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Abstract. Semantic Web and Internet of Things are progressively con-
verging, but the lack of reasoning tools for mobile devices on the iOS
platform may hinder the progress of this vision. The paper presents an
early redesign of OWL API for iOS. A partial port has been developed,
effective enough to support mobile reasoning engines in a moderately ex-
pressive fragment of OWL 2. Both architecture and mobile-oriented opti-
mization are discussed and preliminary performance results are sketched.

1 Introduction and motivation

Semantic Web technologies are a key enabler of interoperability and intelligent
information processing not only in the WWW, but also in the so-called Internet
of Things (IoT). Application scenarios include supply chain management [5],
(mobile) sensor networks [14], building automation [I5] and more. The Semantic
Web and the IoT paradigms are progressively overlapping in the Semantic Web of
Things (SWoT) vision [I7I14]. SWoT enables semantic-enhanced pervasive com-
puting by associating informative fragments to multiple heterogeneous micro-
devices in a given environment, each acting as a knowledge micro-repository.
Rather than the batch processing of large ontologies and complex inferences
prevalent in traditional Semantic Web scenarios, SWoT requires quick reason-
ing and query answering on sets of relatively elementary resources, in order
to provide mobile agents with on-the-fly autonomous decision capabilities. The
ever-increasing computing potentialities of mobile devices allow processing of
rich and formally structured information without resorting to centralized nodes
and support infrastructures. For a full accomplishment of this vision, reasoning
engines and library interfaces are needed on the most relevant mobile device
platforms.

i0S is the second largest mobile Operating System (OS) worldwide, with over
1 billion iPhone units sold (as of July 2016 [1]) as well as iPad and iPod Touch
devices. While Android has a larger active device count, iOS has been more
eagerly adopted in business [22]. Higher hardware and OS uniformity, a stricter
security model [I2], enterprise IT (Information Technology) department support
tools and a stronger focus on usability are among the reasons. Business sectors
ranging from healthcare to sales management and research exhibit a thriving



market of i0S software solutions. Nevertheless, a full adoption of Semantic Web
technologies has not been possible on i0S so far. A recent survey [11] found no
OWL (Web Ontology Language) [21] reasoners implemented in Objective-C or
Swift, the only two languages natively supported on iOS. In fact Java is by far
the most popular implementation language for that. Several reasoners originally
developed for Java Standard Edition have been ported to the Java-based An-
droid platform so as to run on mobile devices [3]; likewise Java-based reasoning
engines expressly designed for mobile devices also exist, including m Tableau [19]
and Mini-MFE [18], which run on Java Micro Edition and Android, respectively.
Similarly, all main OWL Knowledge Base (KB) management libraries are Java-
oriented. Among them the OWL API [7] is the most adopted one. Java code
requires a rewriting effort toward Objective-C or Swift in order to be adopted
on i0S (whereas C/C++ list can be reused in Objective-C projects by writing
proper wrappers).

The lack of iOS Semantic Web tools hampers the development of multi-
platform semantic-enabled mobile applications to follow the rapid pace of the
IoT (r)evolution, which may stifle the SWoT vision as a whole [6]. Although
toolkits (such as Oracle Mobile Application meewor/ﬂ and Codename Omﬂ)
allow cross-platform mobile development in Java language and deployment to
i0OS devices, they are affected by various cost, efficiency and inconvenience issues.
In order to allow developing mobile reasoners for i0OS, we present here the first
results of porting OWL API to iOS. This approach was preferred over writing
a new application programming interface because the OWL API is a de facto
standard for manipulating DL KBs and has a large user community. A functional
subset of the OWL API was implemented, able to load and process KBs in an
OWL 2 fragment corresponding to the ALEN Description Logic (DL) —with
the addition of role hierarchies— in RDF/XML syntax. The ported library was
written in Objective-C, to be used by both Objective-C and Swift applications.
It runs on i0OS and macOS without modification, as it does not use iOS-specific
APIs. Experimental tests verified the correctness of the implementation and
exhibit satisfactory results also in comparison with the original Java OWL API
on macOS. The library is release(ﬂ as open source under the FEclipse Public
License and can already support a future Mini-ME port for i0S.

The remainder of the paper is as follows: Section [2| provides background on
the OWL API and porting strategies, while Section [3] describes the developed
library; experimental results are in Section [f] and Section [5] closes the work.

!http://www.oracle.com/technetwork/developer-tools/maf/overview/index.
html

“’https://www.codenameone . com/

3 GitHub repository: https://github.com/sisinflab-swot/0WL-API-for-i0S
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2 Background

The OWL API [7] is the most commonly used front-end for OWL-based KBMS
[1113]. Other interfaces include Jenalﬂ Protégé-OWL API [§] and OWLIink [10].
The Jena library provides APIs for RDF [16], RDFS [4] (ontology manipulation)
and OWL models, and an inference API to support reasoning and rule engines.
The Protégé-OWL API [§] leverages Jena on OWL and is particularly effective
for developing graphical applications. OWLIlink [I0] is a client/server protocol
on top of HTTP for KB management and reasoning. The OWLIlink API [13]
implements OWLIlink on top of the OWL API and therefore could be also ported
to i0S.

The OWL API is a Java library recalling a set of interfaces to manipu-
late OWL 2 KBs. It supports loading and saving in several syntaxes, including
RDF /XML, Turtle, the Manchester Syntax and more. The implemented model
gives an abstract representation of concept, property, individual and axiom types
in OWL 2 through four interface hierarchies, all having OWLObject as a com-
mon ancestor. The model interfaces do not depend on any particular concrete
syntax. The OWLOntologyManager allows creating, loading, changing and saving
KBs, alleviating the burden of choosing the appropriate parsers and renderers.
Finally, OWLReasoner is the main interface for interacting with OWL reasoners.
It provides methods to check satisfiability of classes or ontologies, to compute
class and property hierarchies and to check whether axioms are entailed by a
KB.

The benefits of porting full reasoners like FaCT++ [20] to mobile platforms
should be questioned, as they were designed primarily to run inference services
such as classification and consistency check on large ontologies and/or expressive
DLs. In ubiquitous contexts, ABox reasoning and non-standard inference services
are often more useful, because mobile agents must provide on-the-fly answers to
usually smaller problems in moderately expressive KBs [I8]. On the other hand,
importing a C/C++ library for RDF parsing can be a sensible choice to build an
OWL manipulation library or a reasoner. Among the many available tools, the
Redland [2] suite stands out for functional completeness, standards compliance
and code maturity. Other tools like owlepp [9] are less suitable for working in an
OWL API port, as they only parse individual RDF triples.

3 Reasoning on iOS devices: OWL API porting

The proposed software is a port of the OWL API version 3.2.4. It was imple-
mented in Objective-C —deemed as more mature and stable than Swift— as an
108 Framework, i.e., a library easily used by applications through dynamic link-
ing. The following subsections report on the general architecture and devised
performance optimization, respectively.

* Apache Jena project: https://jena.apache.org/
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3.1 Models and architecture

The OWL API entry point is the OWLManager class implementing the OWLOntology
Manager interface, which allows loading and manipulating a KB. As shown in
Figure[T] the library architecture includes two basic components, the OWL Model
and the OWL Parser. Java interfaces were translated to the corresponding
Objective-C protocols, therefore the Model is interface-wise as the one of the
OWL API. The current version does not model the whole OWL 2 language, but
a fragment of it exhaustive enough to manage KBs in the ALEN DL with role
hierarchies. In more detail, classes; property restrictions; Boolean class expres-
sions; object properties; declaration, subclass, disjointness, equivalence, domain,
range, class assertion and object property assertion axioms are modeled.

OWL API

OWL Parser

0O OWL Model SRR >{ OWLRDFXMLParser
L (|
<<interface>>| 0..* 1 <<interface>>
OWLOntology OWLOntologyManager 1 ? ]
1 raptor_parser
J

Fig. 1: Main components of the ported library

The Parser module uses the Raptor RDF parser from Redland to deserialize
RDF /XML documents (other syntaxes were not considered at this early stage)
into streams of RDF statements. The OWLOntologyManager invokes Raptor
through an OWLRDFXMLParser wrapper, which further processes the RDF state-
ment stream in order to create an in-memory representation of the referenced
OWTL constructs and returns a fully populated OWLOntology object.

OWL ontology parsing from RDF triples does not follow the original OWL
API approach. A simpler and leaner architecture was adopted, particularly fit for
small and medium sized KBs. The implementation of OWLOntology interface
is built through the OWLOntologyInternals class, which is populated incre-
mentally during the parsing. It contains data structures such as maps and sets.
OWLStatementHandlerMap associates each type of statement to a proper han-
dler, as allowed by the Raptor library. Handlers are implemented as Objective-C
blocks, which are similar to Java lambdas or C function pointers. Furthermore,
the builder pattern was adopted to create instances within the Model component
incrementally, because OWL axioms can derive from a variable number of RDF
statements.



3.2 Optimization

Optimization effort basically focused on an efficient use of memory, which is the
most constrained resource on mobile devices. Execution time was also profiled
and optimized wherever possible. In what follows followed optimization direc-
tions are outlined.

Architectural optimization. The whole Model component is composed of
immutable objects. This allows having just one copy of every instance in memory,
saving memory and time; moreover, it makes the whole component thread-safe.
With immutable objects, object hashes can be cached to speed up the very fre-
quent accesses to associative data structures. As a further optimization, if one
guarantees that equal objects have the same memory address, the address itself
is a perfect hash and equality check becomes just a pointer comparison. In or-
der to make this property true, the library uses the NSMapTable class of the
Objective-C Foundation framework as hash table, which supports pointer iden-
tity for equality and hashing. NSMapTable was set up to use weak references to
allow de-allocation of unused objects. This approach, however, is beneficial only
in hash tables with low collision rates: this was not found out to be true for all
OWL API model classes. Therefore it was adopted just for entities (classes, ob-
ject properties, individuals) and some axioms considered as performance-critical
after profiling tests. These optimizations allowed to roughly halve the measured
parsing turnaround times w.r.t. the initial implementation.

Parsing optimization. During the parsing process, each RDF triple is
wrapped in a RDFStatement instance, which is discarded as soon as it is not
used anymore. Furthermore, builders cache the objects they populated, saving
both time and memory (in case of similar but not identical instances). Finally,
axiom builders are de-allocated in groups: this reduced the observed memory
usage peak during parsing by about 30% in preliminary tests.

4 Experiments

The formal correctness and completeness of results provided by the iOS library
was evaluated on a set of 34 KBs, obtained from the 2012 OWL Reasoner Eval-
uation Workshop reference dataseﬂ considering all the KBs in the supported
AL, AL+ and ALE DLs. The original Java OWL API 3.2.4 was leveraged as a
test oracle. After parsing, the following tests were performed against each KB
as significant examples: (i) retrieval of all axioms; (ii) retrieval of all axioms of a
given kind; (iii) retrieval of all classes, individuals and properties; (iv) retrieval
of all disjoint, equivalent and subclass axioms. The i0S library correctly parsed
every KB in the test set, and the returned output proved to be equivalent to the
Java OWL APIL

Performance evaluation was carried out on a subset of the KBs used for
the correctness tests, reported in TabldI] They were selected because they are
representative of both traditional and SWoT scenarios, while allowing to sample

® http://www.cs.ox.ac.uk/isg/conferences/ ORE2012/



Table 1: Knowledge Bases used in the performance tests.

Knowledge Base DL Category Axioms Size (kB)
spider_anatomy.owl ALE Small 1392 187
brenda.owl ALE Medium 14262 1515
mammalian_phenotype.owl AL+ Large 46081 4289
teleost_taxonomy.owl AL Large 195351 21878
32911,8
14926,7
68334 _ __6876,9
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(0.18 MB) (1.48 MB) (4.19 MB) (21.37 MB)
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Fig.2: i0S API parsing turnaround time (ms).

the performance of the iOS library when working with KBs of varying size. The
following test devices were used: a Retina MacBook Pmﬂ an iPhone 65ﬂ an
iPhone 55E| and an ¢Phone 5ﬂ For each KB, three tests were performed: (i)
parsing turnaround time; (ii) memory usage peak; (iii) query turnaround time.
Each test was repeated five times: for turnaround time tests, the average of all
runs was taken. For memory tests, the final result is the average of the last four
runs, in order to consider a worst-case scenario due to potential memory leaks.

Figure [2] shows the results of parsing turnaround time tests: times grow lin-
early with the size of the parsed ontologies, and small-to-medium ontologies are
parsed in about one second or less on devices more than two years old (iPhone
5s). This result is aligned with the performance goals of a mobile reasoner, espe-
cially considering that parsing only happens once per usage session, rather than
each time a query is submitted to the reasoner.

Figure [3] compares parsing times provided by the iOS API with OWL API
on the MacBook Pro testbed. First-run results were considered in this test only,
in order to evaluate parsing performance in real usage, since a KB is usually
loaded once and queried multiple times. Subsequent runs would provide less
realistic results due to in-memory caching. The iOS API shows competitive per-

5 Mid-2014 model, equipped with OS X 10.11.5, Intel Core i7-4870HQ CPU at 2.50
GHz, 16 GB DDR3 RAM at 1600 MHz.

" Equipped with i0S 9.0.2, Apple A9 System on Chip (SoC), 2 GB LPDDR4 RAM.

8 Equipped with iOS 9.3.2, Apple A7 SoC, 1 GB LPDDR3 RAM.

9 Equipped with i0S 9.3.2, Apple A6 SoC, 1 GB LPDDR2E RAM.
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Fig.3: Comparison of the parsing turnaround time between the iOS API and
OWL API (ms).
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Fig. 4: Memory peak while parsing (MB).

formance on every test KB, outperforming the OWL API when parsing the small
to medium-large ones.

Figure [@] reports on memory usage peak during parsing, which grows linearly
with the size of the parsed ontology. Measured values are roughly similar on
MacBook Pro, iPhone 6s and iPhone 5s, while they are about 40% lower on
iPhone 5: this is likely due to it being the only 32-bit device among the four.
The results of this test were overall satisfactory, since the required memory is
consistent with RAM availability of modern iOS devices.

Figure |5| shows the memory usage trend while parsing and querying the
largest KB in the test set (teleost_tazonomy.owl) on iPhone 6s. Four phases
can be pinpointed: memory usage raises and reaches its peak value during the
parsing phase; during the steady phase the KB is fully loaded and can be
queried; memory is released when the KB is de-allocated.

Figure [0] shows the turnaround times for the retrieval of all classes in the
ontology. This specific query is unrealistic, but it was chosen nonetheless as a
stress test for the library. As also seen in the previous tests, times grow linearly
with the size of the queried ontology. In order to contextualize the obtained
results, query times were compared to OWL API on the MacBook Pro testbed:
as reported in Figure [7] the iOS API outperformed OWL API on every test
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ontology, confirming its suitability to be used in mobile and pervasive scenarios.

5 Conclusion and future work

The paper presented early results of porting the OWL API to Objective-C,
targeting mobile reasoning on the iOS platform. The developed library can run
unmodified also on macOS. Early experiments on a small set of ontologies showed
correctness of implementation and satisfactory performance in KB parsing and
manipulation.

In its current form, the proposed library is ready to support the port of the
Mini-ME mobile matchmaking and reasoning engine [I8] to iOS, which was the
main motivation for the endeavor and is the first planned future work. As a
further hope, it will benefit the community as a whole and —possibly with the
help of other developers— will grow toward a complete port, aligned with latest
OWL API version.
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