Web to the Edge

REST and Hypermedia Design for
Machine APIs

Michael Koster — Current Work

ARM
— loT Architecture and Standards
— Application Level Interoperability
— Developer Enablement

IETF

— Resource Directory
— CoRE Interfaces

— CoAP Pub-Sub

— T2TRG

OMA LWM2M
— Peer-to-peer, firewall traversal, and M2M interface
IPSO

— Smart Object Committee, Data Model and Schema

loT Architecture — Problems to Solve

Interoperability

— In the way in which software interacts with physical resources
— Decouple IoT devices from the software that manages them

— Discovery, Management and Reporting, Security, Authorization
Scalability

— Large number of devices, users, interactions, connections

— Scale-less interaction

Technology Reuse and Modularity

— Software, networks, protocols, data models

— Across vendors in a vertical application segment

— Across diverse vertical application segments

Low Barrier to Innovation

— Anyone can participate and innovate

Internet/ WWW Design Patterns

Narrow Waist, endpoint oriented

— Innovation happens at the endpoints, enabled by common, openly
available network protocols (the narrow waist)

Layered Protocols

— Common set of IP protocols (TCP, UDP) abstract the lower
communication layers

— Common Application Protocols (HTTP, REST) abstract resources
Uniform Addressing

— URIs and Hyperlinks point to resources

— IP Addresses, DNS names are globally unique

Stateless Interaction

— Client-Server pattern

— Hypermedia As The Engine Of Application State

How Does it Apply to IoT?

Internet Protocol (IP) on Constrained
Devices

Machine to Machine (M2M) Application
Protocols

Standard Object Models and Data Models
Hypermedia for Machine APIs

IP for Constrained Environments

CoAP

HTTP

6LowPAN

IPV4/IPV6

802.15.4

WiFi, Ethernet

MCU - 16KiB RAM

MPU

Application Protocol

Routing
HW Network

Hardware

CoAP Protocol

225C

!

ftemperature

Server

200 OK
GET /temperature application/text
225 C

‘ Client |

Makes each device a
lightweight origin server that
exposes a REST API

A CoAP endpoint may also
contain application client logic

A CoAP endpoint can be both
client and server

Peer to Peer interaction is
based on a duplex client-
server pattern

Also supports asynchronous
notification, Pub-Sub pattern

RFC 6690 CoRE Link-Format

<4001/0/9002>;rt=“oma.lwm2m” ;ct=50;0bs=1

Resource Type /
Content Type

Observability

Resource Discovery

RFC 6690 CoRE Link Format

) Application
defines
— The link format. media type GET rd-lookun/e </nodealsensor/temp>
— Peer-to-peer discovery p/ep </nodeb/actuator/led>
A directory approach is also useful s
— Supports sleeping nodes g PenSORSNOD

— No multicast traffic, longer battery life

— Remote lookup, hierarchical and
federated distribution

CoRE Link Format is used in
Resource Directories

— Nodes register their resource links to an

RD
— Nodes refresh the RD periodically

— Nodes may unregister (remove) their RD

entry

/actuator/ied
Resoun irectory

Register Register

J

/sensortemp factuator/led

See draft-ietf-core-resource-directory

Device Management and Application
Support

Application Software Application
IPSO Objects Data Models
OMA LWM2M Web Server APl and Services
CoAP HTTP Application Protocol
6LowPAN IPV4/IPV6 Routing
802.15.4 WiFi, Ethernet HW Network

MCU — 16KiB RAM MPU Hardware

OMA LWM2M Reference Architecture

= M2M Applications
= Application abstraction through

T — — REST API

= Resource Discovery and Linking
= LWM2M Server

=
]
=
P
o
°
=
]
=
=
]
£
pg
k]
°

LWM2M Server

= CoAP Protocol persistent endpoint
Interfaces Stack .
Bootstrapping - - Efficient Payload = Supports Caching Proxy
Rogiotadion = | - - CoAP Protocol = Resource Directory
Object/Resource Access - - DTLS Security
Reporting - . UDP or SMS Bearer = Gateway and Cloud deployable
y = LWM2M Clients are Devices
ENVRESS G = Device abstraction through CoAP
-1:“] = LWM2M Clients are CoAP Servers
Objects = Any IP network connection

M2M Device

OMA LWM2M Interfaces

Bootstrap Interface
— Configure Servers & Keying

— Pre-Configured, Smart Card, or
Server Initiated Bootstrap

CoAP REST API

Registration Interface
— RFC6690 and Resource Directory

Management and Application
Interface Using Objects

— Device Management Objects and
Resources

CoAP REST API

Reporting Interface

— Object Instances and Resources
Report

— Asynchronous notification using
CoAP Observe

......

lient Initiat Ist
Client Initiated Bootstrap o L
ey Bootstrap
Chent Server Initiated Bootstrap Server
-
— —
LWM2M Reglﬁlef. Update, De'fegls..ef LWM2M
Chent . Server
S — S —
Read, Write, Execute,
LWM2M Create, Delete LWM2M
-

Chent Server
— —
Observe, Cancel Observation
LWM2M < LWM2M
Chent Nobdy Server

»
S — S —

OMA LWM2M Object Model

* A Client has one or more Object
Instances

* An Object is a collection of Resources

A Resource is an atomic piece of
information that can be Read, Written
or Executed

» Objects can have multiple instances

» Objects and Resources are identified
by 16-bit Integers

* Objects/Resources are accessed with
simple URIs:

{Object ID}/{Object Instance}/
{Resource ID}

Example: /3/0/1

* Object Type=3 (Device)
Instance=0
Resource Type = 1 (Device Mfg.)

LWM2M Client

Object 0

[Resouroe 1

R, W,E|

[Resource 2

R

ACL

LWM2M Client

Object 0

Resource 1

Resource 2

Resource 3

Resource 4

Object 1

Resource 1

Resource 2

Resource 3

Resource 4

IPSO Smart Objects

Plug and play data models between applications and
data sources

Create a set of reusable objects and resources that
represent single points of interest and fundamental
concepts

— Temperature Sensor, On-Off Control Switch

— Current Value, Max Value, Min Value

Make Objects and Resources Reusable across
application domains

Build up models of complex things by composing
simple objects

— For example, an electric motor with temperature sensors,
rotation speed, power supply current, voltage, frequency,
vibration sensors

IPSO Smart Objects Support Modular
Internet Protocols

Application Software

Device Management

IPSO Objects
REST
Other IP LWM2M
Based Stacks: Server
MQTT, XMPP,
etc. CoAP HTTP
6LowPAN
Non-IP / IPV4/IPV6
based Thread
Transport -
BTLE 802.15.4 WiFi, Ethernet

MCU — 16KiB
RAM

MPU

Application

Data Models

AP| — Data and Metadata

Wire Protocol + REST

Internet Protocol

HW Network

Hardware

IPSO Smart Objects are based on LWM2M Data Model

« REST API with a URI template
— 2 level Class Hierarchy and schema

— Obijects, one or more instances 3303/0/5700
— Resources T A
* Reusable resource and object IDs

— Object ID determines gross concept Object ID, defines object type

and object structure

— Resource ID determines what aspect
of the object is represented

— Semantic Consistency e.g.
Object=Temperature,

Object Instance, one or more

Resource ID, defines resource type

Resource=Current Value 3303 is Temperature
— IDs are registered with the OMNA 5700 is Current Value
- Data Types and Operations 3303/0/5700 refers to the current value of
- (S)tgi_n_g, Decimal, Boolean, Time, temperature sensor instance 0
jLink

— Read, Write, Create, Delete, Execute,
Discover, Observe, Notify

Object Info:

IPSO Smart Object Example

Object Object 1D Object URN Multiple Description
Instances?
IPSO 3303 urn:oma:lwm2m:ext:3303 Yes Temperature sensor, example
Temperature units = Cel
Resources:
Resource Resource | Access Multiple Mandatory Type Range or Units Descriptions
Name 1D Type Instances? Enumeration
Sensor 5700 R No Mandatory | Float Last or Current
Value Measured
Value from the
Sensor
Units 5701 R No Optional | String Measurement
Units
Definition e.g.
“Cel” for
Temperature in
Celsius.
Min 5601 R No Optional Float Same as Same as | The minimum
Measured Measured | Measured | value measured
Value Value Value by the sensor
since power
ON or reset
Max 5602 R No Optional Float Same as Same as | The maximum
Measured Measured | Measured | value measured
Value Value Value by the sensor
since power
ON or reset

Semantic Annotation of Smart Objects

Object annotation uses RFC 6690 links for associating additional
semantic descriptions with Smart Objects and Resources

Can be used to add contextual metadata and dynamic link
relations

Semantic connectors to web scale common data models

Discovery by relation and attribute

— For example, using CoRE Resource Directory:
GET /rd-lookup?ep&rt=“urn:X-ipso:temperature”

Returns: </sensors/3303/0/5700>;0bs;if="urn:X-

ipso:sensor”;rt=“urn:X-ipso:temperature”;ct=50;u=“ucum:degC”

Composite IPSO Smart Objects

Digital Input State

Last TIC Sample

On/Off Digital Input Counter

TIC Meter Type .
MultiState Output Digital Input Counter Reset

Application Type

Sensor Type

: On/Off Sensor Value
SetPoint Value

SetPoint Unit MultiState Output

|| PhysicalObject [OMAwObject [l Resource

Web of Things

Hypermedia Web Applications

IPSO Objects + Hypermedia

OMA LWM2M Web Server
CoAP HTTP
6LowPAN IPV4/IPV6
802.15.4 WiFi, Ethernet

MCU - 16KiB RAM

MPU

Application

Data Models

APl and Services

Application Protocol

Routing
HW Network

Hardware

Hypermedia

APl State Machine Automation

— Enables Common Web Client to interact with any device or virtual entity,
regardless of schema or model structure

— Hypermedia controls work like HTTP links and forms, but for functional
abstractions of physical world items like on/off light switch controls

Application Semantics and Discovery

— Describes intrinsic resources and controls at the application level using
physical concepts like temperature, light intensity

— Enables applications to discover the proper resources to link to
Context Integration

— Contextual information like installed location, what is being measured
and controlled, also used in application resource discovery

Using Web Linking, Relations, and Attributes

Model-Based Information Architecture

Application

{

Web API

Hypermedia
Annotation

Schema

—> Model

Classes
Operations
Data Types

Templates
Code Generation

M2M API

Conceptual Abstraction

User Experience /\

Autonomic Control

Gateway/Cloud API
Hypermedia Controls for
Events, Actions, Properties

Annotation
Functional Abstractions Discovery
Instance of Schema
Compositional Construction

Physical Abstraction
Constrained Environments
Intrinsic Properties

Models

Instance(s) of Schema(s) with annotation

Enable composition of complex entities from simple ones
Connect functional abstractions to concrete APIs
Constructors for hypermedia controls

Contain relations and attributes

— Provide a way to describe entities using semantic annotation
— Provide a structured way to introduce contextual annotation

Can function as instance constructors for constrained devices,
e.g. server code generation

Also provide for managed APls and application code generation

Deployment From Models

Semantic Binding

Web Applications

Embedded,
Mobile,

Common Client

Local, Cloud

Hypermedia-Capable Devices

Schema

—>

Protocol Binding

Hypermedig ————
1
Il Service Layer
- 1
Model o ! *
Code Devices
1
Generation'!

1
IProxies, Web Servers,

IGateways, Catalogs

‘Connected
Devices, Mobile
Devices

Deployment with LWM2M

Web Applications

Common Client

Discovery Pub-Sub
Hypermedla

Catalogs Discovery Brokers

REST API
\ Ab

WoT Servient Virtual Entity

LWM2M | Device Connector

$M2M API

ConstrainedD
evices

Example Deployment

Web Application

Common Client

DiscoveV \rb_sub

Web Application

Common Client

Discovery /
REST API

Catalog

Broker

Catalog

N /
\
\
\
.|

WoT Device

v

N
N
N\

=

WoT Device

Example Deployment

Control Application

Common Client

Discovery ' \Orchestration
1 N

I

Catalog J vV I

Awxs._ Y

/ \

Broker

'Eub-Sub

T WoT Device
\

\
= \
WoT Device \Q f REST

WoT Device

Follow on work

What do the hypermedia descriptions of events, actions, and
properties look like?

What are the functional abstractions that will be used to enable
vertical specialization while still providing broad
interoperability?

How does discovery integrate with APl automation?

What are the metadata constructs for connecting constrained
hypermedia to higher level abstractions?

Prototype using constrained lighting objects with LWM2M and
loT Toolkit open source python framework

Reference WoT client using Node-RED + extensions

Modeling Tools and Frameworks

RESTful APl Modeling Language (RAML) uses JSON Schema
JSON Schema, JSON Hyper-schema

Web API Description Language (WADL)

XML Schema Definition language (XSD)

URI Templates (RFC 6570)

IETF CoRE Interfaces Function Set
Schema.org — Vocabulary for RDFa, JSON-LD
RESTdesc.org — uses Turtle (RDF based)
Hypertext Application Language (HAL)
Eclipse Vorto

Hydra

ALPS

Organizations and Initiatives

W3C - WoT TF-TD, TF-DI
OMA - GotAPI

|ETF — CoRE RD, Interfaces,
link-format

IPSO — Smart Object
Guidelines

IEEE — P2413
OIC—SHP
Allseen Alliance, Alljoyn

Eclipse Foundation — Vorto,
loT Backend

XMPP — XEP-323, XEP-325
Hypercat — Hypercat 3.0
OneM2M — MAS

Zigbee Alliance — ZCL-over-IP
HGI - SDT

lIC — Use Cases and Testbeds
UPnP — Common Data Model

Cable Labs — Common Data
Model

References

IPSO Smart Object Guideline
http://www.ipso-alliance.org/smart-object-guidelines
OMA LWM2M Specification
http://openmobilealliance.hs-sites.com/lightweight-m2m-
specification-from-oma
IETF CoAP and Related Specifications
CoAP (RFC 7252):
http://tools.ietf.org/html/rfc7252
CoRE Link-Format (RFC 6690):
http://tools.ietf.org/html/rfc6690
CoRE Resource Directory: http://tools.ietf.org/html/draft-ietf-
core-resource-directory
CoAP Community Site
http://coap.technology/

http://www.ipso-alliance.org/smart-object-guidelines
http://www.ipso-alliance.org/smart-object-guidelines
http://openmobilealliance.hs-sites.com/lightweight-m2m-specification-from-oma
http://tools.ietf.org/html/rfc7252
http://tools.ietf.org/html/rfc6690
http://tools.ietf.org/html/draft-ietf-core-resource-directory
http://tools.ietf.org/html/draft-ietf-core-resource-directory
http://coap.technology/

