
Implementation	work	on	
open	source	web	of	things	

servers	and	gateways

Dave	Raggett,	W3C
<dsr@w3.org>

Monday,	11	April	2016

Reference	Architecture

Gateway
Cloud	based	
Services

FirewallAmbient	or	battery
operated IoT devices

Powered,
multi-protocol

Browser	for	HMI

2/27

Introduction

• I	am	working	on	two	open	source
Web	of	Things	server	&	gateway	projects
• NodeJS

• For	relatively	power	devices,	e.g.	running	Linux
• C++	for	microcontrollers

• For	Arduino	Uno	and	Wiznet based	Ethernet	Shield
• Highly	constrained	low	cost	microcontroller
• Future	plans	for	extension	to	more	powerful	MCUs
• And	other	kinds	of	communications	 technologies

• Why?
• Nothing	like	working	code	for	better	understanding
• Huge	potential	market	for	low-end	IoT devices

3/27

• Arduino	Ethernet	Shield
• 16	KB	RAM
• MicroSD card	slot
• Controlled	through	SPI	bus
• Polling	or	H/W	interrupt
• Cost:	4.75	GBP	on	eBay

• Arduino	Uno	with	
ATmega328P	MCU
• 2	KB	RAM
• 1	KB	EEPROM
• 32	KB	FLASH
• Lots	of	I/O	pins
• Cost:	2.33	GBP	on	eBay

Required	Hardware	

4/27EEPROM	useful	for	storing	settings	and	error	 logs,	etc.

Required	Software

• Arduino	IDE
• Free	from	https://www.arduino.cc/en/Main/Software

• Serial	driver	for	CH340	USB	to	serial	chip	
• Required	for	cheap	Arduino	clones

• A	bit	of	a	pain	to	find	and	set	up		L

5/27

Components

• Arduino	Sketch	with	application	code
• This	is	where	you	write	your	code	to	interface	to
sensors	and	actuators	using	the	Arduino	libraries
• GPIO	pins
• A2D	and	PWM
• SPI	and	I2C	buses
• Timers

• Web	of	Things	Library	for	the	Arduino	IDE
• Installable	from	GitHub
• Small	footprint	with	custom	networking	module

• Wiznet W5100	with	native	IP	support
• Multicast	for	discovery
• UDP	and	TCP
• ARP,	ICMP,	IGMP	etc.

6/27

Configuration

• Use	static	IP	address	or	DHCP	for	dynamic	address
• Uses	mDNS to	discover	Web	of	Things	gateway

• Service	type:	_wot._tcp.local (unregistered)
• My	MacBook’s	firewall	blocks	all	other	multicast	sockets

• Registers	remote	proxy	on	gateway	for	local	thing
on	the	Arduino
• Uses	TCP	for	messaging	with	gateway

• Less	code	due	to	native	IP	support	on	W5100	chip
• Very	similar	to	my	Web	Socket	implementation
for	NodeJS web	of	things	server

• CoAPwould	take	more	space	and	be	less	capable
• Note	the	choice	of	protocol	depends	on	the	choice	of	
hardware,	which	in	this	case	is	an	Ethernet	controller

7/27

Software	architecture
• Target	is	<28KB	for	the	Library	code

• 2KB	for	loader,	>2KB	for	application	code
• 2KB	for	RAM
• Avoid	malloc and	free	for	robust	operation

• Fragmentation	and	long	term	instability

• Static	node	pool
• JSON	for	numbers,	booleans,	objects,	arrays	etc.
• Average	Length	Binary	trees		(objects	and	arrays)
• Mark/Sweep	garbage	collector
• 6	bytes	per	node	on	the	ATmega328P

• JSON	object	property	names	replaced	by	symbols
• To	reduce	RAM	footprint	to	2KB	is	very	challenging

• Efficient	binary	message	encoding/decoding
• Relies	on	deterministic	 assignment	of	symbols
• Designed	with	short	packet	technologies	 in	mind

e.g.	Nordic	nRF24L01+	with	32	byte	payloads

8/27

RAM	vs	FLASH	memory

• Some	MCUs	like	the	ATmega328P	use	the
Harvard	memory	architecture
• This	has	separate	data	and	code	address	spaces

• String	literals	are	stored	in	FLASH	and	copied
to	RAM	just	before	entering	a	function
• This	is	obviously	bad	if	you’re	short	of	RAM

• First	step:	tell	compiler	to	keep	literals	in	FLASH
• F(“string	literal”)	vs	“string	literal”
• You	then	need	to	use	system	calls	to	access	them

• Second	step:	use	abstraction	layer	to	hide	the	difference	
between	RAM	and	FLASH
• Signatures:	const __FlashStringHelper *	vs	const char	*
• Merge	address	spaces	through	adding	0x8000	to	FLASH	pointers	
and	use	string	functions	that	know	how	to	deal	with	them

9/27

Interrupts	and	Events

• Hardware	interrupts	are	valuable	for	handling	sensors	
and	actuators	etc.
• But	the	interrupt	service	routine	(ISR)	must	be	quick	to	
avoid	blocking	other	interrupts
• Event	driven	behaviour	is	very	convenient,	but	event	
handlers	can	take	time	to	execute
• Solution:	ISR	pushes	event	onto	queue,	which	is	
dispatched	from	within	Arduino	loop()	method
• Same	single	threading	execution	model	as	for	Web	
browsers	– event	handlers	are	executed	sequentially
• Avoids	app	developers	from	having	to	deal	with	
complex	synchronisation	issues

10/27

Life	after	Death

• Eventually	something	bad	will happen	…
• Memory	issues

• Running	out	of	RAM	for	the	program	stack
• Running	out	of	free	nodes	for	use	with	JSON
• Overflow	of	critical	queues

• Program	bugs
• You	can	never	be	100%	confident	that	there	are	no	bugs

• Bad	data
• Violation	of	design	assumptions

• Software	restart	on	detection	of	fatal	errors
• Hardware	watchdog	timer	forces	restart	if	not	reset	in	time

• This	allows	the	device	to	recover	after	being	stuck	in	a	loop
• Gateways	and	other	devices	must	be	resilient	to	such	restarts

11/27

Things	and	Proxy	chains

• Things	are	software	objects	with	properties,	
actions,	events	and	metadata
• If	you	want	to	interact	with	a	Thing	on	another	
device	you	will	need	a	Proxy	object	for	it
• Things	Layer	keep	Proxies	in	sync	with	their	Things
• Proxies	can	be	chained	to	form	Proxy	trees rooted	
in	the	Thing	they	stand	in	for
• Updating	a	property	on	a	proxy	results	in	messages	
that	travel	towards	the	root	and	leaves	of	the	tree

12/27

Locally	Scoped	Identifiers

• Each	device	in	the	proxy	tree	generates	locally	scoped	
IDs	for	the	proxies/things	it	hosts
• These	are	used	to	match	messages	to	the	objects	they	
are	targeted	at
• Messages	are	distinguished	by	whether	they	are	sent	to	
a	parent	or	child	of	a	node	in	the	proxy	tree
• Proxy	objects	hold	their	ID	for	this	device	as	well	as	
their	parent’s	ID	for	the	corresponding	Thing/Proxy	on	
the	parent	device
• Message	handler	sorts	this	all	out	to	route	messages	
between	the	desired	software	objects

13/27

Clean	Separation	of	Layers

Application Scripts that define thing behaviour in terms of their properties, actions
and events, using APIs for control of sensor and actuator hardware

Things Software objects that hold their state
Abstract thing to thing messages
Semantics and Metadata, Data models and Data

Transfer Bindings of abstract messages to mechanisms provided by each
protocol, including choice of communication pattern, e.g. pull, push, pub-
sub, peer to peer, etc.

Transport REST based protocols, e.g. HTTP, CoAP
Pub-Sub protocols, e.g. MQTT, XMPP
Others, including non IP transports, e.g. Bluetooth

Network Underlying communication technology with support for exchange of
simple messages (packets)
Many technologies designed for different requirements

Application	
Developer
(WoT focus)

Platform	
Developer
(IoT focus)

Focus on data types, APIs and error handling

14/27

Implementing	the	
Communications	Stack
• Design	the	software	architecture	to	allow	for
use	of	multiple	communications	technologies
• Thing	Layer	that	hooks	into	the	software	objects	for	
things	and	handles	corresponding	abstract	messages
• Transfer	layer	maps	these	to	communication	patterns	
subject	to	communications	metadata
• Transport	Layer	for	specific	protocols	implemented	as	
pluggable	modules	for	the	transfer	layer
• The	choice	of	transport	is	indicated	by	the	connection	
information	for	each	parent	and	child
• Low	end	device	likely	to	support	only	one	protocol

15/27

Thing	Data	Models

• Things	may	have	properties,	actions,	events	and	
metadata
• Events	have	a	type	and	a	value
• Properties	have	values
• Actions	may	pass	a	value	when	they	are	invoked
• Actions	may	return	a	sequence	of	values	as	responses

• zero,	one,	two	or	more	responses	as	appropriate
• Values	have	types*

• null,	true,	false,	integers,	floats,	strings
• Arrays	and	objects	(sets	of	name/value	pairs)
• Values	can	be	compound,	e.g.	nested	arrays	and	objects
• Things	and	Streams	as	first	class	types

*	Should	 enumerations	 be	allowed	as	core	types?
16/27

Lifecycle	Considerations

• Things	can	have	other	things	as	their	properties*
• Things	referenced	as	properties	can	be	local	or	
remote
• For	local	things,	the	referenced	thing	may	not	have	
been	created	yet
• For	remote	things,	server	needs	to	set	up	proxies
• Proxies	take	time	to	set	up	due	to	the	need	to	get	the	
Thing	data	model	description

• Solution:	push	the	property	to	a	pending	queue	
and	set	the	property	value	when	the	referenced	
thing/proxy	is	ready

17/27
*	Except	for	very	constrained	edge	devices

Cyclic	Dependencies

• With	things	as	properties	there	is	the	potential	for	
cyclic	dependencies	between	things
• Thing	A	has	Thing	B	as	a	property
• Thing	B	has	Thing	C	as	a	property
• Thing	C	has	Thing	A	as	a	property

• This	could	involve	a	mix	of	local	and	remote	things
• If	we	start	such	Things	when	all	of	their	properties	have	
been	started	then	we	will	get	a	deadlock!
• Solution:	start	a	Thing/Proxy	when	all	of	its	properties	
are	resolved,	and	for	each	Thing/Proxy	hold	messages	
to	that	object	in	a	queue	until	it	has	been	started

18/27

Late	Binding

• Values	whose	full	type	is	only	given	at	run-time
• The	type	may	be	partially	specified	at	compile	time

• Can	apply	to	properties,	actions	and	events
• Variant	data	types	with	tag	that	determines	which	
variant	applies	to	this	value		(e.g.	C++	unions)
• Things	as	late	bound	values
• You	need	to	retrieve	the	data	model	to	instantiate	the	
software	object	for	the	thing	you’ve	been	passed
• The	value	includes	a	reference	to	the	data	model

• Thing	Layer	manages	this	automatically

19/27

Pointers

• Say	a	Thing	has	a	property	which	is	an	array
• A	script	updates	the	3rd item	in	an	array
• This	requires	a	means	for	update	messages	to	
identify	a	reference	to	the	3rd item	in	the	array
• In	other	words	some	kind	of	pointer	that	operates	
on	the	Thing’s	data	model
• Simple	expression	within	JSON	messages,	e.g.	

“path”:foo[3]	and	“path”:foo[3].bar
• For	CoAP a	URI	based	syntax	would	be	appropriate

20/27

Refinement	of	JSON-LD

• Used	for	expressing	Thing	data	models
• @context	for	binding	short	names	to	RDF	URIs

• Implicit	context	for	the	most	common	names
• Linked	context	for	domain	specific	names

• Used	for	semantic	search	and	service	compositions
• Can	be	safely	ignored	by	edge	devices

• Top	level	object	with	“properties”,	“actions”	&	“events”
• Values	either	declared	as		name:	type

• e.g.	 “on”:“boolean”,	or	“level”:“float”
• Or	declared	as	name:	{	annotations	}

• e.g.	“temperature”	:	{	“type”	:	“integer”,	“min”	:	-20,	“max”	:	100,	“units”	:	
“celcius”}

• Needed	for	nested	properties*
• Actions	declared	with	“in”	and	“out”	for	the	values	that	are	passed	to	
them,	and	for	the	responses	the	action	generates

21/27
*	Discussion	topics:	how	to	apply	this	to	nested	arrays	and	objects

Integrity	Constraints*

• Enable	detection	of	bad	data	for	increased	resilience
in	the	presence	of	faults	and	attacks

• Good	programming	practice:	assert(expression)
• Basic	integrity	constraints	on	a	single	value

• Upper	and	lower	bounds	for	numbers
• Closed	set	of	values	for	strings

• Integrity	constraints	across	multiple	values
• Relationships	 between	properties	of	a	single	Thing
• Relationships	 across	multiple	 Things

• Cardinality	constraints
• e.g.	For	every	X	you	must	have	at	least	two	Y

• Metadata	constraints
• e.g.	for	application	versioning

• Need	for	an	expression	language	for	defining	constraints

22/27
*	Temporal	constraints	can	be	expressed	in	domain	models

Integrity	Constraints	in	JSON-LD

• Simple	value	constraints
• As	annotations	on	the	type,	e.g.	min	and	max

• Complex	constraints	involving	expressions*
• Operators	and	Functions

• Numeric	comparisons,	String	comparisons,	Boolean	operators
• Extensible	 set	of	functions

• Complex	constraints	involving	pointers
• Pointers	as	references	to	other	values	in	this	Thing

• Other	properties,	which	can	include	other	things
• Other	parts	of	the	data	in	an	event,
or	passed	to,	or	returned	by	an	action

• Too	expensive	for	low	end	devices	with	limited	RAM
• I	plan	to	implement	this	on	the	gateway	server

*	Can	we	generalise	JSON	to	allow	easy	to	understand	expressions	with	operator	precedence?
23/27

Domain	Models

• Rich	ontology	based	descriptions
• Can	express	semantic	constraints
• If	x	is	a	temperature	sensor	then	x	must	define	its	
physical	units	from	the	set	{Kelvin,	Celsius,	Fahrenheit}
• Temporal	constraints,	e.g.	on	sequences	of	actions

• Useful	for	semantic	search	and	service	
compositions
• Verify	compatibility	of	services

• Requires	support	for	OWL,	SPARQL,	etc.
• Not	needed	for	resource	constrained	edge	devices

24/27

Demo	Projects

• Aim	to	provide	some	examples	for	how	to	use	the	
library	with	commonly	available	sensors	and	
actuators,	e.g.
• Temperature	&	humidity
• Ultrasonic	range	sensor
• Multicolour	LEDs
• Servo	motor

• Need	to	provide	sketch,	wiring	diagram	and	notes
• Better	yet	to	also	provide	a	video
• Looking	for	volunteers	to	help	with	this	effort!
• Starting	in	June	2016

25/27

Project	site

• The	Arduino	project	is	on	GitHub
• https://github.com/w3c/wot-arduino

• Still	a	work	in	progress
• Having	to	do	this	as	a	background	activity
due	to	lots	of	competing	tasks	L

• Currently	working	on	Thing	Layer	following
recent	work	on	garbage	collection	and	discovery

• Re-using	virtually	all	the	code	for	gateway
• Will	enable	 low	cost	microcontroller	based	gateways

• Plan	to	update	NodeJS project*	to	match
• Goal	to	have	fully	documented	project	with	examples	in	
time	for	Beijing	meeting	in	July	2016

*	https://github.com/w3c/web-of-things-framework 26/27

Where	Next?
• More	powerful	processors

• Arduino	Mega
• 8KB	RAM,	4KB	EEPROM,	256KB	FLASH

• ARM	based	MCUs
• More	RAM,	but	no	EEPROM

• Work	on	Streams,	e.g.	for	electrocardiograms
• Other	communication	technologies

• Sensor	networks	with	Nordic	nRF24L01+
• Bluetooth	Smart	with	XBee Arduino	shield

• Sleepy	devices
• Using	timer	to	wake	up	every	few	minutes
• Mainly	relevant	to	wireless	technologies

• Note	that	Arduino	boards	are	power	hungry
due	to	LEDs	and	linear	voltage	regulators

• Synchronisation	across	clusters	of	devices
• Synchronised	control	of	robot	joints

• Strong	hardware	based	security	
• Domain	models
• Crowd	sourced	informal	semantics

27/27

