
Towards Ontology Based Event Processing

Riccardo Tommasini, Pieter Bonte, Emanuele Della Valle, Erik Mannens, Filip
De Turck, Femke Ongenae

Ghent University - imec
{pieter.bonte,erik.mannens,filip.deturck,femke.ongenae}@ugent.be

Politecnico di Milano, DEIB, Milan, Italy
{riccardo.tommasini,emanuele.dellavalle}@polimi.it

Abstract. The rapid change and heterogeneity of today’s generated
data calls for real-time decision making systems that can cope with the
presented heterogeneity. In this paper, we present an Ontology Based
Event Processing system that bridges the gap between ontology-based
reasoning and event processing. We propose both a language and an ar-
chitecture to perform event processing over abstract ontology concepts.
This allows to perform e�cient temporal reasoning, while the high-level
ontological definitions reduce the need for knowledge of the underlying
data structure in complex domains.

Keywords: Stream Processing, Semantic Web, Stream Reasoning, Com-
plex Event Processing

1 Introduction

In domains like Social Media, Financial Markets and Internet of Things (IoT), in-
formation is traditionally represented as data streams, i.e. unbounded sequences
of data, or events , i.e. notifications about happened facts. Stream Reasoning
(SR) [5] investigates how Semantic Web and Stream Processing technologies can
be combined to make decision making systems work in real-time, across multiple
data sources. SR investigates how to exploit the time ordering of data streams
to perform deductive and temporal reasoning on the fly.

In order to clarify this domain, consider the following example: We are inter-
ested to identify the presence of fire in a room, but there is no way to detect it
directly. Instead, the room contains sensors to detect the presence of smoke and
measure the temperature. In this case, a data stream is a timestamped sequence
of numbers representing the average temperature in the room; while an event
is a notification about the detection of smoke. The data and events arise from
di↵erent types of sensors. This heterogeneity impedes to perform queries across
these data sources. Another obstacle comes from the domain complexity. In pres-
ence of fire the temperature will be higher, but how can we distinguish abnormal
temperatures from normal ones? And, what if we had di↵erent rooms? This kind
of information represent background knowledge that our decision making system
has to combine with live data, in order to obtain an answer. Finally, assuming
that we finally detected both smoke and abnormal temperature events, we had
to relate them in time.

2 R. Tommasini, et al.

The presented example calls for an approach that solves data variety, that
combines data with background knowledge, that deducts related information and
operates temporal reasoning combining data streams from sensors and events.
We name this approach Ontology-Based Event Processing (OBEP). For the best
of our knowledge, there is no approach in the SR state of the art that tries to do
so. Temporal extensions of deductive reasoning extends the ontological language
with time relations and, thus, easily diverges into intractability. Semantic Com-
plex Event Processing is limited to a semantic description of events and does
not focus on the processing.

In this paper, we propose an approach for OBEP that operates the event
processing a-posteriori above high level concepts deduced through deductive
reasoning, but without including time relations at ontological level. The con-
tribution of this work are: (i) a requirement analysis for an OBEP system to
satisfy; (ii) a syntax named DELP, i.e. Description Logic Event Processing, to
express information needs as the one presented in the example; (iii) an architec-
ture that bridges the gap between event processing to capture temporal relations
and event descriptions based on Semantic Web technologies and; (iv) a prototype
that proves the feasibility of the approach.

The rest of the paper is structured as follows: Section 2 describes the related
works. Section 3 describes the use case that is used throughout the paper. Sec-
tion 4 introduces the Description Logic Event Processing (DELP) language we
constructed, while Section 5 describes our OBEP system that implements the
abstracted event processing. Section 6 concludes the paper and elaborates on
the future research directions.

2 Background & Related Works

In this section we present the background knowledge required to understand the
content of the paper and the relevant related works.

Stream Processing engines are systems capable to process potentially infinite
sequences of data. Two main approaches exits to this extent:

– Data Stream Management Systems (DSMS) extend Data Base Management
Systems by introducing stream-to-relation operators, e.g. Windows, that al-
low the transition between streaming and static data. Queries are continu-
ously evaluated over finite portions of the data streams selected by the means
of these operators.

– Complex Event Processing (CEP) engines exploit time-aware operators to
detect patterns over infinite sequences of incoming events. The user specifies
reaction rules that are concerned with the invocation of actions in response
to events and actionable situations. These rules specify a pattern over the
incoming data, e.g. A followed-by B, by using a declarative query language.
Such a pattern is usually validated with a finite state machine. Therefore,
the final complexity is at most polynomial in time and space.

Towards Ontology-Based Event Processing 3

Some stream processing engines o↵er declarative query language to operate
with data streams. The event processing language (EPL)1 is the most relevant
one and it allows to

(i) write window-based continuous queries to process data streams; (ii) define
simple events or compositions of them (i.e. complex events) (iii) treat events as
first class citizens, i.e. the operators have direct influence on the events.

Semantic technologies such as RDF, OWL and SPARQL have been used for
data integration in the IoT domain [2] and Semantic Complex Event Processing
(SCEP) [9].

An example of the former is MASSIF [4], i.e. an event-based semantic-enabled
IoT platform consisting of multiple semantic reasoning services each fulfilling a
distinct reasoning task. These services can collaborate on a high level by sub-
scribing to the Semantic Communication Bus (SCB) and indicating the high
level concepts they are interested in. The platform follows the notion of high
level events, however, it does not support any temporal reasoning between these
events.

An example of The SCEP is the work of Taylor et al [9], i.e. an ontology
and a system for complex event specification that, in combination with reason-
ing techniques, simplify the rule definitions of a target complex event processing
language (e.g. EPL), eliminating the need of address manually the domain com-
plexity. To this extent, the ontology contains language constructs and operators,
e.g., seq, as properties and classes. This approach generalizes the query definition
task enabling interoperability between di↵erent event processing engines, but it
does not extend the semantics of the target query language nor does it propose
a unified syntax for it.

In the SR state-of-the-art, RDF Stream Processing (RSP) engines combines
semantic technologies and stream processing to perform continuous querying or
complex event processing [1] over streams encoded into RDF. EP-SPARQL [1]
is the most relevant work w.r.t ours, because it extends SPARQL 1.0 with event
processing operators, i.e., seq, equals, optionalseq, and equalsoptional

2. Event
processing and SR is enabled over RDF Basic Graph Pattern (BGP). Complex
events are defined as BGPs combined with event processing operators. As this
is similar to the UNION or OPTIONAL operators in SPARQL, events are not
first class citizens. Since the events are defined through BGPs, it can be devious
to construct advanced event processing patterns.

Finally, temporal extension of deductive reasoning approaches such as De-
scription Logics are worth to mention. They include time relations at ontological
level, but this easily diverges into intractability and limiting the possible entail-
ments [6].

In summary, state-of-the-art solutions in the stream processing context suc-
cessfully model time relations but lack to address the data variety and the do-
main complexity. Semantic technologies can be used to describe these extents,
but existing approaches either lack to provide an unified syntax to model the full

1 https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.
html

2 The semantics of these operators is similar to a left, right or full -join but their
selectivity depends on how the constituents are temporally related.

4 R. Tommasini, et al.

processing [9] or have limited expressiveness and do not treat events as first class
citizens [1]. Finally, temporal logics are limited due to the hurdle of including
time within the reasoning algorithms.

3 Use Case

In this section we introduce a simple use case that we will use in the reminder
of the paper to explain our contributions.

A company wants to deploy an intelligent system to detect dangerous situa-
tions. Internally, they distinguish between three classes of conditions:

– Hazardous, i.e., situations that are dangerous for the company assets, e.g.,
fire or floods,

– Risky, i.e., situations that are dangerous for the complete business, e.g.,
information leaks or unauthorized access to restricted areas, and

– Unsafe, i.e., situations that are directly dangerous for people, e.g., fire or gas
leaks.

For each dangerous situation class, di↵erent alarms are defined (e.g., sound
and lights), alternative escape plans are organized and di↵erent authorities are
responsible for handling the situation.

The company is interested in monitoring Unsafe situations within their build-
ings and the surrounding areas. To this extent, sensors for smoke detection, tem-
perature, humidity and air quality monitoring are deployed within the building
into a wireless sensor network. To monitor the surrounding areas a public infras-
tructure provided by the local government is available through web APIs.

For the remainder of the paper, we will provide examples of the Unsafe
situation Fire Detection. As explained in the Section 1, there is no direct way
to sense fire, but we can assume its presence through the detection of smoke
and abnormal temperature measurements within the same time interval. Many
challenges arise to define such a simple rule:

(i) Data Integration: How can the proprietary data and those coming from
external APIs be combined?

(ii) Domain complexity : How can we decide if the detected temperature is
abnormal?

(iii) Temporal Relation: How do we model the temporal relation between smoke
events and abnormal temperature so we can infer the presence of fire?

4 Ontology-Based Event Processing Language

In this section, we introduce our first contribution DELP, a syntax for Descrip-
tion Logic Event Processing. DELP design is based on the definition of the
following requirements elicited on the challenges presented in Section 3.

(R1) Semantic Event Representation [9]: this allows the integration of multiple
heterogeneous sources (a) and derivation of implicit data in combination
with background knowledge (b).

Towards Ontology-Based Event Processing 5

(R2) Event Processing [1]: this allows to combine high level ontological concepts
capturing the temporal dependencies and build complex events.

(R3) First Class Citizens Events, i.e., creation and direct manipulation with
language operators (e.g. pattern matching) should be possible.

(R4) Filtering and Joining: The former allows to remove irrelevant events, while
the latter allows to combine events over multiple event streams to achieve
intelligent decision making.

In Section 4.2, we show each challenge should be tackled for an OBEP system,
finally in Section 4.3 we present the grammar of DELP and how it fulfills the
requirements above.

4.1 Semantic Event Representations

In our running example, we want to derive abnormal temperature and measure-
ments and combine them with smoke detection events. These need are captured
by challenges (i) and (ii), that call for a semantic representation of events. This
need becomes clear when we analyze the domain complexity, e.g. temperature
normality is di↵erent in di↵erent building areas, e.g., elevator are colder than
server rooms.

Static Information Integration systems as Ontology Based Data Access sys-
tems solve this circumstances by the means of an integrated conceptual model
(ICM). The ICM enables query answering across heterogeneous data sources by
the means of a common vocabulary formally specified with an ontological lan-
guage, e.g. DL or OWL. The ICM of our example currently contains axioms
from (1) to (5).

SmokeDetectionEvent ⌘ 9hasContext.(9observedProperty.Smoke) (1)

TemperatureEvent ⌘ Observation

u (9observedProperty.Temperature) (2)

AbnormalTemperatureEvent v TemperatureEvent (3)

ElevatorAbnormalTemperatureEvent v AbnormalTemperatureEvent

u (9observationResult.[hasV alue>40])

u (9hasLocation.Elevator) (4)

ServerRoomTemperatureEvent v AbnormalTemperatureEvent

u (9observationResult.[hasV alue>20)

u (9hasLocation.ServerRoom) (5)

Data integration requires a generic data model. RDF commonly used by the
Semantic Web community to overcome heterogeneity of static data. In our case,
RDF is enough to represent the background knowledge but not to represent
streams, which require RDF Streams (see Section 2).

6 R. Tommasini, et al.

Last but not least, the ICM, if combined with a reasoners, allows to exploit
background knowledge to derive information that is only implicit described in
the data, as the axioms (4) and (5) show.

Deciding the entailment to use for representing the ICM is a domain specific
problem and a trade-o↵ with the final system complexity. One may argue the
need of a very expressive ontological language such as OWL 2 DL, that allows
us to define events in a generic and concise manner and it enables to create a
truly abstracted view over the events by the means of DL reasoning. Fragments
like OWL RL, DL-lite, or EL++ have been shown to be interesting for Stream
Reasoning use cases. At this stage, we do not discuss which restriction DELP
should include. In order to express meaningful examples w.r.t. our use case we
opted for OWL 2 DL3 , postponing a deep complexity study for the future works.

4.2 Capturing Time Relations

In our running example, the central part represent the time relation between
abnormal temperature and smoke. This need is captured by challenge (iii), that
calls for event processing operators. In practice, we need to explain simple tem-
poral pattern such as seq, combined with modifiers that provide enough expres-
siveness to capture the entire domain complexity, e.g. not.

Regarding time, we assume a point-based time semantics [3] for events; an
event e as a pair (G,t), where G is an RDF graph containing the event state-
ments and t is the associated timestamps. A partial ordering is established among
events, i.e. events can occur at the same timestamps. Regarding the event pro-
cessing, we consider the following time-aware operators:

– seq : (G1, t1) and (G2, t2), returns true i↵ the events occur and t1 > t2;
– and : (G1, t1) and (G2, t2), returns true when both the events occur regardless

their ordering;
– or : (G1, t1) or (G2, t2), returns true i↵ at least one of the events occur;

and the following modifiers:

– every, forces the re-evaluation of the qualified according to its positive eval-
uation of the sub

– within, which limits the validity of the pattern by constraining its evaluation
into time boundaries; and

– not, which negates the truth value of a pattern4.

Notably, in the state of the art, none of the existing solution implements all
these operators.

4.3 Description Logic Event Processing

In this section, we finally explain how the event processing operators (see Sec-
tion 4.2) are used in combination with ontological concepts.

3 https://www.w3.org/TR/owl2-direct-semantics/
4 Not can be used only as a combination of other patterns

Towards Ontology-Based Event Processing 7

In our example, we are interested in abnormal temperature and smoke sensor
readings to detect fire. We saw in Section 4.2 that semantic event representation
(R1) is possible at in the ICM. Alternatively, high level events can be specified
within a DELP query, by the means of the EventDecl clause (see Listing 1.4).
Listing 1.1 is an example of event declaration in DELP. The Manchester syntax5

is chosen for two reasons: it is conciser than RDF and highlights the idea of spec-
ifying events using high level abstractions. Moreover, it was combined already
with SPARQL in the past [8].

EVENT : OfficeAbnormalTemperaturEvent subClassOf
AbnormalTemperaturEvent

and (ob s e r v a t i o n r e s u l t some (hasValue (hasDataValue >= 40)))
and (hasLocat ion some Of f i c e))

Listing 1.1: Event Declaration for o�ce abnormal temperature in DELP

Event defined through this clause are added to the TBox of ontology the
reasoner uses for the inference process. Each of the defined events in DELP is
translated to OWL class expressions. The translation is straight forward, since
the event definition is based on the DL Manchester syntax. For example, the
O�ce Abnormal Temperature definition in Listing 1.1 is translated to:

OfficeAbnormalTemperaturEvent v AbnormalTemperatureEvent

u (9observationResult.[hasV alue>40])

u (9hasLocation.Office) (6)

DELP exploits the time-aware operators included in Section 4.2 and List-
ing 1.2 shows how Fire detection can be defined exploiting the temporal relation
between a SmokeDetectionEvent and AbnormalTemperaturEvent.

Event processing over high level concepts (R2), an example of which is avail-
able in Listing 1.2, is enabled by the sub-clause PatternExpr of the Pattern-
Decl clause. The definition of event patterns relies on user-defined ontological
concepts or those already existing in an ontology.

NAMEDEVENT : FireEvent {
MATCH : AbnormalTemperaturEvent SEQ : SmokeDetectionEvent WITHIN (5m)

}

Listing 1.2: Event Declaration for fire, based on temperature and smoke, in
DELP.

NAMEDEVENT : FireEvent {
MATCH : AbnormalTemperaturEvent SEQ : SmokeDetectionEvent6 WITHIN (5m)
IF {

EVENT : AbnormalTemperaturEvent { ?tmpSnsLoc : hasValue ?v}
EVENT : SmokeDetectionEvent { ?smkSnsLoc : hasValue ?v ;

?smokeObs ssn : obse rvat i onResu l t ; : hasValue ? smokeLevel
FILTER (? smokeLevel == ”3”ˆˆxsd : i n t e g e r)
}

}
}

Listing 1.3: Example of event pattern with filters (R4)

5 https://www.w3.org/TR/owl2-manchester-syntax/
6 We assume this event is already defined in the ontology.

8 R. Tommasini, et al.

Last but not least, the IFDecl clause enables to express filters and joins over
RDF Streams. Using a SPARQL-like syntax, the user can specify a basic graph
pattern to match for each event, e.g., EVENT :AbnormalTemperaturEvent in
Listing 1.3, and joins that exploit a name-based notation, i.e., variables with
the same name obtain the same binding (e.g., variable ?v in Listing 1.3). Filters
are specified using the SPARQL 1.1 Filter clause e.g., variable ?smokeLevel in
Listing 1.3.

Finally, Listing 1.4 describes sub-portion the DELP grammar, the full one
is available at http://bit.ly/2bURXUt. Due to the lack of space, we omitted
those parts that relies on other grammars, in particular: The EventDecl clause
allows definition of events as first class citizens; it relies on the classes formulation
typical of Manchester Syntax. An example of this is available in Listing 1.1. The
Constraint clause allows the specification of filters; it relies on the SPARQL 1.1
grammar; an example of this is available in Listing 1.3. The user can specify time
relations over semantic event declarations using the MATCH clause. Notably,
the optional keyword NAMED works di↵erently from SPARQL 1.1. It indicates
which events the user is interested to select for the retrieval of the underlying
RDF graph.

EventClause �> [NAMED] ’EVENT’ EventIRI (EventDecl | PatternDecl)
EventDecl �> Fol lows Manchester Syntax Grammar7

PatternDecl �> ’WHEN’ PatternExpr [IFDecl]
PatternExpr �> ’MATCH’ FollowedByExpr [WITHIN TimePeriod]
TimePeriod �> ’INTEGER’ (ms | s | m | h | d | w)
FollowedByExpr �> OrExpr (([’NOT’] ’SEQ’) OrExpr)⇤
OrExpr �> AndExpr (’OR’ AndExpr)⇤
AndExpr �> EveryOrNotExpr (’AND’ EveryOrNotExpr)⇤
EveryOrNotExpr �> [’EVERY’ | ’NOT’] (EventIRI [’AS’ EventAl t I r i]

| (PatternExpr))⇤
IFDecl �> IF ’{ ’ ’EVENT’ (EventIRI | Var) F i l t e rExpr ’} ’
F i l t e rExpr �> ’{ ’ (BGP | ’FILTER’ Constra int)⇤ ’} ’
Constra int �> Fol lows the SPARQL 1.1 Grammar8

Listing 1.4: Ontology-Based Event Processing Language Grammar

5 Ontology-Based Event Processing Architecture

Fig. 1: Overview of the ontology-based event processingarchitecture

7 https://www.w3.org/TR/owl2-manchester-syntax/#description
8 https://www.w3.org/TR/rdf-sparql-query/#rConstraint

Towards Ontology-Based Event Processing 9

In this section, we describe a system architecture for an OBEP system that
supports DELP syntax.

Figure 1 shows three di↵erent layers, each of which addresses a specific part
of the processing to go from RDF Streams to results of a DELP query. As
anticipated in Section 4.3, we assume incoming events as a pair (G,t) where G
is an RDF Graph and t is a timestamp (RDF Stream in Figure 1).

Building on this assumption, Layer (a) is responsible for inferring high level
concepts by applying reasoning over the incoming events; Layer (b) is responsible
for identifying and extracting, from the underlying RDF graph, those properties
that are relevant for filtering and joining, as specified in the query; last, but not
least, Layer (c) applies event processing over the abstracted events as well as
filtering and joining using the extracted properties. In the following paragraphs,
each layer is described in detail.

To better understand how each layer behaves, we continue on our running
example. We want to capture the temporal relation between abnormal temper-
ature and smoke in order to detect fire, but we need to ensure that the smoke
detection and the abnormal temperature measure belong to the same room.
In Listing 1.5, this requirements are translated into a time relation and a join
condition: the variable ?v is used for the AbnormalTemperaturEvent and the
SmokeDetectionEvent.

NAMEDEVENT : FireEvent {
MATCH : AbnormalTemperaturEvent �> : SmokeDetectionEvent WITHIN (5m)
IF {

EVENT : AbnormalTemperaturEvent { ?tmpSnsLoc a : Locat ion .
?tmpSnsLoc : hasValue ?v}

EVENT : SmokeDetectionEvent { ?smkSnsLoc a : Locat ion .
?smkSnsLoc : hasValue ?v}

}
}

Listing 1.5: Event Declaration for fire, if the smoke and temperature are sensed
in the same location.

The incoming RDF graphs are added to the ABox, processed by the reasoner,
and then removed. This process is show in Figure 1.a. DL reasoning is utilized,
together with ontological definition of events, to materialize the incoming RDF
graphs. When the reasoner, after a realization step, infers one of the defined
high level events, these are forwarded to the next layer that can perform event
processing over high level abstractions.

DELP allows the specification of filters and joins over the defined events.
However, performing joins or filters requires to compare the values of those
variables expressed in the DELP query. Which means access to the underlying
RDF graph of high level ontological concepts that DELP targets. An additional
SPARQL-querying layer, shown in Figure 1.b, is added in order to reach the
underlying RDF graph that the high level event definition implies and extract
the variables required for joining or filtering.

The translation from DELP filters to SPARQL queries is again straight for-
ward. Listing 1.6 shows one of the required queries for the property extraction
of the SmokeDectectionEvent in our example. For joins, the variable value must
be the same for all the events sharing a variable; filters should positively validate
a given conditional expression (e.g. lower than a specified threshold). Once the

10 R. Tommasini, et al.

Fig. 2: Event processing over high level events.

query is executed, the variable bindings are added to the event as properties,
maintaining the naming convention. If no properties need to be extracted and
no additional filtering is required, this step can be omitted.

SELECT ?tmpSnsLoc ?v
WHERE { ?tmpSnsLoc a : Locat ion ; : hasValue ?v }

Listing 1.6: Translated SPARQL query for the property extraction based on the
defintion in Listing 1.5 for the SmokeDetectionEvent

The last layer in our proposed architecture is the one responsible for the
actual event processing; it corresponds to Figure 1.c.

In our example, SmokeDetectionEvent and AbnormalTemperatureEvent are
matched. Figure 2 zooms in Figure 1.c and shows the structure of the events once
they reach the event processing layer for our running example: (Figure 2.I) the
materialized events that therefore contain both explicit data (Blue) and those
which have been inferred (Green); (Figure 2.II) the previously extracted values
for variables involved in filters or, in this very case, joins. (Figure 2.III) the
high level event definition, represented as an RDF graph to maintain a coherent
notation.

Assuming such a layered data structure, the pattern matching can be trans-
lated into a target CEP language that provides filtering and joining using a
name-based notation such as EPL. Listing 1.7 shows an example of this trans-
lation related to the fire detection example.

se lect ⇤ from pattern
[every a=AbnormalTemperaturEvent �> b=SmokeDetectionEvent (v=a . v)
where t imer : with in (5 min)]

Listing 1.7: Event Declaration for fire, translated to EPL

Towards Ontology-Based Event Processing 11

Building complex event structure is the goal of both CEP and SCEP systems.
Therefore, it is worth discussing how complex events are provided to the user in
case of positive pattern matching. At current stage, DELP does not include the
specification of composed events explicitly. This is because it is hard to combine
high level event description with their low level construction and we leave this as
future work. Since event composition is crucial in event processing, we opt for a
conservative solution and we define the complex event as the union of the under-
lying RDF graphs. The union is used since the event processor will only return
values when the operator turned true. For example if E1 has been detected and
E2 not, then E1 OR E2 will return true with E2 as an empty collection.

Last but not least, we implemented an OBEP proof-of-concept system9 con-
taining the following technologies: the HermiT reasoner [7] for event abstraction
in the first layer; Jena ARQ10 for the property extraction of the underlying RDF
graph in the second layer and the Esper engine11 to perform the event processing
on the high level events in the third layer.

6 Discussion and Conclusion

In this paper, we presented a first step towards ontology-based event process-
ing. We designed an approach that contributes to the state-of-the-art of stream
reasoning with a requirement analysis; a syntax for Description Logic Event
Processing, i.e. DELP; a three-layered architecture for an OBEP system that
supports the proposed DELP syntax and fulfills our requirements; and a proof-
of-concept implementation of a system.

Table 1 summarizes the di↵erences and similarities between the related works
mentioned in Section 2 and our approach for OBEP. This table highlights the
novelty of the proposed system through the requirements that we presented in
Section 4. Our approach combines semantic event declaration (R1.a) and event
processing (R2). It also allows to compute temporal inference over the high-
level concepts outputted by a deductive reasoning process. This is di↵erent from
approaches that extend the ontological language to perform temporal inference,
because they have to choose between either small entailments or intractability.
DELP implements all the typical event processing operator (R3), while the other
approaches focus on a subset. In particular, we include the not, which allows the
definition of more expressive patterns. The final system complexity is composed
by two layers, i.e. deductive reasoning and event processing. The second one is
known to be polynomial in time, therefore the final complexity is bounded by
the complexity of the ontological language used to describe the events.

In our future work, we will focus on the full language specification, i.e. full
complexity description and the analysis under di↵erent DL fragments. We will
investigate how to add the underlying definition of the events defined as RDF

9 The code is part of the new version of MASSIF platform which is not yet available
as open source. A stand alone version will be published at https://github.com/
IBCNServices/OBEP

10 https://jena.apache.org/documentation/query/
11 http://www.espertech.com/

12 R. Tommasini, et al.

graphs. Integrating this in the language facilitates the creation of a more com-
plete system that allows the processing of data on di↵erent levels. We aim at
introducing explicit complex event construction semantics and also important
time-aware operators, such as the ones of Allen’s algebra. Finally, we plan to
combine our approach with static knowledge for advanced inference and to thor-
oughly compare the performance of a prototype with state-of-the-art solutions,
such as EP-SPARQL.

R1.a R1.b R2 R3 R4 (Filters) R4 (Joins)

EPL Relational / ? X X X
EP-SPARQL [1] RDF BGP RDFS

seq, opt seq
eq opt seq

/ X⌦ X⌦

Taylor et al [9] OWL Boh12 seq, or, and X / /
MASSIF [4] DL Axioms OWL 2 DL / / X /
OBEP DL Axioms OWL 2 DL ? X X⌦ X⌦

Table 1: Di↵erences and similarities between (S)CEP and OBEP approaches
against Section 4 requirements. ⌦, i.e. SPARQL-like; ?, i.e. seq, and, or, not,
every, within.

References

1. Anicic, D., et al.: EP-SPARQL: a unified language for event processing and stream
reasoning. pp. 635–644 (2011)

2. Barnaghi, P., et al.: Semantics for the Internet of Things: Early Progress and Back
to the Future. Int. J. Semant. Web Inf. Syst. 8, 1–21 (Jan 2012)

3. Böhlen, M.H., et al.: Point-versus interval-based temporal data models. In: Pro-
ceedings of the Fourteenth International Conference on Data Engineering, 1998. pp.
192–200 (1998)

4. Bonte, P., et al.: The massif platform: a modular and semantic platform for the
development of flexible iot services. KAIS pp. 1–38 (2016)

5. Della Valle, E., et al.: It’s a streaming world! reasoning upon rapidly changing
information. IEEE Intelligent Systems 24(6), 83–89 (2009)

6. Lutz, C., et al.: Temporal description logics: A survey. In: 15th International Sym-
posium on Temporal Representation and Reasoning, TIME 2008, Université du
Québec à Montréal, Canada, 16-18 June 2008. pp. 3–14 (2008)

7. Shearer, R., et al.: Hermit: A highly-e�cient owl reasoner. In: OWLED. vol. 432,
p. 91 (2008)

8. Sirin, E., et al.: Terp: Syntax for owl-friendly SPARQL queries. In: Proceedings of
the 7th International Workshop on OWL: Experiences and Directions (OWLED
2010), San Francisco, California, USA, June 21-22, 2010 (2010)

9. Taylor, K., et al.: Ontology-driven complex event processing in heterogeneous sensor
networks. In: The Semanic Web: Research and Applications - ESWC 2011, Proceed-
ings, Part II. pp. 285–299 (2011)

