
Techniques for User Agent Accessibility
Guidelines 1.0

W3C Working Draft 9-August-1999
This version: 

http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS-19990809 
(plain text, postscript, pdf, gzip tar file of HTML, zip archive of HTML) 

Latest version: 
http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS 

Previous version: 
http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS-19990716 

Latest "User Agent Accessibility Guidelines 1.0": 
http://www.w3.org/WAI/UA/WAI-USERAGENT 

Editors: 
Jon Gunderson <jongund@uiuc.edu> 
Ian Jacobs <ij@w3.org> 

Copyright © 1999 W3C®  (MIT, INRIA, Keio), All Rights Reserved. W3C liability, 
trademark, document use and software licensing rules apply. 

Abstract
This document provides techniques for implementing the checkpoints defined in 
"User Agent Accessibility Guidelines 1.0". These techniques address the
accessibility of user interfaces, content rendering, program interfaces, and
languages such as HTML, CSS and SMIL.

This document is part of a series of accessibility documents published by the Web
Accessibility Initiative.

Status of this document
This is a W3C Working Draft for review by W3C Members and other interested
parties. It is a draft document and may be updated, replaced or obsoleted by other
documents at any time. It is inappropriate to use W3C Working Drafts as reference
material or to cite them as other than "work in progress". This is work in progress
and does not imply endorsement by, or the consensus of, either W3C or Members of
the WAI User Agent (UA) Working Group.

 9 Aug 1999  11:561  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/WAI/
http://www.w3.org/WAI/
http://www.w3.org/WAI/UA/WAI-USERAGENT
http://www.w3.org/Consortium/Legal/copyright-software
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/WAI/UA/WAI-USERAGENT
http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS-19990716
http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS
http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS-19990809/wai-useragent-tech.zip
http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS-19990809/wai-useragent-tech.tgz
http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS-19990809/wai-useragent-tech.pdf
http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS-19990809/wai-useragent-tech.ps
http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS-19990809/wai-useragent-tech.txt
http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS-19990809
http://www.w3.org/


While User Agent Accessibility Guidelines 1.0 strives to be a stable document (as
a W3C Recommendation), the current document is expected to evolve as
technologies change and content developers discover more effective techniques for
designing accessible Web sites and pages.

This document has been produced as part of the Web Accessibility Initiative and
intends to improve user agent accessibility for all users. The goals of the User Agent
Guidelines Working Group are discussed in the Working Group charter. A list of the 
UA Working Group participants is available.

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.org/TR. 

Please send comments about this document to the public mailing list: 
w3c-wai-ua@w3.org. 

2 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR
http://www.w3.org/WAI/UA/wai-ua-members.html
http://www.w3.org/WAI/UA/charter.html
http://www.w3.org/WAI/UA
http://www.w3.org/WAI/UA
http://www.w3.org/WAI


Table of Contents
................. 41 Priorities 
.......... 52 How the Techniques are Organized 
........ 52.1 Examples and Deprecated Examples 
............. 53 User agent accessibility 
............. 53.1 Access to content 
............ 63.2 Device independence 
............. 63.3 User control of style 
............. 73.4 Selection and focus 
........... 73.5 Navigation and searching 
............ 103.6 Context and orientation 
............. 113.7 Keyboard access 
.............. 123.8 Configuration 
.............. 133.9 Documentation 
............ 144 Interfaces and conventions 
............. 144.1 System conventions 
...... 154.2 Testing UA operation with platform standards 
............ 164.3 Accessibility interfaces 
........... 174.4 The document object model 
........ 174.5 Information for assistive technologies 
............ 175 Support for HTML accessibility 
............ 185.1 Equivalent information 
................ 195.2 Links 
................ 195.3 Tables 
................ 225.4 Frames 
................ 225.5 Scripts 
............... 235.6 Multimedia 
............ 236 Support for CSS accessibility 
............ 237 Support for SMIL accessibility 
.... 248 Appendix: Accessibility features of some operating systems 
..... 279 Appendix: Loading assistive technologies for DOM access 
............ 3310 Appendix: Checkpoint Map 
............... 41Acknowledgments 
................. 43References 
................. 43Services 

 9 Aug 1999  11:563  

Techniques for User Agent Accessibility Guidelines 1.0



1 Priorities
Each checkpoint in this document is assigned a priority that indicates its importance
for users.

[Priority 1] 
This checkpoint must be implemented by user agents as a native feature or
through compatibility with assistive technology, otherwise one or more groups of
users with disabilities will find it impossible to access information. Satisfying this
checkpoint is a basic requirement for some individuals to be able to use the
Web. 

[Priority 2] 
This checkpoint should be implemented by user agents as a native feature or
through compatibility with assistive technology, otherwise one or more groups of
users will find it difficult to access information. Satisfying this checkpoint will
remove significant barriers to accessing Web documents. 

[Priority 3] 
This checkpoint may be implemented by user agents as a native feature or
through compatibility with assistive technology, to make it easier for one or more
groups of users to access information. Satisfying this checkpoint will improve
access to the Web for some individuals. 

The checkpoints in this document are numbered to match their numbering in User
Agent Accessibility Guidelines 1.0.

4 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



2 How the Techniques are Organized
This document is organized as follows:

User Agent Accessibility [p. 5] 
This section introduces some general techniques to promote accessibility in
user agent functionality. 

Interfaces and Conventions [p. 14] 
This section addresses user agent support for standard programming interfaces,
operating system conventions, and W3C specifications. 

HTML Techniques [p. 17] 
This section explains how to implement features of HTML (refer to [HTML40] 
[p. 42] , [HTML32] [p. 42] ). 

CSS Techniques [p. 23] 
This section explains how to implement features of CSS1 and CSS2 (refer to 
[CSS1] [p. 42] , [CSS2] [p. 42] ). 

SMIL Techniques [p. 23] 
This section explains how to implement features of SMIL (refer to [SMIL] [p. 42] 
.

A checkpoint map [p. 33] has been provided for navigation of the techniques. For
each checkpoint, the map includes its definition (as it appears in the "User Agent
Accessibility Guidelines 1.0") and links to applicable techniques for the checkpoint.
In addition, the beginning of each section of this document lists the checkpoints that
are addressed in that section. 

2.1 Examples and Deprecated Examples
This document contains a number of examples that illustrate accessible solutions in
HTML, CSS, etc. but also deprecated examples that illustrate what content
developers should not do. The deprecated examples are highlighted and readers
should approach them with caution -- they are meant for illustrative purposes only. 

3 User agent accessibility

3.1 Access to content
Checkpoints [p. 33] in this section: 7.1, 7.2. 

3.1.1 Changes in content language

Checkpoints [p. 33] in this section: 7.3. 

 9 Aug 1999  11:565  

Techniques for User Agent Accessibility Guidelines 1.0



3.2 Device independence
Checkpoints [p. 33] in this section: 1.2, 1.1, 1.3, 1.4, 1.5, 1.6 

3.3 User control of style
To ensure accessibility, users must have final control over certain renderings. 

For text and color:

Checkpoints [p. 33] in this section: 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6. 

[Ed. These may be rendered in a variety of ways. How do we specify rendering?]

For images, applets, and animations:

Checkpoints [p. 33] in this section: 5.2 and 6.7. 

For user agents rendering audio:

Checkpoints [p. 33] in this section: 6.11, 6.13, 6.9, 7.8, 7.6, and 6.12. 

For user agents rendering video:

Checkpoints [p. 33] in this section: 6.8, 6.10, 6.9, and 7.6. 

For user agents rendering speech:

Checkpoints [p. 33] in this section: 6.15, 7.6, and 6.14. 

User interface:

Checkpoints [p. 33] in this section: 6.16. 

3.3.1 Feature control

Checkpoints [p. 33] in this section: 5.1, 5.3, 5.4, 5.10, 5.9, and 5.5. 

[Ed. Add note here that while useful to turn off support, say for all images, it’s also
useful to be able to view one particular image.]

User agents may: 

Allow users to turn of support for spawned viewports entirely 
Prompt them before spawning a viewport

For example, user agents may recognize the HTML construct target="_blank"
and spawn the window according to the user’s preference. 

Checkpoints [p. 33] in this section: 5.14. 

Period page refresh can be achieved with the following markup in HTML:

<META http-equiv="refresh" content="60">

The user agent should allow the user to disable this type of page refresh. 

6 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



Checkpoints [p. 33] in this section: 5.13. 

Although no HTML specification defines this behavior formally, some user agents
support the use of the META element to refresh the current page after a specified
number of seconds, with the option of replacing it by a different URI. Instead of this
markup, authors should use server-side redirects (with HTTP). 

User agents can provide a link to another page rather than changing the page
automatically. 

3.4 Selection and focus

3.4.1 Highlighting selection and focus

Checkpoints [p. 33] in this section: 9.1. 

3.4.2 Tracking selection and focus

Checkpoints [p. 33] in this section: 10.2 and 8.2. 

3.5 Navigation and searching
Checkpoints [p. 33] in this section: 8.7 

3.5.1 Navigation of active elements

Checkpoints [p. 33] in this section: 8.4. 

Sequential navigation includes all active elements. User agents might provide
other navigation mechanisms limited to a particular type of element. For example
"Find the next table" or "Find the previous form". The following checkpoints suggest
some types of navigation.

Serial navigation. It is important that application developers maintain a logical
keyboard navigation order. The navigation order is defined as the order of
navigation among components and component elements via the keyboard.
Generally users navigate by tabbing between components or groups and using
the arrow keys within a component group or component’s elements. The ability
to tab between software components is a key feature in the implementation of
keyboard accessibility. (Cross-reference to keyboard access.) Buttons of
common functionality, such as a set of radio buttons used to set the location of a
panel (top left, bottom left, and so on.), should be grouped together so the first
element of the visible group can be tabbed to. Allow the user to use the arrow
keys to navigate to each end of the group. 
How to indicate that something is in tabbing order in Java: A component is
inclusive in the tabbing order when added to a panel and its
isFocusTraversable() method returns true. A component can be removed from
the tabbing order by simply extending the component, overloading this method,
and returning false. 
For active elements, one way or two way. 

 9 Aug 1999  11:567  

Techniques for User Agent Accessibility Guidelines 1.0



In a table, up/down and left/right.

Direct navigation:

Excessive use of serial navigation can reduce the usability of software for both
disabled and non-disabled users. As a developer, you need to determine the point at
which tabbing gets in the way and provide a keyboard alternative. This is done
through the use of keyboard Mnemonics and Accelerators. 

Need for element identification. 
Access by position in document. 
Access by element content (e.g., first letter). 
In a table, access to cell based on coordinates.

3.5.2 Navigation of document structure

Checkpoints [p. 33] in this section: 8.6 

DOM is minimal (tree nav) 
Best navigation will involve a mix of source tree information and rendered
information. 
May use commonly understood document models rather than strict DTD
navigation. E.g., nesting headers in HTML. 
Goal of simplifying the structure view as much as possible. 
Allow the user to control level of detail/ view of structure. 
Depth first as well as breadth first possible. Up/down nav as well. 
Navigation of synchronized multimedia: allow users to stop, pause, fast forward,
advance to the next clip, etc.

3.5.3 Table navigation

Checkpoints [p. 33] in this section: 8.3 

Users of non-graphical rendering technologies and users with learning disabilities,
when browsing a page, should be able to quickly determine the nature of a table
located on a page. The able-bodied user is able to visually examine the table and
extract a sense of the table contents with a quick scan of the cells. Users with
blindness or low vision, or users who have difficulty translating printed material may
not able to do this. Providing table summary information, when first moving the
point-of-regard to a table allows the nature of a table to be easily determined. 

An auditory rendering agent, when the point-of-regard moves to a table, might say,
"Table: Tax tables for 1998," thus identifying the nature of the table. The user could
then use keyboard commands to move the point of regard to the next logical block of
information, or use a different command to "burrow" into the table. 

The "burrow" command should have an opposite "pop" command, which would
move the point of regard from an individual cell to the table as a whole, so that the
user can leave a table from any cell within it, rather than navigating to the end. 

8 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



If the user "pops" up to look over the summary information, it should be possible to
"burrow" back to the same cell. 

When navigating a table that contains another table, this strategy can avoid
confusion. For example, if each row of a table contained five cells, but the second
row contained a 4x4 table in the third cell, a user could be disoriented when the row
did not end as expected. However, when the point of regard moved to the third cell
of the table, a compliant browser would report that this was a table, and describe its
contents. The user would have the option of navigating to the forth cell of the parent
table, or burrowing into the table within this cell. 

When rendering tabular information, the fact that it is tabular information should be
apparent. For a graphical user agent, such information is commonly made obvious
by the border attribute. However, for a non-graphical agent, such information must
also be made appreciable. 

As the user agent shifts the point of regard to a table, it should first provide
information about the entire table. This information might be the Caption, Title, or
Summary information of the table. Access to this information would allow the user to
determine whether or not to examine the contents of the table, or to move the point
of regard to the next block of content. 

In many data tables, the meaning of the contents of a cell are related to the
contents of adjacent cells. For example, in a table of sales figures, the sales for the
current quarter might be best understood in relation to the sales for the previous
quarter, located in the adjacent cell. 

In order to provide access to contextual information for individuals using
non-graphical browsers, or for individuals with certain types of learning disabilities, it
is necessary for the user agent to allow the point of regard to be moved from cell to
cell, both right/left and up/down via keyboard commands. 

The most direct method of performing such navigation would be via the cursor
keys, though other navigation strategies might be used. 

Users of graphical browsers can easily locate cells within a table that are at the
intersection of a row and column of interest. To provide equivalent access to users of
non-graphical browsers, equivalent means of navigation should be provided. The
search function of a browser will allow the user to locate key terms within a table, but
will not allow the user to find cells that are at the intersection of rows and columns of
interest. 

Techniques:

An advanced search mode might provide entries for header information,
allowing the user to find information at the intersection of columns and rows
using the key terms. 
A search mode might allow the user to search for key terms that are related to
key header terms, allowing searches to be restricted to specific rows or headers
within a table.

 9 Aug 1999  11:569  

Techniques for User Agent Accessibility Guidelines 1.0



The header information visible in a TH cell may be abbreviated, in which case it
should be user preference to see the "abbr" value if any or the full contents. 

Axis information may also help the user search into confined portions of the table. 

Column groups and row groups are other confining partitions of a table in which a
search may be limited. 

Software: 

Table navigation script from the Trace Center 

3.5.4 Searching

Checkpoints [p. 33] in this section: 8.5. 

Element content 
Attribute content 
Patterns 
Search the source view. 
For forms, allow users to find required controls. Allow users to search on labels
as well as content of some controls. 
For multimedia presentations: 

Allow users to search and examine time-dependent media elements and
links in a time-independent manner. For example, present a static list of
time-dependent links. 
Allow users to search closest timestamp from a text stream or a media
elements or links and find other media elements active at the same time. 
Allow users to view a list of all media elements or links of the presentations
sorted by start or end time or alphabetically.

3.5.5 View navigation

Checkpoints [p. 33] in this section: 8.1, 9.3. 

3.6 Context and orientation

3.6.1 Document and view status information

Checkpoints [p. 33] in this section: 10.4 and [##Tnotify-doc-nav]. 

3.6.2 Element context

Checkpoints [p. 33] in this section: 9.4. 

10 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0

http://trace.wisc.edu/world/computer_access/table_nav_script/table-nav.html


3.6.3 Links

Checkpoints [p. 33] in this section: 9.5 and 9.6. 

3.6.4 Tables

Checkpoints [p. 33] in this section: 9.8 and 9.7. 

3.6.5 Form controls

Checkpoints [p. 33] in this section: 9.9, 10.6. 

[Ed. Talk about "for" attribute for LABEL]

3.6.6 Frames

Checkpoints [p. 33] in this section: 9.1. 

3.6.7 Scripts

Checkpoints [p. 33] in this section: 10.1, 10.3. 

3.7 Keyboard access
Checkpoints [p. 33] in this section: 2.1. 

3.7.1 Tabbing order

How to specify in HTML

3.7.2 Keyboard shortcuts

Checkpoints [p. 33] in this section: 2.2, 2.3, 2.6. 

How to specify in HTML 
Visibility of. 
Documentation of. At a minimum: list in README file that comes with software.

Some suggestions:

1.  Allow the user to use the find command to jump to a link instead of tabbing
there. It would save a lot of keystrokes, especially if one programs the
keystrokes as macros. But this requires that focus moves to the location that
find highlights. 

2.  Allow the user to use find command to jump to text in buttons. 
3.  Allow the user to use find command to jump to image by searching on its

alternative content (e.g., "alt" attribute).

 9 Aug 1999  11:5611  

Techniques for User Agent Accessibility Guidelines 1.0



Some reserved keyboard shortcuts are listed in the appendix on accessibility
features of some operating systems. 

3.7.3 Software consistency

Checkpoints [p. 33] in this section: 9.10 

3.8 Configuration

Profiles 
Default values 
Device-independent configuration

3.8.1 User profiles

Checkpoints [p. 33] in this section: 4.1 

A configuration profile allows users to save their user agent settings and re-apply
them easily, which is particularly valuable in an environment where several people
may use the same machine. 

The user should be able to easily transfer their profiles between installations of the
same user agent. One way to facilitate this is to follow operating system conventions
for profiles where applicable. 

Users should be able to switch rapidly between profiles (or the default settings).
This is helpful when: 

Several people use the same machine. 
A user with a disability is being helped by able-bodied user who may not
recognize the information being displayed using the user’s profile.

User agents may apply a profile when the user logs in. They may also allow users
to apply settings interactively, for example by allowing them to choose from a list of
named profiles in a menu. 

Sample profiles (based on common usage scenarios) can assist users in the initial
set up of the user agent. These profiles can serve as models and may be copied and
fine-tuned to mean an individual’s particular needs. 

3.8.2 Keyboard configuration

Checkpoints [p. 33] in this section: 2.4, 2.8, 2.7, and 2.5 

[Ed. Discuss keyboard access here. How access is specified in HTML: 
"accesskey".]

[Ed. New section. Users must be allowed to control keyboard configuration based
on specific needs. For poor motor control, keys far apart. For poor mobility, keys
close together. General principle: fewest keystrokes, short distance to move.]

12 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



3.8.3 User interface

Checkpoints [p. 33] in this section: 4.2. 

3.9 Documentation
Checkpoints [p. 33] in this section: 3.2. 

Universal design means that access to features that help accessibility should be
integrated into normal menus. User agents should avoid regrouping access to
accessibility features into specialized menus. Documentation includes anything that
explains how to install, get help for, use, or configure the product. Users must have
access to installation information, either in electronic form (diskette, over the Web),
by fax, or by telephone. 

3.9.1 Where to document accessibility

Checkpoints [p. 33] in this section: 3.3. 

Include references to accessibility features in these parts of the documentation:

1.  Indexes. Include terms related to product accessibility in the documentation
index (e.g., "accessibility", "disability" or "disabilities"). 

2.  Tables of Contents Include terms related to product accessibility in the
documentation table of contents (e.g., features that promote accessibility) 

3.  Include instructions on how to modify all user configurable defaults and
preferences (e.g, images, video, style sheets, and scripts) as specified by the
documentation. 

4.  Include a list of all keyboard shortcuts in the accessibility section of the
documentation. 

3.9.2 Accessible documentation

Checkpoints [p. 33] in this section: 3.1. 

Documentation created in HTML should follow the Web Content Accessibility 
Guidelines [p. 43] . 

Electronic documentation created in open standard formats such as HTML and
ASCII can often be accessed in the user’s choice of application such as a word
processor or browser. Accessing documentation in familiar applications is
particularly important to users with disabilities who must learn the functionalities of
their tools, be able to configure them for their needs, and to be compatible with
assistive technology. Electronic documentation should not be provided in proprietary
formats. 

Users with print impairments may need or desire documentation in alternative
formats such as Braille, large print, or audio tape. User agent manufacturers may
provide user manuals in alternative formats. Documents in alternative format
documents can be created by agencies such as Recording for the Blind and Dyslexic
and the National Braille Press. 

 9 Aug 1999  11:5613  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.nbp.org/
http://www.rfbd.org/


User instructions should be created in an input device-independent manner.
Provide instructions for using or configuring the user agent in a manner that can be
understood by a user of any input device including a mouse or keyboard. For
example, "Click on the Home button on the toolbar or select "Home" from the Go
menu to return to the Home page. " 

4 Interfaces and conventions

4.1 System conventions
Checkpoints [p. 33] in this section: 12.6 

Develop the UA User Interface (UI) with standard interface components per the
target platform(s). Most major operating system platforms provide a series of design
and usability guidelines, these should be followed when possible (see platforms
below). 

These checklists, style guides, and human interface guidelines provide very
valuable information for developing applications (e.g., UAs) for any
platform/operating system/GUI. If your custom interface cannot provide information
or operation as defined above, then you may need to design your UA using any
additional options provided by that platform. 

For instance, software should use the standard interface for keyboard events
rather than working around it. 

Evaluate your standard interface components on the target platform against any
built in operating system accessibility functions (see Appendix 8) and be sure your
UA operates properly with all these functions. 

For example, take caution with the following:

Microsoft Windows supports an accessibility function called "High Contrast".
Standard window classes and controls automatically support this setting.
However, applications created with custom classes or controls must understand
how to work with the "GetSysColor" API to ensure compatibility with High
Contrast. 
Apple Macintosh supports an accessibility function called "Sticky Keys". Sticky
Keys operates with keys the operating system understands to be defined as
modifier keys, and therefore a custom UA control should not attempt to define a
new modifier key.

4.1.1 Some guidelines for specific platforms

"Macintosh Human Interface Guidelines" [APPLE-HI] [p. 43] Apple Computer
Inc. 
"IBM Guidelines for Writing Accessible Applications Using 100% Pure Java" 
[JAVA-ACCESS] [p. 43] . 
"An ICE Rendezvous Mechanism for X Window System Clients" [ICE-RAP] 

14 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



[p. 43] . 
"Information for Developers About Microsoft Active Accessibility" [MSAA] [p. 43] 
. 
"The Inter-Client communication conventions manual" [ICCCM] [p. 43] . 
"Lotus Notes accessibility guidelines" [NOTES-ACCESS] [p. 44] 
"Java accessibility guidelines and checklist" [JAVA-CHECKLIST] [p. 43] 
"The Java Tutorial. Trail: Creating a GUI with JFC/Swing" [JAVA-TUT]. [p. 43] 
"The Microsoft Windows Guidelines for Accessible Software Design" 
[MS-SOFTWARE] [p. 44] . 

4.1.2 General guidelines for producing accessible software

"Accessibility for applications designers" [MS-ENABLE] [p. 44] . 
"Application Software Design Guidelines" [TRACE-REF] [p. 44] . 
"Designing for Accessibility" [SUN-DESIGN] [p. 44] 
"EITAAC Desktop Software standards" [EITAAC] [p. 43] . 
"Requirements for Accessible Software Design" [ED-DEPT] [p. 43] 
"Software Accessibility" [IBM-ACCESS] [p. 43] . 
"Towards Accessible Human-Computer Interaction" [SUN-HCI] [p. 44] . 
"What is Accessible Software" [WHAT-IS] [p. 44] . 
Accessibility guidelines for Unix and X Window applications [XGuidelines] [p. 44] 

4.2 Testing UA operation with platform standards
Ensure your UA can be operated using the standard interfaces on the target
platform(s). Some example tests include:

All functional UI components must be keyboard accessible and therefore, must
be oper-able by software or devices which emulate a keyboard (Use SerialKeys
[see Appendix 8] and/or voice recognition software to test keyboard event
emulation.). Individuals with varying physical abilities should be able to access
your UA using a SerialKeys device or using voice recognition, provided it is
keyboard accessible. 
All functional UI components must track selection and focus. Individuals who
have low vision and use screen magnification software should be able to follow
highlighted item(s) (e.g., selection), text input location (e.g., sometimes referred
to as the "caret"), and any control or component with focus, if your UA exposes
these properties correctly. 
All functional UI components must provide readable "text" names or labels, even
when not visible. Providing this type of information in your UA along with the
prior two examples, means that individuals who are blind and accessing your
UA using screen reading software and/or a Braille output device should be able
to operate and navigate within it. 
All functional UI components which convey important information using sound,
also need to provide alternate, parallel visual representation of the information
for individuals who are deaf, hard of hearing, or operating your UA in an

 9 Aug 1999  11:5615  

Techniques for User Agent Accessibility Guidelines 1.0



environment where the use of sound isn’t practical.

4.3 Accessibility interfaces
Checkpoints [p. 33] in this section: 12.1, 12.2, 12.3, 12.5. 

The operating system application programming interfaces (APIs) that support
accessibility are designed to provide a bridge between the standard user interface
supported by the operating system and alternative user interfaces developed by
third-party assistive technology vendors to provide access to persons with
disabilities. Applications supporting these APIs are therefore generally more
compatible with third-party assistive technology. 

The User Agent Accessibility Guidelines Working Group strongly recommends
using and supporting APIs that improve accessibility and compatibility with
third-party assistive technology. Third-party assistive technology can use the
accessibility information provided by the APIs to provide an alternative user interface
for various disabilities.

The following is an informative list of currently public APIs that support
accessibility: 

Microsoft Active Accessibility ([MSAA] [p. 43] ) in Windows 95/NT versions. 
Sun Microsystems Java Accessibility API ([JAVAAPI] [p. 43] ) in Java Code.

Many operating systems have built-in accessibility features for improving the
usability of the standard operating system by persons with disabilities. When
designing software that runs above an underlying operating system, developers
should ensure that the application: 

1.  Makes use of operating system level features. See the appendix of accessibility 
features [p. 12] for some common operating systems. 

2.  Inherits operating system settings related to accessibility. Pertinent settings
include font and color information as well as other pieces of information
discussed in this document.

Write output to and take input from standard system APIs rather than direct from
hardware controls where possible. This will enable the I/O to be redirected from or to
assistive technology devices - for example, screen readers and braille devices often
redirect output (or copy it) to a serial port, while many devices provide character
input, or mimic mouse functionality. The use of generic APIs makes this feasible in a
way which allows for interoperability of the assistive technology with a range of
applications. 

16 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



4.4 The document object model
Checkpoints [p. 33] in this section: 12.4. 

Use DOM Level 1 [DOM1] [p. 42] for access to HTML and XML document
information. However, as the DOM specification indicates:

The DOM Level 1 does not include mechanisms to access and modify style
specified through CSS 1. Furthermore, it does not define an event model for
HTML documents. This functionality is planned to be specified in a future Level
of this specification.

It is important for user agents to provide access to style and scripting information
in a document, so the following techniques should be used to achieve this. 

Use standard rather than custom controls when designing user agents. Third-party
assistive technology developers are more likely able to access standard controls
than custom controls. If you must use custom controls, review them for accessibility
and compatibility with third-party assistive technology. 

4.5 Information for assistive technologies
[Ed. To be completed.]

5 Support for HTML accessibility
[Ed. Link to W3C Note on HTML Accessibility Features instead of this section]

Checkpoints [p. 33] in this section: 11.2, 11.1 

Following is a list of accessibility features in HTML:

Support the "longdesc" attribute defined for IMG elements ([HTML 4.0] [p. 42] ,
section 13.2). This attribute may be used to attach additional descriptive
information to images. [Priority 1] 
Support the CAPTION element ([HTML40] [p. 42] , section 11.2.2) for rich table
captions. [Priority 2] 
Support the ACRONYM and ABBR elements ([HTML40] [p. 42] , section 9.2.1)
for acronyms and abbreviations. [Priority 2] 
Support the "summary" attribute for TABLE ([HTML40] [p. 42] , section 11.2.1)
for table summary information. [Priority 2] 
Support the NOSCRIPT element ([HTML40] [p. 42] , sections 18.3.1 and 16.4.1)
for accessible alternatives to scripts. [Priority 2] 
Support the NOFRAMES element ([HTML40] [p. 42] , sections 18.3.1 and
16.4.1) for accessible alternatives to frames. [Priority 2] 
Support the "lang" attribute ([HTML40] [p. 42] , section 8.1). [Priority 2] 
Support the "tabindex" attribute ([HTML40] [p. 42] , section 17.11.1) for
assigning the order of keyboard navigation within a document. [Priority 3] 
Support the "accesskey" attribute ([HTML40] [p. 42] , section 17.11.2) for

 9 Aug 1999  11:5617  

Techniques for User Agent Accessibility Guidelines 1.0



assigning keyboard commands to active components such as links, and form
controls. [Priority 3] 

5.1 Equivalent information
Checkpoints [p. 33] in this section: 7.1. 

User agents must be able to recognize sources of alternative representations of
content. 

For the IMG element: The "alt", "title", and "longdesc" attributes 
For the OBJECT element: The content of the element and the "title" attribute. 
For the APPLET element: The "alt" attribute and the content of the element. 
For the AREA element: The "alt" attribute. 
For the INPUT element: The "alt" attribute. 
For the ACRONYM and ABBR elements: The "title" attribute may be used for
the acronym or abbreviation expansion. 
For the TABLE element, the "summary" attribute 
For frames, the NOFRAMES element and the "longdesc" attribute on FRAME
and IFRAME. 
For scripts, the NOSCRIPT element.

5.1.1 Sources of blinking text and animation

Checkpoints [p. 33] in this section: 5.6 and 5.7. 

User agents that recognize the following sources of blinking text and animations
must enable users to freeze that text. 

In HTML 
The BLINK element. Note. The BLINK element is not defined by a W3C
specification. 
The MARQUEE element. Note. The MARQUEE element is not defined by a
W3C specification.

In CSS 
The ’blink’ value of the ’text-decoration’ property.

In GIF animated images. 
To be completed.

5.1.2 Alternative representations of information for images, video, 
applets

Checkpoints [p. 33] in this section: 7.4, 7.5. 

[Ed. How to handle null/absent alt.]

18 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/WAI/UA/WAI-USERAGENT-19990809#def-active-components


5.1.3 Textual equivalents for audio and video

Checkpoints [p. 33] in this section: 7.7 and 6.9. 

Scenario-video showing professor writing complex equations and graphs on the
overhead and discussing them but not describing what he/she actually wrote on the
overhead. Without description this would be inaccessible to people with visual
impairments. This could be generalize to any video presentation of visually rich or
complex information where the visually presented information is critical to the
understanding of the presentation. 

5.1.4 Auditory equivalents for video

Checkpoints [p. 33] in this section: 7.7. 

5.1.5 Frame equivalents

Checkpoints [p. 33] in this section: 5.12 and 5.11. 

[Ed. See Scott’s suggestions]

1.  In HTML, content of NOFRAMES. 
2.  Otherwise, list of frames. Use "title" as name of frame, otherwise "name".

5.1.6 Alternative representations for tables

In HTML, "summary" attribute. Also, the "abbr" attribute for headers (see the section
on table cells and headers). 

5.2 Links
Checkpoints [p. 33] in this section: 7.9 and 7.10. 

[Ed. Talk about CSS pseudo-classes for :hover]

[Ed. Talk about using :before to clearly indicate that something is a link (e.g.,
’A:before { content : "LINK:" }’)]

5.3 Tables
Tables were designed to structure relationships among data. In graphical media,
tables are often rendered on a two-dimensional grid, but this is just one possible
interpretation of the data. On the Web, the HTML TABLE element has been used
more often than not to achieve a formatting effect ("layout tables") rather than as a
way to structure true tabular data ("data tables") 

Layout tables cause problems for some screen readers and when rendered,
confuse users. Even data tables can be difficult to understand for users that browse
in essentially one dimension, i.e. for whom tables are rendered serially. Large tables
pose particular problems since remembering cell position and header information
becomes more difficult as the table grows. 

 9 Aug 1999  11:5619  

Techniques for User Agent Accessibility Guidelines 1.0

http://lists.w3.org/Archives/Public/w3c-wai-ua/1998OctDec/0297.html


User agents facilitate browsing by providing access to specific table cells and their
associated header information. How headers are associated with table cells is
markup language-dependent. 

Tabular navigation is required by people with visual impairments and some types
of learning disabilities to determine the content of a particular cell and spatial
relationships between cells (which may convey information). If table navigation is not
available users with some types of visual impairments and learning disabilities may
not be able to understand the purpose of a table or table cell.

5.3.1 Table rendering

Properly constructed data tables generally have distinct TH head cells and TD data
cells. The TD cell content gains implicit identification from TH cells in the same
column and/or row. 

For layout tables, a user agent can assist the reader by indicating that no
relationships among cells should be expected. Authors should not use TH cells just
for their formatting purpose in layout tables, as those TH cells imply that some TD
cells should gain meaning from the TH cell content. 

When a table is "read" from the screen, the contents of multiline cells may become
intermingled. For example, consider the following table:

This is the top left cell    This is the top right cell 
of the table.                of the table.

This is the bottom left      This is the bottom right 
cell of the table.           cell of the table.

If read directly from the screen, this table might be rendered as "This is the top left
cell This is the top right cell", which would be confusing to the user. 

A user agent should provide a means of determining the contents of cells as
discrete from neighboring cells, regardless of the size and formatting of the cells.
This information is made available through the DOM ([DOM1 [p. 42] ]). 

The contents of a cell in a data table are generally only comprehensible in context
(i.e., with associated header information, row/column position, neighboring cell
information etc.). User agents should provide users with header information and
other contextual agent. Techniques include:

Provide this information through an API. 
Ignore table markup entirely. This may assist some screen readers. 
Render cells as blocks. This may assist some screen readers. Using this
strategy, the user agent might render individual cells with the relevant top and
side headers attached. 
Allow navigation and querying of cell/header information. When the point of
regard is on an individual cell, the user would be able to use a keyboard
command to receive the top and left header information for that cell. The user
agent should appropriately account for headers that span multiple cells. 

20 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



Allow users to read one table column or row at a time, which may help them
identify headers.

[Ed. Discuss repair strategies for finding header information?]

Since not all tables are designed with the header information, a conforming user
agent should provide, as an option, a "best guess" of the header information for a
cell. Possible strategies include: 

Consider the top and left-most cells of a column or row to be header
information. 
Consider upper and left-most cells which have formatting markup to be header 
information.

The user may choose the form and amount of this information, possibly
announcing the row heads only once and then the column head or its abbreviation
("abbr") to announce the cell content. 

[Ed. Define algorithm for finding "header information" here. Does it come from
THEAD, TH, attributes, HTML 4.0 algorithm for finding header information, etc. Allow
the user to choose either "abbr" or what is calculated by the header algorithm.]

5.3.2 Cell rendering

Non-graphical rendering of information by a browser or an assistive technology
working through a browser will generally not render more than a single cell, or a few
adjacent cells at a time. Because of this, the location of a cell of interest within a
large table may be difficult to determine for the users of non-graphical rendering. 

In order to provide equivalent access to these users, compliant browsers should
provide a means of determining the row and column coordinates of the cell having
the point of regard via keyboard commands. Additionally, to allow the user of a
non-graphical rendering technology to return to a cell, the browser should allow a
means of moving the point of regard to a cell based on its row and column
coordinates. 

At the time the user enters a table, or while the point of regard is located within a
table, the user agent should allow an assistive technology to provide information to
the user regarding the dimensions (in rows and columns) of the table. This
information, in combination with the summary, title, and caption, can allow the user
with a disability to quickly decide whether to explore the table of skip over it. 

Dimensions is an appropriate term, though dimensions needn’t be constants. For
example a table description could read: "4 columns for 4 rows with 2 header rows. In
those 2 header rows the first two columns have "colspan=2". The last two columns
have a common header and two subheads. The first column, after the first two rows,
contains the row headers. 

Some parts of a table may have 2 dimensions, others three, others four, etc.
Dimensionality higher than 2 are projected onto 2 in a table presentation. 

 9 Aug 1999  11:5621  

Techniques for User Agent Accessibility Guidelines 1.0



5.3.3 Cell header algorithm

User agents should use the algorithm to calculate header information provided in the
HTML 4.0 specification ([HTML40] [p. 42] , section 11.4.3). 

[Ed. The following issues were raised by Harvey Bingham.]

1.  TH cells on both the left and right of the table need to be considered. 
2.  For TH cells with "rowspan" set: the content of those TH cells must be

considered for each of the N-1 rows below the one containing that TH content. 
3.  An internal TH in a row surrounded on either side by TDs has no means to

specify to which (row or column) that TH overrides what existed to its left or
above it. 

4.  Finding column header cells assumes they are all above the TD cell to which
they apply. 

5.  A TH with "colspan" set needs to be included in the list of TH for the M-1
columns to the right of the column in which the TH is found.

5.4 Frames
Checkpoints [p. 33] in this section: 5.12, 6.16, and 9.2 

5.4.1 Frame formatting

Checkpoints [p. 33] in this section: 9.1. 

Possible solutions: 

Provide info through an API. 
Frames as blocks. 
Frameset as list of links to individual frames (based on frame name). 
NOFRAMES content (when?)

5.5 Scripts
Checkpoints [p. 33] in this section: 5.8. 

Certain elements of the document language may have associated event handlers
that are triggered when certain events occur. User agents must be able to identify
those elements with event handlers statically associated (i.e., associated in the
document source, not in a script). 

In HTML 
All of the attributes beginning with the prefix "on": "onblur", "onchange",
"onclick", "ondblclick", "onkeydown", "onkeypress", "onkeyup", "onload",
"onmousedown", "onmousemove", "onmouseout", "onmouseover",
"onmouseup", "onreset", "onselect", "onsubmit", and "onunload". 

22 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



[Ed. Other sources? ] 
[Ed. To be completed.]

5.6 Multimedia
[Ed. Talk about EMBED? Charles recommends that it be put inside an OBJECT if 
used.]

6 Support for CSS accessibility
Checkpoints [p. 33] in this section: 11.2, 11.1 

The accessibility features of Cascading Style Sheets (refer to CSS, level 1 [p. 42] 
and CSS, level 2 [p. 42] ) are described in [CSS-ACCESS] [p. 42] . 

Cascading Style Sheets may be part of a source document or linked externally.
Stand-alone style sheets are useful for implementing user profiles in public access
computer environments where several people use the same computer. User profiles
allow for convenient customization and may be shared by a group. 

7 Support for SMIL accessibility
[Ed. Link to W3C Note on SMIL Accessibility Features instead of this section]

Checkpoints [p. 33] in this section: 11.2, 11.1 

[Ed. Ensure that in SMIL, users can stop temporal links. See proposal from Marja.]

Accessible presentation means here that the information can be easily accessed
by using different media and that the user can easily control whether to show the
information or not. 

Support accessible presentation of "title", "abstract" and "author" attributes
defined for SMIL synchronization elements. 
Support accessible presentation of "alt", "londesc", "title", "abstract" and "author"
attributes defined for SMIL media object elements. 
Support an interface for turning captions on and off. Captions are defined either
by using "system-overdub-or-caption" attribute with value "caption" or
"system-captions" attribute with value "on". 
Support an interface for turning overdubs on and off. Overdubs are defined by
using "system-overdub-or-caption" attribute with value "overdub". 
When captions are shown support a caption region. According to user
preferences this could be embedded in the SMIL layout or shown in a separate
window. 
When user prefers to, support a stable, time independent view to the links so
that time dependent links can be easily searched. 
Offer a way to change system values affecting to "system-bitrate",
"system-screen-size" and "system-depth" attributes since these can have an
affect to the user interface. In addition, give feedback of the values in a form that

 9 Aug 1999  11:5623  

Techniques for User Agent Accessibility Guidelines 1.0

http://lists.w3.org/Archives/Public/w3c-wai-ua/1998OctDec/0072.html


list only those selections that can have an effect to the user interface. For
instance, if the SMIL author has defined three different user interfaces for
bitrates below 1200, between 1200 and 2400, and over 24000 the user should
be given a selection of these three choices not just any bitrate number.

8 Appendix: Accessibility features of some operating 
systems
Several of the more popular mainstream operating systems now include a common
suite of built-in accessibility features that are designed to assist individuals with
varying abilities. Despite operating systems differences, the built-in accessibility
features use a similar naming convention and offer similar functionalities, within the
limits imposed by each operating system (or particular hardware platform).

The following is a list of built-in accessibility features from several platforms: 

StickyKeys 
These allow users to perform a multiple simultaneous key sequence by pressing
and releasing each key in sequential order. StickyKeys is designed to work with
only those keys defined as modifier keys. Modifier keys are pressed in
combination with other keys, to change the outcome of the second (or more)
pressed keys. For example, the SHIFT key is defined as a modifier key, since it
is commonly used to create upper case characters. Each operating system or
hardware platform typically defines a set of keys which can act as modifier keys.
The most common modifier keys include SHIFT, CONTROL, and ALTERNATE. 

MouseKeys 
These allow users to move the mouse cursor and activate the mouse button(s)
from the keyboard. 

RepeatKeys 
These allow users to set how fast a key repeats (e.g., sometimes referred to as
typematic rate) when the key is held pressed (e.g., Repeat Rate), and also
allows control over how quickly the key starts to repeat after the key has been
pressed (e.g., delay Until Repeat). Key repeating may also be eliminated. 

SlowKeys 
These instruct the computer not to accept a key as pressed until it has been
pressed and held down for a specific user adjustable length of time. 

BounceKeys 
These prevent extra characters from being typed if the user bounces (e.g.,
tremor) on the same key when pressing or releasing it. 

ToggleKeys 
These provide an audible indication for the status of keys that have a toggled
state (e.g., keys that maintain status after being released). The most common
toggling keys include Caps Lock, Num Lock, and Scroll Lock. 

SoundSentry 
These monitor the operating system and applications for sounds, and attempt to
provide a graphical indication when a sound is being played. Older versions of

24 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



Sound Sentry may have flashed the entire display screen for example, while
newer versions of SoundSentry provide the user with a selection of options,
such as flashing the active window or flashing the active window caption bar.

The next three built in accessibility features are not as commonly available as the
above group of features, but are included here for definition, completeness, and
future compatibility. 

ShowSounds 
These are user setting or software switches that are available for the operating
system and application (including user agents) APIs to read, to notify them that
the user wishes audio information to also be presented in a graphical format. 

High Contrast 
These automatically change the display fonts and colors to choices which
should provide for easier reading. 

TimeOut 
These allow the built-in accessibility features to automatically turn off if the
computer is unused for a specified length of time, and is intended for use when
the computer is in a public setting (e.g., library). TimeOut might also be referred
to as reset or automatic reset.

The next accessibility feature listed here is not considered to be a built in
accessibility feature (since it only provides an alternate input channel) and is
presented here only for definition, completeness, and future compatibility. 

SerialKeys 
These allow a user to perform all keyboard and mouse functions from an
external assistive device (such as communication aid) communicating with the
computer via a serial character stream (e.g., serial port, IR port, etc.) rather than
or in conjunction with, the keyboard, mouse, and other standard input 
devices/methods.

Microsoft Windows 95, Windows 98, and Window NT 4.0
For information about Microsoft keyboard configurations (Internet Explorer, Windows
95, Windows 98, and more), refer to [MS-KEYBOARD] [p. 44] . 

The following accessibility features can be adjusted from the Accessibility Options
Control Panel:

StickyKeys: modifier keys include SHIFT, CONTROL, and ALTERNATE.
Keyboard Mappings: 5 consecutive clicks of Shift key turns on/off StickyKeys. 
FilterKeys: grouping term for SlowKeys, RepeatKeys, and BounceKeys. Shift
key held down for 8 seconds turns on/off SlowKeys and RepeatKeys. 
MouseKeys: Left shift + left alt + numlock, turns on/off MouseKeys 
ToggleKeys: Mumlock key held for 5 seconds, turns on/off ToggleKeys 
SoundSentry: 
ShowSounds: 

 9 Aug 1999  11:5625  

Techniques for User Agent Accessibility Guidelines 1.0



Automatic reset: term used for TimeOut 
High Contrast: left shift + left alt + print screen, turns on/off High Contrast. 
SerialKeys:

Other keyboard shortcuts: 

6 consecutive clicks of Control key turns on/off screen reader numeric keypad. 
6 consecutive clicks of Alt key reserved for future use.

Additional accessibility features available in Windows 98:

Magnifier 
This is a windowed, screen enlargement and enhancement program used by
persons with low vision to magnify an area of the graphical display (e.g., by
tracking the text cursor, focus, etc.). Magnifier can also invert the colors used by
the system within the magnification window. 

Accessibility Wizard 
This is a setup tool intended to assist a person with making choices which
setting up the accessibility features on a workstation.

Apple Macintosh Operating System
The following accessibility features can be adjusted from the Easy Access Control
panel (Note: Apple convention uses a space within the accessibility feature names.)

Sticky Keys: modifier keys include the SHIFT, OPEN APPLE (COMMAND),
OPTION (ALT) and CONTROL keys. 
Slow Keys: 
Mouse Keys:

The following accessibility features can be adjusted from the Keyboard Control 
Panel.

Key Repeat Rate (e.g., part of RepeatKeys) 
Delay Unit Repeat (e.g., part of RepeatKeys)

The following accessibility feature can be adjusted from the Sound or Monitors
and Sound Control Panel (depends upon which version of the OS).

Adjusting the volume to off or mute causes the Macintosh to flash the title bar
whenever the operating system detects a sound (e.g., SoundSentry) 

Additional accessibility features available for the Macintosh OS:

CloseView 
This is a full screen, screen enlargement and enhancement program used by
persons with low vision to magnify the information on the graphical display, and
it can also change the colors used by the system. 

26 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



SerialKeys 
This is available as freeware from Apple and several other Web sites.

AccessX, X Keyboard Extension (XKB), and the X Window 
System
(Note: AccessX became a supported part of the X Window System X Server with the
release of the X Keyboard Extension in version X11R6.1)

The following accessibility features can be adjusted from the AccessX graphical
user interface X client on some DEC, SUN, and SGI operating systems. Other
systems supporting XKB may require the user to manipulate the features via a
command line parameter(s).

StickyKeys: modifier keys are platform dependent, but usually include the
SHIFT, CONTROL, and META keys. 
RepeatKeys: 
SlowKeys: 
BounceKeys: 
MouseKeys: 
ToggleKeys:

DOS (Disk Operating System)
The following accessibility features are available from a freeware program called
AccessDOS, which is available from several Internet Web sites including IBM,
Microsoft, and the Trace Center, for either PC-DOS or MS-DOS versions 3.3 or 
higher.

StickyKeys: modifier keys include the SHIFT, CONTROL, and ALTERNATE
keys. 
Keyboard Response Group: grouping term for SlowKeys, RepeatKeys, and
BounceKeys 
MouseKeys: 
ToggleKeys: 
SoundSentry (incorrectly name ShowSounds): 
SerialKeys: 
TimeOut:

9 Appendix: Loading assistive technologies for DOM 
access
There are several methods for developers to accomplish this. Most of these methods
fall into four categories:

 9 Aug 1999  11:5627  

Techniques for User Agent Accessibility Guidelines 1.0



1.  Launch the entire AT inside the address space of the (UA) browser 
2.  Launch some part of the AT, a piece of stub code, a DLL, a Browser Helper

Object [special DLL], etc., inside the address space of the (UA) browser 
3.  Write your own combined UA/AT (e.g., pwWebSpeak) 
4.  Out-of-process access to the DOM

These methods are ordered as developments within a rapidly changing technology
with the most recent advances/methods listed first.

Loading assistive technologies for direct access to User Agent
DOMs 
Note. This method and the method described in the next section are very similar.
What differs is the amount of, or capability of, the AT that actually gets loaded in the
same process or address space as the User Agent.)

Access to application specific data across process boundaries might be costly in
terms of performance. Therefore, user agents may wish to provide a mechanism to
load the entire assistive technology (AT), into the process space of the application as
a separate thread with direct access to the DOM. 

Determining the Assistive Technologies to load

One technique is to store a reference to an assistive technology in a system registry
file or, in the case of Jave, a properties file. Registry files are common among many
operating system platforms.

In Windows you have the system registry file. On OS/2 you have the system.ini
file and on distributed network client networks you often have a system registry
server that an application running on the network client computer can query. 

In Java 2, the existence of an "accessibility.properties" file causes the system
event queue to examine the file for assistive technologies required for loading. If the
file contains a property called "assistive_technologies", it will load all registered
assistive technologies and start them on their own thread in the Java Virtual Machine
that is a single process. An example entry for Java is as follows:

    assistive_technologies=com.ibm.sns.svk.AccessEngine

In Windows, a similar technique could be followed by storing the name of a
Dynamic Link Library (DLL) for an assistive technology in a designated assistive
technology key name, AT pair. An example entry for Windows could be as follows:

    HKEY_LOCAL_MACHINE\Software\Accessibility\DOM 
           "ScreenReader, VoiceNavigation"

28 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



Attaching the Assistive Technologies to the DOM.

Once the assistive technology is determined from the registry, any user agent on the
given operating system can now determine if an assistive technology needs to be
loaded with their application and load it.

On a non-Java platform, a technique to do this would be to create a separate
thread with a reference to the User Agent’s DOM using a Dynamic Link Library
(DLL). This new thread will load the DLL and call a specified DLL entry name with a
pointer to the DOM interface. The assistive technology’s task will then run until such
time as is necessary to end communication with the DOM.

Once loaded, the assistive technology can monitor the DOM as needed. The
assistive technology has the option of communicating with a main assistive
technology of its own and process the DOM as a caching mechanism for the main
AT application or be used as a bridge to the DOM for the main assistive technology.

In the future, it will be necessary to provide a more comprehensive reference to
the application that not only provides direct access to it’s client area DOM, but also
multiple DOM’s that it is processing and an event model for monitoring them.

Example Technique: Java’s Direct Access

Java is a working example where the direct access to application components is
performed in a timely manner. Here, an assistive technology running on a separate
thread monitors GUI events such as focus changes. Focus changes give the AT
notification of which component object has focus. The AT can communicate directly
with all components in the application by walking the parent/child hierarchy and
connecting to each component’s methods and monitor events directly. In this case
an AT has direct access to component specific methods as well as those provided
for by the Java Accessibility API. There is no reason that a DOM interface to UA
components could not be provided

In Java 1.1.x, Sun’s Java access utilities load an assistive by monitoring the Java
awt.properties file for the presence of assistive technologies and loads them as
shown in the folowing code example:

import java.awt.*;
import java.util.*;
      
String atNames = Toolkit.getProperty("AWT.assistive_technologies",null);
if (atNames != null) {
    StringTokenizer parser = new StringTokenizer(atNames," ,");
    String atName;
    while (parser.hasMoreTokens()) {
       atName = parser.nextToken();
       try {
          Class.forName(atName).newInstance();
       } 
       catch (ClassNotFoundException e) {
          throw new AWTError("Assistive Technology not found: " + atName);
       } 
       catch (InstantiationException e) {

 9 Aug 1999  11:5629  

Techniques for User Agent Accessibility Guidelines 1.0



          throw new AWTError("Could not instantiate Assistive" + 
                             " Technology: " + atName);
       } 
       catch (IllegalAccessException e) {
          throw new AWTError("Could not access Assistive" + 
                             " Technology: " + atName);
       } catch (Exception e) {
          throw new AWTError("Error trying to install Assistive" + 
                             " Technology: " + atName + " " + e);
       }
    }
}

In the above code example, the function Class.forName(atName).newInstance()
creates a new instance of the assistive technology. The constructor for the assistive
technology will then be responsible for monitoring application component objects by
monitoring system events.

In the following code example, the constructor for the assistive technology "Access
Engine," adds a focus change listener using Java accessibility utilities. When the
assistive technology is notified of an objects gaining focus it has direct access to that
object. If the Object, o, implemented a DOM interface the assistive technology would
now have direct access to the DOM in the same process space as the application. 

   import java.awt.*;
   import javax.accessibility.*;
   import com.sun.java.accessibility.util.*;
   import java.awt.event.FocusListener;

   class AccessEngine implements FocusListener {
      public AccessEngine() {
         //Add the AccessEngine as a focus change listener
         SwingEventMonitor.addFocusListener((FocusListener)this);
      }
      
      public void focusGained(FocusEvent theEvent) {
         // get the component object source
         Object o = theEvent.getSource();
         // check to see if this is a DOM component
         if (o instanceof DOM) {
            ...
         }
      }
      public void focusLost(FocusEvent theEvent) {
         // Do Nothing
      }
   }

In this example, the assistive technology has the option of running standalone or
acting as a cache for a bridge that communicates with a main assistive technology
running outside the Java virtual machine. 

30 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



Loading part of the assistive technologies for direct access to
User Agent DOMs
Access to application specific data across process boundaries might be costly in
terms of performance. Therefore, user agents may wish to provide a mechanism to
load part of the assistive technology (AT) into the process space of the application
as a separate thread, with direct access to the DOM, to provide the specific
functionality they require. This could consist of a piece of stub code, a DLL, a
Browser Helper Object, etc. An example of how to do this follows. 

Browser Helper Objects

In order to attach to a running instance of Internet Explorer 4.0, you can use a
"Browser Helper Object." A "Browser Helper Object" is a DLL that will attach itself to
every new instance of Internet Explorer 4.0 (only if you explicitly run iexplore.exe).
You can use this feature to gain access to the object model of a particular running
instance of Internet Explorer. You can also use this feature to get events from an
instance of Internet Explorer 4.0. This can be tremendously helpful when many
method calls need to be made to IE, as each call will be performed much more
quickly than the out of process case.

There are some requirements when creating a Browser Helper Object

The application that you create must be an in-proc server (that is, DLL). 
This DLL must implement IObjectWithSite. 
The IObjectWithSite::SetSite() method must be implemented. It is through this
method that your application receives a pointer to Internet Explorer’s IUnknown.
(Internet Explorer actually passes a pointer to IWebBrowser2 but the
implementation of SetSite() receives a pointer to IUnknown.) You can use this
IUnknown pointer to automate Internet Explorer or to sink events from Internet
Explorer. 
It must be registered as a Browser Helper Object as described above. 

For more information, please check out:

http://support.microsoft.com/support/kb/articles/Q179/2/30.asp. 
http://msdn.microsoft.com/library/techart/bho.htm 

Java Access Bridge

In order for native Windows ATs to gain access to Java applications without the
creating a Java native solution Sun Microsystems provides the "Java Access
Bridge." This bridge is loaded as an AT as described in section 6.1.3. The bridge
uses a Java Native Invocation (JNI) to Dynamic Link Library) (DLL) communication
and caching mechanism that allows a native assistive technology to gather and
monitor accessibility information in the Java environment. In this environment, the
AT determines that a Java application or applet is running and communicates with
the Java Access Bridge DLL to process accessibility information about the
application/applet running in the Java Virtual Machine.

 9 Aug 1999  11:5631  

Techniques for User Agent Accessibility Guidelines 1.0

http://msdn.microsoft.com/library/techart/bho.htm
http://support.microsoft.com/support/kb/articles/Q179/2/30.asp


Loading assistive technologies "as" the User Agent with
access to the DOMs
Specialized user agents might also include the necessary assistive technology as
part of their interface, and thus provide possibly the best of both worlds. An example
would be pwWebSpeak, from The Productivity Works (refer to [Prodworks] [p. 44] ).

[Ed. Have The Productivity Works provide short description.]

Loading assistive technologies for indirect access to User
Agent DOMs
Access to application specific data across process boundaries or address space
might be costly in terms of performance. However, there are other reasons to
consider when accessing the User Agent DOM that might lead a developer to wish
to access the DOM from their own process or memory address space. One obvious
protection this method provides, is that if the User Agent application fails, it doesn’t
disable the user’s AT as well. Another consideration would be legacy systems,
where the user relies on their AT for access to other applications as well as the User
Agent, and thus would have their AT loaded all the time, not just for accessing the
User Agent.

There are several ways to gain access to the User Agent’s DOM. Most User
Agents support some kind of external interface, or act as a mini-server to other
applications running on the desktop. Internet Explorer is a good example of this, as
IE can behave as a component object model (COM) server to other applications.
Mozilla, the open source release of Navigator also supports cross platform COM 
(XPCOM).

An example of using COM to access the IE Object Model can be seen in the code
snippet below. This is an example of how to use COM to get a pointer to the
WebBrowser2 module, which in turn allows you to get a interface/pointer to the
document object, or IE DOM for the web page in view. 

   /* first, get a pointer to the WebBrowser2 control */
   if (m_pIE == NULL) {
      hr = CoCreateInstance(CLSID_InternetExplorer, 
           NULL, CLSCTX_LOCAL_SERVER, IID_IWebBrowser2, 
           (void**)&m_pIE);

      /* next, get a interface/pointer to the document in view, 
         this is an interface to the document object model (DOM)*/

      void CHelpdbDlg::Digest_Document() {
         HRESULT hr;
         if (m_pIE != NULL) {
            IDispatch* pDisp;
            hr = m_pIE->QueryInterface(IID_IDispatch, (void**) &pDisp);
            if (SUCCEEDED(hr)) {
        
               IDispatch* lDisp;

32 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0



               hr = m_pIE->get_Document(&lDisp);
               if (SUCCEEDED(hr)) {
           
                   IHTMLDocument2* pHTMLDocument2;
                   hr = lDisp->QueryInterface(IID_IHTMLDocument2,
                               (void**) &pHTMLDocument2);
                   if (SUCCEEDED(hr)) {
            
                   /* with this interface/pointer, IHTMLDocument2*,
                      you can then work on the document */
                      IHTMLElementCollection* pColl;
                      hr = pHTMLDocument2->get_all(&pColl);
                      if (SUCCEEDED(hr)) {
                    
                         LONG c_elem;
                         hr = pColl->get_length(&c_elem);
                         if (SUCCEEDED(hr)) {
                            FindElements(c_elem, pColl);
                         }
                         pColl->Release();
                      }
                      pHTMLDocument2->Release();
                   }
                   lDisp->Release();
               }
               pDisp->Release();
            }
         }
      }
   }

For more information on using COM with IE, please visit the Microsoft web site:

http://www.microsoft.com/com/default.asp 
For more information on using XPCOM with Mozilla, please visit the Mozilla web 

site:

http://www.mozilla.org/ 
For a working example of the method described in 6.1.4, please visit the following

web site and review HelpDB, developed as a testing tool for web table navigation. 

http://trace.wisc.edu/world/web/document_access/ 

10 Appendix: Checkpoint Map
This index lists each checkpoint and the sections in this document where it is
discussed. Furthermore, each guideline number links to its definition in the
guidelines document. Each checkpoint also links to its definition in the guidelines
document. 

 9 Aug 1999  11:5633  

Techniques for User Agent Accessibility Guidelines 1.0

http://trace.wisc.edu/world/web/document_access/
http://www.mozilla.org/
http://www.microsoft.com/com/default.asp


Guideline 1:

1.1 Ensure that all functionalities offered through the user interface may be operated
through standard input device APIs supported by the operating system. [Priority 1] 
(Checkpoint 1.1 in guidelines) 

Refer to 3.2 Device independence [p. 6] 
1.2 Ensure that the user can interact with all active elements of a document in a
device independent manner. [Priority 1] (Checkpoint 1.2 in guidelines) 

Refer to 3.2 Device independence [p. 6] 
1.3 Ensure that the user can install the user agent software in a device independent
manner. [Priority 1] (Checkpoint 1.3 in guidelines) 

Refer to 3.2 Device independence [p. 6] 
1.4 Ensure that the user can configure the user agent in a device independent
manner. [Priority 1] (Checkpoint 1.4 in guidelines) 

Refer to 3.2 Device independence [p. 6] 
1.5 Ensure that the user can access user agent documentation in a device
independent manner. [Priority 1] (Checkpoint 1.5 in guidelines) 

Refer to 3.2 Device independence [p. 6] 
1.6 Ensure that all messages to the user (e.g., warnings, errors, etc.) are available
through standard output device APIs supported by the operating system. [Priority 1] 
(Checkpoint 1.6 in guidelines) 

Refer to 3.2 Device independence [p. 6] 

Guideline 2:

2.1 By default and without additional customization, ensure that all functionalities
offered by the user agent are accessible using the keyboard. [Priority 1] (Checkpoint
2.1 in guidelines) 

Refer to 3.7 Keyboard access [p. 11] 
2.2 Provide documentation on default keyboard commands and include with user
agent documentation and/or user help system. [Priority 1] (Checkpoint 2.2 in 
guidelines) 

Refer to 3.7.2 Keyboard shortcuts [p. 11] 
2.3 Provide information to the user about the current keyboard configuration. 
[Priority 1] (Checkpoint 2.3 in guidelines) 

Refer to 3.7.2 Keyboard shortcuts [p. 11] 
2.4 Allow the user to configure the keystrokes used to activate user agent
functionalities. Wherever possible, allow single key activation of functions. [Priority 2] 
(Checkpoint 2.4 in guidelines) 

Refer to 3.8.2 Keyboard configuration [p. 12] 
2.5 Allow the user to turn on and off author-specified keyboard configurations. 
[Priority 2] (Checkpoint 2.5 in guidelines) 

Refer to 3.8.2 Keyboard configuration [p. 12] 
2.6 Use platform conventions to indicate which keys activate which user agent
functionalities. [Priority 2] (Checkpoint 2.6 in guidelines) 

Refer to 3.7.2 Keyboard shortcuts [p. 11] 

34 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-render-accesskey
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-author-keys
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-config-keys
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-current-keyboard
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-default-keyboard
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-default-keyboard
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-keyboard-access
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-keyboard-access
http://www.w3.org/WAI/UA/WAI-USERAGENT/#gl-keyboard
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-device-independent-output
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-device-independent-doc
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-device-independent-config
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-device-independent-install
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-device-independent-active
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-device-independent-ui
http://www.w3.org/WAI/UA/WAI-USERAGENT/#gl-device-independence


2.7 Avoid default keyboard configurations that interfere with system conventions. 
[Priority 2] (Checkpoint 2.7 in guidelines) 

Refer to 3.8.2 Keyboard configuration [p. 12] 
2.8 Provide a default keyboard configuration for frequently performed operations. 
[Priority 3] (Checkpoint 2.8 in guidelines) 

Refer to 3.8.2 Keyboard configuration [p. 12] 

Guideline 3:

3.1 Ensure that all product documentation conforms to the Web Content Accessibility
Guidelines. [Priority 1] (Checkpoint 3.1 in guidelines) 

Refer to 3.9.2 Accessible documentation [p. 13] 
3.2 Ensure that all user agent functionalities that promote accessibility are
documented. [Priority 1] (Checkpoint 3.2 in guidelines) 

Refer to 3.9 Documentation [p. 13] 
3.3 Describe product features known to promote accessibility in a section of the
product documentation. [Priority 2] (Checkpoint 3.3 in guidelines) 

Refer to 3.9.1 Where to document accessibility [p. 13] 

Guideline 4:

4.1 Allow the user to configure the user agent in named profiles that may be shared
(by other users or software). [Priority 2] (Checkpoint 4.1 in guidelines) 

Refer to 3.8.1 User profiles [p. 12] 
4.2 Allow the user to configure the graphical arrangement of user interface controls. 
[Priority 3] (Checkpoint 4.2 in guidelines) 

Refer to 3.8.3 User interface [p. 13] 

Guideline 5:

5.1 Allow the user to turn on and off rendering of images. [Priority 1] (Checkpoint 5.1
in guidelines) 

Refer to 3.3.1 Feature control [p. 6] 
5.2 Allow the user to turn on and off rendering of background images. [Priority 1] 
(Checkpoint 5.2 in guidelines) 

Refer to 3.3 User control of style [p. 6] 
5.3 Allow the user to turn on and off rendering of video. [Priority 1] (Checkpoint 5.3 in 
guidelines) 

Refer to 3.3.1 Feature control [p. 6] 
5.4 Allow the user to turn on and off rendering of sound. [Priority 1] (Checkpoint 5.4
in guidelines) 

Refer to 3.3.1 Feature control [p. 6] 
5.5 Allow the user to turn on and off rendering of captions. [Priority 1] (Checkpoint
5.5 in guidelines) 

Refer to 3.3.1 Feature control [p. 6] 

 9 Aug 1999  11:5635  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-text-eq
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-text-eq
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-sounds
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-sounds
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-video
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-video
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-background-image
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-images
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-images
http://www.w3.org/WAI/UA/WAI-USERAGENT/#gl-feature-on-off
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-config-controls
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-user-profile
http://www.w3.org/WAI/UA/WAI-USERAGENT/#gl-configuration
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-document-accessibility
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-document-functionality
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-accessible-doc
http://www.w3.org/WAI/UA/WAI-USERAGENT/#gl-accessible-doc
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-default-keyboard-config
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-default-keyboard-sensible


5.6 Allow the user to turn on and off animated or blinking text. [Priority 1] 
(Checkpoint 5.6 in guidelines) 

Refer to 5.1.1 Sources of blinking text and animation [p. 18] 
5.7 Allow the user to turn on and off animations and blinking images. [Priority 1] 
(Checkpoint 5.7 in guidelines) 

Refer to 5.1.1 Sources of blinking text and animation [p. 18] 
5.8 Allow the user to turn on and off support for scripts and applets. [Priority 1] 
(Checkpoint 5.8 in guidelines) 

Refer to 5.5 Scripts [p. 22] 
5.9 Allow the user to turn on and off support for user style sheets. [Priority 1] 
(Checkpoint 5.9 in guidelines) 

Refer to 3.3.1 Feature control [p. 6] 
5.10 Allow the user to turn on and off support for author style sheets. [Priority 1] 
(Checkpoint 5.10 in guidelines) 

Refer to 3.3.1 Feature control [p. 6] 
5.11 Allow the user to turn on and off support for spawned windows. [Priority 1] 
(Checkpoint 5.11 in guidelines) 

Refer to 5.1.5 Frame equivalents [p. 19] 
5.12 Allow the user to turn on and off rendering of frames. [Priority 2] (Checkpoint
5.12 in guidelines) 

Refer to 5.1.5 Frame equivalents [p. 19] and 
5.4 Frames [p. 22] 

5.13 Allow the user to turn on and off author-specified page forwards that occur after
a time delay and without user intervention. [Priority 3] (Checkpoint 5.13 in guidelines) 

Refer to 3.3.1 Feature control [p. 6] 
5.14 Allow the user to turn on and off automatic page refresh. [Priority 3] (Checkpoint
5.14 in guidelines) 

Refer to 3.3.1 Feature control [p. 6] 

Guideline 6:

6.1 Allow the user to control font family. [Priority 1] (Checkpoint 6.1 in guidelines) 
Refer to 3.3 User control of style [p. 6] 

6.2 Allow the user to control font size. [Priority 1] (Checkpoint 6.2 in guidelines) 
Refer to 3.3 User control of style [p. 6] 

6.3 Allow the user to control foreground color. [Priority 1] (Checkpoint 6.3 in 
guidelines) 

Refer to 3.3 User control of style [p. 6] 
6.4 Allow the user to control background color. [Priority 1] (Checkpoint 6.4 in 
guidelines) 

Refer to 3.3 User control of style [p. 6] 
6.5 Allow the user to control selection highlighting (e.g., foreground and background
color). [Priority 1] (Checkpoint 6.5 in guidelines) 

Refer to 3.3 User control of style [p. 6] 

36 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-selection-highlight
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-background-color
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-background-color
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-foreground-color
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-foreground-color
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-font-size
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-font-family
http://www.w3.org/WAI/UA/WAI-USERAGENT/#gl-user-control-styles
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-page-refresh
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-page-refresh
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-page-forward
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-frames
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-frames
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-spawned
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-author-style-sheets
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-user-style-sheets
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-scripts
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-blinking-images
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-on-off-blinking-text


6.6 Allow the user to control focus highlighting (e.g., foreground and background
color). [Priority 1] (Checkpoint 6.6 in guidelines) 

Refer to 3.3 User control of style [p. 6] 
6.7 Allow the user to control animation rate. [Priority 2] (Checkpoint 6.7 in guidelines) 

Refer to 3.3 User control of style [p. 6] 
6.8 Allow the user to control video frame rates. [Priority 1] (Checkpoint 6.8 in 
guidelines) 

Refer to 3.3 User control of style [p. 6] 
6.9 Allow the user to control the position of captions. [Priority 1] (Checkpoint 6.9 in 
guidelines) 

Refer to 3.3 User control of style [p. 6] and 
5.1.3 Textual equivalents for audio and video [p. 19] 

6.10 Allow the user to start, stop, pause, and rewind video. [Priority 2] (Checkpoint
6.10 in guidelines) 

Refer to 3.3 User control of style [p. 6] 
6.11 Allow the user to control audio playback rate. [Priority 1] (Checkpoint 6.11 in 
guidelines) 

Refer to 3.3 User control of style [p. 6] 
6.12 Allow the user to control audio volume. [Priority 2] (Checkpoint 6.12 in 
guidelines) 

Refer to 3.3 User control of style [p. 6] 
6.13 Allow the user to start, stop, pause, and rewind audio. [Priority 2] (Checkpoint
6.13 in guidelines) 

Refer to 3.3 User control of style [p. 6] 
6.14 Allow the user to control speech playback rate. [Priority 1] (Checkpoint 6.14 in 
guidelines) 

Refer to 3.3 User control of style [p. 6] 
6.15 Allow the user to control speech volume, pitch, gender and other articulation
characteristics. [Priority 2] (Checkpoint 6.15 in guidelines) 

Refer to 3.3 User control of style [p. 6] 
6.16 When new windows or user interface components are spawned, allow the user
to control window size and position. [Priority 2] (Checkpoint 6.16 in guidelines) 

Refer to 3.3 User control of style [p. 6] and 
5.4 Frames [p. 22] 

Guideline 7:

7.1 Ensure that the user has access to document content, including alternative
representations of content. [Priority 1] (Checkpoint 7.1 in guidelines) 

Refer to 3.1 Access to content [p. 5] and 
5.1 Equivalent information [p. 18] 

7.2 For dependent user agents. Ensure that the user has access to the content of an
element selected by the user. [Priority 1] (Checkpoint 7.2 in guidelines) 

Refer to 3.1 Access to content [p. 5] 

 9 Aug 1999  11:5637  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-elem-content-access
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-doc-content-access
http://www.w3.org/WAI/UA/WAI-USERAGENT/#gl-content-access
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-spawned-window
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-speech-volume
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-speech-rate
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-speech-rate
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-audio
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-audio
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-audio-volume
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-audio-volume
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-audio-rate
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-audio-rate
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-video
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-video
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-captions
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-captions
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-video-rate
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-video-rate
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-animation
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-control-focus-highlight


7.3 For dependent user agents. Render content according to natural language
identification. For unsupported natural languages, notify the user of language
changes when configured to do so. [Priority 1] (Checkpoint 7.3 in guidelines) 

Refer to 3.1.1 Changes in content language [p. 5] 
7.4 When no alternative text representation has been specified, indicate what type of
object is present. [Priority 2] (Checkpoint 7.4 in guidelines) 

Refer to 5.1.2 Alternative representations of information for images, video, 
applets [p. 18] 

7.5 pWhen alternative text has been specified explicitly as empty (i.e., an empty
string), render nothing. [Priority 3] (Checkpoint 7.5 in guidelines) 

Refer to 5.1.2 Alternative representations of information for images, video, 
applets [p. 18] 

7.6 If a technology allows for more than one caption or description track (e.g.,
caption, auditory description, video of sign language, etc.), allow the user to choose
from among the tracks. [Priority 1] (Checkpoint 7.6 in guidelines) 

Refer to 3.3 User control of style [p. 6] and 
3.3 User control of style [p. 6] 

7.7 Allow the user to specify that description tracks (e.g., caption, auditory
description, video of sign language, etc.) be rendered at the same time as audio and
video tracks. [Priority 1] (Checkpoint 7.7 in guidelines) 

Refer to 5.1.3 Textual equivalents for audio and video [p. 19] and 
5.1.4 Auditory equivalents for video [p. 19] 

7.8 If a technology allows for more than one audio track, allow the user to choose
from among tracks. [Priority 1] (Checkpoint 7.8 in guidelines) 

Refer to 3.3 User control of style [p. 6] 
7.9 Provide a mechanism (e.g., through style sheets) to distinguish visited links from
unvisited links. [Priority 3] (Checkpoint 7.9 in guidelines) 

Refer to 5.2 Links [p. 19] 
7.10 Allow the user to specify (e.g., through style sheets) that images used in links
must have borders. [Priority 3] (Checkpoint 7.10 in guidelines) 

Refer to 5.2 Links [p. 19] 

Guideline 8:

8.1 Allow the user to navigate views (notably those with frame viewports). [Priority 1] 
(Checkpoint 8.1 in guidelines) 

Refer to 3.5.5 View navigation [p. 10] 
8.2 Keep track of the user’s point of regard in each view and restore it when the user
returns to the view. [Priority 1] (Checkpoint 8.2 in guidelines) 

Refer to 3.4.2 Tracking selection and focus [p. 7] 
8.3 For dependent user agents. Allow the user to navigate among table cells of a
table (notably left and right within a row and up and down within a column). 
[Priority 1] (Checkpoint 8.3 in guidelines) 

Refer to 3.5.3 Table navigation [p. 8] 

38 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-nav-table-cells
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-tracking-previous-por
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-nav-views
http://www.w3.org/WAI/UA/WAI-USERAGENT/#gl-navigation
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-render-link-borders
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-render-link-visited
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-choose-audio-track
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-render-continuous-equiv
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-choose-continuous-equiv
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-render-alt-null-alt
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-render-alt-no-alt
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-support-natural-language


8.4 Allow the user to navigate among all active elements in the document. [Priority 2] 
(Checkpoint 8.4 in guidelines) 

Refer to 3.5.1 Navigation of active elements [p. 7] 
8.5 Allow the user to search for rendered text content, including alternative text
content. [Priority 2] (Checkpoint 8.5 in guidelines) 

Refer to 3.5.4 Searching [p. 10] 
8.6 Allow the user to navigate the document structure. [Priority 2] (Checkpoint 8.6 in 
guidelines) 

Refer to 3.5.2 Navigation of document structure [p. 8] 
8.7 Allow the user to configure structured navigation. [Priority 3] (Checkpoint 8.7 in 
guidelines) 

Refer to 3.5 Navigation and searching [p. 7] 

Guideline 9:

9.1 Provide a mechanism for highlighting and identifying (through a standard
interface where available) the current view, selection, and focus. [Priority 1] 
(Checkpoint 9.1 in guidelines) 

Refer to 3.4.1 Highlighting selection and focus [p. 7] and 
3.6.6 Frames [p. 11] 

9.2 For dependent user agents. Provide the user with information about the number
of viewports. [Priority 2] (Checkpoint 9.2 in guidelines) 

Refer to 5.4 Frames [p. 22] 
9.3 For dependent user agents. Allow the user to view a document outline
constructed from its structural elements (e.g., from header and list elements). 
[Priority 2] (Checkpoint 9.3 in guidelines) 

Refer to 3.5.5 View navigation [p. 10] 
9.4 Make available information about an element’s context within a document (e.g.,
numerical or relative position). [Priority 2] (Checkpoint 9.4 in guidelines) 

Refer to 3.6.2 Element context [p. 10] 
9.5 Make available whether following a link will involve a fee. [Priority 2] (Checkpoint
9.5 in guidelines) 

Refer to 3.6.3 Links [p. 11] 
9.6 Make available information about a link that will enable the user to decide
whether to follow the link. [Priority 3] (Checkpoint 9.6 in guidelines) 

Refer to 3.6.3 Links [p. 11] 
9.7 For dependent user agents. Provide access to header information for a selected
table cell. [Priority 1] (Checkpoint 9.7 in guidelines) 

Refer to 3.6.4 Tables [p. 11] 
9.8 Make available the dimensions of a selected table. [Priority 3] (Checkpoint 9.8 in 
guidelines) 

Refer to 3.6.4 Tables [p. 11] 
9.9 Provide the user with access to any label explicitly associated with a form
control. [Priority 2] (Checkpoint 9.9 in guidelines) 

Refer to 3.6.5 Form controls [p. 11] 

 9 Aug 1999  11:5639  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-control-label
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-table-dim
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-table-dim
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-cell-header
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-link
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-link-fee
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-link-fee
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-element-context
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-render-outline-view
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-viewport-nb
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-highlight-view-selection-focus
http://www.w3.org/WAI/UA/WAI-USERAGENT/#gl-orientation
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-config-navigation
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-config-navigation
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-nav-structure
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-nav-structure
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-search-text
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-nav-active


9.10 Maintain consistent user agent behavior and default configurations between
software releases. Consistency is less important than accessibility and adoption of
system conventions. [Priority 3] (Checkpoint 9.10 in guidelines) 

Refer to 3.7.3 Software consistency [p. 12] 

Guideline 10:

10.1 Provide information about document and view changes (to the user and through
programming interfaces). [Priority 1] (Checkpoint 10.1 in guidelines) 

Refer to 3.6.7 Scripts [p. 11] 
10.2 Ensure that when the selection or focus changes, it is in the viewport after the
change. [Priority 2] (Checkpoint 10.2 in guidelines) 

Refer to 3.4.2 Tracking selection and focus [p. 7] 
10.3 Allow the user to configure the user agent for notification of certain types of
document changes only. [Priority 3] (Checkpoint 10.3 in guidelines) 

Refer to 3.6.7 Scripts [p. 11] 
10.4 When loading a document, make available what portion of the document has
loaded, whether loading has stalled, and when the user may begin to browse. 
[Priority 3] (Checkpoint 10.4 in guidelines) 

Refer to 3.6.1 Document and view status information [p. 10] 
10.5 Make available what portion of the document the user has viewed. [Priority 3] 
(Checkpoint 10.5 in guidelines) 

Refer to 
10.6 Allow the user to request to be prompted before a form is submitted. [Priority 3] 
(Checkpoint 10.6 in guidelines) 

Refer to 3.6.5 Form controls [p. 11] 

Guideline 11:

11.1 Implement the accessibility features defined for supported technologies. 
[Priority 1] (Checkpoint 11.1 in guidelines) 

Refer to 5 Support for HTML accessibility [p. 17] and 
6 Support for CSS accessibility [p. 23] and 
7 Support for SMIL accessibility [p. 23] 

11.2 Support appropriate W3C Recommendations. [Priority 2] (Checkpoint 11.2 in 
guidelines) 

Refer to 5 Support for HTML accessibility [p. 17] and 
6 Support for CSS accessibility [p. 23] and 
7 Support for SMIL accessibility [p. 23] 

Guideline 12:

12.1 Use and provide accessible interfaces to other technologies. [Priority 1] 
(Checkpoint 12.1 in guidelines) 

Refer to 4.3 Accessibility interfaces [p. 16] 

40 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-accessible-apis
http://www.w3.org/WAI/UA/WAI-USERAGENT/#gl-accessible-interface
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-support-w3c-specs
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-support-w3c-specs
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-support-access-features
http://www.w3.org/WAI/UA/WAI-USERAGENT/#gl-support-w3c
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-form-submit
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-doc-nav
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-info-doc-load
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-config-change-notification
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-track-selection-focus
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-notify-doc-changes
http://www.w3.org/WAI/UA/WAI-USERAGENT/#gl-notification
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-consistent-software


12.2 Provide programmatic read and write access to user agent functionalities and
user interface controls (including selection and focus) by using operating system and
development language accessibility resources and conventions. [Priority 1] 
(Checkpoint 12.2 in guidelines) 

Refer to 4.3 Accessibility interfaces [p. 16] 
12.3 Notify dependent user agents of changes to the document and user interface
controls (including selection and focus) by using operating system and development
language accessibility resources and conventions. [Priority 1] (Checkpoint 12.3 in 
guidelines) 

Refer to 4.3 Accessibility interfaces [p. 16] 
12.4 For graphical desktop browsers. Comply with W3C Document Object Model
specifications and export interfaces defined by those specifications. [Priority 1] 
(Checkpoint 12.4 in guidelines) 

Refer to 4.4 The document object model [p. 17] 
12.5 For graphical desktop browsers. Provide programmatic exchange of information
in a timely manner. [Priority 2] (Checkpoint 12.5 in guidelines) 

Refer to 4.3 Accessibility interfaces [p. 16] 
12.6 Follow operating system conventions and accessibility settings. In particular,
follow conventions for user interface design, default keyboard configuration, product
installation, and documentation. [Priority 2] (Checkpoint 12.6 in guidelines) 

Refer to 4.1 System conventions [p. 14] 

Acknowledgments
Many thanks to the following people who have contributed through review and
comment: Paul Adelson, James Allan, Denis Anson, Kitch Barnicle, Harvey
Bingham, Olivier Borius, Judy Brewer, Bryan Campbell, Kevin Carey, Wendy
Chisholm, David Clark, Chetz Colwell, Wilson Craig, Nir Dagan, Daniel Dardailler, B.
K. Delong, Neal Ewers, Geoff Freed, John Gardner, Al Gilman, Larry Goldberg, John
Grotting, Markku Hakkinen, Earle Harrison, Chris Hasser, Kathy Hewitt, Philipp
Hoschka, Masayasu Ishikawa, Phill Jenkins, Jan Kärrman (for help with html2ps),
Leonard Kasday, George Kerscher, Marja-Riitta Koivunen, Josh Krieger, Catherine
Laws, Greg Lowney, Scott Luebking, William Loughborough, Napoleon Maou,
Charles McCathieNevile, Masafumi Nakane, Mark Novak, Charles Oppermann, Mike
Paciello, David Pawson, Michael Pederson, Helen Petrie, David Poehlman, Michael
Pieper, Jan Richards, Hans Riesebos, Joe Roeder, Lakespur L. Roca, Gregory
Rosmaita, Lloyd Rutledge, Liam Quinn, T.V. Raman, Robert Savellis, Rich
Schwerdtfeger, Constantine Stephanidis, Jim Thatcher, Jutta Treviranus, Claus
Thogersen, Steve Tyler, Gregg Vanderheiden, Jaap van Lelieveld, Jon S. von
Tetzchner, Willie Walker, Ben Weiss, Evan Wies, Chris Wilson, Henk Wittingen, and
Tom Wlodkowski, 

 9 Aug 1999  11:5641  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.tdb.uu.se/~jan/html2ps.html
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-os-conventions
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-export-timely
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-dom-compatible-api
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-api-notify
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-api-notify
http://www.w3.org/WAI/UA/WAI-USERAGENT/#tech-api-read


References
[CSS1] 

"CSS, level 1 Recommendation", B. Bos, H. Wium Lie, eds. The CSS1
Recommendation is: http://www.w3.org/TR/1999/REC-CSS1-19990111. 

[CSS2] 
"CSS, level 2 Recommendation", B. Bos, H. Wium Lie, C. Lilley, and I. Jacobs,
eds. The CSS2 Recommendation is: 
http://www.w3.org/TR/1998/REC-CSS2-19980512. 

[CSS-ACCESS] 
"Accessibility Features of CSS", I. Jacobs, J. Brewer, eds. The latest version of
this W3C Note is available at: http://www.w3.org/TR/CSS-access. 

[DOM1] 
"Document Object Model (DOM) Level 1 Specification", V. Apparao, S. Byrne,
M. Champion, S. Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C.
Wilson, and L. Wood, eds. The DOM Level 1 Recommendation is: 
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001. 

[HTML40] 
"HTML 4.0 Recommendation", D. Raggett, A. Le Hors, and I. Jacobs, eds. The
HTML 4.0 Recommendation is: 
http://www.w3.org/TR/1998/REC-html40-19980424. 

[HTML32] 
"HTML 3.2 Recommendation", D. Raggett, ed. The HTML 3.2 Recommendation
is: http://www.w3.org/TR/REC-html32. 

[MATHML] 
"Mathematical Markup Language", P. Ion and R. Miner, eds. The MathML 1.0
Recommendation is: http://www.w3.org/TR/1998/REC-MathML-19980407. 

[RFC2119] 
"Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March
1997. Available at http://www.ietf.org/rfc/rfc2119.txt 

[SMIL] 
"Synchronized Multimedia Integration Language (SMIL) 1.0 Specification", P.
Hoschka, editor. The SMIL 1.0 Recommendation is: 
http://www.w3.org/TR/1998/REC-smil-19980615 

[UA-TECHNIQUES] 
"Techniques for User Agent Accessibility Guidelines 1.0", J. Gunderson, I.
Jacobs, eds. This document explains how to implement the checkpoints defined
in "User Agent Accessibility Guidelines 1.0". The latest draft of the techniques is
available at: http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS/ 

[WAI-AUTOOLS] 
"Authoring Tool Accessibility Guidelines", J. Treviranus, J. Richards, I. Jacobs,
C. McCathieNevile, eds. The latest Working Draft of these guidelines for
designing accessible authoring tools is available at: 
http://www.w3.org/TR/WD-WAI-AUTOOLS/ 

42 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/WD-WAI-AUTOOLS/
http://www.w3.org/WAI/UA/WAI-USERAGENT-TECHS
http://www.w3.org/TR/1998/REC-smil-19980615
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/1998/REC-MathML-19980407
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001
http://www.w3.org/TR/CSS-access
http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.w3.org/TR/1999/REC-CSS1-19990111


[WAI-WEBCONTENT] 
"Web Content Accessibility Guidelines", W. Chisholm, G. Vanderheiden, and I.
Jacobs, eds., 5 May 1999. This W3C Recommendation is 
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505. 

[XML] 
"Extensible Markup Language (XML) 1.0.", T. Bray, J. Paoli, C.M.
Sperberg-McQueen, eds. The XML 1.0 Recommendation is: 
http://www.w3.org/TR/1998/REC-xml-19980210 

Services
Note. W3C cannot maintain stability for any of the following references outside of its
control. These references are included for convenience.

[APPLE-HI] 
Information on accessibility guidelines for Macintosh applications. Information
on Apple’s scripting model can be found at tn1095 and tn1164. Refer also to the
Inside Macintosh chapter devoted to Interapplication Communication. 

[ED-DEPT] 
"Requirements for Accessible Software Design", US Department of Education,
version 1.1 March 6, 1997. 

[EITAAC] 
"EITAAC Desktop Software standards", Electronic Information Technology
Access Advisory (EITAAC) Committee. 

[IBM-ACCESS] 
"Software Accessibility" IBM Special Needs Systems. 

[ICCCM] 
"The Inter-Client communication conventions manual". A protocol for
communication between clients in the X Window system. 

[ICE-RAP] 
"An ICE Rendezvous Mechanism for X Window System Clients", W. Walker. A
description of how to use the ICE and RAP protocols for X Window clients. 

[JAVA-ACCESS] 
"IBM Guidelines for Writing Accessible Applications Using 100% Pure Java", R.
Schwerdtfeger, IBM Special Needs Systems. Available at: 
http://www.austin.ibm.com/sns/snsjavag.htm 

[JAVAAPI] 
Information on Java Accessibility API can be found at Java Accessibility Utilities. 

[JAVA-CHECKLIST] 
"Java Accessibility Guidelines and Checklist". IBM Special Needs Systems. 

[JAVA-TUT] 
"The Java Tutorial. Trail: Creating a GUI with JFC/Swing". An online tutorial that
describes how to use the Swing Java Foundation Class to build an accessible
User Interface. 

[MSAA] 
Information on active accessibility can be found at the Microsoft WWW site on

 9 Aug 1999  11:5643  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.microsoft.com/enable/msaa/develop.htm
http://java.sun.com/docs/books/tutorial/uiswing/
http://www.austin.ibm.com/sns/accessjava.html
http://www.sun.com/access/
http://www.austin.ibm.com/sns/snsjavag.htm
http://trace.wisc.edu/docs/x_win_andice/x_andice.htm
http://ftp.x.org/pub/R6.3/xc/doc/specs/ICCCM/
http://www.austin.ibm.com/sns/accesssoftware.html
http://trace.wisc.edu/docs/eitacc_desktop_software_standards/desktop_software_standards.htm
http://ocfo.ed.gov/coninfo/clibrary/software.htm
http://developer.apple.com/techpubs/mac/IAC/IAC-2.html
http://developer.apple.com/technotes/tn/tn1164.html
http://developer.apple.com/technotes/tn/tn1095.html
http://developer.apple.com/techpubs/mac/HIGuidelines/HIGuidelines-2.html
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505


Active Accessibility. 
[MS-ENABLE] 

Information on accessibility guidelines for Windows applications. 
[MS-KEYBOARD] 

Information on keyboard assistance for Internet Explorer and MS Windows. 
[MS-SOFTWARE] 

"The Microsoft Windows Guidelines for Accessible Software Design". Note. This
is a "self-extracting archive", an application that will probably only run on
MS-Windows systems. 

[NOTES-ACCESS] 
"Lotus Notes Accessibility Guidelines" IBM Special Needs Systems. 

[Prodworks] 
The Productivity Works. 

[SUN-DESIGN] 
"Designing for Accessibility", Eric Bergman and Earl Johnson. This paper
discusses specific disabilities including those related to hearing, vision, and
cognitive function. 

[SUN-HCI] 
"Towards Accessible Human-Computer Interaction", Eric Bergman, Earl
Johnson, Sun Microsytems 1995. A substantial paper, with a valuable print
bibliography. 

[TRACE-REF] 
"Application Software Design Guidelines" compiled by G. Vanderheiden. A
thorough reference work. 

[WHAT-IS] 
"What is Accessible Software", James W. Thatcher, Ph.D., IBM, 1997. This
paper gives a short example-based introduction to the difference between
software that is accessible, and software that can be used by some assistive
technologies. 

[XGuidelines] 
Information on accessibility guidelines for Unix and X Window applications. The
Open Group has various guides that explain the Motif and Common Desktop
Environment (CDE) with topics like how users interact with Motif/CDE
applications and how to customize these environments. Note. In X, the terms
client and server are used differently from their use when discussing the Web.

44 9 Aug 1999  11:56  

Techniques for User Agent Accessibility Guidelines 1.0

http://www.opengroup.org/
http://www.opengroup.org/
http://www.opengroup.org/publications/catalog/mo.htm
http://www.austin.ibm.com/sns/software.html
http://trace.wisc.edu/docs/software_guidelines/software.htm
http://www.sun.com/tech/access/updt.HCI.advance.html
http://www.sun.com/tech/access/software.guides.html
http://www.prodworks.com/
http://www.austin.ibm.com/sns/accessnotes.html
http://www.microsoft.com/enable/download/winapp23.exe
http://www.microsoft.com/enable/training/keyboard.htm
http://www.microsoft.com/enable/dev/apps.htm
http://www.microsoft.com/enable/msaa/develop.htm

	Techniques for User Agent Accessibility Guidelines 1.0
	W3C Working Draft 9-August-1999
	Abstract
	Status of this document
	Table of Contents
	1 Priorities
	2 How the Techniques are Organized
	2.1 Examples and Deprecated Examples

	3 User agent accessibility
	3.1 Access to content
	3.1.1 Changes in content language

	3.2 Device independence
	3.3 User control of style
	3.3.1 Feature control

	3.4 Selection and focus
	3.4.1 Highlighting selection and focus
	3.4.2 Tracking selection and focus

	3.5 Navigation and searching
	3.5.1 Navigation of active elements
	3.5.2 Navigation of document structure
	3.5.3 Table navigation
	3.5.4 Searching
	3.5.5 View navigation

	3.6 Context and orientation
	3.6.1 Document and view status information
	3.6.2 Element context
	3.6.3 Links
	3.6.4 Tables
	3.6.5 Form controls
	3.6.6 Frames
	3.6.7 Scripts

	3.7 Keyboard access
	3.7.1 Tabbing order
	3.7.2 Keyboard shortcuts
	3.7.3 Software consistency

	3.8 Configuration
	3.8.1 User profiles
	3.8.2 Keyboard configuration
	3.8.3 User interface

	3.9 Documentation
	3.9.1 Where to document accessibility
	3.9.2 Accessible documentation


	4 Interfaces and conventions
	4.1 System conventions
	4.1.1 Some guidelines for specific platforms
	4.1.2 General guidelines for producing accessible software

	4.2 Testing UA operation with platform standards
	4.3 Accessibility interfaces
	4.4 The document object model
	4.5 Information for assistive technologies

	5 Support for HTML accessibility
	5.1 Equivalent information
	5.1.1 Sources of blinking text and animation
	5.1.2 Alternative representations of information for images, video, applets
	5.1.3 Textual equivalents for audio and video
	5.1.4 Auditory equivalents for video
	5.1.5 Frame equivalents
	5.1.6 Alternative representations for tables

	5.2 Links
	5.3 Tables
	5.3.1 Table rendering
	5.3.2 Cell rendering
	5.3.3 Cell header algorithm

	5.4 Frames
	5.4.1 Frame formatting

	5.5 Scripts
	5.6 Multimedia

	6 Support for CSS accessibility
	7 Support for SMIL accessibility
	8 Appendix: Accessibility features of some operating systems
	Microsoft Windows 95, Windows 98, and Window NT 4.0
	Apple Macintosh Operating System
	AccessX, X Keyboard Extension †XKB‡, and the X Window System
	DOS †Disk Operating System‡

	9 Appendix: Loading assistive technologies for DOM access
	Loading assistive technologies for direct access to User Agent DOMs
	Determining the Assistive Technologies to load
	Attaching the Assistive Technologies to the DOM.
	Example Technique: Java's Direct Access

	Loading part of the assistive technologies for direct access to User Agent DOMs
	Browser Helper Objects
	Java Access Bridge

	Loading assistive technologies "as" the User Agent with access to the DOMs
	Loading assistive technologies for indirect access to User Agent DOMs

	10 Appendix: Checkpoint Map
	Guideline 1:
	Guideline 2:
	Guideline 3:
	Guideline 4:
	Guideline 5:
	Guideline 6:
	Guideline 7:
	Guideline 8:
	Guideline 9:
	Guideline 10:
	Guideline 11:
	Guideline 12:

	Acknowledgments
	References
	Services


