W3C ">

W3C Music Notation
Community Group Meeting

30 April 2020

~eogps W3C Music Notation
v W Community Group

* Founded in July 2015

* Develops and maintains format and language specifications for
notated music used by web, mobile, and desktop applications

* Maintains and updates the MusicXML and Standard Music Font
Layout (SMuFL) specifications

* Developing new MNX spec to handle new use cases and technologies

 Community group membership is free of charge and does not require
W3C membership

e https://www.w3.org/community/music-notation/

https://www.w3.org/community/music-notation/

* MusicXML 3.2 kickoff
* SMuUFL update
* MNX status and progress

W30 45, Why MusicXML 3.2?

* We can improve how MusicXML works for its core use cases of music
notation exchange and archiving

* In particular, MusicXML needs better support for parts
* Address many issues and suggestions from the past few years
* Working on MNX does not make MusicXML obsolete

* However, issues that cannot be resolved effectively given MusicXML's
design are best postponed to MNX-Common

r ",‘f, Current MusicXML 3.2 Plans

* About 40 open issues in the V3.2 milestone, grouped in 6 themes
* Better support for parts

Improve support for machine listening applications

Better XML tool support

Fix gaps in preserving score appearance

Fix gaps in preserving score playback

Clarify documentation of several features

e When to release
* First quarter of 2021

https://github.com/w3c/musicxml/milestone/2

WSC "“r, Improved Part Support Parts

* Many applications allow editing of score and parts in a single file

* MusicXML files encode either a score or a part, with no standard way
to represent relationships

* |ssue 278 has the main proposal: optionally include a full score and
full copy of all parts within the zip archive of an .mxl file

 Also provide better support for creating parts when just importing a
score as a .musicxml text file
e Specify transpositions for parts within concert scores (Issue 279)
» Specify top staff and bottom staff directions (Issue 37)

e 8 issues so far

https://github.com/w3c/musicxml/issues/278
https://github.com/w3c/musicxml/issues/279
https://github.com/w3c/musicxml/issues/37
https://github.com/w3c/musicxml/issues%3Fq=is%253Aopen+is%253Aissue+milestone%253AV3.2+label%253AParts

W3C "‘*\y/, Machine Listening Listening

* Machine listening includes notation applications like interactive
performance and music practice that rely on listening to a performer

* These applications often need supplemental data beyond what is
required for music display or playback

* |ssue 294 has the main proposal

* A new <listen> element, parallel to the current <sound> and <play> elements
already used for playback

* A new <player> element to identify performers in divisi parts

* Current examples including waiting points for performance (fermatas, section
breaks) and identifying performers for practice assessment

https://github.com/w3c/musicxml/issues/294

WSC ",‘f, Improved Tool Support Tools

* Help application developers by enhancing support for contemporary
XML tools

e 5issues so far:
* Add an XML catalog for local copy of schema or DTD (Issue 259)

* Select a standard namespace to use when combining MusicXML with other
XML vocabularies (Issue 266)

* Document solutions to common code generation issues (Issue 280)
e Add XSLT stylesheets for automatically generating ID attributes (Issue 260)
e Update MusicXML schema and DTD locations to use https (Issue 285)

https://github.com/w3c/musicxml/issues%3Fq=is%253Aopen+is%253Aissue+milestone%253AV3.2+label%253ATools
https://github.com/w3c/musicxml/issues/259
https://github.com/w3c/musicxml/issues/266
https://github.com/w3c/musicxml/issues/280
https://github.com/w3c/musicxml/issues/260
https://github.com/w3c/musicxml/issues/285

WSC ",‘r. Gaps in Appearance Appearance

* Fill in the gaps where score appearance cannot be shared completely
between applications using standard elements

e 8 issues so far:
* Piano pedal lines that do not explicitly end with a pedal up (Issue 302)

» Differentiate styles of guitar bends, polychords, enclosures, and multiple-rest
measure numbers

* Percussion staves with widely spaced lines (Issue 305)
* Vertical alighment and positioning for lyrics and measure numbers

* Is it now time to tackle other alignment issues?
e Specify SMUFL alignment for rest display-step (Issue 5)
» Specify exact default-x origin for barlines (Issue 6)

https://github.com/w3c/musicxml/issues%3Fq=is%253Aopen+is%253Aissue+milestone%253AV3.2+label%253AAppearance
https://github.com/w3c/musicxml/issues/302
https://github.com/w3c/musicxml/issues/306
https://github.com/w3c/musicxml/issues/307
https://github.com/w3c/musicxml/issues/308
https://github.com/w3c/musicxml/issues/310
https://github.com/w3c/musicxml/issues/305
https://github.com/w3c/musicxml/issues/261
https://github.com/w3c/musicxml/issues/23
https://github.com/w3c/musicxml/issues/5
https://github.com/w3c/musicxml/issues/6

r ",‘r, Gaps in Playback

* Fill in the gaps where score playback cannot be shared completely
between applications using standard elements

e 4 issues so far:
* Add support for swing that matches how applications work (Issue 283)
e Add virtual instrument changes for doublings (Issue 293)
 Clarify how the number attribute works for the ending element (Issue 291)
* Add new tin whistle instrument to sounds.xml file (Issue 289)

https://github.com/w3c/musicxml/issues%3Fq=is%253Aopen+is%253Aissue+milestone%253AV3.2+label%253APlayback
https://github.com/w3c/musicxml/issues/283
https://github.com/w3c/musicxml/issues/293
https://github.com/w3c/musicxml/issues/291
https://github.com/w3c/musicxml/issues/289

r "‘” Documentation Documentation

* Keep on fixing places where the MusicXML documentation is
incomplete, inaccurate, or confusing

e 12 issues so far, not counting those that are also in other categories

 Roman numeral analysis (Issue 295) is included here but looks like
more than documentation. Any volunteers to complete a design?

 We will also take another look to see if we can move the MusicXML
3.0 documentation from the musicxml.com site to the W3C site,
updated for MusicXML 3.2

https://github.com/w3c/musicxml/issues%3Fq=is%253Aopen+is%253Aissue+milestone%253AV3.2+label%253ADocumentation
https://github.com/w3c/musicxml/issues/295

g ",‘I‘. Postponed to MNX-Common

 Some common suggestions currently postponed to MNX-Common
* Improve semantics for text
* Improve semantics for brackets and lines
* Anything that would break compatibility with older MusicXML versions

W3C *5, MusicXML 3.2 Next Steps

* Does this sound like a reasonable scope for MusicXML 3.27

* Any additional areas to work on?

* Any areas proposed for work that we perhaps should leave out?
* Is 3.2 a good version number, or might 4.0 be better?

* The current milestone list is a work in progress

* |f you have favorite issues not yet written up, or written up but not included
in the 3.2 milestone, please add them or discuss in GitHub

* If this sounds like a good starting point, we can begin right away

W3C ",‘f, Community Group Membership

* To contribute a pull request to any of the W3C Music Notation
Community Group projects, you need to be a member of the group

 Membership is free of charge

 Sign up at the Community Group home page
* Click on the JOIN OR LEAVE THIS GROUP button to get started

* If you work for an organization in the area of music notation, please join as a
representative of that organization

 The W3C signup process is not always the easiest to use — reach out if you
have questions or issues

https://www.w3.org/community/music-notation/

WZ)C "‘\/;\Y/. SMuFL 1.4

* Aim to complete SMuFL 1.4 before the end of 2020

* Around 30 issues in total currently outstanding: 19 currently in scope
* Define complementary text font family in SMuFL font metadata
* Expand tuplets in “Beamed Groups of Notes” range
* Add noteheads for chromatic solfege
e Support for numbered notation (e.g. Chinese jianpu)

* New proposals are also always welcome — just open an issue

o/

e oK IR
o

MNX by example

MNX-Common by example

Welcome to our overview of the new music notation format currently
codenamed MNX-Common (see intro here). Our goal is to show you how
MNX-Common documents look and work, by example rather than formal
specification. This website is primarily intended for people making music-

notation software.

On this page, we present many musical situations — starting from a simple
"Hello world"” example and getting progressively more complex — to show
you exactly how each musical situation is encoded. For each example,
you'll see an image of the desired notation, followed by the encoding in
MusicXML and MNX-Common.

https://w3c.github.io/mnx/by-example/

4, MusicXML-to-MNX converter

README.md y

mnxconverter

A Python package for converting between MusicXML and the new MNX-Common format.

Disclaimer

This is alpha software! The MNX-Common format is being actively designed — so anything in this code might change,
including the very name MNX-Common itself.

This converter is also very limited in scope at the moment. So far, it only reliably converts the types of notations described in
MNX-Common by example.

W3C "0‘, Intro to mnxconverter

* Free, open-source Python library

* Command-line tool to convert MusicXML to MNX
* So far: Perfectly converts every example in “MNX by example”
* There’s LOTS it doesn’t do yet, but the foundation is in

W3 %5, mnxconverter goals

* Make MNX development less conceptual and more practical
* Get a sense of how MNX "feels" in practice
* Get developers involved in the design process for MNX

* Eventually serve as a fully featured, production-ready converter
between MNX and MusicXML

* Eventually serve as a fully featured, production-ready "cleaner" for
MusicXML files

r A t |
["% mnxconverter non-goals

* Becoming a general-purpose abstraction for music notation data in
Python

* Data structures are deliberately undocumented

* Any kind of consumer-facing tools (rendering, musicological research)

~ "‘”, mnxconverter tech details

* Imports MusicXML into a Python data structure (Bar, Note, etc.)
e Converts that data structure into MNX
* Architecture allows for import from other formats

* Will include heuristics for MusicXML import
 Example: “Does <octave-shift> affect the first note following the close tag?”

 Comprehensive test suite

@
WSC .',‘(’\. mnxconverter persona\ reactions
o

e The first true test
* Feels good!

* Inspired me to tweak data structures in my own notation app ©

W3C "0", mnxconverter and you

* See how your Favorite MusicXML Files look as MNX
* See an open-source approach to MusicXML parsing
* Get to know the MINX concepts (sequence, event, directions...)

* Selfish reason: It might inspire your own notation data structures

W3C "0‘, “Should | start using MNX?”

* Don’t implement it yet unless you want to be on the bleeding edge
* BUT, do begin to familiarize yourself with its concepts

W3C ",‘f, The naming issue

* MNX-Common vs. MNX-Generic
* Proposal: MNX and MGX

W3C "‘*\y/, MNX next steps

* For notational concepts that are already in the spec:
* Add to “MNX by example”
* Implement in mnxconverter

* For notational concepts that aren’t in the spec:
* Include “MNX by example” example in GitHub issue for discussion
* Update the spec
e Implement in mnxconverter

* Eventually reach a “Start implementation” milestone this year

* This means: “The format is still being developed, but it’s stable enough for
notation apps to begin working with it.”

