Proposal:
Security for Nice F2F Plugfest

Johannes Hund
(johannes.hund@siemens.com)

Oliver Pfaff
(oliver.pfaff@siemens.com)

Given Things, Implication

* Target audience:
* Those who participated in the Sapporo F2F (without security)
* Others who want to get started in the Nice F2F
* Less than 8 weeks remaining
* Security-enabling can not demand detailed security domain knowledge
* Security-enabling clients and resource servers shall not demand more than 1 PW of efforts

» Must go with a low entry option - in style of a minimal subset

Proposed Recipe for Security-Enabling

Add secure communications but do not limit security-enabling to that

* Plumbing DTLS underneath CoAP resp. TLS underneath HTTP is well-understood and
straight-forward — communications should be secured but 2016 is ca. 10-20 years to late
to promote this as a highlight

* Use asimple key management and configuration model
Focus on authorizing and hence authenticating the requests sent over the network
Adopt the architectural model of IETF ACE

* Client (C): constrained, accesses resources

* Resource server (RS): constrained, serves multiple resources

* Authorization manager (AM): less/non-constrained, represents multiple Cs

« Authorization server (AS): less/non-constrained, represents multiple RSs
Rely on existing standards where-ever possible

(Re-)use well-known artifacts esp. OAuth, JWT (implementing libraries exist and are
interoperable) in incarnating this model

https://www.ietf.org/archive/id/draft-gerdes-ace-actors-05.txt

Plugfest@Nice F2F — Security-Addition

Requesting party domain

Less-constrained
>
<

Register

N
& :

-§ Client

2 component
S

) A

) C/{>j .
COAP/HTTP -over
TLS/TLS with security token)

i Resource owner domain

Netiwork

Process security
token (same-domain) e

Servient | Controls
component (local)
Execution container Thing e.g. LED
Implements Describes
\ /
Thing

description

Security-Related Processing Tasks

Registration:
* C:request/response according OAuth dynamic registration (RFC 7591)
* RS:avoided
Token acquisition:
* C:request/response according OAuth client credentials grant (RFC 6749)
* RS: not needed
Token supply and consumption:

* C(for supply): for HTTP according RFC 6750, for CoAP in style of RFC 6750 (see draft-
tschofenig-ace-oauth-bt-01)

* RS (for consumption): for HTTP according RFC 6750, for CoAP in style of RFC 6750 (see
draft-tschofenig-ace-oauth-bt-01)

Token validation:
* (C:n.a.

* RS:according RFC 7519 (low entry option uses a minimal JWT)

Supply of Components

* C:any Plugfest participant — like in Sapporo

* The security-enabling of Cs is described in the accompanying How-To. This security-
enabling aims at minimizing the impact on C

* RS: any Plugfest participant — like in Sapporo

* The security-enabling of RSs is described in the accompanying How-To. This security-
enabling aims at minimizing the impact on RS

* AM and AS: Siemens
* Not meant to exclude other interested parties - just to make sure they will exist
* Ifthere is another interested party then:

* For simplicity it is suggested not to consider AM / AS interop as a goal for the Nice
Plugfest

* l.e.the (AM, AS)-tuple that C and RS are utilize are either Siemens or TBD

Security-Related Material for Plugfest

Overview slides
* Does exist, this deck
HowTo description incl. request/response/object prototypes
* Does exist, accompanying document
Cheat sheet incl. code snippets
* Does exist, accompanying document
Running AM and AS instances (deployed in e.g. AWS laaS)
* Available soon

Hands-on help (via mail or mailing lists)

Security-Related Implementation Options

* TLS and DTLS usage options:

* Default: use HTTP-over-TLS resp. CoAP-over-DTLS plus security tokens for security-
enabled interactions between C and RS

* Alternative: use HTTP-plain resp. CoAP-plain plus security tokens for security-enabled
interactions between C and RS

* AS token content options:
* Minimal: no specific access control information
* Normal: access control information in AlF style (draft-bormann-core-ace-aif-03)
* AS token signature options:
* Default: ES256 (asymmetric, elliptic curve cryptography supported by many JWT libraries)
* Alternative: HS256 (symmetric, supported by almost all JWT libraries)

Recap:
Plugfest@Sapporo F2F — Security-Unaware

Client Servient Controls

Rl N
component CoAP/HTTP component (local)
A

Network Execution container Thing e.g. LED

Implements Describes

\/

Thing
description
(sample)

e Plugfest description

e Plugfest results

e Architectural model

https://github.com/w3c/wot/blob/master/TF-TD/TD Samples/led_v02.jsonld
https://github.com/w3c/wot/tree/master/plugfest
https://www.w3.org/WoT/IG/wiki/F2F_meeting_29-30_October_2015,_Sapporo,_Japan
https://github.com/w3c/wot/wiki/Architecture-Model

