
XHTML™ 2.0

W3C Working Draft 5 August 2002
This version:

http://www.w3.org/TR/2002/WD-xhtml2-20020805
Latest version:

http://www.w3.org/TR/xhtml2
Editors:

Shane McCarron, Applied Testing and Technology
Jonny Axelsson, Opera Software
Beth Epperson, Netscape/AOL
Ann Navarro, WebGeek, Inc.
Steven Pemberton, CWI (HTML Working Group Chair)

This document is also available in these non-normative formats: Single XHTML file [p.1] ,
PostScript version, PDF version, ZIP archive, and Gzip’d TAR archive.

Copyright ©2002 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark,
document use and software licensing rules apply.

Abstract
This Working Draft specifies the XHTML 2.0 Markup Language and a variety of
XHTML-conforming modules that support that language.

Status of This Document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is
maintained at the W3C.

This document is the first public working draft of this specification. It should in no way be
considered stable, and should not be referenced for any purposes whatsoever. This version
does not include the implementations of XHTML 2.0 in either DTD or XML Schema form. Those
will be included in subsequent versions, once the contents of this language stabilizes.

This document has been produced by the W3C HTML Working Group (members only) as part of
the W3C HTML Activity. The goals of the HTML Working Group are discussed in the HTML
Working Group charter.

- 1 -

XHTML™ 2.0XHTML 2.0

http://www.w3.org/
http://www.w3.org/TR/2002/WD-xhtml2-20020805
http://www.w3.org/TR/xhtml2
http://www.aptest.com/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/MarkUp/Group/
http://cgi.w3.org/MemberAccess/AccessRequest
http://www.w3.org/MarkUp/Activity
http://www.w3.org/MarkUp/2000/Charter
http://www.w3.org/MarkUp/2000/Charter

Public discussion of XHTML takes place on www-html@w3.org (archive). To subscribe send an
email to www-html-request@w3.org with the word subscribe in the subject line.

Please report errors in this document to www-html-editor@w3.org (archive).

At the time of publication, the Working Group believed there were zero patent disclosures
relevant to this specification. A current list of patent disclosures relevant to this specification may
be found on the Working Group’s patent disclosure page.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Quick Table of Contents
1. Introduction

................ 112. Terms and Definitions
3. Conformance Definition

.............. 174. The XHTML 2.0 Document Type

.............. 195. Module Definition Conventions

............... 256. XHTML Attribute Collections

................ 317. XHTML Structure Module

................. 358. XHTML Text Module

............... 499. XHTML Hypertext Module

................. 5310. XHTML List Module

............. 6111. XHTML Bi-directional Text Module

............ 6512. XHTML Client-Side Image Map Module

................. 7313. XHTML Edit Module

................ 7714. XHTML Linking Module

............. 8115. XHTML Metainformation Module

................ 8516. XHTML Object Module

.............. 9517. XHTML Presentation Module

............... 9718. XHTML Scripting Module

............ 10119. XHTML Server-Side Image Map Module

............... 10320. XHTML Style Sheet Module

................ 10921. XHTML Tables Module

................ 13122. XHTML Target Module

............... 133A. Changes from XHTML 1.1

................. 135B. XHTML 2.0 Schema

........... 137C. XHTML Schema Module Implementations

............ 139D. XHTML 2.0 Document Type Definition

............ 141E. XHTML DTD Module Implementations

................... 147F. References

................. 151G. Acknowledgements

- 2 -

XHTML 2.0Quick Table of Contents

http://lists.w3.org/Archives/Public/www-html/
http://lists.w3.org/Archives/Public/www-html-editor/
http://www.w3.org/2002/07/HTML-IPR
http://www.w3.org/TR/

List of Issues
DTD Bias
Need XHTML 2.0 Definition Table [p.17]
XFrames not published yet [p.27]
List of XHTML 2 Events Needed [p.29]
Attribute defer not found [p.98]
Caption Clipping [p.110]
XFrames not published yet [p.131]
Change summary needed [p.133]
XHTML 2.0 Schema Needed [p.135]
XHTML 2.0 DTD Needed [p.139]
DTD Module XHTML Base Architecture needed [p.141]
DTD Module XHTML Notations needed [p.141]
DTD Module XHTML Datatypes needed [p.141]
DTD Module XHTML Common Attribute Definitions needed [p.142]
DTD Module XHTML Qualified Names needed [p.142]
DTD Module XHTML Character Entities needed [p.142]
DTD Module Structure needed [p.142]
DTD Module Text needed [p.142]
DTD Module Hypertext needed [p.143]
DTD Module Lists needed [p.143]
DTD Module Bi-directional Text needed [p.143]
DTD Module Client-side Image Map needed [p.143]
DTD Module Edit needed [p.143]
DTD Module Link needed [p.143]
DTD Module Metainformation needed [p.144]
DTD Module Object needed [p.144]
DTD Module Presentation needed [p.144]
DTD Module Scripting needed [p.144]
DTD Module Server-side Image Map needed [p.144]
DTD Module Style Sheet needed [p.144]
DTD Module Tables needed [p.145]
DTD Module Target needed [p.145]
DTD Module Block Phrasal needed [p.145]
DTD Module Block Presentational needed [p.145]
DTD Module Block Structural needed [p.145]
DTD Module Inline Phrasal needed [p.146]
DTD Module Inline Presentational needed [p.146]
DTD Module Inline Structural needed [p.146]
DTD Module Param needed [p.146]
DTD Module Legacy Redeclarations needed [p.146]

- 3 -

List of IssuesXHTML 2.0

Full Table of Contents
1. Introduction

1.1. What is XHTML 2?
1.2. What are the XHTML 2 Modules?

................ 112. Terms and Definitions
3. Conformance Definition

3.1. Document Conformance
3.1.1. Strictly Conforming Documents

3.2. User Agent Conformance
.............. 174. The XHTML 2.0 Document Type
.............. 195. Module Definition Conventions
................ 195.1. Module Structure
............. 195.2. Abstract Module Definitions
............... 195.3. Syntactic Conventions
................. 205.4. Content Types
................. 215.5. Attribute Types
............... 256. XHTML Attribute Collections
.............. 256.1. Core Attribute Collection
.............. 266.2. I18N Attribute Collection
............. 276.3. Hypertext Attribute Collection
................... 286.4. Events
............. 296.5. Common Attribute Collection
................ 317. XHTML Structure Module
................ 317.1. The html element
................ 327.2. The head element
................ 327.3. The title element
................ 337.4. The body element
................. 358. XHTML Text Module
................ 368.1. The abbr element
............... 378.2. The acronym element
............... 378.3. The address element
.............. 388.4. The blockquote element
................ 388.5. The br element
................ 398.6. The cite element
................ 398.7. The code element
................ 398.8. The dfn element
................ 408.9. The div element
................ 408.10. The em element
.............. 418.11. The heading elements
................ 428.12. The kbd element
................ 428.13. The line element
................ 438.14. The p element

- 4 -

XHTML 2.0Full Table of Contents

................ 438.15. The pre element

............... 448.16. The quote element

............... 458.17. The samp element

............... 458.18. The section element

............... 468.19. The span element

............... 468.20. The strong element

................ 478.21. The var element

............... 499. XHTML Hypertext Module

................. 499.1. The a element

................. 5310. XHTML List Module

.......... 5510.1. Definition lists: the dl, dt, and dd elements

................ 5610.2. The nl element

.............. 5610.3. The ol, and ul elements

................ 5710.4. The li element

............... 5810.5. The name element

............. 6111. XHTML Bi-directional Text Module

................ 6111.1. The bdo element

.... 6311.1.1. Character references for directionality and joining control

........ 6311.1.2. The effect of style sheets on bidirectionality

............ 6512. XHTML Client-Side Image Map Module

................ 6512.1. The area element

................ 6812.2. The map element

.......... 6912.2.1. Client-side image map examples

................. 7313. XHTML Edit Module

................ 7313.1. The del element

................ 7513.2. The ins element

................ 7714. XHTML Linking Module

................ 7714.1. The link element

............ 7814.1.1. Forward and reverse links

........... 7914.1.2. Links and external style sheets

............ 7914.1.3. Links and search engines

............. 8115. XHTML Metainformation Module

............... 8115.1. The meta element

............ 8215.1.1. meta and search engines

............... 8315.1.2. meta and PICS

.............. 8315.1.3. meta data profiles

................ 8516. XHTML Object Module

............... 8516.1. The object element

............ 8816.1.1. Rules for processing objects

............... 8916.2. The param element.

.......... 9116.2.1. Global naming schemes for objects

......... 9216.2.2. Object declarations and instantiations

.............. 9517. XHTML Presentation Module

- 5 -

Full Table of ContentsXHTML 2.0

................ 9517.1. The hr element

................ 9517.2. The sub element

................ 9617.3. The sup element

............... 9718. XHTML Scripting Module

............... 9718.1. The noscript element

............... 9818.2. The script element

.......... 9918.2.1. Specifying the scripting language

.......... 9918.2.2. Declaration of a scripting language

....... 9918.2.3. References to XHTML elements from a script

.......... 9918.2.4. Dynamic modification of documents

............ 10119. XHTML Server-Side Image Map Module

............... 10320. XHTML Style Sheet Module

................ 10320.1. The style element

............. 10520.1.1. External style sheets

.......... 10520.1.2. Preferred and alternate style sheets

........... 10620.1.3. Specifying external style sheets

................ 10921. XHTML Tables Module

............... 11021.1. The caption element

............ 11021.2. The col and colgroup elements

............... 11121.3. The table element

.............. 11221.3.1. Table directionality

........ 11221.3.2. Table rendering by non-visual user agents

............... 11921.3.3. Sample table

............... 12321.4. The tbody element

.............. 12421.5. The td and th elements

......... 12621.5.1. Cells that span several rows or columns

............. 12921.6. The thead and tfoot elements

................ 13021.7. The tr element

................ 13122. XHTML Target Module

............... 133A. Changes from XHTML 1.1

................. 135B. XHTML 2.0 Schema

........... 137C. XHTML Schema Module Implementations

............ 139D. XHTML 2.0 Document Type Definition

............ 141E. XHTML DTD Module Implementations

............. 141E.1. XHTML Modular Framework

............ 141E.1.1. XHTML Base Architecture

.............. 141E.1.2. XHTML Notations

.............. 141E.1.3. XHTML Datatypes

......... 142E.1.4. XHTML Common Attribute Definitions

............ 142E.1.5. XHTML Qualified Names

............ 142E.1.6. XHTML Character Entities

............ 142E.2. XHTML Module Implementations

................ 142E.2.1. Structure

- 6 -

XHTML 2.0Full Table of Contents

.................. 142E.2.2. Text

................ 143E.2.3. Hypertext

................. 143E.2.4. Lists

.............. 143E.2.5. Bi-directional Text

............. 143E.2.6. Client-side Image Map

.................. 143E.2.7. Edit

.................. 143E.2.8. Link

............... 144E.2.9. Metainformation

................. 144E.2.10. Object

............... 144E.2.11. Presentation

................ 144E.2.12. Scripting

............. 144E.2.13. Server-side Image Map

............... 144E.2.14. Style Sheet

................. 145E.2.15. Tables

................. 145E.2.16. Target

............. 145E.3. XHTML DTD Support Modules

............... 145E.3.1. Block Phrasal

.............. 145E.3.2. Block Presentational

............... 145E.3.3. Block Structural

............... 146E.3.4. Inline Phrasal

.............. 146E.3.5. Inline Presentational

............... 146E.3.6. Inline Structural

................. 146E.3.7. Param

............. 146E.3.8. Legacy Redeclarations

................... 147F. References

............... 147F.1. Normative References

............... 149F.2. Informative References

................. 151G. Acknowledgements

- 7 -

Full Table of ContentsXHTML 2.0

- 8 -

XHTML 2.0Full Table of Contents

1. Introduction
This section is informative.

1.1. What is XHTML 2?
XHTML 2 is a markup language intended for rich, portable web-based applications. While the
ancestry of XHTML 2 comes from HTML 4, XHTML 1.0, and XHTML 1.1, it is not intended to be
backward compatible with its earlier versions. Application developers familiar with earlier its
ancestors will be comfortable working with XHTML 2. Appendix A describes the ways in which
XHTML 2 differs from previous versions and what application developers need to know to
convert existing applications to XHTML 2.

1.2. What are the XHTML 2 Modules?
XHTML 2 is a member of the XHTML Family of markup languages. It is an XHTML Host
Language as defined in XHTML Modularization. As such, it is made up of a set of XHTML
Modules that together describe the elements and attributes of the language, and their content
model. XHTML 2 updates many of the modules defined in XHTML Modularization 1.0
[XHTMLMOD [p.149]], and includes the updated versions of all those modules and their
semantics. XHTML 2 also uses modules from Ruby [RUBY [p.148]], XML Events [XMLEVENTS
[p.149]], and XForms [XFORMS [p.149]].

The modules defined in this specification are largely extensions of the modules defined in
XHTML Modularization 1.0. This specification also defines the semantics of the modules it
includes. So, that means that unlike earlier versions of XHTML that relied upon the semantics
defined in HTML 4, all of the semantics for XHTML 2 are defined either in this specification or in
the specifications that it normatively references.

Even though the XHTML 2 modules are defined in this specification, they are available for use in
other XHTML family markup languages. Over time, it is possible that the modules defined in this
specification will migrate into the XHTML Modularization specification.

- 9 -

1. IntroductionXHTML 2.0

- 10 -

XHTML 2.01.2. What are the XHTML 2 Modules?

2. Terms and Definitions
This section is informative.

While some terms are defined in place, the following definitions are used throughout this
document. Familiarity with the W3C XML 1.0 Recommendation [XML [p.149]] is highly
recommended.

abstract module
a unit of document type specification corresponding to a distinct type of content,
corresponding to a markup construct reflecting this distinct type.

content model
the declared markup structure allowed within instances of an element type. XML 1.0
differentiates two types: elements containing only element content (no character data) and
mixed content (elements that may contain character data optionally interspersed with child
elements). The latter are characterized by a content specification beginning with the
"#PCDATA" string (denoting character data).

deprecated
a feature marked as deprecated is in the process of being removed from this
recommendation. Portable applications should not use features marked as deprecated.

document model
the effective structure and constraints of a given document type. The document model
constitutes the abstract representation of the physical or semantic structures of a class of
documents.

document type
a class of documents sharing a common abstract structure. The ISO 8879 [SGML [p.148]]
definition is as follows: "a class of documents having similar characteristics; for example,
journal, article, technical manual, or memo. (4.102)"

document type definition (DTD)
a formal, machine-readable expression of the XML structure and syntax rules to which a
document instance of a specific document type must conform; the schema type used in
XML 1.0 to validate conformance of a document instance to its declared document type.
The same markup model may be expressed by a variety of DTDs.

driver
a generally short file used to declare and instantiate the modules of a DTD. A good rule of
thumb is that a DTD driver contains no markup declarations that comprise any part of the
document model itself.

element
an instance of an element type.

element type
the definition of an element, that is, a container for a distinct semantic class of document
content.

entity
an entity is a logical or physical storage unit containing document content. Entities may be
composed of parse-able XML markup or character data, or unparsed (i.e., non-XML,
possibly non-textual) content. Entity content may be either defined entirely within the

- 11 -

2. Terms and DefinitionsXHTML 2.0

document entity ("internal entities") or external to the document entity ("external entities"). In
parsed entities, the replacement text may include references to other entities.

entity reference
a mnemonic string used as a reference to the content of a declared entity (eg., "&" for
"&", "<" for "<", "©" for "©".)

generic identifier
the name identifying the element type of an element. Also, element type name.

hybrid document
A hybrid document is a document that uses more than one XML namespace. Hybrid
documents may be defined as documents that contain elements or attributes from hybrid
document types.

instantiate
to replace an entity reference with an instance of its declared content.

markup declaration
a syntactical construct within a DTD declaring an entity or defining a markup structure.
Within XML DTDs, there are four specific types: entity declaration defines the binding
between a mnemonic symbol and its replacement content; element declaration constrains
which element types may occur as descendants within an element (see also content
model); attribute definition list declaration defines the set of attributes for a given element
type, and may also establish type constraints and default values; notation declaration
defines the binding between a notation name and an external identifier referencing the
format of an unparsed entity.

markup model
the markup vocabulary (i.e., the gamut of element and attribute names, notations, etc.) and
grammar (i.e., the prescribed use of that vocabulary) as defined by a document type
definition (i.e., a schema) The markup model is the concrete representation in markup
syntax of the document model, and may be defined with varying levels of strict conformity.
The same document model may be expressed by a variety of markup models.

module
an abstract unit within a document model expressed as a DTD fragment, used to
consolidate markup declarations to increase the flexibility, modifiability, reuse and
understanding of specific logical or semantic structures.

modularization
an implementation of a modularization model; the process of composing or de-composing a
DTD by dividing its markup declarations into units or groups to support specific goals.
Modules may or may not exist as separate file entities (i.e., the physical and logical
structures of a DTD may mirror each other, but there is no such requirement).

modularization model
the abstract design of the document type definition (DTD) in support of the modularization
goals, such as reuse, extensibility, expressiveness, ease of documentation, code size,
consistency and intuitiveness of use. It is important to note that a modularization model is
only orthogonally related to the document model it describes, so that two very different
modularization models may describe the same document type.

parameter entity
an entity whose scope of use is within the document prolog (i.e., the external subset/DTD or
internal subset). Parameter entities are disallowed within the document instance.

- 12 -

XHTML 2.02. Terms and Definitions

parent document type
A parent document type of a hybrid document is the document type of the root element.

tag
descriptive markup delimiting the start and end (including its generic identifier and any
attributes) of an element.

- 13 -

2. Terms and DefinitionsXHTML 2.0

- 14 -

XHTML 2.02. Terms and Definitions

3. Conformance Definition
This section is normative.

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in [RFC2119] [p.148] .

3.1. Document Conformance

3.1.1. Strictly Conforming Documents

DTD Bias

This section has a distinct DTD bias. We need to make it clear that either the DTD or the
Schema can be used to validate XHTML 2.0 documents.

A strictly conforming XHTML 2.0 document is a document that requires only the facilities
described as mandatory in this specification. Such a document must meet all the following
criteria:

1. The document must conform to the constraints expressed in Appendix B - XHTML 2.0
Schema [p.135] or Appendix D - XHTML 2.0 Document Type Definition [p.139] .

2. The root element of the document must be html.

3. The root element of the document must contain an xmlns declaration for the XHTML 2.0
namespace [XMLNAMES [p.149]]. The namespace for XHTML is defined to be
http://www.w3.org/2002/06/xhtml2. An example root element might look like:

<html xmlns="http://www.w3.org/2002/06/xhtml2" xml:lang="en">

4. There must be a DOCTYPE declaration in the document prior to the root element. If
present, the public identifier included in the DOCTYPE declaration must reference the DTD
found in Appendix C [p.141] using its Formal Public Identifier. The system identifier may be
modified appropriately.

<!DOCTYPE
 html PUBLIC "-//W3C//DTD XHTML 2.0//EN"
 "http://www.w3.org/TR/xhtml2/DTD/xhtml2.dtd">

Here is an example of an XHTML 2.0 document.

- 15 -

3. Conformance DefinitionXHTML 2.0

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN"
 "http://www.w3.org/TR/xhtml2/DTD/xhtml2.dtd">
<html xmlns="http://www.w3.org/2002/06/xhtml2" xml:lang="en" >
 <head>
 <title>Virtual Library</title>
 </head>
 <body>
 <p>Moved to vlib.org.</p>
 </body>
</html>

Note that in this example, the XML declaration is included. An XML declaration like the one
above is not required in all XML documents. XHTML document authors are strongly encouraged
to use XML declarations in all their documents. Such a declaration is required when the
character encoding of the document is other than the default UTF-8 or UTF-16 and no encoding
was determined by a higher-level protocol.

3.2. User Agent Conformance
A conforming user agent must meet all user agent conformance requirements defined in
[XHTMLMOD [p.149]].

- 16 -

XHTML 2.03.2. User Agent Conformance

4. The XHTML 2.0 Document Type
This section is normative.

The XHTML 2.0 document type is a fully functional document type with rich semantics. It is a
collection of XHTML-conforming modules (most of which are defined in this specification). The
Modules and their elements are listed here for information purposes, but the definitions in their
base documents should be considered authoritative. In the on-line version of this document, the
module names in the list below link into the definitions of the modules within the relevant version
of the authoritative specification.

Need XHTML 2.0 Definition Table

We need a table that defines the modules that are in XHTML 2.0 and links them into this
document. Currently, that will be a bunch of modules that are in this document, and modules
from XML Events, Ruby, and XForms. The table below is largely correct, but is still just a place
holder.

Structure Module [p.31] *
body, head, html, title

Text Module [p.35] *
abbr, acronym, address, blockquote, br, cite, code, dfn, div, em,
h, h1, h2, h3, h4, h5, h6, kbd, line, p, pre, quote, samp, section,
span, strong, var

Hypertext Module [p.49] *
a

List Module [p.53] *
dl, dt, dd, name, nl, ol, ul, li

Bidirectional Text Module [p.61]
bdo

Client-side Image Map Module [p.65]
area, map

Edit Module [p.73]
del, ins

Link Module [p.77]
link

Metainformation Module [p.81]
meta

Object Module [p.85]
object, param

Presentation Module [p.95]
hr, sub, sup

Scripting Module [p.97]
noscript, script

Server-side Image Map Module [p.101]
Attribute ismap on img

- 17 -

4. The XHTML 2.0 Document TypeXHTML 2.0

Stylesheet Module [p.103]
style element

Target Module [p.131]
target attribute

Table Module [p.109]
caption, col, colgroup, table, tbody, td, tfoot, th, thead, tr

XHTML 2.0 also uses the following externally defined modules:

Ruby Annotation Module [RUBY [p.148]]
ruby, rbc, rtc, rb, rt, rp

XML Events Module [XMLEVENTS [p.149]]
listener

XForms Module [XFORMS [p.149]]
LOTS OF ELEMENTS

There are no additional definitions required by this document type. An implementation of this
document type as an XML Schema is defined in Appendix B [p.135] , and as a DTD in Appendix
D [p.139] .

- 18 -

XHTML 2.04. The XHTML 2.0 Document Type

5. Module Definition Conventions
This section is normative.

This document defines a variety of XHTML modules and the semantics of those modules. This
section describes the conventions used in those module definitions.

5.1. Module Structure
Each module in this document is structured in the following way:

An abstract definition [p.19] of the module’s elements, attributes, and content models, as
appropriate.
A sub-section for each element in the module; These sub sections contain the following
components:

A brief description of the element,
A definition of each attribute or attribute collection [p.25] usable with the element, and
A detailed description of the behavior of the element, if appropriate.

Note that attributes are fully defined only the first time they are used in each module. After
that, only a brief description of the attribute is provided, along with a link back to the primary
definition.

5.2. Abstract Module Definitions
An abstract module is a definition of an XHTML module using prose text and some informal
markup conventions. While such a definition is not generally useful in the machine processing of
document types, it is critical in helping people understand what is contained in a module. This
section defines the way in which XHTML abstract modules are defined. An XHTML-conforming
module is not required to provide an abstract module definition. However, anyone developing an
XHTML module is encouraged to provide an abstraction to ease in the use of that module.

5.3. Syntactic Conventions
The abstract modules are not defined in a formal grammar. However, the definitions do adhere
to the following syntactic conventions. These conventions are similar to those of XML DTDs, and
should be familiar to XML DTD authors. Each discrete syntactic element can be combined with
others to make more complex expressions that conform to the algebra defined here.

element name
When an element is included in a content model, its explicit name will be listed.

content set
Some modules define lists of explicit element names called content sets. When a content
set is included in a content model, its name will be listed.

- 19 -

5. Module Definition ConventionsXHTML 2.0

expr ?
Zero or one instances of expr are permitted.

expr +
One or more instances of expr are required.

expr *
Zero or more instances of expr are permitted.

a , b
Expression a is required, followed by expression b.

a | b
Either expression a or expression b is required.

a - b
Expression a is permitted, omitting elements in expression b.

parentheses
When an expression is contained within parentheses, evaluation of any subexpressions
within the parentheses take place before evaluation of expressions outside of the
parentheses (starting at the deepest level of nesting first).

extending pre-defined elements
In some instances, a module adds attributes to an element. In these instances, the element
name is followed by an ampersand (&).

defining required attributes
When an element requires the definition of an attribute, that attribute name is followed by an
asterisk (*).

defining the type of attribute values
When a module defines the type of an attribute value, it does so by listing the type in
parentheses after the attribute name.

defining the legal values of attributes
When a module defines the legal values for an attribute, it does so by listing the explicit
legal values (enclosed in quotation marks), separated by vertical bars (|), inside of
parentheses following the attribute name. If the attribute has a default value, that value is
followed by an asterisk (*). If the attribute has a fixed value, the attribute name is followed
by an equals sign (=) and the fixed value enclosed in quotation marks.

5.4. Content Types
Abstract module definitions define minimal, atomic content models for each module. These
minimal content models reference the elements in the module itself. They may also reference
elements in other modules upon which the abstract module depends. Finally, the content model
in many cases requires that text be permitted as content to one or more elements. In these
cases, the symbol used for text is PCDATA. This is a term, defined in the XML 1.0
Recommendation, that refers to processed character data. A content type can also be defined
as EMPTY, meaning the element has no content in its minimal content model.

- 20 -

XHTML 2.05.4. Content Types

5.5. Attribute Types
In some instances, it is necessary to define the types of attribute values or the explicit set of
permitted values for attributes. The following attribute types (defined in the XML 1.0
Recommendation) are used in the definitions of the abstract modules:

Attribute Type Definition

CDATA Character data

ID A document-unique identifier

IDREF A reference to a document-unique identifier

IDREFS A space-separated list of references to document-unique identifiers

NAME A name with the same character constraints as ID above

NMTOKEN A name composed of only name tokens as defined in XML 1.0 [XML [p.149]].

NMTOKENS One or more white space separated NMTOKEN values

PCDATA Processed character data

In addition to these pre-defined data types, XHTML Modularization defines the following data
types and their semantics (as appropriate):

Data type Description

Character A single character from [ISO10646] [p.147] .

Charset A character encoding, as per [RFC2045] [p.148] .

Charsets A space-separated list of character encodings, as per [RFC2045] [p.148] .

ClassName

Used by the class [p.25] attribute, ClassNames are tokens that identify an
element as being a member of the set named by the value of the class
attribute. ClassName attribute tokens must begin with a letter ([A-Za-z]) and
may be followed by any number of letters, digits ([0-9]), hyphens ("-"),
underscores ("_"), colons (":"), and periods (".").

ContentType A media type, as per [RFC2045] [p.148] .

ContentTypes A comma-separated list of media types, as per [RFC2045] [p.148] .

Coordinates Comma separated list of Length [p.21] s used in defining areas.

Datetime Date and time information.

FPI A character string representing an SGML Formal Public Identifier.

HrefTarget Window name used as destination for results of certain actions.

LanguageCode A language code, as per [RFC3066] [p.148] .

Length
The value may be either in pixels or a percentage of the available horizontal
or vertical space. Thus, the value "50%" means half of the available space.

- 21 -

5.5. Attribute TypesXHTML 2.0

LinkTypes

Authors may use the following recognized link types, listed here with their
conventional interpretations. A LinkTypes value refers to a space-separated
list of link types. White space characters are not permitted within link types.

These link types are case-insensitive, i.e., "Alternate" has the same meaning
as "alternate".

User agents, search engines, etc. may interpret these link types in a variety of
ways. For example, user agents may provide access to linked documents
through a navigation bar.

Alternate
Designates substitute versions for the document in which the link occurs.
When used together with the hreflang attribute, it implies a translated
version of the document. When used together with the media attribute, it
implies a version designed for a different medium (or media).

Stylesheet
Refers to an external style sheet. See the Style Sheet Module [p.103] for
details. This is used together with the link type "Alternate" for
user-selectable alternate style sheets.

Start
Refers to the first document in a collection of documents. This link type
tells search engines which document is considered by the author to be
the starting point of the collection.

Next
Refers to the next document in a linear sequence of documents. User
agents may choose to pre-load the "next" document, to reduce the
perceived load time.

Prev
Refers to the previous document in an ordered series of documents.
Some user agents also support the synonym "Previous".

Contents
Refers to a document serving as a table of contents. Some user agents
also support the synonym ToC (from "Table of Contents").

Index
Refers to a document providing an index for the current document.

Glossary
Refers to a document providing a glossary of terms that pertain to the
current document.

Copyright
Refers to a copyright statement for the current document.

Chapter
Refers to a document serving as a chapter in a collection of documents.

Section
Refers to a document serving as a section in a collection of documents.

Subsection
Refers to a document serving as a subsection in a collection of
documents.

Appendix
Refers to a document serving as an appendix in a collection of
documents.

Help
Refers to a document offering help (more information, links to other
sources information, etc.)

Bookmark
Refers to a bookmark. A bookmark is a link to a key entry point within an
extended document. The title attribute may be used, for example, to label
the bookmark. Note that several bookmarks may be defined in each
document.

- 22 -

XHTML 2.05.5. Attribute Types

MediaDesc
A comma-separated list of media descriptors as described by [CSS]. The
default is all.

MultiLength

The value may be a Length or a relative length. A relative length has the form
"i*", where "i" is an integer. When allotting space among elements competing
for that space, user agents allot pixel and percentage lengths first, then divide
up remaining available space among relative lengths. Each relative length
receives a portion of the available space that is proportional to the integer
preceding the "*". The value "*" is equivalent to "1*". Thus, if 60 pixels of
space are available after the user agent allots pixel and percentage space,
and the competing relative lengths are 1*, 2*, and 3*, the 1* will be allotted 10
pixels, the 2* will be allotted 20 pixels, and the 3* will be allotted 30 pixels.

MultiLengths A comma separated list of items of type MultiLength [p.23] .

Number One or more digits

Pixels
The value is an integer that represents the number of pixels of the canvas
(screen, paper). Thus, the value "50" means fifty pixels. For normative
information about the definition of a pixel, please consult [CSS2 [p.147]]

Shape The shape of a region.

Text Arbitrary textual data, likely meant to be human-readable.

URI
A Uniform Resource Identifier Reference, as defined by the type anyURI in
[XMLSCHEMA [p.149]].

URIs A space-separated list of URIs as defined above.

URI List A comma-separated list of URIs as defined above.

- 23 -

5.5. Attribute TypesXHTML 2.0

- 24 -

XHTML 2.05.5. Attribute Types

6. XHTML Attribute Collections
This section is normative.

Many of the abstract modules in this document define the required attributes for their elements.
The table below defines some collections of attributes that are referenced throughout the
modules. These expressions should in no way be considered normative or mandatory. They are
an editorial convenience for this document. When used in the remainder of this section, it is the
expansion of the term that is normative, not the term itself.

The following basic attribute sets are used on many elements. In each case where they are
used, their use is identified via their collection name.

6.1. Core Attribute Collection
class = ClassName [p.21]

This attribute assigns one or more class names to an element; the element may be said to
belong to these classes. A class name may be shared by several element instances.

The class [p.25] attribute can be used for different purposes in XHTML, for instance as a
style sheet [p.103] selector (when an author wishes to assign style information to a set of
elements), and for general purpose processing by user agents.

For instance in the following example, the p [p.43] element is used in conjunction with the
class [p.25] attribute to identify a particular type of paragraph.

<p>
These programs are only available if you have purchased the advanced professional suite.
</p>

Style sheets rules can then be used to render the paragraph appropriately, for instance by
putting a border round it, giving it a different background colour, or where necessary by not
displaying it at all.

id = ID [p.21]
The id [p.25] attribute assigns a identifier to an element. The id of an element must be
unique within a document.

The id [p.25] attribute has several roles in XHTML:

As a style sheet [p.103] selector.
As a target anchor [p.49] for hypertext links.
As a means to reference a particular element from a script [p.98] .
As the name of a declared object [p.85] element.
For general purpose processing by user agents (e.g. for identifying fields when
extracting data from XHTML pages into a database, translating XHTML documents into
other formats, etc.).

- 25 -

6. XHTML Attribute CollectionsXHTML 2.0

As an example, the following headings are distinguished by their id [p.25] values:

<h id="introduction">Introduction</h>
<p>...</p>
<h id="events">The Events Module</h>
<p>...</p>

title = Text [p.23]
This attribute offers advisory information about the element for which it is set.

Values of the title [p.26] attribute may be rendered by user agents in a variety of ways. For
instance, visual browsers should display the title as a "tool tip" (a short message that
appears when the pointing device pauses over an object). Audio user agents may speak the
title information in a similar context.

The title [p.26] attribute has an additional role when used with the link [p.77] element to
designate an external style sheet. [p.105] Please consult the section on links and style
sheets [p.79] for details.

Example:

Jakob Nielsen’s Alertbox for January 11, 1998

6.2. I18N Attribute Collection
xml:lang = LanguageCode [p.21]

This attribute specifies the base language of an element’s attribute values and text content.
It is defined normatively in [XML] section 2.12 http://www.w3.org/TR/REC-xml#sec-lang-tag.
The default value of this attribute is unspecified.

An element inherits language code information according to the following order of
precedence (highest to lowest):

The xml:lang [p.26] attribute set for the element itself.
The closest parent element that has the xml:lang [p.26] attribute set (i.e., the xml:lang
[p.26] attribute is inherited).
The HTTP "Content-Language" header (which may be configured in a server).

In this example, the primary language of the document is French ("fr"). One paragraph is
declared to be in US English ("en-us"), after which the primary language returns to French.
The following paragraph includes an embedded Japanese ("ja") phrase, after which the
primary language returns to French.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN"
 "http://www.w3.org/xhtml2/DTD/xhtml2.dtd">
<html xmlns="http://www.w3.org/2002/06/xhtml2" xml:lang="fr">
<head>
 <title>Un document multilingue</title>
</head>
<body>

- 26 -

XHTML 2.06.2. I18N Attribute Collection

<p>...Interpreted as French...</p>
<p xml:lang="en-us">...Interpreted as US English...</p>
<p>...Interpreted as French again...</p>
<p>...French text interrupted by<em xml:lang="ja">some
 JapaneseFrench begins here again...</p>
</body>
</html>

6.3. Hypertext Attribute Collection
href = URI [p.23]

This attribute specifies a hypertext link that is activated when the element is selected.

target = HrefTarget [p.21]
This attribute identifies an environment that will act as the destination for a resource
identified by a hyperlink when it is activated.

This specification does not define how this attribute gets used, since that is defined by the
environment that the hyperlink is evaluated in.

XFrames not published yet

We need a reference to XFrames here, but XFrames is not yet public.

accesskey = Character [p.21]
This attribute assigns an access key to an element. An access key is a single character
from the document character set. Note. Authors should consider the input method of the
expected reader when specifying an accesskey.

Pressing an access key assigned to an element gives focus to the element. The action that
occurs when an element receives focus depends on the element. For example, when a user
activates a link defined by the a [p.49] element, the user agent generally follows the link.
When a user activates a radio button, the user agent changes the value of the radio button.
When the user activates a text field, it allows input, etc.

In this example, we assign an access key to a link defined by the a [p.49] element. Typing
this access key takes the user to another document, in this case, a table of contents.

<p><a accesskey="C"
 rel="contents"
 href="http://someplace.com/specification/contents.html">
 Table of Contents
</p>

The invocation of access keys depends on the underlying system. For instance, on
machines running MS Windows, one generally has to press the "alt" key in addition to the
access key. On Apple systems, one generally has to press the "cmd" key in addition to the
access key.

- 27 -

6.3. Hypertext Attribute CollectionXHTML 2.0

The rendering of access keys depends on the user agent. We recommend that authors
include the access key in label text or wherever the access key is to apply. User agents
should render the value of an access key in such a way as to emphasize its role and to
distinguish it from other characters (e.g., by underlining it).

navindex = Number [p.23]
This attribute specifies the position of the current element in the navingation order for the
current document. This value must be a number between 0 and 32767. User agents must
ignore leading zeros.

The navigation order defines the order in which elements will receive focus when navigated
by the user via the keyboard. The navigation order may include elements nested within
other elements.

Elements that may receive focus should be navigated by user agents according to the
following rules:

1. Those elements that support the navindex [p.28] attribute and assign a positive value to
it are navigated first. Navigation proceeds from the element with the lowest navindex
[p.28] value to the element with the highest value. Values need not be sequential nor
must they begin with any particular value. Elements that have identical navindex [p.28]
values should be navigated in the order they appear in the character stream.

2. Those elements that do not support the navindex [p.28] attribute or support it and
assign it a value of "0" are navigated next. These elements are navigated in the order
they appear in the character stream.

3. Elements that are disabled [p.86] do not participate in the navigation order.

Tabbing keys. The actual key sequence that causes navigation or element activation
depends on the configuration of the user agent (e.g., the "tab" key is used for navigation
and the "enter" key is used to activate a selected element).

User agents may also define key sequences to navigate the navigation order in reverse.
When the end (or beginning) of the navigation order is reached, user agents may circle
back to the beginning (or end).

6.4. Events
The global attributes from [XMLEVENTS [p.149]] are included in the Events attribute collection.
The normative definition of those attributes and their semantics is included in that specification.
They are described briefly below:

defaultAction = cancel|perform
This attribute defines the default action to take when the matching event is encountered. If
not specified, the defaultAction is perform

- 28 -

XHTML 2.06.4. Events

event = CDATA [p.21]
This attribute defines the name of the event that is to be captured. The set of legal names
for XHTML 2 is to be defined.

List of XHTML 2 Events Needed

We need to define the list of XHTML 2 events and map them into the XHTML DOM.

handler = IDREF [p.21]
This attribute specifies the ID of a handler element that defines the action that should be
performed if the event reaches the observer.

observer = IDREF [p.21]
This attribute specifies an ID for an observer element for which the listener is to be
registered.

phase = capture|default
This attribute specifies the phase of event propagation in which to process the event. If not
specified, the default value of this attribute is default.

propagate = stop|continue
This attribute specifies whether an event should stop propagating after this observer
processes it, or continue down the event chain for possible further processing. If not
specified, the default value of this attribute is continue.

target = IDREF [p.21]
This attribute specifies the id of the target element of the event (i.e., the node that caused
the event). If not specified, the default value of this attribute is the element on which the
event attribute is specified.

Note that these attributes are not in the XHTML namespace. Instead, they are in the XML
Events namespace. The XHTML namespace is the default namespace for XHTML documents,
so XHTML elements and attributes do not require namespace prefixes (although they are
permitted). XML Events attributes MUST use a prefix, since they are not in the default
namespace of the document. When XML Events are included in an XHTML document, the
default prefix for those attribute is ev.

6.5. Common Attribute Collection
This collection assembles the Core [p.25] , I18N [p.26] , Events [p.28] and Hypertext [p.27]
attribute collections defined above.

- 29 -

6.5. Common Attribute CollectionXHTML 2.0

- 30 -

XHTML 2.06.5. Common Attribute Collection

7. XHTML Structure Module
This section is normative.

The Structure Module defines the major structural elements for XHTML. These elements
effectively act as the basis for the content model of many XHTML family document types. The
elements and attributes included in this module are:

Elements Attributes
Minimal

Content Model

body
[p.33]

Common [p.29]
(Heading | Block
| List)*

head
[p.32]

Common [p.29] title [p.32]

html [p.31]
I18N [p.26] , profile (URI [p.23]), xmlns (URI [p.23] =
"http://www.w3.org/2002/06/xhtml2")

head [p.32] ,
body [p.33]

title [p.32] I18N [p.26] PCDATA

This module is the basic structural definition for XHTML content. The html element acts as the
root element for all XHTML Family Document Types.

Note that the value of the xmlns attribute is defined to be "http://www.w3.org/2002/06/xhtml2".
Also note that because the xmlns attribute is treated specially by XML namespace-aware
parsers [XMLNAMES [p.149]], it is legal to have it present as an attribute of each element.
However, any time the xmlns attribute is used in the context of an XHTML module, whether with
a prefix or not, the value of the attribute shall be the XHTML namespace defined here.

Implementation: DTD [p.142]

7.1. The html element
After the document type declaration, the remainder of an XHTML document is contained by the
html [p.31] element.

Attributes

The I18N [p.26] collection
A collection of attributes related to Internationalization, including the xml:lang [p.26] .

profile = URI [p.23]
This attribute specifies the location of one or more meta data profiles, separated by white
space. For future extensions, user agents should consider the value to be a list even though
this specification only considers the first URI to be significant. Profiles are discussed in the

- 31 -

7. XHTML Structure ModuleXHTML 2.0

section on meta data [p.81] .

7.2. The head element
The head [p.32] element contains information about the current document, such as its title,
keywords that may be useful to search engines, and other data that is not considered document
content. User agents do not generally render elements that appear in the head [p.32] as content.
They may, however, make information in the head [p.32] available to users through other
mechanisms.

Attributes

The I18N [p.26] collection
A collection of attributes related to Internationalization, including the xml:lang [p.26] .

7.3. The title element
Every XHTML document must have a title [p.32] element in the head [p.32] section.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

Authors should use the title [p.32] element to identify the contents of a document. Since users
often consult documents out of context, authors should provide context-rich titles. Thus, instead
of a title such as "Introduction", which doesn’t provide much contextual background, authors
should supply a title such as "Introduction to Medieval Bee-Keeping" instead.

For reasons of accessibility, user agents must always make the content of the title [p.32]
element available to users (including title [p.32] elements that occur in frames). The mechanism
for doing so depends on the user agent (e.g., as a caption, spoken).

Titles may contain entity references [p.12] (for accented characters, special characters, etc.), but
may not contain other markup (including comments). Here is a sample document title:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN"
 "http://www.w3.org/TR/xhtml2/DTD/xhtml2.dtd">
<html xmlns="http://www.w3.org/2002/06/xhtml2">
<head>
<title>A study of population dynamics</title>
... other head elements...
</head>
<body>
... document body...
</body>
</html>

- 32 -

XHTML 2.07.2. The head element

7.4. The body element
The body of a document contains the document’s content. The content may be presented by a
user agent in a variety of ways. For example, for visual browsers, you can think of the body as a
canvas where the content appears: text, images, colors, graphics, etc. For audio user agents,
the same content may be spoken.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

- 33 -

7.4. The body elementXHTML 2.0

- 34 -

XHTML 2.07.4. The body element

8. XHTML Text Module
This section is normative.

This module defines all of the basic text container elements, attributes, and their content model:

Element Attributes Minimal Content Model

abbr Common [p.29] (PCDATA | Inline)*

acronym Common [p.29] (PCDATA | Inline)*

address Common [p.29] (PCDATA | Inline)*

blockquote
Common [p.29] , cite (URI [p.23]
)

(PCDATA | Heading | Block | List)*

br Core [p.25] EMPTY

cite Common [p.29] (PCDATA | Inline)*

code Common [p.29] (PCDATA | Inline)*

dfn Common [p.29] (PCDATA | Inline)*

div Common [p.29] (PCDATA | Flow)*

em Common [p.29] (PCDATA | Inline)*

h Common [p.29] (PCDATA | Inline)*

h1 Common [p.29] (PCDATA | Inline)*

h2 Common [p.29] (PCDATA | Inline)*

h3 Common [p.29] (PCDATA | Inline)*

h4 Common [p.29] (PCDATA | Inline)*

h5 Common [p.29] (PCDATA | Inline)*

h6 Common [p.29] (PCDATA | Inline)*

kbd Common [p.29] (PCDATA | Inline)*

line Common [p.29] (PCDATA | Inline)*

p Common [p.29]
(PCDATA | Inline | List | blockquote | pre |
table)*

pre Common [p.29] (PCDATA | Inline)*

- 35 -

8. XHTML Text ModuleXHTML 2.0

Element Attributes Minimal Content Model

quote
Common [p.29] , cite (URI [p.23]
)

(PCDATA | Inline)*

samp Common [p.29] (PCDATA | Inline)*

section Common [p.29] (PCDATA | Flow)*

span Common [p.29] (PCDATA | Inline)*

strong Common [p.29] (PCDATA | Inline)*

var Common [p.29] (PCDATA | Inline)*

The minimal content model for this module defines some content sets:

Heading
h | h1 | h2 | h3 | h4 | h5 | h6

Block
address | blockquote | div | p | pre

Inline
abbr | acronym | br | cite | code | dfn | em | kbd | q | samp | span | strong | var

Flow
Heading | Block | Inline

Note that the use of the words Block and Inline here are meant to be suggestive of the role the
content sets play. They are not normative with regards to presentation (in other words, a style
sheet might give an element within the Block content a display property of inline).

Implementation: DTD [p.142]

8.1. The abbr element
The abbr [p.36] element indicates that a text fragment is an abbreviation (e.g., W3C, XML, Inc.,
Ltd., Mass., etc.).

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

The content of the abbr [p.36] and acronym [p.37] elements specifies the abbreviated
expression itself, as it would normally appear in running text. The title [p.26] attribute of these
elements may be used to provide the full or expanded form of the expression.

- 36 -

XHTML 2.08.1. The abbr element

Note that abbreviations and acronyms often have idiosyncratic pronunciations. For example,
while "IRS" and "BBC" are typically pronounced letter by letter, "NATO" and "UNESCO" are
pronounced phonetically. Still other abbreviated forms (e.g., "URI" and "SQL") are spelled out by
some people and pronounced as words by other people. When necessary, authors should use
style sheets to specify the pronunciation of an abbreviated form.

Examples:

 <abbr title="Limited">Ltd.</abbr>
 <abbr title="Abbreviation">abbr.</abbr>

8.2. The acronym element
The acronym [p.37] element indicates that a text fragment is an acronym (e.g., BBC, WWW,
URL, etc.). Its usage is the same as the abbr [p.36] element above.

While some dictionaries define an acronym to be just a word formed from the initial letters of
other words, others require the acronym to be pronouncable as a word. This specification does
not require the acronym [p.37] element to adhere to either definition, but is only provided for
author convenience.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

Examples:

 <acronym title="World Wide Web">WWW</acronym>
 <acronym xml:lang="fr"
 title="Société Nationale des Chemins de Fer">
 SNCF
 </acronym>

8.3. The address element
The address [p.37] element may be used by authors to supply contact information for a
document or a major part of a document such as a form. This element often appears at the
beginning or end of a document.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

- 37 -

8.2. The acronym elementXHTML 2.0

For example:

<address>
Webmaster
</address>

8.4. The blockquote element
This element designates a block of quoted text.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

cite = URI [p.23]
The value of this attribute is a URI that designates a source document or message. This
attribute is intended to give further information about the element’s contents (e.g., the
source from which a quotation was borrowed, or the reason text was inserted or deleted).
User Agents should provide a means for the user to access the further information.

This example formats an excerpt from "The Two Towers", by J.R.R. Tolkien, as a blockquote.

<blockquote cite="http://www.example.com/tolkien/twotowers.html">
<p>They went in single file, running like hounds on a strong scent,
and an eager light was in their eyes. Nearly due west the broad
swath of the marching Orcs tramped its ugly slot; the sweet grass
of Rohan had been bruised and blackened as they passed.</p>
</blockquote>

8.5. The br element
The br [p.38] element indicates that the current output line should be ended at this point, and a
new line begun. This element is deprecated in favor of the line [p.42] element.

Attributes

The Core [p.25] collection
A collection of basic attributes used on all elements, including class [p.25] , id [p.25] , title
[p.26] .

Example:

<p class="poem" xml:lang="fr">
Un petit d’un petit

S’etonne aux Halles.

Un petit d’un petit,

Ah! Degres te fallent.
</p>

- 38 -

XHTML 2.08.4. The blockquote element

8.6. The cite element
The cite [p.39] element contains a citation or a reference to other sources.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

,

cite = URI [p.23]
The value of this attribute is a URI that designates a source document or message. This
attribute is intended to give further information about the element’s contents (e.g., the
source from which a quotation was borrowed, or the reason text was inserted or deleted).
User Agents should provide a means for the user to access the further information.

In the following example, the cite [p.39] element is used to delineate the speaker:

As <cite cite="http://www.whitehouse.gov/history/presidents/ht33.html">Harry S. Truman</cite> said,
<quote lang="en-us">The buck stops here.</quote>

More information can be found in <cite cite="http://www.w3.org/TR/REC-xml">[XML]</cite>.

8.7. The code element
The code [p.39] element contains a fragment of computer code.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

Example:

The <code>code</code> element contains a fragment of computer code.

8.8. The dfn element
The dfn [p.39] element contains the defining instance of the enclosed term.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

- 39 -

8.6. The cite elementXHTML 2.0

Example:

An <dfn id="def-acronym">acronym</dfn> is a word formed
from the initial letters or groups of letters of words in a set phrase
or series of words.

8.9. The div element
The div [p.40] element, in conjunction with the id [p.25] and class [p.25] attributes, offer a
generic mechanism for adding structure to documents. This element defines no presentational
idioms on the content. Thus, authors may use this element in conjunction with style sheets
[p.103] , the xml:lang [p.26] attribute, etc., to tailor XHTML to their own needs and tastes.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

For example, suppose you wish to make a presentation in XHTML, where each slide is enclosed
in a separate element. You could use a div [p.40] element, with a class [p.25] of slide:

<body>
 <h>The meaning of life</h>
 <p>By Huntington B. Snark</p>
 <div class="slide">
 <h>What do I mean by "life"</h>
 <p>....</p>
 </div>
 <div class="slide">
 <h>What do I mean by "mean"?</h>
 ...
 </div>
 ...
</body>

8.10. The em element
The em [p.40] element indicates emphasis for its contents.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

Example:

- 40 -

XHTML 2.08.9. The div element

Do not phone before 9 a.m.

8.11. The heading elements
A heading element briefly describes the topic of the section it introduces. Heading information
may be used by user agents, for example, to construct a table of contents for a document
automatically.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

There are two styles of headings in XHTML: the numbered versions h1 [p.41] , h2 [p.41] etc.,
and the structured version h [p.41] , which is used in combination with the section [p.45]
element.

There are six levels of numbered headings in XHTML with h1 [p.41] as the most important and
h6 [p.41] as the least. The visual presentation of headers can render more important headings in
larger fonts than less important ones.

Structured headings use the single h element, in combination with the section [p.45] element to
indicate the structure of the document, and the nesting of the sections indicate the importance of
the heading.

For example:

<body>
<h>This is a top level heading</h>
<p>....</p>
<section>
 <p>....</p>
 <h>This is a second-level heading</h>
 <p>....</p>
 <h>This is another second-level heading</h>
 <p>....</p>
</section>
<section>
 <p>....</p>
 <h>This is another second-level heading</h>
 <p>....</p>
 <section>
 <h>This is a third-level heading</h>
 <p>....</p>
 </section>
</section>

These visual representation of these levels can be distinguished in a style sheet:

- 41 -

8.11. The heading elementsXHTML 2.0

h {font-family: sans-serif; font-weight: bold; font-size: 200%}
section h {font-size: 150%} /* A second-level heading */
section section h {font-size: 120%} /* A third-level heading */

etc.

Numbered sections and references
XHTML does not itself cause section numbers to be generated from headings. Style sheet
languages such as CSS however allow authors to control the generation of section numbers.

The practice of skipping heading levels is considered to be bad practice. The series h1 h2 h1
is acceptable, while h1 h3 h1 is not, since the heading level h2 has been skipped.

8.12. The kbd element
The kbd [p.42] element indicates text to be entered by the user.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

Example:

To exit, type <kbd>QUIT</kbd>.

8.13. The line element
The line [p.42] element represents a sub-paragraph. It is intended as a structured replacement
for the br [p.38] element. It contains a piece of text that when visually represented should start
on a new line, and have a line break at the end. Whether the line should wrap or not visually
depends on styling properties of the element.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

By retaining structure in text that has to be broken over lines, you retain essential information
about its makeup. This gives you greater freedom with styling the content. For instance, line
numbers can be generated automatically from the stylesheet if needed.

For instance, for a document with the following structure:

- 42 -

XHTML 2.08.12. The kbd element

<p class="program">
<line>program p(input, output);</line>
<line>begin</line>
<line> writeln("Hello world");</line>
<line>end.</line>
</p>

the following CSS stylesheet would number each line:

.program { counter-reset: linenumber }

line:before {
 position: relative;
 left: -1em;
 counter-increment: linenumber;
 content: counter(linenumber);
}

8.14. The p element
The p [p.43] element represents a paragraph.

In comparison with earlier versions of HTML, where a paragraph could only contain inline text,
XHTML2’s paragraphs represent the conceptual idea of a paragraph, and so may contain lists,
blockquotes, pre’s and tables as well as inline text. They may not, however, contain directly
nested p [p.43] elements.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

Authors are discouraged from using empty p [p.43] elements. User agents should ignore empty
p [p.43] .

<p>Payment options include:

cash
credit card
luncheon vouchers.

</p>

8.15. The pre element
The pre [p.43] element indicates that whitespace in the enclosed text has semantic relevance,
and will normally be included in renderings of the content

- 43 -

8.14. The p elementXHTML 2.0

Note that all elements in the XHTML family preserve their whitespace in the document, which is
only removed on rendering, via a stylesheet, according to the rules of CSS [CSS]. This means
that in principle all elements may preserve or collapse whitespace on rendering, under control of
a stylesheet. Also note that there is no requirement that the <pre> element be rendered in a
monospace font (although this is the default rendering), nor that text wrapping be disabled.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

Non-visual user agents are not required to respect extra white space in the content of a pre
[p.43] element.

The following example shows a preformatted verse from Shelly’s poem To a Skylark:

<pre>
 Higher still and higher
 From the earth thou springest
 Like a cloud of fire;
 The blue deep thou wingest,
And singing still dost soar, and soaring ever singest.
</pre>

Here is how this might be rendered:

 Higher still and higher
 From the earth thou springest
 Like a cloud of fire;
 The blue deep thou wingest,
And singing still dost soar, and soaring ever singest.

8.16. The quote element
This element designates a inline text fragment of quoted text.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

cite = URI [p.23]
The value of this attribute is a URI that designates a source document or message. This
attribute is intended to give further information about the element’s contents (e.g., the
source from which a quotation was borrowed, or the reason text was inserted or deleted).
User Agents should provide a means for the user to access the further information.

- 44 -

XHTML 2.08.16. The quote element

Visual user agents are not required to add delimiting quotation marks (as was the case for the q
element in earlier versions of HTML). It is the responsibility of the document author to add any
required quotation marks.

The following example illustrates nested quotations with the quote [p.44] element.

<p>John said, <quote lang="en-us">"I saw Lucy at lunch, she told me
<quote lang="en-us">’Mary wants you
to get some ice cream on your way home.’</quote> I think I will get
some at Jen and Berry’s, on Gloucester Road."</quote></p>

Here is an example using the cite [p.38] attribute:

Steven replied: <quote cite="http://lists.w3.org/Public/www-html/June2002/001.html">We quite agree</quote>

8.17. The samp element
The samp [p.45] element designates sample output from programs, scripts, etc.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

Example:

On starting, you will see the prompt <samp>$ </samp>.

8.18. The section element
Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

The section [p.45] element, in conjunction with the h [p.41] element, offers a mechanism for
structuring documents into sections. This element defines content to be block-level but imposes
no other presentational idioms on the content, which may otherwise be controlled from a style
sheet.

By representing the structure of documents explicitely using the section [p.45] and h [p.41]
elements gives the author greater control over presentation possibilities than the traditional
implicit structuring using numbered levels of headings. For instance, it is then possible to
indicate the nesting of sections by causing a border to be displayed to the left of sections.

- 45 -

8.17. The samp elementXHTML 2.0

Here is an example

<body>
<h>Events</h>
<section>
 <h>Introduction</h>
 <p>....</p>
 <h>Specifying events</h>
 <p>...</p>
 <section>
 <h>Attaching events to the handler</h>
 <p>...</p>
 </section>
 <section>
 <h>Attaching events to the listener</h>
 <p>...</p>
 </section>
 <section>
 <h>Specifying the binding elsewhere</h>
 <p>...</p>
 </section>
</section>

8.19. The span element
The span [p.46] element, in conjunction with the id [p.25] and class [p.25] attributes, offer a
generic mechanism for adding structure to documents. This element imposes no presentational
idioms on the content. Thus, authors may use this element in conjunction with style sheets
[p.103] , the xml:lang [p.26] attribute, etc., to tailor XHTML to their own needs and tastes.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

For example, suppose you wish to mark all words in a document that need to be collected into
an index. You could use a span [p.46] element, with a class [p.25] of xref:

<p>This operation is called
the transpose
or inverse.</p>

8.20. The strong element
The strong [p.46] element indicates strong emphasis for its contents.

Attributes

- 46 -

XHTML 2.08.19. The span element

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

On Monday please put the rubbish out,
but not before nightfall!

8.21. The var element
The var [p.47] element indicates an instance of a variable or program argument.

Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

Example:

The parameter <var>ncols</var> represents
the number of colors to use.

- 47 -

8.21. The var elementXHTML 2.0

- 48 -

XHTML 2.08.21. The var element

9. XHTML Hypertext Module
This section is normative.

The Hypertext Module provides the element that is used to define hypertext links to other
resources, as well as a number of attributes.

This module supports the following element:

Element Attributes
Minimal
Content
Model

a [p.49]
Common [p.29] , charset (Charset [p.21]), hreflang
(LanguageCode [p.21]), rel (LinkTypes [p.22]), rev (LinkTypes
[p.22]), type (ContentType [p.21])

(PCDATA |
Inline)*

This module adds the a [p.49] element to the Inline content set of the Text Module, and activates
the Hypertext [p.27] Attribute Collection.

Implementation: DTD [p.143]

9.1. The a element
Attributes

The Common [p.29] collection
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27]

charset = Charset [p.21]
This attribute specifies the character encoding of the resource designated by the link.
Please consult the section on character encodings for more details.

hreflang = LanguageCode [p.21]
This attribute specifies the base language of the resource designated by href [p.27] and
may only be used when href [p.27] is specified.

type = ContentType [p.21]
This attribute gives an advisory hint as to the content type of the content available at the link
target address. It allows user agents to opt to use a fallback mechanism rather than fetch
the content if they are advised that they will get content in a content type they do not
support.

- 49 -

9. XHTML Hypertext ModuleXHTML 2.0

Authors who use this attribute take responsibility to manage the risk that it may become
inconsistent with the content available at the link target address.

For the current list of registered content types, please consult [MIMETYPES [p.147]].

rel = LinkTypes [p.22]
This attribute describes the relationship from the current document to the URI referred to by
the element. The value of this attribute is a space-separated list of link types.

rev = LinkTypes [p.22]
This attribute is used to describe a reverse link from the anchor specified by the href [p.27]
attribute to the current document. The value of this attribute is a space-separated list of link
types.

navindex = Number [p.23]
This attribute specifies the position of the current element in the navingation order for the
current document. This value must be a number between 0 and 32767. User agents must
ignore leading zeros.

The navigation order defines the order in which elements will receive focus when navigated
by the user via the keyboard. The navigation order may include elements nested within
other elements.

Elements that may receive focus should be navigated by user agents according to the
following rules:

1. Those elements that support the navindex [p.50] attribute and assign a positive value to
it are navigated first. Navigation proceeds from the element with the lowest navindex
[p.50] value to the element with the highest value. Values need not be sequential nor
must they begin with any particular value. Elements that have identical navindex [p.50]
values should be navigated in the order they appear in the character stream.

2. Those elements that do not support the navindex [p.50] attribute or support it and
assign it a value of "0" are navigated next. These elements are navigated in the order
they appear in the character stream.

3. Elements that are disabled [p.86] do not participate in the navigation order.

Tabbing keys. The actual key sequence that causes navigation or element activation
depends on the configuration of the user agent (e.g., the "tab" key is used for navigation
and the "enter" key is used to activate a selected element).

User agents may also define key sequences to navigate the navigation order in reverse.
When the end (or beginning) of the navigation order is reached, user agents may circle
back to the beginning (or end).

Each a [p.49] element defines an anchor.

- 50 -

XHTML 2.09.1. The a element

1. The a [p.49] element’s content defines the position of the anchor.
2. The href [p.27] attribute makes this anchor the source anchor of exactly one link.

Authors may also create an a [p.49] element that specifies no anchors, i.e., that doesn’t specify
href [p.27] , or id [p.25] . Values for these attributes may be set at a later time through scripts as
defined in the Scripting [p.97] module.

In the example that follows, the a [p.49] element defines a link. The source anchor is the text
"W3C Web site" and the destination anchor is "http://www.w3.org/":

For more information about W3C, please consult the
W3C Web site.

This link designates the home page of the World Wide Web Consortium. When a user activates
this link in a user agent, the user agent will retrieve the resource, in this case, an XHTML
document.

User agents generally render links in such a way as to make them obvious to users (underlining,
reverse video, etc.). The exact rendering depends on the user agent. Rendering may vary
according to whether the user has already visited the link or not. A possible visual rendering of
the previous link might be:

For more information about W3C, please consult the W3C Web site.
                                                   ~~~~~~~~~~~~

To tell user agents explicitly what the character encoding of the destination page is, set the 
charset [p.49] attribute:

For more information about W3C, please consult the 
<a href="http://www.w3.org/" charset="ISO-8859-1">W3C Web site</a>

Suppose we define an anchor named "anchor-one" in the file "one.html".

...text before the anchor...
<a name="anchor-one">This is the location of anchor one.</a>
...text after the anchor...

This creates an anchor around the text "This is the location of anchor one.". Usually, the
contents of a [p.49] are not rendered in any special way when a [p.49] defines an anchor only.

Having defined the anchor, we may link to it from the same or another document. URIs that
designate anchors contain a "#" character followed by the anchor name (the fragment identifier).
Here are some examples of such URIs:

An absolute URI: http://www.mycompany.com/one.html#anchor-one 
A relative URI: ./one.html#anchor-one or one.html#anchor-one 
When the link is defined in the same document: #anchor-one

- 51 -

9.1. The a elementXHTML 2.0



Thus, a link defined in the file "two.html" in the same directory as "one.html" would refer to the
anchor as follows:

...text before the link...
For more information, please consult <a href="./one.html#anchor-one"> anchor one</a>.
...text after the link...

The a [p.49] element in the following example specifies a link (with href [p.27] ) and creates a
named anchor (with id [p.25] ) simultaneously:

I just returned from vacation! Here’s a
<a id="anchor-two" 
   href="http://www.somecompany.com/People/Ian/vacation/family.png">
photo of my family at the lake.</a>.

This example contains a link to a different type of Web resource (a PNG image). Activating the
link should cause the image resource to be retrieved from the Web (and possibly displayed if the
system has been configured to do so).

Note. User agents area required to find anchors created by empty a [p.49] elements.

- 52 -

XHTML 2.09.1. The a element



10. XHTML List Module
This section is normative.

As its name suggests, the List Module provides list-oriented elements. Specifically, the List
Module supports the following elements and attributes:

Elements Attributes Minimal Content Model 

dl [p.55] Common [p.29] ( dt [p.55] | dd [p.55] )+

dt [p.55] Common [p.29] (PCDATA | Inline)*

dd [p.55] Common [p.29] (PCDATA | Flow)*

nl [p.56] Common [p.29] name [p.58] , li [p.57] +

ol [p.56] Common [p.29] li [p.57] +

ul [p.56] Common [p.29] li [p.57] +

li [p.57] Common [p.29] (PCDATA | Flow)*

This module also defines the content set List with the minimal content model (dl | nl | ol | ul)+
and adds this set to the Flow content set of the Text Module.

Implementation: DTD [p.143] 

XHTML offers authors several mechanisms for specifying lists of information. All lists must
contain one or more list elements. Lists may contain:

Unordered information. 
Ordered information. 
Navigation information. 
Definitions.

The previous list, for example, is an unordered list, created with the ul [p.56] element:

<ul>
<li>Unordered information. </li>
<li>Ordered information. </li>
<li>Navigation information. </li>
<li>Definitions. </li>
</ul>

An ordered list, created using the ol [p.56] element, should contain information where order
should be emphasized, as in a recipe:

- 53 -

10. XHTML List ModuleXHTML 2.0



1.  Mix dry ingredients thoroughly. 
2.  Pour in wet ingredients. 
3.  Mix for 10 minutes. 
4.  Bake for one hour at 300 degrees.

Definition lists, created using the dl [p.55] element, generally consist of a series of term/definition
pairs (although definition lists may have other applications). Thus, when advertising a product,
one might use a definition list:

Lower cost 
The new version of this product costs significantly less than the previous one! 

Easier to use 
We’ve changed the product so that it’s much easier to use! 

Safe for kids 
You can leave your kids alone in a room with this product and they won’t get hurt (not a 
guarantee).

defined in XHTML as:

<dl>
<dt><strong>Lower cost</strong></dt>
<dd>The new version of this product costs significantly less than the
previous one!</dd>
<dt><strong>Easier to use</strong></dt>
<dd>We’ve changed the product so that it’s much easier to
use!</dd>
<dt><strong>Safe for kids</strong></dt>
<dd>You can leave your kids alone in a room with this product and
they won’t get hurt (not a guarantee).</dd>
</dl>

Lists may also be nested and different list types may be used together, as in the following
example, which is a definition list that contains an unordered list (the ingredients) and an
ordered list (the procedure):

The ingredients: 
100 g. flour 
10 g. sugar 
1 cup water 
2 eggs 
salt, pepper

The procedure: 
1.  Mix dry ingredients thoroughly. 
2.  Pour in wet ingredients. 
3.  Mix for 10 minutes. 
4.  Bake for one hour at 300 degrees.

Notes: 
The recipe may be improved by adding raisins.

- 54 -

XHTML 2.010. XHTML List Module



The exact presentation of the three list types depends on the user agent. We discourage authors
from using lists purely as a means of indenting text. This is a stylistic issue and is properly
handled by style sheets.

10.1. Definition lists: the dl, dt, and dd elements
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

Definition lists vary only slightly from other types of lists in that list items consist of two parts: a
term and a description. The term is given by the dt [p.55] element and is restricted to inline
content. The description is given with a dd [p.55] element that contains block-level content.

Here is an example:

  
<dl>
  <dt>Dweeb</dt>
  <dd>young excitable person who may mature
    into a <em>Nerd</em> or <em>Geek</em></dd>

  <dt>Hacker</dt>
  <dd>a clever programmer</dd>

  <dt>Nerd</dt>
  <dd>technically bright but socially inept person</dd>

</dl>

Here is an example with multiple terms and descriptions:

<dl>
   <dt>Center</dt>
   <dt>Centre</dt>
   <dd> A point equidistant from all points
              on the surface of a sphere.</dd>
   <dd> In some field sports, the player who
              holds the middle position on the field, court,
              or forward line.</dd>
</dl>

Another application of dl [p.55] , for example, is for marking up dialogues, with each dt [p.55] 
naming a speaker, and each dd [p.55] containing his or her words.

- 55 -

10.1. Definition lists: the dl, dt, and dd elementsXHTML 2.0



10.2. The nl element
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

Navigation lists are intended to be used to define collections of selectable items for presentation
in a "navigation" menu. A navigation list is required to start with a name [p.58] element that
defines the name for the list.

On visual user agents, the default presentation behavior is as follows:

1.  The contents of the name [p.58] element are presented. 
2.  When the name [p.58] element’s content is selected, the navigation list’s li [p.57] element

contents are displayed. 
3.  If an li [p.57] element contains another navigation list [p.56] , that list’s name’s contents are

displayed. 
4.  If an li [p.57] element has an href [p.27] attribute, and that element’s contents are selected,

the link defined by the href [p.27] attribute is followed. 
5.  If the nl [p.56] element is de-selected, it’s contents are removed from the display.

It is possible to change this default behavior through the use of style sheets. The behavior of 
navigation lists [p.56] in non-visual user agents is unspecified.

This example illustrates the basic structure of a nested navigation list:

<nl>
   <name>Contents </name>
   <li href="#introduction">Introduction</li>
   <li>
      <nl>
          <name>Terms</name>
          <li href="#may">May</li>
          <li href="#must">Must</li>
          <li href="#should">Should</li>
      </nl>
   </li>
   <li href="#conformance">Conformance</li>
   <li href="#references">References</li>
   ...
</nl>

10.3. The ol, and ul elements
Attributes

- 56 -

XHTML 2.010.2. The nl element



The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

Ordered and unordered lists are rendered in an identical manner except that visual user agents
number ordered list items. User agents may present those numbers in a variety of ways.
Unordered list items are not numbered.

Both types of lists are made up of sequences of list items defined by the li [p.57] element.

This example illustrates the basic structure of a list.

<ul>
   <li> ... first list item...</li>
   <li> ... second list item...</li>
   ...
</ul>

10.4. The li element
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

accesskey = Character [p.21] 
This attribute assigns an access key to an element. An access key is a single character
from the document character set. Note. Authors should consider the input method of the
expected reader when specifying an accesskey. 

Pressing an access key assigned to an element gives focus to the element. The action that
occurs when an element receives focus depends on the element. For example, when a user
activates a link defined by the a [p.49] element, the user agent generally follows the link.
When a user activates a radio button, the user agent changes the value of the radio button.
When the user activates a text field, it allows input, etc.

In this example, we assign an access key to a link defined by the a [p.49] element. Typing
this access key takes the user to another document, in this case, a table of contents.

<p><a accesskey="C" 
      rel="contents"
      href="http://someplace.com/specification/contents.html">
    Table of Contents</a>
</p>

The invocation of access keys depends on the underlying system. For instance, on
machines running MS Windows, one generally has to press the "alt" key in addition to the
access key. On Apple systems, one generally has to press the "cmd" key in addition to the
access key.

- 57 -

10.4. The li elementXHTML 2.0



The rendering of access keys depends on the user agent. We recommend that authors
include the access key in label text or wherever the access key is to apply. User agents
should render the value of an access key in such a way as to emphasize its role and to
distinguish it from other characters (e.g., by underlining it).

navindex = Number [p.23] 
This attribute specifies the position of the current element in the navingation order for the
current document. This value must be a number between 0 and 32767. User agents must
ignore leading zeros. 

The navigation order defines the order in which elements will receive focus when navigated
by the user via the keyboard. The navigation order may include elements nested within
other elements.

Elements that may receive focus should be navigated by user agents according to the
following rules:

1.  Those elements that support the navindex [p.58] attribute and assign a positive value to
it are navigated first. Navigation proceeds from the element with the lowest navindex 
[p.58] value to the element with the highest value. Values need not be sequential nor
must they begin with any particular value. Elements that have identical navindex [p.58] 
values should be navigated in the order they appear in the character stream. 

2.  Those elements that do not support the navindex [p.58] attribute or support it and
assign it a value of "0" are navigated next. These elements are navigated in the order
they appear in the character stream. 

3.  Elements that are disabled [p.86] do not participate in the navigation order.

Tabbing keys. The actual key sequence that causes navigation or element activation
depends on the configuration of the user agent (e.g., the "tab" key is used for navigation
and the "enter" key is used to activate a selected element).

User agents may also define key sequences to navigate the navigation order in reverse.
When the end (or beginning) of the navigation order is reached, user agents may circle
back to the beginning (or end).

The li [p.57] element defines a list item within an ordered, unordered, or navigation list. When
the href [p.27] attribute is defined, the contents of the list item become a selectable link, just as
an a [p.49] element with an href [p.27] attribute would be.

10.5. The name element
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

- 58 -

XHTML 2.010.5. The name element



The name [p.58] element is used to define a name for an nl [p.56] navigation list. The contents
of the name element are displayed as the title of a list (or sublist). See nl [p.56] for more 
information.

- 59 -

10.5. The name elementXHTML 2.0



- 60 -

XHTML 2.010.5. The name element



11. XHTML Bi-directional Text Module
This section is normative.

The Bi-directional Text module defines an element that can be used to declare the bi-directional
rules for the element’s content.

Elements Attributes Minimal Content Model 

bdo [p.61] Core [p.25] , dir* ("ltr" | "rtl") (PCDATA | Inline)*

When this module is used, the bdo [p.61] element is added to the Inline content set of the Text
Module. Selecting this module also adds the attribute dir* ("ltr" | "rtl") to the I18N
attribute collection.

Implementation: DTD [p.143] 

11.1. The bdo element
The bidirectional algorithm and the dir [p.61] attribute generally suffice to manage embedded
direction changes. However, some situations may arise when the bidirectional algorithm results
in incorrect presentation. The bdo [p.61] element allows authors to turn off the bidirectional
algorithm for selected fragments of text.

Attributes

The Core [p.25] collection 
A collection of basic attributes used on all elements, including class [p.25] , id [p.25] , title 
[p.26] .

dir = "ltr|rtl" 
This mandatory attribute specifies the base direction of the element’s text content. This
direction overrides the inherent directionality of characters as defined in [UNICODE [p.148] 
]. Possible values: 

ltr: Left-to-right text. 
rtl: Right-to-left text.

Consider a document containing the same text as before:

english1 HEBREW2 english3 HEBREW4 english5 HEBREW6

but assume that this text has already been put in visual order. One reason for this may be that
the MIME standard ([RFC2045 [p.148] ], [RFC1556 [p.148] ]) favors visual order, i.e., that
right-to-left character sequences are inserted right-to-left in the byte stream. In an email, the
above might be formatted, including line breaks, as:

- 61 -

11. XHTML Bi-directional Text ModuleXHTML 2.0



english1 2WERBEH english3
4WERBEH english5 6WERBEH

This conflicts with the [UNICODE [p.148] ] bidirectional algorithm, because that algorithm would
invert 2WERBEH, 4WERBEH, and 6WERBEH a second time, displaying the Hebrew words
left-to-right instead of right-to-left.

The solution in this case is to override the bidirectional algorithm by putting the Email excerpt in
a pre [p.43] element (to conserve line breaks) and each line in a bdo [p.61] element, whose dir 
[p.61] attribute is set to ltr:

<pre>
<bdo dir="ltr">english1 2WERBEH english3</bdo>
<bdo dir="ltr">4WERBEH english5 6WERBEH</bdo>
</pre>

This tells the bidirectional algorithm "Leave me left-to-right!" and would produce the desired 
presentation:

english1 2WERBEH english3
4WERBEH english5 6WERBEH

The bdo [p.61] element should be used in scenarios where absolute control over sequence
order is required (e.g., multi-language part numbers). The dir [p.61] attribute is mandatory for
this element.

Authors may also use special Unicode characters to override the bidirectional algorithm --
LEFT-TO-RIGHT OVERRIDE (202D) or RIGHT-TO-LEFT OVERRIDE (hexadecimal 202E). The
POP DIRECTIONAL FORMATTING (hexadecimal 202C) character ends either bidirectional 
override.

Note. Recall that conflicts can arise if the dir [p.61] attribute is used on inline elements (including 
bdo [p.61] concurrently with the corresponding [UNICODE [p.148] ] formatting characters.

Bidirectionality and character encoding According to [RFC1555 [p.147] ] and [RFC1556 [p.148] ],
there are special conventions for the use of "charset" parameter values to indicate bidirectional
treatment in MIME mail, in particular to distinguish between visual, implicit, and explicit
directionality. The parameter value "ISO-8859-8" (for Hebrew) denotes visual encoding,
"ISO-8859-8-i" denotes implicit bidirectionality, and "ISO-8859-8-e" denotes explicit 
directionality.

Because XHTML uses the Unicode bidirectionality algorithm, conforming documents encoded
using ISO 8859-8 must be labeled as "ISO-8859-8-i". Explicit directional control is also possible
with HXTML, but cannot be expressed with ISO 8859-8, so "ISO-8859-8-e" should not be used.

The value "ISO-8859-8" implies that the document is formatted visually, misusing some markup
(such as table [p.111] with right alignment and no line wrapping) to ensure reasonable display
on older user agents that do not handle bidirectionality. Such documents do not conform to the
present specification. If necessary, they can be made to conform to the current specification
(and at the same time will be displayed correctly on older user agents) by adding bdo [p.61] 

- 62 -

XHTML 2.011.1. The bdo element



markup where necessary. Contrary to what is said in [RFC1555 [p.147] ] and [RFC1556 [p.148] 
], ISO-8859-6 (Arabic) is not visual ordering.

11.1.1. Character references for directionality and joining control

Since ambiguities sometimes arise as to the directionality of certain characters (e.g.,
punctuation), the [UNICODE [p.148] ] specification includes characters to enable their proper
resolution. Also, Unicode includes some characters to control joining behavior where this is
necessary (e.g., some situations with Arabic letters). XHTML includes character references for
these characters.

The following DTD excerpt presents some of the directional entities:

   <!ENTITY zwnj CDATA "&#8204;"--=zero width non-joiner-->
   <!ENTITY zwj  CDATA "&#8205;"--=zero width joiner-->
   <!ENTITY lrm  CDATA "&#8206;"--=left-to-right mark-->
   <!ENTITY rlm  CDATA "&#8207;"--=right-to-left mark-->

The zwnj entity is used to block joining behavior in contexts where joining will occur but
shouldn’t. The zwj entity does the opposite; it forces joining when it wouldn’t occur but should.
For example, the Arabic letter "HEH" is used to abbreviate "Hijri", the name of the Islamic
calendar system. Since the isolated form of "HEH" looks like the digit five as employed in Arabic
script (based on Indic digits), in order to prevent confusing "HEH" as a final digit five in a year,
the initial form of "HEH" is used. However, there is no following context (i.e., a joining letter) to
which the "HEH" can join. The zwj character provides that context.

Similarly, in Persian texts, there are cases where a letter that normally would join a subsequent
letter in a cursive connection should not. The character zwnj is used to block joining in such 
cases.

The other characters, lrm and rlm, are used to force directionality of directionally neutral
characters. For example, if a double quotation mark comes between an Arabic (right-to-left) and
a Latin (left-to-right) letter, the direction of the quotation mark is not clear (is it quoting the Arabic
text or the Latin text?). The lrm and rlm characters have a directional property but no width and
no word/line break property. Please consult [UNICODE [p.148] ] for more details.

Mirrored character glyphs. In general, the bidirectional algorithm does not mirror character
glyphs but leaves them unaffected. An exception are characters such as parentheses (see 
[UNICODE [p.148] ], table 4-7). In cases where mirroring is desired, for example for Egyptian
Hieroglyphs, Greek Bustrophedon, or special design effects, this should be controlled with 
styles.

11.1.2. The effect of style sheets on bidirectionality

In general, using style sheets to change an element’s visual rendering from block-level to inline
or vice-versa is straightforward. However, because the bidirectional algorithm relies on the
inline/block-level distinction, special care must be taken during the transformation.

- 63 -

11.1.1. Character references for directionality and joining controlXHTML 2.0



When an inline element that does not have a dir [p.61] attribute is transformed to the style of a
block-level element by a style sheet, it inherits the dir [p.61] attribute from its closest parent
block element to define the base direction of the block.

When a block element that does not have a dir [p.61] attribute is transformed to the style of an
inline element by a style sheet, the resulting presentation should be equivalent, in terms of
bidirectional formatting, to the formatting obtained by explicitly adding a dir [p.61] attribute
(assigned the inherited value) to the transformed element.

- 64 -

XHTML 2.011.1.2. The effect of style sheets on bidirectionality



12. XHTML Client-Side Image Map Module
This section is normative.

The Client-side Image Map Module provides elements for client side image maps. It requires
that the Image Module (or another module that supports the img element) be included. The
Client-side Image Map Module supports the following elements:

Elements Attributes Minimal Content Model 

a&
coords (CDATA [p.21] ), shape ("rect" | "circle" |
"poly" | "default")

n/a

input& usemap (IDREF [p.21] )
Note: Only when the Forms
module is included

map
I18N [p.26] , Events [p.28] , class (NMTOKEN [p.21] 
), id* (ID [p.21] ), title (CDATA [p.21] )

((Heading | Block) | area)+

object& usemap (IDREF [p.21] )
Note: Only when the object
module is included

When this module is used, the map [p.68] element is added to the Inline content set of the Text 
Module.

Implementation: DTD [p.143] 

12.1. The area element
The area [p.65] element defines a geometric region associated with an image map, and
optionally associates that region with events or external references.

Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

shape = "default|rect|circle|poly" 
This attribute specifies the shape of a region. Possible values: 

default: Specifies the entire region. 
rect: Define a rectangular region. 
circle: Define a circular region. 
poly: Define a polygonal region.

- 65 -

12. XHTML Client-Side Image Map ModuleXHTML 2.0



coords = Coordinates [p.21] 
This attribute specifies the position and shape on the screen. The number and order of
values depends on the shape being defined. Possible combinations: 

rect: left-x, top-y, right-x, bottom-y. 
circle: center-x, center-y, radius. Note. When the radius value is a percentage
value, user agents should calculate the final radius value based on the associated
object’s width and height. The radius should be the smaller value of the two. 
poly: x1, y1, x2, y2, ..., xN, yN. The first x and y coordinate pair and the last should
be the same to close the polygon. When these coordinate values are not the same,
user agents should infer an additional coordinate pair to close the polygon.

Coordinates are relative to the top, left corner of the object. All values are of type Length 
[p.21] . All values are separated by commas.

nohref = "nohref" 
When set, this boolean attribute specifies that a region has no associated link.

usemap = URI [p.23] 
This attribute associates an image map with an element. The image map is defined by a 
map [p.68] element. The value of usemap must match the value of the id [p.25] attribute of
the associated map [p.68] element.

navindex = Number [p.23] 
This attribute specifies the position of the current element in the navingation order for the
current document. This value must be a number between 0 and 32767. User agents must
ignore leading zeros. 

The navigation order defines the order in which elements will receive focus when navigated
by the user via the keyboard. The navigation order may include elements nested within
other elements.

Elements that may receive focus should be navigated by user agents according to the
following rules:

1.  Those elements that support the navindex [p.66] attribute and assign a positive value to
it are navigated first. Navigation proceeds from the element with the lowest navindex 
[p.66] value to the element with the highest value. Values need not be sequential nor
must they begin with any particular value. Elements that have identical navindex [p.66] 
values should be navigated in the order they appear in the character stream. 

2.  Those elements that do not support the navindex [p.66] attribute or support it and
assign it a value of "0" are navigated next. These elements are navigated in the order
they appear in the character stream. 

3.  Elements that are disabled [p.86] do not participate in the navigation order.

Tabbing keys. The actual key sequence that causes navigation or element activation
depends on the configuration of the user agent (e.g., the "tab" key is used for navigation
and the "enter" key is used to activate a selected element).

- 66 -

XHTML 2.012.1. The area element



User agents may also define key sequences to navigate the navigation order in reverse.
When the end (or beginning) of the navigation order is reached, user agents may circle
back to the beginning (or end).

accesskey = Character [p.21] 
This attribute assigns an access key to an element. An access key is a single character
from the document character set. Note. Authors should consider the input method of the
expected reader when specifying an accesskey. 

Pressing an access key assigned to an element gives focus to the element. The action that
occurs when an element receives focus depends on the element. For example, when a user
activates a link defined by the a [p.49] element, the user agent generally follows the link.
When a user activates a radio button, the user agent changes the value of the radio button.
When the user activates a text field, it allows input, etc.

In this example, we assign an access key to a link defined by the a [p.49] element. Typing
this access key takes the user to another document, in this case, a table of contents.

<p><a accesskey="C" 
      rel="contents"
      href="http://someplace.com/specification/contents.html">
    Table of Contents</a>
</p>

The invocation of access keys depends on the underlying system. For instance, on
machines running MS Windows, one generally has to press the "alt" key in addition to the
access key. On Apple systems, one generally has to press the "cmd" key in addition to the
access key.

The rendering of access keys depends on the user agent. We recommend that authors
include the access key in label text or wherever the access key is to apply. User agents
should render the value of an access key in such a way as to emphasize its role and to
distinguish it from other characters (e.g., by underlining it).

alt = CDATA [p.21] 
For user agents that cannot display images, forms, or applets, this attribute specifies
alternate text. The language of the alternate text is specified by the xml:lang [p.26] attribute. 

Several non-textual elements let authors specify alternate text to serve as content when the
element cannot be rendered normally. Specifying alternate text assists users without
graphic display terminals, users whose browsers don’t support forms, visually impaired
users, those who use speech synthesizers, those who have configured their graphical user
agents not to display images, etc.

While alternate text may be very helpful, it must be handled with care. Authors should
observe the following guidelines:

Do not specify irrelevant alternate text when including images intended to format a
page, for instance, alt="red ball" would be inappropriate for an image that adds a

- 67 -

12.1. The area elementXHTML 2.0



red ball for decorating a heading or paragraph. In such cases, the alternate text should
be the empty string (""). Authors are in any case advised to avoid using images to
format pages; style sheets should be used instead. 
Do not specify meaningless alternate text (e.g., "dummy text"). Not only will this
frustrate users, it will slow down user agents that must convert text to speech or braille 
output.

href = URI [p.23] 
This attribute specifies a hypertext link that is activated when the element is selected.

12.2. The map element
The map [p.68] element specifies a client-side image map (or other navigation mechanism) that
may be associated with another object. An image map is associated with an element via the
element’s usemap [p.66] attribute. The map [p.68] element may be used without an associated
image for general navigation mechanisms.

Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

The presence of the usemap [p.66] attribute for an object [p.85] implies that the object being
included is an image. Furthermore , when the object [p.85] element has an associated
client-side image map, user agents may implement user interaction with the object [p.85] solely
in terms of the client-side image map. This allows user agents (such as an audio browser or
robot) to interact with the object [p.85] without having to process it; the user agent may even
elect not to retrieve (or process) the object. When an object [p.85] has an associated image
map, authors should not expect that the object will be retrieved or processed by every user 
agent.

The map [p.68] element content model allows authors to combine the following:

1.  One or more area [p.65] elements. These elements have no content but specify the
geometric regions of the image map and the link associated with each region. Note that
user agents do not generally render area [p.65] elements. Therefore, authors must provide
alternate text for each area [p.65] with the alt [p.67] attribute. 

2.  Block-level content. This content should include a [p.49] elements that specify the geometric
regions of the image map and the link associated with each region. Note that the user agent
should render block-level content of a map [p.68] element. Authors should use this method
to create more accessible documents.

When a map [p.68] element contains mixed content (both area [p.65] elements and block-level
content), user agents must ignore the area [p.65] elements.

- 68 -

XHTML 2.012.2. The map element



Authors should specify an image maps’s geometry completely with area [p.65] elements, or
completely with a [p.49] elements, or completely with both if content is mixed. Authors may wish
to mix content so that older user agents will handle map geometries specified by area [p.65] 
elements and new user agents will take advantage of richer block content.

If two or more defined regions overlap, the region-defining element that appears earliest in the
document takes precedence (i.e., responds to user input).

User agents and authors should offer textual alternates to graphical image maps for cases when
graphics are not available or the user cannot access them. For example, user agents may use 
alt [p.67] text to create textual links in place of a graphical image map. Such links may be
activated in a variety of ways (keyboard, voice activation, etc.).

12.2.1. Client-side image map examples

In the following example, we create a client-side image map for the object [p.85] element. We do
not want to render the image map’s contents when the object [p.85] is rendered, so we "hide"
the map [p.68] element within the object [p.85] element’s content. Consequently, the map [p.68] 
element’s contents will only be rendered if the object [p.85] cannot be rendered.

 
<html xmlns="http://www.w3.org/2002/06/xhtml2">
   <head>
      <title>The cool site!</title>
   </head> 
   <body>
     <p>
       <object data="navbar1.gif" type="image/gif" usemap="#map1"> 
         <map name="map1">
         <p>
           Navigate the site: 
           <a href="guide.html" shape="rect" coords="0,0,118,28">
           Access Guide</a> 
           | 
           <a href="shortcut.html" shape="rect" coords="118,0,184,28">
           Go</a> 
           | 
           <a href="search.html" shape="circle" coords="184,200,60">
           Search</a>
           | <a href="top10.html" shape="poly" coords="276,0,276,28,100,200,50,50,276,0">
           Top Ten</a>
         </map> 
       </object>
   </body>
</html>

We may want to render the image map’s contents even when a user agent can render the object 
[p.85] . For instance, we may want to associate an image map with an object [p.85] element and
include a text navigation bar at the bottom of the page. To do so, we define the map [p.68] 
element outside the object [p.85] :

- 69 -

12.2.1. Client-side image map examplesXHTML 2.0



 <html>
   <head>
      <title>The cool site!</title>
   </head> <body>
     <P><object data="navbar1.gif" type="image/gif"
     usemap="#map1"> </object>

     ...the rest of the page here...

     <map name="map1">
       <P>Navigate the site: <A href="guide.html"
       shape="rect" coords="0,0,118,28">Access
       Guide</a> | <A href="shortcut.html" shape="rect"
       coords="118,0,184,28">Go</A> | <A href="search.html"
       shape="circle" coords="184,200,60">Search</A>
       | <A href="top10.html" shape="poly"
       coords="276,0,276,28,100,200,50,50,276,0">Top Ten</A>
     </map>
   </body>
</html>

In the following example, we create a similar image map, this time using the area [p.65] element.
Note the use of alt [p.67] text:

 <p><object data="navbar1.gif" type="image/gif"
usemap="#map1">
   <p>This is a navigation bar.  </object>

<map name="map1">
 <area href="guide.html"
          alt="Access Guide" shape="rect" coords="0,0,118,28">
 <area href="search.html"
          alt="Search" shape="rect" coords="184,0,276,28">
 <area href="shortcut.html"
          alt="Go" shape="circle" coords="184,200,60">
 <area href="top10.html"
          alt="Top Ten" shape="poly"
          coords="276,0,276,28,100,200,50,50,276,0">
</map>

The following example illustrates how image maps may be shared.

Nested object [p.85] elements are useful for providing fallbacks in case a user agent doesn’t
support certain formats. For example:

 <p> <object data="navbar.png" type="image/png">
  <object data="navbar.gif" type="image/gif">
    text describing the image...
  </object>
</object>

If the user agent doesn’t support the PNG format, it tries to render the GIF image. If it doesn’t
support GIF (e.g., it’s a speech-based user agent), it defaults to the text description provided as
the content of the inner object [p.85] element. When object [p.85] elements are nested this way,
authors may share image maps among them:

- 70 -

XHTML 2.012.2.1. Client-side image map examples



 <P> <object data="navbar.png" type="image/png"
usemap="#map1">
  <object data="navbar.gif" type="image/gif" usemap="#map1">
     <map name="map1"> <p>Navigate the site:
      <a href="guide.html" shape="rect" coords="0,0,118,28">Access
      Guide</a> | <a href="shortcut.html" shape="rect"
      coords="118,0,184,28">Go</a> | <a href="search.html"
      shape="circle" coords="184,200,60">Search</a>
      | <a href="top10.html" shape="poly"
      coords="276,0,276,28,100,200,50,50,276,0">Top Ten</a>
     </map>
  </object>
</object>

The following example illustrates how anchors may be specified to create inactive zones within
an image map. The first anchor specifies a small circular region with no associated link. The
second anchor specifies a larger circular region with the same center coordinates. Combined,
the two form a ring whose center is inactive and whose rim is active. The order of the anchor
definitions is important, since the smaller circle must override the larger circle.

 <map name="map1"> <p> <A shape="circle"
coords="100,200,50">I’m inactive.</A> <A
href="outer-ring-link.html" shape="circle" coords="100,200,250">I’m
active.</A> </map>

Similarly, the nohref [p.66] attribute for the area [p.65] element declares that geometric region
has no associated link.

- 71 -

12.2.1. Client-side image map examplesXHTML 2.0



- 72 -

XHTML 2.012.2.1. Client-side image map examples



13. XHTML Edit Module
This section is normative.

This module defines elements and attributes for use in editing-related markup:

Element Attributes
Minimal Content

Model 

del
Common [p.29] , cite (URI [p.23] ), datetime (Datetime 
[p.21] )

(PCDATA | Flow)*

ins
Common [p.29] , cite (URI [p.23] ), datetime (Datetime 
[p.21] )

(PCDATA | Flow)*

When this module is used, the del and ins elements are added to the Inline content set of the
Text Module.

Implementation: DTD [p.143] 

13.1. The del element
The del [p.73] element is used to indicate that a section of a document has been deleted with
respect to a different version of the document (e.g., in draft legislation where lawmakers need to
view the changes).

Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

cite = URI [p.23] 
The value of this attribute is a URI that designates a source document or message. This
attribute is intended to give further information about the element’s contents (e.g., the
source from which a quotation was borrowed, or the reason text was inserted or deleted).
User Agents should provide a means for the user to access the further information.

datetime = Datetime [p.21] 
The value of this attribute specifies the date and time when a change was made.

This element is unusual for XHTML in that they may serve as either block-level or inline
elements (but not both). It may contain one or more words within a paragraph or contain one or
more block-level elements such as paragraphs, lists and tables.

- 73 -

13. XHTML Edit ModuleXHTML 2.0



This example could be from a bill to change the legislation for how many deputies a County
Sheriff can employ from 3 to 5.

<p>
  A Sheriff can employ <del>3</del><ins>5</ins> deputies.
</p>

The del [p.73] element must not contain block-level content when it is behaving as an inline 
element.

ILLEGAL EXAMPLE:
The following is not legal HTML.

<p>
<ins><div>...block-level content...</div></ins>
</p>

User agents should render deleted text in ways that make the change obvious. For instance,
inserted text may appear in a special font, deleted text may not be shown at all or be shown as
struck-through or with special markings, etc.

Both of the following examples correspond to November 5, 2001, 8:15:30 am, US Eastern
Standard Time.

     2001-11-05T13:15:30Z
     2001-11-05T08:15:30-05:00

Used with ins [p.75] , this gives:

<ins datetime="2001-11-05T08:15:30-05:00"
        cite="http://www.example.org/mydoc/comments.html">
Furthermore, the latest figures from the marketing department
suggest that such practice is on the rise.
</ins>

The document "http://www.example.org/mydoc/comments.html" would contain comments about
why information was inserted into the document.

Authors may also make comments about deleted text by means of the title [p.26] attribute for the 
del [p.73] element. User agents may present this information to the user (e.g., as a popup note).
For example:

<del datetime="2001-11-05T08:15:30-05:00"
        title="Changed as a result of Steve G’s comments in meeting.">
Furthermore, the latest figures from the marketing department
suggest that such practice is on the rise.
</del>

- 74 -

XHTML 2.013.1. The del element



13.2. The ins element
The ins [p.75] element is used to indicate that a section of a document has been inserted with
respect to a different version of the document (e.g., in draft legislation where lawmakers need to
view the changes).

Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

cite = URI [p.23] 
The value of this attribute is a URI that designates a source document or message. This
attribute is intended to give further information about the element’s contents (e.g., the
source from which a quotation was borrowed, or the reason text was inserted or deleted).
User Agents should provide a means for the user to access the further information.

datetime = Datetime [p.21] 
The value of this attribute specifies the date and time when a change was made.

This element is unusual for XHTML in that they may serve as either block-level or inline
elements (but not both). It may contain one or more words within a paragraph or contain one or
more block-level elements such as paragraphs, lists and tables.

The ins [p.75] element must not contain block-level content when it is behaving as an inline 
element.

ILLEGAL EXAMPLE:
The following is not legal HTML.

<p>
<ins><div>...block-level content...</div></ins>
</p>

User agents should render inserted text in ways that make the change obvious. For instance,
inserted text may appear in a special font.

Both of the following examples correspond to November 5, 2001, 8:15:30 am, US Eastern
Standard Time.

     2001-11-05T13:15:30Z
     2001-11-05T08:15:30-05:00

Used with ins [p.75] , this gives:

- 75 -

13.2. The ins elementXHTML 2.0



<ins datetime="2001-11-05T08:15:30-05:00"
        cite="http://www.foo.org/mydoc/comments.html">
Furthermore, the latest figures from the marketing department
suggest that such practice is on the rise.
</ins>

The document "http://www.foo.org/mydoc/comments.html" would contain comments about why
information was inserted into the document.

Authors may also make comments about inserted text by means of the title [p.26] attribute for
the ins [p.75] element. User agents may present this information to the user (e.g., as a popup
note). For example:

<ins datetime="2001-11-05T08:15:30-05:00"
        title="Changed as a result of Steve B’s comments in meeting.">
Furthermore, the latest figures from the marketing department
suggest that such practice is on the rise.
</ins>

- 76 -

XHTML 2.013.2. The ins element



14. XHTML Linking Module
This section is normative.

The Link Module defines an element that can be used to define links to external resources.
These resources are often used to augment the user agent’s ability to process the associated
XHTML document. The element and attributes included in this module are:

Elements Attributes
Minimal
Content
Model 

link [p.77] 

Common [p.29] , charset [p.77] (Charset [p.21] ), hreflang [p.77] 
(LanguageCode [p.21] ), media [p.77] (MediaDesc [p.23] ), rel [p.78] 
(LinkTypes [p.22] ), rev [p.78] (LinkTypes [p.22] ), type [p.78] 
(ContentType [p.21] )

EMPTY

When this module is used, it adds the link [p.77] element to the content model of the head [p.32] 
element as defined in the Structure Module [p.31] .

Implementation: DTD [p.143] 

14.1. The link element
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

charset = Charset [p.21] 
This attribute specifies the character encoding of the resource designated by the link.
Please consult the section on character encodings for more details.

href = URI [p.23] 
This attribute specifies a hypertext link that is activated when the element is selected.

hreflang = LanguageCode [p.21] 
This attribute specifies the base language of the resource designated by href [p.27] and
may only be used when href [p.27] is specified.

media = MediaDesc [p.23] 
The value of this attribute specifies the type of media for which the element is intended.

- 77 -

14. XHTML Linking ModuleXHTML 2.0



rel = LinkTypes [p.22] 
This attribute describes the relationship from the current document to the URI referred to by
the element. The value of this attribute is a space-separated list of link types.

rev = LinkTypes [p.22] 
This attribute is used to describe a reverse link from the anchor specified by the href [p.27] 
attribute to the current document. The value of this attribute is a space-separated list of link 
types.

type = ContentType [p.21] 
This attribute gives an advisory hint as to the content type of the content available at the link
target address. It allows user agents to opt to use a fallback mechanism rather than fetch
the content if they are advised that they will get content in a content type they do not
support. 

Authors who use this attribute take responsibility to manage the risk that it may become
inconsistent with the content available at the link target address.

For the current list of registered content types, please consult [MIMETYPES [p.147] ].

This element defines a link. Unlike a [p.49] , it may only appear in the head [p.32] section of a
document, although it may appear any number of times. Although link [p.77] has no content, it
conveys relationship information that may be rendered by user agents in a variety of ways (e.g.,
a tool-bar with a drop-down menu of links).

This example illustrates how several link [p.77] definitions may appear in the head [p.32] section
of a document. The current document is "Chapter2.html". The rel [p.78] attribute specifies the
relationship of the linked document with the current document. The values "Index", "Next", and
"Prev" are explained in the section on link types [p.22] .

<head>
  <title>Chapter 2</title>
  <link rel="Index" href="../index.html"/>
  <link rel="Next"  href="Chapter3.html"/>
  <link rel="Prev"  href="Chapter1.html"/>
</head>

14.1.1. Forward and reverse links

While the rel [p.78] attribute specifies a relationship from this document to another resource, the 
rev [p.78] attribute specifies the reverse relationship.

Consider two documents A and B.

Document A:       <link href="docB" rel="foo"/>

Has exactly the same meaning as:

- 78 -

XHTML 2.014.1.1. Forward and reverse links



Document B:       <link href="docA" rev="foo"/>

Both the rel [p.78] and rev [p.78] attributes may be specified simultaneously.

14.1.2. Links and external style sheets

When the link [p.77] element links an external style sheet to a document, the type [p.78] attribute
specifies the style sheet language and the media [p.77] attribute specifies the intended
rendering medium or media. User agents may save time by retrieving from the network only
those style sheets that apply to the current device.

Media descriptors [p.23] are further discussed under Attribute Types.

14.1.3. Links and search engines

Authors may use the link [p.77] element to provide a variety of information to search engines, 
including:

Links to alternate versions of a document, written in another human language. 
Links to alternate versions of a document, designed for different media, for instance a
version especially suited for printing. 
Links to the starting page of a collection of documents.

The examples below illustrate how language information, media types, and link types may be
combined to improve document handling by search engines.

The following example shows how to use the hreflang [p.77] attribute to indicate to a search
engine where to find Dutch, Portuguese, and Arabic versions of a document. Note the use of the 
charset [p.77] attribute for the Arabic manual. Note also the use of the xml:lang [p.26] attribute to
indicate that the value of the title [p.26] attribute for the link [p.77] element designating the
French manual is in French.

<head>
<title>The manual in English</title>
<link title="The manual in Dutch"
      type="text/html"
      rel="alternate"
      hreflang="nl" 
      href="http://someplace.com/manual/dutch.html"/>
<link title="The manual in Portuguese"
      type="text/html"
      rel="alternate"
      hreflang="pt" 
      href="http://someplace.com/manual/portuguese.html"/>
<link title="The manual in Arabic"
      type="text/html"
      rel="alternate"
      charset="ISO-8859-6"
      hreflang="ar" 
      href="http://someplace.com/manual/arabic.html"/>
<link lang="fr" title="La documentation en Fran&ccedil;ais"

- 79 -

14.1.2. Links and external style sheetsXHTML 2.0



      type="text/html"
      rel="alternate"
      hreflang="fr"
      href="http://someplace.com/manual/french.html"/>
</head>

In the following example, we tell search engines where to find the printed version of a manual.

<head>
<title>Reference manual</title>
<link media="print" 
      title="The manual in postscript"
      type="application/postscript"
      rel="alternate"
      href="http://someplace.com/manual/postscript.ps"/>
</head>

In the following example, we tell search engines where to find the front page of a collection of 
documents.

<head>
<title>Reference manual -- Page 5</title>
<link rel="Start" title="The first page of the manual"
      type="text/html"
      href="http://someplace.com/manual/start.html"/>
</head>

- 80 -

XHTML 2.014.1.3. Links and search engines



15. XHTML Metainformation Module
This section is normative.

The Metainformation Module defines an element that describes information within the
declarative portion of a document (in XHTML within the head element). This module includes the
following element:

Elements Attributes
Minimal Content

Model 

meta
I18N [p.26] , content* (CDATA [p.21] ), http-equiv (NMTOKEN 
[p.21] ), name (NMTOKEN [p.21] )

EMPTY

When this module is selected, the meta [p.81] element is added to the content model of the 
head [p.32] element as defined in the Structure Module.

Implementation: DTD [p.144] 

15.1. The meta element
For the following attributes, the permitted values and their interpretation are profile [p.31] 
dependent:

Attributes

The I18N [p.26] collection 
A collection of attributes related to Internationalization, including the xml:lang [p.26] .

name = CDATA [p.21] 
This attribute identifies the property name. This recommendation does not specify legal
values for this attribute.

content = CDATA [p.21] 
This attribute specifies a property’s value. This recommendation does not list legal values
for this attribute.

http-equiv = CDATA [p.21] 
This attribute may be used in place of the name [p.81] attribute. HTTP servers use this
attribute to gather information for HTTP response message headers.

The meta [p.81] element can be used to identify properties of a document (e.g., author,
expiration date, a list of key words, etc.) and assign values to those properties. This specification
does not define a normative set of properties.

- 81 -

15. XHTML Metainformation ModuleXHTML 2.0



Each meta [p.81] element specifies a property/value pair. The name [p.81] attribute identifies the
property and the content [p.81] attribute specifies the property’s value.

For example, the following declaration sets a value for the Author property:

<meta name="Author" content="Dave Raggett"/>

The xml:lang [p.26] attribute can be used with meta [p.81] to specify the language for the value
of the content [p.81] attribute. This enables speech synthesizers to apply language dependent
pronunciation rules.

In this example, the author’s name is declared to be French:

<meta name="Author" lang="fr" content="Arnaud Le Hors"/>

Note. The meta [p.81] element is a generic mechanism for specifying meta data. However,
some XHTML elements and attributes already handle certain pieces of meta data and may be
used by authors instead of meta [p.81] to specify those pieces: the title [p.32] element, the 
address [p.37] element, the ins [p.75] and del [p.73] elements, the title [p.26] attribute, and the 
cite [p.73] attribute.

Note. When a property specified by a meta [p.81] element takes a value that is a URI [p.23] ,
some authors prefer to specify the meta data via the link [p.77] element. Thus, the following
meta data declaration:

<meta name="DC.identifier"
      content="http://www.ietf.org/rfc/rfc1866.txt"/>

might also be written:

<link rel="DC.identifier"
         type="text/plain"
         href="http://www.ietf.org/rfc/rfc1866.txt"/>

15.1.1. meta and search engines

A common use for meta [p.81] is to specify keywords that a search engine may use to improve
the quality of search results. When several meta [p.81] elements provide language-dependent
information about a document, search engines may filter on the xml:lang [p.26] attribute to
display search results using the language preferences of the user. For example,

<-- For speakers of US English -->
<meta name="keywords" lang="en-us" 
         content="vacation, Greece, sunshine"/>
<-- For speakers of British English -->
<meta name="keywords" lang="en" 
         content="holiday, Greece, sunshine"/>
<-- For speakers of French -->
<meta name="keywords" lang="fr" 
         content="vacances, Gr&egrave;ce, soleil"/>

- 82 -

XHTML 2.015.1.1. meta and search engines



The effectiveness of search engines can also be increased by using the link [p.77] element to
specify links to translations of the document in other languages, links to versions of the
document in other media (e.g., PDF), and, when the document is part of a collection, links to an
appropriate starting point for browsing the collection.

15.1.2. meta and PICS

The Platform for Internet Content Selection (PICS, specified in [PICS [p.147] ]) is an
infrastructure for associating labels (meta data) with Internet content. Originally designed to help
parents and teachers control what children can access on the Internet, it also facilitates other
uses for labels, including code signing, privacy, and intellectual property rights management.

This example illustrates how one can use a meta [p.81] declaration to include a PICS 1.1 label:

<head>
 <meta http-equiv="PICS-Label" content=’
 (PICS-1.1 "http://www.gcf.org/v2.5"
    labels on "1994.11.05T08:15-0500"
      until "1995.12.31T23:59-0000"
      for "http://w3.org/PICS/Overview.html"
    ratings (suds 0.5 density 0 color/hue 1))
 ’/>
  <title>... document title ...</title>
</head>

15.1.3. meta data profiles

The profile [p.31] attribute of the html [p.31] element specifies the location of a meta data profile.
The value of the profile [p.31] attribute is a URI. User agents may use this URI in two ways:

As a globally unique name. User agents may be able to recognize the name (without
actually retrieving the profile) and perform some activity based on known conventions for
that profile. For instance, search engines could provide an interface for searching through
catalogs of HTML documents, where these documents all use the same profile for
representing catalog entries. 
As a link. User agents may dereference the URI and perform some activity based on the
actual definitions within the profile (e.g., authorize the usage of the profile within the current
HTML document). This specification does not define formats for profiles.

This example refers to a hypothetical profile that defines useful properties for document
indexing. The properties defined by this profile -- including "author", "copyright", "keywords", and
"date" -- have their values set by subsequent meta [p.81] declarations.

 <head profile="http://www.acme.com/profiles/core">
  <title>How to complete Memorandum cover sheets</title>
  <meta name="author" content="John Doe"/>
  <meta name="copyright" content="&copy; 1997 Acme Corp."/>
  <meta name="keywords" content="corporate,guidelines,cataloging"/>
  <meta name="date" content="1994-11-06T08:49:37+00:00"/>
 </head>

- 83 -

15.1.2. meta and PICSXHTML 2.0



- 84 -

XHTML 2.015.1.3. meta data profiles



16. XHTML Object Module
This section is normative.

The Object Module provides elements for general-purpose object inclusion; this includes images
and other media, as well as executable content. Specifically, the Object Module supports:

Elements Attributes
Minimal
Content
Model 

object

Common, archive (URIs [p.23] ), classid (URI [p.23] ), codebase 
(URI [p.23] ), content-length (MultiLength [p.23] ) codetype 
(ContentType [p.21] ), data (URI [p.23] ), disabled ("disabled"),
declare ("declare"), standby (Text [p.23] ), navindex (Number [p.23] 
), type (ContentType [p.21] )

(PCDATA |
Flow | 
param)*

param
id (ID [p.21] ), name* (CDATA [p.21] ), type (ContentType [p.21] ),
value (CDATA [p.21] ), valuetype ("data"* | "ref" | "object")

EMPTY

When this module is used, it adds the object element to the Inline content set of the Text 
Module.

Implementation: DTD [p.144] 

16.1. The object element
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

archive = URI List [p.23] 
This attribute specifies a comma-separated list of URIs for archives containing classes and
other resources that will be "preloaded". The classes are loaded using an instance of an
AppletClassLoader with the given codebase [p.86] . Relative URIs for archives are
interpreted with respect to the applet’s codebase. Preloading resources can significantly
improve the performance of applets.

classid = URI [p.23] 
This attribute may be used to specify the location of an object’s implementation via a URI. It
may be used together with, or as an alternative to the data [p.86] attribute, depending on
the type of object involved.

- 85 -

16. XHTML Object ModuleXHTML 2.0



codebase = URI [p.23] 
This attribute specifies the base URI for the applet. If this attribute is not specified, then it
defaults the same base URI as for the current document. Values for this attribute may only
refer to subdirectories of the directory containing the current document.

codetype = ContentType [p.21] 
This attribute specifies the content type of data expected when downloading the object
specified by classid [p.85] . This attribute is optional but recommended when classid [p.85] 
is specified since it allows the user agent to avoid loading information for unsupported
content types. When absent, it defaults to the value of the type [p.87] attribute.

data = URI [p.23] 
This attribute may be used to specify the location of the object’s data, for instance image
data for objects defining images, or more generally, a serialized form of an object which can
be used to recreate it. If given as a relative URI, it should be interpreted relative to the 
codebase [p.86] attribute.

declare = "declare" 
When present, this boolean attribute makes the current object [p.85] element a declaration
only - not one that is to be executed until after the document has completed loading.

disabled = "disabled" 
When present, this boolean attribute makes the current object [p.85] not availale as an input
element when used in conjunction with an input form.

standby = Text [p.23] 
This attribute specifies a message that a user agent may render while loading the object’s
implementation and data.

navindex = Number [p.23] 
This attribute specifies the position of the current element in the navingation order for the
current document. This value must be a number between 0 and 32767. User agents must
ignore leading zeros. 

The navigation order defines the order in which elements will receive focus when navigated
by the user via the keyboard. The navigation order may include elements nested within
other elements.

Elements that may receive focus should be navigated by user agents according to the
following rules:

1.  Those elements that support the navindex [p.86] attribute and assign a positive value to
it are navigated first. Navigation proceeds from the element with the lowest navindex 
[p.86] value to the element with the highest value. Values need not be sequential nor
must they begin with any particular value. Elements that have identical navindex [p.86] 
values should be navigated in the order they appear in the character stream. 

2.  Those elements that do not support the navindex [p.86] attribute or support it and
assign it a value of "0" are navigated next. These elements are navigated in the order

- 86 -

XHTML 2.016.1. The object element



they appear in the character stream. 
3.  Elements that are disabled [p.86] do not participate in the navigation order.

Tabbing keys. The actual key sequence that causes navigation or element activation
depends on the configuration of the user agent (e.g., the "tab" key is used for navigation
and the "enter" key is used to activate a selected element).

User agents may also define key sequences to navigate the navigation order in reverse.
When the end (or beginning) of the navigation order is reached, user agents may circle
back to the beginning (or end).

type = ContentType [p.21] 
This attribute gives an advisory hint as to the content type of the content available at the link
target address. It allows user agents to opt to use a fallback mechanism rather than fetch
the content if they are advised that they will get content in a content type they do not
support. 

Authors who use this attribute take responsibility to manage the risk that it may become
inconsistent with the content available at the link target address.

For the current list of registered content types, please consult [MIMETYPES [p.147] ].

Most user agents have built-in mechanisms for processing common data types such as text, GIF
images, colors, fonts, and a handful of graphic elements. To process data types they don’t
support natively, user agents generally run external applications. The object [p.85] element
allows authors to control whether data should be processed externally or by some program,
specified by the author, that processes the data within the user agent.

In the most general case, an author may need to specify three types of information:

The implementation of the included object. For instance, if the included object is a clock
applet, the author must indicate the location of the applet’s executable code. 
The data to be processed. For instance, if the included object is a program that processes
font data, the author must indicate the location of that data. 
Additional values required by the object at run-time. For example, some applets may require
initial values for parameters.

The object [p.85] element allows authors to specify all three types of data, but authors may not
have to specify all three at once. For example, some objects may not require data (e.g., a
self-contained applet that performs a small animation). Others may not require run-time
initialization. Still others may not require additional implementation information, i.e., the user
agent itself may already know how to process that type of data (e.g., GIF images).

Authors specify an object’s implementation and the location of the data to be processed via the 
object [p.85] element. To specify run-time values, however, authors use the param [p.89] 
element, which is discussed in the section on object initialization.

- 87 -

16.1. The object elementXHTML 2.0



The object [p.85] element may also appear in the content of the head [p.32] element. Since user
agents generally do not process elements in the head [p.32] , authors should ensure that any 
object [p.85] elements in the head [p.32] do not specify content that may be processed. Please
consult the section on sharing frame data for an example of including the object [p.85] element
in the head [p.32] element.

Please consult the section on form controls for information about object [p.85] elements in forms.

This document does not specify the behavior of object [p.85] elements that use both the classid 
[p.85] attribute to identify an implementation and the data [p.86] attribute to specify data for that
implementation. In order to ensure portability, authors should use the param [p.89] element to
tell implementations where to retrieve additional data.

16.1.1. Rules for processing objects

A user agent must interpret an object [p.85] element according to the following precedence 
rules:

1.  The user agent must first try to process the object. It should not process the element’s
contents, but it must examine them in case the element contains any direct children that are 
param [p.89] elements (see object initialization) or map [p.68] elements (see client-side
image maps [p.65] ). 

2.  If the user agent is not able to process the object for whatever reason (configured not to,
lack of resources, wrong architecture, etc.), it must try to process its contents.

Authors should not include content in object [p.85] elements that appear in the head [p.32] 
element.

In the following example, we insert an analog clock applet in a document via the object [p.85] 
element. The applet, written in the Python language, requires no additional data or run-time
values. The classid [p.85] attribute specifies the location of the applet:

    
<object classid="http://www.miamachina.it/analogclock.py">
</object>

Note that the clock will be processed as soon as the user agent interprets this object [p.85] 
declaration. It is possible to delay processing of an object by first declaring the object (described 
below).

Authors should complete this declaration by including alternate text as the contents of object 
[p.85] in case the user agent cannot process the clock.

    
<p><object classid="http://www.miamachina.it/analogclock.py">
An animated clock.
</object>

- 88 -

XHTML 2.016.1.1. Rules for processing objects



One significant consequence of the object [p.85] element’s design is that it offers a mechanism
for specifying alternate object processing; each embedded object [p.85] declaration may specify
alternate content types. If a user agent cannot process the outermost object [p.85] , it tries to
process the contents, which may be another object [p.85] element, etc.

In the following example, we embed several object [p.85] declarations to illustrate how alternate
processing work. A user agent will attempt to process the first object [p.85] element it can, in the
following order: (1) an Earth applet written in the Python language, (2) an MPEG animation of
the Earth, (3) a GIF image of the Earth, (4) alternate text.

<p>                 <!-- First, try the Python applet -->
<object title="The Earth as seen from space" 
        classid="http://www.observer.mars/TheEarth.py">
                    <!-- Else, try the MPEG video -->
  <object data="TheEarth.mpeg" type="application/mpeg">
                    <!-- Else, try the GIF image -->
    <object data="TheEarth.gif" type="image/gif">
                    <!-- Else render the text -->
     The <strong>Earth</strong> as seen from space.
    </object>
  </object>
</object>

The outermost declaration specifies an applet that requires no data or initial values. The second
declaration specifies an MPEG animation and, since it does not define the location of an
implementation to handle MPEG, relies on the user agent to handle the animation. We also set
the type [p.87] attribute so that a user agent that knows it cannot process an MPEG will not
bother to retrieve "TheEarth.mpeg" from the network. The third declaration specifies the location
of a GIF file and furnishes alternate text in case all other mechanisms fail.

Inline vs. external data. Data to be processed may be supplied in two ways: inline and from an
external resource. While the former method will generally lead to faster processing, it is not
convenient when processing large quantities of data.

Here’s an example that illustrates how inline data may be fed to an object [p.85] :

<p>
<object id="clock1"
        classid="clsid:663C8FEF-1EF9-11CF-A3DB-080036F12502"
        data="data:application/x-oleobject;base64, ...base64 data...">
    A clock.
</object>

16.2. The param element.
Attributes

name = CDATA [p.21] 
This attribute defines the name of a run-time parameter, assumed to be known by the
inserted object. Whether the property name is case-sensitive depends on the specific object 
implementation.

- 89 -

16.2. The param element.XHTML 2.0



value = CDATA [p.21] 
This attribute specifies the value of a run-time parameter specified by name [p.89] .
Property values have no meaning to HTML; their meaning is determined by the object in 
question.

valuetype = data|ref|object 
This attribute specifies the type of the value attribute. 

Possible values:

data: This is default value for the attribute. It means that the value specified by value 
[p.90] will be evaluated and passed to the object’s implementation as a string. 
ref: The value specified by value [p.90] is a URI that designates a resource where
run-time values are stored. This allows support tools to identify URIs given as
parameters. The URI must be passed to the object as is, i.e., unresolved. 
object: The value specified by value [p.90] is an identifier that refers to an object 
[p.85] declaration in the same document. The identifier must be the value of the id 
[p.25] attribute set for the declared object [p.85] element.

type = ContentType [p.21] 
This attribute specifies the content type of the resource designated by the value [p.90] 
attribute only in the case where valuetype [p.90] is set to "ref". This attribute thus specifies
for the user agent, the type of values that will be found at the URI designated by value 
[p.90] .

param [p.89] elements specify a set of values that may be required by an object at run-time. Any
number of param [p.89] elements may appear in the content of an object [p.85] element, in any
order, but must be placed at the start of the content of the enclosing object [p.85] element.

The syntax of names and values is assumed to be understood by the object’s implementation.
This document does not specify how user agents should retrieve name/value pairs nor how they
should interpret parameter names that appear twice.

We return to the clock example to illustrate the use of param [p.89] : suppose that the applet is
able to handle two run-time parameters that define its initial height and width. We can set the
initial dimensions to 40x40 pixels with two param [p.89] .

    
<p><object classid="http://www.miamachina.it/analogclock.py">
<param name="height" value="40" valuetype="data" />
<param name="width" value="40" valuetype="data" />
This user agent cannot render Python applications.
</object>

In the following example, run-time data for the object’s "Init_values" parameter is specified as an
external resource (a GIF file). The value of the valuetype [p.90] attribute is thus set to "ref" and
the value [p.90] is a URI designating the resource.

- 90 -

XHTML 2.016.2. The param element.



<p><object classid="http://www.gifstuff.com/gifappli"
       standby="Loading Elvis...">
<param name="Init_values"
       value="./images/elvis.gif"
       valuetype="ref" />
</object>
</p>

Note that we have also set the standby [p.86] attribute so that the user agent may display a
message while the rendering mechanism loads.

When an object [p.85] element is rendered, user agents must search the content for only those 
param [p.89] elements that are direct children and "feed" them to the object [p.85] .

Thus, in the following example, if "obj1" is rendered, "param1" applies to "obj1" (and not "obj2").
If "obj1" is not rendered and "obj2" is, "param1" is ignored, and "param2" applies to "obj2". If
neither object [p.85] is rendered, neither param [p.89] applies.

<p>
<object id="obj1">
   <param name="param1">
   <object id="obj2">
      <param name="param2">
   </object>
</object>

16.2.1. Global naming schemes for objects

The location of an object’s implementation is given by a URI. The first segment of an absolute
URI specifies the naming scheme used to transfer the data designated by the URI. For XHTML
documents, this scheme is frequently "http". Some applets might employ other naming schemes.
For instance, when specifying a Java applet, authors may use URIs that begin with "java" and
for ActiveX applets, authors may use "clsid".

In the following example, we insert a Java applet into an XHTML document.

<p><object classid="java:program.start">
</object>

By setting the codetype [p.86] attribute, a user agent can decide whether to retrieve the Java
application based on its ability to do so.

<object codetype="application/java-archive"
        classid="java:program.start">
</object>

Some rendering schemes require additional information to identify their implementation and
must be told where to find that information. Authors may give path information to the object’s
implementation via the codebase [p.86] attribute.

- 91 -

16.2.1. Global naming schemes for objectsXHTML 2.0



<object codetype="application/java-archive"
        classid="java:program.start">
        codebase="http://foooo.bar.com/java/myimplementation/"
</object>

The following example specifies (with the classid [p.85] attribute) an ActiveX object via a URI
that begins with the naming scheme "clsid". The data [p.86] attribute locates the data to render
(another clock).

<p><object classid="clsid:663C8FEF-1EF9-11CF-A3DB-080036F12502"
        data="http://www.acme.com/ole/clock.stm">
This application is not supported.
</object>

16.2.2. Object declarations and instantiations

The preceding examples have only illustrated isolated object definitions. When a document is to
contain more than one instance of the same object, it is possible to separate the declaration of
the object from its instantiations. Doing so has several advantages:

Data may be retrieved from the network by the user agent one time (during the declaration)
and reused for each instantiation. 
It is possible to instantiate an object from a location other than the object’s declaration, for
example, from a link. 
It is possible to specify objects as run-time data for other objects.

To declare an object so that it is not executed when read by the user agent, set the boolean 
declare [p.86] attribute in the object [p.85] element. At the same time, authors must identify the
declaration by setting the id [p.25] attribute in the object [p.85] element to a unique value. Later
instantiations of the object will refer to this identifier.

A declared object [p.85] must appear in a document before the first instance of that object [p.85] 
.

An object defined with the declare [p.86] attribute is instantiated every time an element that
refers to that object requires it to be rendered (e.g., a link that refers to it is activated, an object
that refers to it is activated, etc.).

In the following example, we declare an object [p.85] and cause it to be instantiated by referring
to it from a link. Thus, the object can be activated by clicking on some highlighted text, for 
example.

<p><object declare
        id="earth.declaration" 
        data="TheEarth.mpeg" 
        type="application/mpeg">
   The <strong>Earth</strong> as seen from space.
</object>
...later in the document...
<p>A neat <A href="#earth.declaration"> animation of The Earth!</A>

- 92 -

XHTML 2.016.2.2. Object declarations and instantiations



The following example illustrates how to specify run-time values that are other objects. In this
example, we send text (a poem, in fact) to a hypothetical mechanism for viewing poems. The
object recognizes a run-time parameter named "font" (say, for rendering the poem text in a
certain font). The value for this parameter is itself an object that inserts (but does not render) the
font object. The relationship between the font object and the poem viewer object is achieved by
(1) assigning the id [p.25] "tribune" to the font object declaration and (2) referring to it from the 
param [p.89] element of the poem viewer object (with valuetype [p.90] and value [p.90] ).

<p><object declare
     id="tribune"
     type="application/x-webfont"
     data="tribune.gif">
</object>
...view the poem in KublaKhan.txt here...
<p><object classid="http://foo.bar.com/poem_viewer" 
           data="KublaKhan.txt">
<param name="font" valuetype="object" value="#tribune">
<p>You’re missing a really cool poem viewer ...
</object>

User agents that don’t support the declare [p.86] attribute must render the contents of the object 
[p.85] declaration.

- 93 -

16.2.2. Object declarations and instantiationsXHTML 2.0



- 94 -

XHTML 2.016.2.2. Object declarations and instantiations



17. XHTML Presentation Module
This section is normative.

This module defines elements, attributes, and a minimal content model for simple
presentation-related markup:

Element Attributes Minimal Content Model 

hr Common [p.29] EMPTY

sub Common [p.29] (PCDATA | Inline)*

sup Common [p.29] (PCDATA | Inline)*

When this module is used, the hr [p.95] element is added to the Block content set of the Text
Module. In addition, the sub [p.95] and sup [p.96] elements are added to the Inline content set of
the Text Module.

Implementation: DTD [p.144] 

17.1. The hr element
The hr [p.95] element places a horizontal line in the document.

Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

17.2. The sub element
The sub [p.95] element indicates that its contents should be presented as a subscript of the text 
baseline.

Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

Many scripts (e.g., French) require superscripts or subscripts for proper rendering. The sub 
[p.95] and sup [p.96] elements should be used to markup text in these cases.

- 95 -

17. XHTML Presentation ModuleXHTML 2.0



      H<sub>2</sub>O
      E = mc<sup>2</sup>
      <span lang="fr">M<sup>lle</sup> Dupont</span>

17.3. The sup element
The sup [p.96] element indicates that its contents should be presented as a super-script of the
text baseline.

Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

Many scripts (e.g., French) require superscripts or subscripts for proper rendering. The sub 
[p.95] and sup [p.96] elements should be used to markup text in these cases.

      H<sub>2</sub>O
      E = mc<sup>2</sup>
      <span lang="fr">M<sup>lle</sup> Dupont</span>

- 96 -

XHTML 2.017.3. The sup element



18. XHTML Scripting Module
This section is normative.

The Scripting Module defines elements that are used to contain information pertaining to
executable scripts or the lack of support for executable scripts. Elements and attributes included
in this module are:

Elements Attributes
Minimal

Content Model 

noscript Common [p.29] 
(Heading | List | 
Block)+

script
charset (Charset [p.21] ), defer ("defer"), src (URI [p.23] ), type* 
(ContentType [p.21] ), xml:space="preserve"

PCDATA

When this module is used, the script [p.98] and noscript [p.97] elements are added to the Block
and Inline content sets of the Text Module. In addition, the script [p.98] element is added to the
content model of the head [p.32] element defined in the Structure Module.

Implementation: DTD [p.144] 

18.1. The noscript element
Attributes

The Core [p.25] collection 
A collection of basic attributes used on all elements, including class [p.25] , id [p.25] , title 
[p.26] .

The I18N [p.26] collection 
A collection of attributes related to Internationalization, including the xml:lang [p.26] .

The noscript [p.97] element allows authors to provide alternate content when a script is not
executed. The content of a noscript [p.97] element should only be rendered by a script-aware
user agent in the following cases:

The user agent is configured not to evaluate scripts. 
The user agent doesn’t support a scripting language invoked by a script [p.98] element
earlier in the document. 
The user agent can’t access an external script.

User agents that do not support client-side scripts must render this element’s contents.

- 97 -

18. XHTML Scripting ModuleXHTML 2.0



In the following example, a user agent that executes the script [p.98] will include some
dynamically created data in the document. If the user agent doesn’t support scripts, the user
may still retrieve the data through a link.

<script type="text/tcl">
 ...some Tcl script to insert data...
</script>
<noscript>
 <p>Access the <a href="http://someplace.com/data">data.</a></p>
</noscript>

18.2. The script element
Attributes

src = URI [p.23] 
This attribute specifies the location of an external source for the contents of the element.

type = ContentType [p.21] 
This attribute gives an advisory hint as to the content type of the content available at the link
target address. It allows user agents to opt to use a fallback mechanism rather than fetch
the content if they are advised that they will get content in a content type they do not
support. 

Authors who use this attribute take responsibility to manage the risk that it may become
inconsistent with the content available at the link target address.

For the current list of registered content types, please consult [MIMETYPES [p.147] ].

Attribute defer not found

The attribute defer was not able to be loaded by the document generator. This implies that
either 1) the attribute is not yet defined, or 2) the name is incorrect.

charset = Charset [p.21] 
This attribute specifies the character encoding of the resource designated by the link.
Please consult the section on character encodings for more details.

The script [p.98] element places a script within a document. This element may appear any
number of times in the head [p.32] or body [p.33] of an XHTML document.

The script may be defined within the contents of the script [p.98] element or in an external file. If
the src [p.98] attribute is not set, user agents must interpret the contents of the element as the
script. If the src [p.98] has a URI value, user agents must ignore the element’s contents and
retrieve the script via the URI. Note that the charset [p.49] attribute refers to the character 
encoding [p.21] of the script designated by the src [p.98] attribute; it does not concern the
content of the script [p.98] element.

- 98 -

XHTML 2.018.2. The script element



Scripts are evaluated by script engines that must be known to a user agent.

The syntax of script data depends on the scripting language.

18.2.1. Specifying the scripting language

As XHTML does not rely on a specific scripting language, document authors must explicitly tell
user agents the language of each script. This may be done either through a default declaration
or a local declaration.

18.2.2. Declaration of a scripting language

The type [p.98] attribute must be specified for each script [p.98] element instance in a document.

In this example, we include one script [p.98] in the header, whose script is located in an external
file and is in the scripting language "text/vbscript". We also include one script [p.98] in the body,
which contains its own script written in "text/javascript".

<html xmlns="http://www.w3.org/2002/06/xhtml2">
<head>
<title>A document with script</title>
<script type="text/vbscript" src="http://someplace.com/progs/vbcalc"/>
</head>
<body>
<script type="text/javascript">
...some JavaScript...
</script>
</body>
</html>

18.2.3. References to XHTML elements from a script

Each scripting language has its own conventions for referring to XHTML objects from within a
script. This specification does not define a standard mechanism for referring to XHTML objects.

18.2.4. Dynamic modification of documents

Scripts that are executed when a document is loaded may be able to modify the document’s
contents dynamically. The ability to do so depends on the scripting language itself (e.g., the
"document.write" statement in the XHTML object model supported by some vendors).

The dynamic modification of a document may be modeled as follows:

1.  All script [p.98] elements are evaluated in order as the document is loaded. 
2.  All script constructs within a given script [p.98] element that generate CDATA are evaluated.

Their combined generated text is inserted in the document directly after the script [p.98] 
element. 

3.  The generated CDATA is re-evaluated.

- 99 -

18.2.1. Specifying the scripting languageXHTML 2.0



XHTML documents are constrained to conform to the XHTML DTD both before and after
processing any script [p.98] elements.

The following example illustrates how scripts may modify a document dynamically. The following 
script:

 ...
 <title>Test Document</title>
 ...
 <script type="text/javascript">
     document.write("<p><b>Hello World!<\/b><\/p>")
 </script>
 ...

Has the same effect as this markup:

 ...
 <title>Test Document</title>
 ...
 <p><b>Hello World!</b></p>
 ...

- 100 -

XHTML 2.018.2.4. Dynamic modification of documents



19. XHTML Server-Side Image Map Module
This section is normative.

The Server-side Image Map Module provides support for image-selection and transmission of
selection coordinates. It requires that the Object Module (or another module that supports the 
object [p.85] element) be included. The Server-side Image Map Module supports the following 
attributes:

Elements Attributes Minimal Content Model Notes 

img& ismap ("ismap") n/a  

input& ismap ("ismap") n/a When the Forms Module is selected.

Implementation: DTD [p.144] 

ismap = "ismap" 
This attribute indicates that the associated element is to be treated as a "server-side image
map". When selected, the coordinates within the element that the user selected are sent to
the server where the document resides. Screen coordinates are expressed as screen pixel
values relative to the image. 

In the following example, the active region defines a server-side link. Thus, a click anywhere
on the image will cause the click’s coordinates to be sent to the server.

<p><a href="http://www.example.com/cgi-bin/competition">
        <object src="game.gif" ismap="ismap" alt="target" /></a></p>

The location clicked is passed to the server as follows. The user agent derives a new URI
from the URI specified by the href [p.27] attribute of the a [p.49] element, by appending ‘?’
followed by the x and y coordinates, separated by a comma. The link is then followed using
the new URI. For instance, in the given example, if the user clicks at the location x=10, y=27
then the derived URI is "http://www.example.com/cgi-bin/competition?10,27".

User agents that do not offer the user a means to select specific coordinates (e.g.,
non-graphical user agents that rely on keyboard input, speech-based user agents, etc.)
should send the coordinates "0,0" to the server when the link is activated.

- 101 -

19. XHTML Server-Side Image Map ModuleXHTML 2.0



- 102 -

XHTML 2.019. XHTML Server-Side Image Map Module



20. XHTML Style Sheet Module
This section is normative.

The Style Sheet Module defines an element to be used when declaring internal style sheets.
The element and attributes defined by this module are:

Elements Attributes
Minimal

Content Model 

style
I18N [p.26] , id (ID [p.21] ), media (MediaDesc [p.23] ), title (Text 
[p.23] ), type* (ContentType [p.21] ), xml:space="preserve"

PCDATA

When this module is used, it adds the style [p.103] element to the content model of the head 
[p.32] element of the Structure Module.

Implementation: DTD [p.144] 

20.1. The style element
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

media = MediaDesc [p.23] 
The value of this attribute specifies the type of media for which the element is intended.

rel = LinkTypes [p.22] 
This attribute describes the relationship from the current document to the URI referred to by
the element. The value of this attribute is a space-separated list of link types.

type = ContentType [p.21] 
This attribute gives an advisory hint as to the content type of the content available at the link
target address. It allows user agents to opt to use a fallback mechanism rather than fetch
the content if they are advised that they will get content in a content type they do not
support. 

Authors who use this attribute take responsibility to manage the risk that it may become
inconsistent with the content available at the link target address.

For the current list of registered content types, please consult [MIMETYPES [p.147] ].

- 103 -

20. XHTML Style Sheet ModuleXHTML 2.0



The style [p.103] element allows an author to put style sheet rules in the head of the document.
XHTML permits any number of style [p.103] elements in the head [p.32] section of a document.

User agents that don’t support style sheets, or don’t support the specific style sheet language
used by a style [p.103] element, must hide the contents of the style [p.103] element. It is an error
to render the content as part of the document’s text.

The syntax of style data depends on the style sheet language.

Rules for style rule precedences and inheritance depend on the style sheet language.

The following CSS style [p.103] declaration puts a border around every h1 [p.41] element in the
document and centers it on the page.

<head>
 <style type="text/css">
   h1 {border-width: thin; border-style: solid; text-align: center}
 </style>
</head>

To specify that this style information should only apply to h1 [p.41] elements of a specific class,
we modify it as follows:

<head>
 <style type="text/css">
   h1.myclass {border-width: thin; border-style: solid; text-align: center}
 </style>
</head>
<body>
 <h1 class="myclass"> This h1 is affected by our style </h1>
 <h1> This one is not affected by our style </h1>
</body>

Finally, to limit the scope of the style information to a single instance of h1 [p.41] , set the id 
[p.25] attribute:

<head>
 <style type="text/css">
   #myid {border-width: thin; border-style: solid; text-align: center}
 </style>
</head>
<body>
 <h1 class="myclass"> This h1 is not affected </h1>
 <h1 id="myid"> This h1 is affected by style </h1>
 <h1> This h1 is not affected </h1>
</body>

Although style information may be set for almost every XHTML element, two elements, div [p.40] 
and span [p.46] , are particularly useful in that they do not impose any presentation semantics
(besides block-level vs. inline). When combined with style sheets, these elements allow users to
extend XHTML indefinitely, particularly when used with the class [p.25] and id [p.25] attributes.

- 104 -

XHTML 2.020.1. The style element



In the following example, we use the span [p.46] element to set the font style of the first few
words of a paragraph to small caps.

<head>
 <style type="text/css">
  span.sc-ex { font-variant: small-caps }
 </style>
</head>
<body>
  <p><span class="sc-ex">The first</span> few words of
  this paragraph are in small-caps.</p>
</body>

In the following example, we use div [p.40] and the class [p.25] attribute to set the text
justification for a series of paragraphs that make up the abstract section of a scientific article.
This style information could be reused for other abstract sections by setting the class [p.25] 
attribute elsewhere in the document.

<head>
 <style type="text/css">
   div.Abstract { text-align: justify }
 </style>
</head>
<body>
 <div class="Abstract">
   <p>The Chieftain product range is our market winner for
     the coming year. This report sets out how to position
     Chieftain against competing products.</p>

   <p>Chieftain replaces the Commander range, which will
     remain on the price list until further notice.</p>
 </div>
</body>

20.1.1. External style sheets

Authors may separate style sheets from XHTML documents. This offers several benefits:

Authors and Web site managers may share style sheets across a number of documents
(and sites). 
Authors may change the style sheet without requiring modifications to the document. 
User agents may load style sheets selectively (based on media descriptions).

20.1.2. Preferred and alternate style sheets

XHTML allows authors to associate any number of external style sheets with a document. The
style sheet language defines how multiple external style sheets interact (for example, the CSS
"cascade" rules).

- 105 -

20.1.1. External style sheetsXHTML 2.0



>Authors may specify a number of mutually exclusive style sheets called alternate style sheets.
Users may select their favorite among these depending on their preferences. For instance, an
author may specify one style sheet designed for small screens and another for users with weak
vision (e.g., large fonts). User agents should allow users to select from alternate style sheets.

The author may specify that one of the alternates is a preferred style sheet. User agents should
apply the author’s preferred style sheet unless the user has selected a different alternate.

Authors may group several alternate style sheets (including the author’s preferred style sheets)
under a single style name. When a user selects a named style, the user agent must apply all
style sheets with that name. User agents must not apply alternate style sheets with a different
style name. The section on specifying external style sheets explains how to name a group of
style sheets.

Authors may also specify persistent style sheets that user agents must apply in addition to any
alternate style sheet.

User agents must respect media descriptors [p.23] when applying any style sheet.

User agents should also allow users to disable the author’s style sheets entirely, in which case
the user agent must not apply any persistent or alternate style sheets.

20.1.3. Specifying external style sheets

Authors specify external style sheets with the following attributes of the link [p.77] element:

Set the value of href [p.77] to the location of the style sheet file. The value of href [p.77] is a 
URI [p.23] . 
Set the value of the type [p.103] attribute to indicate the language of the linked (style sheet)
resource. This allows the user agent to avoid downloading a style sheet for an unsupported
style sheet language. 
Specify that the style sheet is persistent, preferred, or alternate: 

To make a style sheet persistent, set the rel [p.103] attribute to "stylesheet" and don’t
set the title [p.26] attribute. 
To make a style sheet preferred, set the rel [p.103] attribute to "stylesheet" and name
the style sheet with the title [p.26] attribute. 
To specify an alternate style sheet, set the rel [p.103] attribute to "alternate stylesheet"
and name the style sheet with the title [p.26] attribute.

User agents should provide a means for users to view and pick from the list of alternate styles.
The value of the title [p.26] attribute is recommended as the name of each choice.

In this example, we first specify a persistent style sheet located in the file mystyle.css:

<link href="mystyle.css" rel="stylesheet" type="text/css"/>

- 106 -

XHTML 2.020.1.3. Specifying external style sheets



Setting the title [p.26] attribute makes this the author’s preferred style sheet:

 <link href="mystyle.css" title="compact" rel="stylesheet" type="text/css"/>

Adding the keyword "alternate" to the rel [p.103] attribute makes it an alternate style sheet:

<link href="mystyle.css" title="Medium" rel="alternate stylesheet" type="text/css"/>

For more information on external style sheets, please consult the section on links and external
style sheets.

If two or more link [p.77] elements specify a preferred style sheet, the first one takes 
precedence.

- 107 -

20.1.3. Specifying external style sheetsXHTML 2.0



- 108 -

XHTML 2.020.1.3. Specifying external style sheets



21. XHTML Tables Module
This section is normative.

As its name suggests, the Tables Module provides table-related elements that are updated to
enable access by non-visual user agents. Specifically, the Tables Module supports the following
elements, attributes, and content model:

Elements Attributes Minimal Content Model 

table Common [p.29] , summary [p.111] (Text [p.23] )

caption [p.110] ?, ( col [p.110] 
* | colgroup [p.110] * ), (( 
thead [p.129] ?, tfoot [p.129] 
?, tbody [p.123] + ) | ( tr 
[p.130] + ))

caption Common [p.29] (PCDATA | Inline)*

col Common [p.29] , span [p.110] (Number [p.23] ) EMPTY

colgroup Common [p.29] , span [p.110] (Number [p.23] ) col [p.110] *

thead Common [p.29] tr [p.130] +

tfoot Common [p.29] tr [p.130] +

tbody Common [p.29] tr [p.130] +

tr Common [p.29] ( td [p.124] | th [p.124] )+

td

Common [p.29] , abbr [p.124] (Text [p.23] ), axis 
[p.124] (CDATA [p.21] ), colspan [p.124] (Number 
[p.23] ), headers [p.124] (IDREFS [p.21] ), rowspan 
[p.124] (Number [p.23] ), scope [p.124] ("row",
"col", "rowgroup", "colgroup")

(PCDATA | Flow)*

th

Common [p.29] , abbr [p.124] (Text [p.23] ), axis 
[p.124] (CDATA [p.21] ), colspan [p.124] (Number 
[p.23] ), headers [p.124] (IDREFS [p.21] ), rowspan 
[p.124] (Number [p.23] ), scope [p.124] ("row",
"col", "rowgroup", "colgroup")

(PCDATA | Flow)*

When this module is used, it adds the table [p.111] element to the Block content set of the Text 
Module.

Implementation: DTD [p.145] 

- 109 -

21. XHTML Tables ModuleXHTML 2.0



21.1. The caption element
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

When present, the caption [p.110] element’s text should describe the nature of the table. The 
caption [p.110] element is only permitted immediately after the table [p.111] start tag. A table 
[p.111] element may only contain one caption [p.110] element.

Caption Clipping

The following text was included in HTML 4 - should we make this a "MUST" in XHTML 2 for
visual user agents?

Visual user agents should avoid clipping any part of the table including the caption, unless a
means is provided to access all parts, e.g., by horizontal or vertical scrolling. We recommend
that the caption text be wrapped to the same width as the table.

21.2. The col and colgroup elements
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

span = Number [p.23] 
This attribute, which must be an integer > 0, and the default value for this attribute is 1. This
specifies the number of columns in a colgroup [p.110] , or specifies the number of columns
"spanned" by the col [p.110] element. 

Values mean the following:

In the absence of a span [p.110] attribute, each colgroup [p.110] defines a column
group containing one column. 
If the span [p.110] attribute is used with the colgroup [p.110] element and the value is
set to N > 0, that defines a column group containing N columns. 
If the span [p.110] attribute is used with the col [p.110] element and the value is set to
to N > 1, the current col [p.110] element shares its attributes with the next N-1 columns.

User agents must ignore this attribute if the colgroup [p.110] element contains one or more 
col [p.110] elements.

- 110 -

XHTML 2.021.1. The caption element



The colgroup [p.110] element allows authors to create structural divisions within a table. Authors
may highlight this structure through style sheets.

A table [p.111] may either contain a single implicit column group (no colgroup [p.110] element
delimits the columns) or any number of explicit column groups (each delimited by an instance of
the colgroup [p.110] element).

The col [p.110] element allows authors to share attributes among several columns without
implying any structural grouping. The "span" of the col [p.110] element is the number of columns
that will share the element’s attributes.

The colgroup [p.110] element creates an explicit column group. The number of columns in the
column group may be specified in two, mutually exclusive ways:

1.  The element’s span [p.110] attribute (default value 1) specifies the number of columns in
the group. 

2.  Each col [p.110] element in the colgroup [p.110] represents one or more columns in the 
group.

The advantage of using the colgroup [p.110] attribute is that authors may group information
about multiple columns.

When it is necessary to single out a column (e.g., for style information, to specify width
information, etc.) within a group, authors must identify that column with a col [p.110] element.

The col [p.110] element allows authors to group together attribute specifications for table
columns. The col [p.110] does not group columns together structurally -- that is the role of the 
colgroup [p.110] element. col [p.110] elements are empty and serve only as a support for
attributes. They may appear inside or outside an explicit column group (i.e., colgroup [p.110] 
element).

21.3. The table element
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

summary = Text [p.23] 
This attribute provides a summary of the table’s purpose and structure for user agents
rendering to non-visual media such as speech and Braille.

The table [p.111] element contains all other elements that specify caption, rows, content, and
formatting for a table.

- 111 -

21.3. The table elementXHTML 2.0



21.3.1. Table directionality

The directionality of a table is either the inherited directionality (the default is left-to-right) or that
specified by the dir [p.61] attribute for the table [p.111] element.

For a left-to-right table, column zero is on the left side and row zero is at the top. For a
right-to-left table, column zero is on the right side and row zero is at the top.

When a user agent allots extra cells to a row, extra row cells are added to the right of the table
for left-to-right tables and to the left side for right-to-left tables.

Note that table [p.111] is the only element on which dir [p.61] reverses the visual order of the
columns; a single table row ( tr [p.130] ) or a group of columns ( colgroup [p.110] ) cannot be
independently reversed.

When set for the table [p.111] element, the dir [p.61] attribute also affects the direction of text
within table cells (since the dir [p.61] attribute is inherited by block-level elements).

To specify a right-to-left table, set the dir [p.61] attribute as follows:

<table dir="rtl">
...the rest of the table...
</table>

The direction of text in individual cells can be changed by setting the dir [p.61] attribute in an
element that defines the cell. Please consult the section on bidirectional text [p.61] for more
information on text direction issues.

21.3.2. Table rendering by non-visual user agents

This section provides more detailed discussion on cell header data and how non-visual agents
may utilize that information.

21.3.2.1. Associating header information with data cells

Non-visual user agents such as speech synthesizers and Braille-based devices may use the
following td [p.124] and th [p.124] element attributes to render table cells more intuitively:

For a given data cell, the headers [p.124] attribute lists which cells provide pertinent header
information. For this purpose, each header cell must be named using the id [p.25] attribute.
Note that it’s not always possible to make a clean division of cells into headers or data. You
should use the td [p.124] element for such cells together with the id [p.25] or scope [p.124] 
attributes as appropriate. 
For a given header cell, the scope [p.124] attribute tells the user agent the data cells for
which this header provides information. Authors may choose to use this attribute instead of 
headers [p.124] according to which is more convenient; the two attributes fulfill the same
function. The headers [p.124] attribute is generally needed when headers are placed in
irregular positions with respect to the data they apply to. 

- 112 -

XHTML 2.021.3.1. Table directionality



The abbr [p.124] attribute specifies an abbreviated header for header cells so that user
agents may render header information more rapidly.

In the following example, we assign header information to cells by setting the headers [p.124] 
attribute. Each cell in the same column refers to the same header cell (via the id [p.25] attribute).

<table
       summary="This table charts the number of cups
                of coffee consumed by each senator, the type 
                of coffee (decaf or regular), and whether 
                taken with sugar.">
<caption>Cups of coffee consumed by each senator</caption>
<tbody>
   <tr>
      <th id="t1">Name</th>
      <th id="t2">Cups</th>
      <th id="t3" abbr="Type">Type of Coffee</th>
      <th id="t4">Sugar?</th>
   </tr>
   <tr>
      <td headers="t1">T. Sexton</td>
      <td headers="t2">10</td>
      <td headers="t3">Espresso</td>
      <td headers="t4">No</td>
   </tr>
   <tr>
      <td headers="t1">J. Dinnen</td>
      <td headers="t2">5</td>
      <td headers="t3">Decaf</td>
      <td headers="t4">Yes</td>
   </tr>
</tbody>
</table>

A speech synthesizer might render this table as follows:

Caption: Cups of coffee consumed by each senator
Summary: This table charts the number of cups
         of coffee consumed by each senator, the type 
         of coffee (decaf or regular), and whether 
         taken with sugar.
Name: T. Sexton,   Cups: 10,   Type: Espresso,   Sugar: No
Name: J. Dinnen,   Cups: 5,    Type: Decaf,      Sugar: Yes

Note how the header "Type of Coffee" is abbreviated to "Type" using the abbr [p.124] attribute.

Here is the same example substituting the scope [p.124] attribute for the headers [p.124] 
attribute. Note the value "col" for the scope [p.124] attribute, meaning "all cells in the current 
column":

<table
       summary="This table charts the number of cups
                of coffee consumed by each senator, the type 
                of coffee (decaf or regular), and whether 
                taken with sugar.">

- 113 -

21.3.2. Table rendering by non-visual user agentsXHTML 2.0



<caption>Cups of coffee consumed by each senator</caption>
<tbody>
   <tr>
      <th scope="col">Name</th>
      <th scope="col">Cups</th>
      <th scope="col" abbr="Type">Type of Coffee</th>
      <th scope="col">Sugar?</th>
   </tr>
   <tr>
      <td>T. Sexton</td>
      <td>10</td>
      <td>Espresso</td>
      <td>No</td>
   </tr>
   <tr>
      <td>J. Dinnen</td>
      <td>5</td>
      <td>Decaf</td>
      <td>Yes</td>
</tbody>
</table>

Here’s a somewhat more complex example illustrating other values for the scope [p.124] 
attribute:

<table 
  summary="History courses offered in the community of
           Bath arranged by course name, tutor, summary, 
           code, and fee">
<tbody>
  <tr>
    <th colspan="5" scope="colgroup">Community Courses -- Bath Autumn 1997</th>
  </tr>
  <tr>
    <th scope="col" abbr="Name">Course Name</th>
    <th scope="col" abbr="Tutor">Course Tutor</th>
    <th scope="col">Summary</th>
    <th scope="col">Code</th>
    <th scope="col">Fee</th>
  </tr>
  <tr>
    <td scope="row">After the Civil War</td>
    <td>Dr. John Wroughton</td>
    <td>
       The course will examine the turbulent years in England
       after 1646. <em>6 weekly meetings starting Monday 13th
       October.</em>
    </td>
    <td>H27</td>
    <td>&pound;32</td>
  </tr>
  <tr>
    <td scope="row">An Introduction to Anglo-Saxon England</td>
    <td>Mark Cottle</td>
    <td>
       One day course introducing the early medieval

- 114 -

XHTML 2.021.3.2. Table rendering by non-visual user agents



       period reconstruction the Anglo-Saxons and
       their society. <em>Saturday 18th October.</em>
    </td>
    <td>H28</td>
    <td>&pound;18</td>
  </tr>
  <tr>
    <td scope="row">The Glory that was Greece</td>
    <td>Valerie Lorenz</td>
    <td>
     Birthplace of democracy, philosophy, heartland of theater, home of
     argument. The Romans may have done it but the Greeks did it
     first. <em>Saturday day school 25th October 1997</em>
    </td>
    <td>H30</td>
    <td>&pound;18</td>
  </tr>
</tbody>
</table>

A graphical user agent might render this as:

Note the use of the scope [p.124] attribute with the "row" value. Although the first cell in each
row contains data, not header information, the scope [p.124] attribute makes the data cell
behave like a row header cell. This allows speech synthesizers to provide the relevant course
name upon request or to state it immediately before each cell’s content.

21.3.2.2. Categorizing cells

Users browsing a table with a speech-based user agent may wish to hear an explanation of a
cell’s contents in addition to the contents themselves. One way the user might provide an
explanation is by speaking associated header information before speaking the data cell’s

- 115 -

21.3.2. Table rendering by non-visual user agentsXHTML 2.0



contents (see the section on associating header information with data cells [p.112] ).

Users may also want information about more than one cell, in which case header information
provided at the cell level (by headers [p.124] , scope [p.124] , and abbr [p.124] ) may not provide
adequate context. Consider the following table, which classifies expenses for meals, hotels, and
transport in two locations (San Jose and Seattle) over several days:

Users might want to extract information from the table in the form of queries:

"What did I spend for all my meals?" 
"What did I spend for meals on 25 August?" 
"What did I spend for all expenses in San Jose?"

Each query involves a computation by the user agent that may involve zero or more cells. In
order to determine, for example, the costs of meals on 25 August, the user agent must know
which table cells refer to "Meals" (all of them) and which refer to "Dates" (specifically, 25
August), and find the intersection of the two sets.

To accommodate this type of query, the table model allows authors to place cell headers and
data into categories. For example, for the travel expense table, an author could group the
header cells "San Jose" and "Seattle" into the category "Location", the headers "Meals",
"Hotels", and "Transport" in the category "Expenses", and the four days into the category "Date".
The previous three questions would then have the following meanings:

"What did I spend for all my meals?" means "What are all the data cells in the
"Expenses=Meals" category? 
"What did I spend for meals on 25 August?" means "What are all the data cells in the
"Expenses=Meals" and "Date=Aug-25-1997" categories? 
"What did I spend for all expenses in San Jose?" means "What are all the data cells in the
"Expenses=Meals, Hotels, Transport" and "Location=San Jose" categories?

- 116 -

XHTML 2.021.3.2. Table rendering by non-visual user agents



Authors categorize a header or data cell by setting the axis [p.124] attribute for the cell. For
instance, in the travel expense table, the cell containing the information "San Jose" could be
placed in the "Location" category as follows:

  <th id="a6" axis="location">San Jose</th>

Any cell containing information related to "San Jose" should refer to this header cell via either
the headers [p.124] or the scope [p.124] attribute. Thus, meal expenses for 25-Aug-1997 should
be marked up to refer to id [p.25] attribute (whose value here is "a6") of the "San Jose" header 
cell:

  
  <td headers="a6">37.74</td>

Each headers [p.124] attribute provides a list of id [p.25] references. Authors may thus
categorize a given cell in any number of ways (or, along any number of "headers", hence the 
name).

Below we mark up the travel expense table with category information:

<table
          summary="This table summarizes travel expenses
                   incurred during August trips to
                   San Jose and Seattle">
<caption>Travel Expense Report</caption>
<tbody>
   <tr>
      <th></th>
      <th id="a2" axis="expenses">Meals</th>
      <th id="a3" axis="expenses">Hotels</th>
      <th id="a4" axis="expenses">Transport</th>
      <td>subtotals</td>
   </tr>
   <tr>
      <th id="a6" axis="location">San Jose</th>
      <th></th>
      <th></th>
      <th></th>
      <td></td>
   </tr>
   <tr>
      <td id="a7" axis="date">25-Aug-97</td>
      <td headers="a6 a7 a2">37.74</td>
      <td headers="a6 a7 a3">112.00</td>
      <td headers="a6 a7 a4">45.00</td>
      <td></td>
   </tr>
   <tr>
      <td id="a8" axis="date">26-Aug-97</td>
      <td headers="a6 a8 a2">27.28</td>
      <td headers="a6 a8 a3">112.00</td>
      <td headers="a6 a8 a4">45.00</td>
      <td></td>
   </tr>

- 117 -

21.3.2. Table rendering by non-visual user agentsXHTML 2.0



   <tr>
      <td>subtotals</td>
      <td>65.02</td>
      <td>224.00</td>
      <td>90.00</td>
      <td>379.02</td>
   </tr>
   <tr>
      <th id="a10" axis="location">Seattle</th>
      <th></th>
      <th></th>
      <th></th>
      <td></td>
   </tr>
   <tr>
      <td id="a11" axis="date">27-Aug-97</td>
      <td headers="a10 a11 a2">96.25</td>
      <td headers="a10 a11 a3">109.00</td>
      <td headers="a10 a11 a4">36.00</td>
      <td></td>
   </tr>
   <tr>
      <td id="a12" axis="date">28-Aug-97</td>
      <td headers="a10 a12 a2">35.00</td>
      <td headers="a10 a12 a3">109.00</td>
      <td headers="a10 a12 a4">36.00</td>
      <td></td>
   </tr>
   <tr>
      <td>subtotals</td>
      <td>131.25</td>
      <td>218.00</td>
      <td>72.00</td>
      <td>421.25</td>
   </tr>
   <tr>
      <th>Totals</th>
      <td>196.27</td>
      <td>442.00</td>
      <td>162.00</td>
      <td>800.27</td>
   </tr>
</tbody>
</table>

Note that marking up the table this way also allows user agents to avoid confusing the user with
unwanted information. For instance, if a speech synthesizer were to speak all of the figures in
the "Meals" column of this table in response to the query "What were all my meal expenses?", a
user would not be able to distinguish a day’s expenses from subtotals or totals. By carefully
categorizing cell data, authors allow user agents to make important semantic distinctions when 
rendering.

- 118 -

XHTML 2.021.3.2. Table rendering by non-visual user agents



Of course, there is no limit to how authors may categorize information in a table. In the travel
expense table, for example, we could add the additional categories "subtotals" and "totals".

This specification does not require user agents to handle information provided by the axis 
[p.124] attribute, nor does it make any recommendations about how user agents may present 
axis [p.124] information to users or how users may query the user agent about this information.

However, user agents, particularly speech synthesizers, may want to factor out information
common to several cells that are the result of a query. For instance, if the user asks "What did I
spend for meals in San Jose?", the user agent would first determine the cells in question
(25-Aug-1997: 37.74, 26-Aug-1997:27.28), then render this information. A user agent speaking
this information might read it:

   Location: San Jose. Date: 25-Aug-1997. Expenses, Meals: 37.74
   Location: San Jose. Date: 26-Aug-1997. Expenses, Meals: 27.28

or, more compactly:

   San Jose, 25-Aug-1997, Meals: 37.74
   San Jose, 26-Aug-1997, Meals: 27.28

An even more economical rendering would factor the common information and reorder it:

   San Jose, Meals, 25-Aug-1997: 37.74
                    26-Aug-1997: 27.28

User agents that support this type of rendering should allow user agents a means to customize
rendering (e.g., through style sheets).

21.3.3. Sample table

This sample illustrates grouped rows and columns.

<table
       summary="Calendar for 2002.">
<caption><b>Calendar for 2002</b></caption>
<colgroup span="7">
<colgroup span="7">
<colgroup span="7">
<thead>
   <tr>
      <th colspan="7">January</th>
      <th colspan="7">February</th>
      <th colspan="7">March</th>
   </tr>
</thead>
<tbody>
   <tr>
      <td>S</td>
      <td>M</td>
      <td>T</td>
      <td>W</td>
      <td>T</td>

- 119 -

21.3.3. Sample tableXHTML 2.0



      <td>F</td>
      <td>S</td>
      <td>S</td>
      <td>M</td>
      <td>T</td>
      <td>W</td>
      <td>T</td>
      <td>F</td>
      <td>S</td>
      <td>S</td>
      <td>M</td>
      <td>T</td>
      <td>W</td>
      <td>T</td>
      <td>F</td>
      <td>S</td>
   </tr>
</tbody>
<tbody>
   <tr>
      <td></td>
      <td></td>
      <td>1</td>
      <td>2</td>
      <td>3</td>
      <td>4</td>
      <td>5</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td>1</td>
      <td>2</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td>1</td>
      <td>2</td>

   </tr>
   <tr>
      <td>6</td>
      <td>7</td>
      <td>8</td>
      <td>9</td>
      <td>10</td>
      <td>11</td>
      <td>12</td>
      <td>3</td>
      <td>4</td>
      <td>5</td>
      <td>6</td>
      <td>7</td>
      <td>8</td>

- 120 -

XHTML 2.021.3.3. Sample table



      <td>9</td>
      <td>3</td>
      <td>4</td>
      <td>5</td>
      <td>6</td>
      <td>7</td>
      <td>8</td>
      <td>9</td>

   </tr>
   <tr>
      <td>13</td>
      <td>14</td>
      <td>15</td>
      <td>16</td>
      <td>17</td>
      <td>18</td>
      <td>19</td>
      <td>10</td>
      <td>11</td>
      <td>12</td>
      <td>13</td>
      <td>14</td>
      <td>15</td>
      <td>16</td>
      <td>10</td>
      <td>11</td>
      <td>12</td>
      <td>13</td>
      <td>14</td>
      <td>15</td>
      <td>16</td>
   </tr>
   <tr>
      <td>20</td>
      <td>21</td>
      <td>22</td>
      <td>23</td>
      <td>24</td>
      <td>25</td>
      <td>26</td>
      <td>17</td>
      <td>18</td>
      <td>19</td>
      <td>20</td>
      <td>21</td>
      <td>22</td>
      <td>23</td>
      <td>17</td>
      <td>18</td>
      <td>19</td>
      <td>20</td>
      <td>21</td>
      <td>22</td>
      <td>23</td>
   </tr>
   <tr>

- 121 -

21.3.3. Sample tableXHTML 2.0



      <td>27</td>
      <td>28</td>
      <td>29</td>
      <td>30</td>
      <td>31</td>
      <td></td>
      <td></td>
      <td>24</td>
      <td>25</td>
      <td>26</td>
      <td>27</td>
      <td>28</td>
      <td></td>
      <td></td>
      <td>24</td>
      <td>25</td>
      <td>26</td>
      <td>27</td>
      <td>28</td>
      <td>29</td>
      <td>30</td>
   </tr>
   <tr>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td>31</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
   </tr>
</tbody>
</table>

would be rendered something like this:

                      Calendar for 2002
===================================================================
      January         |       February      |        March  
 S  M  T  W  T  F  S  | S  M  T  W  T  F  S | S  M  T  W  T  F  S 
-------------------------------------------------------------------
       1  2  3  4  5  |                1  2 |                1  2
 6  7  8  9  10 11 12 | 3  4  5  6  7  8  9 | 3  4  5  6  7  8  9

- 122 -

XHTML 2.021.3.3. Sample table



 13 14 15 16 17 18 19 | 10 11 12 13 14 15 16| 10 11 12 13 14 15 16
 20 21 22 23 24 25 26 | 17 18 19 20 21 22 23| 17 18 19 20 21 22 23
 27 28 29 30 31       | 24 25 26 27 28      | 24 25 26 27 28 29 30
                      |                     |                   31
====================================================================

A graphical user agent might render this as:

This example illustrates how colgroup [p.110] can be used to group columns and set the default
column alignment. Similarly, tbody [p.123] is used to group rows.

21.4. The tbody element
Attributes

- 123 -

21.4. The tbody elementXHTML 2.0



The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

The tbody [p.123] element contains rows of table data. In tables that also contain thead [p.129] 
or tfoot [p.129] elements, all of these sections must contain the same number of columns.

21.5. The td and th elements
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

abbr = Text [p.23] 
This attribute should be used to provide an abbreviated form of the cell’s content, and may
be rendered by user agents when appropriate in place of the cell’s content. Abbreviated
names should be short since user agents may render them repeatedly. For instance,
speech synthesizers may render the abbreviated headers relating to a particular cell before
rendering that cell’s content.

axis = CDATA [p.21] 
This attribute may be used to place a cell into conceptual categories that can be considered
to form axes in an n-dimensional space. User agents may give users access to these
categories (e.g., the user may query the user agent for all cells that belong to certain
categories, the user agent may present a table in the form of a table of contents, etc.).
Please consult the section on categorizing cells [p.115] for more information. The value of
this attribute is a comma-separated list of category names.

colspan = Number [p.23] 
This attribute specifies the number of columns spanned by the current cell. The default
value of this attribute is one ("1"). The value zero ("0") means that the cell spans all columns
from the current column to the last column of the column group ( colgroup [p.110] ) in which
the cell is defined.

headers = IDREFS [p.21] 
This attribute specifies the list of header cells that provide header information for the current
data cell. The value of this attribute is a space-separated list of cell names; those cells must
be named by setting their id [p.25] attribute. Authors generally use the headers [p.124] 
attribute to help non-visual user agents render header information about data cells (e.g.,
header information is spoken prior to the cell data), but the attribute may also be used in
conjunction with style sheets. See also the scope [p.124] attribute.

rowspan = Number [p.23] 
This attribute specifies the number of rows spanned by the current cell. The default value of
this attribute is one ("1"). The value zero ("0") means that the cell spans all rows from the

- 124 -

XHTML 2.021.5. The td and th elements



current row to the last row of the table section ( thead [p.129] , tbody [p.123] , or tfoot 
[p.129] ) in which the cell is defined.

scope = row|col|rowgroup|colgroup 
This attribute specifies the set of data cells for which the current header cell provides
header information. This attribute may be used in place of the headers [p.124] attribute,
particularly for simple tables. When specified, this attribute must have one of the following
values: 

row: The current cell provides header information for the rest of the row that contains it
(see also the section on table directionality [p.112] ). 
col: The current cell provides header information for the rest of the column that
contains it. 
rowgroup: The header cell provides header information for the rest of the row group
that contains it. 
colgroup: The header cell provides header information for the rest of the column group 
[p.110] that contains it.

Table cells may contain two types of information: header information and data. This distinction
enables user agents to render header and data cells distinctly, even in the absence of style
sheets. For example, visual user agents may present header cell text with a bold font. Speech
synthesizers may render header information with a distinct voice inflection.

The th [p.124] element defines a cell that contains header information. User agents have two
pieces of header information available: the contents of the th [p.124] element and the value of
the abbr [p.124] attribute. User agents must render either the contents of the cell or the value of
the abbr [p.124] attribute. For visual media, the latter may be appropriate when there is
insufficient space to render the full contents of the cell. For non-visual media abbr [p.124] may
be used as an abbreviation for table headers when these are rendered along with the contents
of the cells to which they apply.

The headers [p.124] and scope [p.125] attributes also allow authors to help non-visual user
agents process header information. Please consult the section on labeling cells for non-visual
user agents [p.112] for information and examples.

The td [p.124] element defines a cell that contains data.

Cells may be empty (i.e., contain no data).

For example, the following table contains four columns of data, each headed by a column 
description.

<table summary="This table charts the number of cups
                   of coffee consumed by each senator, the type 
                   of coffee (decaf or regular), and whether 
                   taken with sugar.">
<caption>Cups of coffee consumed by each senator</caption>
<tbody>
   <tr>
      <th>Name</th>

- 125 -

21.5. The td and th elementsXHTML 2.0



      <th>Cups</th>
      <th>Type of Coffee</th>
      <th>Sugar?</th>
   </tr>
   <tr>
      <td>T. Sexton</td>
      <td>10</td>
      <td>Espresso</td>
      <td>No</td>
   </tr>
   <tr>
      <td>J. Dinnen</td>
      <td>5</td>
      <td>Decaf</td>
      <td>Yes</td>
</tbody>
</table>

A user agent rendering to a tty device might display this as follows:

Name         Cups       Type of Coffee   Sugar?
T. Sexton    10         Espresso         No
J. Dinnen    5          Decaf            Yes

21.5.1. Cells that span several rows or columns

Cells may span several rows or columns. The number of rows or columns spanned by a cell is
set by the rowspan [p.124] and colspan [p.124] attributes for the th [p.124] and td [p.124] 
elements.

In this table definition, we specify that the cell in row four, column two should span a total of
three columns, including the current column.

<table>
<caption>Cups of coffee consumed by each senator</caption>
<tbody>
   <tr>
      <th>Name</td>
      <th>Cups</td>
      <th>Type of Coffee</td>
      <th>Sugar?</td>
   </tr>
   <tr>
      <td>T. Sexton</td>
      <td>10</td>
      <td>Espresso</td>
      <td>No</td>
   </tr>
   <tr>
      <td>J. Dinnen</td>
      <td>5</td>
      <td>Decaf</td>
      <td>Yes</td>
   </tr>
   <tr>

- 126 -

XHTML 2.021.5.1. Cells that span several rows or columns



      <td>A. Soria</td>
      <td colspan="3"><em>Not available</em></td>
   </tr>
</tbody>
</table>

This table might be rendered on a tty device by a visual user agent as follows:

Cups of coffee consumed by each senator
 --------------------------------------
 |   Name  |Cups|Type of Coffee|Sugar?|
 --------------------------------------
 |T. Sexton|10  |Espresso      |No    |
 --------------------------------------
 |J. Dinnen|5   |Decaf         |Yes   |
 --------------------------------------
 |A. Soria |Not available             |
 --------------------------------------

The next example illustrates (with the help of table borders) how cell definitions that span more
than one row or column affect the definition of later cells. Consider the following table definition:

<table>
<tbody>
   <tr>
      <td>1</td>
      <td rowspan="2">2</td>
      <td>3</td>
   </tr>
   <tr>
      <td>4
      <td>6</td>
   </tr>
   <tr>
      <td>7</td>
      <td>8</td>
      <td>9</td>
      </td></td>
   </tr>
</tbody>
</table>

As cell "2" spans the first and second rows, the definition of the second row will take it into
account. Thus, the second td [p.124] in row two actually defines the row’s third cell. Visually, the
table might be rendered to a tty device as:

-------------
| 1 | 2 | 3 | 
----|   |----
4		6
7	8	9
-------------

- 127 -

21.5.1. Cells that span several rows or columnsXHTML 2.0



while a graphical user agent might render this as:

Note that if the td [p.124] defining cell "6" had been omitted, an extra empty cell would have
been added by the user agent to complete the row.

Similarly, in the following table definition:

<table>
<tbody>
   <tr>
      <td>1</td>
      <td>2</td>
      <td>3</td>
   </tr>
   <tr>
      <td colspan="2">4</td>
      <td>6</td>
   </tr>
   <tr>
      <td>7</td>
      <td>8</td>
      <td>9</td>
   </tr>
</tbody>
</table>

cell "4" spans two columns, so the second td [p.124] in the row actually defines the third cell 
("6"):

-------------
| 1 | 2 | 3 | 
--------|----
4	6	
7	8	9
-------------

A graphical user agent might render this as:

- 128 -

XHTML 2.021.5.1. Cells that span several rows or columns



Defining overlapping cells is an error. User agents may vary in how they handle this error (e.g.,
rendering may vary).

The following illegal example illustrates how one might create overlapping cells. In this table, cell
"5" spans two rows and cell "7" spans two columns, so there is overlap in the cell between "7"
and "9":

<table">
<tbody>
   <tr>
      <td>1</td>
      <td>2</td>
      <td>3</td>
   </tr>
   <tr>
      <td>4</td>
      <td rowspan="2">5</td>
      <td>6</td>
   </tr>
   <tr>
      <td colspan="2">7</td>
      <td>9</td>
   </tr>
</tbody>
</table>

21.6. The thead and tfoot elements
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

Table rows may be grouped into a table head, table foot, and one or more table body sections,
using the thead [p.129] , tfoot [p.129] and tbody [p.123] elements, respectively. This division
enables user agents to support scrolling of table bodies independently of the table head and
foot. When long tables are printed, the table head and foot information may be repeated on each
page that contains table data.

The table head and table foot should contain information about the table’s columns. The table
body should contain rows of table data.

When present, each thead [p.129] , tfoot [p.129] , and tbody [p.123] contains a row group. Each
row group must contain at least one row, defined by the tr [p.130] element.

If the thead [p.129] , tfoot [p.129] , and tbody [p.123] elements are used, and a rowspan attriubte
is used within a group, the rowspan must remain within the group boundaries of which it is 
defined.

- 129 -

21.6. The thead and tfoot elementsXHTML 2.0



This example illustrates the order and structure of the table head, foot, and bodies.

<table>
<thead>
     <tr> ...header information...</tr>
</thead>
<tfoot>
     <tr> ...footer information...</tr>
</tfoot>
<tbody>
     <tr> ...first row of block one data...</tr>
     <tr> ...second row of block one data...</tr>
</tbody>
<tbody>
     <tr> ...first row of block two data...</tr>
     <tr> ...second row of block two data...</tr>
     <tr> ...third row of block two data...</tr>
</tbody>
</table>

tfoot [p.129] must appear before tbody [p.123] within a table [p.111] definition so that user
agents can render the foot before receiving all of the (potentially numerous) rows of data.

21.7. The tr element
Attributes

The Common [p.29] collection 
A collection of other attribute collections, including: Core [p.25] , Events [p.28] , I18N [p.26] ,
and Hypertext [p.27] 

The tr [p.130] elements acts as a container for a row of table cells. The end tag may be omitted.

This sample table contains three rows, each begun by the tr [p.130] element:

<table summary="This table charts the number of cups
                   of coffee consumed by each senator, the type 
                   of coffee (decaf or regular), and whether 
                   taken with sugar.">
<caption>Cups of coffee consumed by each senator</caption>
<tbody>
   <tr> ...A header row...</tr>
   <tr> ...First row of data...</tr>
   <tr> ...Second row of data...</tr>
   ...the rest of the table...</tr>
</tbody>
</table>

- 130 -

XHTML 2.021.7. The tr element



22. XHTML Target Module
This section is normative.

The content of a frame can specify destination targets for a selection. This module adds the 
target attribute to the area and link defining elements. This is defined as a separate module so
it can be included in documents that will be included in frames and documents that use the 
target feature to open a new window.

Elements Attributes Notes 

a& target (CDATA [p.21] )  

link& target (CDATA [p.21] ) When the Link Module is selected.

form& target (CDATA [p.21] ) When the Forms module is selected.

Implementation: DTD [p.145] 

target = HrefTarget [p.21] 
This attribute identifies an environment that will act as the destination for a resource
identified by a hyperlink when it is activated. 

This specification does not define how this attribute gets used, since that is defined by the
environment that the hyperlink is evaluated in.

XFrames not published yet

We need a reference to XFrames here, but XFrames is not yet public.

- 131 -

22. XHTML Target ModuleXHTML 2.0



- 132 -

XHTML 2.022. XHTML Target Module



A. Changes from XHTML 1.1
This appendix is informative.

This Appendix describes the differences between XHTML 2.0 and XHTML 1.1.

Change summary needed

This section needs a table that illustrates elements removed and added, and changes made to
elements that were kept.

- 133 -

A. Changes from XHTML 1.1XHTML 2.0



- 134 -

XHTML 2.0A. Changes from XHTML 1.1



B. XHTML 2.0 Schema
This appendix is normative.

This appendix will contain the implementation of the XHTML 2.0 Schema driver file and content
model file.

XHTML 2.0 Schema Needed

The XHTML 2.0 Schema driver and content model files need to be built.

- 135 -

B. XHTML 2.0 SchemaXHTML 2.0



- 136 -

XHTML 2.0B. XHTML 2.0 Schema



C. XHTML Schema Module Implementations
This appendix is normative.

This appendix will contain implementations of the modules defined in this specification via XML
Schema [XMLSCHEMA [p.149] ] when XML Schema becomes a W3C Recommendation.

- 137 -

C. XHTML Schema Module ImplementationsXHTML 2.0



- 138 -

XHTML 2.0C. XHTML Schema Module Implementations



D. XHTML 2.0 Document Type Definition
This appendix is normative.

This appendix will contain the implementation of the XHTML 2.0 DTD driver file and content
model file.

XHTML 2.0 DTD Needed

The XHTML 2.0 DTD driver and content model files need to be built. There is an open issue
about how to integrate the XForms instance data into such a DTD.

- 139 -

D. XHTML 2.0 Document Type DefinitionXHTML 2.0



- 140 -

XHTML 2.0D. XHTML 2.0 Document Type Definition



E. XHTML DTD Module Implementations
This appendix is normative.

This appendix will contain implementations of the modules defined in this specification. These
module implementations can be used in other XHTML Family Document Types.

E.1. XHTML Modular Framework
In order to take advantage of the XHTML DTD Modules, DTD authors need to define the content
model for their DTD. XHTML provides a variety of tools to ease this effort. They are defined in a
set of support modules, instantiated by a main Framework module:

Module DTD/xhtml-framework-2.mod not found!

Note that the module above references a content model module. This module is defined on a
per-document type basis in addition to the document type driver file. The Modular framework
also relies upon the following component modules:

E.1.1. XHTML Base Architecture

DTD Module XHTML Base Architecture needed

The DTD Module DTD Module XHTML Base Architecture needed referenced as
DTD/xhtml-arch-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

E.1.2. XHTML Notations

DTD Module XHTML Notations needed

The DTD Module DTD Module XHTML Notations needed referenced as
DTD/xhtml-notations-2.mod needs to be defined. It will be defined before publication of a last
call draft.

E.1.3. XHTML Datatypes

DTD Module XHTML Datatypes needed

The DTD Module DTD Module XHTML Datatypes needed referenced as
DTD/xhtml-datatypes-2.mod needs to be defined. It will be defined before publication of a last
call draft.

- 141 -

E. XHTML DTD Module ImplementationsXHTML 2.0



E.1.4. XHTML Common Attribute Definitions

DTD Module XHTML Common Attribute Definitions needed

The DTD Module DTD Module XHTML Common Attribute Definitions needed referenced as
DTD/xhtml-attribs-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

E.1.5. XHTML Qualified Names

DTD Module XHTML Qualified Names needed

The DTD Module DTD Module XHTML Qualified Names needed referenced as
DTD/xhtml-qname-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

E.1.6. XHTML Character Entities

DTD Module XHTML Character Entities needed

The DTD Module DTD Module XHTML Character Entities needed referenced as
DTD/xhtml-charent-1.mod needs to be defined. It will be defined before publication of a last call 
draft.

E.2. XHTML Module Implementations
This section contains the formal definition of each of the XHTML Abstract Modules as a DTD 
module.

E.2.1. Structure

DTD Module Structure needed

The DTD Module DTD Module Structure needed referenced as DTD/xhtml-struct-1.mod needs
to be defined. It will be defined before publication of a last call draft.

E.2.2. Text

DTD Module Text needed

The DTD Module DTD Module Text needed referenced as DTD/xhtml-text-1.mod needs to be
defined. It will be defined before publication of a last call draft.

- 142 -

XHTML 2.0E.2. XHTML Module Implementations



E.2.3. Hypertext

DTD Module Hypertext needed

The DTD Module DTD Module Hypertext needed referenced as DTD/xhtml-hypertext-1.mod
needs to be defined. It will be defined before publication of a last call draft.

E.2.4. Lists

DTD Module Lists needed

The DTD Module DTD Module Lists needed referenced as DTD/xhtml-list-1.mod needs to be
defined. It will be defined before publication of a last call draft.

E.2.5. Bi-directional Text

DTD Module Bi-directional Text needed

The DTD Module DTD Module Bi-directional Text needed referenced as DTD/xhtml-bdo-1.mod
needs to be defined. It will be defined before publication of a last call draft.

E.2.6. Client-side Image Map

DTD Module Client-side Image Map needed

The DTD Module DTD Module Client-side Image Map needed referenced as
DTD/xhtml-csismap-1.mod needs to be defined. It will be defined before publication of a last call 
draft.

E.2.7. Edit

DTD Module Edit needed

The DTD Module DTD Module Edit needed referenced as DTD/xhtml-edit-1.mod needs to be
defined. It will be defined before publication of a last call draft.

E.2.8. Link

DTD Module Link needed

The DTD Module DTD Module Link needed referenced as DTD/xhtml-link-1.mod needs to be
defined. It will be defined before publication of a last call draft.

- 143 -

E.2.3. HypertextXHTML 2.0



E.2.9. Metainformation

DTD Module Metainformation needed

The DTD Module DTD Module Metainformation needed referenced as DTD/xhtml-meta-1.mod
needs to be defined. It will be defined before publication of a last call draft.

E.2.10. Object

DTD Module Object needed

The DTD Module DTD Module Object needed referenced as DTD/xhtml-object-1.mod needs to
be defined. It will be defined before publication of a last call draft.

E.2.11. Presentation

DTD Module Presentation needed

The DTD Module DTD Module Presentation needed referenced as DTD/xhtml-pres-1.mod
needs to be defined. It will be defined before publication of a last call draft.

E.2.12. Scripting

DTD Module Scripting needed

The DTD Module DTD Module Scripting needed referenced as DTD/xhtml-script-1.mod needs to
be defined. It will be defined before publication of a last call draft.

E.2.13. Server-side Image Map

DTD Module Server-side Image Map needed

The DTD Module DTD Module Server-side Image Map needed referenced as
DTD/xhtml-ssismap-1.mod needs to be defined. It will be defined before publication of a last call 
draft.

E.2.14. Style Sheet

DTD Module Style Sheet needed

The DTD Module DTD Module Style Sheet needed referenced as DTD/xhtml-style-1.mod needs
to be defined. It will be defined before publication of a last call draft.

- 144 -

XHTML 2.0E.2.9. Metainformation



E.2.15. Tables

DTD Module Tables needed

The DTD Module DTD Module Tables needed referenced as DTD/xhtml-table-1.mod needs to
be defined. It will be defined before publication of a last call draft.

E.2.16. Target

DTD Module Target needed

The DTD Module DTD Module Target needed referenced as DTD/xhtml-target-1.mod needs to
be defined. It will be defined before publication of a last call draft.

E.3. XHTML DTD Support Modules
The modules in this section are elements of the XHTML DTD implementation that, while hidden
from casual users, are important to understand when creating derivative markup languages
using the Modularization architecture.

E.3.1. Block Phrasal

DTD Module Block Phrasal needed

The DTD Module DTD Module Block Phrasal needed referenced as DTD/xhtml-blkphras-1.mod
needs to be defined. It will be defined before publication of a last call draft.

E.3.2. Block Presentational

DTD Module Block Presentational needed

The DTD Module DTD Module Block Presentational needed referenced as
DTD/xhtml-blkpres-1.mod needs to be defined. It will be defined before publication of a last call 
draft.

E.3.3. Block Structural

DTD Module Block Structural needed

The DTD Module DTD Module Block Structural needed referenced as
DTD/xhtml-blkstruct-1.mod needs to be defined. It will be defined before publication of a last call 
draft.

- 145 -

E.3. XHTML DTD Support ModulesXHTML 2.0



E.3.4. Inline Phrasal

DTD Module Inline Phrasal needed

The DTD Module DTD Module Inline Phrasal needed referenced as DTD/xhtml-inlphras-1.mod
needs to be defined. It will be defined before publication of a last call draft.

E.3.5. Inline Presentational

DTD Module Inline Presentational needed

The DTD Module DTD Module Inline Presentational needed referenced as
DTD/xhtml-inlpres-1.mod needs to be defined. It will be defined before publication of a last call 
draft.

E.3.6. Inline Structural

DTD Module Inline Structural needed

The DTD Module DTD Module Inline Structural needed referenced as DTD/xhtml-inlstruct-1.mod
needs to be defined. It will be defined before publication of a last call draft.

E.3.7. Param

DTD Module Param needed

The DTD Module DTD Module Param needed referenced as DTD/xhtml-param-1.mod needs to
be defined. It will be defined before publication of a last call draft.

E.3.8. Legacy Redeclarations

DTD Module Legacy Redeclarations needed

The DTD Module DTD Module Legacy Redeclarations needed referenced as
DTD/xhtml-legacy-redecl-1.mod needs to be defined. It will be defined before publication of a
last call draft.

- 146 -

XHTML 2.0E.3.4. Inline Phrasal



F. References
This appendix is normative.

F.1. Normative References
[CSS2] 

"Cascading Style Sheets, level 2 (CSS2) Specification", W3C Recommendation, B. Bos, H.
W. Lie, C. Lilley, I. Jacobs, eds., 12 May 1998.
Available at: http://www.w3.org/TR/1998/REC-CSS2-19980512 

[DOM] 
"Document Object Model (DOM) Level 1 Specification", L. Wood et al., 1 October 1998.
Available at: http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001 

[HTML4] 
"HTML 4.01 Specification: W3C Recommendation", W3C Recommendation, D. Raggett, A.
Le Hors, I. Jacobs, eds., 24 December 1999.
Available at: http://www.w3.org/TR/1999/REC-html401-19991224 

[ISO639] 
"Codes for the representation of names of languages", ISO 639:1988. For more information,
consult http://www.iso.ch/cate/d4766.html. Refer also to 
http://www.oasis-open.org/cover/iso639a.html. 

[ISO3166] 
"Codes for the representation of names of countries", ISO 3166:1993. 

[ISO10646] 
"Information Technology -- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1:
Architecture and Basic Multilingual Plane", ISO/IEC 10646-1:2000. This reference refers to
a set of codepoints that may evolve as new characters are assigned to them. Also, this
reference assumes that the character sets defined by ISO 10646 and [UNICODE [p.148] ]
remain character-by-character equivalent. This reference also includes future publications
of other parts of 10646 (i.e., other than Part 1) that define characters in planes 1-16. 

[MIMETYPES] 
List of registered content types (MIME media types). Download a list of registered content
types from http://www.iana.org/assignments/media-types/. 

[PICS] 
"Rating Services and Rating Systems (and Their Machinr Readable Descriptions)", W3C
Recommendation, J. Miller, et. al., 31 October 1996.
Available at: http://www.w3.org/TR/REC-PICS-services 

[RFC822] 
"Standard for the format of ARPA Internet Text Messages", RFC 822, David H Crocker,
August 13, 1982.
Available at: http://www.ietf.org/rfc/rfc822.txt 

[RFC1555] 
"Hebrew Character Encoding for Internet Messages", H. Nussbacher and Y. Bourvine,
December 1993.
Available at: http://www.ietf.org/rfc/rfc1555.txt 

- 147 -

F. ReferencesXHTML 2.0

http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.iso.ch/cate/d4766.html
http://www.oasis-open.org/cover/iso639a.html
http://www.iana.org/assignments/media-types/
http://www.w3.org/TR/REC-PICS-services
http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc1555.txt


[RFC1556] 
""andling of Bi-directional Texts in MIME", H. Nussbacher, December 1993.
Available at: http://www.ietf.org/rfc/rfc1556.txt 

[RFC1808] 
"Relative Uniform Resource Locators", RFC 1808, R. Fielding, June 1995.
Available at: http://www.ietf.org/rfc/rfc1808.txt 

[RFC2045] 
"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message 
Bodies", RFC 2045, N. Freed, N. Borenstein, November 1996.
Available at: http://www.ietf.org/rfc/rfc2045.txt 

[RFC2119] 
"Key words for use in RFCs to indicate requirement levels", RFC 2119, S. Bradner, March 
1997.
Available at: http://www.ietf.org/rfc/rfc2119.txt 

[RFC2616] 
"Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616, R. Fielding, et. al., June 1999.
Available at: http://www.ietf.org/rfc/rfc2616.txt 

[RFC3066] 
"Tags for the Identification of Languages", RFC 3066, H. Alvestrand, January 2001.
Available at: http://www.ietf.org/rfc/rfc3066.txt 

[RUBY] 
Ruby Annotation, W3C Recommendation, Marcin Sawicki, et al., 31 May 2001.
See: http://www.w3.org/TR/2001/REC-ruby-20010531 

[SGML] 
"Information Processing -- Text and Office Systems -- Standard Generalized Markup
Language (SGML)", ISO 8879:1986.
Please consult http://www.iso.ch/cate/d16387.html for information about the standard, or 
http://www.oasis-open.org/cover/general.html#overview about SGML. 

[SRGB] 
"A Standard Default Color Space for the Internet", version 1.10, M. Stokes, M. Anderson, S.
Chandrasekar, and R. Motta, 5 November 1996. Available at:
http://www.w3.org/Graphics/Color/sRGB 

[UNICODE] 
"The Unicode Standard", The Unicode Consortium. Version 3.2.0 is defined by: The
Unicode Standard, Version 3.0 (Reading, MA, Addison-Wesley, 2000. ISBN
0-201-61633-5), as amended by the Unicode Standard Annex #27: Unicode 3.1 
(http://www.unicode.org/reports/tr27/) and the Unicode Standard Annex #28: Unicode 3.2 
(http://www.unicode.org/reports/tr28/).
For more information about Unicode, see http://www.unicode.org. 

[URI] 
"Uniform Resource Identifiers (URI): Generic Syntax", RFC 2396, T. Berners-Lee, R.
Fielding, L. Masinter, August 1998.
Available at: http://www.ietf.org/rfc/rfc2396.txt. This RFC updates RFC 1738 [URL] [p.148] 
and [RFC1808] [p.148] . 

[URL] 
"Uniform Resource Locators (URL)", RFC 1738, T. Berners-Lee, L. Masinter, M. McCahill,

- 148 -

XHTML 2.0F.1. Normative References

http://www.ietf.org/rfc/rfc1556.txt
http://www.ietf.org/rfc/rfc1808.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3066.txt
http://www.w3.org/TR/2001/REC-ruby-20010531
http://www.iso.ch/cate/d16387.html
http://www.oasis-open.org/cover/general.html#overview
http://www.w3.org/Graphics/Color/sRGB
http://www.unicode.org/unicode/reports/tr27/
http://www.unicode.org/unicode/reports/tr28/
http://www.unicode.org/
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc1738.txt


December 1994.
Available at: http://www.ietf.org/rfc/rfc1738.txt 

[XFORMS] 
"XForms 1.0", W3C Working Draft, M. Dubinko et al., 18 January 2002.
Available at: http://www.w3.org/TR/2002/WD-xforms-20020118/ 

[XHTML1] 
"XHTML 1.0: The Extensible HyperText Markup Language (Second Edition)", W3C
Recommendation, S. Pemberton et al., 1 August 2002.
Available at: http://www.w3.org/TR/2002/REC-xhtml1-20020801 

[XHTMLMOD] 
Modularization of XHTML, W3C Recommendation, Murray Altheim, et al., 10 April 2001
See: http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410 

[XML] 
"Extensible Markup Language (XML) 1.0 (Second Edition)", W3C Recommendation, T.
Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, eds., 6 October 2000.
Available at: http://www.w3.org/TR/2000/REC-xml-20001006 

[XMLNAMES] 
"Namespaces in XML", W3C Recommendation, T. Bray, D. Hollander, A. Layman, eds., 14
January 1999.
Available at: http://www.w3.org/TR/1999/REC-xml-names-19990114 

[XMLEVENTS] 
"XML Events", W3C Working Draft, S. McCarron, S. Pemberton, T.V. Raman, eds., 26
October 2001.
Available at: http://www.w3.org/TR/2001/WD-xml-events-20011026 

[XMLSCHEMA] 
"XML Schema Part 1: Structures", W3C Recommendation, H. S. Thompson, D. Beech, M.
Maloney, N. Mendelsohn, eds., 2 May 2001.
Available at: http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
See also "XML Schema Part 2: Datatypes", available at: 
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502

F.2. Informative References
[MATHML] 

"Mathematical Markup Language (MathML) Version 2.0", W3C Recommendation, D.
Carlisle, P. Ion, R. Miner, N. Poppelie, eds., 21 February 2001.
Available at: http://www.w3.org/TR/2001/REC-MathML2-20010221 

[SMIL] 
"Synchronized Multimedia Integration Language (SMIL) 1.0 Specification", W3C
Recommendation, P. Hoschka, ed., 15 June 1998.
Available at: http://www.w3.org/TR/1998/REC-smil-19980615 

[XLINK] 
"XML Linking Language (XLink) Version 1.0", W3C Recommendation, S. DeRose, E. Maler,
D. Orchard, eds., 27 June 2001.
Available at: http://www.w3.org/TR/2001/REC-xlink-20010627 

- 149 -

F.2. Informative ReferencesXHTML 2.0

http://www.w3.org/TR/2002/WD-xforms-20020118/
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/WD-xml-events-20011026
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-MathML2-20010221
http://www.w3.org/TR/1998/REC-smil-19980615
http://www.w3.org/TR/2001/REC-xlink-20010627/


[XMLSTYLE] 
"Associating Style Sheets with XML documents Version 1.0", W3C Recommendation, J.
Clark, ed., 29 June 1999.
Available at: http://www.w3.org/1999/06/REC-xml-stylesheet-19990629

- 150 -

XHTML 2.0F.2. Informative References

http://www.w3.org/1999/06/REC-xml-stylesheet-19990629


G. Acknowledgements
This appendix is informative.

This specification was prepared by the W3C HTML Working Group. The members at the time of
publication were:

This section will be updated at publication time.

- 151 -

G. AcknowledgementsXHTML 2.0


	XHTML� 2.0
	W3C Working Draft 5 August 2002
	Abstract
	Status of This Document

	Quick Table of Contents
	List of Issues
	Full Table of Contents
	1. Introduction
	1.1. What is XHTML 2?
	1.2. What are the XHTML 2 Modules?

	2. Terms and Definitions
	3. Conformance Definition
	3.1. Document Conformance
	3.1.1. Strictly Conforming Documents

	3.2. User Agent Conformance

	4. The XHTML 2.0 Document Type
	5. Module Definition Conventions
	5.1. Module Structure
	5.2. Abstract Module Definitions
	5.3. Syntactic Conventions
	5.4. Content Types
	5.5. Attribute Types

	6. XHTML Attribute Collections
	6.1. Core Attribute Collection
	6.2. I18N Attribute Collection
	6.3. Hypertext Attribute Collection
	6.4. Events
	6.5. Common Attribute Collection

	7. XHTML Structure Module
	7.1. The html element
	7.2. The head element
	7.3. The title element
	7.4. The body element

	8. XHTML Text Module
	8.1. The abbr element
	8.2. The acronym element
	8.3. The address element
	8.4. The blockquote element
	8.5. The br element
	8.6. The cite element
	8.7. The code element
	8.8. The dfn element
	8.9. The div element
	8.10. The em element
	8.11. The heading elements
	8.12. The kbd element
	8.13. The line element
	8.14. The p element
	8.15. The pre element
	8.16. The quote element
	8.17. The samp element
	8.18. The section element
	8.19. The span element
	8.20. The strong element
	8.21. The var element

	9. XHTML Hypertext Module
	9.1. The a element

	10. XHTML List Module
	10.1. Definition lists: the dl, dt, and dd elements
	10.2. The nl element
	10.3. The ol, and ul elements
	10.4. The li element
	10.5. The name element

	11. XHTML Bi-directional Text Module
	11.1. The bdo element
	11.1.1. Character references for directionality and joining control
	11.1.2. The effect of style sheets on bidirectionality


	12. XHTML Client-Side Image Map Module
	12.1. The area element
	12.2. The map element
	12.2.1. Client-side image map examples


	13. XHTML Edit Module
	13.1. The del element
	13.2. The ins element

	14. XHTML Linking Module
	14.1. The link element
	14.1.1. Forward and reverse links
	14.1.2. Links and external style sheets
	14.1.3. Links and search engines


	15. XHTML Metainformation Module
	15.1. The meta element
	15.1.1. meta and search engines
	15.1.2. meta and PICS
	15.1.3. meta data profiles


	16. XHTML Object Module
	16.1. The object element
	16.1.1. Rules for processing objects

	16.2. The param element.
	16.2.1. Global naming schemes for objects
	16.2.2. Object declarations and instantiations


	17. XHTML Presentation Module
	17.1. The hr element
	17.2. The sub element
	17.3. The sup element

	18. XHTML Scripting Module
	18.1. The noscript element
	18.2. The script element
	18.2.1. Specifying the scripting language
	18.2.2. Declaration of a scripting language
	18.2.3. References to XHTML elements from a script
	18.2.4. Dynamic modification of documents


	19. XHTML Server-Side Image Map Module
	20. XHTML Style Sheet Module
	20.1. The style element
	20.1.1. External style sheets
	20.1.2. Preferred and alternate style sheets
	20.1.3. Specifying external style sheets


	21. XHTML Tables Module
	21.1. The caption element
	21.2. The col and colgroup elements
	21.3. The table element
	21.3.1. Table directionality
	21.3.2. Table rendering by non-visual user agents
	21.3.2.1. Associating header information with data cells
	21.3.2.2. Categorizing cells

	21.3.3. Sample table

	21.4. The tbody element
	21.5. The td and th elements
	21.5.1. Cells that span several rows or columns

	21.6. The thead and tfoot elements
	21.7. The tr element

	22. XHTML Target Module
	A. Changes from XHTML 1.1
	B. XHTML 2.0 Schema
	C. XHTML Schema Module Implementations
	D. XHTML 2.0 Document Type Definition
	E. XHTML DTD Module Implementations
	E.1. XHTML Modular Framework
	E.1.1. XHTML Base Architecture
	E.1.2. XHTML Notations
	E.1.3. XHTML Datatypes
	E.1.4. XHTML Common Attribute Definitions
	E.1.5. XHTML Qualified Names
	E.1.6. XHTML Character Entities

	E.2. XHTML Module Implementations
	E.2.1. Structure
	E.2.2. Text
	E.2.3. Hypertext
	E.2.4. Lists
	E.2.5. Bi-directional Text
	E.2.6. Client-side Image Map
	E.2.7. Edit
	E.2.8. Link
	E.2.9. Metainformation
	E.2.10. Object
	E.2.11. Presentation
	E.2.12. Scripting
	E.2.13. Server-side Image Map
	E.2.14. Style Sheet
	E.2.15. Tables
	E.2.16. Target

	E.3. XHTML DTD Support Modules
	E.3.1. Block Phrasal
	E.3.2. Block Presentational
	E.3.3. Block Structural
	E.3.4. Inline Phrasal
	E.3.5. Inline Presentational
	E.3.6. Inline Structural
	E.3.7. Param
	E.3.8. Legacy Redeclarations


	F. References
	F.1. Normative References
	F.2. Informative References

	G. Acknowledgements

