Web to the Edge

REST and Hypermedia Design for Machine APIs

Michael Koster – Current Work

ARM

- IoT Architecture and Standards
- Application Level Interoperability
- Developer Enablement

IETF

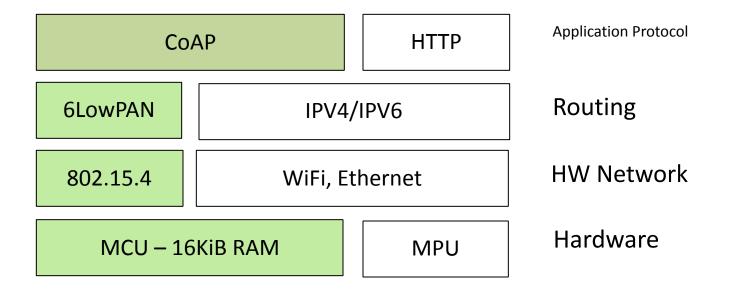
- Resource Directory
- CoRE Interfaces
- CoAP Pub-Sub
- T2TRG

OMA LWM2M

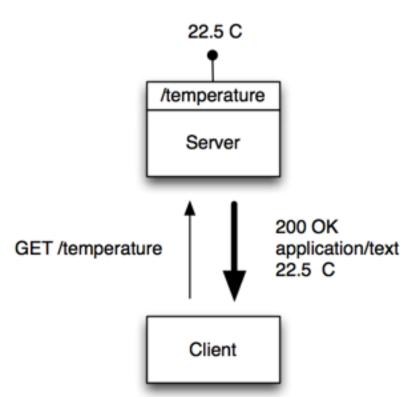
- Peer-to-peer, firewall traversal, and M2M interface
- IPSO
 - Smart Object Committee, Data Model and Schema

IoT Architecture – Problems to Solve

- Interoperability
 - In the way in which software interacts with physical resources
 - Decouple IoT devices from the software that manages them
 - Discovery, Management and Reporting, Security, Authorization
- Scalability
 - Large number of devices, users, interactions, connections
 - Scale-less interaction
- Technology Reuse and Modularity
 - Software, networks, protocols, data models
 - Across vendors in a vertical application segment
 - Across diverse vertical application segments
- Low Barrier to Innovation
 - Anyone can participate and innovate


Internet/WWW Design Patterns

- Narrow Waist, endpoint oriented
 - Innovation happens at the endpoints, enabled by common, openly available network protocols (the narrow waist)
- Layered Protocols
 - Common set of IP protocols (TCP, UDP) abstract the lower communication layers
 - Common Application Protocols (HTTP, REST) abstract resources
- Uniform Addressing
 - URIs and Hyperlinks point to resources
 - IP Addresses, DNS names are globally unique
- Stateless Interaction
 - Client-Server pattern
 - Hypermedia As The Engine Of Application State


How Does it Apply to IoT?

- Internet Protocol (IP) on Constrained Devices
- Machine to Machine (M2M) Application Protocols
- Standard Object Models and Data Models
- Hypermedia for Machine APIs

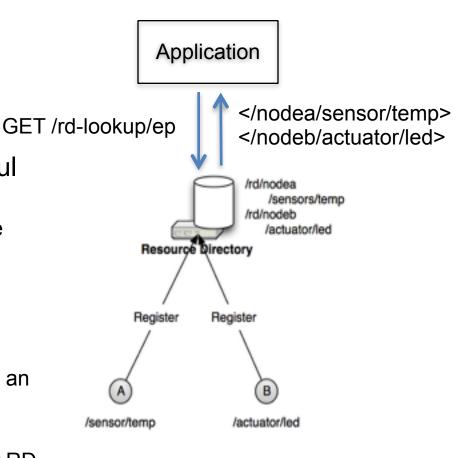
IP for Constrained Environments

CoAP Protocol

- Makes each device a lightweight origin server that exposes a REST API
- A CoAP endpoint may also contain application client logic
- A CoAP endpoint can be both client and server
- Peer to Peer interaction is based on a duplex clientserver pattern
- Also supports asynchronous notification, Pub-Sub pattern

RFC 6690 CoRE Link-Format

<4001/0/9002>; rt="oma.lwm2m"; ct=50; obs=1

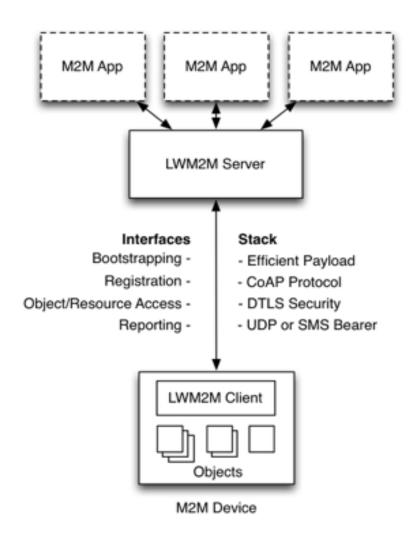

Resource Type

Content Type

Observability

Resource Discovery

- RFC 6690 CoRE Link Format defines
 - The link format media type
 - Peer-to-peer discovery
- A directory approach is also useful
 - Supports sleeping nodes
 - No multicast traffic, longer battery life
 - Remote lookup, hierarchical and federated distribution
- CoRE Link Format is used in Resource Directories
 - Nodes register their resource links to an RD
 - Nodes refresh the RD periodically
 - Nodes may unregister (remove) their RD entry



See draft-ietf-core-resource-directory

Device Management and Application Support

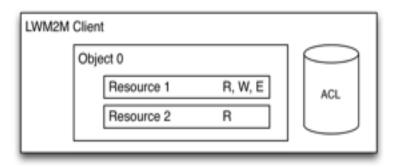
Application Application Software Data Models **IPSO Objects API** and Services Web Server **OMA LWM2M Application Protocol** CoAP HTTP Routing 6LowPAN IPV4/IPV6 **HW Network** 802.15.4 WiFi, Ethernet Hardware MCU – 16KiB RAM **MPU**

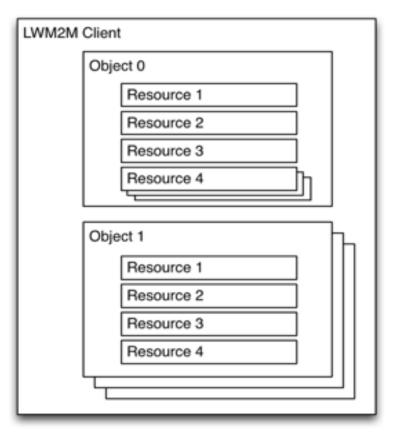

OMA LWM2M Reference Architecture

- M2M Applications
 - Application abstraction through REST API
 - Resource Discovery and Linking
- LWM2M Server
 - CoAP Protocol persistent endpoint
 - Supports Caching Proxy
 - Resource Directory
 - Gateway and Cloud deployable
- LWM2M Clients are Devices
 - Device abstraction through CoAP
 - LWM2M Clients are CoAP Servers
 - Any IP network connection

OMA LWM2M Interfaces

- Bootstrap Interface
 - Configure Servers & Keying
 - Pre-Configured, Smart Card, or Server Initiated Bootstrap
 - Coap rest api
- Registration Interface
 - RFC6690 and Resource Directory
- Management and Application Interface Using Objects
 - Device Management Objects and Resources
 - Coap rest api
- Reporting Interface
 - Object Instances and Resources Report
 - Asynchronous notification using CoAP Observe



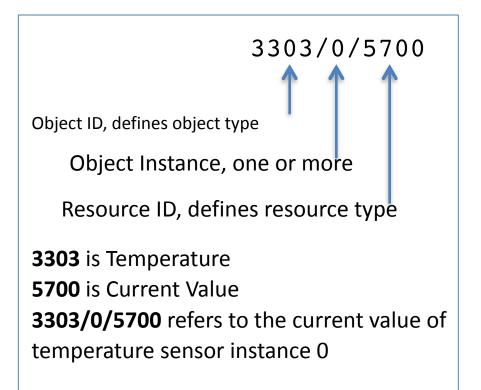

OMA LWM2M Object Model

- A Client has one or more Object Instances
- An Object is a collection of Resources
- A Resource is an atomic piece of information that can be Read, Written or Executed
- Objects can have multiple instances
- Objects and Resources are identified by 16-bit Integers
- Objects/Resources are accessed with simple URIs: /{Object ID}/{Object Instance}/ {Resource ID}

Example: /3/0/1

- Object Type=3 (Device)
- Instance=0
- Resource Type = 1 (Device Mfg.)

IPSO Smart Objects


- Plug and play data models between applications and data sources
- Create a set of reusable objects and resources that represent single points of interest and fundamental concepts
 - Temperature Sensor, On-Off Control Switch
 - Current Value, Max Value, Min Value
- Make Objects and Resources Reusable across application domains
- Build up models of complex things by composing simple objects
 - For example, an electric motor with temperature sensors, rotation speed, power supply current, voltage, frequency, vibration sensors

IPSO Smart Objects Support Modular Internet Protocols

Application Application Software Device Management Data Models **IPSO Objects** REST API – Data and Metadata Other IP LWM2M Server **Based Stacks:** MQTT, XMPP, Wire Protocol + REST HTTP etc. CoAP 6LowPAN/ Non-IP Internet Protocol IPV4/IPV6 **Thread** based Transport -**HW Network** 802.15.4 WiFi, Ethernet **BTLE MCU – 16KiB** Hardware **MPU RAM**

IPSO Smart Objects are based on LWM2M Data Model

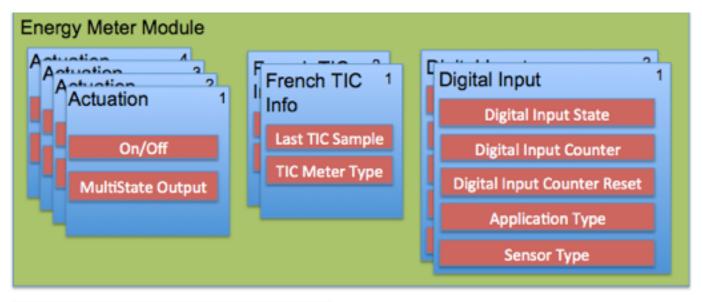
- REST API with a URI template
 - 2 level Class Hierarchy and schema
 - Objects, one or more instances
 - Resources
- Reusable resource and object IDs
 - Object ID determines gross concept and object structure
 - Resource ID determines what aspect of the object is represented
 - Semantic Consistency e.g.
 Object=Temperature,
 Resource=Current Value
 - IDs are registered with the OMNA
- Data Types and Operations
 - String, Decimal, Boolean, Time, ObjLink
 - Read, Write, Create, Delete, Execute, Discover, Observe, Notify

IPSO Smart Object Example

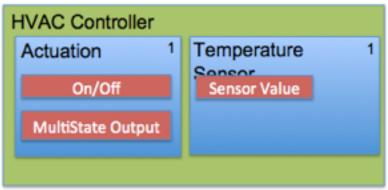
Object Info:

Object	Object ID	Object URN	Multiple Instances?	Description	
IPSO Temperature	3303	urn:oma:lwm2m:ext:3303	Yes	Temperature sensor, example units = Cel	

Resources:

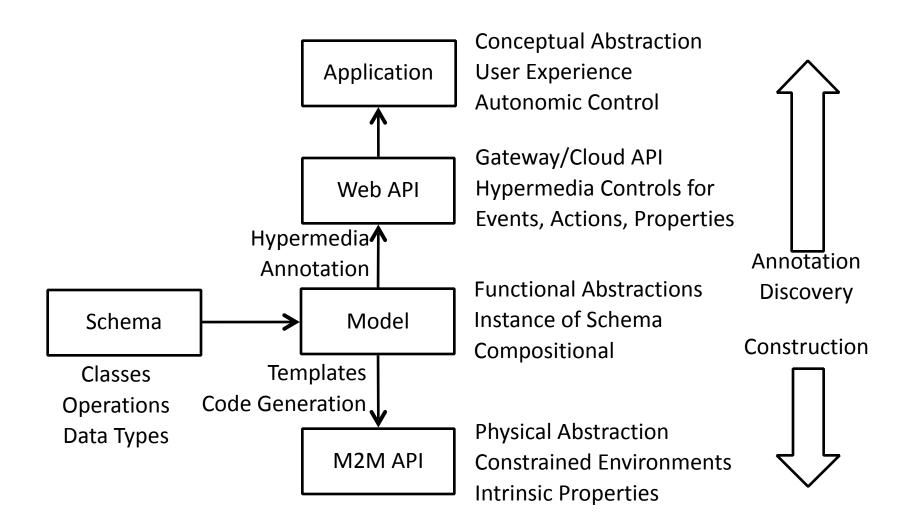

Resource Name	Resource ID	Access Type	Multiple Instances?	Mandatory	Type	Range or Enumeration	Units	Descriptions
Sensor Value	5700	R	No	Mandatory	Float			Last or Current Measured Value from the Sensor
Units	5701	R	No	Optional	String			Measurement Units Definition e.g. "Cel" for Temperature in Celsius.
Min Measured Value	5601	R	No	Optional	Float	Same as Measured Value	Same as Measured Value	The minimum value measured by the sensor since power ON or reset
Max Measured Value	5602	R	No	Optional	Float	Same as Measured Value	Same as Measured Value	The maximum value measured by the sensor since power ON or reset

Semantic Annotation of Smart Objects


- Object annotation uses RFC 6690 links for associating additional semantic descriptions with Smart Objects and Resources
- Can be used to add contextual metadata and dynamic link relations
- Semantic connectors to web scale common data models
- Discovery by relation and attribute
 - For example, using CoRE Resource Directory:

```
GET /rd-lookup?ep&rt="urn:X-ipso:temperature"
Returns: </sensors/3303/0/5700>;obs;if="urn:X-
ipso:sensor";rt="urn:X-ipso:temperature";ct=50;u="ucum:deqC"
```

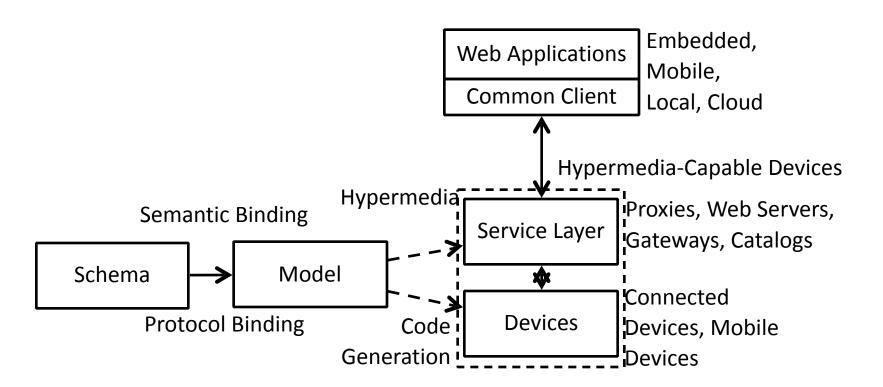
Composite IPSO Smart Objects

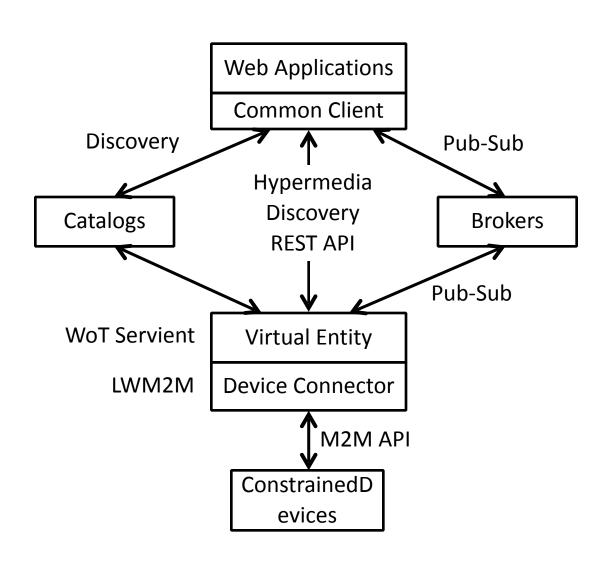

Web of Things

Application Hypermedia Web Applications Data Models IPSO Objects + Hypermedia **API** and Services Web Server **OMA LWM2M Application Protocol** CoAP HTTP Routing 6LowPAN IPV4/IPV6 **HW Network** 802.15.4 WiFi, Ethernet Hardware MCU – 16KiB RAM **MPU**

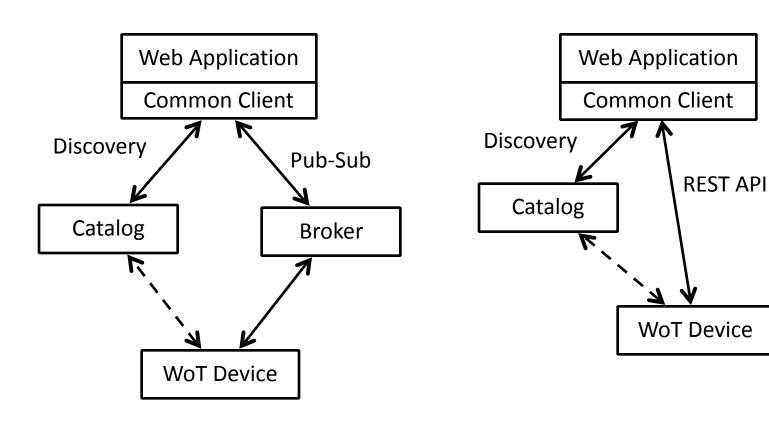
Hypermedia

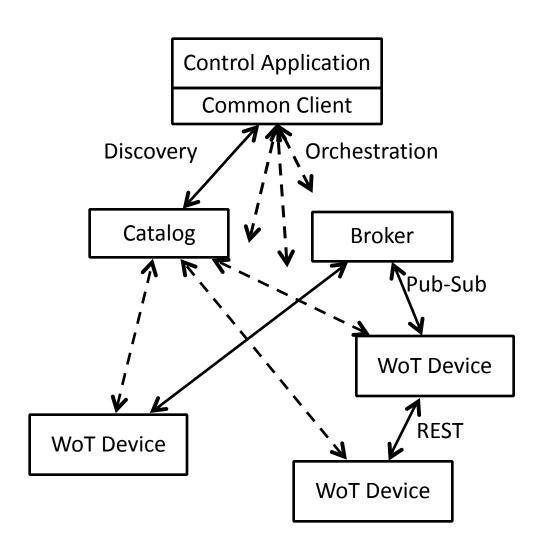
- API State Machine Automation
 - Enables Common Web Client to interact with any device or virtual entity, regardless of schema or model structure
 - Hypermedia controls work like HTTP links and forms, but for functional abstractions of physical world items like on/off light switch controls
- Application Semantics and Discovery
 - Describes intrinsic resources and controls at the application level using physical concepts like temperature, light intensity
 - Enables applications to discover the proper resources to link to
- Context Integration
 - Contextual information like installed location, what is being measured and controlled, also used in application resource discovery
- Using Web Linking, Relations, and Attributes


Model-Based Information Architecture


Models

- Instance(s) of Schema(s) with annotation
- Enable composition of complex entities from simple ones
- Connect functional abstractions to concrete APIs
- Constructors for hypermedia controls
- Contain relations and attributes
 - Provide a way to describe entities using semantic annotation
 - Provide a structured way to introduce contextual annotation
- Can function as instance constructors for constrained devices,
 e.g. server code generation
- Also provide for managed APIs and application code generation


Deployment From Models


Deployment with LWM2M

Example Deployment

Example Deployment

Follow on work

- What do the hypermedia descriptions of events, actions, and properties look like?
- What are the functional abstractions that will be used to enable vertical specialization while still providing broad interoperability?
- How does discovery integrate with API automation?
- What are the metadata constructs for connecting constrained hypermedia to higher level abstractions?
- Prototype using constrained lighting objects with LWM2M and IoT Toolkit open source python framework
- Reference WoT client using Node-RED + extensions

Modeling Tools and Frameworks

- RESTful API Modeling Language (RAML) uses JSON Schema
- JSON Schema, JSON Hyper-schema
- Web API Description Language (WADL)
- XML Schema Definition language (XSD)
- URI Templates (RFC 6570)
- IETF CoRE Interfaces Function Set
- Schema.org Vocabulary for RDFa, JSON-LD
- RESTdesc.org uses Turtle (RDF based)
- Hypertext Application Language (HAL)
- Eclipse Vorto
- Hydra
- ALPS

Organizations and Initiatives

- W3C WoT TF-TD, TF-DI
- OMA GotAPI
- IETF CoRE RD, Interfaces, link-format
- IPSO Smart Object Guidelines
- IEEE P2413
- OIC SHP
- Allseen Alliance, Alljoyn
- Eclipse Foundation Vorto,
 IoT Backend

- XMPP XEP-323, XEP-325
- Hypercat Hypercat 3.0
- OneM2M MAS
- Zigbee Alliance ZCL-over-IP
- HGI SDT
- IIC Use Cases and Testbeds
- UPnP Common Data Model
- Cable Labs Common Data Model

References

```
IPSO Smart Object Guideline
    http://www.ipso-alliance.org/smart-object-guidelines
OMA LWM2M Specification
    http://openmobilealliance.hs-sites.com/lightweight-m2m-
    specification-from-oma
IETF CoAP and Related Specifications
    CoAP (RFC 7252):
    http://tools.ietf.org/html/rfc7252
    CoRE Link-Format (RFC 6690):
    http://tools.ietf.org/html/rfc6690
    CoRE Resource Directory: <a href="http://tools.ietf.org/html/draft-ietf-">http://tools.ietf.org/html/draft-ietf-</a>
    core-resource-directory
CoAP Community Site
    http://coap.technology/
```