W3C Music Notation CG

Working Processes Update

Outline of Process

Issues raised in MNX GitHub repository by any community member

Open discussion from community welcomed on any issue

Co-chairs review issues regularly

Co-chairs identify issues for Active Review

Issues in Active Review are intended to be the focus of community discussion
Once consensus is reached, issue is either closed with no action, or a pull
request is created to address the issue

Issues with pending pull requests have the label PR Review

e Once pull request has been reviewed, pull request is merged and issue is
closed

Milestones

e Issues are added to a milestone after review by the co-chairs

e Currently three milestones defined:
o V1 —targeted for implementation in the first version of the MNX specification
o V next — targeted for implementation in the following version of the MNX specification
o Uncommitted — reviewed by the co-chairs, but not currently targeted for any specific release

e Only co-chairs can determine milestones

How to get involved

Join the Music Notation Community Group on the W3C web site

Agree to the W3C Contributor License Agreement

Register for an account on GitHub

|deally, add your GitHub username to the Contributors page on the MN CG
wiki

We recommend you “Watch” the MNX repository on GitHub to be notified by
email of discussion on issues (set up a rule to filter email to go into a specific
folder)

Raise new issues or add your comments to existing ones

Current status

40 open issues

2 issues open in V1 milestone

1 issue open in V next milestone

1 issue open in Uncommitted

36 issues yet to be assigned a milestone

MNX-Generic

(or, for Prince fans, The Encoding Formerly Known As GMNX)

An encoding standard
for music notation instances

Joe Berkovitz
co-chair, W3C Music Notation Group

https://www.w3.org

What's MNX-Generic?

e A low-level, literal encoding format for instances of scores
e 3 kinds of instances:
o Graphics
o Performance audio
o Performance data ("MIDI-like")
Connects time (audio) to space (graphics) or semantics
No dynamic layout or interpretation: instances are static
Not limited to specific definition of "music notation" for a culture or genre
Does not encode the "meaning" of notational symbols
o But... can refer to contents of a semantic document!

Why use MNX-Generic?

e Presentation of any notated music, as long as it's static

e Use cases that don't involve score modification or reflowing:

Score viewers and players with fixed layout

Music learning/practice

Play-along applications

Performance assessment

Music with highly customized or unique graphics (analysis, appreciation)
Analysis and exploration

Archival copies of rendered score

O o O O O O O

Instance Types

PR
TR et
Graphics

Audio Media

Performance Data

An MNX Encoding Ecosystem

Semaptlc references Instance
Encodings e ——— Encoding
- o~
|2 T
\
Common
Generic
load/save W
Producer
Contemporary/ <:> Applications @
Extended

Consumer
Applications

Gagaku

Discrete space/time mappings: Regions

performance time >

performance time >

Regions can be arbitrarily fine-grained

Continuous space/time mappings: Cursors

Multiple performances with different mappings...

Notated time: An abstract time axis

Rule 1: Equal notated times refer to the same place in the score.
Rule 2: Greater notated times occur after smaller notated times in the score.

performance time >

notated time >

Why have notated time?

e Multiple performances can share the same notated time axis.
e Only one set of mappings from notated time to graphics and semantics is

needed.
e Notated time is a semantic time dimension, so it lets us to map performances

directly to semantics with no graphics needed.

Mapping performance to "notated time"

o
: = R

j performance time
] |

notated time >

performance time

Linking Events, Graphics and Semantics

<event wvalue="/8">

<note pitch="F4"/> |

</event>

<event value="/8">
<note pitch="a4"/>

</event>

Linking Events, Graphics and Semantics

<event wvalue="/8">

<note pitch="F4"/> |

</event>

<event valye="/8">
<note p#tch="a4"/>

</even

Packaging MNX Scores (separate files)

/ MNX-Common

MNX-Container

SVG

MNX-Generic
Audio

Packaging MNX Scores (bundled files)

MNX-Common

SVG

MNX-Container /

MNX-Generic

Audio

Inter-document references

MNX-Container

MNX-Common

MNX-Generic

SVG

Audio

Graphics in MNX-Generic

e <score-view> element represents a page: a bunch of graphics intended to be
viewed as a visual unit.

"Plain old SVG" file format can be read/written by any tool

SVG can be a simple wrapper around bitmap graphics

Regions are bounding boxes of any SVG element within some <score-view>
Cursors are connected sets of points in a region

Any SVG element can represent any semantic element (e.g. an
MNX-Common <event>)

Audio in MNX-Generic

Audio media are files in existing standard audio formats
<performance-audio> references a collection of synced tracks
<performance-audio-media> references an individual track
<performance-mapping> links media timeline to regions, cursors

Performance data in MNX-Generic

Performance data can be thought of as "MIDI-like"
<performance-data> contains all the data for a performance
<performance-part> contains the data for a part within it
<performance-event> represents a single musical event (typically note)
<performance-mapping> links media timeline to regions, cursors
<interpret> includes performance data directly in MNX-Common

Region linkage

<mnx-generic> audio.mp4:
| |

<performance-audio-media src="audio.mp4"/>

<performance-region
start="0.24" end="1.29" —

view="pagel" region="regionl"/>
<score—viewq:;::;§$el" src="viewl.svg"/>

</mnx-generic>

view1.svg:

<svg>
g id="regionl">...</g>

</svg>

<mnx-common>

Semantic linkage

<event value="/8">
<note id="elnl" pitch="c4"/>
<mnx-generic> </event>

<score-view src="viewl.svg"> </mnx-common>
<score-mapping
graphics="notel" semantics="elnl"/> —"

</score-view>

</mnx-generic>

view1.svg:

<svg>
<g id="notel">...</g>

</svg>

Notated Time and Cardinality: Form and Repeats

Notated Time and Cardinality:
Ockeghem's Missa Prolationum: Kyrie

||
1)C &
A ®

(X) I
L 2 4 -
gq oc R veaNT—1F | >

/4

Why semantics isn't embedded in MNX-Generic

e \Would force graphical structure to mimic semantic structure

e Inits extreme form, would force performance structure to mimic graphical
structure

e \Would create a separate "Generic flavor" of every semantic encoding

e The same graphical object may belong to multiple semantic structures, in
which case there is no possible unified structure.

The syncing controversy

The performance/audio bits of MNX-Generic almost suffice to synchronize
audio with semantic data
Some applications will work directly from MNX-Common to render reflowable
music, yet still want audio syncing.
Alternatives in play so far:
o Use MNX-Generic (minus graphics) to encode syncing for CWMN, and
any other notational systems.
o Use some of MNX-Generic inside MNX-Common (as in <interpret>)
o Invent a brand new profile for MNX-Common with its own syncing
concepts

Towards an MNX-Common

layout model

Joe Berkovitz, Risible LLC
co-chair, W3C Music Notation Group

https://www.w3.org

Questions to explore

Is standardizing CWMN layout possible? Practical?

Is there a logical sequence of "building blocks" that progress in this direction?
What are the benefits and drawbacks at different points along this sequence?
What's the CG's feeling about how far to go down this path?

Brief Recap: Layout in MusicXML 3.x

Positioning model relies on absolute coordinates (default-x, default-y)
default-x is brittle, cannot support reflow

default-y works for reflow (but not transposition)

relative-x, relative-y definitions have no defined origin

Fine details of registration not defined (is y=0 centered on top staff line?)
Implementation support for all of these is highly variable

What we're doing here

e Exposing potential ways to express layout more flexibly
e Using horizontal positioning as a "laboratory"

e Considering a spectrum of approaches, from loose to tight
e Look at how style properties could drive these approaches

Whom does layout serve?

Composer: creates the musical content

Publisher: applies a particular style and sensibility to the whole
Engraver: applies human musical judgment to every detalil
Performer: reads the music in multiple environments and contexts

Serving the publisher and engraver

Several significant engraving decisions
were made here, following from a potential
stem/note collision in the upper staff.

These are human judgments that an
algorithm would not reliably make.

Do we want such decisions to be
preserved in a reflowable environment?

BWV 849, G. Henle Verlag

——

1y
ﬁ

H—‘ (X

I
o

Levels of the Game

Depending on how far we go down this path, we can wind up in several "levels of
the standards game". Each level builds on the previous one:

The Wild West

Explicit Positioning

Explicit Space Requirements
Algorithmic Space Requirements
Algorithmic Layout

Sl

Level 1: The Wild West

- Consumers do whatever they want
- Producers have no way to control consumers

If we stay at this level, there are no guarantees to producers about what
consumers will show, and no concept of "layout compliance”.

Level 2: Explicit Positioning

At this level, objects are positioned absolutely relative to some fixed point like the
start of the measure. This would put MNX where MusicXML is today, but with

added rigor.

Each object is put in an absolute position (a la default-x or -y)
Consumers "slavishly" reproduce layout for one geometry only
Extremely fine-grained: each event/direction has its own position
Cannot survive editing or reflowing

Consumers may not pay attention to this data because it's so brittle and conflicts
with their internal approach to flexible layout.

To go further, we need
a layout vocabulary...

"Boxes"

Consider an event or direction. We can put a box around it, representing its fixed
space requirements relative to a well-defined anchor point (x=beatline, y=top staff
line). This can govern other layout decisions that we may choose to specify.

-

"Blocking Width"

Given any pair of events or directions, there will be a minimum distance between
their beatlines to avoid collisions. This distance determines a blocking width
between objects, as shown below in red:

bkt

Interacting boxes

- Many kinds of boxes can block the positioning of events: chord symbols,
lyrics, etc.
- Boxes in one "lane" of collision can affect layout in other "lanes".

E3L7L9#9#11E7L9#9#11
- N

.Lron ==

The|squashed|boxes

"Sims" or "Simultaneities"

A sim or simultaneity is a horizontal extent bounded by one or more
simultaneous events, directions or measure boundaries. The green boxes below
show the sims in a simple polyphonic measure:

2 1
e o o PP

"ldeal width"

Each event or direction has an ideal width. Think of it as a weight relative to other
objects, rather than an absolute value: the units are "stretchy".

In the simplest case, each sim has only one event, and vice versa. The ideal width
of the event, based on its duration, determines the width of the corresponding sim:

Sims can stretch

An ideal width is just an ideal. In nearly every case, the ideal width will be
stretched (or shrunk) to optimize the view of the music, for example, to justify a
system. You can think of this as deciding the visual unit of ideal width.

k 1 | — 3 —1
[4 o . ® P & e @

s
)
L]
~N
N

Sims coincide with some events, and divide others

Polyphonic case: each sim may coincide with, and intersect with, multiple events.
These events have their own individual ideal widths, and the sim's ideal width is a
function of them.

This sim begins an event in the
upper voice, and intersects an event
in the lower. The events will have
different "ideal widths".

it
1Al

Combining it all: blocking/ideal widths and stretching

- ldeal widths are assigned definite units, thus stretching/shrinking them.
- Each sim has a blocking width determined by nearby boxes
- Each sim takes up the maximum of its stretched width and its blocking width.

i
[T

i
W —

Back to our roadmap...

Level 3: Explicit Space Requirements

At this level, producers attach style properties that state the space that each object
requires, and consumers honor this information within their own approach to
layout.

- Consumers reproduce layout "reasonably” well

- Consumers make use of the space requirements in varying ways

- Extremely fine-grained and verbose (positioning for each event/direction)
- Can be reflowed

- Cannot survive editing

Boxes: Explicit space requirements

At this level, scores explicitly state how much space every box takes up relative to
its origin. Verbose, but it does the job and doesn't require an algorithm.

left right

| T 1
” E B top
-

L f— bottom

Boxes: Explicit space requirements

Using styles, this approach might be encoded like this:

<event value="/4"
style="1left: ..; right: ..; top: .., bottom: ..">

Intra-box positioning

We'll also need to position objects relative to their origin, e.g. for a crossed voice,
or to displace a lyric to the left or right. These values can likely be explicit, as rules

may not work well across many cases. _ 4
r

IP_

Sims: Explicit Space Requirements

Each event's ideal width is prescribed by a style property, e.g.:
<event value="/4" style="ideal-width: 5">...</event>

This is separate from the box dimensions: we are saying, "here is the
horizontal space ideally occupied by the event, ignoring its box".

In the monophonic case, event ideal width is same as sim width.
In the polyphonic case, it's more complicated (but still simple!)

Level 4: Algorithmic Space Requirements

At this level, producers can provide a set of style parameters that allows any
object's space requirements to be determined algorithmically. Document-wide
parameters establish a "house style" that can be overridden for measures,
sequences or specific objects.

Consumers reproduce layout reasonably well

There is still variation in how consumers make use of the space requirements.
Document can specify the look of a score once, at a high level

Individual objects may still override with their own requirements

Can be reflowed

Layout decisions survive editing

Boxes: Algorithmic space requirements

We can specify styles that control how the interior of a box is laid out, and derive
the box dimensions by applying them. This isn't a full music layout algorithm, but it
specifies how a box's contents are laid out: noteheads, stems, accidentals, dots...

'

accidental-padding
stem-length
accidental-ordering

Horizontal Layout: Algorithmic Space Requirements

- Each event's ideal width is determined by a algorithm based on its duration,
using a house style property.

- Can use table lookup with interpolation to avoid prescribing specific math.

- At document level, a style provides a table, e.g.:

log, duration (note value) ideal width in staff lines
0 (whole) 5
-1 (half) 4
-2 (quarter) 3
-3 (eighth) 2

Level 5: Algorithmic Layout

At this level, both consumers and producers employ a layout algorithm that
produces deterministic results based on the space requirements from Level 4.

Consumers reproduce layout perfectly

Document can specify the look of a score once, at a high level
Can be reflowed

Layout decisions survive editing

Algorithmic Topic 1: polyphonic ideal widths

- Events are assigned ideal widths based on styling.
- Each event contributes a pro-rated portion of its ideal width to each sim.
- Each sim assumes the maximum width contributed by any of its events.

NO: Uneven YES

g —
L

1/4 1/8 1/8 1/4

Algorithmic Topic 2: Blocking width across sims

- Blocking can occur across multiple sims
- In this case, the blocking width can be allocated in a pro-rated fashion

sk ddds
Addddi

