Ullman

		Aho, Alfred V., Ravi Sethi, and Jeffrey D.
Ullman. Compilers: Principles, Techniques, and Tools.
Reading: Addison-Wesley, 1986, rpt. corr. 1988.

		[bookmark: ABK]Brüggemann-Klein

		Brüggemann-Klein,
Anne. Formal Models in Document Processing. Habilitationsschrift. Faculty
of Mathematics at the University of Freiburg, 1993. (See ftp://ftp.informatik.uni-freiburg.de/documents/papers/brueggem/habil.ps.)

		[bookmark: ABKDW]Brüggemann-Klein and Wood

		Brüggemann-Klein,
Anne, and Derick Wood. Deterministic Regular Languages.
Universität Freiburg, Institut für Informatik, Bericht 38, Oktober 1991. Extended
abstract in A. Finkel, M. Jantzen, Hrsg., STACS 1992, S. 173-184. Springer-Verlag,
Berlin 1992. Lecture Notes in Computer Science 577. Full version titled One-Unambiguous
Regular Languages in Information and Computation 140 (2): 229-253,
February 1998.

		[bookmark: Clark]Clark

		James Clark.
Comparison of SGML and XML. (See http://www.w3.org/TR/NOTE-sgml-xml-971215.)

		[bookmark: IANA-LANGCODES]IANA-LANGCODES

		(Internet
Assigned Numbers Authority) Registry of Language Tags (See http://www.iana.org/assignments/language-subtag-registry.)

		[bookmark: RFC2141]IETF RFC 2141

		IETF
(Internet Engineering Task Force). RFC 2141: URN Syntax, ed.
R. Moats. 1997. (See http://www.ietf.org/rfc/rfc2141.txt.)

		[bookmark: rfc2376]IETF RFC 3023

		IETF
(Internet Engineering Task Force). RFC 3023: XML Media Types.
eds. M. Murata, S. St.Laurent, D. Kohn. 2001. (See http://www.ietf.org/rfc/rfc3023.txt.)

		[bookmark: rfc2781]IETF RFC 2781

		IETF
(Internet Engineering Task Force). RFC 2781: UTF-16, an encoding
of ISO 10646, ed. P. Hoffman, F. Yergeau. 2000. (See http://www.ietf.org/rfc/rfc2781.txt.)

		[bookmark: rfc3629]IETF RFC 3629

		IETF
(Internet Engineering Task Force). RFC 3629: UTF-8, a transformation
format of ISO 10646, F. Yergeau. November 2003. (See http://www.ietf.org/rfc/rfc3629.txt.)

		[bookmark: ISO639]ISO 639

		(International Organization for Standardization).
ISO 639:1988 (E).
Code for the representation of names of languages. [Geneva]: International
Organization for Standardization, 1988.

		[bookmark: ISO3166]ISO 3166

		(International Organization for Standardization).
ISO 3166-1:1997
(E). Codes for the representation of names of countries and their subdivisions —
Part 1: Country codes [Geneva]: International Organization for
Standardization, 1997.

		[bookmark: ISO8879]ISO 8879

		ISO (International Organization for Standardization). ISO
8879:1986(E). Information processing — Text and Office Systems —
Standard Generalized Markup Language (SGML). First edition —
1986-10-15. [Geneva]: International Organization for Standardization, 1986.

		[bookmark: ISO10744]ISO/IEC 10744

		ISO (International Organization for
Standardization). ISO/IEC 10744-1992 (E). Information technology —
Hypermedia/Time-based Structuring Language (HyTime). [Geneva]:
International Organization for Standardization, 1992. Extended Facilities
Annexe. [Geneva]: International Organization for Standardization, 1996.

		[bookmark: UNICODE]UNICODE

		The Unicode
Consortium. The Unicode Standard, Version 5.0.0.
Boston, MA, Addison-Wesley, 2007. ISBN 0-321-48091-0. (See http://www.unicode.org/unicode/standard/versions/.)

		[bookmark: websgml]WEBSGML

		ISO
(International Organization for Standardization). ISO 8879:1986
TC2. Information technology — Document Description and Processing Languages.
[Geneva]: International Organization for Standardization, 1998. (See http://www.sgmlsource.com/8879/n0029.htm.)

		[bookmark: xml-names]XML Names

		Tim Bray,
Dave Hollander, and Andrew Layman, editors. Namespaces in XML.
Textuality, Hewlett-Packard, and Microsoft. World Wide Web Consortium, 1999. (See http://www.w3.org/TR/xml-names/.)

Change Log

Changes since Proposed Recommendation

		Fixed a broken fragment link into SPARQL 1.1 Query

Changes since Last Call

		Simplified explaining text as per the ban of shared bnodes
 across operations in a request.

		Editorial fix to Definition 4.2.3 and explaining remarks.

		Added explanation of QuadData to "Terminology" section.

		Added comment indicating that existing graphs do not lose
 triples during a LOAD

		 Several minor editorial changes including the removal of
 "(non graph-aware)" since - essentially - every graph store is
 graph-aware.

		Changed SHOULD to MAY in 3.2.3 Copy

		Various editorial

StyleSheets/TR/logo-NOTE.png
0N DEM

