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Abstract. Despite meriting the growing consensus between researchers
and practitioners of ontology modeling, the Web Ontology Language
OWL still has a modest presence in the communities of ”traditional”
web developers and software engineers. This resulted in hoarding the se-
mantic web field in a rather small circle of people with a certain profile
of expertise. In this paper we present OntoJIT, our novel approach to-
ward a democratized semantic web where we bring OWL ontologies into
the comfort-zone of end-application developers. We focus particularly on
parsing OWL source files into executable ontologies in an object oriented
programming paradigm. We finally demonstrate the dynamic code-base
created as the result of parsing some reference OWL DL ontologies.
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1 Background and Motivation

With a stack full of recognized standards and specifications, the Web Ontology
Language OWL has made long strides to allocate itself a distinctive spot in the
landscape of knowledge representation and semantic web. Obviously, OWL is
not the only player in the scene; over the couple of last decades many other
languages have also emerged in the ontology modeling paradigm. Most of these
languages are logic-based formalisms with underlying constructs in first order
logic [5][7][8][11] or in one of the description logic fragments like OWL itself [3][4]
and its predecessor DAML+OIL [10]. Some frame-based languages have also
seen some success in that area [12][13][14], in particular KL-One has integrated
the automated deductive reasoning of logic-based languages into hierarchical
semantic networks[9].

If we look at OWL characteristics; beside its strong expressive capabilities
and logic based formalism, OWL has also got many flavors that are tailored to
fulfill the different needs of ontology systems stakeholders[4]. These character-
istics allowed OWL to stand out among its counterparts and OWL ontologies



became dominant in a wide range of application domains. From the perspective
of traditional software developers, however, these very same characteristics have
contributed to a certain extent in augmenting the complexity surrounding OWL
ontologies and logic-based formalisms in general.

We raise the issue of democratized semantics where a wider range of de-
velopers are invited to actively participate in the making process of semantic
applications. Addressing this issue involves certainly more aspects than what we
can cover in a single paper. In this paper, we rather start by whetting develop-
ers’ appetite for ontologies by expressing them in a programming language –or
paradigm– that the developers are already comfortable with. For that purpose,
we sketch our tool OntoJIT that parses existing OWL DL ontologies into exe-
cutable fragments of code in C# while maintaining their semantics. We demon-
strate the parsing results obtained and the limitations of the current state. We
finally discuss some of the related projects and directions for future work.

2 Preliminaries

2.1 Executable Ontologies

Before being able to work on an ontology, inference engines require the ontology
to be loaded into memory. This task is achieved by an ontology loader that trans-
forms the ontology from its syntactic form e.g. RDF/XML into an in-memory
representation. In the literature, there are two prominent in-memory represen-
tations for OWL ontologies: The first one is the abstract syntax tree AST model
which is used in OWL API, previously known as the WonderWeb OWL API,
[19][18]. The other representation model is the RDF triple and is the format that
is adopted in Jena [15].

In our work, we look into the classification of in-memory ontology repre-
sentations from a different perspective. More precisely we differentiate between
two forms of in-memory representation: The passive form and the active form.
To illustrate what we designate by each form, we consider the parsing output
produced by Jena and OWL API; after the parsing step is completed, both pars-
ing output models, i.e. AST or RDF graph, will eventually reside in the data
segment of the program allocated memory waiting to be operated on by the
inference engine and in that sense both are examples of the passive forms. In
the active form, on the other hand, the output of the parsing step belongs to
the code segment of the allocated memory. That is, the syntactic RDF/XML
representation is transformed and loaded in memory as a set of executables.

Now projecting the object oriented programming paradigm into this view of
active in-memory ontology representation yields the term executable ontology
that we first present in this paper. We can now think of OWL concepts and
individuals as OOP classes and instances spread over code namespaces that can
be compiled and run.



2.2 Meta Programming in Strongly Typed Languages

Parsing RDF/XML into executable ontologies clearly adds another layer of com-
plexity into the already non-trivial parsing task. It requires dynamically gener-
ating code statements that are equivalent to the RDF triple being parsed. In
such settings, the deployment of meta programming techniques proves advanta-
geous. Meta programming refers to the programming paradigms and the means
by which a program has knowledge of itself or can manipulate itself. To that end,
meta programs are programs that write programs. Examples of meta programs
are optimizers, partial evaluation systems and program transformers [20]. There
exists many classification of meta programs, among them is the static vs run-
time classification i.e. whether the produced output program is written to disk
or dynamically compiled at run-time, the manually vs automatically annotated
classification i.e. whether the staging annotations are placed directly by the pro-
grammer or produced by an automatic process and finally the homogeneous vs
heterogeneous programs which concerns whether or not the meta language is the
same as the program output language [20]. Our proposed OntoJIT RDF/XML
parser is a manually annotated, run-time heterogeneous meta program.

Like many paradigms in software development, Meta programming is an
approach that is not equally supported by all programming languages. Some
languages, such as CaML[24], are designed with meta programming in the core
of their philosophy. Dynamic languages like Prolog and smalltalk have funda-
mental meta programming features[21]. Macros in Lisp and Scala also provide
strong support for meta programming [22][23], whereas Python programmers
usually use meta classes. When it comes to strongly typed languages, however,
the emphasis on meta programming features becomes less evident. This does
not mean that meta programming is not supported in many of these languages;
C++ offers templates for meta programming [31], Java programs have annota-
tions [30] and .Net languages use annotations and/or reflection to produce meta
programs[32]. Indeed, the parser presented here was realized using one of the
meta programming libraries offered in .Net[33].

3 OntoJIT Parser

Parsing OWL source files into executable source code is the first step of an
ongoing effort to bring ontologies into the table of application developers. The
overall goal of this effort is not limited to parsing ontologies into compiled source
code, the real interesting part is the potential reasoning possibilities over this
newly created eco-system of executable ontologies; hence the name OntoJIT
refers to just in time ontologies and is inspired from the dynamic ”Just in Time”
compilation in .Net languages. The OntoJIT parser we present here is written
C#. It produces compiled source code in the form of dynamic linking libraries or
executables and it can also produce C# source files as an intermediate output.
In the following sections we discuss some of the key points in the design and
implementation of OntoJIT parser.



3.1 Parsing OWL files

OWL Graph Traversal Most existing OWL parsing tools use a recursive depth
first search to perform a one-pass traversal of OWL source. This seems like an
elegant approach for a streaming-like parsing; the DFS serves as a serialization
technique and for each construct visited in the source, a corresponding node
or edge is attached to the OWL graph being constructed in memory. However,
when parsing output is an executable, the pure DFS approach is unfortunately
insufficient. Deciding on the corresponding code statements to a syntactic con-
struct requires all information related to this construct to be available at node
processing time; which is clearly not the case with the inter-node associativity
present in OWL source documents. Here we have two approaches to overcome
this limitation, first approach is to use multiple-pass traversal to guarantee that
we have complete information before generating the corresponding output. This
approach is clearly less efficient compared to the one-pass traversal both in ex-
ecution time as well as in space complexity since it requires maintaining the
intermediate state of nodes being parsed over many passes. The other approach,
which is the one used in this paper, is to combine pre-order DFS traversal with
look up operations when necessary. The parser presented here is built to read
RDF/XML syntax; in that case, the look-up operations are simply forward jumps
within to the RDF/XML child nodes and the set of possible look-ups is limited
assuming prior knowledge of the associations patterns of OWL nodes.

Import Closure Ontology modeling practices share some of the design prin-
ciples with software engineering, mostly with regards to the re-usability of ex-
isting ontologies. An ontology is not isolated from other ontologies, it builds up
on top of other already existing ones. In ordinary programming languages, this
corresponds into importing packages or libraries and in OWL, to using import
keyword to allow the usage of terms defined in the imported namespaces. Keep-
ing on with this analogy, the OntoJIT parser treats imported namespaces in
OWL source as namespaces in the target output code. When the parser reads
an owl:imports term, it triggers a recursive call to the main parsing routine for
all imported ontologies until an import closure is achieved.

3.2 OWL to OOP Mapping

When comparing the expressiveness aspect of OWL to that of formal program-
ming languages, programming languages rank way below than even the most
restricted profile of OWL. The semantic richness of OWL DL ontologies makes
it difficult to find an OOP counterpart for each OWL DL semantic construct.
Furthermore, there are some fundamental differences between the two schools
of modeling such as the notion of disjoint classes, inheritance model and many
others. When mapping OWL DL to OOP, our goal was to exploit the native pro-
gramming language constructs while at the same time trying not to violate the
OOP design principles. Although the mapping seems self evident in some parts
e.g. owl:class as an OOP class, rdfs:subClassOf as OOP class inheritance



Fig. 1. The initial output scheme in OntoJIT.

relation and OWL individuals as instances of OOP classes; finding the right
mapping becomes more problematic when we consider OWL DL terms such as:
owl:disjointWith, owl:sameAs and owl:equivalentClass. One could still cre-
ate native constructs that are semantically equivalent to such terms by enforcing
some design patterns and constraints but this approach has some consequences
that we will discuss in one of the following sections. One other possibility is
to rely on annotations to express all OWL terms that are foreign in the OOP
language, but in plain OOP terms this means that most of the modeled infor-
mation about an object is laid outside of it and is not directly accessible via
its properties. Instead, in OntoJIT parser, for the major part of OWL terms,
meta properties are created that form the bases for mapping OWL concepts,
properties and restrictions. The meta properties are defined in the top hierarchy
level and are then inherited by all parsed classes afterwards and masked where
necessary. One important thing to clarify is that the term ”meta” used here
refers to a completely different sense than the programming technique discussed
earlier, the usage of the term here is rather functional; the idea is that these
meta properties would cover up for the missing explicit semantics in the formal
language constructs, and the full interpretation of the meta properties semantics
is to be realized by an inference component on top of the parsing layer. Figure
1. shows the initial output scheme in OntoJIT where meta properties are first
defined.

Blank Nodes Just like in RDF/XML, OntoJIT uses blank nodes to express
a property restriction or class description axioms. Though in our implementa-
tion, blank nodes are not anonymous; they are created as class definitions with



Table 1. OWL DL axioms and their OntoJIT counterparts

Axiom OWL OntoJIT Counterpart

Ontology owl:Ontology Code namespace

Class
owl:class C# class
rdfs:subclass C# class inheritance

Class Description

rdfs:equivalentClass

Static meta properties
owl:intersectionOf
owl:unionOf
owl:complementOf
owl:disjointWith

Indivisual

indivisual object instance
owl:AllDifferent

Non-static meta propertiesowl:differentFrom
owl:sameAs

Property
owl:ObjectProperty

C# class
owl:DataTypeProperty
rdfs:subPropertyOf C# class inheritance

Property Association
rdfs:range

Static meta properties
rdfs:domain

Property Restriction

rdfs:cardinality

Static meta properties
rdfs:hasValue
rdfs:someValuesFrom
rdfs:allValuesFrom

Property Description

owl:FunctionalProperty

Static meta properties
owl:InverseFunctionalProperty
owl:SymmetricProperty
owl:TransitiveProperty

Property Relations
owl:inverseOf

Static meta propertiesowl:subPropertyOf
owl:equivalentProperty

automatically (and deterministically) generated names to make them available
for subsequent inference tasks. On the other hand, since these nodes are not ex-
plicitly part of the ontology class definitions, these classes get the private access
modifier and are therefore invisible from outside the namespace they belong to.

Semantic Equivalence The semantic expressiveness of the source ontology
is preserved with the aid of meta properties. As stated earlier, the role of meta
properties is to cover up for the missing explicit semantics in the formal language
constructs, i.e, when there is no programming language counterpart for an axiom
in the source ontology or when relying on the programming language to express
an axioms would interfere with the Open World Assumption OWA. For example,
the property association axiom rdfs:range could be easily parsed into the data
type of the property in the class definition where it belongs to. While this is the
norm from a strict modeling perspective, it does not conform to OWA inference
mechanism. According to OWA, having two different fillers for the range property
is perfectly fine as long as they are not stated to be distinct; whereas this would
certainly not pass type checking performed by an OOP language compiler.

It is also worth mentioning that OntoJIT, in its current state, supports OWL
SHOIN (D) DL profile. Parsing ontologies with OWL 2 DL SROIQ(D) exten-
sions[6], like for example General Concept Inclusion axioms, has not been tested.
Table 1. lists OWL DL axioms and their OntoJIT C# counterparts.



4 Demonstrations

To test the parsing process introduced in the previous section, we used the two
famous OWL DL Pizza1 and wine2 ontologies. These ontologies are relatively
small in size but they are pretty expressive as they were created for the purpose
of demonstrating the different capabilities of OWL DL and they would therefore
be helpful in validating the parsing routine.

Fig. 2. Non-vegetarian pizza class defini-
tions (a).

Formally proving the semantic
equivalence of an OWL DL ontology
and the corresponding executable pro-
duced by OntoJIT would require at
least comparing results of some infer-
ence tasks over the two formats which,
at this stage of our work, is not pos-
sible yet. Instead in this section we
demonstrate some code snippets ex-
amples of the parsing results and their
OWL counterparts.

OWL Classes To start with, we con-
sider the example of non-vegetarian
pizza definition in the pizza ontology.
The produced code snippet is demon-
strated in Figures 2. and 4. and the
original OWL source is shown in Fig-
ure 3. The following is the DL notation of the same information:

NonV egetarianPizza ≡ ¬V egetarianPizza u Pizza

NonV egetarianPizza u V egetarianPizza ≡⊥

In the NonVegetarian class definition in Figure 2. we see that the
owl:equivalentClass term is expressed by mean of the meta property equiv-
alentClass which returns as object (of the RDF triple) a blank node identi-
fier ”Blank23”. The ”Blank23” stands for the anonymous class representing
¬V egetarianPizza u Pizza that in turn is defined as the intersection of an-
other blank node ”Blank22” with the class pizza. Finally ”Blank22” is defined
as a blank node class with the ”ComplementOf” and ”VegetarianPizza” meta
properties values. As mentioned earlier, the meta properties used in expressing
the definitions are essential for substituting for the explicit semantics that are
not available as native language constructs. The examples shown here use a tex-
tual representation of the values for these properties, in fact these values are
just the handles to the created types in the code namespace and are available
for later use by the inference component in runtime via reflection.

1 www.protege.stanford.edu/ontologies/pizza/pizza.owl
2 www.w3.org/TR/owl-guide/wine.rdf



Fig. 3. Non-vegetarian pizza description in Manchester syntax

Fig. 4. Non-vegetarian pizza class definitions (b).

OWL Properties Just like classes, OWL properties have hierarchical struc-
tures. They also have characteristics such as domain, range and cardinality. This
is well reflected into OntoJIT executable ontologies. The parser starts with ini-
tial hierarchy shown in Figure 1. and expands it as the parsing continues. Parsed
classes would then have instances of these properties to express relation between
individuals. Figure 5. shows a reduced (incomplete) sketch of the properties hi-
erarchy in the wine ontology. The code snippets in Figure 6. show the definitions
for some properties along with their characteristics. The characteristics of a prop-
erty are supposed to be shared among all its instances and are therefore declared
static where as the instance value of the property is a non-static variable.

5 Limitations

5.1 Multiple Inheritance

One of the major differences between modeling in description logic and that
in OOP is the different positions the two paradigms have with regards to mul-
tiple inheritance. Description logic has a looser interpretation of a class being
the subclass of another; indeed, the multiple inheritance term does not really



Fig. 5. Reduced sketch of the hierarchy of wine ontology parsed properties

Fig. 6. OntoJIT property classes for hasFlavor property and its parent Property.

fit in description logic vocabulary. In OWL, the rdfs:subclassOf term is the
manifestation of the subsumption operator of DL. An OWL class is allowed to
have many parent classes (named or anonymous) as long as it is subsumed by
all these parents. On the other hand, pure OOP languages like C# or Java –
though not all – have a more strict definition of class inheritance, OOP classes
are disjoint by design and that is why a class can not be a subclass of two differ-
ent parent classes and multiple inheritance is thus not supported. To keep record
of all parent classes, OntoJIT parser uses meta properties beside the native class
inheritance support in C#, whenever multiple inheritance is encountered, the
subClassOf property is extended. This workaround suffers from inconsistency
but is still preferable over relying on interfaces where one could use interface
declarations instead of classes to reflect OWL hierarchies. The problem with the
interface approach is that interfaces are abstract and thus are not instantiable
and one would need to create a shadow class for each declared interface. This



can quickly become an overkill and unscalable when considering relatively com-
plex ontologies with a lot of blank nodes. Left with these two not really optimal
solutions, the pursuit of a more elegant one is still an open question.

5.2 Import Closure

The approach taken to handle the owl:imports terms is a little bit a minimalist
approach for one reason; it doesn’t handle the case where the ontology being
parsed is an OWL DL or OWL light ontology and the imported ontology is
an OWL Full one. The parser presented here is mainly concerned with OWL
DL or Light profiles and more investigations and analysis are necessary before
attempting on parsing an OWL FULL ontology. In this case, the parser is not
able to process OWL Full constructs and will therefore skip them. This for sure
would have an impact on the soundness of the reasoning results but as reasoning
is not yet in the scope of the current state of OntoJIT, this is something to be
addressed again as the work in the project advances.

6 Related Work

The difficulty of utilizing OWL ontologies in conventional software projects was
behind the work presented in [29]: The authors demonstrate some of the fun-
damental differences between the ”subject-predicate-object” school of modeling
(with persistent triple-stores) and the object oriented school (with normalized
relational databases). According to the authors, the combined use of ontologies
with standard programming practices would enable the development of semantic-
rich enterprise applications and they suggest a framework for translating some
ontology constructs into Enterprise Java Beans. In [28], the primary intention
is to provide guidance on how to build real-world semantic web applications.
Here, the authors draw analogy between deploying ontologies as high-level mod-
els in software development and the approach used in Model Driven Architecture
MDA. They also suggest a software architecture for web services and agents for
the semantic web driven by domain ontologies. [26] proposes a hybrid model-
ing software framework that combines the object oriented representation of a
domain with its ontological representation. The authors analyze the advantages
and disadvantages of such hybrid modeling approach by means of a case study
of a large medical records system. There exist as well many API projects to
integrate OWL ontologies into application development. The OpenRDF API 3

along with its satellite projects Elmo/Alibaba4, provides object triples mapping
for creation of flexible RDF-based applications. Another object-oriented API for
managing RDF is ActiveRDF [25], it offers schema-free manipulation and query-
ing of RDF data while conforming to RDF(S) semantics. Overall, OWL to UML
mapping has a good share of papers in the literature. In [27] A UML-based

3 OpenRDF, http://www.openrdf.org/
4 https://bitbucket.org/openrdf/alibaba



visualization of OWL DL ontologies is presented. The work done in [34] pro-
vides a rigorous comparison between UML and OWL as two flagship languages
for artificial intelligence and software engineering communities; the authors ar-
gue that based on the core definitions of ontologies and models, none of the
common informal distinctions made between the two terms is actually justifi-
able. Instead, ontologies themselves are to be regarded as models. Further more,
without changes to the currently used ways of distinguishing between models
and ontologies the confusion around the two terms will continue to arise.

On the technical side, one particular project that addressed the idea of map-
ping OWL ontologies into JAVA OOP classes is in[16]. The main aim of the
project was aiding semantic application development and the approach taken
was to try to stretch the expressiveness of modeling in Java to that of OWL
DL by enforcing some constraints and design patterns: Interfaces for multiple
inheritance, special listeners on property accessors, type checking for domain
and range properties, etc. While we see the motivation behind this approach, we
believe that it entails some twisting in the interpretation of OO design principles
and what is originally supposed to be explicit semantics in OWL is becoming
rather implicit and dependent on the interpretation of the ”special purposes”
patterns used. Another observation is that this approach would work just fine
as long as only the modeling part is concerned but if performing inference tasks
is part of the deal, then more caution is necessary. Relying merely on native
Java constructs to translate OWL DL means in a certain way delegating the
responsibility of enforcing restrictions and properties characteristics to the com-
piler, which is not exactly the point of properties and restrictions axioms from an
open world reasoning perspective. Another related project is in [17]. The authors
proposed an initial Python metaclass-based representation of OWL ontologies
that offer class declaration and instance creation. Their prototype also allows
integrating an OWL DL reasoner with their metaclass representation.

7 Conclusion and Future Work

In this paper we presented a novel approach into democratized semantics by
bringing OWL ontologies into the context of programming languages. We also
reported on our experience in automatically parsing ontologies into executables.
Since the project is in its early stage, there is a lot on the road map for Onto-
JIT; mainly exploring the reasoning possibilities over executable ontologies and
potential advantages or drawbacks this can bring. One idea here is that with
run time dynamic compilation of modern programming languages, the gener-
ated source code can change and adapt at run time. In that sense, executing the
ontologies would result in spanning the source code as more explicit information
are inferred from initial implicit semantics. Another interesting possibility is to
exploit hierarchical self-organizing models when inferring class hierarchy using
meta properties as features of asserted input class definitions.

Apart from reasoning, there is also more to investigate on the subject of
the chosen programming paradigm; the OOP paradigm was a close fit from the



modeling perspective but applying the same idea in an imperative paradigm
would also be of interest.

In the long run, we believe that even though the presented idea of democra-
tized semantics is in its infancy stage: the more research we do in this direction
the more potentials arise in the two universes of application development and
knowledge representations alike.
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