Application of Inference Rules to a
Software Requirements Ontology to
Generate Software Test Cases

Vladimir Tarasov!, He Tan!, Muhammad Ismail', Anders Adlemo', and
Mats Johansson?

1 School of Engineering, Jonkoping University, Box 1026, 551 11 Jénképing, Sweden
{vladimir.tarasov,he.tan,muhammad.ismail, anders.adlemo}@ju.se
2 Saab AB, Slottsgatan 40, 551 11, Jénkoping, Sweden
mats.e.johansson@saabgroup.com

Abstract. Testing of a software system is resource-consuming activ-
ity. One of the promising ways to improve the efficiency of the software
testing process is to use ontologies for testing. This paper presents an
approach to test case generation based on the use of an ontology and
inference rules. The ontology represents requirements from a software
requirements specification, and additional knowledge about components
of the software system under development. The inference rules describe
strategies for deriving test cases from the ontology. The inference rules
are constructed based on the examination of the existing test documen-
tation and acquisition of knowledge from experienced software testers.
The inference rules are implemented in Prolog and applied to the on-
tology that is translated from OWL functional-style syntax to Prolog
syntax. The first experiments with the implementation showed that it
was possible to generate test cases with the same level of detail as the
existing, manually produced, test cases.

Keywords: Inference Rules, Ontology; OWL, Prolog, Requirement Spec-
ification, Test Case Generation

1 Introduction

In modern society software products and systems permeates every aspect of our
lives, such as our homes, cars, the public infrastructure and even our bodies. As
a consequence, quality concerns are becoming much more vital and critical as we
get more dependent on these products and systems. The yearly cost of software
errors as a consequence of poor quality procedures in the software industry was
estimated to roughly $312 billion, according to a report in 2013 by the Cambridge
University [8], and the cost still continues to increase. As detection of software
errors goes hand-in-hand with testing, the same increase in cost is true for all
kind of software testing activities [8, 3].

One way of curbing this ongoing trend is to automate as many as possible
of the software test activities. As far as test case execution goes, this is already

2 V. Tarasov, H. Tan, M. Ismail, A. Adlemo, M. Johansson

a mature field where commercial products help software testers in their daily
work. The automatic generation of test cases, however, is an entirely different
matter.

The use of ontologies for testing has not been discussed as much as the use of
ontologies in other stages of the software development process. In [6] the authors
discussed possible ways of utilizing ontologies for the test case gen-eration, and
the feasibility of reuse of domain knowledge encoded in ontologies for testing.
In practice, however, few results have been presented in the area. Most of them
have had a focus on testing web-based software and especially web services (e.g.
[16, 14].

This paper proposes an approach to combine an OWL ontology with inference
rules in order to construct an ontology-based application. The purpose of the
application is to generate software test cases based on a software requirements
specification!. The ontology, which represents both the software requirements
and the software, hardware and communication components belonging to an
embedded system, is translated from OWL functional-style syntax into Prolog
syntax. The inference rules, that represent the expertise of an expert software
tester, are coded in Prolog and make use of the ontology entities to generate test
cases. The Prolog inference engine controls the process of selecting and invoking
inference rules.

The rest of this paper is structured as follows. Section 2 details the proposed
approach, including the ontology representing software requirements and soft-
ware components, inference rules capturing strategies for test case generation,
and the OWL to Prolog translation. Section 3 presents an evaluation of the ap-
proach. Related work is described in Section 4. Our conclusions on the result are
given in Section 5.

2 Approach to Test Case Generation

When testers create test cases, they do it based on software requirements spec-
ifications and their own expertise, expertise that comes from previous work on
testing software systems. To automate this process, both parts should be repre-
sented in machine-processable form. The requirements are usually described in
semi-structured text documents or stored in requirements management systems.
This part is captured in a requirements specification ontology, which concep-
tualizes the structure of software requirements and their relations to different
components of a software system (Section 2.1). The second part, the testers ex-
pertise is less structured and is acquired by interviewing experienced testers and
studying existing test cases with their corresponding requirements. Such knowl-
edge is represented with inference rules that utilize the ontology for checking
conditions and querying data (Section 2.3). To make it possible to use the on-
tology entities together with the inference rules, it is necessary to translate the
ontology to a format supported by the rules (Section 2.2).

! The study presented in this paper is part of the project Ontology-based Software
Test Case Generation (OSTAG).

Inference Rules and a Requirements Ontology to Generate Test Cases 3

2.1 Representation of Requirements with Requirements
Specification Ontology

The ontology in this paper includes three pieces of knowledge: 1) a meta model
of the software requirements, 2) the domain knowledge of the application, e.g.
general knowledge of the hardware and software, the electronic communication
standards etc., and 3) each system requirements specifications. The components
that make up the domain ontology come from an embedded system within an
avionic system provide by Saab Avionics. In this work the ontology is used to
support test case generation. It can also be used to support other tasks in the
software development process, such as requirement analysis, and requirement
verification and validation.

The current version of the ontology contains 42 classes, 34 object properties,
13 datatype properties, and 147 individuals in total. Fig. 1 presents the meta
model of the software requirements. As indicated in the figure, each requirement
is concerned with certain functionalities of the software component. For example,
a requirement may be concerned with data transfer. Each requirement consists
of at least 1) requirement parameters, which are inputs of a requirement, 2)
requirement conditions, and 3) results, which are usually outputs of a require-
ment, and exception messages. Some requirements require the system to take
actions. Furthermore, there exists traceability between different requirements,
e.g. traceability between an interface requirement and a system requirement.

Fig. 2 shows the ontology fragment for one particular functional require-
ment, SRSRS4YY-431. If the communication type is out of its valid range, the
initialization service shall deactivate the UART (Universal Asynchronous Re-
ceiver/Transmitter), and return the result comTypeCfgError. In Figure 2, the
rectangles represent the concepts of the ontology; the round rectangles represent
the individuals; and the dashed rectangles provide the data values of datatype
property for individuals.

2.2 OWL-to-Prolog Translation

To prepare the ontology for the use by the inference rules, it is necessary to
translate it into the syntax that is supported by the rules. As soon as Prolog is

hasRequirementParameter

hasRequirementCondition

concerns

<—requiresAction

traceabilityFromTo

Fig. 1. The meta model of a requirement in the ontology

4 V. Tarasov, H. Tan, M. Ismail, A. Adlemo, M. Johansson

RequirementParameter
Requirement_Condition instanceOf
hasParameterValueRange i "Functional Requirement"~~xsd:string |

instanceOf
\ CommunicationType
(RequirementParameterVaIueOutOfRangej
\ hasRequirementParameter

hasRequirementCondition

1 "{rs485Com, rs422Com}"~~xsd:string !

hasRequirementType

DeactivateUART 4 requireAction{ SRSRS4YYY-431

. requirementForService
instanceof takesAction

(CommunicationTypeConfigurationError)
InitializationService T

expectedResult

[Action] instanceOf
instanceOf
Service_Result_Type
m subClassOf

Fig. 2. Ontology fragment for the SRSRS4YY-431 requirement specification

chosen for coding inference rules (see Section 2.3), the ontology constructs have
to be translated into the Prolog syntax. There exist a number of serialisation
formats that can be used to save an OWL ontology to a file: RDF /XML, Turtle,
OWL/XML, Manchester OWL syntax or functional-style syntax. The functional-
style syntax is the closest one to the Prolog syntax. An ontology document in
the functional-style syntax is a sequence of OWL constructs enclosed in the
Ontology statement as well as a number of prefix definitions [11]. As a logical
consequence, we have chosen functional-style syntax as the starting point for the
ontology translation.

A Prolog program consists of clauses. The term clause denotes a fact or a
rule in a knowledge base. A clause is ended with full stop (.) and different terms
in a clause are separated with commas (,). The basic terms that are used in
Prolog programs are atoms, numbers, variable and structures [2]:

— An atom is a string of characters that starts with a lower-case letter,

— A variable is a string of characters that starts with an upper-case letter,

— Integers and real numbers (floating point numbers) are also allowed in Pro-
log,

— Structures or complex data objects are objects with several components.
Functor is used to combine several components into a single one, e.g. date(14,
June, 2006).

When an ontology is written in the functional-style syntax, every single line
is a separate statement that represents one construct. Each line is processed
separately to translate it into the corresponding Prolog statement. A Python

Inference Rules and a Requirements Ontology to Generate Test Cases 5

Table 1. Example of translation of some OWL statements

OWL functional-style syntax Prolog syntax
ClassAssertion(OSTAG:Error_Handling_ classAssertion(error_handling_require-
Requirement :SRSRS4YY-431) ment, srsrsdyy_431).
DataPropertyAssertion(:hasParameterValueList dataPropertyAssertion(hasParameter-
:NumberOfStopBits ”[stopBits1, ValueList, NumberOfStopBits, [stopBitsl,
stop-Bits2]” " "xsd:string) stopBits2]).
DataPropertyDomain(:hasParameter- dataPropertyDomain(hasParameter-
ValueList :Requirement_Parameter) ValueList, requirement_Parameter).
ObjectPropertyAssertion(OSTAG:requirement- objectPropertyAssertion(require-
ForService :SRSRS4YY-431 mentForService, srsrsdyy_431,
:InitializationService) initializationService).
SubClassOf(OSTAG:Error_Handling_ Requirement subClassOf(error_handling_ requirement,
OSTAG:Requirement) requirement).
AnnotationAssertion(rdfs:label OS- annotationAssertion(rdfslabel, fifo, 'FIFO’).

TAG:FIFO "FIFO”)

script has been written for the OWL-to-Prolog translation, which performs these
steps for every OWL statement:

— Read an OWL statement and remove OWL prefixes?,

— Tokenize the statement and convert each token into lowerCamelCase nota-
tion because Prolog atoms start with a lower case latter.

— Convert the list of tokens into a Prolog clause in the form of a fact.

The following OWL statements are translated at the moment: ClassAssertion,
subClassOf, ObjectPropertyAssertion, DataPropertyAssertion, objectProperty-
Range, objectPropertyDomain, annotationAssertion. Table 1 shows several ex-
amples of translation from OWL to Prolog.

2.3 Deriving Test Cases from the Ontology with Inference Rules

To derive test cases from the ontology, it is necessary to represent testers exper-
tise on how they use requirements to create test cases. This kind of knowledge
is less structured and more difficult to capture. Few general guidelines can be
found in literature, such as boundary value testing. However, most expertise
is specific to particular types of software systems and/or particular domains.
To capture this expertise or knowledge it is necessary to interview experienced
testers and study existing test cases and their corresponding requirements. Such
knowledge embodies inherent strategies for test case creation, knowledge that
can be expressed in the form of heuristics represented as if-then rules.

In this study we examined 16 requirements and 20 corresponding test cases.
Each requirement describes some functionality of a service (function) from a

2 There is only one ontology used at the moment but if there are imported ontologies
in the future, prefixes can be translated as well.

6 V. Tarasov, H. Tan, M. Ismail, A. Adlemo, M. Johansson

driver for a hardware unit, in this case represented by an embedded avionic
system component. Thus, all requirements are grouped according to services. We
analysed requirements covering six services. During the analysis an original test
case, previously created manually by a software tester, was compared with the
corresponding requirement to fully understand how different parts of the original
test case had been constructed. Then, any inconsistencies or remaining doubts
were cleared during discussions with the industry software testers participating
in the study.

The outcome from these activities was a set of inference rules formulated in
plain English. Each original test case consists of four parts: prerequisite con-
ditions, test inputs, test procedure, and expected test results. Consequently,
inference rules were formulated for each of the test case parts. An example of a
inference rule for the test procedure part of the requirements SRSRS4YY-431 is
shown below:

IF the requirement is for a service and a UART controller is to be
deactivated

THEN add the call to the requirement’s service, calls to a transmission
service and reception service as well as a recovery call to the
first service.

The condition (if-part) of a heuristic rule is formulated in terms of the individ-
ual representing the requirement and the related ontology entities representing
connected hardware parts, input/output parameters for the service and the like.
The action (then-part) part of the rule contains instructions on how a test case
part is to be generated.

After formulating the inference rules, they need to be implemented in a pro-
gramming language. There are two basics requirements that have to be met by
such a language: 1) it should have means to represent the rule in a natural way
and 2) it should have means to access the entities in the ontology. We chose
Prolog [2] as the language for the implementation as Prolog complies with both
of the basic requirements. The acquired inference rules can be implemented with
the help of Prolog rules (a Prolog rule is analogous to a statement in other pro-
gramming languages). After the OWL-to-Prolog translation (described in the
previous sub-section), the ontology becomes an inherent part of the Prolog pro-
gram, and, as a consequence, the ontology entities can be directly accessed by
the Prolog code. Finally, the inference engine that is built-in into Prolog is used
to execute the coded rules to generate test cases.

An example of the inference rule written in Prolog that implements the pre-
vious heuristic rule is given below:

1 tc_procedure(Requirement, Procedure) :-
% get service individual for call #1
2 objectPropertyAssertion(requirementForService, Requirement, Service),
% check condition for calls #2-4
3 objectPropertyAssertion(requiresAction, Requirement, DeactivateUART),
4 objectPropertyAssertion(actsOn, DeactivateUART, UartController),

Inference Rules and a Requirements Ontology to Generate Test Cases 7

[Imt\ahzat\onSew\ce] | UART_Controller |

instanceOf

|

|

|

|

|

| requirementForService
| UARTController-1
|

|

|

|

|

|

§

| Transmission_Service | | Reception_Service |

instanceOf instanceOf

actsOn

[WriteService] [ReadService] [SRSRS4YY-431]—requ\resAct\cn DeactivateUART

hasQueue hasQueue

expectsResult
TyFIFO RyFIFO
RS4yyNotlnitialised

hasRequirementParameter

instanceOf [CommunicationTypeCunfigurationErrur]

Service_Result_Type

instanceOf

——————————
RS4yyOk CommunicationType |-hasParameterValueList¥»| [rs485Com, rs422Com] }
=

Fig. 3. Ontology paths used by the inference rules to generate a test case for the
requirement SRSRS4YY-431. The dashed line indicates the paths used by the inference
rule demonstrated in the example above to generate the test procedure part of the test
case. The other paths are used by the remaining rules to generate the other parts of
the test case.

5 classAssertion(uart_controller, UartController),
% get individuals of the required services
6 classAssertion(transmission_service, WriteService),
classAssertion(reception_service, ReadService),
8 Procedure = [Service, WriteService, ReadService, recovery(Service)].

~

Line 1 in the example is the head of the rule consisting of the name, input
argument and output argument. Lines 2-7 encode the condition of the heuristic
as well as acts as queries to retrieve the relevant entities from the ontology. Line
8 constructs the procedure part of the test case as a list of terms. The list is
constructed from the retrieved ontology entities and special term functors.

Fig. 3 shows the ontology entities used by the inference rule, when it is
invoked to generate a test case for the requirement SRSRS4YY-431. The figure
shows ontology paths, each one being a number of ontology entities connected
by object properties or subsumption relation.

Each test case is generated sequentially, from the prerequisites part through
to the results part. The generated parts are collected into one structure by the
following rule:

test_case(Requirement,
tc(description(TCid, ReqID, Service), Prerequisites, Inputs, Procedure,
Results)) :-
req_id(Requirement, ReqID),
objectPropertyAssertion(requirementForService, Requirement, Service),

8 V. Tarasov, H. Tan, M. Ismail, A. Adlemo, M. Johansson

Table 2. Number of inference rules used to generate different parts of test cases

Test case part Main rules Auxiliary rules
Prerequisite conditions 8 4

Test inputs 8 1

Test procedure 5

Expected test tesults 9 5

tc_prerequisites(Requirement, Prerequisites),
tc_inputs(Requirement, Inputs),
tc_procedure(Requirement, Procedure),
tc_results(Requirement, Results),
new_tcid(TCid) .

Finally, the test case structure is translated into plain text in English. The
final result can be found in the right column in Table 3.

3 Experiment and Evaluation

The example provided by Saab consisted of a hardware module with embedded
code. The examined part of the example consisted of 15 requirements, specified
in the SRS (Software Requirement Specification document), with corresponding
18 test cases, specified in the STD (Software Test Description document). In
most cases one requirement is evaluated by executing one test case but in some
occasions one requirement is evaluated by executing two or more test cases.

A total of 40 inference rules were used to generate the 18 test cases. The
number of rules for each test case part is detailed in Table 2 (an auxiliary rule
is intended to be invoked by a main rule). The corresponding test cases have
been reproduced in plain English, using the same format as described in the
STD document, by applying the inference rules to the ontology. The result from
this exercise can be observed in Table 3 where the text in left column is a
slightly modified excerpt from the STD document while the text in the right
column is the generated output through applying some of the inference rules
to the ontology. The result presented in the table corresponds to one specific
requirement, in this case SRSRS4YY-431, a requirement that is evaluated in one
test case, in this case STDRS4YY-114. As can be observed, there is an almost
one-to-one correspondence between the texts in the two columns. However, the
authors would like to point out that in some occasions the generated test case
texts indicated a discrepancy with the corresponding test case texts found in
the STD document. These discrepancies were presented to and evaluated by
personnel from Saab and on occasions the observed discrepancies indicated a
detected error in the STD document. Hence, this correctness insurance exercise
helped improving the quality of the STD document.

Inference Rules and a Requirements Ontology to Generate Test Cases

Table 3. Test case from the STD (left column) and the corresponding generated test

case by applying inference rules to the ontology (right column)

Test Inputs

1. According to table below.

2. <uartld> := <uartId> from the
rsdyy-init call

3. <uartld> := <uartld> from the
rsdyy-init call

4. <comType> := rsdyy_rs422Com

Test Procedure
1. Call rsdyy-init
2. Call rsdyy_write
3. Call rsdyy_read
4. Recovery: Call rs4yy_init

Expected Test Results

1. <result> == rsdyy_comTypeCfgError
2. <result> == rs4yy_notlInitialised

3. <result> == rs4yy_notlInitialised,
<length> ==

4. <result> == rsdyy_ok

Test Inputs:

1. <communicationType> := min_value - 1
<communicationType> := max_value + 1
<communicationType> := 485053

2. <uartID> := <uartID> from the

initializationService call

3. <uartID> := <uartID> from the

initializationService call

4. <communicationType> := RS422

Test Procedure:
1. Call initializationService
2. Call writeService
3. Call readService
4. Recovery: Call initializationService

Expected Test Results:

1. <result> ==
communicationTypeConfigurationError

2. <result> == rs4yyNotlInitialised

3. <result> == rs4yyNotlInitialised, <length> ==
4. <result> == rsdyyOk

4 Related Work

The reason for conducting tests on a software product/system is mainly to be
able to put some level of trust on the quality and requirement fulfilment of the
prod-uct/system. To run the tests on the product/system, some kind of test
case(s) must be designed and the corresponding test code(s) be programmed. In
many occasions, if not most, this is a manual activity with everything that this
embodies of potential errors in the test code caused by missed or misinterpreted
requirements due to a deficient test case description or a non-experienced tester.

In an attempt to counteract on these negative effects, model-driven testing
techniques have surged in recent years as an alternative field of applied research
in the software testing domain [12,1]. One specific modelling language that has
emerged as the prime modeling-tool in this domain is UML. There have been
presented a large number of projects with a focus on automatic generation of
test cases based on the usage of UML to describe some parts of the testing activ-
ities [9] Other examples of model-driven test case generation projects have been
based on Function Block Diagrams [4] or State-based testing [7], just to mention
two. The different model-driven test case generation approaches presented by
different researcher teams often depend on some kind of requirement specifica-
tion as input to the process [9]. When it comes to the focus of the test activities,
i.e. what is the output from the testing activities that needs to be evaluated, two
main areas can be identified, code coverage testing (which could be looked upon
as testing the output of a software design process) and require-ment coverage

10 V. Tarasov, H. Tan, M. Ismail, A. Adlemo, M. Johansson

testing (which could be looked upon as testing the input to a software design
process). All of the presented model-driven test case generation approaches re-
ferred to earlier have had a focus on some kind of code coverage. However, in
some application domains the verification of the coverage of the requirements,
which means that all requirements stated in a requirements specification doc-
ument have been considered and tested in a traceable manner, is equally, and
sometimes even more, important than code coverage. This is the case in, for
example, the avionics industry of which Saab is a perfect example.

There exist only a few projects that rely on ontologies for software testing
activities, for example [13,5]. As mentioned earlier in this paper, an ontology
represents a formal model of the knowledge captured for a specific domain, in this
paper being software testing. However, it should be stressed that the creation
of an ontology is only the first step in order to automatically create software
test cases. It must also be contemplated that the test cases must be generated
with some specific test objectives in mind. The OSTAG-project that has been
presented in this paper is one of very few examples where both code coverage
and requirement coverage can be handled.

Prolog has been used as a reasoner for OWL ontologies in a number of cases.
For example, in [15] the authors describe an approach to reasoning over temporal
ontologies that translates OWL statements to clauses in Prolog and then uses
the built-in inference mechanism. In [10] an OWL ontology and OWLRuleML
rules are translated into Prolog clauses, which are then used to infer new facts
by the Prolog inference engine. The work presented in this paper has utilised a
similar idea, however, we have used OWL functional-style syntax for the OWL
to Prolog translation, which makes queries to the ontology as close as possible
to OWL syntax.

5 Conclusions

We have proposed an approach to generate software test cases based on the use
of an ontology, representing software requirements as well as knowledge about
the components of the software system under development, and inference rules,
representing strategies for test case creation. The inference rules are coded in
Prolog and the built-in inference engine is used for executing the rules. During
the execution the rules query the ontology to check conditions and retrieve data
needed for the construction of test cases. To make this possible, the ontology is
serialised in OWL functional-style syntax and then translated to Prolog syntax.
The first experiment showed that, by using 40 inference rules, 18 test cases for
15 requirements were generated as plain text in English. The examination of
the result showed an almost one-to-one correspondence between the texts in the
generated test cases and the texts provided by one of our industrial partners,
Saab.

The translation from the OWL functional-style syntax to the Prolog syntax
allowed for seamless integration of the ontology into the Prolog program. On
one hand, the syntax of the OWL statements was preserved to a great extent.

Inference Rules and a Requirements Ontology to Generate Test Cases 11

On the other hand, the inference rules could directly reference the ontology
constructs in their bodies. The Prolog inference mechanism took care of finding
an inference rule with a satisfied condition and firing it. As a result, the ontology
was effectively used for an applied purpose automation of software testing.
However, it should be noted that not all OWL statements are translated at the
moment. Most notably complex class constructors are not translated (due to the
fact that we did not find the need to use them in the ontology so far). There
is also lack of inference rules preserving the semantics of OWL, e.g. rules to
find all individuals of a class having several subclasses. Moreover, the conducted
experiment is of limited scale. More experiments with an increased number of
inference rules are needed to evaluate the proposed approach to demonstrate its
full potential.

There exist other languages to implement inference rules, e.g. SWRL or the
inference rule language built-in in Jena, which are closer to the syntax and se-
mantics of OWL and follow the open world assumption. Such languages may
be better suited for situations when new data need to be integrated into the
knowledge base. Despite that, we have chosen Prolog because our case does not
require data integration. Additionally, Prolog provides both inference mecha-
nism and traditional programming faciliteis, thus, eliminating the need to use
one language for implementing inference rules and another one for developing
a software prototype. At the same, time OWL was chosen as the languange to
implement the ontology to support test case generation bacause the ontology
can also be used to support other tasks in the software development process,
such as requirement analysis, and requirement verification and validation.

The future work will go along the lines of increasing the number of inference
rules to generate test cases for the so far uncovered requirements. This will
allow us to further test the applicability of the proposed approach of combining
an OWL ontology and Prolog inference rules in an ontology-based application,
such as in the software test case generation domain. A comparision can also be
done between the Prolog and OWL reasoning systems.

So far the results from the project have been positive and have demonstrated
the feasibility of producing test cases in a semi-automatic fashion. The automa-
tion of the test case generation process has demonstrated that the quality (in
our case the correctness) of the generated test cases were improved. Minor er-
rors that went undetected by the human test case designers were identified and
corrected as mentioned in Section 3. This result puts the finger on the benefits
of automating a process in general and the test case generation process in spe-
cific. However, this is not the only measurable result that is expected to come
from the project. In the near future other types of metric are going to evalu-
ated, such as to quantify the time savings gained from automating the test case
generation process through real-life time studies, and to verify the coverage of
the requirements to demonstrate that all requirements stated in a requirements
specification document have been considered and tested.

12

V. Tarasov, H. Tan, M. Ismail, A. Adlemo, M. Johansson

Acknowledgments. The research reported in this paper has been financed by
grant #20140170 from the Knowledge Foundation (Sweden).

References

1.

10.

11.

12.

13.

14.

15.

16.

Anand, S., Burke, E., Chen, T., Clark, J., Cohen, M., Grieskamp, W., Harman,
M., Harrold, M., McMinn, P.: An orchestrated survey on automated software test
case generation. Journal of Systems and Software 86(8) (August 2013)

Bratko, I.: Prolog Programming for Artificail Intelligence. Pearson Education, 4th
edn. (2011)

CapGemini, HP, Sogeti: World quality report 2015-16 (2015), 80 pages

Enoiu, E., Causevic, A., Ostrand, T., Weyuker, E., Sundmark, D., Pettersson, P.:
Automated test generation using model-checking: An industrial evaluation. Inter-
national Journal on Software Tools for Technology Transfer pp. 1-19 (2014)
Freitas, A., Vieira, R.: An ontology for guiding performance testing. In: 2014
IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and
Intelligent Agent Technologies (IAT). pp. 400-407 (2014)

Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering. In:
Proc. of Workshop on Sematic Web Enabled Software Engineering (SWESE) on
the ISWC. pp. 5-9 (2006)

Holt, N., Briand, L., Torkar, R.: Empirical evaluations on the cost-effectiveness of
state-based testing: An industrial case study. Information and Software Technology
56, 890-910 (2014)

Judge Business School, Cambridge University: Cambridge university study states
software bugs cost economy $312 billion per year (2013), http://www.prweb.com/
releases/2013/1/prweb10298185.htm. Accessed September 22nd, 2016

Kaur, A., Vig, V.: Systematic review of automatic test case generation by UML
diagrams. International Journal of Engineering Research & Technology (IJERT)
1(6) (August 2012), 17 pages

Laera, L., Tamma, V., Bench-Capon, T., Semeraro, G.: SweetProlog: A system to
integrate ontologies and rules. In: Proc. of the 3rd RuleML workshop Rules and
Rule Markup Languages for the Semantic Web. LNCS, vol. 3323, pp. 188-193.
Springer (2004)

Motik, B., Patel-Schneider, P., Parsia, B.: OWL 2 Web Ontology Language: Struc-
tural Specification and Functional-Style Syntax. W3C, 2nd edn. (2012)

Mussa, M., Ouchani, S., Al Sammane, W., Hamou-Lhadj, A.: A survey of model-
driven testing techniques. In: QSIC ’09. 9th International Conference on Quality
Software. pp. 167-172 (2009), 24-25 August 2009, Jeju, South Korea

Nasser, V., W., D., Maclsaac, D.: Knowledge-based software test generation. In:
The 21st International Conference on Software Engineering and Knowledge Engi-
neering. pp. 312-317. Boston, U.S.A. (July 2009)

Nguyen, C.D., Perini, A., Tonella, P.: Ontology-based test generation for multi-
agent systems. In: Proceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems. vol. 3, pp. 1315-1320 (2008)
Papadakis, N., Stravoskoufos, K., Baratis, E., Petrakis, E., Plexousakis, D.: PRO-
TON: A Prolog reasoner for temporal ontologies in OWL. Expert Systems with
Applications 38(12), 14660-14667 (2011)

Wang, Y., Bai, X., Li, J., Huang, R.: Ontology-based test case generation for
testing web services. In: Autonomous Decentralized Systems, ISADS’07. Eighth
International Symposium on. pp. 43-50. IEEE (2007)

