Web of Twins?

Walking through a "privacy by design" chain from sensor’s microcontroller to XR

#WotWs2 Munich, Germany <2019-06-04>

Philippe Coval
Samsung Open Source Group / SRUK
p.coval@samsung.com
$ who is Philippe Coval

- Software engineer for **Samsung OSG**
 - Belongs to SRUK team, based in Rennes, France
 - Interest: **Web of Things** with “Privacy by Design”
 - Contributor: Tizen, IoTivity, Mozilla WebThings, IoT.js, TizenRT...
 - Multi-active: FLOSS, OSHW, IoT, Web, 3D/XR, Communities

- Ping me online:
 - https://social.samsunginter.net/@rzr
Digital Twins
What are digital twins?

- Introduced by Dr M. Grieves (FIT)
 - Context: 2002 as part of PLM, NASA
- Real time (or deferred) connectivity:
 - Between the **physical component**
 - and its **digital counterpart**
- “Devices as service” concept:
 - Applies to many industry:
 - City, manufacturing, health, transport...
 - Near “Real Time” data?

- Useful for:
 - Re/Co/Design
 - Monitoring, Quality tracking
 - Impact analysis:
 - Dependency, process, lifecycle, financial...
 - Digital traces for analytic
 - Simulation, AI/ML etc
 - Improve decision making
Digital twins are model driven, use cases:

- **Smart Factory**
 - A Reference model of product
 - is versioned
 - Some property of model is changed
 - By design team, suppliers
 - Or even end consumer?
 - Simulation checks and validation
 - Production is reconfigured
 - CNC machines updated
 - A new batch of product is effective

- **Smart City**
 - Observe environment, traffic, energy...
 - Simulate new strategies, paths
 - Apply changes:
 - Smart buildings, IoT
 - Recommendation, Social Web...
 - Model is evolving in real time
 - Observe global effects
 - Citizen to be involved if public
 - Could adjust their SmartHome devices
 - Heat, Air Quality → Ventilation
 - Privacy should be preserved
Proof of concept
Ethic considerations & challenges

• FLOSS + Open Standards
 - Accessible & Inter operability:
 - Stable API and semantics needed

• Privacy by design
 - Comply to GDPR Article 25

• Transversal
 - On the Web!
 - With the web (Eg: OpenData sources)
 - CAD Model in browser
 - Microcontrollers nodes (IoT.js)

• Using Mozilla WebThing platform:
 - User generated data
 - stay home by default
 - Decentralized & Access Control
 - Resources can be shared:
 - JSON Web Token
 - Optional remote access

• Scalability?
 - Hosting & Versioning?
Javascript the language of Web (of Twins)

- **IoT.js** an alternative runtime inspired by Node.js:
 - Powered by JerryScript engine designed for micro-controllers
 - Base features: IO (I2C, GPIO...), Network (HTTP/S, MQTT, WS)
 - Modules: iotjs-express, mastodon-lite, generic-sensors-lite
 - Supporting: TIZEN® RT, GNU/Linux ...

- WebThings can be build using *webthing-iotjs* module:
 - Standalone HTTP servers exposing Mozilla Things API:
 - RESTful architecture: read, update operations
 - Can be connected to MozIoT “PrivacyByDesign” gateway
Example: The Robot ARM idea

• From concept:
 - Top level properties: Angles:
 • Torso [-180, +180]
 • Shoulder [0, +90]
 • Arm [0, +90]
 • Hand [0, +90]

• To early specifications:
 - Design Model CAD → VR/AR
 • Simulation
 • Identify integration issues
 - Implement embedded system
 • Sourcing hardware
 • Controller / Controllee
 - Adjust design/specifications
Digital Twins with WebThing-IoTjs (on STM32)
https://youtu.be/sUayRsjV1Ys
PoC Architecture Overview:

- **JS Application**
 - generic-sensor-lite
 - IoT.js
 - I2C API
 - JerryScript + LibTuv
 - HTTP API
 - webthing-iotjs

- **OS / RTOS**
 - (TizenRT, Linux, NuttX)

- **Web/Application**
 - A-Frame (+ T.js)

- **WebBrowser**
 - HTTP/WS
 - XR/GL

- **Network**
 - IP/lwIP
 - IP
 - OS
 - GL
 - IO

- **Hardware**
 - Sensor
 - MCU
 - NIC
 - CPU

- **Interconnections**
 - WWW
 - Or direct
 - LAN
 - GW
 - ...
Run a “color sensor WebThing” with IoT.js

- **Install IoT.js** for WebThing-IotJs (GNU/Linux, TizenRT, WLS...)
 - https://github.com/rzr/webthing-iotjs/wiki/IotJs
- **git clone** https://github.com/samsunginternet/color-sensor-js
 - iotjs lib/tcs34725.js # => log: value=[7779,36778,11173,42766]
 - make -C example/color-sensor-webthing start
 - curl http://localhost:8888/properties/ {"color": "#af0695"}
- Or simulate webthing in the cloud:
 - https://color-sensor-webthing.glitch.me
Live control in 3D using A-Frame on GearVR:
https://youtu.be/s3r8pQtzhAU#wotxr-20190320rzr
XR Visualization

- From WebVR
 - Implemented in Web browsers supporting WebGL
 - Various frameworks: A-Frame, Babylon-js, Three-js. GLTF
 - GPU Performance (WebGL)
- To WebXR also support Augmented Reality
 - Follow immersive web working group
- I use Samsung’s GearVR 2017 (with controller)
- Progressive Web App (PWA): to manage offline mode
Summary

- Digital Twins PoC can be implemented with JavaScript:
 - Physical Device on **Microcontroller** using IoT.js supporting:
 - I/O: Native and “generic-sensors-lite” module
 - WebThings API: Can connect to Mozilla IoT gateway
 - Decentralized architecture with Privacy By Design
- Avatar in **browser** (XR)
 - A-Frame (WebVR)
 - Align to WebThings schemas and sync nodes
- Next challenges:
 - Scalability, Persistence, GLTF (with parametric?)
Q&A?
(or Extras?)
Ask now or online:
https://social.samsunginter.net/@rzr
Resources:

- **Open Source:**
 - https://github.com/rzr/webthing-iotjs/wiki
 - https://github.com/SamsungInternet/color-sensor-js
 - https://github.com/rzr/twins
 - http://opensource.samsung.com/

- **Infos:**
 - https://social.samsunginter.net/@rzr/102139995659879619
Controlling real data & consuming OpenData

https://youtu.be/OT0Ahuy3Cv4#webthing-iotjs-opendata-20190202rzr
Thanks!

https://Social.SamsungInter.net/@rzr

Resources:
Flaticons CC,
PixBay.com