
Rendering multilingual documents
with CSS2 and XSL

Chris Lilley, W3C
www.w3.org/people/chris

Abstract

The rendering of multilingual XML and HTML Web documents
is discussed with reference to the internationalization features
in the Cascading Style Sheets, level 2 (CSS2) Recommenda-
tion and the new XSL Working Draft.

1 What is a document?

1.1 The Web is not a typewriter

There is a fundamental difference between publishing on paper and publishing
on the Web. On paper, it does not matter which keystrokes were used to
produce a particular glyph. Indeed it is common for designers to re-arrange
fonts to get a keyboard layout that suits them. The reader never sees anything
except the final rendered (printed) version of the document, and there is no way
to tell, looking at the printed result, what keystrokes produced it. On the Web, in
contrast, it matters a great deal. Thus, the first task is to consider the question
‘what is a document’.

1.2 Unicode, HTML and XML

The Web uses HTML as its primary media type. HTML is an application of
SGML, and the SGML declaration for each document type specifies a partic-
ular Document Character Set in which all computations and manipulations are
performed. For HTML version 2.0 and above, this single Document Character
Set has been ISO 10646 (although version 2 of HTML was restricted to the first
256 characters, in other words Latin-1). With HTML 4.0 the document character
set was stated to not only be ISO 10646, but Unicode - which has the same
code points but also implies additional functionality such as the Unicode bidi-
rectional algorithm.
13th International Unicode Conference 1 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
XML is a language for writing document types; a Web-enabled successor to
SGML. Whilst individual XML applications will invent their own element names,
certain things are common to all XML applications. One of these is the use of
Unicode as a document character set (XML does not need or use SGML
declarations).

Thus, both HTML and XML documents share a common repertoire of charac-
ters - Unicode - which may be used for document processing. In this paper I will
use the term ‘document’ to refer to either an HTML or XML document.

1.3 Structured documents

Another thing that HTML and XML share in common is that they are markup
languages - the textual content is structured by being grouped into elements,
which may contain child elements. This structuring may be exploited by
programs which are aware of the semantics associated with the element
names. For example:

<presentation>

<title>presentation at 13th Unicode Conference</title>

<slide>

<heading>My first slide</heading>

<item>a key point</item>

<item>another one</item>

<item> a third, with a picture <image/></item>

</slide>

<slide>

<!-- another slide here -->

</slide>

</presentation>

The element names are suggestive to an (English-speaking) reader, but have
no semantics for the computer. However, a human who knows the semantics
can write a program to number the items in each slide, or to generate a table of
contents containing the heading for each slide.

The nested hierarchy of elements can be considered as a tree. In this example
the presentation element is the root node of the tree, and contains a title
element and several slide elements as children. Each slide element
contains a heading element and several item elements. This tree structure
is important for document processing, and in particular for using style sheets.

1.4 Document transmission

The document can be transmitted from server to client in the document char-
acter set, but it need not be. Particularly if the document contains text in only
one or two different languages, it is often more efficient to use a different char-
13th International Unicode Conference 2 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
acter encoding for transmission. The particular encoding in use is declared in
the HTTP charset parameter of the MIME type. Examples include ISO-8859-1
for French documents, ISO-8859-8-I for Hebrew documents, and EUC-JP for
Japanese documents.

Regardless of the encoding used in transmission, all numeric character refer-
ences (NCRs) refer to the Document Character set not the character encoding.
For example, Κ represents the character at code point 922 decimal,
U+039A, GREEK CAPITAL LETTER KAPPA. This NCR can be inserted in any docu-
ment, regardless of the character encoding that happens to be in use. For
example, the document might be in Japanese and sent using shift-jis; it can still
contain any Unicode character.

1.5 Bytes, characters, glyphs

Conceptually, the incoming document is converted from a stream of bytes into a
stream of Unicode characters, using the character encoding information. It is
then converted into a sequence of glyphs, using the font encoding vector infor-
mation. Both of these mappings can be 1:1 but they might not be. Assuming
that these mappings are always 1:1 has been a prime cause of non-interopera-
bility on the Web [Harm].

Both HTML and XML rely on this distinction, which is well described in the ISO
Technical Report on the Character Glyph Model, TR 15285. W3C style sheet
specifications also rely on this distinction and in some cases provide facilities
for enforcing it.

2 Style Sheets

2.1 Introducing style sheets

Style sheets are a way of gathering together all the presentational information
in a document, leaving the actual document to concentrate on describing the
structure.

For example, if a document has ten subheadings, the stylesheet could simply
indicate, with one or more style sheet properties, that they are all to be in 16/20
point Helvetica Oblique rather than, as with the HTML FONT element, having
this information embedded in the HTML and thus repeated ten times. To do
this, the style sheet must have some way to indicate the elements to be styled
(a selection mechanism) and a means to indicate the desired styling (a set of
formatting properties, and values for each property).

Style sheets can be external (in another file) or internal (inside the document).
If external, they are associated with the document by a link. A document may
13th International Unicode Conference 3 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
be associated with more than one style sheet. This allows alternative presenta-
tions of the same information.

2.2 Cascading Style Sheets (CSS)

The term CSS refers to a style sheet language first developed at CERN,
around 1994, and later at W3C [CSS]. Originally aimed particularly at online
use with HTML documents, it can also be used with XML documents and can
format for other output media such as speech and print. The cascade refers to
the way multiple style sheets - those linked to the document by the document
author, the reader’s personal stylesheets, and the browser internal default
stylesheet - are combined in a precise order to contribute towards the end
result. Level 2 of the CSS specification, finalized in May 1998, is a W3C
Recommendation. Work is in progress on the next level of CSS.

In CSS, the formatting object tree is nearly identical to the document tree (the
differences being generated text, and optional special treatment of the first line
or first letter of an element). Inheritance of formatting property values is on the
document tree.

CSS uses selectors to determine which elements to apply particular style rules
to. The particular properties to change are then given inside curly brackets. For
example, to make all item elements which are children of slide elements
green and italic:

slide > item { color: green; font-style: italic }

In this example two properties are modified, one for the text color and one
which controls whether the desired font is upright, oblique or italic.

2.3 Extensible Style Language (XSL)

The eXtensible Stylesheet Language, XSL, is the other style sheet format from
W3C; it aims to include the functionality of both DSSSL, the ISO style sheet
language, and CSS2 [XSL]. A W3C Working Group was formed in January
1998 to develop XSL, which is specifically targetted at complex, data-rich XML
documens which require extensive reordering and computation for display. A
requirements document was issued by this group in May 1998 and the first
Working Draft of XSL was recently released in August 1998.

In XSL, the formatting object tree can be radically different from the document
tree and there is a special tree construction step to generate it. The content of
elements from the document tree can appear in multiple places in the format-
ting object tree, for example the text of headings can reappear in an index, table
of contents, and page headers or footers. In consequence, inheritance of
formatting property values is on the formatting object tree.
13th International Unicode Conference 4 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
XSL uses patterns to select which elements to apply styles to, and then uses a
template to describe the part of the formatting object tree to construct. XSL is
itself written in XML, and the style properties to change are given as XML
attributes.

For example, to make all item elements which are children of slide elements
green and italic:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/TR/WD-xsl"

 xmlns:fo="http://www.w3.org/TR/WD-format"

 result-ns="fo">

 <xsl:template match="slide/item">

 <fo:block font-style="italic" color="green">

 <xsl:process-children/>

 </fo:block>

 </xsl:template>

</xsl:stylesheet>

There are two different ways to use XSL on a data-rich XML document. One
way is to use the formatting objects to transform and style the content directly.
The other way is to first transform into a simpler XML document, then style this
using CSS. It is possible to transform on the server, and then style on the client
(the browser).

3 Language-dependent styling

HTML 4.0 includes the lang attribute, introduced in RFC 1766 and more tightly
defined in RFC 2070, to specify the human language used by that element and
its children.1 In XML, the xml:lang attribute exactly mirrors the semantics
and properties of the HTML 4.0 lang attribute.

Both CSS2 and XSL make this information available to the style sheet author to
perform language specific formatting.

1. This attribute contains a primary code and a (possibly empty) series of subcodes, separated by
hyphens. For example, de , ja-jp , en-nz , no-nynorsk , fr-ca, x-cherokee . If
the primary code is two letters, it is an ISO 639 language abbreviation [639]; if a subcode has
two letters, it is an ISO 3166 country code [3166].
13th International Unicode Conference 5 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
3.1 Language-dependent font selection

A Web page containing passages both in Chinese and in Japanese may well
use the same CJK Unified Ideographs in both sections; the different language
codes zh-tw and ja-jp may be used by the style sheet implementation to
select the appropriate Traditional Chinese and Japanese fonts, respectively.

*:lang(ja-jp) { font: 900 14pt/16pt "Heisei Mincho W9", serif }

*:lang(zh-tw) { font: 800 14pt/16.5pt "Li Sung", serif }

In this example, different weights, sizes and line heights have been chosen to
allow these two fonts to exist harmoniously together.

3.2 Language-dependent quoting

Quotation marks are often inserted literally into the document, but may also be
auto-generated. The HTML 4.0 Q element, for example, is specifically required
to use generated quotes. CSS2 introduced the quotes property to ease the
creation of this generated text. It takes a list of pairs of character strings, which
are to be used for each level of embedding of quotations. For example, to
format a book written in both French and German:

:lang(fr) > Q { quotes: '« ' ' »' }

:lang(de) > Q { quotes: '»' '«' '\2039' '\203A' }

This pair of rules sets the quotes property on Q elements according to the
language of its parent - the > operator means “child of” in CSS. This is done
because the choice of quote marks is typically based on the language of the
element around the quote, not the quote itself; for example a snippet of Italian
“bella casa” uses English quotation marks because of the surrounding English
context.

In the example above, for quotes in a French context, the left double guillemet
is used to open the quote and there is a space after it. For quotes in a German
context, the convention is to use the guillemet the other way round and not to
have extra space between the quotation marks and the quoted matter.

Also, for nested quotes in a German context, a different pair of quotation marks
are used, specified by their hexadecimal Unicode character positions. In CSS,
any Unicode character may be used for generated text, even if it does not fall
within the character repertoire of the encoding used in transmission. The same
is true of XSL, which uses the numeric character references in XML to achieve
the same result.
13th International Unicode Conference 6 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
4 Coordinate systems

Positions on a page - and this applies equally to Web pages as to printed pages
- can only be described by reference to a coordinate system. There are three
main types:

1.Absolute coordinate systems

2.Writing direction relative coordinate systems

3.Page binding relative coordinate systems

4.1 Coordinate systems in CSS

CSS primarily uses an absolute coordinate system - the left margin is always
the left margin, regardless of whether writing starts at that margin or ends
there. Coordinate systems are used in CSS to specify margins, the width, color
and style of borders, the size of padding between content and the edge of the
background, clipping and scrolling behavior, and when using positioned
elements. For example:

chapter > section { border-left: thin solid green }

There are four properties: left right bottom and top , which are used to
place positioned elements to achieve non-linear, layered designs. The style
sheet author will pick the appropriate two of these depending on the writing
direction for which the style sheet is being designed. In consequence, the
same style sheet will not work for both left-to-right and right-to-left languages.

4.2 Coordinate systems in XSL

XSL generally uses writing direction relative coordinate systems, although the
page margins are specified in an absolute system (left, top, etc). Page binding
relative coordinate systems are not currently used in XSL, although it is recogn-
ised that they are useful, particularly for specifying the inner and outer page
margins in a work to be printed for binding.

The writing direction for a given formatting object, or for the document as a
whole, is selected from an enumerated set. For example for Latin languages, it
would be set to lr-tb which specifies:

• an inline-progression-direction of left-to-right.

• a block-progression-direction of top-to-bottom.

• a line-progression-direction of top-to-bottom.

• a shift-direction of bottom-to-top.

This is illustrated in Figure 1.
13th International Unicode Conference 7 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
Figure 1 : XSL relative coordinate system, Latin

 The corresponding specifications given a writing direction of rl-tb are shown in
Figure 2.

Figure 2 : XSL relative coordinate system, Arabic

XSL can specify a large number of writing directions, including the one used for
vertical Japanese (see Figure 3) as well as other writing directions. The advan-
tage of using a single enumerated value to indirectly specify a set of directions
is that it is extensible and also that it copes with those writing directions, mainly
historical, where for example the inline progression direction is not constant but
takes the opposite value on even and odd lines. Ancient Greek, written in bous-

inline progression direction

line
progression
direction

shift
direction

display
progression

direction

inline progression direction

line
progression
direction

shift
direction

display
progression

direction
13th International Unicode Conference 8 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
trophedon (as the ox ploughs) is one example of such a writing direction, which
would be specified as lr-alternating-rl-tb .

Figure 3 : XSL relative coordinate system, vertical Japanese

4.3 An example of coordinate system use - Ruby

When written horizontally, in Japanese the shift direction (which among other
things controls the positioning of Ruby) is bottom to top. When written vertically,
the shift direction is left to right as in Figure 4. This is not sufficient to fully
specify Ruby, of course, just to indicate that when the stylesheet asks for the
Ruby to be positioned closer to or further from the main text, what direction that
means.

Figure 4 : Vertical Japanese text with Ruby

inline
progression
direction

line
progression
direction

shift direction

display
progression

direction
13th International Unicode Conference 9 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
5 Web Fonts

5.1 Font features of CSS1 and XSL

Both the CSS and XSL specifications allow the setting of various font proper-
ties on XML elements. The properties include the family name (e.g. Times,
Arial), weight (e.g. normal, bold), style (e.g. italic) and size (e.g.12pt). These
properties can be inherited and then modified by child elements (CSS) or child
formatting objects (XSL). For example, various font properties may be set on a
paragraph, and a bold element within that paragraph can be made to have the
same font - but in a heavier weight - by simply altering the font-weight property.

In CSS1 and the first working draft of XSL, fonts are assumed to be present on
the client system and are identified solely by name. Several choices of fonts
may be listed and are tried in order until a font is found that can display the
required characters. If a font is available to the client that is a close stylistic
match to the requested font but has a different name, it is not possible for a
CSS1 implementation to select it. Generic font families such as ‘serif’ and
‘script’ are available as fallbacks if none of the listed fonts are available.

Because CSS and XSL honor the character-glyph model, it is not possible to
apply, say, the Symbol font onto Latin text to get a semblance of Greek. The font
will fail to match and the next font in the sequence will be used. This property
allows document authors to specify several fonts for a single element, and the
appropriate one will be used automatically. For example, in this fragment:

<xsl:template match="slide">

 <fo:block font-family=”Palatino, Bukinst,‘Heisei Mincho W3’,serif”>

 <xsl:process-children/>

 </fo:block>

</xsl:template>

Here, Palatino covers Basic Latin and Latin-1 Supplement, Mincho covers
some of the CJK Unified Ideographs using Japanese glyphs and Bukinst
covers Cyrillic. Bukinst is placed before the Mincho font because some Japa-
nese fonts also contain glyphs for cyrillic and we want the ones from Bukinst to
be used in preference. In a mixed French, Japanese and Russian document,
the correct font will, if available, be selected for each character without the
necessity of special markup around each run of characters from a particular
script. The last font in the list, serif, is a generic fallback font which is defined to
exist by the CSS and XSL specifications.

5.2 CSS2 intelligent name matching

The first additional feature provided by the Web Fonts extension in CSS2 is
intelligent matching. This was not described in the first Working Draft of XSL,
but it is planned to add it in a subsequent draft.
13th International Unicode Conference 10 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
Intelligent matching involves using more information than just the name of the
requested font to select an existing, accessible font that is the closest match in
appearance to the requested font.The metrics might not match, resulting in
different line breaks. The matching information includes information about the
kind of font (textual or pictorial), the style of serifs (or analogous stroke termi-
nations), weight, cap height, x height (where these can be defined),
typographic ascent and descent, slant of vertical strokes, and so on. This is
essentially an open-ended and extensible set of font characteristics, initially
derived from Latin typography.

Problems come from inconsistent definitions of basic typographical terms on
different platforms or with different font formats. These differences have always
been there, of course, but are less obtrusive in a paper-oriented, non-distrib-
uted environment where document generation and document rendering
happen on the same computer and where manual verification and correction of
the layout is possible before generating a fixed printed result. Panose-1 is a
widely used classification scheme based on defined measurements of partic-
ular Latin characters. A Panose-1 measurement can be used to select a font
which is similar in character to another font, provided both have Panose-1
measurements. Panose-1 could also be used for some non-Latin scripts such
as Greek and Cyrillic, but the measurements to do so have not been defined.

Panose-2 is a proposed more extensive classification scheme which can relate
different measurements made on glyphs from different scripts. It may be useful
in the future for automatically selecting similar fonts for different scripts.

Other problems are due to characteristics being specific to particular scripts.
For example, height of flat-topped unaccented lowercase letters (the x-height),
as shown in Figure 5, is a very useful indicator of the style of a Latin font,
particularly when expressed as a ratio of the x-height to the height of flat-
topped capital letters (the cap height). Fonts of dissimilar x-height will look very
different.

Figure 5 : x-height is a useful characteristic for bicameral fonts
13th International Unicode Conference 11 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
Most scripts are unicameral - they have only a single case. They are often set
at a height midway between the x-height and cap-height, as shown in Figure 6.
Dropping the x-height and cap-height properties on the grounds that they only
apply to some scripts, however, would penalise those scripts for which these
characteristics are important. Another alternative is to assign the x-height and
cap-height the same values, so that the ratio (ie, 1) can be compared with that
of bicameral scripts.

Figure 6 : Glyph from a unicameral script

This allows Latin fonts with low x-height to be chosen for use with Arabic, and
Latin fonts with high x-height for use with Hebrew. The best solution is for such
matching to be done by the stylesheet designer, using similar or contrasting
faces that work well together from a design standpoint. The automatic matching
is then a fallback if the requested fonts cannot be used for whatever reason.

There is certainly a need for the designer of a style sheet to be aware of the
different scripts that are going to be used in a document and to plan accord-
ingly, and to decide whether close matching on the x-height or on the font size
is desirable. Compare the two samples in Figure 7 and Figure 8.

Figure 7 : Georgian sample showing deep descenders
13th International Unicode Conference 12 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
Figure 8 : Russian sample showing shallow descenders

Another characteristic that is script dependent is alignment. Latin scripts have a
clearly defined baseline, with descenders. Other scripts have no descenders,
or are aligned on a centerline - for example, CJK Unified Ideographs, as seen in
Figure 3 - or a top line (hanging baseline) - for example, North Indian scripts.
The Web Font extension allows all these alignments to be defined on a per-font
basis.

5.3 Font Download

The Web Font extension, now fully integrated into CSS2 and planned for a
subsequent Working Draft of XSL, allows URLs to be added to the style sheet
which point to fonts. There are techniques such as site locking, digital signa-
tures, and format transformation which can be used to protect the intellectual
property rights of the font designers; these techniques are not addressed here.

The stylesheet can also indicate, on a per-font bases, the range of Unicode
characters for which it has some glyphs. Most fonts have sparse coverage of
Unicode. This property is used to determine whether a font might have glyphs
and thus whether to download it or search it.

Other information about the font can be added, such as the size of the design
grid, the position of the various baselines (low baseline for Latin, Greek and
Cyrillic; central baseline for Ideographic scripts and top baseline for Indic
scripts), the x-height and ca-height, Panose-1 number, and so on. Other
descriptors can readilly be added to better describe fonts for scripts that are
presently not covered so well, such as Arabic.
13th International Unicode Conference 13 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
Figure 9 : downloaded Greek fonts in two browsers

Multiple font formats are in use on many different platforms, so in consequence
HTTP content negotiation is required for downloadable fonts. The same
stylesheet can point to multiple fonts in different formats, indicating which
format is available at which URL; this is particularly handy given that the first
two implementations of Web Fonts chose different font formats.

This example is for font downloading, no information is provided to enable font
synthesis or matching. It defines a composite font split over three files.

<STYLE>

 @font-face {

 font-family: Excelsior;

 src: Excelsior Roman, url(http://site/er) font/opentype

 unicode-range: U+00xx /* Latin-1 */

 }

 @font-face {

 font-family: Excelsior;

 src: Excelsior EastA Roman, url(http://site/ear) font/intellifont;

 unicode-range: U+01xx-022x /* Latin Extended A and B */

 }

 @font-face {

 font-family: Excelsior;

 src: Excelsior Cyrillic Upright, url(http://site/ecu) font/truedoc;

 unicode-range: U+04xx /* Cyrillic */

 }

</STYLE>
13th International Unicode Conference 14 San Jose, CA, USA, September 1998

Rendering multilingual documents with CSS2 and XSL
6 Conclusion

Both CSS and XSL allow desired formatting to be expressed in style sheets
and applied to XML documents, which are considered to be a collection of
Unicode characters which will require multiple writing directions. These style
sheet languages are the first steps towards true multilingual typography on the
Web.

7 References

[639] ISO 639:1988 - Code for the representation of names of languages - The
International Organization for Standardization, 1st edition, 1988 17 pages .

[3166] ISO 3166:1988 - Codes for the representation of names of countries -
The International Organization for Standardization, 3rd edition, 1988.

[CSS2] Cascading Style Sheets, level 2, W3C Recommendation
http://www.w3.org/TR/WD-CSS2

[Harm] Character Set considered Harmful
http://www.w3.org/MarkUp/html-spec/charset-harmful.html

[Pan2] Panose-2 white paper
http://www.w3.org/Fonts/Panose/pan2.html

[Self] This paper
http://www.w3.org/people/chris/IUC13/multilingrend.pdf

[XML] Extensible Markup Language, W3C Recomendation
http://www.w3.org/TR/REC-xml

[XSL] Extensible Style Language, Working Draft
http://www.w3.org/TR/WD-xsl
13th International Unicode Conference 15 San Jose, CA, USA, September 1998

	ReportTitle - Rendering multilingual documents with CSS2 and XSL
	ReportAuthor - Chris Lilley, W3C www.w3.org/people/chris
	Abstract Heading - Abstract
	Heading1 - 1 What is a document?
	Heading2 - 1.1 The Web is not a typewriter
	Heading2 - 1.2 Unicode, HTML and XML
	Heading2 - 1.3 Structured documents
	Heading2 - 1.4 Document transmission
	Heading2 - 1.5 Bytes, characters, glyphs

	Heading1 - 2 Style Sheets
	Heading2 - 2.1 Introducing style sheets
	Heading2 - 2.2 Cascading Style Sheets (CSS)
	Heading2 - 2.3 Extensible Style Language (XSL)

	Heading1 - 3 Language-dependent styling
	Heading2 - 3.1 Language-dependent font selection
	Heading2 - 3.2 Language-dependent quoting

	Heading1 - 4 Coordinate systems
	Numbered1 - 1. Absolute coordinate systems
	Numbered - 2. Writing direction relative coordinate systems
	Numbered - 3. Page binding relative coordinate systems
	Heading2 - 4.1 Coordinate systems in CSS
	Heading2 - 4.2 Coordinate systems in XSL
	Figure - Figure 1 : XSL relative coordinate system, Latin
	Figure - Figure 2 : XSL relative coordinate system, Arabic
	Figure - Figure 3 : XSL relative coordinate system, vertical Japanese

	Heading2 - 4.3 An example of coordinate system use - Ruby
	Figure - Figure 4 : Vertical Japanese text with Ruby

	Heading1 - 5 Web Fonts
	Heading2 - 5.1 Font features of CSS1 and XSL
	Heading2 - 5.2 CSS2 intelligent name matching
	Figure - Figure 5 : x-height is a useful characteristic for bicameral fonts
	Figure - Figure 6 : Glyph from a unicameral script
	Figure - Figure 7 : Georgian sample showing deep descenders
	Figure - Figure 8 : Russian sample showing shallow descenders

	Heading2 - 5.3 Font Download
	Figure - Figure 9 : downloaded Greek fonts in two browsers

	Heading1 - 6 Conclusion
	Heading1 - 7 References

