Web of Things Architecture

1. Introduction
This document is an explanation about the architecture of “Web Of Things (WoT)”.

The purpose of this document is to provide

(a) a guideline of the mapping between functional architecture and physical devices
configuration,

(b) a description of the role and functionality of each logical module,

() areference for where should be standardized.
2. Requirements for functional architecture of WoT
2.1 Flexibility

There is a wide variety of Physical devices configuration for WoT implementations.
Functional WoT architecture should be able to be mapped to and cover all of the

variations.
2.2 Compatibility

We have already had many legacy IoT solutions and IoT standardization activities in
many business fields.

Functional WoT architecture should provide bridge between legacy IoT solutions and
Web technology based on WoT concepts. And it should guarantee to be upper compatible

to legacy IoT solutions and current standards.

2.3 Safety and Security

Functional WoT architecture should have the room for providing safety and security
functionalities.

In the IoT solutions, once cyber security barrier is hacked, it is more easily led to safety

1ssues than conventional web solutions. That is because hacked IoT devices often treat

Unrestricted



heal cycle such as central heating systems, physical moving devices such as cars.
3. Mapping variations
In real world, there are many variations for mapping logical WoT servient to physical

devices structure.

This chapter tries to list up informative mapping samples.

3.1 Simple Use case

!

App Script

App Script

Fig.2 Simple use case

Fig.2 shows very simple use case such that a browser accessed WoT Servient to get some

information of legacy device and/or put some parameters to control legacy device.

In this use case, browser’s App Script refers Things Description of WoT servient and get
information of who it is, what kind of APIs it provides.

Then App Script calls client API and through resource management processes and
protocol mapping process, the request is mapped on internet protocol such as HTTP,
CoAP and so on.

The protocol accesses Web Server block of WoT servient. After that the request is

transferred to App Script in WoT servient through protocol mapping process and

Unrestricted



resource management process.
App Script understands what kind of request comes from browser and according to the

request, App Script controls legacy device through physical APIs.

3.2 WoT servient on device

Fig.3 WoT Servient on device itself

The first example is WoT servient on device itself. This is referred as “WoT Device”.
The right most WoT servient in Fig.3 shows an air conditioner which has rich CPU and

large memory and provides web server functionality connected directly to internet.

Then the leftmost browser and/or another application on internet can access the air

conditioner through internet directly.
3.3 WoT servient on Smartphone
The second example is WoT servient on Smartphone.

Smartphone becomes very popular and it provides gateway functionality which bridges

between internet and legacy device without any intermediate hardware.

Unrestricted



Fig.4 WoT servient on Smartphone (A)

Fig.4 shows an example of WoT servient on Smartphone. In Fig.4, there are
independent 2 software modules, one is browser which has user experience to provide
interaction, the the other is WoT servient which might not have any user interface and

it provides gateway functionality to access legacy device.

__: Z------------.s’l"i"EP_hE"le__“
WoT Servient ‘\

UX App Script

e

Fig.5 WoT servient on Smartphone (B)

Unrestricted



Fig.5 shows another example of WoT servient mapped on smartphone.
In this mapping case, a browser is expanded to include WoT servient functionality. Then
there is no need for an app script to call web server block. Instead the client API should

be called directly inside.

3.4 WoT servient on Smart Home Hub

| 4 -~ : ~ =y Hub
— { WoT Servient - ==
@7 (Application) i

Fig.6 WoT servient on smart home hub

Fig.6 shows an example of WoT servient on smart home hub.

Smart home hub is usually introduced home automation and/or home energy
management solution.

Looking at consumer electronics, there are very wide variety of physical communication
format such as WiFi, 802.15.4g, Bluetooth low energy, HDPLC and so on. In order to
normalize those variations, almost all home systems introduce a smart home hub.

In Fig.6, WoT servient wraps the difference of communicating legacy devices and
provides to other clients a universal devices accessing method.

In home inside, as the communication method between WoT servient on smart home

hub and clients WiFi is usually adopted.

5.4 WoT servient on Cloud Server

Client Apps can control devices at home through WoT servient on a Smart Home Hub.

But the location of client Apps is restricted within home because physical

Unrestricted



communication path “WiFi” and/or wired Ethernet between smart home hub and client

apps such as browser is limited inside home.

So, controlling devices at home from outside the house, WoT servient from a smart home

hub should be mapped to a globally accessible cloud.

Fig.7 WoT Servient on Cloud Server

Fig.7 shows an example of WoT servient on a cloud server.

In Fig.7 case, a browser accesses WoT servient on the cloud named “platform”. This WoT
servient provides Things Description through internet globally. So, wherever browser
user 1s, he/she can access this WoT servient.

WoT servient accepts browser and/or other application’s request through HTTP, CoAP
and so on. Then WoT Servient on the cloud server finds out the route to access the WoT
servient on a smart home hub. In Fig.7 case, Things Description of WoT Servient on
cloud server is mirror of that on the smart home hub.

After finding out the route, WoT Servient on the cloud server transfer browser’s request
to WoT Servient on the smart home hub.

After that, the smart home hub processes the request according to Fig.6 case.

In this Fig.7 case, the smart home hub works as

a) Unifier of very wide variety of legacy communication protocols both in the physical
and logical view;

b) Firewall between internet as WoT Servient on the cloud server and legacy connected

devices at home;

Unrestricted



¢) Privacy filter which substitutes real image and/or speech, and logs data at home to
symbols;

d) Autonomous WoT Servient which provides house inside the server, even if the
connection is shut down between internet and the smart home hub;

e) Emergency Apps running in a local environment when the fire alarm and similar

event occur.

4. General Description of WoT Servient

In Web of Things (WoT), functional virtual device is named “WoT Servient” which

provides the access to, control and get the status and values from IoT physical devices.

General WoT Servient functional architecture is presented in Fig.1

App Script

Propriety
interface

Fig.1 Functional Architecture of WoT Servient

Unrestricted



The role and functionality of each module is as follows;

Web Server

Web server accepts requests from networked clients through internet and sends
responses to clients.
Examples of protocols between WoT servient and clients include HTTP, CoAP, MQTT

and so on.

REST style API can be defined in front of the Web Server module. This API is named
“WoT API”. WoT API is the subject of the standardization activity. .

Web Client
WoT Servient can access other web servers and/or WoT servients through internet.
In these cases a web client module communicates with other servers via protocols such

as HTTP.

When web client modules calls other WoT servients not legacy web servers, the API is
WoT API.

Legacy Communication

As described before, currently, there are many IoT services and standards proposed by
many organizations.

In order to communicate such legacy devices, WoT servient includes legacy
communication module for such protocols as Echonet Lite, QNX, ONVIF, DLNA and so
on..

Protocol Mapping

Protocol Mapping block maps API and parameters to communication protocols such as
HTTP, CoAP, MQTT and so on.

And in Protocol Mapping block, there is a block named Adapter which translates web

Unrestricted



based API to legacy communication such as Echonet Lite, QNX, ONVIF, DLNA and so

on.
Resource Manager

WoT servient manages many resources.

As server, WoT servient manages clients’ request queue for serialization of controlling

thing and so on. Provided APIs (resources) are described in Thing Description.

As client, WoT servient caches requesting servers information to accelerate next

requesting process.

As things controller, WoT servient manages the inside status of thing and so on.

Whole of those management block is named Resource Management.

Things Description

Things Description is a declaration of properties and capabilities of a thing or a legacy
device. Examples include the name of thing, APIs (resources) which is provided by WoT

servient, parameter data type of each APIs and so on.

Other clients refer WoT servient’s “Things Description” to understand the ability of the
WoT Servient.

Server API Provider and Server API

Sever API is the API for creating server functions. Server API Provider provides utilizes

resource management, protocol mapping and son and provides Server APIs.

Client API Provider and Client API

Client API is the API for creating client functions. Client API Provider provides utilizes

resource management, protocol mapping and son and provides Client APIs.

Physical API Provider and Physical API

Unrestricted



Physical API is the API for creating physical things controlling functions such as GPIB,
I12C and so on. Physical API Provider provides utilizes resource management, protocol

mapping and son and provides Physical APIs.

App Script

Calling Server API, Client API and Physical API, application script is created.

5. Conclusion

. A functional architecture for WoT Servient is introduced in Fig.1. This functional

architecture can explain well a wide variety of different WoT application scenarios.

As the next stage of the standardization, we should standardize the following 3 items.

1) WoT API mapped to protocols that enable communication between a client and WoT
Servient;

2) Things Description to declare properties and capabilities of WoT Servient to the
Web;

3) Server API, Client API and Physical API to enable App scripts.

Unrestricted



