Data and Metadata of Language Resources as Linked Data on the Web: Examples

Christian Chiarcos
chiarcos@uni-frankfurt.de
Linked Data for Linguistics

- Representation and modelling
- Structural interoperability
- Integrating distributed resources
- Conceptual interoperability
- Dynamic Import
- Ecosystem, infrastructure and community

Chiarcos et al. (2013)
Different linguistic subcommunities have developed representation standards, e.g.,

- **LMF**: Lexical Markup Framework (Francopoulo et al. 2009)
 - lexical-semantic resources
- **GrAF**: Graph Annotation Framework (Ide and Suderman 2007)
 - annotated corpora
- based on labeled directed acyclic graphs (feature structures)

- **RDF data model**: labeled directed graphs
 - Uniform formalism for *different* resource types
 - Sublanguages (e.g., OWL) to define specific vocabularies
Structural interoperability

- With different language resources represented in RDF, we can combine both sources of information freely
 - cross-resource queries with SPARQL
 - Given a corpus with WordNet sense annotations
 - “Retrieve all sentences that describe locations”
 - i.e., sentences containing a token annotated with a WordNet sense that is a hyponym of “location”
 - Difficult to realize with GrAF or LMF
Integrating distributed resources

- SPARQL supports nested subqueries to run on different repositories

```
SELECT ?token {
  service <http://wordnet.rkbexplorer.com/sparql> {
    rkbWN:synset-land-noun-2
    wn20:containsWordSense ?sense .
  }
  ?token powla:hasString ?synonym .
}
```

- No physical integration of resources in a single database required
 - Easy to link to centralized repositories of reference terminology, etc.
Conceptual interoperability

- Resources should specify which vocabulary (e.g., for annotation) they use and how it is defined
 - By reference to community-maintained terminology repositories, e.g.,
 - GOLD (Farrar and Langendoen 2010)
 - ISOcat (Windhouwer and Wright @ LDL-2012)
 - OLiA (Chiarcos 2008)
- Can be used, e.g., for disambiguation
 - e.g., land as a noun, but not as a verb
Dynamic import

- Linking resources with URIs
 => resolved on-the-fly to enrich with up-to-date background knowledge
 e.g., every update in a lexical resource is available to every resource linked with it
 => updates are available at query time
- Inconsistencies can be avoided through versioning
Ecosystem, infrastructure and community

- RDF and related standards are maintained by an active and relatively large community
 - Different fields of application
 - Libraries, GeoData, BioMed, ...
 - Established W3C standard and technological infrastructure
 - Linguistically relevant resources already provided
- RDF facilitates distributed development, re-using data, and, indirectly, interdisciplinary cooperation
Towards LLOD

- There are independent motivations to provide data in RDF
 - generic data model
 - generalization over heterogeneous DB schemes
 - generalization over heterogeneous terminologies
 - connect existing resource portals
 - a conceptual view on annotations
Towards LLOD

- There are independent motivations to provide data in RDF

- Side-effects: Data can be
 - linked with other RDF resources
 - e.g., lexicon – linguistic terminology
 - queried (federation)
 - even if stored in physically separated repositories
Towards LLOD

- There are independent motivations to provide data in RDF
- Side-effects: Data can be
 - linked with other RDF resources
 - queried (federation)
⇒ Linguistic Linked Open Data (LLOD)
An on-going effort orchestrated by the Open Linguistics Working Group of the Open Knowledge Foundation
Building the Cloud: Examples

- Each data provider has different incentives to use Linked Data and/or RDF
- Concepts of RDF and Linked Data have been brought up to solve open problems in different subcommunities of linguistics and neighboring fields

Examples

- Corpora
 - Cassidy (2010), Chiarcos (2012)
- Machine-readable dictionaries
- Term and data bases
 - Chiaros (2010)
- Etymological dictionaries
 - combined queries
 - Burchardt et al. (2008), Rehm et al. (2008), Chiaros & Götze (2007)
 - Chiaros & Sukhareva (2014)
Linked Germanic Etymologies

XML edition and DB interface

Lexvo

Linked Data
ISO-639
language identifiers

Glotto-
log

Linked Data
language identifiers
from
typology

OLiA

Linked Data
interoperable
grammatical
categories

RDF conversion and linking
(Chiarosc & Sukhareva, 2014)

original
OE Köbler
dictionary
(human-readable PDF)

http://www.koehlerberhard.de/germanistischewoerterbuecher/altenglischewoerterbuch/AENG-5.pdf

Linked Data
German &
English lexical
resources

l̄emon
Uby

IOE

OHG

Got h

Pie +PIgen

other

machine-readable, linked
Köbler dictionaries (LOD edition)

XML conversion
(Price 2012)

Linked Data
[DH] digital
humanities

ACoLi

DACH-Initiative: DH in the German
Universities and Research Institutions; DFG Project
501556606

[Technische Universität Darmstadt]
Linked Germanic Etymologies

Application:
Aligning early medieval gospel harmonies

Old Low German (Old Saxon)
Conversion of etymological dictionaries to RDF

- **Linkability**: representation of relations within and beyond lexicons

- **Interoperability**: (meta)data representation through community-maintained vocabularies (lexvo, Glottolog, OLiA, lemon)

- **Inference**: filling the logical gaps of the original XML representation
 - *Symmetric closure of cross-references*
Linked Germanic Etymologies

A few critical remarks

- existing vocabularies insufficient
 - lemon: etymological relations between lexical entries ?
 - glottolog/lexvo/ISO-693: reconstructed languages ?
 - OLiA: Old Germanic inflection paradigms ?
Use Case I: Corpora

Analyses produced by different researchers / NLP tools use different representation formalisms
... Byzantine land was being divided...
Use Case I: Corpora

Developmental trajectory

- proprietary/ad hoc formats
- XML
- directed acyclic graphs
 - standoff XML
- RDF
 - to store, query and integrate standoff annotations
 - Burchardt et al. (2008), Cassidy (2010), Chiarcos (2012), Rubiera et al. (2012), Hellmann et al. (2012), etc.
Use Case II: Lexical Resources

Similar trajectory

- proprietary formats
- XML, e.g., TEI dictionary
 - primarily for printed dictionaries
 - application in, e.g., NLP Budin et al. (2012)
Use Case II: Lexical Resources

Similar trajectory

- proprietary formats
- XML, e.g., TEI dictionary
- generic data model, LMF
 - feature structures/directed acyclic graphs
 - linearized in XML/UML
 - **but**: semantics of links needs to be externally specified

(Francopoulo et al. 2009)
Use Case II: Lexical Resources

Similar trajectory

- proprietary formats
- XML, e.g., TEI dictionary
- generic data model, LMF
- RDF, e.g., lemon
 - Buitelaar et al. (2013), Fiorelli et al. (2013), Moran & Brümmer (2013)

=> links to language resources other than lexicons
Use Case III: Bring them together

e.g.,

- words in a corpus and lexical concepts
 - at the moment, there exists no other unified formalism capable to express the following query

 ![Diagram](image)

 WordNet → syntax → WordNet

 all hyponyms of *land* modified by a pertainym of *Byzantium*

- lemmas in a lexicon and grammatical features from a repository of linguistic reference terminology
Use Case IV: Term Bases

- linguistic terminology
 - Ontologies of Linguistic Annotation (http://purl.org/olia)
- language identifiers and descriptions
 - Glottolog (http://glottolog.org)

=>

- ontology-based querying
 - via query rewriting for corpus information systems
 (Rehm et al. 2007, Chiarcos & Götze 2007)
- ensemble combination architectures
 - merge output of different NLP tools on a conceptual basis
 (Chiarcos 2010, Pareja-Lora 2010)