Mathematical Markup Language (MathML) Version 3.0 2nd Edition

W3C Recommendation 10 April 2014

This version: http://www.w3.org/TR/2014/REC-MathML3-20140410/

Latest MathML 3 version: http://www.w3.org/TR/MathML3/

Latest MathML Recommendation: http://www.w3.org/TR/MathML/

Previous versions:
http://www.w3.org/TR/2014/PER-MathML3-20140211/
http://www.w3.0rg/TR/2010/REC-MathML3-20101021/

Editors’ version: http://www.w3.org/Math/draft-spec/

Editors: David Carlisle (NAG)
Patrick Ion (Mathematical Reviews, American Mathematical Society)
Robert Miner (deceased) (Design Science, Inc.)

Principal Authors: Ron Ausbrooks, Stephen Buswell, David Carlisle, Giorgi Chavchanidze,
Stéphane Dalmas, Stan Devitt, Angel Diaz, Sam Dooley, Roger Hunter, Patrick Ion,
Michael Kohlhase, Azzeddine Lazrek, Paul Libbrecht, Bruce Miller,
Robert Miner (deceased), Chris Rowley, Murray Sargent, Bruce Smith, Neil Soiffer,
Robert Sutor, Stephen Watt

Please refer to the errata for this document, http://www.w3.org/Math/Documents/mathml3-errata.html
which may include some normative corrections.

In addition to the HTML version, this document is also available in these non-normative formats: diff
marked HTML version, XHTML+MathML version, single page HTML5+MathML version, and PDF
version.

See also http://www.w3.0rg/2005/11/Translations/Query ?titleMatch=MathML3 for translations of this
document.

Copyright © 1998-2014 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved.W3C liability,
trademark, document use and software licensing rules apply.

Abstract

This specification defines the Mathematical Markup Language, or MathML. MathML is a markup
language for describing mathematical notation and capturing both its structure and content. The goal of
MathML is to enable mathematics to be served, received, and processed on the World Wide Web, just
as HTML has enabled this functionality for text.

This specification of the markup language MathML is intended primarily for a readership consisting
of those who will be developing or implementing renderers or editors using it, or software that will
communicate using MathML as a protocol for input or output. It is not a User’s Guide but rather a
reference document.

MathML can be used to encode both mathematical notation and mathematical content. About thirty-
eight of the MathML tags describe abstract notational structures, while another about one hundred and
seventy provide a way of unambiguously specifying the intended meaning of an expression. Additional
chapters discuss how the MathML content and presentation elements interact, and how MathML ren-
derers might be implemented and should interact with browsers. Finally, this document addresses the
issue of special characters used for mathematics, their handling in MathML, their presence in Unicode,
and their relation to fonts.

http://www.w3.org/TR/2014/REC-MathML3-20140410/
http://www.w3.org/TR/MathML3/
http://www.w3.org/TR/MathML/
http://www.w3.org/TR/2014/PER-MathML3-20140211/
http://www.w3.org/TR/2010/REC-MathML3-20101021/
http://www.w3.org/Math/draft-spec/
http://www.w3.org/Math/Documents/mathml3-errata.html
overview.html
Overview-d.html
Overview-d.html
Overview.xml
mathml.html
http://www.w3.org/2005/11/Translations/Query?titleMatch=MathML3
http://www.w3.org/Consortium/Legal/ipr-notice.html#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice.html#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents.html
http://www.w3.org/Consortium/Legal/copyright-software.html

While MathML is human-readable, authors typically will use equation editors, conversion programs,
and other specialized software tools to generate MathML. Several versions of such MathML tools exist,
both freely available software and commercial products, and more are under development.

MathML was originally specified as an XML application and most of the examples in this specifica-
tion assume that syntax. Other syntaxes are possible most notably [HTMLS5] specifies the syntax for
MathML in HTML. Unless explictly noted, the examples in this specification are also valid HTML
syntax.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical
report can be found in the W3C technical reports index at http://www.w3.org/TR/.

This document was produced by the W3C Math Working Group as a Recommendation and is part of
the W3C Math Activity. The goals of the W3C Math Working Group are discussed in the W3C Math
WG Charter (revised July 2006). The authors of this document are the W3C Math Working Group
members. A list of participants in the W3C Math Working Group is available.

This document has been reviewed by W3C Members, by software developers, and by other W3C groups
and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable docu-
ment and may be used as reference material or cited from another document. W3C'’s role in making the
Recommendation is to draw attention to the specification and to promote its widespread deployment.
This enhances the functionality and interoperability of the Web.

All reported errata to the first edition have been addressed in this addition, and a full change log appears
in Appendix F. The diff-marked version linked in the frontmatter highlights all changes between the first
and second editions. In addition to incorporating errata, the main change in this addition is to recognise
that MathML parsing is also specified in [HTMLS5] and where necessary to note where HTML and
XML usage differ.

The Working Group maintains a comprehensive Test Suite. This is publicly available and developers are
encouraged to submit their results for display. The Test Results are public. They show at least two inter-
operable implementations for each essential test. Further details may be found in the Implementation
Report.

The MathML 2.0 (Second Edition) specification has been a W3C Recommendation since 2001. After
its recommendation, a W3C Math Interest Group collected reports of experience with the deployment
of MathML and identified issues with MathML that might be ameliorated. The rechartering of a Math
Working Group did not signal any change in the overall design of MathML. The major additions in
MathML 3 are support for bidirectional layout, better linebreaking and explicit positioning, elemen-
tary math notations, and a new strict content MathML vocabulary with well-defined semantics. The
MathML 3 Specification has also been restructured.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C
maintains a public list of any patent disclosures made in connection with the deliverables of the group;
that page also includes instructions for disclosing a patent. An individual who has actual knowledge
of a patent which the individual believes contains Essential Claim(s) must disclose the information in
accordance with section 6 of the W3C Patent Policy.

Public discussion of MathML and issues of support through the W3C for mathematics on the Web takes
place on the public mailing list of the Math Working Group (list archives). To subscribe send an email
to www-math-request@w3.org with the word subscribe in the subject line.

http://www.w3.org/TR/
http://www.w3.org/Math/
http://www.w3.org/Consortium/Process/tr#RecsW3C
http://www.w3.org/Math/Activity
http://www.w3.org/Math/Documents/Charter2006.html
http://www.w3.org/Math/Documents/Charter2006.html
http://www.w3.org/Math/testsuite/
http://www.w3.org/Math/testsuite/results/tests.html
http://www.w3.org/Math/Documents/mml3-implementation-report.html
http://www.w3.org/Math/Documents/mml3-implementation-report.html
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/35549/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
mailto:www-math@w3.org
http://lists.w3.org/Archives/Public/www-math/
mailto:www-math-request@w3.org

The basic chapter structure of this document is based on the earlier MathML 2.0 Recommendation
[MathML2]. That MathML 2.0 itself was a revision of the earlier W3C Recommendation MathML
1.01 [MathML1]; MathML 3.0 is a revision of the W3C Recommendation MathML 2.0. It differs from
it in that all previous chapters have been updated, some new elements and attributes added and some
deprecated. Much has been moved to separate documents containing explanatory material, material on
characters and entities and on the MathML DOM. The discussion of character entities has led to the
document XML Entity Definitions for Characters [Entities], which is now a W3C Recommendation.
The concern with use of CSS with MathML has led to the document A MathML for CSS Profile
[MathMLforCSS], which was a W3C Recommendation accompanying MathML 3.0.

The biggest differences from MathML 2.0 (Second Edition) are in Chapters 4 and 5, although there
have been smaller improvements throughout the specification. A more detailed description of changes
from the previous Recommendation follows.

° Much of the non-normative explication that formerly was found in Chapters 1 and 2, and
many examples from elsewhere in the previous MathML specifications, were removed from
the MathML3 specification and planned to be incorporated into a MathML Primer to be
prepared as a separate document. It is expected this will help the use of this formal MathML3
specification as a reference document in implementations, and offer the new user better help
in understanding MathML’s deployment. The remaining content of Chapters 1 and 2 has
been edited to reflect the changes elsewhere in the document, and in the rapidly evolving
Web environment. Some of the text in them went back to early days of the Web and XML,
and its explanations are now commonplace.

° Chapter 3, on presentation-oriented markup, adds new material on linebreaking, and on
markup for elementary math notations used in many countries (mstack, mlongdiv and
other associated elements). Other changes include revisions to the mglyph, mpadded and
maction elements and significant unification and cleanup of attribute values. Earlier work,
as recorded in the W3C Note Arabic mathematical notation, has allowed clarification of the
relationship with bidirectional text and examples with RTL text have been added.

° Chapter 4, on content-oriented markup, contains major changes and additions. The meaning
of the actual content remains as before in principle, but a lot of work has been done on
expressing it better. A few new elements have been added.

° Chapter 5 has been refined as its purpose has been further clarified to deal with the mixing
of markup languages. This chapter deals, in particular, with interrelations of parts of the
MathML specification, especially with presentation and content markup.

° Chapter 6 is a new addition which deals with the issues of interaction of MathML with a host
environment. This chapter deals with interrelations of the MathML specification with XML
and HTML, but in the context of deployment on the Web. In particular there is a discussion
of the interaction of CSS with MathML.

° Chapter 7 replaces the previous Chapter 6, and has been rewritten and reorganized to reflect
the new situation in regard to Unicode, and the changed W3C context with regard to named
character entities. The new W3C specification XML Entity Definitions for Characters, which
incorporates those used for mathematics has become a a W3C Recommendation, [Entities].

° The Appendices, of which there are eight shown, have been reworked. Appendix A now
contains the new RelaxNG schema for MathML3 as well as discussion of MathML3 DTD
issues. Appendix B addresses media types associated with MathML and implicitly consti-
tutes a request for the registration of three new ones, as is now standard for work from the
W3C. Appendix C contains a new simplified and reconsidered Operator Dictionary. Ap-
pendices D, E, F, G and H contain similar non-normative material to that in the previous
specification, now appropriately updated.

° A fuller discussion of the document’s evolution can be found in Appendix F.

http://www.w3.org/TR/2006/NOTE-arabic-math-20060131/

Contents

1 Introduction

1.1 Mathematics and its Notation
1.2 Originsand Goals
1.2.1 Design Goalsof MathML
1.3 Overview o e e e
1.4 AFirstExample
MathML Fundamentals
2.1 MathML Syntax and Grammar e
2.1.1 General Considerations
2.1.2 MathML and Namespaces v v v v v i i et et
2.1.3 Children versus Argumentsol
2.1.4 MathML and Rendering
2.1.5 MathML Attribute Values
2.1.6 Attributes Shared by all MathML Elements
2.1.7 Collapsing Whitespace inInput L.
2.2 The Top-Level <math>Element
221 Attributes
2.2.2 Deprecated Attributes
2.3 Conformance e e e
2.3.1 MathML Conformance i
2.3.2 Handlingof Errors
2.3.3 Attributes for unspecifieddata oL oL

Presentation Markup

3.1 Introduction e
3.1.1 What Presentation Elements Represent
3.1.2 Terminology Used In This Chapter
3.1.3 Required Arguments oL e e
3.1.4 Elements with Special Behaviors
3.1.5 Directionality
3.1.6 Displaystyle and Scriptlevel
3.1.7 Linebreaking of Expressions
3.1.8 Warning about fine-tuning of presentation
3.1.9 Summary of Presentation Elements
3.1.10 Mathematics style attributes common to presentation elements
32 TokenElements
3.2.1 Token Element Content Characters, <mglyph/>.
3.2.2 Mathematics style attributes common to token elements
323 Identifier<mi>

10
10
11
11

14
14
14
14
15
15
15
20
21
22
22
24
24
24
27
27

CONTENTS 5

324 Number<mn> e e e e e e e 46

3.2.5 Operator, Fence, Separator or Accent <mo> 47

32,6 Text<mtext> 60

327 Space <mspace/> 62

3.2.8 String Literal <ms> 64

3.3 General Layout Schemata L o 64
3.3.1 Horizontally Group Sub-Expressions <mrow> 64

3.3.2 Fractions <mfrac> 67

3.3.3 Radicals <msqrt>, <mroot> 69

3.3.4 Style Change <mstyle> 69

3.3.5 Error Message <merror> e e e 72

3.3.6 Adjust Space Around Content <mpadded>. 73

3.3.7 Making Sub-Expressions Invisible <mphantom> 78

3.3.8 Expression Inside Pair of Fences <mfenced> 80

3.3.9 Enclose Expression Inside Notation <menclose> 83

3.4 Scriptand Limit Schemata 85
34.1 Subscript<msub> L L e e 86

342 Superscript <mSUP> . . . v . o i e e e e e e e e e e e e e e e e 87

3.4.3 Subscript-superscript Pair <msubsup>o Lo 87

3.4.4 Underscript <munder> e e e e 88

345 Overscript <mOVeI>t e e e e e e &9

3.4.6 Underscript-overscript Pair <munderover> 91

3.4.7 Prescripts and Tensor Indices <mmultiscripts>, <mprescripts/>, <none/> 93

3.5 TabularMath e 95
3.5.1 Table or Matrix <mtable> 95

3.5.2 RowinTable or Matrix <mtr>, 99

3.5.3 Labeled Row in Table or Matrix <mlabeledtr> 99

3.5.4 Entry in Table or Matrix <mtd> 101

3.5.5 Alignment Markers <maligngroup/>, <malignmark/> 101

3.6 Elementary Math 110
3.6.1 Stacks of Characters <mstack> 111

3.6.2 LongDivision <mlongdiv>o 113

3.6.3 Group Rows with Similiar Positions <msgroup> 114

3.6.4 Rows in Elementary Math <msrow> 115

3.6.5 Carries, Borrows, and Crossouts <mscarries> 115

3.6.6 A Single Carry <mscarry> 116

3.6.7 Horizontal Line <msline/> 117

3.6.8 Elementary Math Examples 118

3.7 Enlivening EXpressions L e 124
3.7.1 Bind Action to Sub-Expression <maction> 124

3.8 Semantics and Presentation Lo 126
4 Content Markup 127
4.1 Introduction L 127
4.1.1 TheIntentof ContentMarkup 127
4.1.2 The Structure and Scope of Content MathML Expressions 128

413 StrictContentMathML o 128

4.1.4 Content Dictionaries e 129

4.1.5 Content MathML Concepts v v it i 130

4.2 Content MathML Elements Encoding Expression Structure 131

CONTENTS

4.2.1 Numbers <cn> e e 132
4.2.2 Content Identifiers <ci> Lo 138
4.2.3 Content Symbols <csymbol> 140
424 String Literals <cs> e 142
4.2.5 Function Application <apply> oL 143
4.2.6 Bindings and Bound Variables <bind>and <bvar>. 146
4277 Structure Sharing <share>., 148
4.2.8 Attribution via semantics L. oL oL oL 150
4.2.9 Error Markup <cerror> o oo oo 151
4.2.10 Encoded Bytes <cbytes> 152
4.3 Content MathML for Specific Structures 152
43.1 Container Markup 153
4.3.2 Bindings with <apply> e 154
433 Qualifiers e e 156
4.3.4 Operator Classes oo v v vt i ittt e 162
4.3.5 Non-strict Attributes 169
4.4 Content MathML for Specific Operators and Constants 170
44.1 Functionsand Inverses L 170
4.4.2 Arithmetic, Algebraand Logic 180
443 Relations 200
444 Calculus and Vector Calculus L 205
445 Theoryof Sets e 224
446 Sequencesand Series e e e e 233
447 Elementary classical functions 243
4.4.8 StatiStics oo e e e e 247
449 LinearAlgebra 253
4.4.10 Constant and Symbol Elements 260
4.5 Deprecated Content Elements oL 268
4.5.1 Declare <declare> 268
452 Relation<reln> 268
453 Relation<fn>. L 268
4.6 The Strict Content MathML Transformation 268
Mixing Markup Languages for Mathematical Expressions 272
5.1 Annotation Framework L 272
5.1.1 Annotationelements oL 272
5.1.2 Annotationkeys 273
5.1.3 Alternate representations e e e e e e e 274
5.14 Contentequivalents L 275
5.1.5 Annotationreferences o 276
5.2 Elements for Semantic Annotations oLl 276
5.2.1 The<semantics>element. 276
5.2.2 The <annotation>element 2717
5.2.3 The <annotation-xml>element 278
5.3 Combining Presentation and Content Markup 281
5.3.1 Presentation Markup in Content Markup 281
5.3.2 Content Markup in Presentation Markup 282
54 Parallel Markup e 282
54.1 Top-level Parallel Markup 282

5.4.2 Parallel Markup via Cross-References 283

CONTENTS

6 Interactions with the Host Environment

6.1
6.2

6.3

6.4

6.5

Introduction L
Invoking MathML Processors i
6.2.1 Recognizing MathMLin XML
6.2.2 Recognizing MathMLinHTML
6.2.3 Resource Types for MathML Documents
6.2.4 Names of MathML Encodings
Transferring MathML oL
6.3.1 Basic Transfer Flavor Names and Contents
6.3.2 Recommended Behaviors when Transferring
6.3.3 Discussion
6.3.4 Examples
Combining MathML and Other Formats
6.4.1 Mixing MathML and XHTML
6.4.2 Mixing MathML and non-XML contexts
6.4.3 Mixing MathMLand HTML
6.44 Linking
6.4.5 MathML and Graphical Markup
Using CSSwithMathML o
6.5.1 Order of processing attributes versus style sheets

7 Characters, Entities and Fonts

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Al
A2

A3

A4

AS
A6

Introduction
Unicode Character Data
Entity Declarations e
Special Characters Notin Unicode
Mathematical Alphanumeric Symbols
Non-Marking Characters e
Anomalous Mathematical Characters
7.7.1 Keyboard Characters
7.7.2 Pseudo-sCripts e e
7.7.3 Combining Characters i

Parsing MathML

Use of MathML as Well-Formed XML
Using the RelaxNG Schema forMathML3
A21 FullMathML e
A.2.2 Elements Common to Presentation and Content MathML
A.2.3 The Grammar for Presentation MathML
A.2.4 The Grammar for Strict Content MathML3
A.2.5 The Grammar for Content MathML
A.2.6 MathML as a module in a RelaxNG Schema
Using the MathML DTD o
A.3.1 Document ValidationIssues
A.3.2 Attribute values in the Math ML DTD
A.3.3 DOCTYPE declaration forMathML
Using the MathML XML Schema
A.4.1 Associating the MathML schema with MathML fragments
Parsing MathML in XHTML
Parsing MathMLin HTML

286
286
286
286
287
287
287
288
288
289
289
290
292
294
294
294
295
296
297
298

299
299
299
300
300
300
303
303
303
304
306

CONTENTS

Media Types Registrations 335
B.1 Selection of Media Types for MathML Instances 335
B.2 Media type for Generic MathML 336
B.3 Media type for Presentation MathML oo 337
B.4 Media type for Content MathML 338
Operator Dictionary (Non-Normative) 340
C.1 Indexing of the operator dictionary 340
C.2 Format of operator dictionary entries 340
C.3 Notes on 1space and rspace attributes 341
C.4 Operator dictionary €ntri€s v v v v v v vt e e e e 341
Glossary (Non-Normative) 379
Working Group Membership and Acknowledgments (Non-Normative) 383
E.1 The Math Working Group Membership 383
E.2 Acknowledgments 386
Changes (Non-Normative) 387
F.1 Changes between MathML 3.0 First Edition and Second Edition 387
F2 Changes between MathML 2.0 Second Edition and MathML 3.0 390
G Normative References 391
H References (Non-Normative) 393
Index (Non-Normative) 395
I.1 MathML Elements e 395

1.2 MathML Attributes e e 400

Chapter 1

Introduction

1.1 Mathematics and its Notation

A distinguishing feature of mathematics is the use of a complex and highly evolved system of two-
dimensional symbolic notation. As J. R. Pierce writes in his book on communication theory, math-
ematics and its notation should not be viewed as one and the same thing [Pierce1961]. Mathematical
ideas can exist independently of the notation that represents them. However, the relation between mean-
ing and notation is subtle, and part of the power of mathematics to describe and analyze derives from
its ability to represent and manipulate ideas in symbolic form. The challenge before a Mathematical
Markup Language (MathML) in enabling mathematics on the World Wide Web is to capture both no-
tation and content (that is, its meaning) in such a way that documents can utilize the highly evolved
notation of written and printed mathematics as well as the new potential for interconnectivity in elec-
tronic media.

Mathematical notation evolves constantly as people continue to innovate in ways of approaching and
expressing ideas. Even the common notation of arithmetic has gone through an amazing variety of
styles, including many defunct ones advocated by leading mathematical figures of their day [Cajori1928].
Modern mathematical notation is the product of centuries of refinement, and the notational conventions
for high-quality typesetting are quite complicated and subtle. For example, variables and letters which
stand for numbers are usually typeset today in a special mathematical italic font subtly distinct from
the usual text italic; this seems to have been introduced in Europe in the late sixteenth century. Spacing
around symbols for operations such as +, -, X and / is slightly different from that of text, to reflect con-
ventions about operator precedence that have evolved over centuries. Entire books have been devoted to
the conventions of mathematical typesetting, from the alignment of superscripts and subscripts, to rules
for choosing parenthesis sizes, and on to specialized notational practices for subfields of mathematics.
The manuals describing the nuances of present-day computer typesetting and composition systems can
run to hundreds of pages.

Notational conventions in mathematics, and in printed text in general, guide the eye and make printed
expressions much easier to read and understand. Though we usually take them for granted, we, as mod-
ern readers, rely on numerous conventions such as paragraphs, capital letters, font families and cases,
and even the device of decimal-like numbering of sections such as is used in this document. Such nota-
tional conventions are perhaps even more important for electronic media, where one must contend with
the difficulties of on-screen reading. Appropriate standards coupled with computers enable a broaden-
ing of access to mathematics beyond the world of print. The markup methods for mathematics in use
just before the Web rose to prominence importantly included TgX (also written TeX) [Knuth1986] and
approaches based on SGML ([AAP-math], [Poppelier1992] and [ISO-12083]).

It is remarkable how widespread the current conventions of mathematical notation have become. The
general two-dimensional layout, and most of the same symbols, are used in all modern mathematical
communications, whether the participants are, say, European, writing left-to-right, or Middle-Eastern,

10 Chapter 1. Introduction

writing right-to-left. Of course, conventions for the symbols used, particularly those naming functions
and variables, may tend to favor a local language and script. The largest variation from the most com-
mon is a form used in some Arabic-speaking communities which lays out the entire mathematical
notation from right-to-left, roughly in mirror image of the European tradition.

However, there is more to putting mathematics on the Web than merely finding ways of displaying
traditional mathematical notation in a Web browser. The Web represents a fundamental change in the
underlying metaphor for knowledge storage, a change in which interconnection plays a central role.
It has become important to find ways of communicating mathematics which facilitate automatic pro-
cessing, searching and indexing, and reuse in other mathematical applications and contexts. With this
advance in communication technology, there is an opportunity to expand our ability to represent, en-
code, and ultimately to communicate our mathematical insights and understanding with each other. We
believe that MathML as specified below is an important step in developing mathematics on the Web.

1.2 Origins and Goals

1.2.1 Design Goals of MathML

MathML has been designed from the beginning with the following ultimate goals in mind.
MathML should ideally:

Encode mathematical material suitable for all educational and scientific communication.
Encode both mathematical notation and mathematical meaning.

Facilitate conversion to and from other mathematical formats, both presentational and se-
mantic. Output formats should include:

— graphical displays

— speech synthesizers

— input for computer algebra systems

— other mathematics typesetting languages, such as TgX

— plain text displays, e.g. VT100 emulators

— international print media, including braille

It is recognized that conversion to and from other notational systems or media may entail
loss of information in the process.

Allow the passing of information intended for specific renderers and applications.

Support efficient browsing of lengthy expressions.

Provide for extensibility.

Be well suited to templates and other common techniques for editing formulas.

Be legible to humans, and simple for software to generate and process.

No matter how successfully MathML achieves its goals as a markup language, it is clear that MathML
is useful only if it is implemented well. The W3C Math Working Group has identified a short list of
additional implementation goals. These goals attempt to describe concisely the minimal functionality
MathML rendering and processing software should try to provide.

° MathML expressions in HTML (and XHTML) pages should render properly in popular Web
browsers, in accordance with reader and author viewing preferences, and at the highest qual-
ity possible given the capabilities of the platform.

° HTML (and XHTML) documents containing MathML expressions should print properly and
at high-quality printer resolutions.
° MathML expressions in Web pages should be able to react to user gestures, such those as

with a mouse, and to coordinate communication with other applications through the browser.

1.3. Overview 11

° Mathematical expression editors and converters should be developed to facilitate the creation
of Web pages containing MathML expressions.

The extent to which these goals are ultimately met depends on the cooperation and support of browser
vendors and other developers. The W3C Math Working Group has continued to work with other work-
ing groups of the W3C, and outside the W3C, to ensure that the needs of the scientific community will
be met. MathML 2 and its implementations showed considerable progress in this area over the situation
that obtained at the time of the MathML 1.0 Recommendation (April 1998) [MathML1]. MathML3
and the developing Web are expected to allow much more.

1.3 Overview

MathML is a markup language for describing mathematics. It is usually expressed in XML syntax,
although HTML and other syntaxes are possible. A special aspect of MathML is that there are two
main strains of markup: Presentation markup, discussed in Chapter 3, is used to display mathematical
expressions; and Content markup, discussed in Chapter 4, is used to convey mathematical meaning.
Content markup is specified in particular detail. This specification makes use of an XML format called
Content Dictionaries This format has been developed by the OpenMath Society, [OpenMath2004] with
the dictionaries being used by this specification involving joint development by the OpenMath Society
and the W3C Math Working Group.

Fundamentals common to both strains of markup are covered in Chapter 2, while the means for com-
bining these strains, as well as external markup, into single MathML objects are discussed in Chapter 5.
How MathML interacts with applications is covered in Chapter 6. Finally, a discussion of special sym-
bols, and issues regarding characters, entities and fonts, is given in Chapter 7.

14 A First Example

The quadratic formula provides a simple but instructive illustration of MathML markup.

—b+Vb?—4ac
x:
2a

MathML offers two flavors of markup of this formula. The first is the style which emphasizes the actual
presentation of a formula, the two-dimensional layout in which the symbols are arranged. An example
of this type is given just below. The second flavor emphasizes the mathematical content and an example
of it follows the first one.

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mo>-</mo>
<mi>b</mi>
</mrow>
<mo>±</mo>
<msqrt>

12 Chapter 1. Introduction

<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
<mo>-</mo>
<mrow>
<mn>4</mn>
<mo>⁢</mo>
<mi>a</mi>
<mo>⁢</mo>
<mi>c</mi>
</mrow>
</mrow>
</msqrt>
</mrow>
<mrow>
<mn>2</mn>
<mo>⁢</mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>

Consider the superscript 2 in this formula. It represents the squaring operation here, but the meaning
of a superscript in other situations depends on the context. A letter with a superscript can be used to
signify a particular component of a vector, or maybe the superscript just labels a different type of some
structure. Similarly two letters written one just after the other could signify two variables multiplied
together, as they do in the quadratic formula, or they could be two letters making up the name of a single
variable. What is called Content Markup in MathML allows closer specification of the mathematical
meaning of many common formulas. The quadratic formula given in this style of markup is as follows.

<apply>
<eq/>
<ci>x</ci>
<apply>
<divide/>
<apply>
<plus/>
<apply>
<minus/>
<ci>b</ci>
</apply>
<apply>
<root/>
<apply>
<minus/>
<apply>
<power/>
<ci>b</ci>
<cn>2</cn>

1.4. A First Example

</apply>
<apply>
<times/>
<cn>4</cn>
<ci>a</ci>
<ci>c</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<times/>
<cn>2</cn>
<ci>a</ci>
</apply>
</apply>
</apply>

13

Chapter 2

MathML Fundamentals

2.1 MathML Syntax and Grammar
2.1.1 General Considerations

The basic ‘syntax’ of MathML is defined using XML syntax, but other syntaxes that can encode labeled
trees are possible. Notably the HTML parser may also be used with MathML. Upon this, we layer a
‘grammar’, being the rules for allowed elements, the order in which they can appear, and how they
may be contained within each other, as well as additional syntactic rules for the values of attributes.
These rules are defined by this specification, and formalized by a RelaxNG schema [RELAX-NG].
The RelaxNG Schema is normative, but a DTD (Document Type Definition) and an XML Schema
[XMLSchemas] are provided for continuity (they were normative for MathML2). See Appendix A.

MathML’s character set consists of legal characters as specified by Unicode [Unicode], further restricted
by the characters not allowed in XML. The use of Unicode characters for mathematics is discussed in
Chapter 7.

The following sections discuss the general aspects of the MathML grammar as well as describe the
syntaxes used for attribute values.

2.1.2 MathML and Namespaces

An XML namespace [Namespaces] is a collection of names identified by a URI. The URI for the
MathML namespace is:

http://www.w3.0rg/1998/Math/MathML

To declare a namespace when using the XML serialisation of MathML, one uses an xm1ns attribute, or
an attribute with an xmlns prefix. When the xm1lns attribute is used alone, it sets the default namespace
for the element on which it appears, and for any child elements. For example:

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...</mrow>
</math>

When the xmlns attribute is used as a prefix, it declares a prefix which can then be used to explicitly
associate other elements and attributes with a particular namespace. When embedding MathML within
XHTML, one might use:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:math><m:mrow>...</m:mrow></m:math>
</body>

14

2.1. MathML Syntax and Grammar 15

HTML does not support namespace extensibility in the same way, the HTML parser has in-built
knowledge of the HTML, SVG and MathML namespaces. xmlns attributes are just treated as nor-
mal attributes. Thus when using the HTML serialisation of MathML, prefixed element names must not
be used. xmlns="http://wuw.w3.o0rg/1998/Math/MathML" may be used on the math element,
it will be ignored by the HTML parser, which always places math elements and its descendents in
the MathML namespace (other than special rules described in Appendix Afor invalid input, and for
annotation-xml. If a MathML expression is likely to be in contexts where it may be parsed by an
XML parser or an HTML parser, it SHOULD use the following form to ensure maximum compatibility:

<math xmlns="http://www.w3.org/1998/Math/MathML">
</math>
2.1.3 Children versus Arguments

Most MathML elements act as ‘containers’; such an element’s children are not distinguished from each
other except as individual members of the list of children. Commonly there is no limit imposed on the
number of children an element may have. This is the case for most presentation elements and some
content elements such as set. But many MathML elements require a specific number of children,
or attach a particular meaning to children in certain positions. Such elements are best considered to
represent constructors of mathematical objects, and hence thought of as functions of their children.
Therefore children of such a MathML element will often be referred to as its arguments instead of
merely as children. Examples of this can be found, say, in Section 3.1.3.

There are presentation elements that conceptually accept only a single argument, but which for con-
venience have been written to accept any number of children; then we infer an mrow containing those
children which acts as the argument to the element in question; see Section 3.1.3.1.

In the detailed discussions of element syntax given with each element throughout the MathML spec-
ification, the correspondence of children with arguments, the number of arguments required and their
order, as well as other constraints on the content, are specified. This information is also tabulated for
the presentation elements in Section 3.1.3.

2.14 MathML and Rendering

MathML presentation elements only recommend (i.e., do not require) specific ways of rendering; this
is in order to allow for medium-dependent rendering and for individual preferences of style.

Nevertheless, some parts of this specification describe these recommended visual rendering rules in
detail; in those descriptions it is often assumed that the model of rendering used supports the concepts
of a well-defined ’current rendering environment’ which, in particular, specifies a ’current font’, a
“current display’ (for pixel size) and a ’current baseline’. The ’current font’ provides certain metric
properties and an encoding of glyphs.

2.1.5 MathML Attribute Values

MathML elements take attributes with values that further specialize the meaning or effect of the ele-
ment. Attribute names are shown in a monospaced font throughout this document. The meanings of
attributes and their allowed values are described within the specification of each element. The syntax
notation explained in this section is used in specifying allowed values.

Except when explicitly forbidden by the specification for an attribute, MathML attribute values may
contain any legal characters specified by the XML recommendation. See Chapter 7 for further clarifi-
cation.

16 Chapter 2. MathML Fundamentals

2.1.5.1 Syntax notation used in the MathML specification

To describe the MathML-specific syntax of attribute values, the following conventions and notations
are used for most attributes in the present document. We use below the notation beginning with U+ that

is recommended by Unicode for referring to Unicode characters [see [Unicode], page xxviii].

Notation

What it matches

decimal-digit
hexadecimal-digit

unsigned-integer
positive-integer

integer
unsigned-number
number
character
string

length

unit
namedlength
color

id

idref

URI

italicized word
"literal"

a decimal digit from the range U+0030 to U+0039

a hexadecimal (base 16) digit from the ranges U+0030 to U+0039, U+0041 to
U+0046 and U+0061 to U+0066

a string of decimal-digits, representing a non-negative integer

a string of decimal-digits, but not consisting solely of "0"s (U+0030), representing
a positive integer

an optional "-" (U+002D), followed by a string of decimal digits, and representing
an integer

a string of decimal digits with up to one decimal point (U+002E), representing a
non-negative terminating decimal number (a type of rational number)

an optional prefix of "-" (U+002D), followed by an unsigned number, representing
a terminating decimal number (a type of rational number)

a single non-whitespace character

an arbitrary, nonempty and finite, string of characters

a length, as explained below, Section 2.1.5.2

a unit, typically used as part of a length, as explained below, Section 2.1.5.2

a named length, as explained below, Section 2.1.5.2

a color, as explained below, Section 2.1.5.3

an identifier, unique within the document; must satisfy the NAME syntax of the
XML recommendation [XML]

an identifier referring to another element within the document; must satisfy the
NAME syntax of the XML recommendation [XML]

a Uniform Resource Identifier [RFC3986]. Note that the attribute value is typed
in the schema as anyURI which allows any sequence of XML characters. Systems
needing to use this string as a URI must encode the bytes of the UTF-8 encoding
of any characters not allowed in URI using %HH encoding where HH are the byte
value in hexadecimal. This ensures that such an attribute value may be interpreted
as an IRI, or more generally a LEIRI, see [IRI].

values as explained in the text for each attribute; see Section 2.1.5.4

quoted symbol, literally present in the attribute value (e.g. "+" or ’+’)

The ‘types’ described above, except for string, may be combined into composite patterns using the
following operators. The whole attribute value must be delimited by single () or double (") quotation
marks in the marked up document. Note that double quotation marks are often used in this specification
to mark up literal expressions; an example is the "-" in line 5 of the table above.

In the table below a form f means an instance of a type described in the table above. The combining
operators are shown in order of precedence from highest to lowest:

2.1. MathML Syntax and Grammar 17

Notation What it matches

(f) same as f

i an optional instance of f

f* zero or more instances of f, with separating whitespace characters

f+ one or more instances of f, with separating whitespace characters

fit.. 1, one instance of each form f;, in sequence, with no separating whitespace

fi, 6, .., 1 one instance of each form f;, in sequence, with separating whitespace characters (but no
commas)

filf1...1f, any one of the specified forms f;

The notation we have chosen here is in the style of the syntactical notation of the RelaxNG used for
MathML’s basic schema, Appendix A.

Since some applications are inconsistent about normalization of whitespace, for maximum interoper-
ability it is advisable to use only a single whitespace character for separating parts of a value. Moreover,
leading and trailing whitespace in attribute values should be avoided.

For most numerical attributes, only those in a subset of the expressible values are sensible; values
outside this subset are not errors, unless otherwise specified, but rather are rounded up or down (at the
discretion of the renderer) to the closest value within the allowed subset. The set of allowed values may
depend on the renderer, and is not specified by MathML.

If a numerical value within an attribute value syntax description is declared to allow a minus sign (’-’),
e.g., number or integer, it is not a syntax error when one is provided in cases where a negative value
is not sensible. Instead, the value should be handled by the processing application as described in the
preceding paragraph. An explicit plus sign ("+’) is not allowed as part of a numerical value except when
it is specifically listed in the syntax (as a quoted ’+’ or "+"), and its presence can change the meaning
of the attribute value (as documented with each attribute which permits it).

2.1.5.2 Length Valued Attributes

Most presentation elements have attributes that accept values representing lengths to be used for size,
spacing or similar properties. The syntax of a length is specified as

Type Syntax
length number | number unit | namedspace

There should be no space between the number and the unit of a length.

The possible units and namedspaces, along with their interpretations, are shown below. Note that al-
though the units and their meanings are taken from CSS, the syntax of lengths is not identical. A few
MathML elements have length attributes that accept additional keywords; these are termed pseudo-units
and specified in the description of those particular elements; see, for instance, Section 3.3.6.

A trailing "%" represents a percent of a reference value; unless otherwise stated, the reference value
is the default value. The default value, or how it is obtained, is listed in the table of attributes for each
element along with the reference value when it differs from the default. (See also Section 2.1.5.4.) A
number without a unit is intepreted as a multiple of the reference value. This form is primarily for
backward compatibility and should be avoided, prefering explicit units for clarity.

In some cases, the range of acceptable values for a particular attribute may be restricted; implementa-
tions are free to round up or down to the closest allowable value.

The possible units in MathML are:

18 Chapter 2. MathML Fundamentals

Unit Description

em an em (font-relative unit traditionally used for horizontal lengths)
ex an ex (font-relative unit traditionally used for vertical lengths)

px pixels, or size of a pixel in the current display

in inches (1 inch = 2.54 centimeters)

cm centimeters

mm millimeters

pt points (1 point = 1/72 inch)

pc picas (1 pica = 12 points)

yA percentage of the default value

Some additional aspects of units are discussed further below, in Section 2.1.5.2.

The following constants, namedspaces, may also be used where a length is needed; they are typically
used for spacing or padding between tokens. Recommended default values for these constants are
shown; the actual spacing used is implementation specific.

namedspace Recommended default
"veryverythinmathspace" 1/18em
"verythinmathspace" 2/18em
"thinmathspace" 3/18em
"mediummathspace" 4/18em
"thickmathspace" 5/18em
"verythickmathspace" 6/18em
"veryverythickmathspace" 7/18em
"negativeveryverythinmathspace" -1/18em
"negativeverythinmathspace" -2/18em
"negativethinmathspace" -3/18em
"negativemediummathspace" -4/18em
"negativethickmathspace" -5/18em
"negativeverythickmathspace" -6/18em
"negativeveryverythickmathspace" -7/18em

Additional notes about units

Lengths are only used in MathML for presentation, and presentation will ultimately involve rendering
in or on some medium. For visual media, the display context is assumed to have certain properties
available to the rendering agent. A px corresponds to a pixel on the display, to the extent that is mean-
ingful. The resolution of the display device will affect the correspondence of pixels to the units in, cm,
mm, pt and pc.

Moreover, the display context will also provide a default for the font size; the parameters of this
font determine the initial values used to interpret the units em and ex, and thus indirectly the sizes
of namedspaces. Since these units track the display context, and in particular, the user’s preferences for
display, the relative units em and ex are generally to be preferred over absolute units such as px or cm.

Two additional aspects of relative units must be clarified, however. First, some elements such as Sec-
tion 3.4 or mfrac, implicitly switch to smaller font sizes for some of their arguments. Similarly, mstyle
can be used to explicitly change the current font size. In such cases, the effective values of an em or ex
inside those contexts will be different than outside. The second point is that the effective value of an em
or ex used for an attribute value can be affected by changes to the current font size. Thus, attributes that
affect the current font size, such as mathsize and scriptlevel, must be processed before evaluating
other length valued attributes.

2.1. MathML Syntax and Grammar 19

If, and how, lengths might affect non-visual media is implementation specific.

2.1.5.3 Color Valued Attributes

The color, or background color, of presentation elements may be specified as a color using the following
syntax:

Type Syntax
color #RGB | #RR GGBB | html-color-name

A color is specified either by ‘#’ followed by hexadecimal values for the red, green, and blue compo-
nents, with no intervening whitespace, or by an html-color-name. The color components can be either
1-digit or 2-digit, but must all have the same number of digits; the component ranges from 0 (compo-
nent not present) to FF (component fully present). Note that, for example, by the digit-doubling rule
specified under Colors in [CSS21] #123 is a short form for #112233.

Color values can also be specified as an html-color-name, one of the color-name keywords defined in
[HTMLA4] ("aqua", "black", "blue", "fuchsia", "gray", "green", "lime", "maroon", "navy",
"olive", "purple", "red", "silver", "teal", "white", and "yellow"). Note that the color name
keywords are not case-sensitive, unlike most keywords in MathML attribute values, for compatibility
with CSS and HTML.

When a color is applied to an element, it is the color in which the content of tokens is rendered. Ad-
ditionally, when inherited from a surrounding element or from the environment in which the complete
MathML expression is embedded, it controls the color of all other drawing due to MathML elements,
including the lines or radical signs that can be drawn in rendering mfrac, mtable, or msqrt.

When used to specify a background color, the keyword "transparent" is also allowed. The recom-
mended MathML visual rendering rules do not define the precise extent of the region whose background
is affected by using the background attribute on an element, except that, when the element’s content
does not have negative dimensions and its drawing region is not overlapped by other drawing due to
surrounding negative spacing, this region should lie behind all the drawing done to render the content
of the element, but should not lie behind any of the drawing done to render surrounding expressions.
The effect of overlap of drawing regions caused by negative spacing on the extent of the region affected
by the background attribute is not defined by these rules.

2.1.5.4 Default values of attributes

Default values for MathML attributes are, in general, given along with the detailed descriptions of
specific elements in the text. Default values shown in plain text in the tables of attributes for an element
are literal, but when italicized are descriptions of how default values can be computed.

Default values described as inherited are taken from the rendering environment, as described in Sec-
tion 3.3.4, or in some cases (which are described individually) taken from the values of other attributes
of surrounding elements, or from certain parts of those values. The value used will always be one
which could have been specified explicitly, had it been known; it will never depend on the content
or attributes of the same element, only on its environment. (What it means when used may, however,
depend on those attributes or the content.)

Default values described as automatic should be computed by a MathML renderer in a way which will
produce a high-quality rendering; how to do this is not usually specified by the MathML specification.
The value computed will always be one which could have been specified explicitly, had it been known,
but it will usually depend on the element content and possibly on the context in which the element is
rendered.

20 Chapter 2. MathML Fundamentals

Other italicized descriptions of default values which appear in the tables of attributes are explained
individually for each attribute.

The single or double quotes which are required around attribute values in an XML start tag are not
shown in the tables of attribute value syntax for each element, but are around attribute values in exam-
ples in the text, so that the pieces of code shown are correct.

Note that, in general, there is no mechanism in MathML to simulate the effect of not specifying at-
tributes which are inherited or automatic. Giving the words ‘inherited’ or ‘automatic’ explicitly will
not work, and is not generally allowed. Furthermore, the mstyle element (Section 3.3.4) can even be
used to change the default values of presentation attributes for its children.

Note also that these defaults describe the behavior of MathML applications when an attribute is not
supplied; they do not indicate a value that will be filled in by an XML parser, as is sometimes mandated
by DTD-based specifications.

In general, there are a number of properties of MathML rendering that may be thought of as overall
properties of a document, or at least of sections of a large document. Examples might be mathsize
(the math font size: see Section 3.2.2), or the behavior in setting limits on operators such as integrals
or sums (e.g., movablelimits or displaystyle), or upon breaking formulas over lines (e.g.

linebreakstyle); for such attributes see several elements in Section 3.2. These may be thought to
be inherited from some such containing scope. Just above we have mentioned the setting of default
values of MathML attributes as inherited or automatic; there is a third source of global default values
for behavior in rendering MathML, a MathML operator dictionary. A default example is provided in
Appendix C. This is also discussed in Section 3.2.5.7 and examples are given in Section 3.2.5.2.

2.1.6 Attributes Shared by all MathML Elements

In addition to the attributes described specifically for each element, the attributes in the following table
are allowed on every MathML element. Also allowed are attributes from the xml namespace, such as
xml:lang, and attributes from namespaces other than MathML, which are ignored by default.

’ Name ‘ values ‘ default

id ‘ id ‘ none
Establishes a unique identifier associated with the element to support linking, cross-
references and parallel markup. See xref and Section 5.4.

xref ‘ idref ‘ none
References another element within the document. See id and Section 5.4.
class ‘ string \ none

Associates the element with a set of style classes for use with [XSLT] and [CSS21].
Typically this would be a space separated sequence of words, but this is not specified by
MathML. See Section 6.5 for discussion of the interaction of MathML and CSS.

style ‘ string ‘ none
Associates style information with the element for use with [XSLT] and [CSS21]. This
typically would be an inline CSS style, but this is not specified by MathML. See Sec-
tion 6.5 for discussion of the interaction of MathML and CSS.

href ‘ URI \ none
Can be used to establish the element as a hyperlink to the specfied URI

Note that MathML 2 had no direct support for linking, and instead followed the W3C Recommendation
‘XML Linking Language’ [XLink] in defining links using the x1ink:href attribute. This has changed,
and MathML 3 now uses an href attribute. However, particular compound document formats may

2.1. MathML Syntax and Grammar 21

specify the use of XML linking with MathML elements, so user agents that support XML linking
should continue to support the use of the x1ink:href attribute with MathML 3 as well.

See also Section 3.2.2 for a list of MathML attributes which can be used on most presentation token
elements.

The attribute other, is deprecated (Section 2.3.3) in favor of the use of attributes from other names-
paces.

’ Name ‘ values ‘ default

other ‘ string ‘ none
DEPRECATED but in MathML 1.0.

2.1.7 Collapsing Whitespace in Input

In MathML, as in XML, ‘whitespace’ means simple spaces, tabs, newlines, or carriage returns, i.e.,
characters with hexadecimal Unicode codes U+0020, U+0009, U+000A, or U+000D, respectively; see
also the discussion of whitespace in Section 2.3 of [XML].

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not al-
lowed there. Whitespace occurring within the content of token elements , except for <cs>, is normal-
ized as follows. All whitespace at the beginning and end of the content is removed, and whitespace
internal to content of the element is collapsed canonically, i.e., each sequence of 1 or more whitespace
characters is replaced with one space character (U+0020, sometimes called a blank character).

For example, <mo> (</mo> is equivalent to <mo>(</mo>, and

<mtext>
Theorem
1:

</mtext>

is equivalent to <mtext>Theorem 1:</mtext> or <mtext>Theorem 1:</mtext>.

Authors wishing to encode white space characters at the start or end of the content of a token, or in
sequences other than a single space, without having them ignored, must use (U+00A0) or other
non-marking characters that are not trimmed. For example, compare the above use of an mtext element
with

<mtext>

 Theorem 1:

</mtext>

When the first example is rendered, there is nothing before ‘Theorem’, one Unicode space character
between ‘Theorem’ and ‘1:’, and nothing after ‘1:’. In the second example, a single space character is to
be rendered before ‘Theorem’; two spaces, one a Unicode space character and one a Unicode no-break
space character, are to be rendered before ‘1:’; and there is nothing after the ‘1:’.

Note that the value of the xml : space attribute is not relevant in this situation since XML processors
pass whitespace in tokens to a MathML processor; it is the requirements of MathML processing which
specify that whitespace is trimmed and collapsed.

For whitespace occurring outside the content of the token elements mi, mn, mo, ms, mtext, ci, cn,
cs, csymbol and annotation, an mspace element should be used, as opposed to an mtext element
containing only whitespace entities.

22 Chapter 2. MathML Fundamentals

2.2 The Top-Level <math> Element

MathML specifies a single top-level or root math element, which encapsulates each instance of MathML
markup within a document. All other MathML content must be contained in a math element; in other
words, every valid MathML expression is wrapped in outer <math> tags. The math element must al-
ways be the outermost element in a MathML expression; it is an error for one math element to contain
another. These considerations also apply when sub-expressions are passed between applications, such
as for cut-and-paste operations; See Section 6.3.

The math element can contain an arbitrary number of child elements. They render by default as if they
were contained in an mrow element.

2.2.1 Attributes

The math element accepts any of the attributes that can be set on Section 3.3.4, including the common
attributes specified in Section 2.1.6. In particular, it accepts the dir attribute for setting the overall
directionality; the math element is usually the most useful place to specify the directionality (See Sec-
tion 3.1.5 for further discussion). Note that the dir attribute defaults to "1tr" on the math element
(but inherits on all other elements which accept the dir attribute); this provides for backward compat-
ibility with MathML 2.0 which had no notion of directionality. Also, it accepts the mathbackground
attribute in the same sense as mstyle and other presentation elements to set the background color of
the bounding box, rather than specifying a default for the attribute (see Section 3.1.10)

In addition to those attributes, the math element accepts:

] Name \ values \ default

display ‘ "block" | "inline" ‘ inline
specifies whether the enclosed MathML expression should be rendered as a separate
vertical block (in display style) or inline, aligned with adjacent text. When display=
"block",displaystyleis initialized to "true", whereas when display="inline",
displaystyle is initialized to "false"; in both cases scriptlevel is initialized to
0 (See Section 3.1.6). Moreover, when the math element is embedded in a larger doc-
ument, a block math element should be treated as a block element as appropriate for
the document type (typically as a new vertical block), whereas an inline math element
should be treated as inline (typically exactly as if it were a sequence of words in normal
text). In particular, this applies to spacing and linebreaking: for instance, there should
not be spaces or line breaks inserted between inline math and any immediately following
punctuation. When the display attribute is missing, a rendering agent is free to initialize
as appropriate to the context.

maxwidth ‘ length ‘ available width
specifies the maximum width to be used for linebreaking. The default is the maximum
width available in the surrounding environment. If that value cannot be determined, the
renderer should assume an infinite rendering width.

overflow ‘ "linebreak" | "scroll" | "elide" | "truncate" | "scale" ‘ linebreak
specifies the preferred handing in cases where an expression is too long to fit in the
allowed width. See the discussion below.

altimg ‘ URI ‘ none
provides a URI referring to an image to display as a fall-back for user agents that do not
support embedded MathML.

altimg-width ‘ length ‘ width of altimg

specifies the width to display altimg, scaling the image if necessary; See
altimg-height.

2.2. The Top-Level <math> Element 23

Name \ values \ default \

altimg-height] length ‘ height of altimg
specifies the height to display altimg, scaling the image if necessary; if only one of the
attributes altimg-width and altimg-height are given, the scaling should preserve
the image’s aspect ratio; if neither attribute is given, the image should be shown at its
natural size.

altimg-valign] length | "top" | "middle" | "bottom" \ Oex
specifies the vertical alignment of the image with respect to adjacent inline material.
A positive value of altimg-valign shifts the bottom of the image above the current
baseline, while a negative value lowers it. The keyword "top" aligns the top of the image
with the top of adjacent inline material; "center" aligns the middle of the image to the
middle of adjacent material; "bottom" aligns the bottom of the image to the bottom of
adjacent material (not necessarily the baseline). This attribute only has effect when
display="inline". By default, the bottom of the image aligns to the baseline.

alttext ‘ string ‘ none
provides a textual alternative as a fall-back for user agents that do not support embedded
MathML or images.

cdgroup ‘ URI ‘ none

specifies a CD group file that acts as a catalogue of CD bases for locating OpenMath
content dictionaries of csymbol, annotation, and annotation-xml elements in this
math element; see Section 4.2.3. When no cdgroup attribute is explicitly specified, the
document format embedding this math element may provide a method for determining
CD bases. Otherwise the system must determine a CD base; in the absence of specific
information http://www.openmath.org/cd is assumed as the CD base for all
csymbol, annotation, and annotation-xml elements. This is the CD base for the
collection of standard CDs maintained by the OpenMath Society.

In cases where size negotiation is not possible or fails (for example in the case of an expression that is
too long to fit in the allowed width), the overflow attribute is provided to suggest a processing method
to the renderer. Allowed values are:

Value Meaning

"linebreak" | The expression will be broken across several lines. See Sec-
tion 3.1.7 for further discussion.

"scroll" The window provides a viewport into the larger complete dis-
play of the mathematical expression. Horizontal or vertical
scroll bars are added to the window as necessary to allow the
viewport to be moved to a different position.

"elide" The display is abbreviated by removing enough of it so that
the remainder fits into the window. For example, a large poly-
nomial might have the first and last terms displayed with ‘+ ...
+’ between them. Advanced renderers may provide a facility
to zoom in on elided areas.

"truncate” | The display is abbreviated by simply truncating it at the right
and bottom borders. It is recommended that some indication
of truncation is made to the viewer.

24 Chapter 2. MathML Fundamentals

Value Meaning

"scale" The fonts used to display the mathematical expression are
chosen so that the full expression fits in the window. Note that
this only happens if the expression is too large. In the case of
a window larger than necessary, the expression is shown at its
normal size within the larger window.

2.2.2 Deprecated Attributes

The following attributes of math are deprecated:

Name \ values \ default

macros \ URI * \ none
intended to provide a way of pointing to external macro definition files. Macros are not
part of the MathML specification.

mode \ "display" | "inline" \ inline
specified whether the enclosed MathML expression should be rendered in a display style
or an inline style. This attribute is deprecated in favor of the display attribute.

2.3 Conformance

Information nowadays is commonly generated, processed and rendered by software tools. The expo-
nential growth of the Web is fueling the development of advanced systems for automatically searching,
categorizing, and interconnecting information. In addition, there are increasing numbers of Web ser-
vices, some of which offer technically based materials and activities. Thus, although MathML can be
written by hand and read by humans, whether machine-aided or just with much concentration, the
future of MathML is largely tied to the ability to process it with software tools.

There are many different kinds of MathML processors: editors for authoring MathML expressions,
translators for converting to and from other encodings, validators for checking MathML expressions,
computation engines that evaluate, manipulate, or compare MathML expressions, and rendering en-
gines that produce visual, aural, or tactile representations of mathematical notation. What it means to
support MathML varies widely between applications. For example, the issues that arise with a validat-
ing parser are very different from those for an equation editor.

This section gives guidelines that describe different types of MathML support and make clear the
extent of MathML support in a given application. Developers, users, and reviewers are encouraged to
use these guidelines in characterizing products. The intention behind these guidelines is to facilitate
reuse by and interoperability of MathML applications by accurately setting out their capabilities in
quantifiable terms.

The W3C Math Working Group maintains MathML Compliance Guidelines. Consult this document
for future updates on conformance activities and resources.

2.3.1 MathML Conformance

A valid MathML expression is an XML construct determined by the MathML RelaxNG Schema to-
gether with the additional requirements given in this specification.

http://www.w3.org/Math/iandi/compliance

2.3. Conformance 25

We shall use the phrase ‘a MathML processor’ to mean any application that can accept or produce a
valid MathML expression. A MathML processor that both accepts and produces valid MathML expres-
sions may be able to ‘round-trip” MathML. Perhaps the simplest example of an application that might
round-trip a MathML expression would be an editor that writes it to a new file without modifications.

Three forms of MathML conformance are specified:

1. A MathML-input-conformant processor must accept all valid MathML expressions; it should
appropriately translate all MathML expressions into application-specific form allowing na-
tive application operations to be performed.

2. A MathML-output-conformant processor must generate valid MathML, appropriately repre-
senting all application-specific data.
3. A MathML-round-trip-conformant processor must preserve MathML equivalence. Two MathML

expressions are ‘equivalent’ if and only if both expressions have the same interpretation (as
stated by the MathML Schema and specification) under any relevant circumstances, by any
MathML processor. Equivalence on an element-by-element basis is discussed elsewhere in
this document.

Beyond the above definitions, the MathML specification makes no demands of individual processors. In
order to guide developers, the MathML specification includes advisory material; for example, there are
many recommended rendering rules throughout Chapter 3. However, in general, developers are given
wide latitude to interpret what kind of MathML implementation is meaningful for their own particular
application.

To clarify the difference between conformance and interpretation of what is meaningful, consider some
examples:

1. In order to be MathML-input-conformant, a validating parser needs only to accept expres-
sions, and return ‘true’ for expressions that are valid MathML. In particular, it need not
render or interpret the MathML expressions at all.

2. A MathML computer-algebra interface based on content markup might choose to ignore all
presentation markup. Provided the interface accepts all valid MathML expressions including
those containing presentation markup, it would be technically correct to characterize the
application as MathML-input-conformant.

3. An equation editor might have an internal data representation that makes it easy to export
some equations as MathML but not others. If the editor exports the simple equations as valid
MathML, and merely displays an error message to the effect that conversion failed for the
others, it is still technically MathML-output-conformant.

2.3.1.1 MathML Test Suite and Validator

As the previous examples show, to be useful, the concept of MathML conformance frequently involves
a judgment about what parts of the language are meaningfully implemented, as opposed to parts that
are merely processed in a technically correct way with respect to the definitions of conformance. This
requires some mechanism for giving a quantitative statement about which parts of MathML are mean-
ingfully implemented by a given application. To this end, the W3C Math Working Group has provided
a test suite.

The test suite consists of a large number of MathML expressions categorized by markup category
and dominant MathML element being tested. The existence of this test suite makes it possible, for
example, to characterize quantitatively the hypothetical computer algebra interface mentioned above
by saying that it is a MathML-input-conformant processor which meaningfully implements MathML
content markup, including all of the expressions in the content markup section of the test suite.

http://www.w3.org/Math/testsuite/

26 Chapter 2. MathML Fundamentals

Developers who choose not to implement parts of the MathML specification in a meaningful way are
encouraged to itemize the parts they leave out by referring to specific categories in the test suite.

For MathML-output-conformant processors, information about currently available tools to validate
MathML is maintained at the W3C MathML Validator. Developers of MathML-output-conformant
processors are encouraged to verify their output using this validator.

Customers of MathML applications who wish to verify claims as to which parts of the MathML specifi-
cation are implemented by an application are encouraged to use the test suites as a part of their decision
processes.

2.3.1.2 Deprecated MathML 1.x and MathML 2.x Features

MathML 3.0 contains a number of features of earlier MathML which are now deprecated. The following
points define what it means for a feature to be deprecated, and clarify the relation between deprecated
features and current MathML conformance.

1. In order to be MathML-output-conformant, authoring tools may not generate MathML markup
containing deprecated features.
2. In order to be MathML-input-conformant, rendering and reading tools must support depre-

cated features if they are to be in conformance with MathML 1.x or MathML 2.x. They do
not have to support deprecated features to be considered in conformance with MathML 3.0.
However, all tools are encouraged to support the old forms as much as possible.

3. In order to be MathML-round-trip-conformant, a processor need only preserve MathML
equivalence on expressions containing no deprecated features.

2.3.1.3 MathML Extension Mechanisms and Conformance

MathML 3.0 defines three basic extension mechanisms: the mglyph element provides a way of dis-
playing glyphs for non-Unicode characters, and glyph variants for existing Unicode characters; the
maction element uses attributes from other namespaces to obtain implementation-specific parameters;
and content markup makes use of the definitionURL attribute, as well as Content Dictionaries and
the cd attribute, to point to external definitions of mathematical semantics.

These extension mechanisms are important because they provide a way of encoding concepts that are
beyond the scope of MathML 3.0 as presently explicitly specified, which allows MathML to be used for
exploring new ideas not yet susceptible to standardization. However, as new ideas take hold, they may
become part of future standards. For example, an emerging character that must be represented by an
mglyph element today may be assigned a Unicode code point in the future. At that time, representing
the character directly by its Unicode code point would be preferable. This transition into Unicode has
already taken place for hundreds of characters used for mathematics.

Because the possibility of future obsolescence is inherent in the use of extension mechanisms to facili-
tate the discussion of new ideas, MathML can reasonably make no conformance requirements concern-
ing the use of extension mechanisms, even when alternative standard markup is available. For example,
using an mglyph element to represent an 'x’ is permitted. However, authors and implementers are
strongly encouraged to use standard markup whenever possible. Similarly, maintainers of documents
employing MathML 3.0 extension mechanisms are encouraged to monitor relevant standards activi-
ty (e.g., Unicode, OpenMath, etc.) and to update documents as more standardized markup becomes
available.

http://www.w3.org/Math/validator/

2.3. Conformance 27

2.3.2 Handling of Errors

If a MathML-input-conformant application receives input containing one or more elements with an
illegal number or type of attributes or child schemata, it should nonetheless attempt to render all the
input in an intelligible way, i.e., to render normally those parts of the input that were valid, and to render
error messages (rendered as if enclosed in an merror element) in place of invalid expressions.

MathML-output-conformant applications such as editors and translators may choose to generate
merror expressions to signal errors in their input. This is usually preferable to generating valid, but
possibly erroneous, MathML.

2.3.3 Attributes for unspecified data

The MathML attributes described in the MathML specification are intended to allow for good presen-
tation and content markup. However it is never possible to cover all users’ needs for markup. Ideally,
the MathML attributes should be an open-ended list so that users can add specific attributes for specific
renderers. However, this cannot be done within the confines of a single XML DTD or in a Schema.
Although it can be done using extensions of the standard DTD, say, some authors will wish to use
non-standard attributes to take advantage of renderer-specific capabilities while remaining strictly in
conformance with the standard DTD.

To allow this, the MathML 1.0 specification [MathML1] allowed the attribute other on all elements,
for use as a hook to pass on renderer-specific information. In particular, it was intended as a hook for
passing information to audio renderers, computer algebra systems, and for pattern matching in future
macro/extension mechanisms. The motivation for this approach to the problem was historical, looking
to PostScript, for example, where comments are widely used to pass information that is not part of
PostScript.

In the next period of evolution of MathML the development of a general XML namespace mechanism
seemed to make the use of the other attribute obsolete. In MathML 2.0, the other attribute is depre-
cated in favor of the use of namespace prefixes to identify non-MathML attributes. The other attribute
remains deprecated in MathML 3.0.

For example, in MathML 1.0, it was recommended that if additional information was used in a renderer-
specific implementation for the maction element (Section 3.7.1), that information should be passed in
using the other attribute:

<maction actiontype="highlight" other="color="#ff0000’"> expression </maction>
From MathML 2.0 onwards, a color attribute from another namespace would be used:

<body xmlns:my="http://www.example.com/MathML/extensions">

<maction actiontype="highlight" my:color="#ff0000"> expression </maction>
</body>

Note that the intent of allowing non-standard attributes is not to encourage software developers to use

this as a loophole for circumventing the core conventions for MathML markup. Authors and applica-
tions should use non-standard attributes judiciously.

Chapter 3

Presentation Markup

3.1 Introduction

This chapter specifies the ‘presentation’ elements of MathML, which can be used to describe the layout
structure of mathematical notation.

3.1.1 What Presentation Elements Represent

Presentation elements correspond to the ‘constructors’ of traditional mathematical notation — that is,
to the basic kinds of symbols and expression-building structures out of which any particular piece of
traditional mathematical notation is built. Because of the importance of traditional visual notation, the
descriptions of the notational constructs the elements represent are usually given here in visual terms.
However, the elements are medium-independent in the sense that they have been designed to contain
enough information for good spoken renderings as well. Some attributes of these elements may make
sense only for visual media, but most attributes can be treated in an analogous way in audio as well (for
example, by a correspondence between time duration and horizontal extent).

MathML presentation elements only suggest (i.e. do not require) specific ways of rendering in order
to allow for medium-dependent rendering and for individual preferences of style. This specification
describes suggested visual rendering rules in some detail, but a particular MathML renderer is free to
use its own rules as long as its renderings are intelligible.

The presentation elements are meant to express the syntactic structure of mathematical notation in
much the same way as titles, sections, and paragraphs capture the higher-level syntactic structure of a
textual document. Because of this, a single row of identifiers and operators will often be represented
by multiple nested mrow elements rather than a single mrow. For example, ‘x + a / b’ typically is
represented as:

<mrow>
<mi> x </mi>
<mo> + </mo>
<mrow>
<mi> a </mi>
<mo> / </mo>
<mi> b </mi>
</mrow>
</mrow>

Similarly, superscripts are attached to the full expression constituting their base rather than to the just
preceding character. This structure permits better-quality rendering of mathematics, especially when
details of the rendering environment, such as display widths, are not known ahead of time to the docu-
ment author. It also greatly eases automatic interpretation of the represented mathematical structures.

28

3.1. Introduction 29

Certain characters are used to name identifiers or operators that in traditional notation render the
same as other symbols or usually rendered invisibly. For example, the entities ⅆ,
ⅇ, and ⅈ denote notational symbols semantically distinct from visual-
ly identical letters used as simple variables. Likewise, the entities ⁢,
⁡, ⁣ and the character U+2064 (INVISIBLE PLUS) usually ren-
der invisibly but represent significant information. These entities have distinct spoken renderings, may
influence visual linebreaking and spacing, and may effect the evaluation or meaning of particular ex-
pressions. Accordingly, authors should use these entities wherever they are applicable. For instance, the
expression represented visually as ‘ f(x)’ would usually be spoken in English as ‘f of x’ rather than just
‘f x’. MathML conveys this meaning by using the ⁡ operator after the ‘f’, which, in
this case, can be aurally rendered as ‘of”.

The complete list of MathML entities is described in [Entities].

3.1.2 Terminology Used In This Chapter

It is strongly recommended that, before reading the present chapter, one read Section 2.1 on MathML
syntax and grammar, which contains important information on MathML notations and conventions. In
particular, in this chapter it is assumed that the reader has an understanding of basic XML terminology
described in Section 2.1.3, and the attribute value notations and conventions described in Section 2.1.5.

The remainder of this section introduces MathML-specific terminology and conventions used in this
chapter.

3.1.2.1 Types of presentation elements

The presentation elements are divided into two classes. Token elements represent individual symbols,
names, numbers, labels, etc. Layout schemata build expressions out of parts and can have only elements
as content (except for whitespace, which they ignore). These are subdivided into General Layout, Script
and Limit, Tabular Math and Elementary Math schemata. There are also a few empty elements used
only in conjunction with certain layout schemata.

All individual ‘symbols’ in a mathematical expression should be represented by MathML token ele-
ments. The primary MathML token element types are identifiers (e.g. variables or function names),
numbers, and operators (including fences, such as parentheses, and separators, such as commas). There
are also token elements used to represent text or whitespace that has more aesthetic than mathematical
significance and other elements representing ‘string literals’ for compatibility with computer algebra
systems. Note that although a token element represents a single meaningful ‘symbol’ (name, number,
label, mathematical symbol, etc.), such symbols may be comprised of more than one character. For ex-
ample sin and 24 are represented by the single tokens <mi>sin</mi> and <mn>24</mn> respectively.

In traditional mathematical notation, expressions are recursively constructed out of smaller expressions,
and ultimately out of single symbols, with the parts grouped and positioned using one of a small set of
notational structures, which can be thought of as ‘expression constructors’. In MathML, expressions are
constructed in the same way, with the layout schemata playing the role of the expression constructors.
The layout schemata specify the way in which sub-expressions are built into larger expressions. The
terminology derives from the fact that each layout schema corresponds to a different way of ‘laying
out’ its sub-expressions to form a larger expression in traditional mathematical typesetting.

3.1.2.2 Terminology for other classes of elements and their relationships

The terminology used in this chapter for special classes of elements, and for relationships between
elements, is as follows: The presentation elements are the MathML elements defined in this chapter.

30 Chapter 3. Presentation Markup

These elements are listed in Section 3.1.9. The content elements are the MathML elements defined in
Chapter 4.

A MathML expression is a single instance of any of the presentation elements with the exception of
the empty elements none or mprescripts, or is a single instance of any of the content elements which
are allowed as content of presentation elements (described in Section 5.3.2). A sub-expression of an
expression E is any MathML expression that is part of the content of E, whether directly or indirectly,
i.e. whether it is a ‘child’ of E or not.

Since layout schemata attach special meaning to the number and/or positions of their children, a child of
a layout schema is also called an argument of that element. As a consequence of the above definitions,
the content of a layout schema consists exactly of a sequence of zero or more elements that are its
arguments.

3.1.3 Required Arguments

Many of the elements described herein require a specific number of arguments (always 1, 2, or 3). In
the detailed descriptions of element syntax given below, the number of required arguments is implicitly
indicated by giving names for the arguments at various positions. A few elements have additional
requirements on the number or type of arguments, which are described with the individual element. For
example, some elements accept sequences of zero or more arguments — that is, they are allowed to
occur with no arguments at all.

Note that MathML elements encoding rendered space do count as arguments of the elements in which
they appear. See Section 3.2.7 for a discussion of the proper use of such space-like elements.

3.1.3.1 Inferred <mrow>s

The elements listed in the following table as requiring 1* argument (msqrt, mstyle, merror, mpadded,
mphantom, menclose, mtd, mscarry, and math) conceptually accept a single argument, but actually
accept any number of children. If the number of children is O or is more than 1, they treat their contents
as a single inferred mrow formed from all their children, and treat this mrow as the argument.

For example,

<mtd>
</mtd>

is treated as if it were

<mtd>
<mrow>
</mrow>
</mtd>
and
<msqrt>
<mo> - </mo>
<mn> 1 </mn>
</msqrt>
is treated as if it were
<msqrt>
<mrow>
<mo> - </mo>

3.1. Introduction 31

<mn> 1 </mn>
</mrow>
</msqrt>
This feature allows MathML data not to contain (and its authors to leave out) many mrow elements that
would otherwise be necessary.

3.1.3.2 Table of argument requirements

For convenience, here is a table of each element’s argument count requirements and the roles of indi-
vidual arguments when these are distinguished. An argument count of 1* indicates an inferred mrow
as described above. Although the math element is not a presentation element, it is listed below for
completeness.

Element Required argument count Argument roles (when these differ by position)

mrow 0 or more

mfrac 2 numerator denominator

msqrt 1*

mroot 2 base index

mstyle I*

merror 1*

mpadded 1*

mphantom 1*

mfenced 0 or more

menclose 1*

msub 2 base subscript

msup 2 base superscript

msubsup 3 base subscript superscript

munder 2 base underscript

mover 2 base overscript

munderover 3 base underscript overscript

mmultiscripts 1 or more base (subscript superscript)* [<mprescripts/>
(presubscript presuperscript)*]

mtable 0 or more rows 0 or more mtr or mlabeledtr elements

mlabeledtr 1 or more a label and 0 or more mtd elements

mtr 0 or more 0 or more mtd elements

mtd 1%

mstack 0 or more

mlongdiv 3 or more divisor result dividend (msrow | msgroup | mscarries
| msline)*

msgroup 0 or more

msrow 0 or more

mscarries 0 or more

mscarry 1*

maction 1 or more depend on actiontype attribute

math 1*

3.14 Elements with Special Behaviors

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such special be-
haviors are discussed in the detailed element descriptions below. However, for convenience, some of
the most important classes of special behavior are listed here.

32 Chapter 3. Presentation Markup

Certain elements are considered space-like; these are defined in Section 3.2.7. This definition affects
some of the suggested rendering rules for mo elements (Section 3.2.5).

Certain elements, e.g. msup, are able to embellish operators that are their first argument. These elements
are listed in Section 3.2.5, which precisely defines an ‘embellished operator’ and explains how this
affects the suggested rendering rules for stretchy operators.

3.1.5 Directionality

In the notations familiar to most readers, both the overall layout and the textual symbols are arranged
from left to right (LTR). Yet, as alluded to in the introduction, mathematics written in Hebrew or in
locales such as Morocco or Persia, the overall layout is used unchanged, but the embedded symbols
(often Hebrew or Arabic) are written right to left (RTL). Moreover, in most of the Arabic speaking
world, the notation is arranged entirely RTL; thus a superscript is still raised, but it follows the base on
the left rather than the right.

MathML 3.0 therefore recognizes two distinct directionalities: the directionality of the text and symbols
within token elements and the overall directionality represented by Layout Schemata. These two facets
are discussed below.

3.1.5.1 Opverall Directionality of Mathematics Formulas

The overall directionality for a formula, basically the direction of the Layout Schemata, is specified
by the dir attribute on the containing math element (see Section 2.2). The default is 1tr. When dir=
"rtl" is used, the layout is simply the mirror image of the conventional European layout. That is, shifts
up or down are unchanged, but the progression in laying out is from right to left.

For example, in a RTL layout, sub- and superscripts appear to the left of the base; the surd for a root
appears at the right, with the bar continuing over the base to the left. The layout details for elements
whose behaviour depends on directionality are given in the discussion of the element. In those discus-
sions, the terms leading and trailing are used to specify a side of an object when which side to use
depends on the directionality; ie. leading means left in LTR but right in RTL. The terms left and right
may otherwise be safely assumed to mean left and right.

The overall directionality is usually set on the math, but may also be switched for individual subformula
by using the dir attribute on mrow or mstyle elements. When not specified, all elements inherit the
directionality of their container.

3.1.5.2 Bidirectional Layout in Token Elements

The text directionality comes into play for the MathML token elements that can contain text (
mtext, mo, mi, mn and ms) and is determined by the Unicode properties of that text. A token element
containing exclusively LTR or RTL characters is displayed straightforwardly in the given direction.
When a mixture of directions is involved used, such as RTL Arabic and LTR numbers, the Unicode
bidirectional algorithm [Bidi] is applied. This algorithm specifies how runs of characters with the same
direction are processed and how the runs are (re)ordered. The base, or initial, direction is given by the
overall directionality described above (Section 3.1.5.1) and affects how weakly directional characters
are treated and how runs are nested. (The dir attribute is thus allowed on token elements to specify the
initial directionality that may be needed in rare cases.) Any mglyph or malignmark elements appearing
within a token element are effectively neutral and have no effect on ordering.

The important thing to notice is that the bidirectional algorithm is applied independently to the contents
of each token element; each token element is an independent run of characters.

3.1. Introduction 33

Other features of Unicode and scripts that should be respected are ‘mirroring’ and ‘glyph shaping’.
Some Unicode characters are marked as being mirrored when presented in a RTL context; that is, the
character is drawn as if it were mirrored or replaced by a corresponding character. Thus an opening
parenthesis, ‘(’, in RTL will display as ©)’. Conversely, the solidus (/ U+002F) is not marked as mir-
rored. Thus, an Arabic author that desires the slash to be reversed in an inline division should explicitly
use reverse solidus (\ U+005C) or an alternative such as the mirroring DIVISION SLASH (U+2215).

Additionally, calligraphic scripts such as Arabic blend, or connect sequences of characters together,
changing their appearance. As this can have an significant impact on readability, as well as aesthetics, it
is important to apply such shaping if possible. Glyph shaping, like directionality, applies to each token
element’s contents individually.

Please note that for the transfinite cardinals represented by Hebrew characters, the code points U+2135-
U+2138 (ALEF SYMBOL, BET SYMBOL, GIMEL SYMBOL, DALET SYMBOL) should be used.
These are strong left-to-right.

3.1.6 Displaystyle and Scriptlevel

So-called ‘displayed’ formulas, those appearing on a line by themselves, typically make more generous
use of vertical space than inline formulas, which should blend into the adjacent text without intruding
into neighboring lines. For example, in a displayed summation, the limits are placed above and below
the summation symbol, while when it appears inline the limits would appear in the sub and superscript
position. For similar reasons, sub- and superscripts, nested fractions and other constructs typically
display in a smaller size than the main part of the formula. MathML implicitly associates with every
presentation node a displaystyle and scriptlevel reflecting whether a more expansive vertical
layout applies and the level of scripting in the current context.

These values are initialized by the math element according to the display attribute. They are automat-
ically adjusted by the various script and limit schemata elements, and the elements mfrac and mroot,
which typically set displaystyle false and increment scriptlevel for some or all of their argu-
ments. (See the description for each element for the specific rules used.) They also may be set explicit-
ly via the displaystyle and scriptlevel attributes on the mstyle element or the displaystyle
attribute of mtable. In all other cases, they are inherited from the node’s parent.

The displaystyle affects the amount of vertical space used to lay out a formula: when true, the
more spacious layout of displayed equations is used, whereas when false a more compact layout of
inline formula is used. This primarily affects the interpretation of the largeop and movablelimits
attributes of the mo element. However, more sophisticated renderers are free to use this attribute to
render more or less compactly.

The main effect of scriptlevel is to control the font size. Typically, the higher the scriptlevel, the
smaller the font size. (Non-visual renderers can respond to the font size in an analogous way for their
medium.) Whenever the scriptlevel is changed, whether automatically or explicitly, the current font
size is multiplied by the value of scriptsizemultiplier to the power of the change in
scriptlevel. However, changes to the font size due to scriptlevel changes should never reduce
the size below scriptminsize to prevent scripts becoming unreadably small. The default
scriptsizemultiplier is approximately the square root of 1/2 whereas scriptminsize defaults
to 8 points; these values may be changed on mstyle; see Section 3.3.4. Note that the scriptlevel
attribute of mstyle allows arbitrary values of scriptlevel to be obtained, including negative values
which result in increased font sizes.

The changes to the font size due to scriptlevel should be viewed as being imposed from ‘outside’
the node. This means that the effect of scriptlevel is applied before an explicit mathsize (see

34 Chapter 3. Presentation Markup

Section 3.2.2) on a token child of mfrac. Thus, the mathsize effectively overrides the effect of
scriptlevel. However, that change to scriptlevel changes the current font size, which affects the
meaning of an "em" length (see Section 2.1.5.2) and so the scriptlevel still may have an effect in
such cases. Note also that since mathsize is not constrained by scriptminsize, such direct changes
to font size can result in scripts smaller than scriptminsize.

Note that direct changes to current font size, whether by CSS or by the mathsize attribute (See Sec-
tion 3.2.2), have no effect on the value of scriptlevel.

TeX’s \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle correspond to displaystyle and
scriptlevel as "true" and "0", "false" and "0", "false" and "1", and "false" and "2", re-
spectively. Thus, math’s display="block" corresponds to \displaystyle, while display="inline"
corresponds to \textstyle.

3.1.7 Linebreaking of Expressions
3.1.7.1 Control of Linebreaks

MathML provides support for both automatic and manual (forced) linebreaking of expressions to break
excessively long expressions into several lines. All such linebreaks take place within mrow (including
inferred mrow; see Section 3.1.3.1) or mfenced. The breaks typically take place at mo elements and
also, for backwards compatibility, at mspace. Renderers may also choose to place automatic linebreaks
at other points such as between adjacent mi elements or even within a token element such as a very
long mn element. MathML does not provide a means to specify such linebreaks, but if a render chooses
to linebreak at such a point, it should indent the following line according to the indentation attributes
that are in effect at that point.

Automatic linebreaking occurs when the containing math element has overflow="1inebreak" and
the display engine determines that there is not enough space available to display the entire formula.
The available width must therefore be known to the renderer. Like font properties, one is assumed to be
inherited from the environment in which the MathML element lives. If no width can be determined, an
infinite width should be assumed. Inside of amtable, each column has some width. This width may be
specified as an attribute or determined by the contents. This width should be used as the line wrapping
width for linebreaking, and each entry in an mtable is linewrapped as needed.

Forced linebreaks are specified by using 1inebreak="newline" on a mo or mspace element. Both
automatic and manual linebreaking can occur within the same formula.

Automatic linebreaking of subexpressions of mfrac, msqrt, mroot and menclose and the various
script elements is not required. Renderers are free to ignore forced breaks within those elements if they
choose.

Attributes on mo and possibly on mspace elements control linebreaking and indentation of the following
line. The aspects of linebreaking that can be controlled are:

° Where — attributes determine the desirability of a linebreak at a specific operator or space,
in particular whether a break is required or inhibited. These can only be set on mo and
mspace elements. (See Section 3.2.5.2.)

° Operator Display/Position — when a linebreak occurs, determines whether the operator will
appear at the end of the line, at the beginning of the next line, or in both positions; and how
much vertical space should be added after the linebreak. These attributes can be set on mo
elements or inherited from mstyle or math elements. (See Section 3.2.5.2.)

° Indentation — determines the indentation of the line following a linebreak, including in-
denting so that the next line aligns with some point in a previous line. These attributes can
be set on mo elements or inherited from mstyle or math elements. (See Section 3.2.5.2.)

3.1. Introduction 35

When a math element appears in an inline context, it may obey whatever paragraph flow rules are
employed by the document’s text rendering engine. Such rules are necessarily outside of the scope of
this specification. Alternatively, it may use the value of the math element’s overflow attribute. (See
Section 2.2.1.)

3.1.7.2 Automatic Linebreaking Algorithm (Informative)

One method of linebreaking that works reasonably well is sometimes referred to as a "best-fit" algo-
rithm. It works by computing a "penalty" for each potential break point on a line. The break point with
the smallest penalty is chosen and the algorithm then works on the next line. Three useful factors in a
penalty calculation are:

1. How much of the line width (after subtracting of the indent) is unused? The more unused,
the higher the penalty.

2. How deeply nested is the breakpoint in the expression tree? The expression tree’s depth is
roughly similar to the nesting depth of mrows. The more deeply nested the break point, the
higher the penalty.

3. Does a linebreak here make layout of the next line difficult? If the next line is not the last line

and if the indentingstyle uses information about the linebreak point to determine how much
to indent, then the amount of room left for linebreaking on the next line must be considered;
i.e., linebreaks that leave very little room to draw the next line result in a higher penalty.

4. Whether "linebreak" has been specified: "nobreak" effectively sets the penalty to infini-
ty, "badbreak" increases the penalty "goodbreak" decreases the penalty, and "newline"
effectively sets the penalty to 0.

This algorithm takes time proportional to the number of token elements times the number of lines.

3.1.7.3 Linebreaking Algorithm for Inline Expressions (Informative)

A common method for breaking inline expressions that are too long for the space remaining on the
current line is to pick an appropriate break point for the expression and place the expression up to that
point on the current line and place the remainder of the expression on the following line. This can be
done by:

1. Querying the text processing engine for the minimum and maximum amount of space avail-
able on the current line.
2. Using a variation of the automatic linebreaking algorithm given above), and/or using hints

provided by linebreak attributes on mo or mspace elements, to choose a line break. The goal
is that the first part of the formula fits "comfortably" on the current line while breaking at a
point that results in keeping related parts of an expression on the same line.

3. The remainder of the formula begins on the next line, positioned both vertically and hori-
zontally according to the paragraph flow; MathML’s indentation attributes are ignored in this
algorithm.

4, If the remainder does not fit on a line, steps 1 - 3 are repeated for the second and subsequent

lines. Unlike the for the first line, some part of the expression must be placed these lines so
that the algorithm terminates.

3.1.8 Warning about fine-tuning of presentation

Some use-cases require precise control of the math layout and presentation. Several MathML elements
and attributes expressly support such fine-tuning of the rendering. However, MathML rendering agents
exhibit wide variability in their presentation of the the same MathML expression due to difference

36 Chapter 3. Presentation Markup

in platforms, font availability, and requirements particular to the agent itself (see Section 3.1). The
overuse of explicit rendering control may yield a ‘perfect’ layout on one platform, but give much worse
presentation on others. The following sections clarify the kinds of problems that can occur.

3.1.8.1 Warning: non-portability of ‘tweaking’

For particular expressions, authors may be tempted to use the mpadded, mspace, mphantom, and mtext
elements to improve (‘tweak’) the spacing generated by a specific renderer.

Without explicit spacing rules, various MathML renders may use different spacing algorithms. Conse-
quently, different MathML renderers may position symbols in different locations relative to each other.
Say that renderer B, for example, provides improved spacing for a particular expression over renderer
A. Authors are strongly warned that ‘tweaking’ the layout for renderer A may produce very poor results
in renderer B, very likely worse than without any explicit adjustment at all.

Even when a specific choice of renderer can be assumed, its spacing rules may be improved in succes-
sive versions, so that the effect of tweaking in a given MathML document may grow worse with time.
Also, when style sheet mechanisms are extended to MathML, even one version of a renderer may use
different spacing rules for users with different style sheets.

Therefore, it is suggested that MathML markup never use mpadded or mspace elements to tweak
the rendering of specific expressions, unless the MathML is generated solely to be viewed using one
specific version of one MathML renderer, using one specific style sheet (if style sheets are available in
that renderer).

In cases where the temptation to improve spacing proves too strong, careful use of mpadded, mphantom,
or the alignment elements (Section 3.5.5) may give more portable results than the direct insertion of
extra space using mspace or mtext. Advice given to the implementers of MathML renderers might be
still more productive, in the long run.

3.1.8.2 Warning: spacing should not be used to convey meaning

MathML elements that permit ‘negative spacing’, namely mspace, mpadded, and mo, could in theory
be used to simulate new notations or ‘overstruck’ characters by the visual overlap of the renderings of
more than one MathML sub-expression.

This practice is strongly discouraged in all situations, for the following reasons:

° it will give different results in different MathML renderers (so the warning about ‘tweaking’
applies), especially if attempts are made to render glyphs outside the bounding box of the
MathML expression;
it is likely to appear much worse than a more standard construct supported by good renderers;
such expressions are almost certain to be uninterpretable by audio renderers, computer alge-
bra systems, text searches for standard symbols, or other processors of MathML input.

More generally, any construct that uses spacing to convey mathematical meaning, rather than simply
as an aid to viewing expression structure, is discouraged. That is, the constructs that are discouraged
are those that would be interpreted differently by a human viewer of rendered MathML if all explicit
spacing was removed.

Consider using the mglyph element for cases such as this. If such spacing constructs are used in spite
of this warning, they should be enclosed in a semantics element that also provides an additional
MathML expression that can be interpreted in a standard way. See Section 5.1 for further discussion.

3.1. Introduction 37

The above warning also applies to most uses of rendering attributes to alter the meaning conveyed by
an expression, with the exception of attributes on mi (such as mathvariant) used to distinguish one
variable from another.

3.19 Summary of Presentation Elements

3.1.9.1 Token Elements

mi identifier

mn number

mo operator, fence, or separator
mtext text

mspace space

ms string literal

Additionally, the mglyph element may be used within Token elements to represent non-standard sym-
bols as images.

3.1.9.2 General Layout Schemata

mrow group any number of sub-expressions horizontally

mfrac form a fraction from two sub-expressions

msqrt form a square root (radical without an index)

mroot form a radical with specified index

mstyle style change

merror enclose a syntax error message from a preprocessor

mpadded adjust space around content

mphantom make content invisible but preserve its size

mfenced surround content with a pair of fences

menclose enclose content with a stretching symbol such as a long division sign.

3.1.9.3 Script and Limit Schemata

msub attach a subscript to a base

msup attach a superscript to a base

msubsup attach a subscript-superscript pair to a base
munder attach an underscript to a base

mover attach an overscript to a base

munderover attach an underscript-overscript pair to a base
mmultiscripts attach prescripts and tensor indices to a base

3.1.94 Tables and Matrices

mtable table or matrix

mlabeledtr row in a table or matrix with a label or equation number
mtr row in a table or matrix

mtd one entry in a table or matrix

maligngroup and malignmark alignment markers

38 Chapter 3. Presentation Markup

3.1.9.5 Elementary Math Layout

mstack columns of aligned characters

mlongdiv similar to msgroup, with the addition of a divisor and result
msgroup a group of rows in an mstack that are shifted by similar amounts
msrow a row in an mstack

mscarries row in an mstack that whose contents represent carries or borrows
mscarry one entry in an mscarries

msline horizontal line inside of mstack

3.1.9.6 Enlivening Expressions

maction bind actions to a sub-expression

3.1.10 Mathematics style attributes common to presentation elements

In addition to the attributes listed in Section 2.1.6, all MathML presentation elements accept the fol-
lowing two attributes:

Name ‘ values ‘ default

mathcolor ‘ color ‘ inherited
Specifies the foreground color to use when drawing the components of this element,
such as the content for token elements or any lines, surds, or other decorations. It al-
so establishes the default mathcolor used for child elements when used on a layout
element.

mathbackground | color | "transparent” transparent
Specifies the background color to be used to fill in the bounding box of the element
and its children. The default, "transparent”, lets the background color, if any, used in the
current rendering context to show through.

These style attributes are primarily intended for visual media. They are not expected to affect the
intended semantics of displayed expressions, but are for use in highlighting or drawing attention to the
affected subexpressions. For example, a red "x" is not assumed to be semantically different than a black

non

x", in contrast to variables with different mathvariant (See Section 3.2.2).

Since MathML expressions are often embedded in a textual data format such as HTML, the MathML
renderer should inherit the foreground color used in the context in which the MathML appears. Note,
however, that MathML doesn’t specify the mechanism by which style information is inherited from the
rendering environment. See Section 3.2.2 for more details.

Note that the suggested MathML visual rendering rules do not define the precise extent of the region
whose background is affected by the mathbackground attribute, except that, when the content does not
have negative dimensions and its drawing region is not overlapped by other drawing due to surrounding
negative spacing, this region should lie behind all the drawing done to render the content, but should
not lie behind any of the drawing done to render surrounding expressions. The effect of overlap of
drawing regions caused by negative spacing on the extent of the region affected by the
mathbackground attribute is not defined by these rules.

3.2 Token Elements

Token elements in presentation markup are broadly intended to represent the smallest units of math-
ematical notation which carry meaning. Tokens are roughly analogous to words in text. However, be-
cause of the precise, symbolic nature of mathematical notation, the various categories and properties of

3.2. Token Elements 39

token elements figure prominently in MathML markup. By contrast, in textual data, individual words
rarely need to be marked up or styled specially.

Frequently, tokens consist of a single character denoting a mathematical symbol. Other cases, e.g. func-
tion names, involve multi-character tokens. Further, because traditional mathematical notation makes
wide use of symbols distinguished by their typographical properties (e.g. a Fraktur ’g’ for a Lie algebra,
or a bold ’x’ for a vector), care must be taken to insure that styling mechanisms respect typographi-
cal properties which carry meaning. Consequently, characters, tokens, and typographical properties of
symbols are closely related to one another in MathML.

Token elements represent identifiers (mi), numbers (mn), operators (mo), text (mtext), strings (ms) and
spacing (mspace). The mglyph element may be used within token elements to represent non-standard
symbols by images. Preceding detailed discussion of the individual elements, the next two subsections
discuss the allowable content of token elements and the attributes common to them.

3.2.1 Token Element Content Characters, <mglyph/>

Character data in MathML markup is only allowed to occur as part of the content of token elements.
Whitespace between elements is ignored. With the exception of the empty mspace element, token
elements can contain any sequence of zero or more Unicode characters, or mglyph or malignmark
elements. The mglyph element is used to represent non-standard characters or symbols by images; the
malignmark element establishes an alignment point for use within table constructs, and is otherwise
invisible (See Section 3.5.5).

Characters can be either represented directly as Unicode character data, or indirectly via numeric or
character entity references. See Chapter 7 for a discussion of the advantages and disadvantages of
numeric character references versus entity references, and [Entities] for a full list of the entity names
available. Also, see Section 7.7 for a discussion of the appropriate character content to choose for
certain applications.

Token elements (other than mspace) should be rendered as their content, if any, (i.e. in the visual case,
as a closely-spaced horizontal row of standard glyphs for the characters or images for the mglyphs in
their content). An mspace element is rendered as a blank space of a width determined by its attributes.
Rendering algorithms should also take into account the mathematics style attributes as described below,
and modify surrounding spacing by rules or attributes specific to each type of token element. The
directional characteristics of the content must also be respected (see Section 3.1.5.2).

3.2.1.1 Alphanumeric symbol characters

A large class of mathematical symbols are single letter identifiers typically used as variable names in
formulas. Different font variants of a letter are treated as separate symbols. For example, a Fraktur *g’
might denote a Lie algebra, while a Roman ’g’ denotes the corresponding Lie group. These letter-like
symbols are traditionally typeset differently than the same characters appearing in text, using different
spacing and ligature conventions. These characters must also be treated specially by style mechanisms,
since arbitrary style transformations can change meaning in an expression.

For these reasons, Unicode contains more than nine hundred Math Alphanumeric Symbol characters
corresponding to letter-like symbols. These characters are in the Secondary Multilingual Plane (SMP).
See [Entities] for more information. As valid Unicode data, these characters are permitted in MathML
and, as tools and fonts for them become widely available, we anticipate they will be the predominant
way of denoting letter-like symbols.

MathML also provides an alternative encoding for these characters using only Basic Multilingual Plane
(BMP) characters together with markup. MathML defines a correspondence between token elements

40 Chapter 3. Presentation Markup

with certain combinations of BMP character data and the mathvariant attribute and tokens containing
SMP Math Alphanumeric Symbol characters. Processing applications that accept SMP characters are
required to treat the corresponding BMP and attribute combinations identically. This is particularly
important for applications that support searching and/or equality testing.

The mathvariant attribute is described in more detail in Section 3.2.2, and a complete technical
description of the corresponding characters is given in Section 7.5.

3.2.1.2 Using images to represent symbols <mglyph/>
Description

The mglyph element provides a mechanism for displaying images to represent non-standard symbols.
It may be used within the content of the token elements mi, mn, mo, mtext or ms where existing Unicode
characters are not adequate.

Unicode defines a large number of characters used in mathematics and, in most cases, glyphs represent-
ing these characters are widely available in a variety of fonts. Although these characters should meet
almost all users needs, MathML recognizes that mathematics is not static and that new characters and
symbols are added when convenient. Characters that become well accepted will likely be eventually
incorporated by the Unicode Consortium or other standards bodies, but that is often a lengthy process.

Note that the glyph’s src attribute uniquely identifies the mglyph; two mglyphs with the same val-
ues for src should be considered identical by applications that must determine whether two charac-
ters/glyphs are identical.

Attributes

The mglyph element accepts the attributes listed in Section 3.1.10, but note that mathcolor has no
effect. The background color, mathbackground, should show through if the specified image has trans-
parency.

mglyph also accepts the additional attributes listed here.

] Name \ values \ default

src ‘ URI \ required
Specifies the location of the image resource; it may be a URI relative to the base-URI
of the source of the MathML, if any.

width ‘ length ‘ from image
Specifies the desired width of the glyph; see height.
height ‘ length ‘ from image

Specifies the desired height of the glyph. If only one of width and height are given,
the image should be scaled to preserve the aspect ratio; if neither are given, the image
shoul