
A Simplified Agile Methodology for
Ontology Development

Silvio Peroni1

DASPLab, DISI, University of Bologna, Bologna, Italy
silvio.peroni@unibo.it

Abstract. In this paper we introduce SAMOD, a.k.a. Simplified Ag-
ile Methodology for Ontology Development, a novel agile methodology
for the development of ontologies by means of small steps of an itera-
tive workflow that focuses on creating well-developed and documented
models starting from exemplar domain descriptions.
RASH:
https://w3id.org/people/essepuntato/papers/samod-owled2016.html

Keywords: Agile Ontology Development Methodology, Conceptual Mod-
elling, Knowledge Engineering, OWL Ontologies, Ontology Engineer-
ing, SAMOD, Test-Driven Development

1 Introduction

In the past twenty years, the Software Engineering domain has seen the pro-
posal of new agile methodologies for software development, in contrast with
highly-disciplined processes that have characterised such discipline since its be-
ginning. Following this trend, recently, agile development methodologies have
been proposed in the field of Ontology Engineering as well (e.g. [15] [9] [5]).
Such kind of methodologies would be preferred when the ontology to develop
should be composed by a limited amount of ontological entities – while the
use of highly-structured and strongly-founded methodologies remain valid and,
maybe, mandatory to solve and model incredibly complex enterprise projects.

One of main characteristics that ontology development methodologies usu-
ally have is the use of exemplar data during the development process so as
to:

– avoid inconsistencies – a common mistake when developing a model is to
make the TBox consistent if considered alone, and inconsistent when we
define an ABox for it, even if all the classes and properties are completely
satisfiable. Using real-world data, as exemplar of a particular scenario of
the domain we are modelling, can definitely prevent this problem;

– have self-explanatory and easy-understandable models – trying to implement
a particular real-world and significative scenario related to a model by using
real data allows one to better understand if each TBox entity has a mean-
ingful name that describes clearly the intent and the usage of the entity
itself. This allows users to understand a model without spending a lot of
effort in reading entity comments and the related documentation. The use
of real data as part of the ontology development obliges ontology engineers

https://w3id.org/people/essepuntato/papers/samod-owled2016.html


2 Silvio Peroni

and developers to think about the possible ways users will understand and
use the ontology they are developing, in particular the very first time they
look at it;

– provide examples of usage – producing data within the development process
means to have a bunch of exemplars that describe the usage of the model
in real-world scenarios. This kind of documentation, implicitly, allows users
to apply a learn-by-example approach [1] in understanding the model and
during their initial skill acquisition phase.
In this paper we introduce SAMOD (Simplified Agile Methodology for Ontol-

ogy Development), a novel agile methodology for the development of ontologies,
partially inspired to the Test-Driven Development process in Software Engineer-
ing [2]. The methodology is organised in three simple and small steps within
an iterative process that focuses on creating well-developed and documented
models by using significative exemplars of data, so as to produce ontologies
that are always ready-to-be-used and easily-understandable by humans (i.e.,
the possible customers) without spending a lot of effort. SAMOD is the result
of our dedication to the development of ontologies in the past six years. While
the first draft of the methodology has been proposed in 2010 as starting point
for the development of the Semantic Publishing and Referencing Ontologies1

[12], it has been revised several times so as to come to the current version
presented in this paper – which has been already used for developing several
ontologies, such as the Vagueness Ontology2, the F Entry Ontology3, the OA
Entry Ontology4, and the Imperial Data Ontology5. While a full introduction
to SAMOD is provided in [13], in this paper we provide a summary of it and
we discuss some outcomes of an user-based evaluation we have conducted in
the past months.

The rest of the paper is organised as follows. In Section 2 we introduce the
entities involved in the methodology. In Section 3 we present all the steps of
SAMOD, providing details on each of them. In Section 4 we discuss the out-
comes of some experiments where we asked to subjects with limited knowledge
about Semantic Web technologies and Ontology Engineering to use SAMOD
for developing an ontology. In Section 5 we present some of the most relevant
related works in the area. Finally, in Section 6 we conclude the paper sketching
out some future works.

2 Preliminaries
The kinds of people involved in SAMOD are domain experts and ontology
engineers. A domain expert, or DE, is a professional with expertise in the domain
to be described by the ontology, and she is mainly responsible to define, often
in natural language, a detailed description of the domain in consideration. An
ontology engineer, or OE, is a person who constructs meaningful and useful
ontologies by using a particular formal language (such as OWL 26) starting
1 http://www.sparontologies.net/
2 http://www.essepuntato.it/2013/10/vagueness
3 http://www.essepuntato.it/2014/03/fentry
4 http://purl.org/emmedi/oaentry
5 http://www.essepuntato.it/2015/07/ido
6 http://www.w3.org/TR/owl2-syntax/

http://www.sparontologies.net/
http://www.essepuntato.it/2013/10/vagueness
http://www.essepuntato.it/2014/03/fentry
http://purl.org/emmedi/oaentry
http://www.essepuntato.it/2015/07/ido
http://www.w3.org/TR/owl2-syntax/


A Simplified Agile Methodology for Onto 3

from an informal and precise description of a particular problem or domain
provided by DEs.

A motivating scenario (MS) [19] is a small story problem that provides
a short description and a set of informal and intuitive examples about it. In
SAMOD, a motivation scenario is composed by a name that characterises it,
a natural language description that presents a problem to address, and one or
more examples according to the description.

An informal competency question (CQ) [19] is a natural language ques-
tion that represents an informal requirement within a particular domain. In
SAMOD, each informal competency question is composed by an unique identi-
fier, a natural language question, the kind of outcome expected as answer, some
exemplar answers considering the examples provided in the related motivat-
ing scenario7, a list of identifiers referring to higher-level informal competency
questions that the question in consideration requires, if any.

A glossary of terms (GoT) [7]is a list of term-definition pairs related to
terms that are commonly used for talking about the domain in consideration.
The term in each pair may be composed by one or more words or verbs, or even
by a brief sentence, while the related definition is a natural language explanation
of the meaning of such term.

SAMOD prescribes an iterative process which aims at building the final
model through a series of small steps. At the end of each iteration a particular
preliminary version of the final model is released. Within a particular iteration
in, the current model is the version of the final model released at the end of
the iteration in-1. Contrarily, a modelet is a stand-alone model describing a
particular aspect of the domain in consideration which is used to provide a first
conceptualisation of a motivating scenario, without caring about the current
model available after the previous iteration of the process – it is similar to a
microtheory as introduced in Cyc [17]. By definition, a modelet does not include
entities from other models and it is not included in other models.

A test case Tn, produced in the nth iteration of the process, is a sextuple
including a motivating scenario MSn, a list of scenario-related informal compe-
tency questions CQn, a glossary of terms GoTn for the domain addressed by
the motivating scenario, a TBoxn of the ontology implementing the description
introduced in the motivating scenario, an exemplar ABoxn implementing all
the examples described in the motivating scenario according to the TBoxn, and
a set of SPARQL8 queries SQn formalising the informal competency questions.
A bag of test cases (BoT) is a set of test cases.

Given as input MSn, TBoxn and GoTn – a model test aims at checking the
validity of TBoxn against specific requirements, i.e. [formal requirement] un-
derstanding (even by using appropriate unit tests [21]) whether TBoxn is con-
sistent, and [rhetorical requirement] understanding whether TBoxn covers
MSn and whether the vocabulary used by TBoxn is appropriate.

7 Note that if there are no data in any example of the motivating scenario that answer
to the question, it is possible that either the competency question is not relevant for
the motivating scenario or the motivating scenario misses some important exemplar
data. In those cases one should remove the competency question or modify the
motivating scenario accordingly.

8 http://www.w3.org/TR/sparql11-query/

http://www.w3.org/TR/sparql11-query/


4 Silvio Peroni

Given as input MSn, TBoxn and ABoxn built according to TBoxn, and
considering the examples described in MSn, a data test aims at checking the
validity of the model and the dataset and against specific requirements, i.e.
[formal requirement] understanding whether the TBoxn is still consistent
when considering the ABoxn, and [rhetorical requirement] understanding
whether the ABoxn describes all the examples accompanying the motivating
scenario completely.

Given as input TBoxn, ABoxn, CQn, and SQn, a query test aims at checking
the validity of TBoxn, ABoxn, and each query in SQn against specific require-
ments, i.e. [formal requirement] understanding whether each query in SQn
is well-formed and can correctly run on TBoxn+ABoxn, and [rhetorical re-
quirement] understanding whether each query in CQn is mapped into an ap-
propriate query in SQn and whether, running each of them on TBoxn+ABoxn,
the result conforms to the expected outcome detailed in each query in CQn.

3 Methodology

SAMOD is based on the following three iterative steps (briefly summarised in
Fig. 1) – where each step ends with the release of a snapshot of the current
state of the process called milestone:

1. OEs collect all the information about a specific domain, with the help of
DEs, in order to build a modelet formalising the domain in consideration,
following certain ontology development principles, and then they create
a new test case that includes the modelet. If everything works fine (i.e.,
model test, data test, and query test are passed), OEs release a milestone
and proceed;

2. OEs merge the modelet of the new test case with the current model pro-
duced by the end of the last process iteration, and consequently they update
all the test cases in BoT specifying the new current model as TBox. If ev-
erything works fine (i.e., all model, data and query test are passed according
to their formal requirements only), OEs release a milestone and proceed;

3. OEs refactor the current model, in particular focussing on the last part
added in the previous step, taking into account good practices for ontology
development processes. If everything works fine (i.e., all model, data and
query test are passed), OEs release a milestone. In case there is another
motivating scenario to be addressed, OEs iterate the process, otherwise the
process ends.

The next sections elaborate on those steps introducing a real running ex-
ample9 considering a generic iteration in.

3.1 Step 1: define a new test case

OEs and DEs work together to write down a motivating scenario MSn, being
as close as possible to the language DEs commonly use for talking about the
domain. An example of motivating scenario is illustrated in Table 1.
9 The whole documentation about the example is available at http://www.

essepuntato.it/2013/10/vagueness/samod.

http://www.essepuntato.it/2013/10/vagueness/samod
http://www.essepuntato.it/2013/10/vagueness/samod


A Simplified Agile Methodology for Onto 5

Fig. 1. A brief summary of SAMOD, starting with the ”Collect requirements and
develop a modelet” step.

Table 1. An excerpt of a motivating scenario.

Name Vagueness of the TBox entities of an ontology

Description

Vagueness is a common human knowledge and lan-
guage phenomenon, typically manifested by terms
and concepts like High, Expert, Bad, Near etc.
In an OWL ontology vagueness may appear in the
definitions of classes, properties, datatypes and in-
dividuals. For these entities a more explicit de-
scription of the nature and characteristics of their
vagueness/non-vagueness is required. [...]

Example 1

Silvio Peroni thinks that the class TallPerson is
vague since there is no way to define a crisp height
threshold that may separate tall from non-tall peo-
ple.
Panos Alexopoulos, on the other hand, considers
someone as tall when his/her height is at least
190cm. Thus, for Panos, the class TallPerson is not
vague.

Example 2 In an company ontology, the class StrategicClient
[...]

Given a motivating scenario, OEs and DEs should produce a set of informal
competency questions CQn, each of them identified appropriately. An example
of an informal competency question, formulated starting from the motivating
scenario in Table 1, is illustrated in Table 2.

Now, having both a motivating scenario and a list of informal competency
questions, OEs and DEs write down a glossary of terms GoTn. An example of
glossary of terms is illustrated in Table 3.



6 Silvio Peroni

Table 2. An example of competency question.

Identifier 3

Question What are all the entities that are characterised by
a specific vagueness type?

Outcome The list of all the pairs of entity and vagueness type.

Example StrategicClient, quantitative
StrategicClient, qualitative

Depends on 1

Table 3. An excerpt of a glossary of terms.

Term Definition

description of vagueness

The descriptive characterisation of vagueness to
associate to an ontological entity by means of an

annotation. It specifies a vagueness type and
provides at least one justification for considering

the target ontological entity vague.

vagueness type A particular kind of vagueness that characterises
the entity.

[...] [...]

The remaining part of this step is led by OEs only10, who are responsible
of developing a modelet according to the motivating scenario, the informal
competency questions and the glossary of terms11.

In doing that work, they must strictly follow the following principles:

– Keep it small. Keeping the number of the developed ontology entities
small – e.g. Miller’s magic number “7 ± 2” [11] entities per type (classes,
object properties, data properties);

– Use patterns. OEs should take into consideration existing knowledge, in
particular existing and well-documented patterns – the Semantic Web Best
Practices and Deployment Working Group page12 and the Ontology Design
Patterns portal13are both valuable examples – and other widely-adopted
Semantic Web vocabularies;

– Middle-out development. OEs should start to define the most relevant
concepts and then to focus on the most high-level and most concrete ones –
such middle-out approach [20] allows one to avoid unnecessary effort during
the development because detail arises only as necessary, by adding sub- and
super-classes to the basic concepts;

– Keep it simple. The modelet must be designed according to the informa-
tion obtained previously (MSn, CQn, GoTn) in an as quick as possible way,
spending the minimum effort and without adding any unnecessary seman-
tic structure – avoiding to think about inferences at this stage, and rather
describing the motivating scenario fully.

10 The OEs involved in our methodology can vary in number. However SAMOD has
been thought for being used also by one OE only.

11 Note that it is possible that multiple entities (i.e. classes, properties, individuals)
are actually hidden behind one single definition in the glossary of terms.

12 http://www.w3.org/2001/sw/BestPractices/OEP/
13 http://www.ontologydesignpatterns.org/

http://www.w3.org/2001/sw/BestPractices/OEP/
http://www.ontologydesignpatterns.org/


A Simplified Agile Methodology for Onto 7

– Self-explanatory entities. Each ontological entity must be understand-
able by humans by simply looking at its local name (i.e., the last part of
the entity IRI). No labels and comments have to be added at this stage
and all the entity IRIs must not be opaque – class local names has to
be capitalised and in camel-case notation if composed by more than one
word (e.g. DescriptionOfVagueness), property local names must start with
a non-capitalised verb14 and in camel-case notation if composed by more
than one word (e.g. wasAttributedTo), and individual local names must be
non-capitalised and dash-separated if composed by more than one word
(quantitative-vagueness).

The goal of OEs is to develop a modeletn, eventually starting from a graph-
ical representation written in a proper visual language – such as Graffoo [6] –
so as to convert it automatically in OWL by means of appropriate tools, e.g.
DiTTO [8].

Starting from modeletn, OEs proceed in four phases:

1. run a model test on modeletn. If it succeeds, then
2. create an exemplar dataset ABoxn that formalises all the examples intro-

duced in MSn according to modeletn. Then, OEs run a data test and, if
succeeds, then

3. write SQn as many informal competency questions in CQn. Then, OEs run
a query test and, if it succeeds, then

4. create a new test case Tn = (MSn, CQn, GoTn, modeletn, ABoxn, SQn)
and add it in BoT.

When running the model test, the data test and the query test, it is possible
to use any appropriate available software to support the task, such as reasoners
(Pellet15, HermiT16) and query engines (Jena17, Sesame18).

Any failure of any test that is considered a serious issue by the OEs results
in getting back to the more recent milestone. It is worth mentioning that an
exception should be also arisen if OEs think that the motivating scenario MSn
is to big to be covered by one only iteration of the process. In this case, it may
be necessary to re-schedule the whole iteration, for example split adequately
the motivating scenario in two new ones.

3.2 Step 2: merge the current model with the modelet

At this stage, OEs merge modeletn, included in the new test case Tn, with the
current model, i.e., the version of the final model released at the end of the
previous iteration (i.e., in-1). OEs proceed in three consecutive steps:

1. to define a new TBoxn merging19 the current model with modeletn, by
adding all the axioms in the current model and modeletn to TBoxn and then

14 http://www.jenitennison.com/blog/node/128
15 http://clarkparsia.com/pellet
16 http://hermit-reasoner.com/
17 http://jena.sourceforge.net/
18 http://www.openrdf.org/
19 If in is actually i1, then the modeletn becomes the current model since no previous

model is actually available.

http://www.jenitennison.com/blog/node/128
http://clarkparsia.com/pellet
http://hermit-reasoner.com/
http://jena.sourceforge.net/
http://www.openrdf.org/


8 Silvio Peroni

by collapsing semantically-identical entities, e.g. those that have similar
names and that represent the same real-world entity (for instance Person
and HumanBeing);

2. to update all the test cases in BoT, swapping the TBox of each test case
with TBoxn and refactoring each ABox and SQ according to the new entity
names if needed, so as to refer to the more recent model;

3. to run the model test, the data test and the query test on all the test cases
in BoT, according to their formal requirements only;

4. to set TBoxn as the new current model.

Any serious failure of any test – i.e. something went bad in updating the
test cases in BoT – results in getting back to a previous milestone. In this case,
OEs have to consider either the most recent milestone, if they think there was
a mistake in some actions performed during this, or one of the other previous
milestones, if the failure is demonstrably given by any of the components of the
latest test case Tn.

3.3 Step 3: refactor the current model

In the last step, OEs work to refactor the current model shared among all the
test cases in BoT, and, accordingly, each ABox and SQ of each test case, if
needed. In doing that task, OEs must strictly follow the following principles:

– Reuse existing knowledge. Reusing concepts and relations defined in
other models is encouraged and often labelled as a common good practice
[20];

– Document it. Adding annotations – i.e., labels (i.e., rdfs:label), comments
(i.e., rdfs:comment), and provenance information (i.e., rdfs:isDefinedBy) – to
ontological entities, so as to provide natural language descriptions of them
and to allow tools (e.g., LODE [14]) to produce an HTML human-readable
documentation from the ontology source;

– Take advantages from technologies. Enriching the current model by
using all the capabilities offered by OWL 2 in order to infer automatically
as much information as possible starting from a (possible) small set of real
data, by avoiding over-classifications (e.g. assertions that may be automat-
ically inferred by a reasoner).

Finally, once the refactor is finished, OEs have to run the model test, the
data test and the query test on all the test cases in BoT. This is a crucial task to
perform, since it guarantees that the refactoring has not damaged any existing
conceptualisation implemented in the current model.

3.4 Output of an iteration

Each iteration of SAMOD produces a new test case that will be added to the
bag of test cases (BoT). Each test case describes a particular aspect of the
model under-development, i.e., the current model under consideration after one
iteration of the methodology.

In addition of being integral part of the methodology process, each test case
represents a complete documentation of a particular aspect of the domain de-
scribed by the model, due to the natural language descriptions (the motivating



A Simplified Agile Methodology for Onto 9

scenario and the informal competency questions) it includes, as well as the for-
mal implementation of exemplar data (the ABox) and possible ways of querying
the data compliant with the model (the set of formal queries). All these addi-
tional information should help end users in understanding, with less effort, what
the model is about and how they can use it to describe the particular domain
it addresses.

4 Experiments

We performed an experiment so as to understand to which degree SAMOD can
be used by people with limited experience in Semantic Web technologies and
Ontology Engineering. In particular, we organised a user testing session so as
to gather some evidences on the usability of SAMOD when modelling OWL
ontologies.

We asked nine Computer Science and Law people – one professor, two post-
docs, and six Ph.D. students – to use SAMOD (one iteration only) for modelling
a particular motivating scenario provided as exercise. SAMOD, as well as the
main basics on Ontology Engineering, OWL, and Semantic Web technologies,
were introduced to the subjects during four lectures of four hours each. At the
end of the last lecture, we asked them to answer three questionnaires: a back-
ground questionnaire containing questions on previous experience in Ontology
Engineering and OWL; another questionnaire containing ten likert questions
according to the System Usability Scale (SUS), which also allowed us to mea-
sure the sub-scales of pure Usability and pure Learnability, as proposed recently
by Lewis and Sauro [10]; and a final questionnaire asking for the experience of
using SAMOD for completing the task.

The mean SUS score for SAMOD was 67.25 (in a 0 to 100 range), approach-
ing the target score of 68 to demonstrate a good level of usability (according to
[16]). The mean values for the SUS sub-scales Usability and Learnability were
65.62 and 73.75 respectively. In addition, an Experience score was calculated
for each subject by considering the values of the answers given to the back-
ground questionnaire. We compared this score (x-axis in Fig. 2) with the SUS
values and the other sub-scales (y-axis) using the Pearson’s r. As highlighted by
the red dashed lines (referring to the related Least Squares Regression Lines),
there is a positive correlation between the Experience score and the SUS values
– i.e., the more a subject knew about ontology engineering in general, the more
SAMOD is perceived as usable and easy to learn. However, only the relation be-
tween the Learnability score and the Experience score was statistical significant
(p < 0.05).

Axial coding of the personal comments expressed in the final questionnaires
[18] revealed a small number of widely perceived issues. Overall the method-
ology proposed has been evaluated positively by 7 subjects (described with
adjectives such as “useful”, “natural”, “effective”, “consistent”, etc.), but it has
also received criticisms by 5 subjects, mainly referring to the need of more ex-
pertise in Semantic Web technologies and Ontology Engineering for using it
appropriately. The use of the tests for assessing the ontology developed after a
certain step has been appreciated as well (3 positive comments vs. 1 negative
one), as well as the use of the scenarios and examples in the very first step of



10 Silvio Peroni

Fig. 2. Three comparisons between the SUS score (and its sub-scales) and the expe-
rience score by the subjects.

SAMOD (3 positive comments) and the implementation of competency ques-
tions in form of SPARQL queries (2 positive comments). All the outcomes of
the questionnaires are available online in the SAMOD GitHub repository20.

5 Related works

Several quick-and-iterative ontology development processes have been intro-
duced recently, which could be preferred when the ontology to develop should
be composed by a limited amount of ontological entities – while the use of
highly-structured and strongly-founded methodologies (e.g. [7] [19] [20]) is still
necessary and, maybe, mandatory to solve and model incredibly complex en-
terprise projects. In this section we introduce some of the most interesting agile
approaches to ontology development.

One of the first agile methodologies introduced in the domain is eXtreme De-
sign (XD) [15], which has been inspired by the eXtreme Programming method-
ology in Software Engineering. The authors described XD as “an approach, a
family of methods and associated tools, based on the application, exploitation,
and definition of ontology design patterns (ODPs) for solving ontology devel-
opment issues”. Summarising, XD is an agile methodology that uses pair design
(i.e. groups of two ontology engineers working together during the development)
and an iterative process which starts with the collection of stories and compe-
tency questions as requirements to address, and then it proposes the re-use of
existing ontology design patterns for addressing such informal requirements.

Another recent approach has been proposed by Keet and Lawrynowicz in
[9]. They propose to transfer concepts related to the Test-Driven Development
in Software Engineering [2] into the Ontology Engineering world. The main
idea behind this methodology is that tests have to be run in advance before to
proceed with the modelling of a particular (aspect of a) domain and, thus, they
have to be proposed and developed in advance. Of course, the first execution of
the tests should fail, since no ontology has been already developed for addressing
20 http://github.com/essepuntato/samod

http://github.com/essepuntato/samod


A Simplified Agile Methodology for Onto 11

them properly, while the ontology developed in future iterations of the process
should result in passing the test eventually.

De Nicola and Missikoff [5] have recently introduced their Unified Process
for ONtology building methodology (a.k.a. UPON Lite), which is an agile on-
tology engineering method that places end users without specific ontology ex-
pertise (domain experts, stakeholders, etc.) at the centre of the process. The
methodology is composed by an ordered set of six steps. Each step outputs a
self-contained artefact immediately available to end users, that is used as input
of the subsequent step. This makes the whole process progressive and differen-
tial, and involves ontology engineers only the very last step of the process, i.e.
when the ontology has to be formalised in some standard language.

6 Conclusions

In this paper we have introduced SAMOD, a Simple Agile Methodology for
Ontology Development. In particular, we have introduced its process by detailing
each of its steps, and we have also discussed the results of an experiment we
have run involving nine people with no or limited expertise in Semantic Web
technologies and Ontology Engineering.

In the future, we plan to involve a larger set of users so as to gather additional
data about its usefulness, usability, and effectiveness. In addition, we plan to
develop supporting tools for accompanying and facilitating users in each step
of the methodology.

Acknowledgements. We would like to thank Jun Zhao for her precious com-
ments and concerns about the initial drafts of SAMOD, David Shotton for our
fruitful discussions when developing the SPAR Ontologies, Francesca Toni as
one of the first users of such methodology, and Panos Alexopoulos as a co-author
of the Vagueness Ontology that we used herein to introduce all the examples
of the SAMOD development process.

References

1. Atkinson, R. K., Derry, S. J., Renkl, A., Wortham, D. (2000). Learning from
Examples: Instructional Principles from the Worked Examples Research. Re-
view of Educational Research, 70 (2): 181–214. http://dx.doi.org/10.3102/
00346543070002181

2. Beck, K. (2003). Test-driven development by example. Addison-Wesley. ISBN: 978-
0321146533

3. Brockmans, S., Volz, R., Eberhart, A., Löffler, P. (2004). Visual Modeling of OWL
DL Ontologies Using UML. In Proceedings of ISWC 2004: 7–11. http://dx.doi.
org/10.1007/978-3-540-30475-3_15

4. Chen, P. P. (1974). The Entity-Relationship Model: Toward a Unified View of
Data. ACM Transactions on Database Systems, 1 (1): 9–36. http://dx.doi.org/
10.1145/320434.320440

5. De Nicola, A., Missikoff, M. (2016). A Lightweight Methodology for Rapid Ontology
Engineering. Communications of the ACM, 59 (3): 79–86. http://dx.doi.org/10.
1145/2818359

http://dx.doi.org/10.3102/00346543070002181
http://dx.doi.org/10.3102/00346543070002181
http://dx.doi.org/10.1007/978-3-540-30475-3_15
http://dx.doi.org/10.1007/978-3-540-30475-3_15
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1145/2818359
http://dx.doi.org/10.1145/2818359


12 Silvio Peroni

6. Falco, R., Gangemi, A., Peroni, S., Vitali, F. (2014). Modelling OWL ontologies
with Graffoo. In The Semantic Web: ESWC 2014 Satellite Events: 320–325. http:
//dx.doi.org/10.1007/978-3-319-11955-7_42

7. Fernandez, M., Gomez-Perez, A., Juristo, N. (1997). METHONTOLOGY: from
Ontological Art towards Ontological Engineering. In Proceedings of the AAAI97
Spring Symposium Series on Ontological Engineering: 33–40. http://aaaipress.
org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf

8. Gangemi, A., Peroni, S. (2013). DiTTO: Diagrams Transformation inTo OWL. In
Proceedings of the ISWC 2013 Posters & Demonstrations Track. http://ceur-
ws.org/Vol-1035/iswc2013_demo_2.pdf

9. Keet M., Lawrynowicz. A. (2016). Test-Driven Development of Ontologies. In Pro-
ceedings of ESWC 2016: 642-657. DOI: http://dx.doi.org/10.1007/978-3-319-
34129-3_39

10. Lewis, J. R., Sauro, J. (2009). The Factor Structure of the System Usability Scale.
In Proceedings of HCD 2009. http://dx.doi.org/10.1007/978-3-642-02806-9_
12

11. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits
on our capacity for processing information. Psychological Review, 63 (2): 81–97.
http://dx.doi.org/10.1037/h0043158

12. Peroni, S. (2014). The Semantic Publishing and Referencing Ontologies. In Se-
mantic Web Technologies and Legal Scholarly Publishing: 121-193. http://dx.
doi.org/10.1007/978-3-319-04777-5_5

13. Peroni, S. (2016). SAMOD: an agile methodology for the development of ontolo-
gies. figshare. http://dx.doi.org/10.6084/m9.figshare.3189769

14. Peroni, S., Shotton, D., Vitali, F. (2012). The Live OWL Documentation Environ-
ment: a tool for the automatic generation of ontology documentation. In Proceed-
ings of EKAW 2012: 398–412. http://dx.doi.org/10.1007/978-3-642-33876-
2_35

15. Presutti, V., Daga, E., Gangemi, A., Blomqvist, E. (2009). eXtreme Design with
Content Ontology Design Patterns. In Proceedings of WOP 2009. http://ceur-
ws.org/Vol-516/pap21.pdf

16. Sauro, J. (2011). A Practical Guide to the System Usability Scale: Background,
Benchmarks & Best Practices. ISBN: 978-1461062707

17. Sowa, J. F. (1993). Building large knowledge-based systems: Representation and
inference in the cyc project: D.B. Lenat and R.V. Guha. Artificial Intelligence, 61
(1): 95–104. http://dx.doi.org/10.1016/0004-3702(93)90096-T

18. Strauss, A. Corbin, J. (1998). Basics of Qualitative Research Techniques and Pro-
cedures for Developing Grounded Theory (2nd edition). Sage Publications: London.
ISBN: 978-0803959408

19. Uschold, M., Gruninger, M. (1996). Ontologies: Principles, methods and appli-
cations. IEEE Intelligent Systems, 11 (2): 93-155. http://dx.doi.org/10.1109/
MIS.2002.999223

20. Uschold, M., King, M. (1995). Towards a Methodology for Building Ontologies. In
Workshop on Basic Ontological Issues in Knowledge Sharing. http://www.aiai.
ed.ac.uk/publications/documents/1995/95-ont-ijcai95-ont-method.pdf

21. Vrandecic, D., Gangemi, A. (2006). Unit Tests for Ontologies. In OTM 2006
Workshops: 1012–1020. http://dx.doi.org/10.1007/11915072_2

http://dx.doi.org/10.1007/978-3-319-11955-7_42
http://dx.doi.org/10.1007/978-3-319-11955-7_42
http://aaaipress.org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf
http://aaaipress.org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf
http://ceur-ws.org/Vol-1035/iswc2013_demo_2.pdf
http://ceur-ws.org/Vol-1035/iswc2013_demo_2.pdf
http://dx.doi.org/10.1007/978-3-319-34129-3_39
http://dx.doi.org/10.1007/978-3-319-34129-3_39
http://dx.doi.org/10.1007/978-3-642-02806-9_12
http://dx.doi.org/10.1007/978-3-642-02806-9_12
http://dx.doi.org/10.1037/h0043158
http://dx.doi.org/10.1007/978-3-319-04777-5_5
http://dx.doi.org/10.1007/978-3-319-04777-5_5
http://dx.doi.org/10.6084/m9.figshare.3189769
http://dx.doi.org/10.1007/978-3-642-33876-2_35
http://dx.doi.org/10.1007/978-3-642-33876-2_35
http://ceur-ws.org/Vol-516/pap21.pdf
http://ceur-ws.org/Vol-516/pap21.pdf
http://dx.doi.org/10.1016/0004-3702(93)90096-T
http://dx.doi.org/10.1109/MIS.2002.999223
http://dx.doi.org/10.1109/MIS.2002.999223
http://www.aiai.ed.ac.uk/publications/documents/1995/95-ont-ijcai95-ont-method.pdf
http://www.aiai.ed.ac.uk/publications/documents/1995/95-ont-ijcai95-ont-method.pdf
http://dx.doi.org/10.1007/11915072_2

	A Simplified Agile Methodology for Ontology Development
	Introduction
	Preliminaries
	Methodology
	Step 1: define a new test case
	Step 2: merge the current model with the modelet
	Step 3: refactor the current model
	Output of an iteration

	Experiments
	Related works
	Conclusions


