

Web Thing REST API

TDfying and Differences

Ege Korkan, Siemens AG
@egekorkan

https://twitter.com/egekorkan

Web Thing REST API

Documentation of how the REST API works with
example request and responses

https://iot.mozilla.org/wot/

Web Thing Description
 "single": {

 "title": "Single Input",

 "description": "An action with a single, non-object input",

 "input": {

 "type": "number"

 },

 "links": [{

 "rel": "action",

 "href": "/things/virtual-things-10/actions/single"

 }]

 },

{

 "title": "Virtual Actions & Events Thing",

 "@context": "https://iot.mozilla.org/schemas",

 "href": "/things/virtual-things-10",

 "actions": {

 "basic": {

 "title": "No Input",

 "description": "An action with no inputs, fires an event",

 "links": [{

 "rel": "action",

 "href": "/things/virtual-things-10/actions/basic"

 }]

 },

Web Thing Description
 "events": {

 "virtualEvent": {

 "description": "An event from a virtual thing",

 "type": "number",

 "links": [{

 "rel": "event",

 "href": "/things/virtual-things-10/events/virtualEvent"

 }]

 }

 },

 "links": [{

 "rel": "properties", "href": "/things/virtual-things-10/properties"

 }, {

 "rel": "actions", "href": "/things/virtual-things-10/actions"

 }, {

 "rel": "events", "href": "/things/virtual-things-10/events"

 }, {

 "rel": "alternate", "href": "ws://localhost:8080/things/virtual-things-10"

 }],

 "id": "http://localhost:8080/things/virtual-things-10",

 "base": "http://localhost:8080/",

 "securityDefinitions": {...}

 "security": "oauth2_sc"

}

Building the Requests
Web Thing Description is not enough on its own to
build the requests.

It is required to read the Web Thing REST API
Specification, similar to knowing the default values in
the W3C TD.

Building the Requests
Example: Invoking (Requesting) an Action called basic
with no Input

Example: Writing to a Property called on with bool input

Request:
{
 "basic":{
 "input":null
 }
}

Response:
{
 “basic”:{
 “input”:null,
 “href”:”actions/fade/123”,
 “status”:”created”
 }
}

Request:
{
 “on”: true
}

Response:
{
 “on”: true
}

Same for
property read

Screenshots from Postman

This href also accepts DELETE and PUT

Building the Requests
Thus the sent and received data are always wrapped
in a certain object structure. This results in the
WebThing TD type being valid only inside this object.

This is easy to fix and we can describe WebThing
payloads in a W3C TD Payload. See the attached
TD.

Queues
Event queues for:
● Checking the past events
● Also Events are only a queue in HTTP, so not

asynchronous

Can be described with a W3C TD but not a clear
semantic definition

Queues
Action queues for:
● Monitoring actions’ runtime => Can be described

with a W3C TD
● Updating or canceling an action => Cannot be

described with a W3C TD since the modifying an
action requires the unique id that is assigned by
the gateway when the action is invoked also we do
not have an op value for these
– Old issue by Kajimoto-san

https://github.com/w3c/wot-binding-templates/issues/2

W3C TD Transformation
● Most of the WebThing API can be described in a

single TD which results in a very long TD.
● Steps:

– Transform all the JSON Schemas into an object
– Add 2 Property Affordances, one for event and one

for action queues
– Add a Property Affordance for each single event

and action queue (not unique)
● Check the supplied TDs for all the information

What We Need
● We would need the following the be able to

describe the Web Thing REST API in a W3C TD
– op values for updating and deleting actions
– A way to describe dynamic hrefs

● RFC6570 → http://example.com/things/mything/actions/myaction/{actionID}

– A way to pass “variables” between different
positions of a TD

● Using something like JSON Pointers → actionID is #/actions/*/output/href

http://example.com/things/mything/actions/myaction/

Summary of Findings
● Describing simple capabilities of a Web Thing

device is possible through W3C TD
● Describing the full capabilities of the Web Thing

Gateway needs more features in the TD or
another protocol

● WebThing API is purely about the gateway, client
never accesses the end device

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

