
Unrestricted

Security_4_Plugfest – How To

Author: Oliver Pfaff, Siemens AG, CT ITS RTC

Security_4_Plugfest – How To ... 1

Introduction .. 1

Unprotected Interactions .. 1

Protected Interactions .. 2

Simple Request Authorization and Caller Authentication .. 2

Communications via HTTP ... 2

Communications via CoAP ... 6

Advanced Request Authorization and Caller Authentication ... 7

Message Authentication and Encryption ... 7

Communications via HTTP ... 7

Communications via CoAP ... 8

Plugfest Root CA Certificate.. 9

Appendix: Alternative AS Token Signature Scheme ... 9

Introduction
This document assumes that you will (or consider to) participate in the Plugfest during the Nice

F2F of the W3C IG WoT and you are developing any of the following components:

 A resource server (short: RS) responding to requests via HTTP or CoAP

 A client (short: C) sending requests via HTTP or CoAP

This document provides a how-to for the security-enabling of these interactions. An overview of

the security-enabling is provided in an accompanying slide-deck.

Unprotected Interactions
Adding security is regarded optional for the Nice Plugfest. So your client and/or server should

be prepared to accept resp. provide requests via HTTP-plain resp. CoAP-plain without

supplying or requiring a security token. This document does not provide further details about

unprotected interactions. Do consult other Plugfest documents for that.

mailto:oliver.pfaff@siemens.com

Unrestricted

Protected Interactions
The following describes the basic protection of the interactions during the Nice Plugfest. It is

intentional to offer a low entry-barrier to encourage many security-enabled Plugfest

implementations. For that purpose it is fully intentional to take various shortcuts (e.g. static

settings/configurations, ‘allow-all’/liberal policies, minimal token contents, optional transport-

level security etc.). For production use additional considerations and additional security

mechanisms/checks will typically be required: the basic protection utilized for Plugfest

security shall not be used 1:1 in production setups

This protection comprises following security services:

 Request authorization and (indirect) caller authentication: this is achieved by means of

security tokens. For the Nice Plugfest this is the primary security goal. This is detailed

in the first part of this HowTo.

 (Optional) message authentication and encryption: this is done by means of TLS (for

HTTP) and DTLS (for CoAP). It presents a subordinate security goal for the Nice

Plugfest. This is detailed in the second part.

Simple Request Authorization and Caller Authentication
The goal is to authorize requests and (implicitly) authenticate callers by means of bearer1

security tokens (JWT2) with minimal contents.

Communications via HTTP

This section applies to Cs and RSs which support HTTP as a means of their interaction.

RS Developers

Configuration

Configure the RS component with

 RS id: NicePlugfestRS3

 AS issuer name NicePlugfestAS

 AS public signature verification key for ES2564. This is following JWK object5:

{

 "keys": [

 {

 "kty": "EC",

 "use": "sig",

 "crv": "P-256",

 "kid": "PlugFestNice",

1
 A shortcut: for the protection of high-value resources, PoP resp. HoK models may be required

2
 Another shortcut: JWTs are standard (RFC 7519), well-understood among Web developers and well-

covered in implementation (see jwt.io). JWTs match RFC 7228 class 2 devices. Equivalent means for
class 1 or 0 are not yet available - not yet as standards and also not as (mature) implementations
3
 Another shortcut: static/invariant RS identifier values for all RSs

4
 See appendix for the utilization of alternative JWT token signature schemes

5
 Another shortcut: this is a plain public key for verifying JWT signature values

Unrestricted

 "x": "CQsJZUvJWx5yB5EwuipDXRDye4Ybg0wwqxpGgZtcl3w",

 "y": "qzYskD2N7GrGDSgo6N9pPLXMIwr6jowFGyqsTJGmpz4",

 "alg": "ES256"

 }

]

}

Registration

Skipped6 for RSs that support ES256

Operation

When receiving a HTTP request at a protected endpoint:

1. Check if the request contains an Authorization header. Respond with a 401 error if

not

2. Check if the request contains an Authorization: Bearer-header with non-

null/empty contents. Respond with a 401 error if not

3. Check if the value of the Authorization Bearer-header is a JWT object. Respond

with a 401 error if not

4. Check if the JWT object is signed. Respond with a 401 error if not

5. Check if the signature of the JWT object is valid. This is to be checked with AS public

signature verification key (see above). Respond with a 401 error if invalid

6. Check the contents of the JWT object7:

o Check if the value of “iss” is NicePlugfestAS. Respond with a 401 error if not

o Check if the value of “aud” is NicePlugfestRS. Respond with a 401 error if not

7. Accept the request as well as “sub” as the originator of the request and process it as

usual8

For more background see RFC 6750 (HTTP Bearer tokens) and RFC 7519 (JWT), RFC 7517

(JWK). For JWT libraries in various programming languages see http://jwt.io/ section “Libraries

for Token Signing/Verification”. For JSON libraries see http://json.org/. Depending on the

chosen strategy (JSON vs. JWT library) and instance, the steps 4-6 will be done by a 3rd party

library

C Developers

Configuration

Not required

Registration

Registration may be done programmatically (default) or manually9 (fallback). Programmatic

registration is done according RFC 7591 and described in the following:

6
 Another shortcut

7
 Another shortcut: further checks would apply in production environments including an “aud” check which

depends on RS registration (that was skipped for simplicity)
8
 Another shortcut that implements a naive and very coarse access control: presenters of a valid security

token (no detailing anything about the resource) may access any available resource with any method.
One would not do this in production systems at least not without careful consideration.

http://jwt.io/
http://json.org/

Unrestricted

Create a HTTP request10 with JSON request content as in the following prototype and send it

via TLS to the AM11:

Request:

POST /iam-services/0.1/oidc/am/register HTTP/1.1

Request headers:

Host: ec2-54-154-59-218.eu-west-1.compute.amazonaws.com

Content-Type: application/json

Accept: application/json

Request body12:

{

 "client_name": "yourClientName",

 "grant_types": ["client_credentials"]

}

Security: note that the registration endpoint is unprotected for the purpose of the Plugfest13. To

comply with its TLS profile, configure the client-side TLS engine as follows:

 Protocol version: TLSv1.2, 1.1 or 1.0 (note that the usage of SSLv3.0 is deprecated by

the IETF)

 Cipher suite: any ECDHE_ECDSA cipher suite. Note that ECDSA is used as public key

algorithm during server authentication

 Server authentication: configure the trusted root CAs to Plugfest root CA certificate

Response:

Check that you get a 201 Created response and extract the value of “client_id” (this value is

called <c_id> in the following) and the value of “client_secret” (called <c_secret> in the

following) from the JSON response body. A response body prototype14 is:

{

 "client_id": "889d02cf-16dd-4934-9341-a754088faxyz",

 "client_secret": "ahd5MU42J0hIxPXzhUhjJHt2d0Oc5M6B644CtuwUlE9zpSuF14-kXYZ",

}

Store <c_id>15 and <c_secret>16 for use during the token acquisition.

9 For manual registration send a mail with yourClientName to the author of this document. You
will get <c_id> and <c_secret> values in a response mail.
10

 If the C component is implemented as a browser-based app that wants to utilize XMLHttpRequest for
interactions with AM (registration, token request) the CORS rules apply (see http://www.w3.org/TR/cors/).
Right now the AM does not set HTTP allow-origin headers. This will be needed for Cs calling by means of
XMLHttpRequest. Send a mail to the author for further coordination
11

 URL: https://ec2-54-154-59-218.eu-west-1.compute.amazonaws.com/iam-services/0.1/oidc/am/register
12

 Naming convention: replace all values prefixed “your” with your value i.e. use any string of your choice

instead “yourClientName”
13

 Another shortcut that one would not do - at least not without careful consideration- in production
14

 The actual response object (JSON) will provide more information. The JSON response members that
shall be processed are documented here. Additional information may be ignored.

http://www.w3.org/TR/cors/

Unrestricted

Token Acquisition

Create a HTTP request as in the following prototype and send it via TLS to the AM17:

Request:

POST /iam-services/0.1/oidc/am/token HTTP/1.1

Request headers:

Host: ec2-54-154-59-218.eu-west-1.compute.amazonaws.com

Content-Type: application/x-www-form-urlencoded

Accept: application/json

Authorization: Basic Base64(<c_id>:<c_secret>)

Request body:

grant_type=client_credentials

Security: same as in registration

Response:

Check that you get a 200 OK response and extract the value of the access_token member

from the JSON response body. A response body prototype is:

{

 "access_token":"

eyJhbGciOiJFUzI1NiJ9.eyJhdWQiOiJhYjliN2NiNy02YzQwLTQ3ZjUtOTBiOC0xNTlmMzQ0MDIx

OTYiLCJzdWIiOiJhYjliN2NiNy02YzQwLTQ3ZjUtOTBiOC0xNTlmMzQ0MDIxOTYiLCJpc3MiOiJod

HRwczpcL1wvYW0uY29tcGFueS1zLmNvbTo4NDQzXC9pYW0tc2VydmljZXNcLzAuMVwvb2lkY1wvYW

1cLyIsInR5cCI6Im9yZzp3Mzp3b3Q6and0OmFtOmFzLXdyYXA6bWluIiwiYXNfdG9rZW4iOiJleUp

oYkdjaU9pSkZVekkxTmlKOS5leUpoZFdRaU9pSk9hV05sVUd4MVoyWmxjM1JTVXlJc0luTjFZaUk2

SW1GaU9XSTNZMkkzTFRaak5EQXRORGRtTlMwNU1HSTRMVEUxT1dZek5EUXdNakU1TmlJc0ltbHpje

Uk2SWs1cFkyVlFiSFZuWm1WemRFRlRJaXdpZEhsd0lqb2liM0puT25jek9uZHZkRHBxZDNRNllYTT

ZiV2x1SWl3aWFuUnBJam9pWTJZeU5UTm1PV1l0WXpVME5pMDBZbVF4TFRoa1ptUXROamcyTURabE1

6UmhOalEwSW4wLmZlcVZFZF9JdXk1Q2FPNDhhb0RuWUhfOTlPX1ZlYncxMDdLdXpSclRpc1RBeHZk

Y1JaWjZaS3RPVWZkOUNlclYzaG1rQWF0LUNXUElCckxMOUZXTFhRIiwianRpIjoiN2MyMjFmMWItZ

jNkNC00ZTc4LWE4ZWQtOGRmOWUxNGNjMWM5In0.Le_Y90zsO92MyDgbKxUCr3eUNU8Z7-

QKc0u0RSr26MHN1za2EUQ1wOoJhLDXR2dFo9geFf7mBbiM77EP6h0ldA",

 "token_type":"bearer",

 "expires_in":3600

}

Decode the value of the access_token value. This provides a JWT structure. Optionally

validate it (see above for JWT validation hints). Extract the value of the as_token member in

the JWT payload. This value is called <as_token> in the following.

Operation

Attach an Authorization: Bearer <as_token> header to HTTP requests to RS.

15

 In the prototype <c_id>=889d02cf-16dd-4934-9341-a754088facdb
16

 In the prototype <c_secret>= ahd5MU42J0hIxPXzhUhjJHt2d0Oc5M6B644CtuwUlE9zpSuF14-kF8Q
17

 URL: https://ec2-54-154-59-218.eu-west-1.compute.amazonaws.com/iam-services/0.1/oidc/am/token

Unrestricted

On an optional basis: supply C functionality that allows requesting a resource from a protected

endpoint without a security token or an invalid security token (change some bytes to break the

signature). This allows showing the effect of RS endpoint protection.

Communications via CoAP

This section applies to Cs and RSs which support CoAP as a means of their interaction.

RS Developers

Configuration

Same as for HTTP communications. See above

Registration

Same as for HTTP communications. See above

Operation

When receiving a CoAP request at a protected endpoint:

 Check if the request contains a CoAP option 65000 with non-null/empty contents.

Respond with a 4.01 error if not

 Check if the value of the CoAP option 65000 content is Bearer <jwt_token> with a

non-null/empty <jwt_token>. Respond with a 4.01 error if not

 Check if the JWT object is signed. Respond with a 4.01 error if not

 Check if the signature of the JWT object is valid. This is to be checked with AS public

signature verification key (see above). Respond with a 4.01 error if invalid

 Check the contents of the JWT object18:

o Check if the value of “iss” is NicePlugfestAS. Respond with a 4.01 error if not

o Check if the value of “aud” is NicePlugfestRS. Respond with a 4.01 error if not

 Accept the request as well as “sub” as the originator of the request and process it as

usual

 C Developers

Registration

Same as for HTTP communications. See above

Token Acquisition

Same as for HTTP communications. See above

Operation

Attach Bearer <as_token> as value of the CoAP option <NN> to CoAP requests to RS.

18

 Another shortcut: further checks would apply in production environments including an “aud” check

which depends on RS registration (that was skipped for simplicity)

Unrestricted

On an optional basis: provide C functionality that allows requesting a resource from a protected

endpoint without a security token or an invalid security token (change some bytes to break the

signature). This allows showing the effect of RS endpoint protection.

Advanced Request Authorization and Caller Authentication
The AM and AS components also support a more advanced way of request authorization that

supplies a JWT bearer security token with actual access control information in style of AIF

(draft-bormann-core-ace-aif-03). If you want to move to this level: send an email to the author.

Message Authentication and Encryption
Message authentication and encryption is done by means of TLS (for HTTP) and DTLS (for

CoAP). Utilizing TLS and DTLS for the interactions between C and RS is an optional part of

security-enabling19.

Communications via HTTP

This section applies to Cs and RSs which support HTTP as a means of interaction between C

and RS and which opt-in to utilize message authentication and encryption. The goal is HTTP-

over-TLS with server authentication20.

RS Developers

Expose a port at the default port number 44321 which accepts HTTP-over-TLS according RFC

281822. Configure the TLS engine as follows:

 Protocol version: all supported TLS versions (note that the usage of SSLv3.0 is

deprecated by the IETF, see RFC 7568)

 Cipher suite: all available ECDHE_ECDSA cipher suites. Note that ECDSA is used as

default public key algorithm during server authentication

 Server authentication: public/private key pair for ECDSA where the public key is

certified by the Plugfest Root CA. To obtain a server certificate that is signed by the

Plugfest Root CA send a PKCS#10 request to the author. This shall contain:

-----BEGIN CERTIFICATE REQUEST-----

Base64(PKCS#10(serverName, serverPublicKey))

-----END CERTIFICATE REQUEST-----

Note that common tools such as the Java KeyTool or OpenSSL can be used for ECDSA key

pair as well as PKCS#10 certification request generation

19

 Rationale: i. to allow the inclusion of esp. RSs without native support for TLS or DTLS resp. ii. to allow
participants to focus on authorizing actions and authenticating actors
20

 This is a shortcut for telling the RS what to do while telling the C to accept all. Okay for a Plugfest,
should not be done in any production setup.
21

 http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
22

 Java containers esp. Servlet engines contain such implementations.

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

Unrestricted

C Developers

When encountering a resource access at a https-URL send the HTTP request over a TLS-

protected channel according RFC 2818. Configure the TLS engine to run:

 Protocol version: any supported TLS version (note that the usage of SSLv3.0 is

deprecated by the IETF)

 Cipher suite: any ECDHE_ECDSA cipher suite (default:

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256)

 Server authentication: configure the trusted root CAs to contain the Plugfest Root CA

Communications via CoAP

This section applies to Cs and RSs which support CoAP as a means of interaction between C

and RS and which opt-in to utilize message authentication and encryption. The goal is CoAP-

over-DTLS with server authentication23.

RS Developers

Expose a port at the default port number 568424 which accepts CoAP-over-DTLS in style of

RFC 2818 (there is no equivalent to RFC 2818 in the CoAP/DTLS ecosystem). Configure the

DTLS engine as follows:

 Protocol version: all supported DTLS versions25

 Cipher suite: all available ECDHE_ECDSA cipher suites26

 Server authentication: public/private key pair for ECDSA where the public key is

certified by the Plugfest Root CA. To obtain a server certificate that is signed by the

Plugfest Root CA send a PKCS#10 request to the author. This shall contain:

-----BEGIN CERTIFICATE REQUEST-----

Base64(PKCS#10(serverName, serverPublicKey))

-----END CERTIFICATE REQUEST-----

Note that common tools such as the Java KeyTool or OpenSSL can be used for ECDSA key

pair as well as PKCS#10 certification request generation

C Developers

When encountering a resource accesses at a coaps-URL send the CoAP request over a DTLS-

protected channel in style of RFC 2818. Configure the TLS engine to run:

 Protocol version: any supported DTLS version27

23

 This is a shortcut for telling the RS what to do while telling the C to accept all. Okay for a Plugfest,
should not be done in any production setup.
24

 http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
25

 For Scandium 1.0.0 this is DTLS v1.2
26 For Scandium 1.0.0 this list is: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8
27

 For Scandium 1.0.0 this is DTLS v1.2

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

Unrestricted

 Cipher suite: any ECDHE_ECDSA cipher suite (default:

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256)

 Server authentication: configure the trusted root CAs to contain the Plugfest Root CA

 Plugfest Root CA Certificate

Following self-signed root CA certificate is used for signing RS certificates for TLS and DTLS-

protected communications:

-----BEGIN CERTIFICATE-----

MIIBgjCCASigAwIBAgIEVm6vGDAKBggqhkjOPQQDAjA3MQwwCgYDVQQKDANXM0Mx

DzANBgNVBAsMBldvVCBJRzEWMBQGA1UEAwwNTmljZSBQbHVnZmVzdDAgFw0xNTEy

MTQxMjAwNDFaGA8yMDY1MTIxNDEyMDA0MVowNzEMMAoGA1UECgwDVzNDMQ8wDQYD

VQQLDAZXb1QgSUcxFjAUBgNVBAMMDU5pY2UgUGx1Z2Zlc3QwWTATBgcqhkjOPQIB

BggqhkjOPQMBBwNCAARi7l1JQPjYpjCPpHRNC4nTwRj+vEWXunSiawpD9a2rKgJi

4g1+jLDmrxztrJa7e9NI9BkD9vZP2DgU6DfAU2czoyAwHjAPBgNVHRMECDAGAQH/

AgEDMAsGA1UdDwQEAwICBDAKBggqhkjOPQQDAgNIADBFAiBbYQOvT7yjmm+V9L2e

Dg6eF1s4uHeorqgS1P51NbGgsgIhAJs9KWtXkFxflCXV9vafNk02xcV1lOYn7WRW

A7NR3A19

-----END CERTIFICATE-----

Appendix: Alternative AS Token Signature Scheme
The default AS token signature scheme is ES256. RSs that can use JWT libraries which support

ES256 can proceed as described above.

If ES256 support is not available an alternative signature scheme is needed. In this case HS256

should be considered as a fallback. This has following implications:

 Signalizing the use of an alternative JWT signature scheme (to the AS) is performed as

part of an RS registration at AS (not needed for ES256)

 Requesting the issuance of a JWT with an alternative signature scheme required to

supply the RS identifier in the token request which implies the issuance of a “normal” AS

token

If an alternative AS token signature scheme send a mail to the author for further instructions.

