

 Selectors and States

 W3C Working Group Note, 23 February, 2017

 Ivan Herman, W3C; Robert Sanderson, J Paul Getty Trust; Paolo Ciccarese, Massachusetts General Hospital; and Benjamin Young, John Wiley & Sons, Inc. (Editors)

 [image: W3C main logo]

 Note: this EPUB edition does not represent the authoritative text of the specification; please consult the original document on the W3C Web Site.

 Copyright
 © of the original documents: 2017 W3C® (MIT, ERCIM,
 Keio, Beihang).

 All right reserved. W3C liability,
 trademark,
 and document use rules apply.

 [image: W3C]

 Selectors and States

 Reference Note

 W3C Working Group Note 23 February 2017

 	This version:

 	https://www.w3.org/TR/2017/NOTE-selectors-states-20170223/

 	Latest published version:

 	https://www.w3.org/TR/selectors-states/

 	Latest editor's draft:

 	http://w3c.github.io/web-annotation/selector-note/

 	Editors:

 	Ivan Herman, W3C, ivan@w3.org, [image: orcid logo]

 	Robert Sanderson, J Paul Getty Trust, rsanderson@getty.edu, [image: orcid logo]

 	Paolo Ciccarese, Massachusetts General Hospital, paolo.ciccarese@gmail.com

 	Benjamin Young, John Wiley & Sons, Inc., byoung@bigbluehat.com

 	Repository:

 	

 Github Repository

 	

 File an issue

 Please check the errata for any errors or issues reported since publication.

 This document is also available in this non-normative format:
 ePub

 Copyright © 2017

 W3C® (MIT,
 ERCIM,
 Keio, Beihang).
 W3C liability,
 trademark and
 document use rules apply.

 Abstract

 Selecting part of a resource on the Web is an ubiquitous action. Over the years several selection techniques have been developed, usually in conjunction with the media type of the resource. Many of these approaches are also expressed in terms of a fragment identifiers [url], but that is not always the case.

 This document does not define any new approach to selection. Instead, it relies on existing techniques, providing a common model and syntax to express and possibly combine selections. The formal specification and the semantics originate from a separate Recommendation, namely the Web Annotation Data Model [annotation-model], where it is used to select targets of annotations. The current document only “extracts” Selectors and States from that data model; by doing so, it makes their usage easier for applications developers whose concerns are not related to annotations.

 Status of This Document

 This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at https://www.w3.org/TR/.

 This document was published by the Web Annotation Working Group as a Working Group Note. If you wish to make comments regarding this document, please send them to
 public-annotation@w3.org (subscribe,
 archives). All comments are welcome.

 Publication as a Working Group Note does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.
 W3C maintains a public list of any patent
 disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

 This document is governed by the 1 September 2015 W3C Process Document.

 Table of Contents

 	1. Introduction

 	1.1 Relationships to RDF

 	1.2 Terminology

 	2. Specific Resources

 	3. Selectors

 	3.1 Fragment Selector

 	3.2 CSS Selector

 	3.3 XPath Selector

 	3.4 Text Quote Selector

 	3.5 Text Position Selector

 	3.6 Data Position Selector

 	3.7 SVG Selector

 	3.8 Range Selector

 	3.9 Refinement of Selection

 	4. States

 	4.1 Time State

 	4.2 Request Header State

 	4.3 Refinement of State

 	5. Selectors and States as Fragment Identifiers

 	5.1 JSON examples converted to fragment identifiers

 	5.2 Serializing IRI to URL

 	6. Examples in Turtle

 	A. Correspondence Among Media Types and Selectors

 	A.1 Additional Media Types/Selector Combination

 	B. Index of JSON Terms

 	C. Acknowledgements

 	D. References

 	D.1 Informative references

 1. Introduction

 Selecting part of a resource on the Web is an ubiquitous action. Interactive editing of a resources, highlighting an area on the screen, adding an annotation to a specific point in a resource, or using a section of a larger dataset for visualization are all examples that involve selection within a resource. Over the years several selection techniques have been developed, usually in conjunction with the media type of the resource. These include referring to a unique identifier within a resource, defining a time interval for an audio or video track, identifying an element within the DOM tree for an XML source, or using CSS style elements to locate content. Many of these approaches are also expressed in terms of a fragment identifiers [url], but that is not always the case.

 This document does not define any new approach to selection. Instead, it relies on existing techniques, providing a common model and syntax to express selections. Furthermore, the model also includes a way to combine selections via refinements, a feature that may greatly improve the efficiency of applications relying on complex selections. Such a common model makes it easier to provide generic and interoperable tools and APIs to handle selections in various applications.

 A selection or state, as described in this document, may have its own unique identity in the form of an IRI. This IRI SHOULD be dereferencable and return the selection/state definition itself.

 Note

 Using the IRI of the selection definition, instead of the reference to the “complete” resource could be seen as akin to a server side redirection, returning part of a resource.

 The data model is defined in [json], in the form of JSON objects and keys. The formal specification and the semantics of these originate from a larger model, namely the Web Annotation Data Model [annotation-model], where it is used to select targets of annotations. The current document only “extracts” Selectors and States from that data model; by doing so, it makes their usage easier for applications developers whose concerns are not related to annotations. The only new feature in this document is the section on selector fragments. Although this document is aimed to be self consistent, in case of inconsistencies or errors the [annotation-model] remains the authoritative source.

 1.1 Relationships to RDF

 The definitions in this documents also follow the extra syntactic rules of JSON-LD [json-ld]. This means that, through the usage of the JSON-LD Context defined in Appendix A of the Web Annotation Vocabulary [annotation-vocab], also available online as http://www.w3.org/ns/anno.jsonld, Selectors and States can be seen as RDF Graphs [rdf11-concepts] that can be linked to, or used from within, other RDF graphs. Using the mapping defined in that Context Selectors and States can be expressed in other RDF serializations like Turtle [turtle]. The formal specification of the corresponding vocabulary is provided by [annotation-vocab]. To make the equivalences easier for the reader, 6. Examples in Turtle contains all JSON-LD examples of this document serialized in Turtle, too.

 It must be noted that applications unrelated to RDF and/or Linked Data can safely ignore the context as well as the vocabulary mapping, and work exclusively with the JSON objects and keys as defined below.

 1.2 Terminology

 	IRI

 	An IRI, or Internationalized Resource Identifier, is an extension to the URI specification to allow characters from Unicode, whereas URIs must be made up of a subset of ASCII characters. There is a mapping algorithm for translating between IRIs and the equivalent encoded URI form. IRIs are defined by [rfc3987].

 	Resource

 	An item of interest that MAY be identified by an IRI.

 	Web Resource

 	A Resource that MUST be identified by an IRI, as described in the Web Architecture [webarch]. Web Resources MAY be dereferencable via their IRI.

 	Specific Resource

 	A Resource that serves as a wrapper around the selection of part of another Web Resource. A Specific Resource identifies the relevant Web Resource (the Source) through a source term, and MAY contain other terms to refine the selection.

 	Source

 	The overall Web Resource whose selection is refined through the usage of Selectors or States.

 	Segment (of Interest)

 	The part of the Resource that is selected using a Selector.

 	External Web Resource

 	A Web Resource which is not part of the representation the selection, such as a web page, image, or video. External Web Resources are dereferencable from their IRI.

 	Property

 	A feature of a Resource, that often has a particular data type. In the model sections, the term "Property" is used to refer to only those features which are not Relationships and instead have a literal value such as a string, integer, or date. The valid values for a Property are thus any data type other than object, or an array containing members of that data type if more than one is allowed.

 	Relationship

 	In the model sections, the term "Relationship" is used to distinguish those features that refer to other Resources, either by reference to the Resource's IRI or by including a description of the Resource in the representation. The valid values for a Relationship are: a quoted string containing an IRI, an object that has the "id" property, or an array containing either of these if more than one is allowed.

 	Class

 	Resources may be divided, conceptually, into groups called "classes"; members of a class are known as Instances of that class. Resources are associated with a particular class through typing. Classes are identified by IRIs, i.e., they are also Web Resources themselves.

 	Type

 	A special Relationship that associates an Instance of a class to the Class it belongs to.

 	Instance

 	An element of a group of Resources represented by a particular Class.

 2. Specific Resources

 A Specific Resource serves as a wrapper around the selection of another Web Resource. This extra selection is done via Specifiers that can be:

 	Selector: Describe the desired segment of the source

 	State: Describe the desired representation of the source

 Specifiers MAY be External Web Resources with their own IRIs, such as in the example for the Selector construction, however it is RECOMMENDED that they be included in the representation to avoid requiring unnecessary network interactions to retrieve all of the information.

 Model

 	Term
 	Type
 	Description

 	@context
 	Property
 	This term is only necessary if the Specific Resource is to be considered as an RDF graph; it determines the meaning of the JSON in RDF.

If used, the Specific Resource MUST have 1 or more @context values and http://www.w3.org/ns/anno.jsonld MUST be one of them. If there is only one value, then it MUST be provided as a string.

 	id
 	Property
 	The identity of the Specific Resource
 A Specific Resource SHOULD have exactly 1 IRI that identifies it.

 	type
 	Relationship
 	The class of the Specific Resource

The Specific Resource SHOULD have the ResourceSelection class. This term is only necessary if the Specific Resource is to be considered as an RDF graph.

 	ResourceSelection
 	Class
 	The class of Specific Resources used for selectors.

The ResourceSelection class SHOULD be associated with a Specific Resource to be clear as to its role as a more specific region or state of another resource.

 	source
 	Relationship
 	The relationship between a Specific Resource and the resource that it is a more specific representation of, ie, the Source.

There MUST be exactly 1 source relationship associated with a Specific Resource. The source resource MAY be described in detail as in the core data model or be just the resource's IRI.

 3. Selectors

 Selection of part of a Web Resource requires two distinct entities:

 	the IRI of the overall resource; we will refer to this as the Source.

 	the identification for the part of that resource; we will refer to this as the Segment (of Interest).

 A Selector object is used to describe how to determine the Segment from within the Source resource. The nature of the Selector is dependent on the type of resource, as the methods to describe Segments from various media-types differ. These two entities are encapsulated in a Specific Resource.

 Example Use Case: Qitara wants to associate a selection of text in a web page with a slice of a dataset. She selects both using her client, and creates Specific Resources with Selectors for both entities before associating them with one another.

 Model

 	Term
 	Type
 	Description

 	selector
 	Relationship
 	The relationship between a Specific Resource and a Selector.

There MAY be 0 or more selector relationships associated with a Specific Resource. Multiple Selectors SHOULD select the same content, however some Selectors will not have the same precision as others. Consuming user agents MUST pick one of the described segments, if they are different.

 Example

 Example 1: Selectors

 {
 "source": "http://example.org/page1",
 "selector": "http://example.org/paraselector1"
}

 3.1 Fragment Selector

 As the most well understood mechanism for selecting a Segment is to use the fragment part of an IRI defined by the representation's media type, it is useful to allow this as a description mechanism via a Selector. This allows existing and future fragment specifications to be used with Specific Resources in a consistent way. To be clear about which fragment type is being used, the Selector may refer to the specification that defines it.

 Example Use Case: Ramona wants to associate part of a video as the description of an image. She selects the time range within the video and clicks that it is describing the target. Her client then creates the Annotation using a SpecificResource with a FragmentSelector.

 Model

 	Term
 	Type
 	Description

 	type
 	Relationship
 	The class of the Selector.
FragmentSelectors MUST have exactly 1 type and the value MUST be FragmentSelector.

 	FragmentSelector
 	Class
 	A resource which describes the Segment through the use of the fragment component of an IRI.

 	value
 	Property
 	The contents of the fragment component of an IRI that describes the Segment.
 The FragmentSelector MUST have exactly 1 value property.

 	conformsTo
 	Relationship
 	The relationship between the FragmentSelector and the specification that defines the syntax of the IRI fragment in the value property.

The Fragment Selector SHOULD have exactly 1 conformsTo link to the specification that defines the syntax of the fragment and MUST NOT have more than 1.

 It is RECOMMENDED to use FragmentSelector as a consistent method compatible with other means of describing SpecificResources, rather than using the IRI with a fragment directly. Consuming applications SHOULD be aware of both.

 The following IRIs are some of the specifications that define the semantics of fragments, and hence may be used with the conformsTo relationship. Other IRIs MAY also be used.

 	Name
 	Fragment Specification
 	Description

 	HTML
 	http://tools.ietf.org/rfc/rfc3236
 	[rfc3236] Example: namedSection

 	PDF
 	http://tools.ietf.org/rfc/rfc3778
 	[rfc3778] Example: page=10&viewrect=50,50,640,480

 	Plain Text
 	http://tools.ietf.org/rfc/rfc5147
 	[rfc5147] Example: char=0,10

 	XML
 	http://tools.ietf.org/rfc/rfc3023
 	[rfc3023] Example: xpointer(/a/b/c)

 	RDF/XML
 	http://tools.ietf.org/rfc/rfc3870
 	[rfc3870] Example: namedResource

 	CSV
 	http://tools.ietf.org/rfc/rfc7111
 	[rfc7111] Example: row=5-7

 	Media
 	http://www.w3.org/TR/media-frags/
 	[media-frags] Example: xywh=50,50,640,480

 	SVG
 	http://www.w3.org/TR/SVG/
 	[svg11] Example: svgView(viewBox(50,50,640,480))

 	EPUB3
 	http://www.idpf.org/epub/linking/cfi/epub-cfi.html
 	[cfi] Example: epubcfi(/6/4[chap01ref]!/4[body01]/10[para05]/3:10)

 Note

 The IRI that uses the fragment may be reconstructed by concatenating the source, a #, and the value. For example, the IRI from the example below would be http://example.org/video1#t=30,60.

 Example

 Example 2: Fragment Selector

 {
 "source": "http://example.org/video1",
 "selector": {
 "type": "FragmentSelector",
 "conformsTo": "http://www.w3.org/TR/media-frags/",
 "value": "t=30,60"
 }
}

 3.2 CSS Selector

 One of the most common ways to select elements in the HTML Document Object Model is to use CSS Selectors [css3-selectors]. CSS Selectors allow for a wide variety of well supported ways to describe the path to an element in a web page, and thus cover many of the basic use cases for selection. Results are not defined for when a CSS Selector is applied to a representation that does not conform to the Document Object Model.

 Example Use Case: Sally selects a paragraph in a web page that she wishes remove. Her client calculates a CSS path that cleanly identifies that element to be deleted.

 Model

 	Term
 	Type
 	Description

 	type
 	Relationship
 	The class of the Selector.
CssSelectors MUST have exactly 1 type and the value MUST be CssSelector.

 	CssSelector
 	Class
 	The type of the CSS Selector resource.

CSS Selectors MUST have this class associated with them.

 	value
 	Property
 	The CSS selection path to the Segment.

There MUST be exactly 1 value associated with a CSS Selector.

 Note

 Implementers SHOULD use only commonly supported features of CSS that directly contribute to selection of an element or content, rather than styling or transformation, in order to maximize interoperability between systems.

 Example

 Example 3: CSS Selector

 {
 "source": "http://example.org/page1.html",
 "selector": {
 "type": "CssSelector",
 "value": "#elemid > .elemclass + p"
 }
}

 3.3 XPath Selector

 Another common method of selecting elements and content within a resource that supports the Document Object Model (DOM), such as documents in XML or HTML, is to use an XPath selection [dom-level-3-xpath]. XPath allows a great deal of flexibility when describing the path through the structure to the selected content. Results are not defined for when an XPath Selector is applied to a representation that does not conform to the DOM.

 Note

 Implementers should note that the HTML5 specification allows parsers to add elements into the DOM that are considered to be missing. XPaths SHOULD be constructed to include these elements, rather than from the element structure in the document.

 Example Use Case: Teynika selects a span within a table in an HTML page and writes a note about the content. To refer explicitly to this element, her client carefully constructs an XPath to identify the relevant element.

 Model

 	Term
 	Type
 	Description

 	type
 	Relationship
 	The class of the Selector.
XPath Selectors MUST have exactly 1 type and the value MUST be XPathSelector.

 	XPathSelector
 	Class
 	The type of the XPath Selector resource.

XPath Selectors MUST have this class associated with them.

 	value
 	Property
 	The xpath to the selected segment.

There MUST be exactly 1 value associated with an XPath Selector.

 Note

 Implementers SHOULD use only commonly supported features of XPath that directly contribute to selection of an element or content in order to maximize interoperability between systems.

 Example

 Example 4: XPath Selector

 {
 "source": "http://example.org/page1.html",
 "selector": {
 "type": "XPathSelector",
 "value": "/html/body/p[2]/table/tr[2]/td[3]/span"
 }
}

 3.4 Text Quote Selector

 This Selector describes a range of text by copying it, and including some of the text immediately before (a prefix) and after (a suffix) it to distinguish between multiple copies of the same sequence of characters.

 For example, if the document was "abcdefghijklmnopqrstuvwxyz", one could select "efg" by a prefix of "abcd", the match of "efg" and a suffix of "hijk".

 Example Use Case: Ulrika selects a typo ('anotation') in a web page and adds a comment that it should be replaced with the correct spelling ('annotation').

 Model

 	Term
 	Type
 	Description

 	type
 	Relationship
 	The class of the Selector.
Text Quote Selectors MUST have exactly 1 type and the value MUST be TextQuoteSelector.

 	TextQuoteSelector
 	Class
 	The class for a Selector that describes a textual segment by means of quoting it, plus passages before or after it.
The TextQuoteSelector MUST have this class associated with it.

 	exact
 	Property
 	A copy of the text which is being selected, after normalization.

Each TextQuoteSelector MUST have exactly 1 exact property.

 	prefix
 	Property
 	A snippet of text that occurs immediately before the text which is being selected.

Each TextQuoteSelector SHOULD have exactly 1 prefix property, and MUST NOT have more than 1.

 	suffix
 	Property
 	The snippet of text that occurs immediately after the text which is being selected.

Each TextQuoteSelector SHOULD have exactly 1 suffix property, and MUST NOT have more than 1.

 The selection of the text MUST be in terms of unicode code points (the "character number"), not in terms of code units (that number expressed using a selected data type). Selections SHOULD NOT start or end in the middle of a grapheme cluster. The selection MUST be based on the logical order of the text, rather than the visual order, especially for bidirectional text. For more information about the character model of text used on the web, see [charmod].

 The text MUST be normalized before recording in the Annotation. Thus HTML/XML tags SHOULD be removed, and character entities SHOULD be replaced with the character that they encode. Note that this does not affect the state of the content of the document being annotated, only the way that the content is recorded in the Annotation document.

 If, after processing the prefix, exact, and suffix, the user agent discovers multiple matching text sequences, then the selection SHOULD be treated as matching all of the matches.

 Note

 If the content is under copyright or has other rights asserted on its use, then this method of selecting text is potentially dangerous. For example, a user might select the entire text of the document to annotate, which would not be desirable to copy into the Annotation and share. For static texts with access and/or distribution restrictions, the use of the Text Position Selector is perhaps more appropriate.

 Example

 Example 5: Text Quote Selector

 {
 "source": "http://example.org/page1",
 "selector": {
 "type": "TextQuoteSelector",
 "exact": "anotation",
 "prefix": "this is an ",
 "suffix": " that has some"
 }
}

 3.5 Text Position Selector

 This Selector describes a range of text by recording the start and end positions of the selection in the stream. Position 0 would be immediately before the first character, position 1 would be immediately before the second character, and so on. The start character is thus included in the list, but the end character is not.

 For example, if the document was "abcdefghijklmnopqrstuvwxyz", the start was 4, and the end was 7, then the selection would be "efg".

 Example Use Case: Valeria writes a review of an ebook that does not allow its content to be extracted and copied. Her client describes the selection using its start and end position in the content.

 Model

 	Term
 	Type
 	Description

 	type
 	Relationship
 	The class of the Selector.
Text Position Selectors MUST have exactly 1 type and the value MUST be TextPositionSelector.

 	TextPositionSelector
 	Class
 	The class for a Selector which describes a range of text based on its start and end positions.

The TextPositionSelector MUST have this class associated with it.

 	start
 	Property
 	The starting position of the segment of text. The first character in the full text is character position 0, and the character is included within the segment.

Each TextPositionSelector MUST have exactly 1 start property, and the value MUST be a non-negative integer.

 	end
 	Property
 	The end position of the segment of text. The character is not included within the segment.

Each TextPositionSelector MUST have exactly 1 end property, and the value MUST be a non-negative integer.

 The text MUST be selected and normalized in the same way as for the Text Quote Selector before counting the number of characters to determine the start and end positions.

 Note

 The use of this Selector does not require text to be copied from the Source document into the Annotation graph, unlike the Text Quote Selector, but is very brittle with regards to changes to the resource. Any edits or dynamically transcluded content may change the selection, and thus it is RECOMMENDED that a State be additionally used to help identify the correct representation.

 Example

 Example 6: Text Position Selector

 {
 "source": "http://example.org/ebook1",
 "selector": {
 "type": "TextPositionSelector",
 "start": 412,
 "end": 795
 }
}

 3.6 Data Position Selector

 Similar to the Text Position Selector, the Data Position Selector uses the same properties but works at the byte in bitstream level rather than the character in text level.

 Example Use Case: Wendy produces visualizations of regions of online disk images for forensic purposes. Her client generates the start and end positions from the binary stream, rather than the more human readable display she is using.

 Model

 	Term
 	Type
 	Description

 	type
 	Relationship
 	The class of the Selector.
Data Position Selectors MUST have exactly 1 type and the value MUST be DataPositionSelector.

 	DataPositionSelector
 	Class
 	The class for a Selector which describes a range of data based on its start and end positions within the byte stream.
The DataPositionSelector MUST have this class associated with it.

 	start
 	Property
 	The starting position of the segment of data. The first byte is character position 0.
Each DataPositionSelector MUST have exactly 1 start property.

 	end
 	Property
 	The end position of the segment of data. The last character is not included within the segment.
Each DataPositionSelector MUST have exactly 1 end property.

 Example

 Example 7: Data Position Selector

 {
 "source": "http://example.org/diskimg1",
 "selector": {
 "type": "DataPositionSelector",
 "start": 4096,
 "end": 4104
 }
}

 3.7 SVG Selector

 An SvgSelector defines an area through the use of the Scalable Vector Graphics [svg11] standard. This allows the user to select a non-rectangular area of the content, such as a circle or polygon by describing the region using SVG. The SVG may be either embedded or referenced as an External Web Resource.

 Note that the SvgSelector uses SVG to select an area of a resource. Segments of an SVG representation may also be selected using selectors, including the FragmentSelector or even an SvgSelector.

 Example Use Case: Xena is tagging an old map online with a diagonal region for a historical road. Her client creates SVG polygon to highlight the region by overlaying a transparent area with a different color.

 Model

 	Term
 	Type
 	Description

 	type
 	Relationship
 	The class of the Selector.
SVG Selectors MUST have exactly 1 type and the value MUST include SvgSelector.

 	SvgSelector
 	Class
 	The class for a Selector which defines a shape for the selected area using the SVG standard.
The Selector MUST have this class associated with it.

 	value
 	Property
 	The character sequence of the SVG content.
 There MAY be exactly 1 value property associated with the Selector, and if so the value of the property MUST be well-formed SVG XML.

 The dimensions of the SVG shape or canvas MUST be relative to the dimensions of the Source, such that scaling the shape's size to the full size of the image correctly describes the desired area.

 Note

 Implementers SHOULD use only commonly supported features of SVG that directly contribute to describing a region, rather than styling or transformation, in order to maximize interoperability between systems. It is NOT RECOMMENDED to include style information within the SVG element, nor Javascript, animation, text or other non-shape oriented information. Clients SHOULD ignore such information if present.

 Example

 Example 8: SVG Selector

 {
 "source": "http://example.org/map1",
 "selector": {
 "type": "SvgSelector",
 "id": "http://example.org/svg1"
 }
}

 Example 9: SVG Selector, embedded

 {
 "source": "http://example.org/map1",
 "selector": {
 "type": "SvgSelector",
 "value": "<svg:svg> ... </svg:svg>"
 }
}

 3.8 Range Selector

 Selections made by users may be extensive and/or cross over internal boundaries in the representation, making it difficult to construct a single selector that robustly describes the correct content. A Range Selector can be used to identify the beginning and the end of the selection by using other Selectors. In this way, two points can be accurately identified using the most appropriate selection mechanisms, and then linked together to form the selection. The selection consists of everything from the beginning of the starting selector through to the beginning of the ending selector, but not including it.

 Example Use Case: Yadira wants to comment on two adjacent cells in a table that is part of a web page. She selects the two cells and her client constructs XPaths to the the first cell, and the cell that immediately follows the second. Her client then creates a Range Selector with the first XPath Selector as the start, and the second XPath selector as the end.

 Model

 	Term
 	Type
 	Description

 	type
 	Relationship
 	The class of the Selector.
Range Selectors MUST have exactly 1 type and the value MUST be RangeSelector.

 	RangeSelector
 	Class
 	The type of the Range Selector resource.
Range Selectors MUST have this class associated with them.

 	startSelector
 	Relationship
 	The Selector which describes the inclusive starting point of the range.
There MUST be exactly 1 startSelector associated with a Range Selector.

 	endSelector
 	Relationship
 	The Selector which describes the exclusive ending point of the range.
There MUST be exactly 1 endSelector associated with a Range Selector. Both startSelector and endSelector SHOULD be of the same class.

 Example

 Example 10: Range Selector

 {
 "source": "http://example.org/page1.html",
 "selector": {
 "type": "RangeSelector",
 "startSelector": {
 "type": "XPathSelector",
 "value": "//table[1]/tr[1]/td[2]"
 },
 "endSelector": {
 "type": "XPathSelector",
 "value": "//table[1]/tr[1]/td[4]"
 }
 }
}

 3.9 Refinement of Selection

 It may be easier, more reliable or more accurate to specify the segment of interest of a resource as a selection of a selection, rather than as a selection of the complete resource. Particularly for resources that contain other resources, such as various packaging formats, this also allows decomposition of the selection mechanisms when the components do not have unique identifiers. This is accomplished by having selectors chained together, where each refines the results of the previous one.

 Example Use Case: Zara selects a paragraph of text and then a short phrase within it to remove. Her client records the phrase as a TextQuoteSelector that further modifies a FragmentSelector used to identify the paragraph that the phrase is part of.

 Model

 	Term
 	Type
 	Description

 	refinedBy
 	Relationship
 	The relationship between a broader selector and the more specific selector that should be applied to the results of the first.
A Selector MAY be refinedBy 1 or more other Selectors. If more than 1 is given, then they are considered to be alternatives that will result in the same selection.

 Example

 Example 11: Selector Refinement

 {
 "source": "http://example.org/page1",
 "selector": {
 "type": "FragmentSelector",
 "value": "para5",
 "refinedBy": {
 "type": "TextQuoteSelector",
 "exact": "Selected Text",
 "prefix": "text before the ",
 "suffix": " and text after it"
 }
 }
}

 4. States

 A State describes the intended state of a resource when selected, and thus provides the information needed to retrieve the correct representation of that resource. Web resources change over time, and a State might be used to describe how to recover the intended previous version. Web resources also have multiple formats, and a State might equally be used to describe how to retrieve that particular format.

 The state aspect of a Web Resource requires two distinct entities:

 	the IRI of the overall resource; this is the same Source as used for Selectors (see 3. Selectors).

 	the identification for the state of the resource.

 A State object is used to describe how to determine the state of interest from within the Source resource. These two entities are encapsulated in a Specific Resource.

 Example Use Case: Alexandra visualizes data on a web page that changes frequently. Her client records information to allow other clients to hopefully reconstruct the original visualization.

 Model

 	Term
 	Type
 	Description

 	state
 	Relationship
 	The relationship between the Specific Resource and the State.
There MAY be 0 or more state relationships for each Specific Resource. Multiple States SHOULD select the same content, however some States will not have the same precision as others. Consuming user agents MUST pick one of the described segments, if they are different.

 States MUST be processed before processing Selector information.

 Example

 Example 12: State

 {
 "source": "http://example.org/page1",
 "state": {
 "id": "http://example.org/state1"
 }
}

 4.1 Time State

 A Time State resource records the time at which the resource is when the intended selection occurs, typically the time that the resource was created and/or a link to a persistent copy of the current version. The timestamp for the resource could be resolved via the Memento protocol, described in RFC 7089 [rfc7089].

 Example Use Case: Britney makes a note about the current state of the front page of a news website, and flags that the page is likely to change often. Her client adds in a State with the current time to describe the version of the page.

 Model

 	Term
 	Type
 	Description

 	type
 	Relationship
 	The class of the State.
Time States MUST have exactly 1 type and the value MUST be TimeState.

 	TimeState
 	Class
 	A description of how to retrieve a representation of the Source resource that is temporally appropriate for the Annotation.
The State MUST have this class associated with it.

 	sourceDate
 	Property
 	The timestamp at which the Source resource should be interpreted.
There MAY be 0 or more sourceDate properties per TimeState. If there is more than 1, each gives an alternative timestamp at which the Source may be interpreted. The timestamp MUST be expressed in the xsd:dateTime format, and MUST use the UTC timezone expressed as "Z". If sourceDate is provided, then sourceDateStart and sourceDateEnd MUST NOT be provided.

 	sourceDateStart
 	Property
 	The timestamp that begins the interval over which the
 Source
 resource should be interpreted.
There MAY be exactly 1 sourceDateStart property per TimeState. The timestamp MUST be expressed in the xsd:dateTime format, and MUST use the UTC timezone expressed as "Z". If sourceDateStart is provided then sourceDateEnd MUST also be provided.

 	sourceDateEnd
 	Property
 	The timestamp that ends the interval over which the
 Source
 resource should be interpreted.
There MAY be exactly 1 sourceDateEnd property per TimeState. The timestamp MUST be expressed in the xsd:dateTime format, and MUST use the UTC timezone expressed as "Z". If sourceDateEnd is provided then sourceDateStart MUST also be provided.

 	cached
 	Relationship
 	A link to a copy of the
 Source
 resource's representation, appropriate for the application.
There MAY be 0 or more cached relationships per TimeState. If there is more than 1, each gives an alternative copy of the representation.

 Example

 Example 13: Time State

 {
 "source": "http://example.org/page1",
 "state": {
 "type": "TimeState",
 "cached": "http://archive.example.org/copy1",
 "sourceDate": "2015-07-20T13:30:00Z"
 }
}

 4.2 Request Header State

 As there are potentially many representations that can be delivered from a resource with a single IRI, and a selection may only apply to one of them, it is important to be able to record the HTTP Request headers that need to be sent to retrieve the correct representation. The HttpRequestState resource maintains a copy of the headers to be replayed when obtaining the representation.

 Example Use Case: Carla retrieves a PDF representation of a web resource that can deliver HTML, PDF or plain text and then writes a description about it. She signals that her description is only about the PDF representation. Her client then includes a State to describe how to retrieve the target representation.

 Model

 	Term
 	Type
 	Description

 	type
 	Relationship
 	The class of the State.
Request Header States MUST have exactly 1 type and the value MUST be HttpRequestState.

 	HttpRequestState
 	Class
 	A description of how to retrieve an appropriate representation of the Source resource, based on the HTTP Request headers to send on the request.
The State MUST have this class associated with it.

 	value
 	Property
 	The HTTP request headers to send as a single, complete string.
An HttpRequestState MUST have exactly 1 value property.

 Note

 The representation retrieved from the server by the original annotator's client might not be completely determined by request headers alone. For example, the IP address of the client might also determine the language of the representation, based on the language of the country the user was present in at the time. If the server returns a Content-Location header, then the client might instead use it as the target of the Annotation, rather than the IRI that was requested.

 Example

 Example 14: HTTP Request State

 {
 "source": "http://example.org/resource1",
 "state": {
 "type": "HttpRequestState",
 "value": "Accept: application/pdf"
 }
}

 4.3 Refinement of State

 Similar to the refinement of selection, it may be easier, more reliable or more accurate to specify the appropriate state of the resource as a hierarchy of atomic State resources. This is particularly appropriate for representing the combination of a State that reflects an internal transformation along with the results of a State that describes an external request. This decomposition is accomplished by having the states chained together in the same way as Selectors.

 Further, given that the State(s) will likely result in a specific representation, there may be specific Selectors that are appropriate for describing the segment of the representation. In order to accommodate this, States may also be refined by Selectors.

 Example Use Case: Devina writes a comment about a travel e-book which has many versions available over time, and is available in different formats. She is particularly commenting on a specific version and format, so her client adds both a TimeState to capture the time and an HttpRequestState to capture the format.

 Model

 	Term
 	Type
 	Description

 	refinedBy
 	Relationship
 	The relationship between a broader State and either a more specific State or a Selector that SHOULD be applied to the results of the first.

Each State MAY be refinedBy 1 or more other States or Selectors. If more than 1 is given, then they are considered to be alternatives that will result in the same result.

 Example

 Example 15: Refinement of States

 {
 "source": "http://example.org/ebook1",
 "state": {
 "type": "TimeState",
 "sourceDate": "2016-02-01T12:05:23Z",
 "refinedBy": {
 "type": "HttpRequestState",
 "value": "Accept: application/epub+zip"
 }
 }
}

 5. Selectors and States as Fragment Identifiers

 Although Selectors and States provide a flexible way of identifying, e.g., a suitable Segment of a Resource, the fact that this is defined through an indirection using a Specific Resource may be an obstacle for some applications. For example, many RDF tools rely on a single IRI to identify and dereference a given resource, and the extra indirection introduced by Selectors and States would be considered to be a problem.

 To mitigate this issue, a mapping of Selectors and States on IRI fragments [url] is defined below. As a result of this mapping the targeted Segment, or the relevant state, is expressed in a single (albeit complex) IRI. In that IRI the Selector, respectively the State, is expressed as a single string and serves as a fragment combined with the IRI of the Source. Note that this representation is valid only if the IRI for the Source does not contain a fragment identifier of its own (an IRI may contain at most one fragment identification).

 The syntax for mapping a Selector, respectively a State, follows the same, “functional” syntax as used, for example, by the XPointer Framework [xptr-framework]:

 	The fragment uses the selector(…), respectively the state(…), functional syntax

 	The (comma separated) “parameters” of the functional notation are:

 	For the keys refinedBy, startSelector, and endSelector the syntax is key=selector(…), respectively key=state(…) when appropriate, with the value following, recursively, the same syntax as the full fragment;

 	otherwise the key, and the corresponding value, follows the simple key=value syntax, e.g., type=FragmentSelector.

 	For types and properties other than those specified in the Web Annotation model, the full IRI MUST be used.

 (see the examples below.)

 The values SHOULD be percent encoded [rfc3986]; the encoding is a MUST for characters that may make the fragment ambiguous, namely:

 	character
 	code

 	space
 	%20

 	=
 	%3D

 	,
 	%2C

 	#
 	%23

 Note

 A fragment identifier is defined for a specific media type. This means that, formally, the fragment identifier syntax and semantics defined in this section should be registered for each media type separately by IANA. Until such a registration is done, these fragment identifiers have the potential to conflict with other fragments possibly specified by the media type registrations. Consequently, this pattern should only be used when the implementation cannot produce or manage the full representation described above.

 5.1 JSON examples converted to fragment identifiers

 This section contains a mapping of all examples used in the definion of Selectors and States onto full IRI-s with fragment identifiers. Note that the examples below have been, in some cases, broken into several lines for a greater readability; in real usage such new lines are not allowed in an IRI.

 Note

 A simple converter tool is also available to test the conversion of the JSON format to fragment and back.

 Example for a 3.1 Fragment Selector

 Example 16: Fragment Selector as Fragment

 http://example.org/video1
 #selector(type=FragmentSelector,conformsTo=http://www.w3.org/TR/media-frags,
 value=t%3D30%2C60)

 Example for a 3.2 CSS Selector

 Example 17: CSS Selector as Fragment

 http://example.org/page1.html
 #selector(type=CssSelector,value=%23elemid%20>%20.elemclass%20+%20p)

 Example for a 3.3 XPath Selector

 Example 18: XPath Selector as Fragment

 http://example.org/page1.html
 #selector(type=XPathSelector,value=/html/body/p[2]/table/tr[2]/td[3]/span)

 Example for a 3.4 Text Quote Selector

 Example 19: Text Quote Selector as Fragment

 http://example.org/page1
 #selector(type=TextQuoteSelector,exact=annotation,prefix=this%20is%20an%20,
 suffix=%20that%20has%20some)

 Example for a 3.5 Text Position Selector

 Example 20: Text Position Selector as Fragment

 http://example.org/ebook1
 #selector(type=TextPositionSelector,start=412,end=795)

 Example for a 3.6 Data Position Selector

 Example 21: Data Position Selector as Fragment

 http://example.org/diskimg1
 #selector(type=DataPositionSelector,start=4096,end=4104)

 First example for a 3.7 SVG Selector

 Example 22: SVG Selector as Fragment, referring to an external SVG

 http://example.org/map1
 #selector(type=SvgSelector,id=http://example.org/svg1)

 Second example for a 3.7 SVG Selector

 Example 23: SVG Selector as Fragment, using embedded SVG

 http://example.org/map1
 #selector(type=SvgSelector,
 value=<svg:svg>%20...%20</svg:svg>)

 Please note that long SVG representations will produce very long URLs when produced according to this pattern. Care should be taken in environments where there is a character limit to URLs, and implementers should consider publishing the SVG as a separate resource and using its IRI as shown in Example 22.

 Example for a 3.8 Range Selector

 Example 24: Range Selector as Fragment

 http://example.org/page1.html
 #selector(type=RangeSelector,
 startSelector=selector(type=XPathSelector,value=//table[1]/tr[1]/td[2]),
 endSelector=selector(type=XPathSelector,value=//table[1]/tr[1]/td[4]))

 Example for a 3.9 Refinement of Selection

 Example 25: Selector Refinement as Fragment

 http://example.org/page1
 #selector(type=FragmentSelector,value=para5,
 refinedBy=selector(type=TextQuoteSelector,exact=Selected%20Text,
 prefix=text%20before%20the%20,suffix=%20and%20text%20after%20it))

 Example for a 4.1 Time State

 Example 26: Time State as Fragment

 http://example.org/page1
 #state(type=TimeState,cached=http://archive.example.org/copy1,
 sourceDate=2015-07-20T13:30:00Z)

 Example for a 4.2 Request Header State

 Example 27: HTTP Request State as Fragment

 http://example.org/resource1
 #state(type=HttpRequestState,value=Accept:%20application/pdf)

 Example for a 4.3 Refinement of State

 Example 28: Refinement of States as Fragment

 http://example.org/ebook1
 #state(type=TimeState,sourceDate=2016-02-01T12:05:23Z,
 refinedBy=state(type=HttpRequestState,value=Accept:%20application/epub+zip))

 5.2 Serializing IRI to URL

 Care should be taken that to make use of a Selectors and States IRIs as URLs (i.e., not only as identifiers but as locators), each segment of the IRI must be mapped to a corresponding URL segment following [rfc3987]. Applying percent encoding method for entire IRI string might also cause unnecessary troubles. Some examples:

 Example 29: Text Quote Selector in Japanese as an IRI and a URL, respectively

 http://jp.example.org/page1
 #selector(type=TextQuoteSelector,
	 exact=ペンを,
	 prefix=私は、,
	 suffix=持っています)

http://jp.example.org/page1
 #selector(type=TextQuoteSelector,
	 exact=%E3%83%9A%E3%83%B3%E3%82%92,
	 prefix=%E7%A7%81%E3%81%AF%E3%80%81,
	 suffix=%E6%8C%81%E3%81%A3%E3%81%A6%E3%81%84%E3%81%BE%E3%81%99)

 Example 30: Percent Encoded Text Quote Selector as an IRI and a URL, respectively

 http://example.org/page1
 #selector(type=TextQuoteSelector,exact=annotation,
	 prefix=this%20is%20an%20,suffix=%20that%20has%20some)

http://example.org/page1
 #selector(type=TextQuoteSelector,exact=annotation,
	 prefix=this%2520is%2520an%2520,suffix=%2520that%2520has%2520some)

 Note that the IRI may also contain an internationalized domain name, which must be encoded as well (see [rfc3490]).

 6. Examples in Turtle

 This section contains all the examples used in the definion of Selectors and States expressed in [turtle], using the RDF vocabulary terms as defined in [annotation-vocab]. Note that, in contrast to the JSON examples, all examples below include the type definition, as an accepted practice in Linked Data environments. The namespaces used in the examples are:

 	Prefix
 	Namespace
 	Description

 	oa
 	http://www.w3.org/ns/oa#
 	[annotation-model]

 	dcterms
 	http://purl.org/dc/terms/
 	[dcterms]

 	rdf
 	http://www.w3.org/1999/02/22-rdf-syntax-ns#
 	[rdf-schema]

 Example for a 3.1 Fragment Selector

 Example 31: Fragment Selector in Turtle

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/video1> ;
 oa:hasSelector [
 a oa:FragmentSelector ;
 dcterms:conformsTo <http://www.w3.org/TR/media-frags/> ;
 rdf:value "t=30,60"
] .

 Example for a 3.2 CSS Selector

 Example 32: CSS Selector in Turtle

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/page1.html> ;
 oa:hasSelector [
 a oa:CssSelector ;
 rdf:value "#elemid > .elemclass + p"
] .

 Example for a 3.3 XPath Selector

 Example 33: XPath Selector in Turtle

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/page1.html> ;
 oa:hasSelector [
 a oa:XPathSelector ;
 rdfs:value "/html/body/p[2]/table/tr[2]/td[3]/span"
] .

 Example for a 3.4 Text Quote Selector

 Example 34: Text Quote Selector in Turtle

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/page1> ;
 oa:hasSelector [
 a oa:TextQuoteSelector ;
 oa:exact "anotation" ;
 oa:prefix "this is an " ;
 oa:suffix " that has some"
].

 Example for a 3.5 Text Position Selector

 Example 35: Text Position Selector in Turtle

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/ebook1> ;
 oa:hasSelector [
 a oa:TextPositionSelector ;
 oa:start 412 ;
 oa:end 795
].

 Example for a 3.6 Data Position Selector

 Example 36: Data Position Selector in Turtle

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/diskimg1> ;
 oa:hasSelector [
 a oa:DataPositionSelector ;
 oa:start 4096 ;
 oa:end 4104
].

 First example for a 3.7 SVG Selector

 Example 37: SVG Selector as Fragment, referring to an external SVG

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/map1> ;
 oa:hasSelector <http://example.org/svg1> .
<http://example.org/svg1> a oa:SvgSelector.

 Second example for a 3.7 SVG Selector

 Example 38: SVG Selector as Fragment, using embedded SVG

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/map1> ;
 oa:hasSelector [
 a oa:SvgSelector ;
 rdf:value "<svg:svg> ... </svg:svg>"
] .

 Example for a 3.8 Range Selector

 Example 39: Range Selector in Turtle

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/page1> ;
 oa:hasSelector [
 a oa:RangeSelector ;
 oa:hasStartSelector [
 a oa:XPathSelector ;
 rdfs:value "//table[1]/tr[1]/td[2]"
] ;
 oa:hasEndSelector [
 a oa:XPathSelector ;
 rdfs:value "//table[1]/tr[1]/td[4]"
]
] .

 Example for a 3.9 Refinement of Selection

 Example 40: Selector Refinement in Turtle

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/page1> ;
 oa:hasSelector [
 a oa:FragmentSelector ;
 rdf:value "para5" ;
 oa:refinedBy [
 a oa:TextQuoteSelector ;
 oa:exact "Selected Text" ;
 oa:prefix "text before the " ;
 oa:suffix "and text after it"
]
] .

 Example for a 4.1 Time State

 Example 41: Time State in Turtle

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/page1> ;
 oa:hasState [
 a oa:TimeState ;
 oa:cachedSource <http://example.org/copy1> ;
 oa:sourceDate "2015-07-20T13:30:00Z"
] .

 Example for a 4.2 Request Header State

 Example 42: HTTP Request State in Turtle

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/resource1> ;
 oa:hasState [
 a oa:HttpRequestState ;
 rdf:value "Accept: application/pdf"
] .

 Example for a 4.3 Refinement of State

 Example 43: Refinement of States in Turtle

 [] a oa:ResourceSelection;
 oa:hasSource <http://example.org/ebook1> ;
 oa:hasState [
 a oa:TimeState ;
 oa:sourceDate "2016-02-01T12:05:23Z" ;
 oa:refinedBy [
 a oa:HttpRequestState ;
 rdf:value "Accept: application/epub+zip"
]
] .

 A. Correspondence Among Media Types and Selectors

 Not all Selectors are relevant for all media types; some combinations are meaningless or not formally defined. An implementation may therefore ignore certain types of Selectors in case the corresponding media types are not handled by that particular implementation.

 The table below shows the correspondence among the main media types addressed in this specification and Selector types. The meaning of the table elements, and their effect on implementation conformance, is as follows.

 	A “✔︎” sign in the table means that the Selector type is relevant for that particular media types. A conforming implementation MUST implement that particular combination if it handles the corresponding media type.

 	A “✘” sign in the table means that the Selector type is not relevant for that particular media types. Conforming implementations SHOULD ignore that particular combination.

 	A “?” means that it is not possible to specify, in general, whether that particular combination is meaningful (e.g., fragment identifiers are defined for specific media types, i.e., specific text media types other than plain text may have fragments defined but they are not listed in the table). In other cases the usefulness of such combination is not clear (e.g., Data Position selectors for binary images). Conforming implementations MAY implement that particular combination.

 	
 	Fragment
 	CSS
 	XPath
 	Text Quote
 	Text Position
 	Data Position
 	Svg

 	HTML (text/html)
 	✔︎
 	✔︎
 	✔︎
 	✔︎
 	✔︎
 	✘
 	✘

 	CSV (text/csv)
 	✔︎
 	✘
 	✘
 	✔︎
 	✔︎
 	✘
 	✘

 	Plain Text (text/plain)
 	✔︎
 	✘
 	✘
 	✔︎
 	✔︎
 	✘
 	✘

 	Other text files (text/*)
 	?
 	✘
 	✘
 	✔︎
 	✔︎
 	✘
 	✘

 	EPUB2, EPUB3 (application/epub+zip)
 	✔︎
 	✘
 	✘
 	✔︎
 	✘
 	✘
 	✘

 	PDF (application/pdf)
 	✔︎
 	✘
 	✘
 	✔︎
 	✔︎
 	✘
 	✘

 	XML (application/xml, application/*+xml)
 	✔︎
 	✔︎
 	✔︎
 	✔︎
 	✔︎
 	✘
 	✘

 	SVG (image/svg+xml)
 	✔︎
 	✔︎
 	✔︎
 	✔︎
 	✔︎
 	✘
 	✔︎

 	Image, other than SVG (image/gif, image/jpeg, image/png, image/tiff)

 	✔︎
 	✘
 	✘
 	✘
 	✘
 	?
 	✔︎

 	Video (video/*)
 	✔︎
 	✘
 	✘
 	✘
 	✘
 	?
 	✔︎

 	Binary Data Files
 	?
 	✘
 	✘
 	✘
 	✘
 	✔︎
 	✘

 A.1 Additional Media Types/Selector Combination

 This section is non-normative.

 The table below contains some other, possible combinations of media types and selector types, which MAY be implemented but are not mandated by this specification. Some of these combinations may also form the basis for defining new, implementation-specific selector extensions.

 Additional relationships among other media types and selector types

 	
 	Fragment
 	CSS
 	XPath
 	Text Quote
 	Text Position
 	Data Position
 	Svg

 	CSS (text/css)
 	✘
 	✘
 	✘
 	✔︎
 	✔︎
 	✘
 	✘

 	TSV (text/tab-separated-values)
 	✔︎✝
 	✘
 	✘
 	✔︎
 	✔︎
 	✘
 	✘

 	RDF/Turtle (text/turtle)
 	✔︎✝
 	✘
 	✘
 	?
 	?
 	✘
 	✘

 	JSON (application/json, application/*+json)
 	✘
 	✘
 	✘
 	✔︎
 	?
 	✘
 	✘

 	Programming languages (application/javascript, python files, etc.)
 	✘
 	✘
 	✘
 	✔︎
 	?
 	✘
 	✘

 	
 ✝Fragments are not formally defined through IETF, though there are well-known connections to existing fragments or practices

 B. Index of JSON Terms

 	Term
 	Usage

 	cached
 	Time State

 	conformsTo
 	Fragment Selector

 	end
 	Text Position Selector, Data Position Selector

 	endSelector
 	Range Selector

 	exact
 	Text Quote Selector

 	prefix
 	Text Quote Selector

 	refinedBy
 	Selector, State

 	selector
 	Specific Resource

 	source
 	Specific Resource

 	sourceDate
 	Time State

 	sourceDateEnd
 	Time State

 	sourceDateStart
 	Time State

 	start
 	Text Position Selector, Data Position Selector

 	startSelector
 	Range Selector

 	state
 	Specific Resource

 	suffix
 	Text Quote Selector

 	type
 	Note: Every object MAY have a type.
 Specific Resource, Fragment Selector, CSS Selector, XPath Selector, Text Quote Selector, Text Position Selector, Data Position Selector, SVG Selector, Time State, Request Header State

 	value
 	Fragment Selector, CSS Selector, SVG Selector, XPath Selector, Request Header State

 C. Acknowledgements

 The Web Annotation Working Group gratefully acknowledges the contributions of the Open Annotation Community Group. The output of the Community Group was fundamental to the current data model. In particular the editors would like to thank Herbert Van de Sompel of Los Alamos National Laboratory for his editorial contributions throughout the Community Group process.

 The following people have been instrumental in providing thoughts, feedback, reviews, content, criticism and input in the creation of this specification:

 Vladimir Alexiev, Art Barstow, Tim Berners-Lee, Chris Birk, Dan Brickley, Sarven Capadisli, Paolo Ciccarese, Tim Cole, Ray Denenberg, TB Dinesh, Sergiu Gordea, Benjamin Goering, Amy Guy, Ivan Herman, Frederick Hirsch, Antoine Isaac, Jacob Jett, Takeshi Kanai, Gregg Kellogg, Andreas Kuckartz, Randall Leeds, Hugo Manguinhas, Ben De Meester, Luc Moreau, Addison Phillips, Davis Salisbury, Robert Sanderson, Felix Sasaki, Doug Schepers, Tzviya Siegman, Stian Soiland-Reyes, Manu Sporny, Nick Stenning, Jon Stroop, Lutz Suhrbier, Kyrce Swenson, Raphaël Troncy, Simeon Warner, Erik Wilde, Dan Whaley, Benjamin Young

 D. References

 D.1 Informative references

 	[annotation-model]

 	Web Annotation Data Model. Robert Sanderson; Paolo Ciccarese; Benjamin Young. W3C. W3C Recommendation. URL: http://www.w3.org/TR/annotation-model/

	[annotation-vocab]

 	Web Annotation Vocabulary. Robert Sanderson; Paolo Ciccarese; Benjamin Young. W3C. W3C Recommendation. URL: http://www.w3.org/TR/annotation-vocab/

	[cfi]

 	EPUB Canonical Fragment Identifiers. Peter Sorotokin; Garth Conboy; Brady Duga; John Rivlin; Don Beaver; Kevin Ballard; Alastair Fettes; Daniel Weck. IDPF. Recommended Specification. URL: http://www.idpf.org/epub/linking/cfi/epub-cfi-20140628.html

	[charmod]

 	Character Model for the World Wide Web 1.0: Fundamentals. Martin Dürst; François Yergeau; Richard Ishida; Misha Wolf; Tex Texin et al. W3C. 15 February 2005. W3C Recommendation. URL: https://www.w3.org/TR/charmod/

	[css3-selectors]

 	Selectors Level 3. Tantek Çelik; Elika Etemad; Daniel Glazman; Ian Hickson; Peter Linss; John Williams et al. W3C. 29 September 2011. W3C Recommendation. URL: https://www.w3.org/TR/css3-selectors/

	[dcterms]

 	DCMI Metadata Terms. Dublin Core metadata initiative.14 June 2012. DCMI Recommendation. URL: http://dublincore.org/documents/dcmi-terms/

	[dom-level-3-xpath]

 	Document Object Model (DOM) Level 3 XPath Specification. Ray Whitmer. W3C. 26 February 2004. W3C Note. URL: https://www.w3.org/TR/DOM-Level-3-XPath/

	[json]

 	The application/json Media Type for JavaScript Object Notation (JSON). D. Crockford. IETF. July 2006. Informational. URL: https://tools.ietf.org/html/rfc4627

	[json-ld]

 	JSON-LD 1.0. Manu Sporny; Gregg Kellogg; Markus Lanthaler. W3C. 16 January 2014. W3C Recommendation. URL: https://www.w3.org/TR/json-ld/

	[media-frags]

 	Media Fragments URI 1.0 (basic). Raphaël Troncy; Erik Mannens; Silvia Pfeiffer; Davy Van Deursen. W3C. 25 September 2012. W3C Recommendation. URL: https://www.w3.org/TR/media-frags/

	[rdf-schema]

 	RDF Schema 1.1. Dan Brickley; Ramanathan Guha. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf-schema/

	[rdf11-concepts]

 	RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak; David Wood; Markus Lanthaler. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf11-concepts/

	[rfc3023]

 	XML Media Types. M. Murata; S. St. Laurent; D. Kohn. IETF. January 2001. Proposed Standard. URL: https://tools.ietf.org/html/rfc3023

	[rfc3236]

 	The 'application/xhtml+xml' Media Type. M. Baker; P. Stark. IETF. January 2002. Informational. URL: https://tools.ietf.org/html/rfc3236

	[rfc3490]

 	Internationalizing Domain Names in Applications (IDNA). P. Faltstrom; P. Hoffman; A. Costello. IETF. March 2003. Proposed Standard. URL: https://tools.ietf.org/html/rfc3490

	[rfc3778]

 	The application/pdf Media Type. E. Taft; J. Pravetz; S. Zilles; L. Masinter. IETF. May 2004. Informational. URL: https://tools.ietf.org/html/rfc3778

	[rfc3870]

 	application/rdf+xml Media Type Registration. A. Swartz. IETF. September 2004. Informational. URL: https://tools.ietf.org/html/rfc3870

	[rfc3986]

 	Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter. IETF. January 2005. Internet Standard. URL: https://tools.ietf.org/html/rfc3986

	[rfc3987]

 	Internationalized Resource Identifiers (IRIs). M. Duerst; M. Suignard. IETF. January 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc3987

	[rfc5147]

 	URI Fragment Identifiers for the text/plain Media Type. E. Wilde; M. Duerst. IETF. April 2008. Proposed Standard. URL: https://tools.ietf.org/html/rfc5147

	[rfc7089]

 	HTTP Framework for Time-Based Access to Resource States -- Memento. H. Van de Sompel; M. Nelson; R. Sanderson. IETF. December 2013. Informational. URL: https://tools.ietf.org/html/rfc7089

	[rfc7111]

 	URI Fragment Identifiers for the text/csv Media Type. M. Hausenblas; E. Wilde; J. Tennison. IETF. January 2014. Informational. URL: https://tools.ietf.org/html/rfc7111

	[svg11]

 	Scalable Vector Graphics (SVG) 1.1 (Second Edition). Erik Dahlström; Patrick Dengler; Anthony Grasso; Chris Lilley; Cameron McCormack; Doug Schepers; Jonathan Watt; Jon Ferraiolo; Jun Fujisawa; Dean Jackson et al. W3C. 16 August 2011. W3C Recommendation. URL: https://www.w3.org/TR/SVG11/

	[turtle]

 	RDF 1.1 Turtle. Eric Prud'hommeaux; Gavin Carothers. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/turtle/

	[url]

 	URL Standard. Anne van Kesteren. WHATWG. Living Standard. URL: https://url.spec.whatwg.org/

	[webarch]

 	Architecture of the World Wide Web, Volume One. Ian Jacobs; Norman Walsh. W3C. 15 December 2004. W3C Recommendation. URL: https://www.w3.org/TR/webarch/

	[xptr-framework]

 	XPointer Framework. Paul Grosso; Eve Maler; Jonathan Marsh; Norman Walsh et al. W3C. 25 March 2003. W3C Recommendation. URL: https://www.w3.org/TR/xptr-framework/

 ↑

nav.xhtml

 Table of Contents

		Cover

		Introduction

		Specific Resources

		Selectors

		States

		Selectors and States as Fragment Identifiers

		Examples in Turtle

		Correspondence Among Media Types and Selectors

		Index of JSON Terms

		Acknowledgements

		References

 		Begin reading

 		Table of Contents

Icons/w3c_main.png

orcid_logo.png

