On Combining RDF Streams and Remotely
Stored Background Data

Soheila Dehghanzadeh!, Daniele Dell’Aglio?, Shen Gao?,
Emanuele Della Valle?, Alessandra Mileo!, Abraham Bernstein?®

'INSIGHT Research Center, NUI Galway, Ireland
2DEIB, Politecnico of Milano, Italy
3Department of Informatics, University of Zurich, Switzerland

To perform complex tasks, continuous queries in RDF Stream Processing can
combine RDF streams and quasi-static background data, as depicted in Figure
1. While the former is pushed in the query engine, the latter is pulled from the
repository. In the following, we focus on the cases where background data is
stored remotely and can be accessed through the SERVICE clause. That means,
background data are retrieved from SPARQL endpoints, or from Web APIs
through OBDA techniques.

Existing engines usually retrieve the background data at each new itera-
tion. But as soon as the background data volume increases, the cost to retrieve
them increases as well, and consequently engines are at the risk of becoming un-
responsive. For example, the C-SPARQL engine delegates the evaluation of the
SPARQL operators to the ARQ engine!: SERVICE clauses are managed through
sequences of invocations to the remote endpoints. In this way, they generate high
loads on remote services and suffer from slow response time.

Instead of pulling data from re-
mote SPARQL endpoints at each eval-
. >J<] o

uation, a possible solution is to store
Fig. 1: Query Processor Overview

the intermediate results of SERVICE
clauses in local views inside the query
processor. This idea is widely adopted
in databases to improve the perfor-
mance, availability, and scalability of
the query processor [2]. However, the freshness of the local view degrades over
time because background data in the remote service can change and the updates
are not reflected in the local view. To overcome this issue, a maintenance process
is introduced: it identifies the out-dated (namely stale) data items in the local
view and replaces them with the up-to-date (namely fresh) values retrieved from
the remote services.

In this work, we present the requirements that leads the design of mainte-
nance processes (MP), to help researchers and developers of the RSP community
in defining new solutions and optimizing existent RSP engines.

Analysis of the Problem. Database community widely studied the local
view maintenance problem; however, the Web setting introduces new challenges,
which we present in the following. The main differences are 1) data is owned by

1 C-SPARQL Version 0.48; ARQ Version 2.11.1



2 S. Dehghanzadeh et al.

different entities in the distributed setting; 2) there are no update streams —
streams bringing content changes.

R1: Data Access Constraints. When data are retrieved from Web APIs,
MP should take into account the remote service constraints. In particular, MP
should consider the data access patterns (R1.1), i.e., it is only possible to
access data through sets of pattern that conform to the API definitions; the
access rate (R1.2), i.e., there are time constraints on the pulling requests that
can be submit.

R2: Quality of Service (QoS) Constraints. The introduction of local
views that become stale causes approximate results. Users can be interested
in supplying several QoS constraints, such as query response time and the
accuracy of the answer. The scope and frequency of the MP should take into
account those QoS constraints (R2.1). However, there are cases where it is not
possible to achieve the goal: when it happens, the maintenance process should
raise alerts to the query processor (R2.2)

R3: (Dynamic) Change Rate Distribution. The MP should consider the
fact that different elements in background data change over time at different
rates (R3.1), e.g., the follwer number of a famous music artist changes more
often than that of a PhD student. Moreover, the change rate of elements can
vary over time, e.g., the follwer number of a user changes more often during
Twitter activity peeks and less often otherwise. Therefore, the MP may consider
the dynamic change rates (R3.2).

RA4: Query Features. Joins may pair streaming and background data. The
MP may exploit this unique feature to optimize the maintenance. Specifically,
the MP may exploit the sliding window definition (R4.1): at each evaluation,
part of the window content does not change (as the window slides), which can
be used to select the local view elements to be maintained. The MP may also
consider the join selectivity (R4.2) to find the most influential data elements
on the response accuracy.

Initial Solution and Results. In [1] we proposed the Window-Based Mainte-
nance policy (WBM), an initial solution to the problem presented above. WBM
is a query-driven maintenance policy, which selects the mappings involved in the
current query, from which it picks the ones to be refreshed. The intuition behind
WBM is to prioritize the refresh of the mappings that are going to be used in the
upcoming evaluations and that allows saving future refresh operations. WBM
considers the locality effect created by the window and identifies expired data
more precisely by estimating their change rates. Our initial evaluation shows
that our solution outperforms a set of baselines by up to 13.5%.

References

1. S. Dehghanzadeh, D. Dell’Aglio, S. Gao, E. Della Valle, A. Mileo, and A. Bern-
stein. Online view maintenance for continuous query evaluation. In WWW 2015
Companion Volume II (to appear), pages 1-2, 2015.

2. H. Guo, P.-A. Larson, and R. Ramakrishnan. Caching with good enough currency,
consistency, and completeness. In VLDB, pages 457-468. VLDB Endowment, 2005.



On Combining RDF Streams and Remotely Stored Background Data

Authors

Soheila Dehghanzadeh is studying in National University of Ireland, Galway. Her
research is focused on query optimziation and view management.

Daniele Dell’Aglio is a PhD student at DEIB, Politecnico di Milano and he
works on optimization of the continuous query answering process in presence of
volatile and heterogeneous data.

Shen Gao is a PhD student at the Department of Informatics of the University
of Zurich. His research focuses on scalable RDF stream processing.

Emanuele Della Valle is assistant professor at Politecnico di Milano. He
coined the term Stream Reasoning, and he showed that it is possible with the
Continuous SPARQL query language (C-SPARQL), the C-SPARQL Engine and
the Incremental Materialization for RDF Stream algorithm (IMaRS). He applied
Stream Reasoning to social media analytics.

Dr. Alessandra Mileo is a senior Research Fellow heavily involved in research
and development activities that are relevant to the RSP group, including stream
reasoning, query optimization and event processing, and she is PI in EU funded
smart city projects and industry funded projects in the area of the Internet of
Everything.

Abraham Bernstein is a full Professor at the Department of Informatics (In-
stitut fiir Informatik) of the University of Zurich. He mainly conducts research
on the Semantic Web and Knowledge Discovery. His work draws from both social
science (organizational psychology/sociology) and technical (computer science,
artificial intelligence) foundations.

3



