Security_4_Plugfest - How To

Author: Oliver Pfaff, Siemens AG, CT ITS RTC

Security 4 PlIUgfeSt — HOW T 0ot e e e e e e e e et e e e e e e e eenenes 1
[0 [Tox i o] o PP PPPPPPPPPPPP 1
(Wl o] f0) (=Tod1=To I 01 (=T = Tod 1T0] o S 1
ProteCted INTEIACLIONSoiiiiiiiiiiiiiiieee ettt ettt ettt e et et e e e e e e e e eeeeeeees 2
Simple Request Authorization and Caller Authenticationcoviiiiiii i 2
CommUNICAIONS VIA HT TP ...ttt 2
CommUNICALIONS VIB COAP ...ttt e e e e e eaeeeaaae 6
Advanced Request Authorization and Caller Authenticationccccccvviiiiei i, 7
Message Authentication and ENCrYPLIONuuuuuuuuiiiiiiiiiiiiiiiiieii e eeneneeeene 7
CommUNICALIONS VIB HTTP . e e e e e 7
CommUNICAIONS VIA COAP ...ttt nnnnees 8
Plugfest ROOt CA CertifiCAE.........uuiiiii e e e e e et eeeeeeaanes 9
Appendix: Alternative AS Token Signature SChEME...........covvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 9
Introduction

This document assumes that you will (or consider to) participate in the Plugfest during the Nice
F2F of the W3C IG WoT and you are developing any of the following components:

o Aresource server (short: RS) responding to requests via HTTP or CoAP
e Aclient (short: C) sending requests via HTTP or CoAP

This document provides a how-to for the security-enabling of these interactions. An overview of
the security-enabling is provided in an accompanying slide-deck.

Unprotected Interactions

Adding security is regarded optional for the Nice Plugfest. So your client and/or server should
be prepared to accept resp. provide requests via HTTP-plain resp. CoAP-plain without
supplying or requiring a security token. This document does not provide further details about
unprotected interactions. Do consult other Plugfest documents for that.

Unrestricted

mailto:oliver.pfaff@siemens.com

Protected Interactions

The following describes the basic protection of the interactions during the Nice Plugfest. It is
intentional to offer a low entry-barrier to encourage many security-enabled Plugfest
implementations. For that purpose it is fully intentional to take various shortcuts (e.g. static
settings/configurations, ‘allow-all’/liberal policies, minimal token contents, optional transport-
level security etc.). For production use additional considerations and additional security
mechanisms/checks will typically be required: the basic protection utilized for Plugfest
security shall not be used 1:1 in production setups

This protection comprises following security services:

¢ Request authorization and (indirect) caller authentication: this is achieved by means of
security tokens. For the Nice Plugfest this is the primary security goal. This is detailed
in the first part of this HowTo.

e (Optional) message authentication and encryption: this is done by means of TLS (for
HTTP) and DTLS (for CoAP). It presents a subordinate security goal for the Nice
Plugfest. This is detailed in the second patrt.

Simple Request Authorization and Caller Authentication
The goal is to authorize requests and (implicitly) authenticate callers by means of bearer*
security tokens (JWT?) with minimal contents.

Communications via HTTP
This section applies to Cs and RSs which support HTTP as a means of their interaction.

RS Developers

Configuration
Configure the RS component with

e RSid: NicePlugfestRs?®
e AS issuer name NicePlugfestAS
e AS public signature verification key for ES256*. This is following JWK object’:

{

"keys": [
{
"kty": "EC",
"use": "sig",
"crv": "P-256",
"kid": "PlugFestNice",

! A shortcut: for the protection of high-value resources, PoP resp. HoK models may be required

% Another shortcut: JWTs are standard (RFC 7519), well-understood among Web developers and well-
covered in implementation (see jwt.io). JWTs match RFC 7228 class 2 devices. Equivalent means for
class 1 or 0 are not yet available - not yet as standards and also not as (mature) implementations

® Another shortcut: static/invariant RS identifier values for all RSs

* See appendix for the utilization of alternative JWT token signature schemes

® Another shortcut: this is a plain public key for verifying JWT signature values

Unrestricted

"x": "CQsJZUvJIWx5yBS5EwuipDXRDyedYbgOwwgxpGgZtcl3w",
"y": "qgzYskD2N7GrGDSgo6N9pPLXMIwr6jowFGyqsTJIGmpz4",
"alg": "ES256"
}
]
}

Registration
Skipped® for RSs that support ES256

Operation
When receiving a HTTP request at a protected endpoint:

1. Check if the request contains an Authorization header. Respond with a 401 error if
not
2. Check if the request contains an Authorization: Bearer-header with non-
null/empty contents. Respond with a 401 error if not
3. Check if the value of the Authorization Bearer-headeris a JWT object. Respond
with a 401 error if not
4. Check if the JWT obiject is signed. Respond with a 401 error if not
5. Check if the signature of the JWT object is valid. This is to be checked with AS public
signature verification key (see above). Respond with a 401 error if invalid
6. Check the contents of the JWT object’:
o Check if the value of “1ss” is NicePlugfestAs. Respond with a 401 error if not
o Check if the value of “aud” is NicePlugfestRS. Respond with a 401 error if not
7. Accept the request as well as “sub” as the originator of the request and process it as
usual®

For more background see RFC 6750 (HTTP Bearer tokens) and RFC 7519 (JWT), RFC 7517
(JWK). For JWT libraries in various programming languages see http://jwt.io/ section “Libraries
for Token Signing/Verification”. For JSON libraries see http://json.org/. Depending on the
chosen strategy (JSON vs. JWT library) and instance, the steps 4-6 will be done by a 3" party
library

C Developers

Configuration
Not required

Registration
Registration may be done programmatically (default) or manually® (fallback). Programmatic
registration is done according RFC 7591 and described in the following:

® Another shortcut

" Another shortcut: further checks would apply in production environments including an “aud” check which
depends on RS registration (that was skipped for simplicity)

® Another shortcut that implements a naive and very coarse access control: presenters of a valid security
token (no detailing anything about the resource) may access any available resource with any method.
One would not do this in production systems at least not without careful consideration.

Unrestricted

http://jwt.io/
http://json.org/

Create a HTTP request™ with JSON request content as in the following prototype and send it
via TLS to the AM™:

Request:
POST /iam-services/0.l/oidc/am/register HTTP/1.1

Request headers:

Host: ec2-54-154-59-218.eu-west-1.compute.amazonaws.com
Content-Type: application/json

Accept: application/json

Request body*:

{
"client name": "yourClientName",
"grant types": ["client credentials"]

}

Security: note that the registration endpoint is unprotected for the purpose of the Plugfest®®. To
comply with its TLS profile, configure the client-side TLS engine as follows:

e Protocol version: TLSv1.2, 1.1 or 1.0 (note that the usage of SSLv3.0 is deprecated by
the IETF)

e Cipher suite: any ECDHE_ECDSA cipher suite. Note that ECDSA is used as public key
algorithm during server authentication

e Server authentication: configure the trusted root CAs to Plugfest root CA certificate

Response:

Check that you get a 201 Created response and extract the value of “client_id” (this value is
called <c_id> in the following) and the value of “client_secret”’ (called <c_secret> in the
following) from the JSON response body. A response body prototype®* is:

{

"client id": "889d02cf-16dd-4934-9341-a754088faxyz",

"client secret": "ahdbMU42J0hIxPXzhUhjJHt2d00c5M6B644CtuwUlE9zpSuFl4-kXYz",
}
Store <c_id>"* and <c_secret>"° for use during the token acquisition.

° For manual registration send a mail with yourciientname to the author of this document. You
will get <c_id> and <c_secret> values in a response mail.

19 |f the C component is implemented as a browser-based app that wants to utilize XMLHttpRequest for
interactions with AM (registration, token request) the CORS rules apply (see http://www.w3.org/TR/cors/).
Right now the AM does not set HTTP allow-origin headers. This will be needed for Cs calling by means of
XMLHttpRequest. Send a mail to the author for further coordination

1 URL: https://ec2-54-154-59-218.eu-west-1.compute.amazonaws.com/iam-services/0.1/oidc/am/register
12 Naming convention: replace all values prefixed “your” with your value i.e. use any string of your choice
instead “yourclientName”

'3 Another shortcut that one would not do - at least not without careful consideration- in production

* The actual response object (JSON) will provide more information. The JSON response members that
shall be processed are documented here. Additional information may be ignored.

Unrestricted

http://www.w3.org/TR/cors/

Token Acquisition
Create a HTTP request as in the following prototype and send it via TLS to the AM*":

Request:
POST /iam-services/0.1/oidc/am/token HTTP/1.1

Request headers:

Host: ec2-54-154-59-218.eu-west-1.compute.amazonaws.com
Content-Type: application/x-www-form-urlencoded

Accept: application/json

Authorization: Basic Base64 (<c_id>:<c_secret>)

Request body:

grant type=client credentials
Security: same as in registration
Response:

Check that you get a 200 OK response and extract the value of the access token member
from the JSON response body. A response body prototype is:

{

"access token":"
eyJhbGciOiJFUzI1INiJ9.eyJhdWQiOiJhYj1iN2NiNy02YzQwLTQ3ZjUtOTBiOCOXNT1ImMzQOMDIx
OTYiLCJzdWIiOiJhYJj1iN2NiNy02YzQwLTQ3ZjUtOTBiOCOXNTImMzQOMDIxXxOTYiLCJpc3MiOiJod
HRwczpcLlwvYWOuY29tcGFueS1lzLmNvbTo4NDQzXC9pYW0tc2VydmljZXNcLzAuUMVwvb21kY1wvYW
1cLyIsInR5¢cCI6Im9yZzp3Mzp3b306and0OmFtOmFzLXdyYXAG6LWIuliwiYXNEfdGOrZW4i0iJleUp
0oYkdjaU9pSkZVekkxTmlKOS51eUpoZFdRaU%pSkohV05sVUd4MVoyWmxJM1JTVX1Jc01luTjFZaUk2
SW1GaU9XSTNZMkkzTFRaak5EQXRORGRtTIMwNUIHSTRMVEUXT1dZek5EUXdNakUlTmlJcOltbHpje
Uk2SWs1lcFkyV1FiSFZuWmlWemRFR1IRJaXdpZEhsd01gb21iMOpuT25jek9uZHZkRHBxZDNRNI1YTT
ZiV2x1SW13aWFuUnBJam9pWTJZeU5UTm1PV110WXpVMESpMDBZbVEF4TFRoalptUXROamcyTURabEL
6UmhOalEwSW4wLmZ1cVZFZF9JdXk1Q02FPNDhhbORUWUhfOT1PX1Z1Y¥ncxMDALdXpSclRpclRBeHZk
Y1JaWjZaS3RPVWZkOUN1clYzaGlrQWFOLUNXUE1CckxMOUZXTFhRIiwianRpIjoiN2MyMjFmMWItZ
JNKNCO0ZTc4LWE4ZWQtOGRMOWUXNGNIMWM5In0.Le Y90zs092MyDgbKxUCr3eUNUSZ7 -
QKcOuORSr26MHN1za2EUQlwO0JhLDXR2dFo9geFf7mBbiM77EP6h01dA",

"token type":"bearer",

"expires in":3600

}

Decode the value of the access token value. This provides a JWT structure. Optionally
validate it (see above for JWT validation hints). Extract the value of the as token member in
the JWT payload. This value is called <as token> in the following.

Operation
Attach an Authorization: Bearer <as token> headerto HTTP requests to RS.

!> In the prototype <c_id>=889d02cf-16dd-4934-9341-a754088facdb
% In the prototype <c_secret>= ahd5MU42J0hIxPXzhUhjJHt2d0Oc5M6B644CtuwUIE9zpSuF14-kF8Q
Y URL: https://ec2-54-154-59-218.eu-west-1.compute.amazonaws.com/iam-services/0.1/oidc/am/token

Unrestricted

On an optional basis: supply C functionality that allows requesting a resource from a protected
endpoint without a security token or an invalid security token (change some bytes to break the
signature). This allows showing the effect of RS endpoint protection.

Communications via CoAP
This section applies to Cs and RSs which support CoAP as a means of their interaction.

RS Developers

Configuration
Same as for HTTP communications. See above

Registration
Same as for HTTP communications. See above

Operation
When receiving a CoAP request at a protected endpoint:

e Check if the request contains a CoAP option 65000 with non-null/fempty contents.
Respond with a 4.01 error if not
e Check if the value of the CoAP option 65000 content is Bearer <jwt token> with a
non-null/empty <jwt token>. Respond with a 4.01 error if not
e Check if the JIWT object is signed. Respond with a 4.01 error if not
o Check if the signature of the JWT object is valid. This is to be checked with AS public
signature verification key (see above). Respond with a 4.01 error if invalid
e Check the contents of the JWT object®:
o Check if the value of “iss” is NicePlugfestAS. Respond with a 4.01 error if not
o Check if the value of “aud” is NicePlugfestRS. Respond with a 4.01 error if not
o Accept the request as well as “sub” as the originator of the request and process it as
usual

C Developers

Registration
Same as for HTTP communications. See above

Token Acquisition
Same as for HTTP communications. See above

Operation
Attach Bearer <as_token> as value of the CoAP option <NN> to CoAP requests to RS.

'8 Another shortcut: further checks would apply in production environments including an “aud” check
which depends on RS registration (that was skipped for simplicity)

Unrestricted

On an optional basis: provide C functionality that allows requesting a resource from a protected
endpoint without a security token or an invalid security token (change some bytes to break the
signature). This allows showing the effect of RS endpoint protection.

Advanced Request Authorization and Caller Authentication

The AM and AS components also support a more advanced way of request authorization that
supplies a IWT bearer security token with actual access control information in style of AlF
(draft-bormann-core-ace-aif-03). If you want to move to this level: send an email to the author.

Message Authentication and Encryption

Message authentication and encryption is done by means of TLS (for HTTP) and DTLS (for
CoAP). Utilizing TLS and DTLS for the interactions between C and RS is an optional part of
security-enabling™.

Communications via HTTP

This section applies to Cs and RSs which support HTTP as a means of interaction between C
and RS and which opt-in to utilize message authentication and encryption. The goal is HTTP-
over-TLS with server authentication®.

RS Developers
Expose a port at the default port number 443%" which accepts HTTP-over-TLS according RFC
2818%%. Configure the TLS engine as follows:

e Protocol version: all supported TLS versions (note that the usage of SSLv3.0 is
deprecated by the IETF, see RFC 7568)

e Cipher suite: all available ECDHE_ECDSA cipher suites. Note that ECDSA is used as
default public key algorithm during server authentication

e Server authentication: public/private key pair for ECDSA where the public key is
certified by the Plugfest Root CA. To obtain a server certificate that is signed by the
Plugfest Root CA send a PKCS#10 request to the author. This shall contain:

Base64 (PKCS#10 (serverName, serverPublicKey))

Note that common tools such as the Java KeyTool or OpenSSL can be used for ECDSA key
pair as well as PKCS#10 certification request generation

!9 Rationale: i. to allow the inclusion of esp. RSs without native support for TLS or DTLS resp. ii. to allow
articipants to focus on authorizing actions and authenticating actors

% This is a shortcut for telling the RS what to do while telling the C to accept all. Okay for a Plugfest,

should not be done in any production setup.

2 http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

%2 Java containers esp. Servlet engines contain such implementations.

Unrestricted

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

C Developers
When encountering a resource access at a https-URL send the HTTP request over a TLS-
protected channel according RFC 2818. Configure the TLS engine to run:

o Protocol version: any supported TLS version (note that the usage of SSLv3.0 is
deprecated by the IETF)

e Cipher suite: any ECDHE_ECDSA cipher suite (default:
TLS_ECDHE_ECDSA WITH_AES_128 CBC_SHA256)

e Server authentication: configure the trusted root CAs to contain the Plugfest Root CA

Communications via CoAP

This section applies to Cs and RSs which support CoAP as a means of interaction between C
and RS and which opt-in to utilize message authentication and encryption. The goal is CoAP-
over-DTLS with server authentication®.

RS Developers

Expose a port at the default port number 5684** which accepts CoAP-over-DTLS in style of
RFC 2818 (there is no equivalent to RFC 2818 in the CoOAP/DTLS ecosystem). Configure the
DTLS engine as follows:

e Protocol version: all supported DTLS versions®

e Cipher suite: all available ECDHE_ECDSA cipher suites®

e Server authentication: public/private key pair for ECDSA where the public key is
certified by the Plugfest Root CA. To obtain a server certificate that is signed by the
Plugfest Root CA send a PKCS#10 request to the author. This shall contain:

Base64 (PKCS#10 (serverName, serverPublicKey))

Note that common tools such as the Java KeyTool or OpenSSL can be used for ECDSA key
pair as well as PKCS#10 certification request generation

C Developers
When encountering a resource accesses at a coaps-URL send the CoAP request over a DTLS-
protected channel in style of RFC 2818. Configure the TLS engine to run:

e Protocol version: any supported DTLS version®’

% This is a shortcut for telling the RS what to do while telling the C to accept all. Okay for a Plugfest,
should not be done in any production setup.

4 http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers. txt

% For Scandium 1.0.0 this is DTLS v1.2

26 For Scandium 1.0.0 this list is: TLS_ECDHE_ECDSA_WITH_AES_128 CBC_SHA256,

TLS ECDHE_ECDSA WITH_AES 128 CCM_8

#" For Scandium 1.0.0 this is DTLS v1.2

Unrestricted

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

e Cipher suite: any ECDHE_ECDSA cipher suite (default:
TLS_ECDHE_ECDSA WITH_AES_128 CBC_SHA?256)
e Server authentication: configure the trusted root CAs to contain the Plugfest Root CA

Plugfest Root CA Certificate
Following self-signed root CA certificate is used for signing RS certificates for TLS and DTLS-
protected communications:

MIIBgjCCASigAwIBAgIEVM6VGDAKBggghkjOPQQODAJA3SMOwWwCgYDVQQKDANXMOMx
DzANBgNVBASMB1dvVCBJRzZEWMBQGA1UEAWWNTmM] §ZSBObHVNZmVzdDAgGFwOXNTEy
MTQxMjAWNDFaGA8yMDY1MTIxNDEyMDAOMVowNzEMMAOGALUECgwDVzNDMQ8wDQYD
VQQLDAZXb1QgSUcxFJjAUBgNVBAMMDUSpY2UgUGx1%2%1c3QwWTATBgcghkjOPQIB
BggghkjOPOMBBWNCAAR1711JQPjYp jCPpHRNCAnTwRj+vEWXunSiawpD9a2rKgJdi
4g1+jLDmrxztrJa7e9INIOBkDIVvZP2DgU6DfAU2czoyAWHJAPBgGNVHRMECDAGAQH/
AgEDMAsSGA1UdDWQEAwWICBDAKBggghkjOPQODAGNIADBFAIBbYQOVT 7y imm+VIoL2e
Dgb6eFls4uHeorggS1P51NbGgsgIhAIs IKWEtXkEFxf1CXVIOvafNk02xcV110Yn7WRW

ATNR3AIS

Appendix: Alternative AS Token Signature Scheme
The default AS token signature scheme is ES256. RSs that can use JWT libraries which support
ES256 can proceed as described above.

If ES256 support is not available an alternative signature scheme is needed. In this case HS256
should be considered as a fallback. This has following implications:

e Signalizing the use of an alternative JWT signature scheme (to the AS) is performed as
part of an RS registration at AS (not needed for ES256)

e Requesting the issuance of a JWT with an alternative signature scheme required to
supply the RS identifier in the token request which implies the issuance of a “normal” AS
token

If an alternative AS token signature scheme send a mail to the author for further instructions.

Unrestricted

