

What is the Web of Things?

Things

● Things stand for physical or abstract entities
● Things as software objects in the application programs execution

environment
● There are many potential protocols which will depend upon the context

● Likewise, there are multiple communication patterns, e.g. push, pull, pub-
sub, and the choice will depend on the context

● By decoupling applications from the underlying protocols and messaging,
we can simplify application development

● If an application wants to operate on a thing for a remote sensor/actuator,
it needs a software object that acts as a proxy for the remote thing

● This can be created by through a server API that uses metadata for the
thing and the remote server to create the software object

3

Core Metadata

● Thing descriptions
– Links to thing semantics

– Data models & relationships between things

– Dependencies and version management

– Discovery and provisioning

– Bindings to APIs and protocols

● Security related metadata
– Security practices

– Mutual authentication

– Access control

– Terms & conditions
● Relationship to “Liability”

– Payments

– Trust and Identity Verification

– Privacy and Provenance

– Resilience

● Communication related metadata
– Protocols and ports

– Data formats & encodings

– Multiplexing and buffering of data

– Efficient use of protocols

– Devices which sleep most of the time

METADATA

Things

CommsSecurity

4

Distributed Web of Things
● Virtual representations of physical or abstract entities for use by application scripts

– Each thing has a URI for a description that can be used to create a proxy for that
thing, allowing scripts to interact with a local proxy on behalf of a remote entity

– Scripting things in terms of their metadata, events, properties and actions

– Web page scripts can create proxies for things on servers

script

Thing Thing

Sensor

Actuator

script

Proxies

Server A Server B

5

A Question of Relativity

● The Web of Things is essentially a system of agents as defined
by Carl Hewitt in 1973

● A set of things hosted on different servers
● Application scripts define the agent behaviour
● These servers exchange messages over a variety of protocols
● Messages take a variable amount of time to transfer that depends

on the protocol, network, and devices
● Application scripts only have access to the state of the instances

of the things on that server
● Even if a server asks another server for the state for a thing, by

the time it gets a result, it may be out of date
● Even time is uncertain due to the limitations of synchronising

clocks across servers

6

Some Requirements

● Create a thing from its metadata and an implementation
● Destroy a thing and all of its proxies
● Register a proxy for a thing

● Unregister a proxy for a thing

● Access to metadata for things and servers

● Notify events and updates to properties and metadata

● Invoke actions and asynchronously return their results

● These can be considered as abstract messages and
mapped to communication patterns over specific protocols

● Allow for cyclic dependencies between things

7

Dependencies across Things

● One thing may depend upon another
– Agent example which depends on door and light

● The dependent things may be on different servers

● When you're setting up a thing, the things it depends upon
may not be available right now even it is on the same server
– This requires a means to wait for them to become ready

● Cyclic dependencies
– A depends upon B which depends upon C

which depends upon A

● Server hold messages for things until they are ready
– Avoids the need for messages that signal when things are ready

● I've got this working on my NodeJS server

8

Communication Patterns

● The properties for a given thing can be updated by the
application script on the server hosting the thing, and by
applications scripts on servers hosting proxies for that
thing

● The proxies form a tree rooted in a thing
● Updates can be pushed from the thing to its proxies
● Updates can be pushed from a proxy to the thing, and

from there to the other proxies
● Push can be related to pub-sub and message routing
● Another approach is to pull updates via polling

9

Simple Message Exchange

● Reliable in-sequence delivery of messages

● Asynchronous messaging across a
communications channel

● Extensible message format, e.g. JSON or XML

● Efficient encodings for messages

● Can be layered on top of transport protocols
– Web Sockets over TCP

– Reliable messaging layer over UDP

– Non-IP based communications technologies

10

Protocol Bindings

● REST family of protocols, e.g. HTTP & CoAP
– See Ari's document on recommended practices

● Pub-Sub protocols, e.g. MQTT & XMPP

● Non-IP based technologies
– e.g. ZigBee, Bluetooth, KNX, EnOcean and

communication technologies with very small
messages

11

API Patterns

● Different languages and conventions
– Static vs dynamically typed languages

● Dynamic languages allow objects to be given properties at run-time
● Static languages force thing properties to be passed as method arguments

– Call backs, e.g. for handling events, or results from actions

– JSON & Objects as arguments

– Promises as a popular pattern for JavaScript

● Locally generated events to allow applications scripts to listen
for changes
– Changes to properties

– Changes to metadata

– Lifetime events, e.g. when a thing is destroyed

– Distinct from the events declared in the thing's model

12

Example
wot.thing("door12", {
 "events": {
 "bell": null,
 "key": {
 "valid": "boolean"
 }
 },
 "properties": {
 "is_open": "boolean"
 },
 "actions": {
 "unlock": null
 }
}, {
 start: function(thing) {
 thing.is_open = false;
 },
 stop: function(thing) {},
 unlock: function(thing) {
 logger.info(" unlocking" + thing._name);
 }
});

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

