
Scalable Vector Graphics (SVG) 1.1 (Second Edition)

W3C Recommendation 16 August 2011

This version:
http://www.w3.org/TR/2011/REC-SVG11-20110816/

Latest version:
http://www.w3.org/TR/SVG11/

Previous version:
http://www.w3.org/TR/2011/PR-SVG11-20110609/

Public comments:
www-svg@w3.org (archive)

Editors:
Erik Dahlström, Opera Software · ed@opera.com

Patrick Dengler, Microsoft Corporation · patd@microsoft.com

Anthony Grasso, Canon Inc. · anthony.grasso@cisra.canon.com.au

Chris Lilley, W3C · chris@w3.org

Cameron McCormack, Mozilla Corporation · cam@mcc.id.au

Doug Schepers, W3C · schepers@w3.org

Jonathan Watt, Mozilla Corporation · jwatt@jwatt.org

Versions 1.0 and 1.1 First Edition; until 10 May 2006Jon Ferraiolo, ex Adobe Systems · jferrai@us.ibm.com
Version 1.1 First Edition藤沢 淳 (FUJISAWA Jun), Canon Inc. · fujisawa.jun@canon.co.jp

Version 1.1 First Edition; until February 2007Dean Jackson, ex W3C · dean@w3.org

Please refer to the errata for this document, which may include some normative corrections.

This document is also available in these non-normative formats: a single-page version, a zip archive of HTML
(without external dependencies), and a PDF. See also translations, noting that the English version of this specific-
ation is the only normative version.

Copyright © 2011 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/TR/2011/REC-SVG11-20110816/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/2011/PR-SVG11-20110609/
mailto:www-svg@w3.org
http://lists.w3.org/Archives/Public/www-svg/
mailto:ed@opera.com
mailto:patd@microsoft.com
mailto:anthony.grasso@cisra.canon.com.au
mailto:chris@w3.org
mailto:cam@mcc.id.au
mailto:schepers@w3.org
mailto:jwatt@jwatt.org
mailto:jferrai@us.ibm.com
mailto:fujisawa.jun@canon.co.jp
mailto:dean@w3.org
http://www.w3.org/2011/08/REC-SVG11-20110816-errata
../publish/REC-SVG11-20110816.zip
http://www.w3.org/Graphics/SVG/svg-updates/translations
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents


Abstract

This specification defines the features and syntax for Scalable Vector Graphics (SVG) Version 1.1, a modularized
language for describing two-dimensional vector and mixed vector/raster graphics in XML.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current W3C publications and the latest revision of this technical report can be found in
the W3C technical reports index at http://www.w3.org/TR/.

This document is the 16 August 2011 SVG 1.1 Second Edition Recommendation. The Second Edition incorporates
a number of corrections that were published as errata against the First Edition, as well as numerous other changes
that help make the specification more readable and unambiguous. The Changes appendix lists all of the changes
that were made since the first Proposed Recommendation publication of the Second Edition. For all changes made
between the First Edition and the Second Edition, see:

• Changes between the SVG 1.1 First Edition Recommendation and the first Last Call Working Draft of SVG
1.1 Second Edition

• Changes between the first and second Last Call Working Drafts of SVG 1.1 Second Edition
• Changes between the second Last Call Working Draft and the Proposed Recommendation of SVG 1.1 Second

Edition
• Changes between the Proposed Recommendation and this document

Comments on this Recommendation are welcome. Corrections against the specification will be published as errata,
and subsequently will be incorporated into future editions of SVG 1.1 or into SVG 2.0. Comments can be sent to
www-svg@w3.org, the public email list for issues related to vector graphics on the Web. This list is archived and
senders must agree to have their message publicly archived from their first posting. To subscribe send an email to
www-svg-request@w3.org with the word subscribe in the subject line.

The W3C SVG Working Group has released an expanded test suite for SVG 1.1 along with an implementation
report. This test suite will continue to be updated with new tests to improve interoperability even after Recom-
mendation phase.

This document has been produced by the W3C SVG Working Group as part of the Graphics Activity within
the W3C Interaction Domain. The goals of the W3C SVG Working Group are discussed in the W3C SVG Charter.
The W3C SVG Working Group maintains a public Web page, http://www.w3.org/Graphics/SVG/, that contains fur-
ther background information. The authors of this document are the SVG Working Group participants.

This document has been reviewed by W3C Members, by software developers, and by other W3C groups and
interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may
be used as reference material or cited from another document. W3C's role in making the Recommendation is to
draw attention to the specification and to promote its widespread deployment. This enhances the functionality and
interoperability of the Web.

http://www.w3.org/TR/
http://www.w3.org/2003/01/REC-SVG11-20030114-errata
http://www.w3.org/TR/2010/WD-SVG11-20100622/changes.html
http://www.w3.org/TR/2010/WD-SVG11-20100622/changes.html
http://www.w3.org/TR/2011/WD-SVG11-20110512/changes.html
http://www.w3.org/TR/2011/PR-SVG11-20110609/changes.html
http://www.w3.org/TR/2011/PR-SVG11-20110609/changes.html
mailto:www-svg@w3.org
http://lists.w3.org/Archives/Public/www-svg/
mailto:www-svg-request@w3.org
http://www.w3.org/Graphics/SVG/Test/20110816/
http://www.w3.org/Graphics/SVG/Test/20110816/status/implementation_matrix.html
http://www.w3.org/Graphics/SVG/Test/20110816/status/implementation_matrix.html
http://www.w3.org/Graphics/SVG/WG
http://www.w3.org/Graphics/Activity
http://www.w3.org/Interaction/
http://www.w3.org/2007/11/SVG_rechartering/SVG-WG-charter.html
http://www.w3.org/Graphics/SVG/


This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C main-
tains a public list of any patent disclosures made in connection with the deliverables of the group; that page also
includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the indi-
vidual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C
Patent Policy.

Available languages

The English version of this specification is the only normative version. However, for translations in other lan-
guages see http://www.w3.org/Graphics/SVG/svg-updates/translations.html.

Acknowledgments

The SVG Working Group would like to thank the following people for contributing to this specification by raising
issues that resulted in errata that were folded in to this document: Tavmjong Bah, Brian Birtles, Tolga Capin,
Alex Danilo, Thomas DeWeese, Alexey Feldgendler, Vincent Hardy, Ian Hickson, Olaf Hoffmann, Daniel Holbert,
Oliver Hunt, Anne van Kesteren, Takeshi Kurosawa, Paul Libbrecht, Robert Longson, Helder Magalhães, Robert
O’Callahan, Olli Pettay, Antoine Quint, Kalle Raita, Tim Rowley, Peter Sorotokin, Henry S. Thompson, Jasper van
de Gronde, Mohamed Zergaoui, Boris Zbarsky.

In addition, the SVG Working Group would like to acknowledge the contributions of the editors and authors
of SVG 1.0 and SVG 1.1 (First Edition), as much of the text in this document derives from these earlier versions of
the SVG specification.

Finally, the SVG Working Group would like to acknowledge the great many people outside of the SVG Work-
ing Group who help with the process of developing the SVG specifications. These people are too numerous to list
individually. They include but are not limited to the early implementers of the SVG 1.0 and 1.1 languages (in-
cluding viewers, authoring tools, and server-side transcoders), developers of SVG content, people who have con-
tributed on the www-svg@w3.org and svg-developers@yahoogroups.com email lists, other Working Groups at the
W3C, and the W3C Team. SVG 1.1 is truly a cooperative effort between the SVG Working Group, the rest of the
W3C, and the public and benefits greatly from the pioneering work of early implementers and content developers,
feedback from the public, and help from the W3C team.

http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/19480/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://www.w3.org/Graphics/SVG/svg-updates/translations.html
http://www.w3.org/TR/2001/REC-SVG-20010904/
http://www.w3.org/TR/2003/REC-SVG11-20030114/


Table of Contents

1 Introduction
1.1 About SVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 SVG MIME type, file name extension and Macintosh file type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 SVG Namespace, Public Identifier and System Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Compatibility with Other Standards Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Concepts
2.1 Explaining the name: SVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Important SVG concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Options for using SVG in Web pages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Rendering Model
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 The painters model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Rendering Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 How groups are rendered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 How elements are rendered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Types of graphics elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 Painting shapes and text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.2 Painting raster images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Filtering painted regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8 Clipping, masking and object opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9 Parent Compositing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Basic Data Types and Interfaces
4.1 Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Basic data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Real number precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4 Recognized color keyword names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Basic DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.1 Interface SVGElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.2 Interface SVGAnimatedBoolean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.3 Interface SVGAnimatedString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.4 Interface SVGStringList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.5 Interface SVGAnimatedEnumeration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5.6 Interface SVGAnimatedInteger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.7 Interface SVGNumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



4.5.8 Interface SVGAnimatedNumber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.9 Interface SVGNumberList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.10 Interface SVGAnimatedNumberList. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.11 Interface SVGLength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.12 Interface SVGAnimatedLength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.5.13 Interface SVGLengthList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5.14 Interface SVGAnimatedLengthList. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5.15 Interface SVGAngle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5.16 Interface SVGAnimatedAngle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.5.17 Interface SVGColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.5.18 Interface SVGICCColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.5.19 Interface SVGRect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.5.20 Interface SVGAnimatedRect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.5.21 Interface SVGUnitTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5.22 Interface SVGStylable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5.23 Interface SVGLocatable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.5.24 Interface SVGTransformable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5.25 Interface SVGTests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.5.26 Interface SVGLangSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.5.27 Interface SVGExternalResourcesRequired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.5.28 Interface SVGFitToViewBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.5.29 Interface SVGZoomAndPan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.5.30 Interface SVGViewSpec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.5.31 Interface SVGURIReference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5.32 Interface SVGCSSRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5.33 Interface SVGRenderingIntent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5 Document Structure
5.1 Defining an SVG document fragment: the ‘svg’ element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.2 The ‘svg’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Grouping: the ‘g’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 The ‘g’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Defining content for reuse, and the ‘defs’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.2 The ‘defs’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 The ‘desc’ and ‘title’ elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 The ‘symbol’ element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6 The ‘use’ element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.7 The ‘image’ element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.8 Conditional processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



5.8.1 Conditional processing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.8.2 The ‘switch’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.8.3 The ‘requiredFeatures’ attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.8.4 The ‘requiredExtensions’ attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.8.5 The ‘systemLanguage’ attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.8.6 Applicability of test attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.9 Specifying whether external resources are required for proper rendering. . . . . . . . . . . . . . . . . . . . . . . . . 63
5.10 Common attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.10.1 Attributes common to all elements: ‘id’ and ‘xml:base’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.10.2 The ‘xml:lang’ and ‘xml:space’ attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.11 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.11.1 Interface SVGDocument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.11.2 Interface SVGSVGElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.11.3 Interface SVGGElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.11.4 Interface SVGDefsElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.11.5 Interface SVGDescElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.11.6 Interface SVGTitleElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.11.7 Interface SVGSymbolElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.11.8 Interface SVGUseElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.11.9 Interface SVGElementInstance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.11.10 Interface SVGElementInstanceList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.11.11 Interface SVGImageElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.11.12 Interface SVGSwitchElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.11.13 Interface GetSVGDocument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Styling
6.1 SVG's styling properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2 Usage scenarios for styling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3 Alternative ways to specify styling properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.4 Specifying properties using the presentation attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.5 Styling with XSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.6 Styling with CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.7 Case sensitivity of property names and values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.8 Facilities from CSS and XSL used by SVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.9 Referencing external style sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.10 The ‘style’ element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.11 The ‘class’ attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.12 The ‘style’ attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.13 Specifying the default style sheet language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.14 Property inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.15 The scope/range of styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.16 User agent style sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



6.17 Aural style sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.18 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.18.1 Interface SVGStyleElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 Coordinate Systems, Transformations and Units
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.2 The initial viewport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.3 The initial coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.4 Coordinate system transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.5 Nested transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.6 The ‘transform’ attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.7 The ‘viewBox’ attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.8 The ‘preserveAspectRatio’ attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.9 Establishing a new viewport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.10 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.11 Object bounding box units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.12 Intrinsic sizing properties of the viewport of SVG content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.13 Geographic coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.14 The ‘svg:transform’ attribute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.15 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.15.1 Interface SVGPoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.15.2 Interface SVGPointList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.15.3 Interface SVGMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.15.4 Interface SVGTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.15.5 Interface SVGTransformList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.15.6 Interface SVGAnimatedTransformList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.15.7 Interface SVGPreserveAspectRatio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.15.8 Interface SVGAnimatedPreserveAspectRatio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8 Paths
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.2 The ‘path’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.3 Path data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.3.1 General information about path data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.3.2 The "moveto" commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.3.3 The "closepath" command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.3.4 The "lineto" commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.3.5 The curve commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.3.6 The cubic Bézier curve commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.3.7 The quadratic Bézier curve commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.3.8 The elliptical arc curve commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.3.9 The grammar for path data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210



8.4 Distance along a path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.5 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.5.1 Interface SVGPathSeg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.5.2 Interface SVGPathSegClosePath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
8.5.3 Interface SVGPathSegMovetoAbs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
8.5.4 Interface SVGPathSegMovetoRel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.5.5 Interface SVGPathSegLinetoAbs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.5.6 Interface SVGPathSegLinetoRel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.5.7 Interface SVGPathSegCurvetoCubicAbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.5.8 Interface SVGPathSegCurvetoCubicRel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8.5.9 Interface SVGPathSegCurvetoQuadraticAbs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8.5.10 Interface SVGPathSegCurvetoQuadraticRel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
8.5.11 Interface SVGPathSegArcAbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
8.5.12 Interface SVGPathSegArcRel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8.5.13 Interface SVGPathSegLinetoHorizontalAbs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.5.14 Interface SVGPathSegLinetoHorizontalRel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.5.15 Interface SVGPathSegLinetoVerticalAbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.5.16 Interface SVGPathSegLinetoVerticalRel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.5.17 Interface SVGPathSegCurvetoCubicSmoothAbs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.5.18 Interface SVGPathSegCurvetoCubicSmoothRel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
8.5.19 Interface SVGPathSegCurvetoQuadraticSmoothAbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
8.5.20 Interface SVGPathSegCurvetoQuadraticSmoothRel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
8.5.21 Interface SVGPathSegList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.5.22 Interface SVGAnimatedPathData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.5.23 Interface SVGPathElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

9 Basic Shapes
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
9.2 The ‘rect’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
9.3 The ‘circle’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
9.4 The ‘ellipse’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
9.5 The ‘line’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
9.6 The ‘polyline’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
9.7 The ‘polygon’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

9.7.1 The grammar for points specifications in ‘polyline’ and ‘polygon’ elements . . . . . . . . . . . . . . . . 262
9.8 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

9.8.1 Interface SVGRectElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
9.8.2 Interface SVGCircleElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
9.8.3 Interface SVGEllipseElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
9.8.4 Interface SVGLineElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
9.8.5 Interface SVGAnimatedPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
9.8.6 Interface SVGPolylineElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267



9.8.7 Interface SVGPolygonElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

10 Text
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
10.2 Characters and their corresponding glyphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
10.3 Fonts, font tables and baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
10.4 The ‘text’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
10.5 The ‘tspan’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
10.6 The ‘tref’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
10.7 Text layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

10.7.1 Text layout introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
10.7.2 Setting the inline-progression-direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
10.7.3 Glyph orientation within a text run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
10.7.4 Relationship with bidirectionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

10.8 Text rendering order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.9 Alignment properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

10.9.1 Text alignment properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.9.2 Baseline alignment properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

10.10 Font selection properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
10.11 Spacing properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
10.12 Text decoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
10.13 Text on a path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

10.13.1 Introduction to text on a path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
10.13.2 The ‘textPath’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
10.13.3 Text on a path layout rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

10.14 Alternate glyphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
10.14.1 The ‘altGlyph’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
10.14.2 The ‘altGlyphDef’, ‘altGlyphItem’ and ‘glyphRef’ elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

10.15 White space handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
10.16 Text selection and clipboard operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
10.17 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

10.17.1 Interface SVGTextContentElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
10.17.2 Interface SVGTextPositioningElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
10.17.3 Interface SVGTextElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
10.17.4 Interface SVGTSpanElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
10.17.5 Interface SVGTRefElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
10.17.6 Interface SVGTextPathElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
10.17.7 Interface SVGAltGlyphElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
10.17.8 Interface SVGAltGlyphDefElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
10.17.9 Interface SVGAltGlyphItemElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
10.17.10 Interface SVGGlyphRefElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338



11 Painting: Filling, Stroking and Marker Symbols
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
11.2 Specifying paint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
11.3 Fill Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
11.4 Stroke Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
11.5 Controlling visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
11.6 Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

11.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
11.6.2 The ‘marker’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
11.6.3 Marker properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
11.6.4 Details on how markers are rendered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

11.7 Rendering properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
11.7.1 Color interpolation properties: ‘color-interpolation’ and ‘color-interpolation-filters’ . . . . . . . . . 358
11.7.2 The ‘color-rendering’ property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
11.7.3 The ‘shape-rendering’ property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
11.7.4 The ‘text-rendering’ property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
11.7.5 The ‘image-rendering’ property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

11.8 Inheritance of painting properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
11.9 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

11.9.1 Interface SVGPaint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
11.9.2 Interface SVGMarkerElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

12 Color
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
12.2 The ‘color’ property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
12.3 Color profile descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

12.3.1 Overview of color profile descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
12.3.2 Alternative ways of defining a color profile description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
12.3.3 The ‘color-profile’ element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
12.3.4 The CSS @color-profile rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
12.3.5 The ‘color-profile’ property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

12.4 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
12.4.1 Interface SVGColorProfileElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
12.4.2 Interface SVGColorProfileRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

13 Gradients and Patterns
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
13.2 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

13.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
13.2.2 Linear gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
13.2.3 Radial gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
13.2.4 Gradient stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386



13.3 Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
13.4 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

13.4.1 Interface SVGGradientElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
13.4.2 Interface SVGLinearGradientElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
13.4.3 Interface SVGRadialGradientElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
13.4.4 Interface SVGStopElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
13.4.5 Interface SVGPatternElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

14 Clipping, Masking and Compositing
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
14.2 Simple alpha compositing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
14.3 Clipping paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

14.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
14.3.2 The initial clipping path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
14.3.3 The ‘overflow’ and ‘clip’ properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
14.3.4 Clip to viewport vs. clip to ‘viewBox’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
14.3.5 Establishing a new clipping path: the ‘clipPath’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
14.3.6 Clipping paths, geometry, and pointer events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

14.4 Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
14.5 Object and group opacity: the ‘opacity’ property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
14.6 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

14.6.1 Interface SVGClipPathElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
14.6.2 Interface SVGMaskElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

15 Filter Effects
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
15.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
15.3 The ‘filter’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
15.4 The ‘filter’ property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
15.5 Filter effects region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
15.6 Accessing the background image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
15.7 Filter primitives overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

15.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
15.7.2 Common attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
15.7.3 Filter primitive subregion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

15.8 Light source elements and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
15.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
15.8.2 Light source ‘feDistantLight’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
15.8.3 Light source ‘fePointLight’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
15.8.4 Light source ‘feSpotLight’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
15.8.5 The ‘lighting-color’ property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

15.9 Filter primitive ‘feBlend’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435



15.10 Filter primitive ‘feColorMatrix’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
15.11 Filter primitive ‘feComponentTransfer’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
15.12 Filter primitive ‘feComposite’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
15.13 Filter primitive ‘feConvolveMatrix’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
15.14 Filter primitive ‘feDiffuseLighting’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
15.15 Filter primitive ‘feDisplacementMap’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
15.16 Filter primitive ‘feFlood’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
15.17 Filter primitive ‘feGaussianBlur’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
15.18 Filter primitive ‘feImage’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
15.19 Filter primitive ‘feMerge’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
15.20 Filter primitive ‘feMorphology’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
15.21 Filter primitive ‘feOffset’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
15.22 Filter primitive ‘feSpecularLighting’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
15.23 Filter primitive ‘feTile’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
15.24 Filter primitive ‘feTurbulence’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
15.25 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

15.25.1 Interface SVGFilterElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
15.25.2 Interface SVGFilterPrimitiveStandardAttributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
15.25.3 Interface SVGFEBlendElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
15.25.4 Interface SVGFEColorMatrixElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
15.25.5 Interface SVGFEComponentTransferElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
15.25.6 Interface SVGComponentTransferFunctionElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
15.25.7 Interface SVGFEFuncRElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
15.25.8 Interface SVGFEFuncGElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
15.25.9 Interface SVGFEFuncBElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
15.25.10 Interface SVGFEFuncAElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
15.25.11 Interface SVGFECompositeElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
15.25.12 Interface SVGFEConvolveMatrixElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
15.25.13 Interface SVGFEDiffuseLightingElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
15.25.14 Interface SVGFEDistantLightElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
15.25.15 Interface SVGFEPointLightElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
15.25.16 Interface SVGFESpotLightElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
15.25.17 Interface SVGFEDisplacementMapElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
15.25.18 Interface SVGFEFloodElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
15.25.19 Interface SVGFEGaussianBlurElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
15.25.20 Interface SVGFEImageElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
15.25.21 Interface SVGFEMergeElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
15.25.22 Interface SVGFEMergeNodeElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
15.25.23 Interface SVGFEMorphologyElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
15.25.24 Interface SVGFEOffsetElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
15.25.25 Interface SVGFESpecularLightingElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
15.25.26 Interface SVGFETileElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501



15.25.27 Interface SVGFETurbulenceElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

16 Interactivity
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
16.2 Complete list of supported events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
16.3 User interface events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
16.4 Pointer events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
16.5 Hit-testing and processing order for user interface events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

16.5.1 Hit-testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
16.5.2 Event processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

16.6 The ‘pointer-events’ property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
16.7 Magnification and panning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
16.8 Cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

16.8.1 Introduction to cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
16.8.2 The ‘cursor’ property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
16.8.3 The ‘cursor’ element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

16.9 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
16.9.1 Interface SVGCursorElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

17 Linking
17.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

17.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
17.1.2 IRIs and URIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
17.1.3 Syntactic forms: IRI and FuncIRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
17.1.4 Processing of IRI references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
17.1.5 IRI reference attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

17.2 Links out of SVG content: the ‘a’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
17.3 Linking into SVG content: IRI fragments and SVG views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

17.3.1 Introduction: IRI fragments and SVG views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
17.3.2 SVG fragment identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
17.3.3 Predefined views: the ‘view’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
17.3.4 Highlighting views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

17.4 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
17.4.1 Interface SVGAElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
17.4.2 Interface SVGViewElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

18 Scripting
18.1 Specifying the scripting language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

18.1.1 Specifying the default scripting language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
18.1.2 Local declaration of a scripting language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

18.2 The ‘script’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
18.3 Event handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534



18.4 Event attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
18.4.1 Event attribute for the SVGLoad event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
18.4.2 Event attributes on graphics and container elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
18.4.3 Document-level event attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
18.4.4 Animation event attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

18.5 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
18.5.1 Interface SVGScriptElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
18.5.2 Interface SVGZoomEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

19 Animation
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
19.2 Animation elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

19.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
19.2.2 Relationship to SMIL Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
19.2.3 Animation elements example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
19.2.4 Attributes to identify the target element for an animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
19.2.5 Attributes to identify the target attribute or property for an animation. . . . . . . . . . . . . . . . . . . 543
19.2.6 Animation with namespaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
19.2.7 Paced animation and complex types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
19.2.8 Attributes to control the timing of the animation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

19.2.8.1 Clock values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
19.2.9 Attributes that define animation values over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
19.2.10 Attributes that control whether animations are additive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
19.2.11 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
19.2.12 The ‘animate’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
19.2.13 The ‘set’ element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
19.2.14 The ‘animateMotion’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
19.2.15 The ‘animateColor’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
19.2.16 The ‘animateTransform’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
19.2.17 Elements, attributes and properties that can be animated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

19.3 Animation using the SVG DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
19.4 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

19.4.1 Interface ElementTimeControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
19.4.2 Interface TimeEvent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
19.4.3 Interface SVGAnimationElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
19.4.4 Interface SVGAnimateElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
19.4.5 Interface SVGSetElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
19.4.6 Interface SVGAnimateMotionElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
19.4.7 Interface SVGMPathElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
19.4.8 Interface SVGAnimateColorElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
19.4.9 Interface SVGAnimateTransformElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578



20 Fonts
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
20.2 Overview of SVG fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
20.3 The ‘font’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
20.4 The ‘glyph’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
20.5 The ‘missing-glyph’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
20.6 Glyph selection rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
20.7 The ‘hkern’ and ‘vkern’ elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
20.8 Describing a font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

20.8.1 Overview of font descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
20.8.2 Alternative ways for providing a font description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
20.8.3 The ‘font-face’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
20.8.4 The ‘font-face-src’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
20.8.5 The ‘font-face-uri’ and ‘font-face-format’ elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
20.8.6 The ‘font-face-name’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

20.9 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
20.9.1 Interface SVGFontElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
20.9.2 Interface SVGGlyphElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
20.9.3 Interface SVGMissingGlyphElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
20.9.4 Interface SVGHKernElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
20.9.5 Interface SVGVKernElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
20.9.6 Interface SVGFontFaceElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
20.9.7 Interface SVGFontFaceSrcElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
20.9.8 Interface SVGFontFaceUriElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
20.9.9 Interface SVGFontFaceFormatElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
20.9.10 Interface SVGFontFaceNameElement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

21 Metadata
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
21.2 The ‘metadata’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
21.3 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
21.4 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

21.4.1 Interface SVGMetadataElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

22 Backwards Compatibility

23 Extensibility
23.1 Foreign namespaces and private data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
23.2 Embedding foreign object types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
23.3 The ‘foreignObject’ element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
23.4 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
23.5 Adding private elements and attributes to the DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612



23.6 DOM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
23.6.1 Interface SVGForeignObjectElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

Appendix A: Document Type Definition
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
A.2 Modularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616

A.2.1 Element and attribute collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
A.2.2 Profiling the SVG specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
A.2.3 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

A.3 SVG 1.1 module definitions and DTD implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
A.3.1 Modular Framework Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
A.3.2 Datatypes Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
A.3.3 Qualified Name Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
A.3.4 Core Attribute Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
A.3.5 Container Attribute Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
A.3.6 Viewport Attribute Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
A.3.7 Paint Attribute Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
A.3.8 Basic Paint Attribute Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
A.3.9 Paint Opacity Attribute Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
A.3.10 Graphics Attribute Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
A.3.11 Basic Graphics Attribute Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
A.3.12 Document Events Attribute Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
A.3.13 Graphical Element Events Attribute Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
A.3.14 Animation Events Attribute Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
A.3.15 XLink Attribute Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
A.3.16 External Resources Attribute Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
A.3.17 Structure Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
A.3.18 Basic Structure Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
A.3.19 Conditional Processing Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
A.3.20 Image Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
A.3.21 Style Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
A.3.22 Shape Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
A.3.23 Text Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
A.3.24 Basic Text Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
A.3.25 Marker Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
A.3.26 Color Profile Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
A.3.27 Gradient Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
A.3.28 Pattern Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
A.3.29 Clip Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
A.3.30 Basic Clip Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
A.3.31 Mask Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
A.3.32 Filter Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674



A.3.33 Basic Filter Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
A.3.34 Cursor Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
A.3.35 Hyperlinking Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
A.3.36 View Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
A.3.37 Scripting Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
A.3.38 Animation Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
A.3.39 Font Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
A.3.40 Basic Font Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
A.3.41 Extensibility Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710

A.4 SVG 1.1 Document Type Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
A.4.1 SVG 1.1 DTD Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
A.4.2 SVG 1.1 Document Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
A.4.3 SVG 1.1 Attribute Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

Appendix B: SVG Document Object Model (DOM)
B.1 SVG DOM overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722

B.1.1 SVG DOM object initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
B.2 Elements in the SVG DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724
B.3 Naming conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724
B.4 Exception SVGException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
B.5 Feature strings for the hasFeature method call. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
B.6 Relationship with DOM Level 2 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
B.7 Relationship with DOM Level 2 CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728

B.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
B.7.2 User agents that do not support styling with CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
B.7.3 User agents that support styling with CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
B.7.4 Extended interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

B.8 Read only nodes in the DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
B.9 Invalid values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732

Appendix C: IDL Definitions

Appendix D: Java Language Binding
D.1 The Java language binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
D.2 Using SVG with the Java language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753

Appendix E: ECMAScript Language Binding
E.1 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
E.2 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756
E.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756
E.4 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756



Appendix F: Implementation Requirements
F.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
F.2 Error processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
F.3 Version control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
F.4 Clamping values which are restricted to a particular range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
F.5 ‘path’ element implementation notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
F.6 Elliptical arc implementation notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

F.6.1 Elliptical arc syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
F.6.2 Out-of-range parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
F.6.3 Parameterization alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
F.6.4 Conversion from center to endpoint parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
F.6.5 Conversion from endpoint to center parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
F.6.6 Correction of out-of-range radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

F.7 Text selection implementation notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
F.8 Printing implementation notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766

Appendix G: Conformance Criteria
G.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
G.2 Conforming SVG Document Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
G.3 Conforming SVG Stand-Alone Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
G.4 Conforming SVG Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
G.5 Conforming SVG Servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
G.6 Conforming SVG DOM Subtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
G.7 Conforming SVG Interpreters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
G.8 Conforming SVG Viewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

Appendix H: Accessibility Support
H.1 WAI Accessibility Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
H.2 SVG Content Accessibility Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775

Appendix I: Internationalization Support
I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
I.2 Internationalization and SVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
I.3 SVG Internationalization Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778

Appendix J: Minimizing SVG File Sizes

Appendix K: References
K.1 Normative references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
K.2 Informative references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785

Appendix L: Element Index



Appendix M: Attribute Index
M.1 Regular attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
M.2 Presentation attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806

Appendix N: Property Index

Appendix O: Feature Strings
O.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
O.2 SVG 1.1 feature strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
O.3 SVG 1.0 feature strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821

Appendix P: Media Type Registration for image/svg+xml
P.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
P.2 Registration of media type image/svg+xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823

Appendix Q: Changes



1 Introduction

Contents

1.1 About SVG
1.2 SVG MIME type, file name extension and Macintosh file type
1.3 SVG Namespace, Public Identifier and System Identifier
1.4 Compatibility with Other Standards Efforts
1.5 Terminology
1.6 Definitions

1.1 About SVG

This specification defines the features and syntax for Scalable Vector Graphics (SVG).
SVG is a language for describing two-dimensional graphics in XML [XML10]. SVG allows for three types of

graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images and text. Graph-
ical objects can be grouped, styled, transformed and composited into previously rendered objects. The feature set
includes nested transformations, clipping paths, alpha masks, filter effects and template objects.

SVG drawings can be interactive and dynamic. Animations can be defined and triggered either declaratively
(i.e., by embedding SVG animation elements in SVG content) or via scripting.

Sophisticated applications of SVG are possible by use of a supplemental scripting language which accesses
SVG Document Object Model (DOM), which provides complete access to all elements, attributes and properties. A
rich set of event handlers such as ‘onmouseover’ and ‘onclick’ can be assigned to any SVG graphical object. Because
of its compatibility and leveraging of other Web standards, features like scripting can be done on XHTML and
SVG elements simultaneously within the same Web page.

SVG is a language for rich graphical content. For accessibility reasons, if there is an original source document
containing higher-level structure and semantics, it is recommended that the higher-level information be made
available somehow, either by making the original source document available, or making an alternative version
available in an alternative format which conveys the higher-level information, or by using SVG's facilities to in-
clude the higher-level information within the SVG content. For suggested techniques in achieving greater access-
ibility, see Accessibility.

SVG 1.1 is a modularization of SVG 1.0 [SVG10]. See the Document Type Definition appendix for details on
how the DTD is structured to allow profiling and composition with other XML languages.

1.2 SVG MIME type, file name extension and Macintosh file type

The MIME type for SVG is "image/svg+xml" (see XML Media Types [RFC3023]). The registration of this MIME
type is in progress at the W3C.

It is recommended that SVG files have the extension ".svg" (all lowercase) on all platforms. It is recommen-
ded that gzip-compressed [RFC1952] SVG files have the extension ".svgz" (all lowercase) on all platforms.

http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc1952.txt


It is recommended that SVG files stored on Macintosh HFS file systems be given a file type of "svg " (all
lowercase, with a space character as the fourth letter). It is recommended that gzip-compressed SVG files stored
on Macintosh HFS file systems be given a file type of "svgz" (all lowercase).

1.3 SVG Namespace, Public Identifier and System Identifier

The following are the SVG 1.1 namespace, public identifier and system identifier:

SVG Namespace:
http://www.w3.org/2000/svg

Public Identifier for SVG 1.1:
PUBLIC "-//W3C//DTD SVG 1.1//EN"

System Identifier for the SVG 1.1 Recommendation:
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd

The following is an example document type declaration for an SVG document:

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

Note that DTD listed in the System Identifier is a modularized DTD (i.e. its contents are spread over multiple
files), which means that a validator may have to fetch the multiple modules in order to validate. For that reason,
there is a single flattened DTD available that corresponds to the SVG 1.1 modularized DTD. It can be found at
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat.dtd.

While a DTD is provided in this specification, the use of DTDs for validating XML documents is known to
be problematic. In particular, DTDs do not handle namespaces gracefully. It is not recommended that a DOCTYPE
declaration be included in SVG documents.

1.4 Compatibility with Other Standards Efforts

SVG leverages and integrates with other W3C specifications and standards efforts. By leveraging and conforming
to other standards, SVG becomes more powerful and makes it easier for users to learn how to incorporate SVG
into their Web sites.

The following describes some of the ways in which SVG maintains compatibility with, leverages and integ-
rates with other W3C efforts:

• SVG is an application of XML and is compatible with the Extensible Markup Language (XML) 1.0 Recom-
mendation [XML10]

• SVG is compatible with the Namespaces in XML Recommendation [XML-NS]
• SVG utilizes XML Linking Language (XLink) [XLINK] for IRI referencing and requires support for base IRI

specifications defined in XML Base [XML-BASE].
• SVG content can be styled by either CSS (see Cascading Style Sheets (CSS) level 2 [CSS2]) or XSLT (see XSL

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-prolog-dtd
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat.dtd
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2009/REC-xmlbase-20090128/
http://www.w3.org/TR/2008/REC-CSS2-20080411/
http://www.w3.org/TR/1999/REC-xslt-19991116


Transformations (XSLT) Version 1.0 [XSLT] and XSL Transformations (XSLT) Version 2.0 [XSLT2]). See Styl-
ing with CSS and Styling with XSL for details.

• SVG supports relevant properties and approaches common to CSS and XSL, plus selected semantics and fea-
tures of CSS (see SVG's styling properties and SVG's Use of Cascading Style Sheets).

• External style sheets are referenced using the mechanism documented in Associating Style Sheets with XML
documents Version 1.0 [XML-SS].

• SVG includes a complete Document Object Model (DOM) and conforms to the Document Object Model
(DOM) Level 1 Recommendation [DOM1]. The SVG DOM has a high level of compatibility and consistency
with the HTML DOM that is defined in the DOM Level 1 specification. Additionally, the SVG DOM supports
and incorporates many of the facilities described in DOM Level 2, including the CSS object model and event
handling [DOM2] [DOM2STYLE] [DOM2EVENTS].

• SVG incorporates some features and approaches that are part of the Synchronized Multimedia Integration
Language (SMIL) 3.0 Specification [SMIL], including the ‘switch’ element and the ‘systemLanguage’ attribute.

• SVG's animation features (see Animation) were developed in collaboration with the W3C Synchronized Mul-
timedia (SYMM) Working Group, developers of the Synchronized Multimedia Integration Language (SMIL)
3.0 Specification [SMIL]. SVG's animation features incorporate and extend the general-purpose XML anima-
tion capabilities described in the SMIL Animation specification [SMILANIM].

• SVG has been designed to allow SMIL to use animated or static SVG content as media components.
• SVG attempts to achieve maximum compatibility with both HTML 4 [HTML4] and XHTML™ 1.0 [XHTML].

Many of SVG's facilities are modeled directly after HTML, including its use of CSS [CSS2], its approach to
event handling, and its approach to its Document Object Model [DOM2].

• SVG is compatible with W3C work on internationalization. References (W3C and otherwise) include:
[UNICODE] and [CHARMOD]. Also, see Internationalization Support.

• SVG is compatible with W3C work on Web Accessibility. Also, see Accessibility Support.

In environments which support DOM 2 Core [DOM2] for other XML grammars (e.g., XHTML [XHTML]) and
which also support SVG and the SVG DOM, a single scripting approach can be used simultaneously for both XML
documents and SVG graphics, in which case interactive and dynamic effects will be possible on multiple XML
namespaces using the same set of scripts.

1.5 Terminology

Within this specification, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in
Key words for use in RFCs to Indicate Requirement Levels [RFC2119]. However, for readability, these words do not
appear in all uppercase letters in this specification.

At times, this specification recommends good practice for authors and user agents. These recommendations
are not normative and conformance with this specification does not depend on their realization. These recom-
mendations contain the expression "We recommend ...", "This specification recommends ...", or some similar word-
ing.

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/2002/REC-xhtml1-20020801/
http://www.w3.org/TR/2008/REC-CSS2-20080411/
http://www.w3.org/WAI/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.ietf.org/rfc/rfc2119.txt


1.6 Definitions

animation element · An animation element is an element that can be used to animate the attribute or property
value of another element. The following elements are animation elements: ‘animateColor’, ‘animateMotion’, ‘anim-
ateTransform’, ‘animate’ and ‘set’.

animation event attribute · An animation event attribute is an event attribute that specifies script to run for a
particular animation-related event. See Animation event attributes. The animation event attributes are ‘onbegin’,
‘onend’, ‘onload’ and ‘onrepeat’.

basic shape · Standard shapes which are predefined in SVG as a convenience for common graphical operations.
Specifically: ‘circle’, ‘ellipse’, ‘line’, ‘polygon’, ‘polyline’ and ‘rect’.

canvas · A surface onto which graphics elements are drawn, which can be real physical media such as a display or
paper or an abstract surface such as a allocated region of computer memory. See the discussion of the SVG canvas
in the chapter on Coordinate Systems, Transformations and Units.

clipping path · A combination of ‘path’, ‘text’ and basic shapes which serve as the outline of a (in the absence
of anti-aliasing) 1-bit mask, where everything on the "inside" of the outline is allowed to show through but
everything on the outside is masked out. See Clipping paths.

container element · An element which can have graphics elements and other container elements as child ele-
ments. Specifically: ‘a’, ‘defs’, ‘glyph’, ‘g’, ‘marker’, ‘mask’, ‘missing-glyph’, ‘pattern’, ‘svg’, ‘switch’ and ‘symbol’.

conditional processing attribute · A conditional processing attribute is one that controls whether or not the ele-
ment on which it appears is processed. Most elements, but not all, may have conditional processing attributes
specified on them. See Conditional processing for details. The conditional processing attributes defined in SVG 1.1
are ‘requiredExtensions’, ‘requiredFeatures’ and ‘systemLanguage’.

core attributes · The core attributes are those attributes that can be specified on any SVG element. See Common
attributes. The core attributes are ‘id’, ‘xml:base’, ‘xml:lang’ and ‘xml:space’.

current innermost SVG document fragment · The XML document sub-tree which starts with the most immedi-
ate ancestor ‘svg’ element of a given SVG element.

current SVG document fragment · The XML document sub-tree which starts with the outermost ancestor ‘svg’
element of a given SVG element, with the requirement that all container elements between the outermost ‘svg’
and this element are all elements in the SVG language.

current transformation matrix (CTM) · Transformation matrices define the mathematical mapping from one
coordinate system into another using a 3x3 matrix using the equation [x' y' 1] = [x y 1] * matrix. The current trans-



formation matrix (CTM) defines the mapping from the user coordinate system into the viewport coordinate sys-
tem. See Coordinate system transformations.

descriptive element · An element which provides supplementary descriptive information about its parent. Spe-
cifically, the following elements are descriptive elements: ‘desc’, ‘metadata’ and ‘title’.

document event attribute · A document event attribute is an event attribute that specifies script to run for a par-
ticular document-wide event. See Document-level event attributes. The document event attributes are ‘onabort’,
‘onerror’, ‘onresize’, ‘onscroll’, ‘onunload’ and ‘onzoom’.

event attribute · An event attribute is one that specifies some script to run when an event of a certain type is
dispatched to the element on which the attribute is specified. See Event attributes.

fill · The operation of painting the interior of a shape or the interior of the character glyphs in a text string.

filter primitive attributes · The filter primitive attributes is the set of attributes that are common to all filter prim-
itive elements. They are ‘height’, ‘result’, ‘width’, ‘x’ and ‘y’.

filter primitive element · A filter primitive element is one that can be used as a child of a ‘filter’ element
to specify a node in the filter graph. The following elements are the filter primitive elements defined in SVG
1.1: ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’, ‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’, ‘feDis-
placementMap’, ‘feFlood’, ‘feGaussianBlur’, ‘feImage’, ‘feMerge’, ‘feMorphology’, ‘feOffset’, ‘feSpecularLighting’,
‘feTile’ and ‘feTurbulence’.

font · A font represents an organized collection of glyphs in which the various glyph representations will share
a common look or styling such that, when a string of characters is rendered together, the result is highly legible,
conveys a particular artistic style and provides consistent inter-character alignment and spacing.

glyph · A glyph represents a unit of rendered content within a font. Often, there is a one-to-one correspondence
between characters to be drawn and corresponding glyphs (e.g., often, the character "A" is rendered using a single
glyph), but other times multiple glyphs are used to render a single character (e.g., use of accents) or a single glyph
can be used to render multiple characters (e.g., ligatures). Typically, a glyph is defined by one or more shapes such
as a path, possibly with additional information such as rendering hints that help a font engine to produce legible
text in small sizes.

gradient element · A gradient element is one that defines a gradient paint server. SVG 1.1 defines the following
gradient elements: ‘linearGradient’ and ‘radialGradient’.

graphical event attribute · A graphical event attribute is an event attribute that specifies script to run for a par-
ticular user interaction event. See Event attributes on graphics and container elements. The graphical event at-
tributes are ‘onactivate’, ‘onclick’, ‘onfocusin’, ‘onfocusout’, ‘onload’, ‘onmousedown’, ‘onmousemove’, ‘onmouseout’,
‘onmouseover’ and ‘onmouseup’.



graphics element · One of the element types that can cause graphics to be drawn onto the target canvas. Specific-
ally: ‘circle’, ‘ellipse’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘text’ and ‘use’.

graphics referencing element · A graphics element which uses a reference to a different document or element as
the source of its graphical content. Specifically: ‘image’ and ‘use’.

hit-testing · The process of determining whether a pointer intersects a given graphics element. Hit-testing is used
in determining which element to dispatch a mouse event to, which might be done in response to the user moving
the pointing device, or by changes in the position, shape and other attributes of elements in the document. Hit-
testing is also known as hit detection or picking. See hit-testing and processing order for user interface events and
the definition of the ‘pointer-events’ property.

IRI reference · An IRI reference is an Internationalized Resource Identifier with an optional fragment identifier,
as defined in Internationalized Resource Identifiers [RFC3987]. An IRI reference serves as a reference to a resource
or (with a fragment identifier) to a secondary resource. See References and the ‘defs’ element.

light source element · A light source element is one that can specify light source information for an ‘feDif-
fuseLighting’ or ‘feSpecularLighting’ element. The following light source elements are defined in SVG 1.1:
‘feDistantLight’, ‘fePointLight’ and ‘feSpotLight’.

local IRI reference · An Internationalized Resource Identifier [RFC3987] that does not include an <absoluteIRI> or
<relativeIRI> and thus represents a reference to an element within the current document. See References and the
‘defs’ element.

mask · A container element which can contain graphics elements or other container elements which define a set
of graphics that is to be used as a semi-transparent mask for compositing foreground objects into the current back-
ground. See Masks.

non-local IRI reference · An Internationalized Resource Identifier [RFC3987] that includes an <absoluteIRI> or
<relativeIRI> and thus (usually) represents a reference to a different document or an element within a different
document. See References and the ‘defs’ element.

outermost svg element · The furthest ‘svg’ ancestor element that remains in the current SVG document fragment.

paint · A paint represents a way of putting color values onto the canvas. A paint might consist of both color values
and associated alpha values which control the blending of colors against already existing color values on the can-
vas. SVG supports three types of built-in paint: color, gradients and patterns.

presentation attribute · An XML attribute on an SVG element which specifies a value for a given property for
that element. See Styling. Note that although any property may be specified on any element, not all properties will
apply to (affect the rendering of) a given element. The definition of each property states to what set of elements it
applies.

http://www.ietf.org/rfc/rfc3987.txt


property · A parameter that helps specify how a document should be rendered. A complete list of SVG's properties
can be found in Property Index. Properties are assigned to elements in the SVG language either by presentation
attributes on elements in the SVG language or by using a styling language such as CSS [CSS2]. See Styling.

rootmost ‘svg’ element · The rootmost ‘svg’ element is the furthest ‘svg’ ancestor element that does not exit an
SVG context. See also SVG document fragment.

shape · A graphics element that is defined by some combination of straight lines and curves. Specifically: ‘path’,
‘rect’, ‘circle’, ‘ellipse’, ‘line’, ‘polyline’ and ‘polygon’.

stroke · The operation of painting the outline of a shape or the outline of character glyphs in a text string.

structural element · The structural elements are those which define the primary structure of an SVG document.
Specifically, the following elements are structural elements: ‘defs’, ‘g’, ‘svg’, ‘symbol’ and ‘use’.

SVG canvas · The canvas onto which the SVG content is rendered. See the discussion of the SVG canvas in the
chapter on Coordinate Systems, Transformations and Units.

SVG context · An SVG context is a document fragment where all elements within the fragment must be subject
to processing by an SVG user agent according to the rules in this specification.

If SVG content is embedded inline within parent XML (such as XHTML), the SVG context does not include
the ancestors above the rootmost ‘svg’ element. If the SVG content contains any ‘foreignObject’ elements which in
turn contain non-SVG content, the SVG context does not include the contents of the ‘foreignObject’ elements.

SVG document fragment · The XML document sub-tree which starts with an ‘svg’ element. An SVG document
fragment can consist of a stand-alone SVG document, or a fragment of a parent XML document enclosed by an
‘svg’ element. When an ‘svg’ element is a descendant of another ‘svg’ element, there are two SVG document frag-
ments, one for each ‘svg’ element. (One SVG document fragment is contained within another SVG document frag-
ment.)

SVG user agent · An SVG user agent is a user agent that is able to retrieve and render SVG content.

SVG viewport · The viewport within the SVG canvas which defines the rectangular region into which SVG content
is rendered. See the discussion of the SVG viewport in the chapter on Coordinate Systems, Transformations and
Units.

text content element · A text content element is an SVG element that causes a text string to be rendered onto the
canvas. The SVG 1.1 text content elements are the following: ‘altGlyph’, ‘textPath’, ‘text’, ‘tref’ and ‘tspan’

text content child element · A text content child element is a text content element that is allowed as a descendant
of another text content element. In SVG 1.1, the text content child elements are the following: ‘altGlyph’, ‘textPath’,
‘tref’ and ‘tspan’

http://www.w3.org/TR/2008/REC-CSS2-20080411/


text content block element · A text content block element is a text content element that serves as a standalone
element for a unit of text, and which may optionally contain certain child text content elements (e.g. ‘tspan’). .

transformation · A modification of the current transformation matrix (CTM) by providing a supplemental trans-
formation in the form of a set of simple transformations specifications (such as scaling, rotation or translation)
and/or one or more transformation matrices. See Coordinate system transformations.

transformation matrix · Transformation matrices define the mathematical mapping from one coordinate system
into another using a 3x3 matrix using the equation [x' y' 1] = [x y 1] * matrix. See current transformation matrix
(CTM) and Coordinate system transformations.

user agent · The general definition of a user agent is an application that retrieves and renders Web content, in-
cluding text, graphics, sounds, video, images, and other content types. A user agent may require additional user
agents that handle some types of content. For instance, a browser may run a separate program or plug-in to
render sound or video. User agents include graphical desktop browsers, multimedia players, text browsers, voice
browsers, and assistive technologies such as screen readers, screen magnifiers, speech synthesizers, onscreen key-
boards, and voice input software.

A "user agent" may or may not have the ability to retrieve and render SVG content; however, an "SVG user
agent" retrieves and renders SVG content.

user coordinate system · In general, a coordinate system defines locations and distances on the current canvas.
The current user coordinate system is the coordinate system that is currently active and which is used to define
how coordinates and lengths are located and computed, respectively, on the current canvas. See initial user co-
ordinate system and Coordinate system transformations.

user space · A synonym for user coordinate system.

user units · A coordinate value or length expressed in user units represents a coordinate value or length in the
current user coordinate system. Thus, 10 user units represents a length of 10 units in the current user coordinate
system.

viewport · A rectangular region within the current canvas onto which graphics elements are to be rendered. See
the discussion of the SVG viewport in the chapter on Coordinate Systems, Transformations and Units.

viewport coordinate system · In general, a coordinate system defines locations and distances on the current can-
vas. The viewport coordinate system is the coordinate system that is active at the start of processing of an ‘svg’
element, before processing the optional ‘viewBox’ attribute. In the case of an SVG document fragment that is em-
bedded within a parent document which uses CSS to manage its layout, then the viewport coordinate system will
have the same orientation and lengths as in CSS, with the origin at the top-left on the viewport. See The initial
viewport and Establishing a new viewport.

viewport space · A synonym for viewport coordinate system.



viewport units · A coordinate value or length expressed in viewport units represents a coordinate value or length
in the viewport coordinate system. Thus, 10 viewport units represents a length of 10 units in the viewport coordin-
ate system.

XLink attributes · The XLink attributes are the seven attributes defined in the XML Linking Language specific-
ation [XLINK], which are used on various SVG elements that can reference resources. The most import XLink
attribute is ‘xlink:href’, whose definition can be found on each element that allows it. The remaining XLink attrib-
utes are ‘xlink:type’, ‘xlink:role’, ‘xlink:arcrole’, ‘xlink:title’, ‘xlink:show’ and ‘xlink:actuate’.

http://www.w3.org/TR/2001/REC-xlink-20010627/


2 Concepts

Contents

2.1 Explaining the name: SVG
2.2 Important SVG concepts
2.3 Options for using SVG in Web pages

2.1 Explaining the name: SVG

SVG stands for Scalable Vector Graphics, an XML grammar for stylable graphics, usable as an XML namespace.

Scalable

To be scalable means to increase or decrease uniformly. In terms of graphics, scalable means not being limited to
a single, fixed, pixel size. On the Web, scalable means that a particular technology can grow to a large number
of files, a large number of users, a wide variety of applications. SVG, being a graphics technology for the Web, is
scalable in both senses of the word.

SVG graphics are scalable to different display resolutions, so that for example printed output uses the full
resolution of the printer and can be displayed at the same size on screens of different resolutions. The same SVG
graphic can be placed at different sizes on the same Web page, and re-used at different sizes on different pages.
SVG graphics can be magnified to see fine detail, or to aid those with low vision.

SVG graphics are scalable because the same SVG content can be a stand-alone graphic or can be referenced
or included inside other SVG graphics, thereby allowing a complex illustration to be built up in parts, perhaps by
several people. The symbol, marker and font capabilities promote re-use of graphical components, maximize the
advantages of HTTP caching and avoid the need for a centralized registry of approved symbols.

Vector

Vector graphics contain geometric objects such as lines and curves. This gives greater flexibility compared to
raster-only formats (such as PNG and JPEG) which have to store information for every pixel of the graphic. Typ-
ically, vector formats can also integrate raster images and can combine them with vector information such as clip-
ping paths to produce a complete illustration; SVG is no exception.

Since all modern displays are raster-oriented, the difference between raster-only and vector graphics comes
down to where they are rasterized; client side in the case of vector graphics, as opposed to already rasterized on
the server. SVG gives control over the rasterization process, for example to allow anti-aliased artwork without the
ugly aliasing typical of low quality vector implementations. SVG also provides client-side raster filter effects, so
that moving to a vector format does not mean the loss of popular effects such as soft drop shadows.



Graphics

Most existing XML grammars represent either textual information, or represent raw data such as financial in-
formation. They typically provide only rudimentary graphical capabilities, often less capable than the HTML 'img'
element. SVG fills a gap in the market by providing a rich, structured description of vector and mixed vector/raster
graphics; it can be used stand-alone, or as an XML namespace with other grammars.

XML

XML, a for structured information exchange, has become extremely popular and is both widely and reliably im-
plemented. By being written in XML, SVG builds on this strong foundation and gains many advantages such as a
sound basis for internationalization, powerful structuring capability, an object model, and so on. By building on
existing, cleanly-implemented specifications, XML-based grammars are open to implementation without a huge
reverse engineering effort.

Namespace

It is certainly useful to have a stand-alone, SVG-only viewer. But SVG is also intended to be used as one component
in a multi-namespace XML application. This multiplies the power of each of the namespaces used, to allow in-
novative new content to be created. For example, SVG graphics may be included in a document which uses any
text-oriented XML namespace - including XHTML. A scientific document, for example, might also use MathML
for mathematics in the document. The combination of SVG and SMIL leads to interesting, time based, graphically
rich presentations.

SVG is a good, general-purpose component for any multi-namespace grammar that needs to use graphics.

Stylable

The advantages of style sheets in terms of presentational control, flexibility, faster download and improved main-
tenance are now generally accepted, certainly for use with text. SVG extends this control to the realm of graphics.

The combination of scripting, DOM and CSS is often termed "Dynamic HTML" and is widely used for an-
imation, interactivity and presentational effects. SVG allows the same script-based manipulation of the document
tree and the style sheet.

2.2 Important SVG concepts

Graphical Objects

With any XML grammar, consideration has to be given to what exactly is being modelled. For textual formats,
modelling is typically at the level of paragraphs and phrases, rather than individual nouns, adverbs, or phonemes.
Similarly, SVG models graphics at the level of graphical objects rather than individual points.

SVG provides a general path element, which can be used to create a huge variety of graphical objects, and

http://www.w3.org/TR/2001/REC-MathML2-20010221/


also provides common basic shapes such as rectangles and ellipses. These are convenient for hand coding and may
be used in the same ways as the more general path element. SVG provides fine control over the coordinate system
in which graphical objects are defined and the transformations that will be applied during rendering.

Symbols

It would have been possible to define some standard symbols that SVG would provide. But which ones? There
would always be additional symbols for electronics, cartography, flowcharts, etc., that people would need that
were not provided until the "next version". SVG allows users to create, re-use and share their own symbols without
requiring a centralized registry. Communities of users can create and refine the symbols that they need, without
having to ask a committee. Designers can be sure exactly of the graphical appearance of the symbols they use and
not have to worry about unsupported symbols.

Symbols may be used at different sizes and orientations, and can be restyled to fit in with the rest of the
graphical composition.

Raster Effects

Many existing Web graphics use the filtering operations found in paint packages to create blurs, shadows, lighting
effects and so on. With the client-side rasterization used with vector formats, such effects might be thought im-
possible. SVG allows the declarative specification of filters, either singly or in combination, which can be applied
on the client side when the SVG is rendered. These are specified in such a way that the graphics are still scalable
and displayable at different resolutions.

Fonts

Graphically rich material is often highly dependent on the particular font used and the exact spacing of the glyphs.
In many cases, designers convert text to outlines to avoid any font substitution problems. This means that the
original text is not present and thus searchability and accessibility suffer. In response to feedback from designers,
SVG includes font elements so that both text and graphical appearance are preserved.

Animation

Animation can be produced via script-based manipulation of the document, but scripts are difficult to edit and
interchange between authoring tools is harder. Again in response to feedback from the design community, SVG
includes declarative animation elements which were designed collaboratively by the SVG and SYMM Working
Groups. This allows the animated effects common in existing Web graphics to be expressed in SVG.

2.3 Options for using SVG in Web pages

There are a variety of ways in which SVG content can be included within a Web page. Here are some of the op-
tions:



A stand-alone SVG Web page
In this case, an SVG document (i.e., a Web resource whose MIME type is "image/svg+xml") is loaded directly
into a user agent such as a Web browser. The SVG document is the Web page that is presented to the user.

Embedding by reference
In this case, a parent Web page references a separately stored SVG document and specifies that the given
SVG document should be embedded as a component of the parent Web page. For HTML or XHTML, here
are three options:

• The HTML/XHTML ‘img’ element is the most common method for using graphics in HTML pages.
For faster display, the width and height of the image can be given as attributes. One attribute that is
required is ‘alt’, used to give an alternate textual string for people browsing with images off, or who
cannot see the images. The string cannot contain any markup. A ‘longdesc’ attribute lets you point to a
longer description - often in HTML - which can have markup and richer formatting.

• The HTML/XHTML ‘object’ element can contain other elements nested within it, unlike ‘img’, which is
empty. This means that several different formats can be offered, using nested ‘object’ elements, with a
final textual alternative (including markup, links, etc). The outermost element which can be displayed
will be used.

• The HTML/XHTML ‘applet’ element which can invoke a Java applet to view SVG content within the
given Web page. These applets can do many things, but a common task is to use them to display images,
particularly ones in unusual formats or which need to be presented under the control of a program for
some other reason.

Embedding inline
In this case, SVG content is embedded inline directly within the parent Web page. An example is an XHTML
Web page with an SVG document fragment textually included within the XHTML.

External link, using the HTML ‘a’ element
This allows any stand-alone SVG viewer to be used, which can (but need not) be a different program to that
used to display HTML. This option typically is used for unusual image formats.

Referenced from a CSS or XSL property
When a user agent supports CSS-styled XML content [CSS2] or XSL [XSL] and the user agent is a Conform-
ing SVG Viewer, then that user agent must support the ability to reference SVG resources wherever CSS or
XSL properties allow for the referencing of raster images, including the ability to tile SVG graphics wherever
necessary and the ability to composite the SVG into the background if it has transparent portions. Examples
include the ‘background-image’ and ‘list-style-image’ properties ([CSS2], sections 14.2.1 and 12.6.2) that are
included in both CSS and XSL.

http://www.w3.org/TR/2008/REC-CSS2-20080411/colors.html#propdef-background-image
http://www.w3.org/TR/2008/REC-CSS2-20080411/generate.html#propdef-list-style-image


3 Rendering Model

Contents

3.1 Introduction
3.2 The painters model
3.3 Rendering Order
3.4 How groups are rendered
3.5 How elements are rendered
3.6 Types of graphics elements

3.6.1 Painting shapes and text
3.6.2 Painting raster images

3.7 Filtering painted regions
3.8 Clipping, masking and object opacity
3.9 Parent Compositing

3.1 Introduction

Implementations of SVG are expected to behave as though they implement a rendering (or imaging) model cor-
responding to the one described in this chapter. A real implementation is not required to implement the model in
this way, but the result on any device supported by the implementation shall match that described by this model.

The appendix on conformance requirements describes the extent to which an actual implementation may de-
viate from this description. In practice an actual implementation will deviate slightly because of limitations of the
output device (e.g. only a limited range of colors might be supported) and because of practical limitations in im-
plementing a precise mathematical model (e.g. for realistic performance curves are approximated by straight lines,
the approximation need only be sufficiently precise to match the conformance requirements).

3.2 The painters model

SVG uses a "painters model" of rendering. Paint is applied in successive operations to the output device such that
each operation paints over some area of the output device. When the area overlaps a previously painted area the
new paint partially or completely obscures the old. When the paint is not completely opaque the result on the
output device is defined by the (mathematical) rules for compositing described under Alpha Blending.

3.3 Rendering Order

Elements in an SVG document fragment have an implicit drawing order, with the first elements in the SVG docu-
ment fragment getting "painted" first. Subsequent elements are painted on top of previously painted elements.



3.4 How groups are rendered

Grouping elements such as the ‘g’ element (see container elements) have the effect of producing a temporary sep-
arate canvas initialized to transparent black onto which child elements are painted. Upon the completion of the
group, any filter effects specified for the group are applied to create a modified temporary canvas. The modified
temporary canvas is composited into the background, taking into account any group-level masking and opacity
settings on the group.

3.5 How elements are rendered

Individual graphics elements are rendered as if each graphics element represented its own group; thus, the effect
is as if a temporary separate canvas is created for each graphics element. The element is first painted onto the
temporary canvas (see Painting shapes and text and Painting raster images below). Then any filter effects specified
for the graphics element are applied to create a modified temporary canvas. The modified temporary canvas is
then composited into the background, taking into account any clipping, masking and object opacity settings on
the graphics element.

3.6 Types of graphics elements

SVG supports three fundamental types of graphics elements that can be rendered onto the canvas:

• Shapes, which represent some combination of straight line and curves
• Text, which represents some combination of character glyphs
• Raster images, which represent an array of values that specify the paint color and opacity (often termed al-

pha) at a series of points on a rectangular grid. (SVG requires support for specified raster image formats under
conformance requirements.)

3.6.1 Painting shapes and text

Shapes and text can be filled (i.e., apply paint to the interior of the shape) and stroked (i.e., apply paint along the
outline of the shape). A stroke operation is centered on the outline of the object; thus, in effect, half of the paint
falls on the interior of the shape and half of the paint falls outside of the shape.

For certain types of shapes, marker symbols (which themselves can consist of any combination of shapes,
text and images) can be drawn at selected vertices. Each marker symbol is painted as if its graphical content were
expanded into the SVG document tree just after the shape object which is using the given marker symbol. The
graphical contents of a marker symbol are rendered using the same methods as graphics elements. Marker sym-
bols are not applicable to text.

The fill is painted first, then the stroke, and then the marker symbols. The marker symbols are rendered in
order along the outline of the shape, from the start of the shape to the end of the shape.



Each fill and stroke operation has its own opacity settings; thus, you can fill and/or stroke a shape with a
semi-transparently drawn solid color, with different opacity values for the fill and stroke operations.

The fill and stroke operations are entirely independent painting operations; thus, if you both fill and stroke a
shape, half of the stroke will be painted on top of part of the fill.

SVG supports the following built-in types of paint which can be used in fill and stroke operations:

• Solid color
• Gradients (linear and radial)
• Patterns

3.6.2 Painting raster images

When a raster image is rendered, the original samples are "resampled" using standard algorithms to produce
samples at the positions required on the output device. Resampling requirements are discussed under conformance
requirements.

3.7 Filtering painted regions

SVG allows any painting operation to be filtered. (See Filter Effects.)
In this case the result must be as though the paint operations had been applied to an intermediate canvas ini-

tialized to transparent black, of a size determined by the rules given in Filter Effects then filtered by the processes
defined in Filter Effects.

3.8 Clipping, masking and object opacity

SVG allows any painting operation to be limited to a subregion of the output device by clipping and masking. This
is described in Clipping, Masking and Compositing.

Clipping uses a path to define a region of the output device to which paint can be applied. Any painting op-
eration executed within the scope of the clipping must be rendered such that only those parts of the device that
fall within the clipping region are affected by the painting operation. A clipping path can be thought of as a mask
wherein those pixels outside the clipping path are black with an alpha value of zero and those pixels inside the
clipping path are white with an alpha value of one. "Within" is defined by the same rules used to determine the
interior of a path for painting. The clipping path is typically anti-aliased on low-resolution devices (see ‘shape-ren-
dering’. Clipping is described in Clipping paths.

Masking uses the luminance of the color channels and alpha channel in a referenced SVG element to define a
supplemental set of alpha values which are multiplied to the alpha values already present in the graphics to which
the mask is applied. Masking is described in Masking.

A supplemental masking operation may also be specified by applying a "global" opacity to a set of rendering
operations. In this case the mask is infinite, with a color of white and an alpha channel of the given opacity value.
(See the ‘opacity’ property.)

In all cases the SVG implementation must behave as though all painting and filtering is first performed to



an intermediate canvas which has been initialized to transparent black. Then, alpha values on the intermediate
canvas are multiplied by the implicit alpha values from the clipping path, the alpha values from the mask, and
the alpha values from the ‘opacity’ property. The resulting canvas is composited into the background using simple
alpha blending. Thus if an area of the output device is painted with a group opacity of 50% using opaque red paint
followed by opaque green paint the result is as though it had been painted with just 50% opaque green paint. This
is because the opaque green paint completely obscures the red paint on the intermediate canvas before the inter-
mediate as a whole is rendered onto the output device.

3.9 Parent Compositing

SVG document fragments can be semi-opaque. In many environments (e.g., Web browsers), the SVG document
fragment has a final compositing step where the document as a whole is blended translucently into the background
canvas.



5 Document Structure

Contents

5.1 Defining an SVG document fragment: the ‘svg’ element
5.1.1 Overview
5.1.2 The ‘svg’ element

5.2 Grouping: the ‘g’ element
5.2.1 Overview
5.2.2 The ‘g’ element

5.3 Defining content for reuse, and the ‘defs’ element
5.3.1 Overview
5.3.2 The ‘defs’ element

5.4 The ‘desc’ and ‘title’ elements
5.5 The ‘symbol’ element
5.6 The ‘use’ element
5.7 The ‘image’ element
5.8 Conditional processing

5.8.1 Conditional processing overview
5.8.2 The ‘switch’ element
5.8.3 The ‘requiredFeatures’ attribute
5.8.4 The ‘requiredExtensions’ attribute
5.8.5 The ‘systemLanguage’ attribute
5.8.6 Applicability of test attributes

5.9 Specifying whether external resources are required for proper rendering
5.10 Common attributes

5.10.1 Attributes common to all elements: ‘id’ and ‘xml:base’
5.10.2 The ‘xml:lang’ and ‘xml:space’ attributes

5.11 DOM interfaces
5.11.1 Interface SVGDocument
5.11.2 Interface SVGSVGElement
5.11.3 Interface SVGGElement
5.11.4 Interface SVGDefsElement
5.11.5 Interface SVGDescElement
5.11.6 Interface SVGTitleElement
5.11.7 Interface SVGSymbolElement
5.11.8 Interface SVGUseElement
5.11.9 Interface SVGElementInstance
5.11.10 Interface SVGElementInstanceList
5.11.11 Interface SVGImageElement



5.11.12 Interface SVGSwitchElement
5.11.13 Interface GetSVGDocument

5.1 Defining an SVG document fragment: the ‘svg’ element

5.1.1 Overview

An SVG document fragment consists of any number of SVG elements contained within an ‘svg’ element.
An SVG document fragment can range from an empty fragment (i.e., no content inside of the ‘svg’ element),

to a very simple SVG document fragment containing a single SVG graphics element such as a ‘rect’, to a complex,
deeply nested collection of container elements and graphics elements.

An SVG document fragment can stand by itself as a self-contained file or resource, in which case the SVG
document fragment is an SVG document, or it can be embedded inline as a fragment within a parent XML docu-
ment.

The following example shows simple SVG content embedded inline as a fragment within a parent XML
document. Note the use of XML namespaces to indicate that the ‘svg’ and ‘ellipse’ elements belong to the SVG
namespace:

<?xml version="1.0" standalone="yes"?>
<parent xmlns="http://example.org"

xmlns:svg="http://www.w3.org/2000/svg">
<!-- parent contents here -->
<svg:svg width="4cm" height="8cm" version="1.1">

<svg:ellipse cx="2cm" cy="4cm" rx="2cm" ry="1cm" />
</svg:svg>
<!-- ... -->

</parent>

This example shows a slightly more complex (i.e., it contains multiple rectangles) stand-alone, self-contained SVG
document:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="4cm" version="1.1"

xmlns="http://www.w3.org/2000/svg">
<desc>Four separate rectangles
</desc>

<rect x="0.5cm" y="0.5cm" width="2cm" height="1cm"/>
<rect x="0.5cm" y="2cm" width="1cm" height="1.5cm"/>
<rect x="3cm" y="0.5cm" width="1.5cm" height="2cm"/>
<rect x="3.5cm" y="3cm" width="1cm" height="0.5cm"/>

<!-- Show outline of canvas using 'rect' element -->
<rect x=".01cm" y=".01cm" width="4.98cm" height="3.98cm"

fill="none" stroke="blue" stroke-width=".02cm" />

</svg>

‘svg’ elements can appear in the middle of SVG content. This is the mechanism by which SVG document fragments
can be embedded within other SVG document fragments.

Another use for ‘svg’ elements within the middle of SVG content is to establish a new viewport. (See Estab-
lishing a new viewport.)

In all cases, for compliance with the Namespaces in XML Recommendation [XML-NS], an SVG namespace

http://www.w3.org/TR/2006/REC-xml-names-20060816/


‘svg’

declaration must be provided so that all SVG elements are identified as belonging to the SVG namespace. The fol-
lowing are possible ways to provide a namespace declaration. An ‘xmlns’ attribute without a namespace prefix
could be specified on an ‘svg’ element, which means that SVG is the default namespace for all elements within the
scope of the element with the ‘xmlns’ attribute:

<svg xmlns="http://www.w3.org/2000/svg" …>
<rect …/>

</svg>

If a namespace prefix is specified on the ‘xmlns’ attribute (e.g., xmlns:svg="http://www.w3.org/2000/svg"),
then the corresponding namespace is not the default namespace, so an explicit namespace prefix must be assigned
to the elements:

<svg:svg xmlns:svg="http://www.w3.org/2000/svg" …>
<svg:rect …/>

</svg:svg>

Namespace prefixes can be specified on ancestor elements (illustrated in the above example). For more informa-
tion, refer to the Namespaces in XML Recommendation [XML-NS].

5.1.2 The ‘svg’ element

Categories:
Container element, structural element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements
shape elements
structural elements
gradient elements
‘a’
‘altGlyphDef’
‘clipPath’
‘color-profile’
‘cursor’
‘filter’
‘font’
‘font-face’
‘foreignObject’
‘image’
‘marker’
‘mask’

http://www.w3.org/TR/2006/REC-xml-names-20060816/


‘pattern’
‘script’
‘style’
‘switch’
‘text’
‘view’

Attributes:
conditional processing attributes
core attributes
document event attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘x’
‘y’
‘width’
‘height’
‘viewBox’
‘preserveAspectRatio’
‘zoomAndPan’
‘version’
‘baseProfile’
‘contentScriptType’
‘contentStyleType’
‘x’
‘y’
‘width’
‘height’
‘version’
‘baseProfile’

DOM Interfaces:
SVGSVGElement

Attribute definitions:

version = "<number>"
Indicates the SVG language version to which this document fragment conforms.



In SVG 1.0 [SVG10], this attribute was fixed to the value '1.0'. For SVG 1.1, the attribute should have the
value '1.1'.
Animatable: no.

baseProfile = profile-name
Describes the minimum SVG language profile that the author believes is necessary to correctly render the
content. The attribute does not specify any processing restrictions; It can be considered metadata. For ex-
ample, the value of the attribute could be used by an authoring tool to warn the user when they are modify-
ing the document beyond the scope of the specified base profile. Each SVG profile should define the text that
is appropriate for this attribute.
If the attribute is not specified, the effect is as if a value of 'none' were specified.
Animatable: no.

x = "<coordinate>"
(Has no meaning or effect on outermost svg elements.)
The x-axis coordinate of one corner of the rectangular region into which an embedded ‘svg’ element is
placed.
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: yes.

y = "<coordinate>"
(Has no meaning or effect on outermost svg elements.)
The y-axis coordinate of one corner of the rectangular region into which an embedded ‘svg’ element is
placed.
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: yes.

width = "<length>"
For outermost svg elements, the intrinsic width of the SVG document fragment. For embedded ‘svg’ ele-
ments, the width of the rectangular region into which the ‘svg’ element is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of '100%' were specified.
Animatable: yes.

height = "<length>"
For outermost svg elements, the intrinsic height of the SVG document fragment. For embedded ‘svg’ ele-
ments, the height of the rectangular region into which the ‘svg’ element is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of '100%' were specified.
Animatable: yes.

preserveAspectRatio = "[defer] <align> [<meetOrSlice>]"
See ‘preserveAspectRatio’.

http://www.w3.org/TR/2001/REC-SVG-20010904/


If the attribute is not specified, then the effect is as if a value of 'xMidYMid meet' were specified.
Animatable: yes.

contentScriptType = "content-type"
See 'contentScriptType'.

contentStyleType = "content-type"
See 'contentStyleType'.

zoomAndPan = "disable | magnify"
See 'zoomAndPan'.

If an SVG document is likely to be referenced as a component of another document, the author will often want to
include a ‘viewBox’ attribute on the outermost svg element of the referenced document. This attribute provides a
convenient way to design SVG documents to scale-to-fit into an arbitrary viewport.

5.2 Grouping: the ‘g’ element

5.2.1 Overview

The ‘g’ element is a container element for grouping together related graphics elements.
Grouping constructs, when used in conjunction with the ‘desc’ and ‘title’ elements, provide information about

document structure and semantics. Documents that are rich in structure may be rendered graphically, as speech,
or as braille, and thus promote accessibility.

A group of elements, as well as individual objects, can be given a name using the ‘id’ attribute. Named groups
are needed for several purposes such as animation and re-usable objects.

An example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg"

version="1.1" width="5cm" height="5cm">
<desc>Two groups, each of two rectangles</desc>
<g id="group1" fill="red">

<rect x="1cm" y="1cm" width="1cm" height="1cm"/>
<rect x="3cm" y="1cm" width="1cm" height="1cm"/>

</g>
<g id="group2" fill="blue">

<rect x="1cm" y="3cm" width="1cm" height="1cm"/>
<rect x="3cm" y="3cm" width="1cm" height="1cm"/>

</g>

<!-- Show outline of canvas using 'rect' element -->
<rect x=".01cm" y=".01cm" width="4.98cm" height="4.98cm"

fill="none" stroke="blue" stroke-width=".02cm"/>
</svg>

A ‘g’ element can contain other ‘g’ elements nested within it, to an arbitrary depth. Thus, the following is possible:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">



‘g’

<svg xmlns="http://www.w3.org/2000/svg"
version="1.1" width="4in" height="3in">

<desc>Groups can nest</desc>
<g>

<g>
<g>
</g>

</g>
</g>

</svg>

Any element that is not contained within a ‘g’ is treated (at least conceptually) as if it were in its own group.

5.2.2 The ‘g’ element

Categories:
Container element, structural element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements
shape elements
structural elements
gradient elements
‘a’
‘altGlyphDef’
‘clipPath’
‘color-profile’
‘cursor’
‘filter’
‘font’
‘font-face’
‘foreignObject’
‘image’
‘marker’
‘mask’
‘pattern’
‘script’
‘style’
‘switch’
‘text’
‘view’

Attributes:
conditional processing attributes



‘defs’

core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’

DOM Interfaces:
SVGGElement

5.3 Defining content for reuse, and the ‘defs’ element

5.3.1 Overview

SVG allows graphical objects to be defined for later reuse. To do this, it makes extensive use of IRI references
[RFC3987] to these other objects. For example, to fill a rectangle with a linear gradient, you first define a ‘lin-
earGradient’ element and give it an ID, as in:

<linearGradient id="MyGradient">...</linearGradient>

You then reference the linear gradient as the value of the ‘fill’ property for the rectangle, as in:

<rect style="fill:url(#MyGradient)"/>

Some types of element, such as gradients, will not by themselves produce a graphical result. They can therefore
be placed anywhere convenient. However, sometimes it is desired to define a graphical object and prevent it from
being directly rendered. it is only there to be referenced elsewhere. To do this, and to allow convenient grouping
defined content, SVG provides the ‘defs’ element.

It is recommended that, wherever possible, referenced elements be defined inside of a ‘defs’ element. Among
the elements that are always referenced: ‘altGlyphDef’, ‘clipPath’, ‘cursor’, ‘filter’, ‘linearGradient’, ‘marker’, ‘mask’,
‘pattern’, ‘radialGradient’ and ‘symbol’. Defining these elements inside of a ‘defs’ element promotes understandab-
ility of the SVG content and thus promotes accessibility.

5.3.2 The ‘defs’ element

Categories:
Container element, structural element

Content model:
Any number of the following elements, in any order:



animation elements
descriptive elements
shape elements
structural elements
gradient elements
‘a’
‘altGlyphDef’
‘clipPath’
‘color-profile’
‘cursor’
‘filter’
‘font’
‘font-face’
‘foreignObject’
‘image’
‘marker’
‘mask’
‘pattern’
‘script’
‘style’
‘switch’
‘text’
‘view’

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’

DOM Interfaces:
SVGDefsElement

The ‘defs’ element is a container element for referenced elements. For understandability and accessibility reasons,
it is recommended that, whenever possible, referenced elements be defined inside of a ‘defs’.

The content model for ‘defs’ is the same as for the ‘g’ element; thus, any element that can be a child of a ‘g’
can also be a child of a ‘defs’, and vice versa.



‘desc’

Elements that are descendants of a ‘defs’ are not rendered directly; they are prevented from becoming part of
the rendering tree just as if the ‘defs’ element were a ‘g’ element and the ‘display’ property were set to none. Note,
however, that the descendants of a ‘defs’ are always present in the source tree and thus can always be referenced
by other elements; thus, the value of the ‘display’ property on the ‘defs’ element or any of its descendants does not
prevent those elements from being referenced by other elements.

To provide some SVG user agents with an opportunity to implement efficient implementations in streaming
environments, creators of SVG content are encouraged to place all elements which are targets of local IRI referen-
ces within a ‘defs’ element which is a direct child of one of the ancestors of the referencing element. For example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="3cm"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Local URI references within ancestor's 'defs' element.</desc>
<defs>

<linearGradient id="Gradient01">
<stop offset="20%" stop-color="#39F" />
<stop offset="90%" stop-color="#F3F" />

</linearGradient>
</defs>
<rect x="1cm" y="1cm" width="6cm" height="1cm"

fill="url(#Gradient01)"  />

<!-- Show outline of canvas using 'rect' element -->
<rect x=".01cm" y=".01cm" width="7.98cm" height="2.98cm"

fill="none" stroke="blue" stroke-width=".02cm" />

</svg>

In the document above, the linear gradient is defined within a ‘defs’ element which is the direct child of the ‘svg’
element, which in turn is an ancestor of the ‘rect’ element which references the linear gradient. Thus, the above
document conforms to the guideline.

5.4 The ‘desc’ and ‘title’ elements

Categories:
Descriptive element

Content model:
Any elements or character data.

Attributes:
core attributes
‘class’
‘style’

DOM Interfaces:
SVGDescElement



‘title’Categories:
Descriptive element

Content model:
Any elements or character data.

Attributes:
core attributes
‘class’
‘style’

DOM Interfaces:
SVGTitleElement

Each container element or graphics element in an SVG drawing can supply a ‘desc’ and/or a ‘title’ description
string where the description is text-only. When the current SVG document fragment is rendered as SVG on visual
media, ‘desc’ and ‘title’ elements are not rendered as part of the graphics. User agents may, however, for example,
display the ‘title’ element as a tooltip, as the pointing device moves over particular elements. Alternate present-
ations are possible, both visual and aural, which display the ‘desc’ and ‘title’ elements but do not display ‘path’
elements or other graphics elements. This is readily achieved by using a different (perhaps user) style sheet. For
deep hierarchies, and for following ‘use’ element references, it is sometimes desirable to allow the user to control
how deep they drill down into descriptive text.

In conforming SVG document fragments, any ‘title’ element should be the first child element of its parent.
Note that those implementations that do use ‘title’ to display a tooltip often will only do so if the ‘title’ is indeed
the first child element of its parent.

The following is an example. In typical operation, the SVG user agent would not render the ‘desc’ and ‘title’
elements but would render the remaining contents of the ‘g’ element.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg"

version="1.1" width="4in" height="3in">
<g>

<title>Company sales by region</title>
<desc>

This is a bar chart which shows
company sales by region.

</desc>
<!-- Bar chart defined as vector data -->

</g>
</svg>

Description and title elements can contain marked-up text from other namespaces. Here is an example:

<?xml version="1.0" standalone="yes"?>
<svg xmlns="http://www.w3.org/2000/svg"

version="1.1" width="4in" height="3in">
<desc xmlns:mydoc="http://example.org/mydoc">



‘symbol’

<mydoc:title>This is an example SVG file</mydoc:title>
<mydoc:para>The global description uses markup from the

<mydoc:emph>mydoc</mydoc:emph> namespace.</mydoc:para>
</desc>
<g>

<!-- the picture goes here -->
</g>

</svg>

Authors should always provide a ‘title’ child element to the outermost svg element within a stand-alone SVG doc-
ument. The ‘title’ child element to an ‘svg’ element serves the purposes of identifying the content of the given
SVG document fragment. Since users often consult documents out of context, authors should provide context-rich
titles. Thus, instead of a title such as "Introduction", which doesn't provide much contextual background, authors
should supply a title such as "Introduction to Medieval Bee-Keeping" instead. For reasons of accessibility, user
agents should always make the content of the ‘title’ child element to the outermost svg element available to users.
The mechanism for doing so depends on the user agent (e.g., as a caption, spoken).

The DTD definitions of many of SVG's elements (particularly, container and text elements) place no restric-
tion on the placement or number of the ‘desc’ and ‘title’ sub-elements. This flexibility is only present so that there
will be a consistent content model for container elements, because some container elements in SVG allow for
mixed content, and because the mixed content rules for XML ([XML10], section 3.2.2) do not permit the desired
restrictions. Representations of future versions of the SVG language might use more expressive representations
than DTDs which allow for more restrictive mixed content rules. It is strongly recommended that at most one
‘desc’ and at most one ‘title’ element appear as a child of any particular element, and that these elements appear
before any other child elements (except possibly ‘metadata’ elements) or character data content. If user agents need
to choose among multiple ‘desc’ or ‘title’ elements for processing (e.g., to decide which string to use for a tooltip),
the user agent shall choose the first one.

5.5 The ‘symbol’ element

Categories:
Container element, structural element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements
shape elements
structural elements
gradient elements
‘a’
‘altGlyphDef’
‘clipPath’
‘color-profile’

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-mixed-content


‘cursor’
‘filter’
‘font’
‘font-face’
‘foreignObject’
‘image’
‘marker’
‘mask’
‘pattern’
‘script’
‘style’
‘switch’
‘text’
‘view’

Attributes:
core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘preserveAspectRatio’
‘viewBox’

DOM Interfaces:
SVGSymbolElement

The ‘symbol’ element is used to define graphical template objects which can be instantiated by a ‘use’ element.
The use of ‘symbol’ elements for graphics that are used multiple times in the same document adds structure

and semantics. Documents that are rich in structure may be rendered graphically, as speech, or as braille, and thus
promote accessibility.

The key distinctions between a ‘symbol’ and a ‘g’ are:

• A ‘symbol’ element itself is not rendered. Only instances of a ‘symbol’ element (i.e., a reference to a ‘symbol’
by a ‘use’ element) are rendered.

• A ‘symbol’ element has attributes ‘viewBox’ and ‘preserveAspectRatio’ which allow a ‘symbol’ to scale-to-fit
within a rectangular viewport defined by the referencing ‘use’ element.

Closely related to the ‘symbol’ element are the ‘marker’ and ‘pattern’ elements.
‘symbol’ elements are never rendered directly; their only usage is as something that can be referenced using



‘use’

the ‘use’ element. The ‘display’ property does not apply to the ‘symbol’ element; thus, ‘symbol’ elements are not
directly rendered even if the ‘display’ property is set to a value other than none, and ‘symbol’ elements are avail-
able for referencing even when the ‘display’ property on the ‘symbol’ element or any of its ancestors is set to none.

5.6 The ‘use’ element

Categories:
Graphics element, graphics referencing element, structural element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements

Attributes:
core attributes
conditional processing attributes
graphical event attributes
presentation attributes
xlink attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’
‘x’
‘y’
‘width’
‘height’
‘xlink:href’

DOM Interfaces:
SVGUseElement

Any ‘svg’, ‘symbol’, ‘g’, graphics element or other ‘use’ is potentially a template object that can be re-used (i.e.,
"instanced") in the SVG document via a ‘use’ element. The ‘use’ element references another element and indicates
that the graphical contents of that element is included/drawn at that given point in the document.

Unlike ‘image’, the ‘use’ element cannot reference entire files.
The ‘use’ element has optional attributes ‘x’, ‘y’, ‘width’ and ‘height’ which are used to map the graphical con-

tents of the referenced element onto a rectangular region within the current coordinate system.
The effect of a ‘use’ element is as if the contents of the referenced element were deeply cloned into a separate

non-exposed DOM tree which had the ‘use’ element as its parent and all of the ‘use’ element's ancestors as its
higher-level ancestors. Because the cloned DOM tree is non-exposed, the SVG Document Object Model (DOM)



only contains the ‘use’ element and its attributes. The SVG DOM does not show the referenced element's contents
as children of ‘use’ element.

For user agents that support Styling with CSS, the conceptual deep cloning of the referenced element into
a non-exposed DOM tree also copies any property values resulting from the CSS cascade ([CSS2], chapter 6) on
the referenced element and its contents. CSS2 selectors can be applied to the original (i.e., referenced) elements
because they are part of the formal document structure. CSS2 selectors cannot be applied to the (conceptually)
cloned DOM tree because its contents are not part of the formal document structure.

Property inheritance, however, works as if the referenced element had been textually included as a deeply
cloned child of the ‘use’ element. The referenced element inherits properties from the ‘use’ element and the ‘use’
element's ancestors. An instance of a referenced element does not inherit properties from the referenced element's
original parents.

If event attributes are assigned to referenced elements, then the actual target for the event will be the SVGEle-
mentInstance object within the "instance tree" corresponding to the given referenced element.

The event handling for the non-exposed tree works as if the referenced element had been textually included
as a deeply cloned child of the ‘use’ element, except that events are dispatched to the SVGElementInstance objects.
The event's target and currentTarget attributes are set to the SVGElementInstance that corresponds to the target
and current target elements in the referenced subtree. An event propagates through the exposed and non-exposed
portions of the tree in the same manner as it would in the regular document tree: first going from the root ele-
ment to the ‘use’ element and then through non-exposed tree elements in the capture phase, followed by the target
phase at the target of the event, then bubbling back through non-exposed tree to the use element and then back
through regular tree to the root element in bubbling phase.

An element and all its corresponding SVGElementInstance objects share an event listener list. The currentTar-
get attribute of the event can be used to determine through which object an event listener was invoked.

The behavior of the ‘visibility’ property conforms to this model of property inheritance. Thus, specifying 'vis-
ibility:hidden' on a ‘use’ element does not guarantee that the referenced content will not be rendered. If the ‘use’
element specifies 'visibility:hidden' and the element it references specifies 'visibility:hidden' or 'visibility:inherit',
then that one element will be hidden. However, if the referenced element instead specifies 'visibility:visible', then
that element will be visible even if the ‘use’ element specifies 'visibility:hidden'.

Animations on a referenced element will cause the instances to also be animated.
A ‘use’ element has the same visual effect as if the ‘use’ element were replaced by the following generated

content:

• If the ‘use’ element references a ‘symbol’ element:

In the generated content, the ‘use’ will be replaced by ‘g’, where all attributes from the ‘use’ element except
for ‘x’, ‘y’, ‘width’, ‘height’ and ‘xlink:href’ are transferred to the generated ‘g’ element. An additional trans-
formation translate(x,y) is appended to the end (i.e., right-side) of the ‘transform’ attribute on the generated
‘g’, where x and y represent the values of the ‘x’ and ‘y’ attributes on the ‘use’ element. The referenced ‘sym-
bol’ and its contents are deep-cloned into the generated tree, with the exception that the ‘symbol’ is replaced
by an ‘svg’. This generated ‘svg’ will always have explicit values for attributes ‘width’ and ‘height’. If attrib-
utes ‘width’ and/or ‘height’ are provided on the ‘use’ element, then these attributes will be transferred to the
generated ‘svg’. If attributes ‘width’ and/or ‘height’ are not specified, the generated ‘svg’ element will use val-

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html


ues of '100%' for these attributes.

• If the ‘use’ element references an ‘svg’ element:

In the generated content, the ‘use’ will be replaced by ‘g’, where all attributes from the ‘use’ element except
for ‘x’, ‘y’, ‘width’, ‘height’ and ‘xlink:href’ are transferred to the generated ‘g’ element. An additional trans-
formation translate(x,y) is appended to the end (i.e., right-side) of the ‘transform’ attribute on the generated
‘g’, where x and y represent the values of the ‘x’ and ‘y’ attributes on the ‘use’ element. The referenced ‘svg’
and its contents are deep-cloned into the generated tree. If attributes ‘width’ and/or ‘height’ are provided on
the ‘use’ element, then these values will override the corresponding attributes on the ‘svg’ in the generated
tree.

• Otherwise:

In the generated content, the ‘use’ will be replaced by ‘g’, where all attributes from the ‘use’ element except
for ‘x’, ‘y’, ‘width’, ‘height’ and ‘xlink:href’ are transferred to the generated ‘g’ element. An additional trans-
formation translate(x,y) is appended to the end (i.e., right-side) of the ‘transform’ attribute on the generated
‘g’, where x and y represent the values of the ‘x’ and ‘y’ attributes on the ‘use’ element. The referenced object
and its contents are deep-cloned into the generated tree.

For user agents that support Styling with CSS, the generated ‘g’ element carries along with it the "cascaded" prop-
erty values on the ‘use’ element which result from the CSS cascade ([CSS2], chapter 6). Additionally, the copy
(deep clone) of the referenced resource carries along with it the "cascaded" property values resulting from the CSS
cascade on the original (i.e., referenced) elements. Thus, the result of various CSS selectors in combination with
the ‘class’ and ‘style’ attributes are, in effect, replaced by the functional equivalent of a ‘style’ attribute in the gen-
erated content which conveys the "cascaded" property values.

Example Use01 below has a simple ‘use’ on a ‘rect’.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<desc>Example Use01 - Simple case of 'use' on a 'rect'</desc>
<defs>

<rect id="MyRect" width="60" height="10"/>
</defs>
<rect x=".1" y=".1" width="99.8" height="29.8"

fill="none" stroke="blue" stroke-width=".2" />
<use x="20" y="10" xlink:href="#MyRect" />

</svg>

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html


Example Use01

The visual effect would be equivalent to the following document:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example Use01-GeneratedContent - Simple case of 'use' on a 'rect'</desc>
<!-- 'defs' section left out -->

<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2" />

<!-- Start of generated content. Replaces 'use' -->
<g transform="translate(20,10)">

<rect width="60" height="10"/>
</g>
<!-- End of generated content -->

</svg>

Example Use02 below has a ‘use’ on a ‘symbol’.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<desc>Example Use02 - 'use' on a 'symbol'</desc>
<defs>

<symbol id="MySymbol" viewBox="0 0 20 20">
<desc>MySymbol - four rectangles in a grid</desc>
<rect x="1" y="1" width="8" height="8"/>
<rect x="11" y="1" width="8" height="8"/>
<rect x="1" y="11" width="8" height="8"/>
<rect x="11" y="11" width="8" height="8"/>

</symbol>
</defs>
<rect x=".1" y=".1" width="99.8" height="29.8"

fill="none" stroke="blue" stroke-width=".2" />
<use x="45" y="10" width="10" height="10"

xlink:href="#MySymbol" />
</svg>

Example Use02



The visual effect would be equivalent to the following document:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example Use02-GeneratedContent - 'use' on a 'symbol'</desc>

<!-- 'defs' section left out -->

<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2" />

<!-- Start of generated content. Replaces 'use' -->
<g transform="translate(45, 10)" >

<!-- Start of referenced 'symbol'. 'symbol' replaced by 'svg',
with x,y,width,height=0,0,100%,100% -->

<svg width="10" height="10"
viewBox="0 0 20 20">

<rect x="1" y="1" width="8" height="8"/>
<rect x="11" y="1" width="8" height="8"/>
<rect x="1" y="11" width="8" height="8"/>
<rect x="11" y="11" width="8" height="8"/>

</svg>
<!-- End of referenced symbol -->

</g>
<!-- End of generated content -->

</svg>

Example Use03 illustrates what happens when a ‘use’ has a ‘transform’ attribute.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<desc>Example Use03 - 'use' with a 'transform' attribute</desc>
<defs>

<rect id="MyRect" x="0" y="0" width="60" height="10"/>
</defs>
<rect x=".1" y=".1" width="99.8" height="29.8"

fill="none" stroke="blue" stroke-width=".2" />
<use xlink:href="#MyRect"

transform="translate(20,2.5) rotate(10)" />
</svg>

Example Use03

The visual effect would be equivalent to the following document:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example Use03-GeneratedContent - 'use' with a 'transform' attribute</desc>

<!-- 'defs' section left out -->



<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2" />

<!-- Start of generated content. Replaces 'use' -->
<g transform="translate(20,2.5) rotate(10)">

<rect x="0" y="0" width="60" height="10"/>
</g>
<!-- End of generated content -->

</svg>

Example Use04 illustrates a ‘use’ element with various methods of applying CSS styling.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="3cm" viewBox="0 0 1200 300" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<desc>Example Use04 - 'use' with CSS styling</desc>
<defs style=" /* rule 9 */ stroke-miterlimit: 10" >

<path id="MyPath" d="M300 50 L900 50 L900 250 L300 250"
class="MyPathClass"
style=" /* rule 10 */ stroke-dasharray:300,100" />

</defs>
<style type="text/css">

<![CDATA[
/* rule 1 */ #MyUse { fill: blue }
/* rule 2 */ #MyPath { stroke: red }
/* rule 3 */ use { fill-opacity: .5 }
/* rule 4 */ path { stroke-opacity: .5 }
/* rule 5 */ .MyUseClass { stroke-linecap: round }
/* rule 6 */ .MyPathClass { stroke-linejoin: bevel }
/* rule 7 */ use > path { shape-rendering: optimizeQuality }
/* rule 8 */ g > path { visibility: hidden }

]]>
</style>

<rect x="0" y="0" width="1200" height="300"
style="fill:none; stroke:blue; stroke-width:3"/>

<g style=" /* rule 11 */ stroke-width:40">
<use id="MyUse" xlink:href="#MyPath"

class="MyUseClass"
style="/* rule 12 */ stroke-dashoffset:50" />

</g>
</svg>

Example Use04

The visual effect would be equivalent to the following document. Observe that some of the style rules above apply
to the generated content (i.e., rules 1-6, 10-12), whereas others do not (i.e., rules 7-9). The rules which do not affect
the generated content are:

• Rules 7 and 8: CSS selectors only apply to the formal document tree, not on the generated tree; thus, these
selectors will not yield a match.



• Rule 9: The generated tree only inherits from the ancestors of the ‘use’ element and does not inherit from the
ancestors of the referenced element; thus, this rule does not affect the generated content.

In the generated content below, the selectors that yield a match have been transferred into inline ‘style’ attributes
for illustrative purposes.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="3cm" viewBox="0 0 1200 300"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example Use04-GeneratedContent - 'use' with a 'transform' attribute</desc>

<!-- 'style' and 'defs' sections left out -->

<rect x="0" y="0" width="1200" height="300"
style="fill:none; stroke:blue; stroke-width:3"/>

<g style="/* rule 11 */ stroke-width:40">

<!-- Start of generated content. Replaces 'use' -->
<g style="/* rule 1 */ fill:blue;

/* rule 3 */ fill-opacity:.5;
/* rule 5 */ stroke-linecap:round;
/* rule 12 */ stroke-dashoffset:50" >

<path d="M300 50 L900 50 L900 250 L300 250"
style="/* rule 2 */ stroke:red;

/* rule 4 */ stroke-opacity:.5;
/* rule 6 */ stroke-linejoin: bevel;
/* rule 10 */ stroke-dasharray:300,100" />

</g>
<!-- End of generated content -->

</g>
</svg>

When a ‘use’ references another element which is another ‘use’ or whose content contains a ‘use’ element, then
the deep cloning approach described above is recursive. However, a set of references that directly or indirectly
reference a element to create a circular dependency is an error, as described in References and the ‘defs’ element.

Attribute definitions:

x = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the referenced element is placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y = "<coordinate>"
The y-axis coordinate of one corner of the rectangular region into which the referenced element is placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

width = "<length>"
The width of the rectangular region into which the referenced element is placed. A negative value is an error
(see Error processing). A value of zero disables rendering of this element.
Animatable: yes.



‘image’

height = "<length>"
The height of the rectangular region into which the referenced element is placed. A negative value is an error
(see Error processing). A value of zero disables rendering of this element.
Animatable: yes.

xlink:href = "<iri>"
A IRI reference to an element/fragment within an SVG document.
Animatable: yes.

5.7 The ‘image’ element

Categories:
Graphics element, graphics referencing element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements

Attributes:
core attributes
conditional processing attributes
graphical event attributes
xlink attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘preserveAspectRatio’
‘transform’
‘x’
‘y’
‘width’
‘height’
‘xlink:href’

DOM Interfaces:
SVGImageElement

The ‘image’ element indicates that the contents of a complete file are to be rendered into a given rectangle within
the current user coordinate system. The ‘image’ element can refer to raster image files such as PNG or JPEG or to



files with MIME type of "image/svg+xml". Conforming SVG viewers need to support at least PNG, JPEG and SVG
format files.

The result of processing an ‘image’ is always a four-channel RGBA result. When an ‘image’ element references
a raster image file such as PNG or JPEG files which only has three channels (RGB), then the effect is as if the object
were converted into a 4-channel RGBA image with the alpha channel uniformly set to 1. For a single-channel
raster image, the effect is as if the object were converted into a 4-channel RGBA image, where the single channel
from the referenced object is used to compute the three color channels and the alpha channel is uniformly set to 1.

An ‘image’ element establishes a new viewport for the referenced file as described in Establishing a new
viewport. The bounds for the new viewport are defined by attributes ‘x’, ‘y’, ‘width’ and ‘height’. The placement
and scaling of the referenced image are controlled by the ‘preserveAspectRatio’ attribute on the ‘image’ element.

When an ‘image’ element references an SVG image, the ‘clip’ and ‘overflow’ properties on the root element
in the referenced SVG image are ignored (in the same manner as the ‘x’, ‘y’, ‘width’ and ‘height’ attributes are ig-
nored). Unless the value of ‘preserveAspectRatio’ on the ‘image’ element starts with 'defer', the ‘preserveAspectRa-
tio’ attribute on the root element in the referenced SVG image is also ignored (see ‘preserveAspectRatio’ for details).
Instead, the ‘preserveAspectRatio’ attribute on the referencing ‘image’ element defines how the SVG image content
is fitted into the viewport and the ‘clip’ and ‘overflow’ properties on the ‘image’ element define how the SVG image
content is clipped (or not) relative to the viewport.

The value of the ‘viewBox’ attribute to use when evaluating the ‘preserveAspectRatio’ attribute is defined by
the referenced content. For content that clearly identifies a viewBox (e.g. an SVG file with the ‘viewBox’ attribute
on the outermost svg element) that value should be used. For most raster content (PNG, JPEG) the bounds of the
image should be used (i.e. the ‘image’ element has an implicit ‘viewBox’ of '0 0 raster-image-width raster-image-
height'). Where no value is readily available (e.g. an SVG file with no ‘viewBox’ attribute on the outermost svg
element) the ‘preserveAspectRatio’ attribute is ignored, and only the translation due to the ‘x’ & ‘y’ attributes of
the viewport is used to display the content.

For example, if the image element referenced a PNG or JPEG and preserveAspectRatio="xMinYMin meet",
then the aspect ratio of the raster would be preserved (which means that the scale factor from image's coordinates
to current user space coordinates would be the same for both X and Y), the raster would be sized as large as pos-
sible while ensuring that the entire raster fits within the viewport, and the top/left of the raster would be aligned
with the top/left of the viewport as defined by the attributes ‘x’, ‘y’, ‘width’ and ‘height’ on the ‘image’ element.
If the value of ‘preserveAspectRatio’ was 'none' then aspect ratio of the image would not be preserved. The image
would be fitted such that the top/left corner of the raster exactly aligns with coordinate (‘x’, ‘y’) and the bottom/
right corner of the raster exactly aligns with coordinate (‘x’+‘width’, ‘y’+‘height’).

The resource referenced by the ‘image’ element represents a separate document which generates its own parse
tree and document object model (if the resource is XML). Thus, there is no inheritance of properties into the image.

Unlike ‘use’, the ‘image’ element cannot reference elements within an SVG file.

Attribute definitions:

x = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the referenced document is placed.
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: yes.



y = "<coordinate>"
The y-axis coordinate of one corner of the rectangular region into which the referenced document is placed.
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: yes.

width = "<length>"
The width of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

height = "<length>"
The height of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

xlink:href = "<iri>"
A IRI reference.
Animatable: yes.

preserveAspectRatio = "[defer] <align> [<meetOrSlice>]"
See ‘preserveAspectRatio’.

If attribute ‘preserveAspectRatio’ is not specified, then the effect is as if a value of xMidYMid meet were
specified.

Animatable: yes.

An example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4in" height="3in" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<desc>This graphic links to an external image
</desc>
<image x="200" y="200" width="100px" height="100px"

xlink:href="myimage.png">
<title>My image</title>

</image>
</svg>

5.8 Conditional processing

5.8.1 Conditional processing overview

SVG contains a ‘switch’ element along with attributes ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLan-



‘switch’

guage’ to provide an ability to specify alternate viewing depending on the capabilities of a given user agent or the
user's language.

Attributes ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ act as tests and return either true or
false results. The ‘switch’ renders the first of its children for which all of these attributes test true. If the given at-
tribute is not specified, then a true value is assumed.

Similar to the ‘display’ property, conditional processing attributes only affect the direct rendering of elements
and do not prevent elements from being successfully referenced by other elements (such as via a ‘use’).

In consequence:

• ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ attributes affect ‘a’, ‘altGlyph’, ‘foreignObject’,
‘textPath’, ‘tref’, and ‘tspan’ elements.

• ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ attributes will have no effect on ‘mask’,
‘clipPath’, and ‘pattern’ elements.

• ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ attributes do not apply to the ‘defs’, and ‘cursor’
elements because they are not part of the rendering tree.

• ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ attributes affect ‘animate’, ‘animateColor’, ‘an-
imateMotion’, ‘animateTransform’, and ‘set’ elements. If the conditional statement on these animation ele-
ments fails, the animation will never be triggered.

5.8.2 The ‘switch’ element

Categories:
Container element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements
shape elements
‘a’
‘foreignObject’
‘g’
‘image’
‘svg’
‘switch’
‘text’
‘use’

Attributes:
conditional processing attributes
core attributes



graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’

DOM Interfaces:
SVGSwitchElement

The ‘switch’ element evaluates the ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ attributes on its
direct child elements in order, and then processes and renders the first child for which these attributes evaluate to
true. All others will be bypassed and therefore not rendered. If the child element is a container element such as a
‘g’, then the entire subtree is either processed/rendered or bypassed/not rendered.

Note that the values of properties ‘display’ and ‘visibility’ have no effect on ‘switch’ element processing. In
particular, setting ‘display’ to none on a child of a ‘switch’ element has no effect on true/false testing associated
with ‘switch’ element processing.

For more information and an example, see Embedding foreign object types.

5.8.3 The ‘requiredFeatures’ attribute

Definition of requiredFeatures:

requiredFeatures = list-of-features
The value is a list of feature strings, with the individual values separated by white space. Determines whether
all of the named features are supported by the user agent. Only feature strings defined in the Feature String
appendix are allowed. If all of the given features are supported, then the attribute evaluates to true; other-
wise, the current element and its children are skipped and thus will not be rendered.
Animatable: no.

If the attribute is not present, then its implicit return value is "true". If a null string or empty string value is given
to attribute ‘requiredFeatures’, the attribute returns "false".

‘requiredFeatures’ is often used in conjunction with the ‘switch’ element. If the ‘requiredFeatures’ is used in
other situations, then it represents a simple switch on the given element whether to render the element or not.

5.8.4 The ‘requiredExtensions’ attribute

The ‘requiredExtensions’ attribute defines a list of required language extensions. Language extensions are capabil-
ities within a user agent that go beyond the feature set defined in this specification. Each extension is identified by
an IRI reference.



Definition of requiredExtensions:

requiredExtensions = list-of-extensions
The value is a list of IRI references which identify the required extensions, with the individual values sep-
arated by white space. Determines whether all of the named extensions are supported by the user agent. If
all of the given extensions are supported, then the attribute evaluates to true; otherwise, the current element
and its children are skipped and thus will not be rendered.
Animatable: no.

If a given IRI reference contains white space within itself, that white space must be escaped.
If the attribute is not present, then its implicit return value is "true". If a null string or empty string value is

given to attribute ‘requiredExtensions’, the attribute returns "false".
‘requiredExtensions’ is often used in conjunction with the ‘switch’ element. If the ‘requiredExtensions’ is used

in other situations, then it represents a simple switch on the given element whether to render the element or not.
The IRI names for the extension should include versioning information, such as "http://example.org/SVGEx-

tensionXYZ/1.0", so that script writers can distinguish between different versions of a given extension.

5.8.5 The ‘systemLanguage’ attribute

The attribute value is a comma-separated list of language names as defined in BCP 47 [BCP47].
Evaluates to "true" if one of the languages indicated by user preferences exactly equals one of the languages

given in the value of this parameter, or if one of the languages indicated by user preferences exactly equals a prefix
of one of the languages given in the value of this parameter such that the first tag character following the prefix is
"-".

Evaluates to "false" otherwise.
Note: This use of a prefix matching rule does not imply that language tags are assigned to languages in such

a way that it is always true that if a user understands a language with a certain tag, then this user will also under-
stand all languages with tags for which this tag is a prefix.

The prefix rule simply allows the use of prefix tags if this is the case.
Implementation note: When making the choice of linguistic preference available to the user, implementers

should take into account the fact that users are not familiar with the details of language matching as described
above, and should provide appropriate guidance. As an example, users may assume that on selecting "en-gb", they
will be served any kind of English document if British English is not available. The user interface for setting user
preferences should guide the user to add "en" to get the best matching behavior.

Multiple languages MAY be listed for content that is intended for multiple audiences. For example, content
that is presented simultaneously in the original Maori and English versions, would call for:

<text systemLanguage="mi, en"><!-- content goes here --></text>

However, just because multiple languages are present within the object on which the ‘systemLanguage’ test at-
tribute is placed, this does not mean that it is intended for multiple linguistic audiences. An example would be a
beginner's language primer, such as "A First Lesson in Latin," which is clearly intended to be used by an English-
literate audience. In this case, the ‘systemLanguage’ test attribute should only include "en".

Authoring note: Authors should realize that if several alternative language objects are enclosed in a ‘switch’,

http://www.ietf.org/rfc/bcp/bcp47.txt


and none of them matches, this may lead to situations where no content is displayed. It is thus recommended to
include a "catch-all" choice at the end of such a ‘switch’ which is acceptable in all cases.

For the ‘systemLanguage’ attribute: Animatable: no.
If the attribute is not present, then its implicit return value is "true". If a null string or empty string value is

given to attribute ‘systemLanguage’, the attribute returns "false".
‘systemLanguage’ is often used in conjunction with the ‘switch’ element. If the ‘systemLanguage’ is used in

other situations, then it represents a simple switch on the given element whether to render the element or not.

5.8.6 Applicability of test attributes

The following list describes the applicability of the test attributes to the elements that do not directly produce ren-
dering.

• the test attributes do not effect the ‘mask’, ‘clipPath’, ‘linearGradient’, ‘radialGradient’ and ‘pattern’ elements.
The test attributes on a referenced element do not affect the rendering of the referencing element.

• the test attributes do not effect the ‘defs’, and ‘cursor’ elements as they are not part of the rendering tree.
• an animation element (‘animate’, ‘animateMotion’, ‘animateTransform’, ‘animateColor’ and ‘set’) will never be

triggered if it has a test attribute that evaluates to false.

5.9 Specifying whether external resources are required for proper ren-
dering

Documents often reference and use the contents of other files (and other Web resources) as part of their rendering.
In some cases, authors want to specify that particular resources are required for a document to be considered cor-
rect.

Attribute ‘externalResourcesRequired’ is available on all container elements and to all elements which poten-
tially can reference external resources. It specifies whether referenced resources that are not part of the current
document are required for proper rendering of the given container element or graphics element.

Attribute definition:

externalResourcesRequired = "false | true"

false
(The default value.) Indicates that resources external to the current document are optional. Document
rendering can proceed even if external resources are unavailable to the current element and its des-
cendants.

true
Indicates that resources external to the current document are required. If an external resource is not
available, progressive rendering is suspended, the document's SVGLoad event is not fired and the an-



imation timeline does not begin until that resource and all other required resources become available,
have been parsed and are ready to be rendered. If a timeout event occurs on a required resource, then
the document goes into an error state (see Error processing). The document remains in an error state
until all required resources become available.

This attribute applies to all types of resource references, including style sheets, color profiles (see Color profile de-
scriptions) and fonts specified by an IRI reference using a ‘font-face’ element or a CSS @font-face specification.
In particular, if an element sets externalResourcesRequired="true", then all style sheets must be available since any
style sheet might affect the rendering of that element.

Attribute ‘externalResourcesRequired’ is not inheritable (from a sense of attribute value inheritance), but if set
on a container element, its value will apply to all elements within the container.

Because setting externalResourcesRequired="true" on a container element will have the effect of disabling pro-
gressive display of the contents of that container, if that container includes elements that reference external re-
sources, tools that generate SVG content are cautioned against simply setting externalResourcesRequired="true" on
the outermost svg element on a universal basis. Instead, it is better to specify externalResourcesRequired="true"
on those particular graphics elements or container elements which specifically need the availability of external
resources in order to render properly.

For ‘externalResourcesRequired’: Animatable: no.

5.10 Common attributes

5.10.1 Attributes common to all elements: ‘id’ and ‘xml:base’

The ‘id’ and ‘xml:base’ attributes are available on all SVG elements:

Attribute definitions:

id = "name"
Standard XML attribute for assigning a unique name to an element. Refer to the Extensible Markup Lan-
guage (XML) 1.0 Recommendation [XML10].
Animatable: no.

xml:base = "<iri>"
Specifies a base IRI other than the base IRI of the document or external entity. Refer to the XML Base spe-
cification [XML-BASE].
Animatable: no.

5.10.2 The ‘xml:lang’ and ‘xml:space’ attributes

Elements that might contain character data content have attributes ‘xml:lang’ and ‘xml:space’.

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2009/REC-xmlbase-20090128/


Attribute definitions:

xml:lang = "languageID"
Standard XML attribute to specify the language (e.g., English) used in the contents and attribute values of
particular elements. Refer to the Extensible Markup Language (XML) 1.0 Recommendation [XML10].
Animatable: no.

xml:space = "{default | preserve}"
Standard XML attribute to specify whether white space is preserved in character data. The only possible
values are 'default' and 'preserve'. Refer to the Extensible Markup Language (XML) 1.0 Recommendation
[XML10] and to the discussion white space handling in SVG.
Animatable: no.

5.11 DOM interfaces

5.11.1 Interface SVGDocument

When an ‘svg’ element is embedded inline as a component of a document from another namespace, such as when
an ‘svg’ element is embedded inline within an XHTML document [XHTML], then an SVGDocument object will
not exist; instead, the root object in the document object hierarchy will be a Document object of a different type,
such as an HTMLDocument object.

However, an SVGDocument object will indeed exist when the root element of the XML document hierarchy
is an ‘svg’ element, such as when viewing a stand-alone SVG file (i.e., a file with MIME type "image/svg+xml"). In
this case, the SVGDocument object will be the root object of the document object model hierarchy.

In the case where an SVG document is embedded by reference, such as when an XHTML document has an
‘object’ element whose ‘href’ attribute references an SVG document (i.e., a document whose MIME type is "image/
svg+xml" and whose root element is thus an ‘svg’ element), there will exist two distinct DOM hierarchies. The first
DOM hierarchy will be for the referencing document (e.g., an XHTML document). The second DOM hierarchy
will be for the referenced SVG document. In this second DOM hierarchy, the root object of the document object
model hierarchy is an SVGDocument object.

The SVGDocument interface contains a similar list of attributes and methods to the HTMLDocument inter-
face described in the Document Object Model (HTML) Level 1 chapter of the [DOM1] specification.

interface SVGDocument : Document,
DocumentEvent {

readonly attribute DOMString title;
readonly attribute DOMString referrer;
readonly attribute DOMString domain;
readonly attribute DOMString URL;
readonly attribute SVGSVGElement rootElement;

};

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html#i-Document
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-DocumentEvent


Attributes:

• title (readonly DOMString)

The title of a document as specified by the ‘title’ sub-element of the ‘svg’ root element (i.e., <svg><title>Here
is the title</title>...</svg>)

• referrer (readonly DOMString)

Returns the URI of the page that linked to this page. The value is an empty string if the user navigated to the
page directly (not through a link, but, for example, via a bookmark).

• domain (readonly DOMString)

The domain name of the server that served the document, or a null string if the server cannot be identified
by a domain name.

• URL (readonly DOMString)

The complete URI of the document.

• rootElement (readonly SVGSVGElement)

The root ‘svg’ in the document hierarchy.

5.11.2 Interface SVGSVGElement

A key interface definition is the SVGSVGElement interface, which is the interface that corresponds to the ‘svg’
element. This interface contains various miscellaneous commonly-used utility methods, such as matrix operations
and the ability to control the time of redraw on visual rendering devices.

SVGSVGElement extends ViewCSS and DocumentCSS to provide access to the computed values of properties
and the override style sheet as described in DOM Level 2 Style [DOM2STYLE].

interface SVGSVGElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGLocatable,
SVGFitToViewBox,
SVGZoomAndPan,
DocumentEvent,
ViewCSS,
DocumentCSS {

readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;

attribute DOMString contentScriptType setraises(DOMException);
attribute DOMString contentStyleType setraises(DOMException);

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-ViewCSS
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-DocumentCSS
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-DocumentEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-ViewCSS
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-DocumentCSS
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


readonly attribute SVGRect viewport;
readonly attribute float pixelUnitToMillimeterX;
readonly attribute float pixelUnitToMillimeterY;
readonly attribute float screenPixelToMillimeterX;
readonly attribute float screenPixelToMillimeterY;
readonly attribute boolean useCurrentView;
readonly attribute SVGViewSpec currentView;

attribute float currentScale;
readonly attribute SVGPoint currentTranslate;

unsigned long suspendRedraw(in unsigned long maxWaitMilliseconds);
void unsuspendRedraw(in unsigned long suspendHandleID);
void unsuspendRedrawAll();
void forceRedraw();
void pauseAnimations();
void unpauseAnimations();
boolean animationsPaused();
float getCurrentTime();
void setCurrentTime(in float seconds);
NodeList getIntersectionList(in SVGRect rect, in SVGElement referenceElement);
NodeList getEnclosureList(in SVGRect rect, in SVGElement referenceElement);
boolean checkIntersection(in SVGElement element, in SVGRect rect);
boolean checkEnclosure(in SVGElement element, in SVGRect rect);
void deselectAll();
SVGNumber createSVGNumber();
SVGLength createSVGLength();
SVGAngle createSVGAngle();
SVGPoint createSVGPoint();
SVGMatrix createSVGMatrix();
SVGRect createSVGRect();
SVGTransform createSVGTransform();
SVGTransform createSVGTransformFromMatrix(in SVGMatrix matrix);
Element getElementById(in DOMString elementId);

};

Attributes:

• x (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given ‘svg’ element.

• y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given ‘svg’ element.

• width (readonly SVGAnimatedLength)

Corresponds to attribute ‘width’ on the given ‘svg’ element.

• height (readonly SVGAnimatedLength)

Corresponds to attribute ‘height’ on the given ‘svg’ element.

• contentScriptType (DOMString)

Corresponds to attribute ‘contentScriptType’ on the given ‘svg’ element.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-745549614


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• contentStyleType (DOMString)

Corresponds to attribute ‘contentStyleType’ on the given ‘svg’ element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• viewport (readonly SVGRect)

The position and size of the viewport (implicit or explicit) that corresponds to this ‘svg’ element. When the
user agent is actually rendering the content, then the position and size values represent the actual values
when rendering. The position and size values are unitless values in the coordinate system of the parent ele-
ment. If no parent element exists (i.e., ‘svg’ element represents the root of the document tree), if this SVG
document is embedded as part of another document (e.g., via the HTML ‘object’ element), then the position
and size are unitless values in the coordinate system of the parent document. (If the parent uses CSS or XSL
layout, then unitless values represent pixel units for the current CSS or XSL viewport, as described in the
CSS2 specification.) If the parent element does not have a coordinate system, then the user agent should
provide reasonable default values for this attribute.

The SVGRect object is read only.

• pixelUnitToMillimeterX (readonly float)

Size of a pixel units (as defined by CSS2) along the x-axis of the viewport, which represents a unit somewhere
in the range of 70dpi to 120dpi, and, on systems that support this, might actually match the characteristics of
the target medium. On systems where it is impossible to know the size of a pixel, a suitable default pixel size
is provided.

• pixelUnitToMillimeterY (readonly float)

Corresponding size of a pixel unit along the y-axis of the viewport.

• screenPixelToMillimeterX (readonly float)

User interface (UI) events in DOM Level 2 indicate the screen positions at which the given UI event occurred.
When the user agent actually knows the physical size of a "screen unit", this attribute will express that in-
formation; otherwise, user agents will provide a suitable default value such as .28mm.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• screenPixelToMillimeterY (readonly float)

Corresponding size of a screen pixel along the y-axis of the viewport.

• useCurrentView (readonly boolean)

The initial view (i.e., before magnification and panning) of the current innermost SVG document fragment
can be either the "standard" view (i.e., based on attributes on the ‘svg’ element such as ‘viewBox’) or to a
"custom" view (i.e., a hyperlink into a particular ‘view’ or other element - see Linking into SVG content: IRI
fragments and SVG views). If the initial view is the "standard" view, then this attribute is false. If the initial
view is a "custom" view, then this attribute is true.

• currentView (readonly SVGViewSpec)

The definition of the initial view (i.e., before magnification and panning) of the current innermost SVG doc-
ument fragment. The meaning depends on the situation:

• If the initial view was a "standard" view, then:
◦ the values for viewBox, preserveAspectRatio and zoomAndPan within currentView will match the

values for the corresponding DOM attributes that are on SVGSVGElement directly
◦ the values for transform and viewTarget within currentView will be null

• If the initial view was a link into a ‘view’ element, then:
◦ the values for viewBox, preserveAspectRatio and zoomAndPan within currentView will corres-

pond to the corresponding attributes for the given ‘view’ element
◦ the values for transform and viewTarget within currentView will be null

• If the initial view was a link into another element (i.e., other than a ‘view’), then:
◦ the values for viewBox, preserveAspectRatio and zoomAndPan within currentView will match the

values for the corresponding DOM attributes that are on SVGSVGElement directly for the closest
ancestor ‘svg’ element

◦ the values for transform within currentView will be null
◦ the viewTarget within currentView will represent the target of the link

• If the initial view was a link into the SVG document fragment using an SVG view specification fragment
identifier (i.e., #svgView(...)), then:

◦ the values for viewBox, preserveAspectRatio, zoomAndPan, transform and viewTarget within cur-
rentView will correspond to the values from the SVG view specification fragment identifier

The object itself and its contents are both read only.

• currentScale (float)

On an outermost svg element, this attribute indicates the current scale factor relative to the initial view
to take into account user magnification and panning operations, as described under Magnification and
panning. DOM attributes currentScale and currentTranslate are equivalent to the 2x3 matrix [a b c d e f]



= [currentScale 0 0 currentScale currentTranslate.x currentTranslate.y]. If "magnification" is enabled (i.e.,
zoomAndPan="magnify"), then the effect is as if an extra transformation were placed at the outermost level
on the SVG document fragment (i.e., outside the outermost svg element).
When accessed on an ‘svg’ element that is not an outermost svg element, it is undefined what behavior this
attribute has.

• currentTranslate (readonly SVGPoint)

On an outermost svg element, the corresponding translation factor that takes into account user "magnifica-
tion".
When accessed on an ‘svg’ element that is not an outermost svg element, it is undefined what behavior this
attribute has.

Operations:

• unsigned long suspendRedraw(in unsigned long maxWaitMilliseconds)

Takes a time-out value which indicates that redraw shall not occur until:

1. the corresponding unsuspendRedraw() call has been made,
2. an unsuspendRedrawAll() call has been made, or
3. its timer has timed out.

In environments that do not support interactivity (e.g., print media), then redraw shall not be suspended.
Calls to suspendRedraw() and unsuspendRedraw() should, but need not be, made in balanced pairs.

To suspend redraw actions as a collection of SVG DOM changes occur, precede the changes to the SVG
DOM with a method call similar to:

suspendHandleID = suspendRedraw(maxWaitMilliseconds);

and follow the changes with a method call similar to:

unsuspendRedraw(suspendHandleID);

Note that multiple suspendRedraw calls can be used at once and that each such method call is treated inde-
pendently of the other suspendRedraw method calls.

Parameters

• unsigned long maxWaitMilliseconds
The amount of time in milliseconds to hold off before redrawing the device. Values greater than 60
seconds will be truncated down to 60 seconds.



Returns
A number which acts as a unique identifier for the given suspendRedraw() call. This value must be
passed as the parameter to the corresponding unsuspendRedraw() method call.

• void unsuspendRedraw(in unsigned long suspendHandleID)

Cancels a specified suspendRedraw() by providing a unique suspend handle ID that was returned by a pre-
vious suspendRedraw() call.

Parameters

• unsigned long suspendHandleID
A number which acts as a unique identifier for the desired suspendRedraw() call. The number supplied
must be a value returned from a previous call to suspendRedraw(). If an invalid handle ID value is
provided then the request to unsuspendRedraw() is silently ignored.

• void unsuspendRedrawAll()

Cancels all currently active suspendRedraw() method calls. This method is most useful at the very end of a
set of SVG DOM calls to ensure that all pending suspendRedraw() method calls have been cancelled.

• void forceRedraw()

In rendering environments supporting interactivity, forces the user agent to immediately redraw all regions
of the viewport that require updating.

• void pauseAnimations()

Suspends (i.e., pauses) all currently running animations that are defined within the SVG document fragment
corresponding to this ‘svg’ element, causing the animation clock corresponding to this document fragment
to stand still until it is unpaused.

• void unpauseAnimations()

Unsuspends (i.e., unpauses) currently running animations that are defined within the SVG document frag-
ment, causing the animation clock to continue from the time at which it was suspended.

• boolean animationsPaused()

Returns true if this SVG document fragment is in a paused state.

Returns
Boolean indicating whether this SVG document fragment is in a paused state.



• float getCurrentTime()

Returns the current time in seconds relative to the start time for the current SVG document fragment. If
getCurrentTime is called before the document timeline has begun (for example, by script running in a ‘script’
element before the document's SVGLoad event is dispatched), then 0 is returned.

Returns
The current time in seconds, or 0 if the document timeline has not yet begun.

• void setCurrentTime(in float seconds)

Adjusts the clock for this SVG document fragment, establishing a new current time. If setCurrentTime is
called before the document timeline has begun (for example, by script running in a ‘script’ element before
the document's SVGLoad event is dispatched), then the value of seconds in the last invocation of the method
gives the time that the document will seek to once the document timeline has begun.

Parameters

• float seconds
The new current time in seconds relative to the start time for the current SVG document fragment.

• NodeList getIntersectionList(in SVGRect rect, in SVGElement referenceElement)

Returns the list of graphics elements whose rendered content intersects the supplied rectangle. Each candid-
ate graphics element is to be considered a match only if the same graphics element can be a target of pointer
events as defined in ‘pointer-events’ processing.

Parameters

• SVGRect rect
The test rectangle. The values are in the initial coordinate system for the current ‘svg’ element.

• SVGElement referenceElement
If not null, then any intersected element that doesn't have the referenceElement as ancestor must not
be included in the returned NodeList.

Returns
A list of Elements whose content intersects the supplied rectangle. This NodeList must be implemented
identically to the NodeList interface as defined in DOM Level 2 Core ([DOM2], section 1.2) with the
exception that the interface is not live.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#td-live


• NodeList getEnclosureList(in SVGRect rect, in SVGElement referenceElement)

Returns the list of graphics elements whose rendered content is entirely contained within the supplied rect-
angle. Each candidate graphics element is to be considered a match only if the same graphics element can be
a target of pointer events as defined in ‘pointer-events’ processing.

Parameters

• SVGRect rect
The test rectangle. The values are in the initial coordinate system for the current ‘svg’ element.

• SVGElement referenceElement
If not null, then any intersected element that doesn't have the referenceElement as ancestor must not
be included in the returned NodeList.

Returns
A list of Elements whose content is enclosed by the supplied rectangle. This NodeList must be imple-
mented identically to the NodeList interface as defined in DOM Level 2 Core ([DOM2], section 1.2)
with the exception that the interface is not live.

• boolean checkIntersection(in SVGElement element, in SVGRect rect)

Returns true if the rendered content of the given element intersects the supplied rectangle. Each candidate
graphics element is to be considered a match only if the same graphics element can be a target of pointer
events as defined in ‘pointer-events’ processing.

Parameters

• SVGElement element
The element on which to perform the given test.

• SVGRect rect
The test rectangle. The values are in the initial coordinate system for the current ‘svg’ element.

Returns
True or false, depending on whether the given element intersects the supplied rectangle.

• boolean checkEnclosure(in SVGElement element, in SVGRect rect)

Returns true if the rendered content of the given element is entirely contained within the supplied rectangle.
Each candidate graphics element is to be considered a match only if the same graphics element can be a tar-
get of pointer events as defined in ‘pointer-events’ processing.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#td-live


Parameters

• SVGElement element
The element on which to perform the given test.

• SVGRect rect
The test rectangle. The values are in the initial coordinate system for the current ‘svg’ element.

Returns
True or false, depending on whether the given element is enclosed by the supplied rectangle.

• void deselectAll()

Unselects any selected objects, including any selections of text strings and type-in bars.

• SVGNumber createSVGNumber()

Creates an SVGNumber object outside of any document trees. The object is initialized to a value of zero.

Returns
An SVGNumber object.

• SVGLength createSVGLength()

Creates an SVGLength object outside of any document trees. The object is initialized to the value of 0 user
units.

Returns
An SVGLength object.

• SVGAngle createSVGAngle()

Creates an SVGAngle object outside of any document trees. The object is initialized to the value 0 degrees
(unitless).

Returns
An SVGAngle object.

• SVGPoint createSVGPoint()

Creates an SVGPoint object outside of any document trees. The object is initialized to the point (0,0) in the
user coordinate system.



Returns
An SVGPoint object.

• SVGMatrix createSVGMatrix()

Creates an SVGMatrix object outside of any document trees. The object is initialized to the identity matrix.

Returns
An SVGMatrix object.

• SVGRect createSVGRect()

Creates an SVGRect object outside of any document trees. The object is initialized such that all values are set
to 0 user units.

Returns
An SVGRect object.

• SVGTransform createSVGTransform()

Creates an SVGTransform object outside of any document trees. The object is initialized to an identity matrix
transform (SVG_TRANSFORM_MATRIX).

Returns
An SVGTransform object.

• SVGTransform createSVGTransformFromMatrix(in SVGMatrix matrix)

Creates an SVGTransform object outside of any document trees. The object is initialized to the given matrix
transform (i.e., SVG_TRANSFORM_MATRIX). The values from the parameter matrix are copied, the matrix
parameter is not adopted as SVGTransform::matrix.

Parameters

• SVGMatrix matrix
The transform matrix.

Returns
An SVGTransform object.

• Element getElementById(in DOMString elementId)

Searches this SVG document fragment (i.e., the search is restricted to a subset of the document tree) for an

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-745549614


Element whose id is given by elementId. If an Element is found, that Element is returned. If no such element
exists, returns null. Behavior is not defined if more than one element has this id.

Parameters

• DOMString elementId
The unique id value for an element.

Returns
The matching element.

5.11.3 Interface SVGGElement

The SVGSVGElement interface corresponds to the ‘g’ element.

interface SVGGElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

};

5.11.4 Interface SVGDefsElement

The SVGDefsElement interface corresponds to the ‘defs’ element.

interface SVGDefsElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

};

5.11.5 Interface SVGDescElement

The SVGDescElement interface corresponds to the ‘desc’ element.

interface SVGDescElement : SVGElement,
SVGLangSpace,
SVGStylable {

};

5.11.6 Interface SVGTitleElement

The SVGTitleElement interface corresponds to the ‘title’ element.



interface SVGTitleElement : SVGElement,
SVGLangSpace,
SVGStylable {

};

5.11.7 Interface SVGSymbolElement

The SVGSymbolElement interface corresponds to the ‘symbol’ element.

interface SVGSymbolElement : SVGElement,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGFitToViewBox {

};

5.11.8 Interface SVGUseElement

The SVGUseElement interface corresponds to the ‘use’ element.

interface SVGUseElement : SVGElement,
SVGURIReference,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;
readonly attribute SVGElementInstance instanceRoot;
readonly attribute SVGElementInstance animatedInstanceRoot;

};

Attributes:

• x (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given ‘use’ element.

• y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given ‘use’ element.

• width (readonly SVGAnimatedLength)

Corresponds to attribute ‘width’ on the given ‘use’ element.

• height (readonly SVGAnimatedLength)

Corresponds to attribute ‘height’ on the given ‘use’ element.



• instanceRoot (readonly SVGElementInstance)

The root of the "instance tree". See description of SVGElementInstance for a discussion on the instance tree.

• animatedInstanceRoot (readonly SVGElementInstance)

If the ‘xlink:href’ attribute is being animated, contains the current animated root of the "instance tree". If the
‘xlink:href’ attribute is not currently being animated, contains the same value as instanceRoot. See descrip-
tion of SVGElementInstance for a discussion on the instance tree.

5.11.9 Interface SVGElementInstance

For each ‘use’ element, the SVG DOM maintains a shadow tree (the "instance tree") of objects of type SVGEle-
mentInstance. An SVGElementInstance represents a single node in the instance tree. The root object in the instance
tree is pointed to by the instanceRoot attribute on the SVGUseElement object for the corresponding ‘use’ element.

If the ‘use’ element references a simple graphics element such as a ‘rect’, then there is only a single
SVGElementInstance object, and the correspondingElement attribute on this SVGElementInstance object is the
SVGRectElement that corresponds to the referenced ‘rect’ element.

If the ‘use’ element references a ‘g’ which contains two ‘rect’ elements, then the instance tree contains three
SVGElementInstance objects, a root SVGElementInstance object whose correspondingElement is the SVGGEle-
ment object for the ‘g’, and then two child SVGElementInstance objects, each of which has its correspondingEle-
ment that is an SVGRectElement object.

If the referenced object is itself a ‘use’, or if there are ‘use’ subelements within the referenced object, the in-
stance tree will contain recursive expansion of the indirect references to form a complete tree. For example, if a
‘use’ element references a ‘g’, and the ‘g’ itself contains a ‘use’, and that ‘use’ references a ‘rect’, then the instance
tree for the original (outermost) ‘use’ will consist of a hierarchy of SVGElementInstance objects, as follows:

SVGElementInstance #1 (parentNode=null, firstChild=#2, correspondingElement is the 'g')
SVGElementInstance #2 (parentNode=#1, firstChild=#3, correspondingElement is the other 'use')

SVGElementInstance #3 (parentNode=#2, firstChild=null, correspondingElement is the 'rect')

interface SVGElementInstance : EventTarget {
readonly attribute SVGElement correspondingElement;
readonly attribute SVGUseElement correspondingUseElement;
readonly attribute SVGElementInstance parentNode;
readonly attribute SVGElementInstanceList childNodes;
readonly attribute SVGElementInstance firstChild;
readonly attribute SVGElementInstance lastChild;
readonly attribute SVGElementInstance previousSibling;
readonly attribute SVGElementInstance nextSibling;

};

Attributes:

• correspondingElement (readonly SVGElement)

The corresponding element to which this object is an instance. For example, if a ‘use’ element references

http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-EventTarget


a ‘rect’ element, then an SVGElementInstance is created, with its correspondingElement being the
SVGRectElement object for the ‘rect’ element.

• correspondingUseElement (readonly SVGUseElement)

The corresponding ‘use’ element to which this SVGElementInstance object belongs. When ‘use’ elements are
nested (e.g., a ‘use’ references another ‘use’ which references a graphics element such as a ‘rect’), then the
correspondingUseElement is the outermost ‘use’ (i.e., the one which indirectly references the ‘rect’, not the
one with the direct reference).

• parentNode (readonly SVGElementInstance)

The parent of this SVGElementInstance within the instance tree. All SVGElementInstance objects have a par-
ent except the SVGElementInstance which corresponds to the element which was directly referenced by the
‘use’ element, in which case parentNode is null.

• childNodes (readonly SVGElementInstanceList)

An SVGElementInstanceList that contains all children of this SVGElementInstance within the instance tree.
If there are no children, this is an SVGElementInstanceList containing no entries (i.e., an empty list).

• firstChild (readonly SVGElementInstance)

The first child of this SVGElementInstance within the instance tree. If there is no such SVGElementInstance,
this returns null.

• lastChild (readonly SVGElementInstance)

The last child of this SVGElementInstance within the instance tree. If there is no such SVGElementInstance,
this returns null.

• previousSibling (readonly SVGElementInstance)

The SVGElementInstance immediately preceding this SVGElementInstance. If there is no such SVGEle-
mentInstance, this returns null.

• nextSibling (readonly SVGElementInstance)

The SVGElementInstance immediately following this SVGElementInstance. If there is no such SVGEle-
mentInstance, this returns null.



5.11.10 Interface SVGElementInstanceList

The SVGElementInstanceList interface provides the abstraction of an ordered collection of SVGElementInstance
objects, without defining or constraining how this collection is implemented.

interface SVGElementInstanceList {

readonly attribute unsigned long length;

SVGElementInstance item(in unsigned long index);
};

Attributes:

• length (readonly unsigned long)

The number of SVGElementInstance objects in the list. The range of valid child indices is 0 to length-1 in-
clusive.

Operations:

• SVGElementInstance item(in unsigned long index)

Returns the indexth item in the collection. If index is greater than or equal to the number of nodes in the list,
this returns null.

Parameters

• unsigned long index
Index into the collection.

Returns
The SVGElementInstance object at the indexth position in the SVGElementInstanceList, or null if that
is not a valid index.

5.11.11 Interface SVGImageElement

The SVGImageElement interface corresponds to the ‘image’ element.

interface SVGImageElement : SVGElement,
SVGURIReference,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;



readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;
};

Attributes:

• x (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given ‘image’ element.

• y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given ‘image’ element.

• width (readonly SVGAnimatedLength)

Corresponds to attribute ‘width’ on the given ‘image’ element.

• height (readonly SVGAnimatedLength)

Corresponds to attribute ‘height’ on the given ‘image’ element.

• preserveAspectRatio (readonly SVGAnimatedPreserveAspectRatio)

Corresponds to attribute ‘preserveAspectRatio’ on the given ‘image’ element.

5.11.12 Interface SVGSwitchElement

The SVGSwitchElement interface corresponds to the ‘switch’ element.

interface SVGSwitchElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

};

5.11.13 Interface GetSVGDocument

This interface provides access to an SVG document embedded by reference in another DOM-based language. The
expectation is that the interface is implemented on DOM objects that allow such SVG document references, such
as the DOM Element object that corresponds to an HTML ‘object’ element. Such DOM objects are often also re-
quired to implement the EmbeddingElement defined in the Window specification [WINDOW].

This interface is deprecated and may be dropped from future versions of the SVG specification. Authors are

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-745549614


suggested to use the contentDocument attribute on the EmbeddingElement interface to obtain a referenced SVG
document, if that interface is available.

interface GetSVGDocument {
SVGDocument getSVGDocument();

};

Operations:

• SVGDocument getSVGDocument()

This method must return the Document object embedded content in an embedding element, or null if there
is no document.

Note that this is equivalent to fetching the value of the EmbeddingElement::contentDocument attrib-
ute of the embedding element, if the EmbeddingElement interface is also implemented. The author is advised
to check that the document element of the returned Document is indeed an ‘svg’ element instead of assum-
ing that that will always be the case.

Returns
The Document object for the referenced document, or null if there is no document.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#i-Document
http://www.w3.org/TR/DOM-Level-2-Core/core.html#i-Document
http://www.w3.org/TR/DOM-Level-2-Core/core.html#i-Document


4 Basic Data Types and Interfaces

Contents

4.1 Syntax
4.2 Basic data types
4.3 Real number precision
4.4 Recognized color keyword names
4.5 Basic DOM interfaces

4.5.1 Interface SVGElement
4.5.2 Interface SVGAnimatedBoolean
4.5.3 Interface SVGAnimatedString
4.5.4 Interface SVGStringList
4.5.5 Interface SVGAnimatedEnumeration
4.5.6 Interface SVGAnimatedInteger
4.5.7 Interface SVGNumber
4.5.8 Interface SVGAnimatedNumber
4.5.9 Interface SVGNumberList
4.5.10 Interface SVGAnimatedNumberList
4.5.11 Interface SVGLength
4.5.12 Interface SVGAnimatedLength
4.5.13 Interface SVGLengthList
4.5.14 Interface SVGAnimatedLengthList
4.5.15 Interface SVGAngle
4.5.16 Interface SVGAnimatedAngle
4.5.17 Interface SVGColor
4.5.18 Interface SVGICCColor
4.5.19 Interface SVGRect
4.5.20 Interface SVGAnimatedRect
4.5.21 Interface SVGUnitTypes
4.5.22 Interface SVGStylable
4.5.23 Interface SVGLocatable
4.5.24 Interface SVGTransformable
4.5.25 Interface SVGTests
4.5.26 Interface SVGLangSpace
4.5.27 Interface SVGExternalResourcesRequired
4.5.28 Interface SVGFitToViewBox
4.5.29 Interface SVGZoomAndPan
4.5.30 Interface SVGViewSpec
4.5.31 Interface SVGURIReference
4.5.32 Interface SVGCSSRule



4.5.33 Interface SVGRenderingIntent

4.1 Syntax

The EBNF grammar is as used in the XML specification, with the addition of ~, a case-insensitive literal:
characters in the ASCII range (only) are declared to be case-insensitive. For example, ~"Hello" will match
(H|h)(e|e)(l|L)(l|L)(o|O). This makes the productions much easier to read.

? optional, zero or one

+ one or more

* zero or more

| alternation

"string" literal

~"string" case-insensitive literal

[] a character range

[^] excluded character range

() grouping

4.2 Basic data types

This section defines a number of common data types used in the definitions of SVG properties and attributes. Some
data types that are not referenced by multiple properties and attributes are defined inline in subsequent chapters.

Note that, as noted below, the specification of some types is different for CSS property values in style sheets
(in the ‘style’ attribute, ‘style’ element or an external style sheet) than it is for for XML attribute values (including
presentation attributes). This is due to restrictions in the CSS grammar. For example, scientific notation is allowed
in attributes, including presentation attributes, but not in style sheets.

<angle> · Angles are specified in one of two ways depending upon whether they are used in CSS property syntax
or SVG presentation attribute syntax:

• When an <angle> is used in a style sheet or with a property in a ‘style’ attribute, the syntax must match the
following pattern:

angle ::= number (~"deg" | ~"grad" | ~"rad")?

where deg indicates degrees, grad indicates grads and rad indicates radians. The unit identifier may be in
lower (recommended) or upper case.

For properties defined in CSS2 [CSS2], an angle unit identifier must be provided (for non-zero values).
For SVG-specific properties the angle unit identifier is optional. If a unit is not provided, the angle value is
assumed to be in degrees.

• When an <angle> is used in an SVG presentation attribute, the syntax must match the following pattern:

http://www.w3.org/TR/REC-xml/#sec-notation
http://www.w3.org/TR/2008/REC-CSS2-20080411/


angle ::= number ("deg" | "grad" | "rad")?

The unit identifier, if present, must be in lower case; if not present, the angle value is assumed to be in degrees.

In the SVG DOM, <angle> values are represented using SVGAngle or SVGAnimatedAngle objects.

<anything> · The basic type <anything> is a sequence of zero or more characters. Specifically:

anything ::= Char*

where Char is the production for a character, as defined in XML 1.0 ([XML10], section 2.2).

<color> · The basic type <color> is a CSS2 compatible specification for a color in the sRGB color space [SRGB].
<color> applies to SVG's use of the ‘color’ property and is a component of the definitions of properties ‘fill’, ‘stroke’,
‘stop-color’, ‘flood-color’ and ‘lighting-color’, which also offer optional ICC-based color specifications.

SVG supports all of the syntax alternatives for <color> defined in CSS2 syntax and basic data types ([CSS2],
section 4.3.6), with the exception that SVG allows an expanded list of recognized color keywords names.

A <color> is either a keyword (see Recognized color keyword names) or a numerical RGB specification.
In addition to these color keywords, users may specify keywords that correspond to the colors used by objects

in the user's environment. The normative definition of these keywords is found in User preferences for colors
([CSS2], section 18.2).

The format of an RGB value in hexadecimal notation is a "#" immediately followed by either three or six
hexadecimal characters. The three-digit RGB notation (#rgb) is converted into six-digit form (#rrggbb) by replic-
ating digits, not by adding zeros. For example, #fb0 expands to #ffbb00. This ensures that white (#ffffff) can be spe-
cified with the short notation (#fff) and removes any dependencies on the color depth of the display. The format
of an RGB value in the functional notation is an RGB start-function followed by a comma-separated list of three
numerical values (either three integer values or three percentage values) followed by ")". An RGB start-function is
the case-insensitive string "rgb(", for example "RGB(" or "rGb(". For compatibility, the all-lowercase form "rgb(" is
preferred. The integer value 255 corresponds to 100%, and to F or FF in the hexadecimal notation: rgb(255,255,255)
= rgb(100%,100%,100%) = #FFF. White space characters are allowed around the numerical values. All RGB colors
are specified in the sRGB color space [SRGB]. Using sRGB provides an unambiguous and objectively measurable
definition of the color, which can be related to international standards (see [COLORIMETRY]).

color ::= "#" hexdigit hexdigit hexdigit (hexdigit hexdigit hexdigit)?
| "rgb(" wsp* integer comma integer comma integer wsp* ")"
| "rgb(" wsp* integer "%" comma integer "%" comma integer "%" wsp* ")"
| color-keyword

hexdigit ::= [0-9A-Fa-f]
comma ::= wsp* "," wsp*

where color-keyword matches (case insensitively) one of the color keywords listed in Recognized color keyword
names below, or one of the system color keywords listed in User preferences for colors ([CSS2], section 18.2).

The corresponding SVG DOM interface definitions for <color> are defined in Document Object Model CSS;

http://www.w3.org/TR/2008/REC-xml-20081126/#NT-Char
http://www.w3.org/TR/2008/REC-xml-20081126/#NT-Char
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#value-def-color
http://www.w3.org/TR/2008/REC-CSS2-20080411/ui.html#system-colors
http://www.w3.org/TR/2008/REC-CSS2-20080411/ui.html#system-colors
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html


in particular, see RGBColor ([DOM2STYLE], section 2.2). SVG's extension to color, including the ability to specify
ICC-based colors, are represented using DOM interface SVGColor.

<coordinate> · A <coordinate> is a length in the user coordinate system that is the given distance from the origin
of the user coordinate system along the relevant axis (the x-axis for X coordinates, the y-axis for Y coordinates).
Its syntax is the same as that for <length>.

coordinate ::= length

Within the SVG DOM, a <coordinate> is represented as an SVGLength or an SVGAnimatedLength.

<frequency> · Frequency values are used with aural properties. As defined in CSS2, a frequency value is a <num-
ber> immediately followed by a frequency unit identifier. The frequency unit identifiers are:

• Hz: Hertz
• kHz: kilo Hertz

Frequency values may not be negative.
In the SVG DOM, <frequency> values are represented using the CSSPrimitiveValue interface defined in Docu-

ment Object Model CSS ([DOM2STYLE], section 2.2).

<FuncIRI> · Functional notation for an IRI: "url(" <IRI> ")".

<icccolor> · An <icccolor> is an ICC color specification. In SVG 1.1, an ICC color specification is given by a name,
which references a ‘color-profile’ element, and one or more color component values. The grammar is as follows:

icccolor ::= "icc-color(" name (comma-wsp number)+ ")"
name     ::= [^,()#x20#x9#xD#xA] /* any char except ",", "(", ")" or wsp */

The corresponding SVG DOM interface for <icccolor> is SVGICCColor.

<integer> · An <integer> is specified as an optional sign character ("+" or "-") followed by one or more digits "0"
to "9":

integer ::= [+-]? [0-9]+

If the sign character is not present, the number is non-negative.
Unless stated otherwise for a particular attribute or property, the range for an <integer> encompasses (at a

minimum) -2147483648 to 2147483647.
Within the SVG DOM, an <integer> is represented as a long or an SVGAnimatedInteger.

<IRI> · An Internationalized Resource Identifier (see IRI). For the specification of IRI references in SVG, see IRI
references.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSPrimitiveValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html


<length> · A length is a distance measurement, given as a number along with a unit which may be optional.
Lengths are specified in one of two ways depending upon whether they are used in CSS property syntax or SVG
presentation attribute syntax:

• When a <length> is used in a style sheet or with a property in a ‘style’ attribute, the syntax must match the
following pattern:

length ::= number (~"em" | ~"ex" | ~"px" | ~"in" | ~"cm" | ~"mm" | ~"pt" | ~"pc")?

See the CSS2 specification for the meanings of the unit identifiers. The unit identifier may be in lower (re-
commended) or upper case.

For properties defined in CSS2 [CSS2], a length unit identifier must be provided (for non-zero values).
For SVG-specific properties, the length unit identifier is optional. If a unit is not provided, the length value
represents a distance in the current user coordinate system.

• When a <length> is used in an SVG presentation attribute, the syntax must match the following pattern:

length ::= number ("em" | "ex" | "px" | "in" | "cm" | "mm" | "pt" | "pc" | "%")?

The unit identifier, if present, must be in lower case; if not present, the length value represents a distance in
the current user coordinate system.

Note that the non-property <length> definition also allows a percentage unit identifier. The meaning of
a percentage length value depends on the attribute for which the percentage length value has been specified.
Two common cases are: (a) when a percentage length value represents a percentage of the viewport width or
height (refer to the section that discusses units in general), and (b) when a percentage length value represents
a percentage of the bounding box width or height on a given object (refer to the section that describes object
bounding box units).

In the SVG DOM, <length> values are represented using SVGLength or SVGAnimatedLength objects.

<list-of-family-names> · A <list-of-family-names> is a list of font family names using the same syntax as the
‘font-family’ property, excluding the <generic-family> and 'inherit' values.

<list-of-strings> · A <list-of-strings> consists of a separated sequence of <string>s. String lists are white space-
separated, where white space is defined as one or more of the following consecutive characters: "space" (U+0020),
"tab" (U+0009), "line feed" (U+000A) and "carriage return" (U+000D).

The following is an EBNF grammar describing the <list-of-strings> syntax:

list-of-strings ::= string
| string wsp list-of-strings

string          ::= [^#x9#xA#xD#x20]*
wsp             ::= [#x9#xA#xD#x20]+

<list-of-Ts> · (Where T is a type other than <string> and <family-name>.) A list consists of a separated sequence
of values. Unless explicitly described differently, lists within SVG's XML attributes can be either comma-separated,
with optional white space before or after the comma, or white space-separated.

http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#length-units
http://www.w3.org/TR/2008/REC-CSS2-20080411/


White space in lists is defined as one or more of the following consecutive characters: "space" (U+0020), "tab"
(U+0009), "line feed" (U+000A), "carriage return" (U+000D) and "form-feed" (U+000C).

The following is a template for an EBNF grammar describing the <list-of-Ts> syntax:

list-of-Ts ::= T
| T comma-wsp list-of-Ts

comma-wsp ::= (wsp+ ","? wsp*) | ("," wsp*)
wsp ::= (#x20 | #x9 | #xD | #xA)

Within the SVG DOM, values of a <list-of-Ts> type are represented by an interface specific for the particular
type T. For example, a <list-of-lengths> is represented in the SVG DOM using an SVGLengthList or SVGAnim-
atedLengthList object.

<name> · A name, which is a string where a few characters of syntactic significance are disallowed.

name ::= [^,()#x20#x9#xD#xA] /* any char except ",", "(", ")" or wsp */

<number> · Real numbers are specified in one of two ways. When used in a style sheet, a <number> is defined as
follows:

number ::= integer
| [+-]? [0-9]* "." [0-9]+

This syntax is the same as the definition in CSS ([CSS2], section 4.3.1).
When used in an SVG attribute, a <number> is defined differently, to allow numbers with large magnitudes

to be specified more concisely:

number ::= integer ([Ee] integer)?
| [+-]? [0-9]* "." [0-9]+ ([Ee] integer)?

Within the SVG DOM, a <number> is represented as a float, SVGNumber or a SVGAnimatedNumber.

<number-optional-number> · A pair of <number>s, where the second <number> is optional.

number-optional-number ::= number
| number comma-wsp number

In the SVG DOM, a <number-optional-number> is represented using a pair of SVGAnimatedInteger or SVGAnim-
atedNumber objects.

<paint> · The values for properties ‘fill’ and ‘stroke’ are specifications of the type of paint to use when filling or
stroking a given graphics element. The available options and syntax for <paint> are described in Specifying paint.

Within the SVG DOM, <paint> values are represented using SVGPaint objects.

<percentage> · Percentages are specified as a number followed by a "%" character:

percentage ::= number "%"



Note that the definition of <number> depends on whether the percentage is specified in a style sheet or in an at-
tribute that is not also a presentation attribute.

Percentage values are always relative to another value, for example a length. Each attribute or property that
allows percentages also defines the reference distance measurement to which the percentage refers.

Within the SVG DOM, a <percentage> is represented using an SVGNumber or SVGAnimatedNumber object.

<time> · A time value is a <number> immediately followed by a time unit identifier. The time unit identifiers are:

• ms: milliseconds
• s: seconds

In the SVG DOM, <time> values are represented using the CSSPrimitiveValue interface defined in Document Ob-
ject Model CSS ([DOM2STYLE], section 2.2).

<transform-list> · A <transform-list> is used to specify a list of coordinate system transformations. A detailed
description of the possible values for a <transform-list> is given in Modifying the User Coordinate System: the
transform attribute.

Within the SVG DOM, a <transform-list> value is represented using an SVGTransformList or SVGAnim-
atedTransformList object.

<XML-Name> · An XML name, as defined by the Name production in Extensible Markup Language (XML) 1.0
([XML10], section 2.3).

4.3 Real number precision

Unless stated otherwise for a particular attribute or property, a <number> has the capacity for at least a single-
precision floating point number and has a range (at a minimum) of -3.4e+38F to +3.4e+38F.

It is recommended that higher precision floating point storage and computation be performed on operations
such as coordinate system transformations to provide the best possible precision and to prevent round-off errors.

Conforming High-Quality SVG Viewers are required to use at least double-precision floating point for inter-
mediate calculations on certain numerical operations.

4.4 Recognized color keyword names

The following is the list of recognized color keywords that can be used as a keyword value for data type <color>:

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSPrimitiveValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html
http://www.w3.org/TR/2006/REC-xml-20060816/#NT-Name
http://www.w3.org/TR/2006/REC-xml-20060816/


aliceblue rgb(240, 248, 255)

antiquewhite rgb(250, 235, 215)

aqua rgb( 0, 255, 255)

aquamarine rgb(127, 255, 212)

azure rgb(240, 255, 255)

beige rgb(245, 245, 220)

bisque rgb(255, 228, 196)

black rgb( 0, 0, 0)

blanchedalmond rgb(255, 235, 205)

blue rgb( 0, 0, 255)

blueviolet rgb(138, 43, 226)

brown rgb(165, 42, 42)

burlywood rgb(222, 184, 135)

cadetblue rgb( 95, 158, 160)

chartreuse rgb(127, 255, 0)

chocolate rgb(210, 105, 30)

coral rgb(255, 127, 80)

cornflowerblue rgb(100, 149, 237)

cornsilk rgb(255, 248, 220)

crimson rgb(220, 20, 60)

cyan rgb( 0, 255, 255)

darkblue rgb( 0, 0, 139)

darkcyan rgb( 0, 139, 139)

darkgoldenrod rgb(184, 134, 11)

darkgray rgb(169, 169, 169)

darkgreen rgb( 0, 100, 0)

darkgrey rgb(169, 169, 169)

darkkhaki rgb(189, 183, 107)

darkmagenta rgb(139, 0, 139)

darkolivegreen rgb( 85, 107, 47)

darkorange rgb(255, 140, 0)

darkorchid rgb(153, 50, 204)

darkred rgb(139, 0, 0)

darksalmon rgb(233, 150, 122)

darkseagreen rgb(143, 188, 143)

darkslateblue rgb( 72, 61, 139)

lightpink rgb(255, 182, 193)

lightsalmon rgb(255, 160, 122)

lightseagreen rgb( 32, 178, 170)

lightskyblue rgb(135, 206, 250)

lightslategray rgb(119, 136, 153)

lightslategrey rgb(119, 136, 153)

lightsteelblue rgb(176, 196, 222)

lightyellow rgb(255, 255, 224)

lime rgb( 0, 255, 0)

limegreen rgb( 50, 205, 50)

linen rgb(250, 240, 230)

magenta rgb(255, 0, 255)

maroon rgb(128, 0, 0)

mediumaquamarine rgb(102, 205, 170)

mediumblue rgb( 0, 0, 205)

mediumorchid rgb(186, 85, 211)

mediumpurple rgb(147, 112, 219)

mediumseagreen rgb( 60, 179, 113)

mediumslateblue rgb(123, 104, 238)

mediumspringgreen rgb( 0, 250, 154)

mediumturquoise rgb( 72, 209, 204)

mediumvioletred rgb(199, 21, 133)

midnightblue rgb( 25, 25, 112)

mintcream rgb(245, 255, 250)

mistyrose rgb(255, 228, 225)

moccasin rgb(255, 228, 181)

navajowhite rgb(255, 222, 173)

navy rgb( 0, 0, 128)

oldlace rgb(253, 245, 230)

olive rgb(128, 128, 0)

olivedrab rgb(107, 142, 35)

orange rgb(255, 165, 0)

orangered rgb(255, 69, 0)

orchid rgb(218, 112, 214)

palegoldenrod rgb(238, 232, 170)

palegreen rgb(152, 251, 152)



darkslategray rgb( 47, 79, 79)

darkslategrey rgb( 47, 79, 79)

darkturquoise rgb( 0, 206, 209)

darkviolet rgb(148, 0, 211)

deeppink rgb(255, 20, 147)

deepskyblue rgb( 0, 191, 255)

dimgray rgb(105, 105, 105)

dimgrey rgb(105, 105, 105)

dodgerblue rgb( 30, 144, 255)

firebrick rgb(178, 34, 34)

floralwhite rgb(255, 250, 240)

forestgreen rgb( 34, 139, 34)

fuchsia rgb(255, 0, 255)

gainsboro rgb(220, 220, 220)

ghostwhite rgb(248, 248, 255)

gold rgb(255, 215, 0)

goldenrod rgb(218, 165, 32)

gray rgb(128, 128, 128)

grey rgb(128, 128, 128)

green rgb( 0, 128, 0)

greenyellow rgb(173, 255, 47)

honeydew rgb(240, 255, 240)

hotpink rgb(255, 105, 180)

indianred rgb(205, 92, 92)

indigo rgb( 75, 0, 130)

ivory rgb(255, 255, 240)

khaki rgb(240, 230, 140)

lavender rgb(230, 230, 250)

lavenderblush rgb(255, 240, 245)

lawngreen rgb(124, 252, 0)

lemonchiffon rgb(255, 250, 205)

lightblue rgb(173, 216, 230)

lightcoral rgb(240, 128, 128)

lightcyan rgb(224, 255, 255)

lightgoldenrodyellow rgb(250, 250, 210)

lightgray rgb(211, 211, 211)

paleturquoise rgb(175, 238, 238)

palevioletred rgb(219, 112, 147)

papayawhip rgb(255, 239, 213)

peachpuff rgb(255, 218, 185)

peru rgb(205, 133, 63)

pink rgb(255, 192, 203)

plum rgb(221, 160, 221)

powderblue rgb(176, 224, 230)

purple rgb(128, 0, 128)

red rgb(255, 0, 0)

rosybrown rgb(188, 143, 143)

royalblue rgb( 65, 105, 225)

saddlebrown rgb(139, 69, 19)

salmon rgb(250, 128, 114)

sandybrown rgb(244, 164, 96)

seagreen rgb( 46, 139, 87)

seashell rgb(255, 245, 238)

sienna rgb(160, 82, 45)

silver rgb(192, 192, 192)

skyblue rgb(135, 206, 235)

slateblue rgb(106, 90, 205)

slategray rgb(112, 128, 144)

slategrey rgb(112, 128, 144)

snow rgb(255, 250, 250)

springgreen rgb( 0, 255, 127)

steelblue rgb( 70, 130, 180)

tan rgb(210, 180, 140)

teal rgb( 0, 128, 128)

thistle rgb(216, 191, 216)

tomato rgb(255, 99, 71)

turquoise rgb( 64, 224, 208)

violet rgb(238, 130, 238)

wheat rgb(245, 222, 179)

white rgb(255, 255, 255)

whitesmoke rgb(245, 245, 245)

yellow rgb(255, 255, 0)



lightgreen rgb(144, 238, 144)

lightgrey rgb(211, 211, 211)

yellowgreen rgb(154, 205, 50)

4.5 Basic DOM interfaces

4.5.1 Interface SVGElement

All of the SVG DOM interfaces that correspond directly to elements in the SVG language (such as the SVGPathEle-
ment interface for the ‘path’ element) derive from the SVGElement interface.

interface SVGElement : Element {
attribute DOMString id setraises(DOMException);
attribute DOMString xmlbase setraises(DOMException);

readonly attribute SVGSVGElement ownerSVGElement;
readonly attribute SVGElement viewportElement;

};

Attributes:

• id (DOMString)

The value of the ‘id’ attribute on the given element, or the empty string if ‘id’ is not present.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• xmlbase (DOMString)

Corresponds to attribute ‘xml:base’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• ownerSVGElement (readonly SVGSVGElement)

The nearest ancestor ‘svg’ element. Null if the given element is the outermost svg element.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-745549614
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• viewportElement (readonly SVGElement)

The element which established the current viewport. Often, the nearest ancestor ‘svg’ element. Null if the
given element is the outermost svg element.

4.5.2 Interface SVGAnimatedBoolean

Used for attributes of type boolean which can be animated.

interface SVGAnimatedBoolean {
attribute boolean baseVal setraises(DOMException);

readonly attribute boolean animVal;
};

Attributes:

• baseVal (boolean)

The base value of the given attribute before applying any animations.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• animVal (readonly boolean)

If the given attribute or property is being animated, contains the current animated value of the attribute
or property. If the given attribute or property is not currently being animated, contains the same value as
baseVal.

4.5.3 Interface SVGAnimatedString

Used for attributes of type DOMString which can be animated.

interface SVGAnimatedString {
attribute DOMString baseVal setraises(DOMException);

readonly attribute DOMString animVal;
};

Attributes:

• baseVal (DOMString)

The base value of the given attribute before applying any animations.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• animVal (readonly DOMString)

If the given attribute or property is being animated, contains the current animated value of the attribute
or property. If the given attribute or property is not currently being animated, contains the same value as
baseVal.

4.5.4 Interface SVGStringList

This interface defines a list of DOMString values.
SVGStringList has the same attributes and methods as other SVGxxxList interfaces. Implementers may con-

sider using a single base class to implement the various SVGxxxList interfaces.

interface SVGStringList {

readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);
DOMString initialize(in DOMString newItem) raises(DOMException);
DOMString getItem(in unsigned long index) raises(DOMException);
DOMString insertItemBefore(in DOMString newItem, in unsigned long index) raises(DOMException);
DOMString replaceItem(in DOMString newItem, in unsigned long index) raises(DOMException);
DOMString removeItem(in unsigned long index) raises(DOMException);
DOMString appendItem(in DOMString newItem) raises(DOMException);

};

Attributes:

• numberOfItems (readonly unsigned long)

The number of items in the list.

Operations:

• void clear()

Clears all existing current items from the list, with the result being an empty list.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• DOMString initialize(in DOMString newItem)

Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter.

Parameters

• DOMString newItem
The item which should become the only member of the list.

Returns
The item being inserted into the list.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• DOMString getItem(in unsigned long index)

Returns the specified item from the list.

Parameters

• unsigned long index
The index of the item from the list which is to be returned. The first item is number 0.

Returns
The selected item.

Exceptions

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• DOMString insertItemBefore(in DOMString newItem, in unsigned long index)

Inserts a new item into the list at the specified position. The first item is number 0.

Parameters

• DOMString newItem
The item which is to be inserted into the list.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• unsigned long index
The index of the item before which the new item is to be inserted. The first item is number 0. If the
index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or
equal to numberOfItems, then the new item is appended to the end of the list.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• DOMString replaceItem(in DOMString newItem, in unsigned long index)

Replaces an existing item in the list with a new item.

Parameters

• DOMString newItem
The item which is to be inserted into the list.

• unsigned long index
The index of the item which is to be replaced. The first item is number 0.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• DOMString removeItem(in unsigned long index)

Removes an existing item from the list.

Parameters

• unsigned long index
The index of the item which is to be removed. The first item is number 0.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Returns
The removed item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• DOMString appendItem(in DOMString newItem)

Inserts a new item at the end of the list.

Parameters

• DOMString newItem
The item which is to be inserted. The first item is number 0.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

4.5.5 Interface SVGAnimatedEnumeration

Used for attributes whose value must be a constant from a particular enumeration and which can be animated.

interface SVGAnimatedEnumeration {
attribute unsigned short baseVal setraises(DOMException);

readonly attribute unsigned short animVal;
};

Attributes:

• baseVal (unsigned short)

The base value of the given attribute before applying any animations.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• animVal (readonly unsigned short)

If the given attribute or property is being animated, contains the current animated value of the attribute
or property. If the given attribute or property is not currently being animated, contains the same value as
baseVal.

4.5.6 Interface SVGAnimatedInteger

Used for attributes of basic type <integer> which can be animated.

interface SVGAnimatedInteger {
attribute long baseVal setraises(DOMException);

readonly attribute long animVal;
};

Attributes:

• baseVal (long)

The base value of the given attribute before applying any animations.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• animVal (readonly long)

If the given attribute or property is being animated, contains the current animated value of the attribute
or property. If the given attribute or property is not currently being animated, contains the same value as
baseVal.

4.5.7 Interface SVGNumber

Used for attributes of basic type <number>.

interface SVGNumber {
attribute float value setraises(DOMException);

};

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Attributes:

• value (float)

The value of the given attribute.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

4.5.8 Interface SVGAnimatedNumber

Used for attributes of basic type <number> which can be animated.

interface SVGAnimatedNumber {
attribute float baseVal setraises(DOMException);

readonly attribute float animVal;
};

Attributes:

• baseVal (float)

The base value of the given attribute before applying any animations.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• animVal (readonly float)

If the given attribute or property is being animated, contains the current animated value of the attribute
or property. If the given attribute or property is not currently being animated, contains the same value as
baseVal.

4.5.9 Interface SVGNumberList

This interface defines a list of SVGNumber objects.
SVGNumberList has the same attributes and methods as other SVGxxxList interfaces. Implementers may

consider using a single base class to implement the various SVGxxxList interfaces.
An SVGNumberList object can be designated as read only, which means that attempts to modify the object

will result in an exception being thrown, as described below.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


interface SVGNumberList {

readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);
SVGNumber initialize(in SVGNumber newItem) raises(DOMException);
SVGNumber getItem(in unsigned long index) raises(DOMException);
SVGNumber insertItemBefore(in SVGNumber newItem, in unsigned long index) raises(DOMException);
SVGNumber replaceItem(in SVGNumber newItem, in unsigned long index) raises(DOMException);
SVGNumber removeItem(in unsigned long index) raises(DOMException);
SVGNumber appendItem(in SVGNumber newItem) raises(DOMException);

};

Attributes:

• numberOfItems (readonly unsigned long)

The number of items in the list.

Operations:

• void clear()

Clears all existing current items from the list, with the result being an empty list.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

• SVGNumber initialize(in SVGNumber newItem)

Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter. If the inserted item is already in a list, it is removed from its previous list before it is inserted
into this list. The inserted item is the item itself and not a copy.

Parameters

• SVGNumber newItem
The item which should become the only member of the list.

Returns
The item being inserted into the list.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• SVGNumber getItem(in unsigned long index)

Returns the specified item from the list. The returned item is the item itself and not a copy. Any changes
made to the item are immediately reflected in the list.

Parameters

• unsigned long index
The index of the item from the list which is to be returned. The first item is number 0.

Returns
The selected item.

Exceptions

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• SVGNumber insertItemBefore(in SVGNumber newItem, in unsigned long index)

Inserts a new item into the list at the specified position. The first item is number 0. If newItem is already in
a list, it is removed from its previous list before it is inserted into this list. The inserted item is the item itself
and not a copy. If the item is already in this list, note that the index of the item to insert before is before the
removal of the item.

Parameters

• SVGNumber newItem
The item which is to be inserted into the list.

• unsigned long index
The index of the item before which the new item is to be inserted. The first item is number 0. If the
index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or
equal to numberOfItems, then the new item is appended to the end of the list.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• SVGNumber replaceItem(in SVGNumber newItem, in unsigned long index)

Replaces an existing item in the list with a new item. If newItem is already in a list, it is removed from its
previous list before it is inserted into this list. The inserted item is the item itself and not a copy. If the item
is already in this list, note that the index of the item to replace is before the removal of the item.

Parameters

• SVGNumber newItem
The item which is to be inserted into the list.

• unsigned long index
The index of the item which is to be replaced. The first item is number 0.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• SVGNumber removeItem(in unsigned long index)

Removes an existing item from the list.

Parameters

• unsigned long index
The index of the item which is to be removed. The first item is number 0.

Returns
The removed item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• SVGNumber appendItem(in SVGNumber newItem)

Inserts a new item at the end of the list. If newItem is already in a list, it is removed from its previous list
before it is inserted into this list. The inserted item is the item itself and not a copy.

Parameters

• SVGNumber newItem
The item which is to be inserted. The first item is number 0.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

4.5.10 Interface SVGAnimatedNumberList

Used for attributes which take a list of numbers and which can be animated.

interface SVGAnimatedNumberList {
readonly attribute SVGNumberList baseVal;
readonly attribute SVGNumberList animVal;

};

Attributes:

• baseVal (readonly SVGNumberList)

The base value of the given attribute before applying any animations.

• animVal (readonly SVGNumberList)

A read only SVGNumberList representing the current animated value of the given attribute. If the given at-
tribute is not currently being animated, then the SVGNumberList will have the same contents as baseVal.
The object referenced by animVal will always be distinct from the one referenced by baseVal, even when the
attribute is not animated.

4.5.11 Interface SVGLength

The SVGLength interface corresponds to the <length> basic data type.
An SVGLength object can be designated as read only, which means that attempts to modify the object will

result in an exception being thrown, as described below.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


interface SVGLength {

// Length Unit Types
const unsigned short SVG_LENGTHTYPE_UNKNOWN = 0;
const unsigned short SVG_LENGTHTYPE_NUMBER = 1;
const unsigned short SVG_LENGTHTYPE_PERCENTAGE = 2;
const unsigned short SVG_LENGTHTYPE_EMS = 3;
const unsigned short SVG_LENGTHTYPE_EXS = 4;
const unsigned short SVG_LENGTHTYPE_PX = 5;
const unsigned short SVG_LENGTHTYPE_CM = 6;
const unsigned short SVG_LENGTHTYPE_MM = 7;
const unsigned short SVG_LENGTHTYPE_IN = 8;
const unsigned short SVG_LENGTHTYPE_PT = 9;
const unsigned short SVG_LENGTHTYPE_PC = 10;

readonly attribute unsigned short unitType;
attribute float value setraises(DOMException);
attribute float valueInSpecifiedUnits setraises(DOMException);
attribute DOMString valueAsString setraises(DOMException);

void newValueSpecifiedUnits(in unsigned short unitType, in float valueInSpecifiedUnits) raises(DOMException);
void convertToSpecifiedUnits(in unsigned short unitType) raises(DOMException);

};

Constants in group “Length Unit Types”:

• SVG_LENGTHTYPE_UNKNOWN (unsigned short)

The unit type is not one of predefined unit types. It is invalid to attempt to define a new value of this type or
to attempt to switch an existing value to this type.

• SVG_LENGTHTYPE_NUMBER (unsigned short)

No unit type was provided (i.e., a unitless value was specified), which indicates a value in user units.

• SVG_LENGTHTYPE_PERCENTAGE (unsigned short)

A percentage value was specified.

• SVG_LENGTHTYPE_EMS (unsigned short)

A value was specified using the em units defined in CSS2.

• SVG_LENGTHTYPE_EXS (unsigned short)

A value was specified using the ex units defined in CSS2.

• SVG_LENGTHTYPE_PX (unsigned short)

A value was specified using the px units defined in CSS2.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• SVG_LENGTHTYPE_CM (unsigned short)

A value was specified using the cm units defined in CSS2.

• SVG_LENGTHTYPE_MM (unsigned short)

A value was specified using the mm units defined in CSS2.

• SVG_LENGTHTYPE_IN (unsigned short)

A value was specified using the in units defined in CSS2.

• SVG_LENGTHTYPE_PT (unsigned short)

A value was specified using the pt units defined in CSS2.

• SVG_LENGTHTYPE_PC (unsigned short)

A value was specified using the pc units defined in CSS2.

Attributes:

• unitType (readonly unsigned short)

The type of the value as specified by one of the SVG_LENGTHTYPE_* constants defined on this interface.

• value (float)

The value as a floating point value, in user units. Setting this attribute will cause valueInSpecifiedUnits and
valueAsString to be updated automatically to reflect this setting.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the length corresponds to a read only attribute or when the object itself is read only.

• valueInSpecifiedUnits (float)

The value as a floating point value, in the units expressed by unitType. Setting this attribute will cause value
and valueAsString to be updated automatically to reflect this setting.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the length corresponds to a read only attribute or when the object itself is read only.

• valueAsString (DOMString)

The value as a string value, in the units expressed by unitType. Setting this attribute will cause value,
valueInSpecifiedUnits and unitType to be updated automatically to reflect this setting.

Exceptions on setting

• DOMException, code SYNTAX_ERR
Raised if the assigned string cannot be parsed as a valid <length>.

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the length corresponds to a read only attribute or when the object itself is read only.

Operations:

• void newValueSpecifiedUnits(in unsigned short unitType, in float valueInSpecifiedUnits)

Reset the value as a number with an associated unitType, thereby replacing the values for all of the attributes
on the object.

Parameters

• unsigned short unitType
The unit type for the value (e.g., SVG_LENGTHTYPE_MM).

• float valueInSpecifiedUnits
The new value.

Exceptions

• DOMException, code NOT_SUPPORTED_ERR
Raised if unitType is SVG_LENGTHTYPE_UNKNOWN or not a valid unit type constant (one of the
other SVG_LENGTHTYPE_* constants defined on this interface).

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the length corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• void convertToSpecifiedUnits(in unsigned short unitType)

Preserve the same underlying stored value, but reset the stored unit identifier to the given unitType. Object
attributes unitType, valueInSpecifiedUnits and valueAsString might be modified as a result of this method.
For example, if the original value were "0.5cm" and the method was invoked to convert to millimeters, then
the unitType would be changed to SVG_LENGTHTYPE_MM, valueInSpecifiedUnits would be changed to
the numeric value 5 and valueAsString would be changed to "5mm".

Parameters

• unsigned short unitType
The unit type to switch to (e.g., SVG_LENGTHTYPE_MM).

Exceptions

• DOMException, code NOT_SUPPORTED_ERR
Raised if unitType is SVG_LENGTHTYPE_UNKNOWN or not a valid unit type constant (one of the
other SVG_LENGTHTYPE_* constants defined on this interface).

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the length corresponds to a read only attribute or when the object itself is read only.

4.5.12 Interface SVGAnimatedLength

Used for attributes of basic type <length> which can be animated.

interface SVGAnimatedLength {
readonly attribute SVGLength baseVal;
readonly attribute SVGLength animVal;

};

Attributes:

• baseVal (readonly SVGLength)

The base value of the given attribute before applying any animations.

• animVal (readonly SVGLength)

A read only SVGLength representing the current animated value of the given attribute. If the given attribute
is not currently being animated, then the SVGLength will have the same contents as baseVal. The object ref-
erenced by animVal will always be distinct from the one referenced by baseVal, even when the attribute is
not animated.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


4.5.13 Interface SVGLengthList

This interface defines a list of SVGLength objects.
SVGLengthList has the same attributes and methods as other SVGxxxList interfaces. Implementers may con-

sider using a single base class to implement the various SVGxxxList interfaces.
An SVGLengthList object can be designated as read only, which means that attempts to modify the object

will result in an exception being thrown, as described below.

interface SVGLengthList {

readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);
SVGLength initialize(in SVGLength newItem) raises(DOMException);
SVGLength getItem(in unsigned long index) raises(DOMException);
SVGLength insertItemBefore(in SVGLength newItem, in unsigned long index) raises(DOMException);
SVGLength replaceItem(in SVGLength newItem, in unsigned long index) raises(DOMException);
SVGLength removeItem(in unsigned long index) raises(DOMException);
SVGLength appendItem(in SVGLength newItem) raises(DOMException);

};

Attributes:

• numberOfItems (readonly unsigned long)

The number of items in the list.

Operations:

• void clear()

Clears all existing current items from the list, with the result being an empty list.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

• SVGLength initialize(in SVGLength newItem)

Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter. If the inserted item is already in a list, it is removed from its previous list before it is inserted
into this list. The inserted item is the item itself and not a copy.

Parameters

• SVGLength newItem
The item which should become the only member of the list.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Returns
The item being inserted into the list.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

• SVGLength getItem(in unsigned long index)

Returns the specified item from the list. The returned item is the item itself and not a copy. Any changes
made to the item are immediately reflected in the list.

Parameters

• unsigned long index
The index of the item from the list which is to be returned. The first item is number 0.

Returns
The selected item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

• SVGLength insertItemBefore(in SVGLength newItem, in unsigned long index)

Inserts a new item into the list at the specified position. The first item is number 0. If newItem is already in
a list, it is removed from its previous list before it is inserted into this list. The inserted item is the item itself
and not a copy. If the item is already in this list, note that the index of the item to insert before is before the
removal of the item.

Parameters

• SVGLength newItem
The item which is to be inserted into the list.

• unsigned long index
The index of the item before which the new item is to be inserted. The first item is number 0. If the
index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or
equal to numberOfItems, then the new item is appended to the end of the list.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

• SVGLength replaceItem(in SVGLength newItem, in unsigned long index)

Replaces an existing item in the list with a new item. If newItem is already in a list, it is removed from its
previous list before it is inserted into this list. The inserted item is the item itself and not a copy. If the item
is already in this list, note that the index of the item to replace is before the removal of the item.

Parameters

• SVGLength newItem
The item which is to be inserted into the list.

• unsigned long index
The index of the item which is to be replaced. The first item is number 0.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• SVGLength removeItem(in unsigned long index)

Removes an existing item from the list.

Parameters

• unsigned long index
The index of the item which is to be removed. The first item is number 0.

Returns
The removed item.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• SVGLength appendItem(in SVGLength newItem)

Inserts a new item at the end of the list. If newItem is already in a list, it is removed from its previous list
before it is inserted into this list. The inserted item is the item itself and not a copy.

Parameters

• SVGLength newItem
The item which is to be inserted. The first item is number 0.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

4.5.14 Interface SVGAnimatedLengthList

Used for attributes of type SVGLengthList which can be animated.

interface SVGAnimatedLengthList {
readonly attribute SVGLengthList baseVal;
readonly attribute SVGLengthList animVal;

};

Attributes:

• baseVal (readonly SVGLengthList)

The base value of the given attribute before applying any animations.

• animVal (readonly SVGLengthList)

A read only SVGLengthList representing the current animated value of the given attribute. If the given at-
tribute is not currently being animated, then the SVGLengthList will have the same contents as baseVal. The

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


object referenced by animVal will always be distinct from the one referenced by baseVal, even when the at-
tribute is not animated.

4.5.15 Interface SVGAngle

The SVGAngle interface corresponds to the <angle> basic data type.
An SVGAngle object can be designated as read only, which means that attempts to modify the object will

result in an exception being thrown, as described below.

interface SVGAngle {

// Angle Unit Types
const unsigned short SVG_ANGLETYPE_UNKNOWN = 0;
const unsigned short SVG_ANGLETYPE_UNSPECIFIED = 1;
const unsigned short SVG_ANGLETYPE_DEG = 2;
const unsigned short SVG_ANGLETYPE_RAD = 3;
const unsigned short SVG_ANGLETYPE_GRAD = 4;

readonly attribute unsigned short unitType;
attribute float value setraises(DOMException);
attribute float valueInSpecifiedUnits setraises(DOMException);
attribute DOMString valueAsString setraises(DOMException);

void newValueSpecifiedUnits(in unsigned short unitType, in float valueInSpecifiedUnits) raises(DOMException);
void convertToSpecifiedUnits(in unsigned short unitType) raises(DOMException);

};

Constants in group “Angle Unit Types”:

• SVG_ANGLETYPE_UNKNOWN (unsigned short)

The unit type is not one of predefined unit types. It is invalid to attempt to define a new value of this type or
to attempt to switch an existing value to this type.

• SVG_ANGLETYPE_UNSPECIFIED (unsigned short)

No unit type was provided (i.e., a unitless value was specified). For angles, a unitless value is treated the
same as if degrees were specified.

• SVG_ANGLETYPE_DEG (unsigned short)

The unit type was explicitly set to degrees.

• SVG_ANGLETYPE_RAD (unsigned short)

The unit type is radians.

• SVG_ANGLETYPE_GRAD (unsigned short)

The unit type is radians.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Attributes:

• unitType (readonly unsigned short)

The type of the value as specified by one of the SVG_ANGLETYPE_* constants defined on this interface.

• value (float)

The angle value as a floating point value, in degrees. Setting this attribute will cause valueInSpecifiedUnits
and valueAsString to be updated automatically to reflect this setting.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the angle corresponds to a read only attribute or when the object itself is read only.

• valueInSpecifiedUnits (float)

The angle value as a floating point value, in the units expressed by unitType. Setting this attribute will cause
value and valueAsString to be updated automatically to reflect this setting.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the angle corresponds to a read only attribute or when the object itself is read only.

• valueAsString (DOMString)

The angle value as a string value, in the units expressed by unitType. Setting this attribute will cause value,
valueInSpecifiedUnits and unitType to be updated automatically to reflect this setting.

Exceptions on setting

• DOMException, code SYNTAX_ERR
Raised if the assigned string cannot be parsed as a valid <angle>.

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the angle corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Operations:

• void newValueSpecifiedUnits(in unsigned short unitType, in float valueInSpecifiedUnits)

Reset the value as a number with an associated unitType, thereby replacing the values for all of the attributes
on the object.

Parameters

• unsigned short unitType
The unit type for the value (e.g., SVG_ANGLETYPE_DEG).

• float valueInSpecifiedUnits
The angle value.

Exceptions

• DOMException, code NOT_SUPPORTED_ERR
Raised if unitType is SVG_ANGLETYPE_UNKNOWN or not a valid unit type constant (one of the
other SVG_ANGLETYPE_* constants defined on this interface).

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the angle corresponds to a read only attribute or when the object itself is read only.

• void convertToSpecifiedUnits(in unsigned short unitType)

Preserve the same underlying stored value, but reset the stored unit identifier to the given unitType. Object
attributes unitType, valueInSpecifiedUnits and valueAsString might be modified as a result of this method.

Parameters

• unsigned short unitType
The unit type to switch to (e.g., SVG_ANGLETYPE_DEG).

Exceptions

• DOMException, code NOT_SUPPORTED_ERR
Raised if unitType is SVG_ANGLETYPE_UNKNOWN or not a valid unit type constant (one of the
other SVG_ANGLETYPE_* constants defined on this interface).

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the angle corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


4.5.16 Interface SVGAnimatedAngle

Used for attributes of basic data type <angle> that can be animated.

interface SVGAnimatedAngle {
readonly attribute SVGAngle baseVal;
readonly attribute SVGAngle animVal;

};

Attributes:

• baseVal (readonly SVGAngle)

The base value of the given attribute before applying any animations.

• animVal (readonly SVGAngle)

A read only SVGAngle representing the current animated value of the given attribute. If the given attribute
is not currently being animated, then the SVGAngle will have the same contents as baseVal. The object ref-
erenced by animVal will always be distinct from the one referenced by baseVal, even when the attribute is
not animated.

4.5.17 Interface SVGColor

The SVGColor interface corresponds to color value definition for properties ‘stop-color’, ‘flood-color’ and ‘lighting-
color’ and is a base class for interface SVGPaint. It incorporates SVG's extended notion of color, which incorporates
ICC-based color specifications.

Interface SVGColor does not correspond to the <color> basic data type. For the <color> basic data type,
the applicable DOM interfaces are defined in DOM Level 2 Style; in particular, see the RGBColor interface
([DOM2STYLE], section 2.2).

Note: The SVGColor interface is deprecated, and may be dropped from future versions of the SVG specifica-
tion.

interface SVGColor : CSSValue {

// Color Types
const unsigned short SVG_COLORTYPE_UNKNOWN = 0;
const unsigned short SVG_COLORTYPE_RGBCOLOR = 1;
const unsigned short SVG_COLORTYPE_RGBCOLOR_ICCCOLOR = 2;
const unsigned short SVG_COLORTYPE_CURRENTCOLOR = 3;

readonly attribute unsigned short colorType;
readonly attribute RGBColor rgbColor;
readonly attribute SVGICCColor iccColor;

void setRGBColor(in DOMString rgbColor) raises(SVGException);
void setRGBColorICCColor(in DOMString rgbColor, in DOMString iccColor) raises(SVGException);
void setColor(in unsigned short colorType, in DOMString rgbColor, in DOMString iccColor) raises(SVGException);

};

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor


Constants in group “Color Types”:

• SVG_COLORTYPE_UNKNOWN (unsigned short)

The color type is not one of predefined types. It is invalid to attempt to define a new value of this type or to
attempt to switch an existing value to this type.

• SVG_COLORTYPE_RGBCOLOR (unsigned short)

An sRGB color has been specified without an alternative ICC color specification.

• SVG_COLORTYPE_RGBCOLOR_ICCCOLOR (unsigned short)

An sRGB color has been specified along with an alternative ICC color specification.

• SVG_COLORTYPE_CURRENTCOLOR (unsigned short)

Corresponds to when keyword currentColor has been specified.

Attributes:

• colorType (readonly unsigned short)

The type of the value as specified by one of the SVG_COLORTYPE_* constants defined on this interface.

• rgbColor (readonly RGBColor)

The color specified in the sRGB color space.

• iccColor (readonly SVGICCColor)

The alternate ICC color specification.

Operations:

• void setRGBColor(in DOMString rgbColor)

Modifies the color value to be the specified sRGB color without an alternate ICC color specification.

Parameters

• DOMString rgbColor
A string that matches <color>, which specifies the new sRGB color value.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor


Exceptions

• SVGException, code SVG_INVALID_VALUE_ERR
Raised if rgbColor does not match <color>.

• void setRGBColorICCColor(in DOMString rgbColor, in DOMString iccColor)

Modifies the color value to be the specified sRGB color with an alternate ICC color specification.

Parameters

• DOMString rgbColor
A string that matches <color>, which specifies the new sRGB color value.

• DOMString iccColor
A string that matches <icccolor>, which specifies the alternate ICC color specification.

Exceptions

• SVGException, code SVG_INVALID_VALUE_ERR
Raised if rgbColor does not match <color> or if iccColor does not match <icccolor>.

• void setColor(in unsigned short colorType, in DOMString rgbColor, in DOMString iccColor)

Sets the color value as specified by the parameters. If colorType requires an RGBColor, then rgbColor must
be a string that matches <color>; otherwise, rgbColor. must be null. If colorType requires an SVGICCColor,
then iccColor must be a string that matches <icccolor>; otherwise, iccColor must be null.

Parameters

• unsigned short colorType
One of the defined constants for colorType.

• DOMString rgbColor
The specification of an sRGB color, or null.

• DOMString iccColor
The specification of an ICC color, or null.

Exceptions

• SVGException, code SVG_INVALID_VALUE_ERR
Raised if one of the parameters has an invalid value.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor


4.5.18 Interface SVGICCColor

The SVGICCColor interface expresses an ICC-based color specification.
Note: The SVGICCColor interface is deprecated, and may be dropped from future versions of the SVG spe-

cification.

interface SVGICCColor {
attribute DOMString colorProfile setraises(DOMException);

readonly attribute SVGNumberList colors;
};

Attributes:

• colorProfile (DOMString)

The name of the color profile, which is the first parameter of an ICC color specification.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• colors (readonly SVGNumberList)

The list of color values that define this ICC color. Each color value is an arbitrary floating point number.

4.5.19 Interface SVGRect

Represents rectangular geometry. Rectangles are defined as consisting of a (x,y) coordinate pair identifying a min-
imum X value, a minimum Y value, and a width and height, which are usually constrained to be non-negative.

An SVGRect object can be designated as read only, which means that attempts to modify the object will result
in an exception being thrown, as described below.

interface SVGRect {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float width setraises(DOMException);
attribute float height setraises(DOMException);

};

Attributes:

• x (float)

The x coordinate of the rectangle, in user units.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the rectangle corresponds to a read only attribute or when the object itself is read only.

• y (float)

The y coordinate of the rectangle, in user units.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the rectangle corresponds to a read only attribute or when the object itself is read only.

• width (float)

The width coordinate of the rectangle, in user units.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the rectangle corresponds to a read only attribute or when the object itself is read only.

• height (float)

The height coordinate of the rectangle, in user units.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the rectangle corresponds to a read only attribute or when the object itself is read only.

4.5.20 Interface SVGAnimatedRect

Used for attributes of type SVGRect which can be animated.

interface SVGAnimatedRect {
readonly attribute SVGRect baseVal;
readonly attribute SVGRect animVal;

};

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Attributes:

• baseVal (readonly SVGRect)

The base value of the given attribute before applying any animations.

• animVal (readonly SVGRect)

A read only SVGRect representing the current animated value of the given attribute. If the given attribute is
not currently being animated, then the SVGRect will have the same contents as baseVal. The object referen-
ced by animVal will always be distinct from the one referenced by baseVal, even when the attribute is not
animated.

4.5.21 Interface SVGUnitTypes

The SVGUnitTypes interface defines a commonly used set of constants and is a base interface used by SVGGradi-
entElement, SVGPatternElement, SVGClipPathElement, SVGMaskElement and SVGFilterElement.

interface SVGUnitTypes {
// Unit Types
const unsigned short SVG_UNIT_TYPE_UNKNOWN = 0;
const unsigned short SVG_UNIT_TYPE_USERSPACEONUSE = 1;
const unsigned short SVG_UNIT_TYPE_OBJECTBOUNDINGBOX = 2;

};

Constants in group “Unit Types”:

• SVG_UNIT_TYPE_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.

• SVG_UNIT_TYPE_USERSPACEONUSE (unsigned short)

Corresponds to value 'userSpaceOnUse'.

• SVG_UNIT_TYPE_OBJECTBOUNDINGBOX (unsigned short)

Corresponds to value 'objectBoundingBox'.

4.5.22 Interface SVGStylable

The SVGStylable interface is implemented on all objects corresponding to SVG elements that can have ‘style’,
‘class’ and presentation attributes specified on them. It is thus an ancestor interface for many of the interfaces
defined in this specification.



interface SVGStylable {

readonly attribute SVGAnimatedString className;
readonly attribute CSSStyleDeclaration style;

CSSValue getPresentationAttribute(in DOMString name);
};

Attributes:

• className (readonly SVGAnimatedString)

Corresponds to attribute ‘class’ on the given element.

• style (readonly CSSStyleDeclaration)

Corresponds to attribute ‘style’ on the given element. If the user agent does not support styling with CSS,
then this attribute must always have the value of null.

Operations:

• CSSValue getPresentationAttribute(in DOMString name)

Returns the base (i.e., static) value of a given presentation attribute as an object of type CSSValue. The
returned object is live; changes to the objects represent immediate changes to the objects to which the
CSSValue is attached.
Note: The getPresentationAttribute method is deprecated, and may be dropped from future versions of
the SVG specification.

Parameters

• DOMString name
The name of the presentation attribute whose value is to be returned.

Returns
The static/base value of the given presentation attribute as a CSSValue, or null if the given attribute
does not have a specified value.

4.5.23 Interface SVGLocatable

Interface SVGLocatable is for all elements which either have a ‘transform’ attribute or don't have a ‘transform’ at-
tribute but whose content can have a bounding box in current user space.

interface SVGLocatable {

readonly attribute SVGElement nearestViewportElement;
readonly attribute SVGElement farthestViewportElement;

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSStyleDeclaration
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSStyleDeclaration
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue


SVGRect getBBox();
SVGMatrix getCTM();
SVGMatrix getScreenCTM();
SVGMatrix getTransformToElement(in SVGElement element) raises(SVGException);

};

Attributes:

• nearestViewportElement (readonly SVGElement)

The element which established the current viewport. Often, the nearest ancestor ‘svg’ element. Null if the
current element is the outermost svg element.

• farthestViewportElement (readonly SVGElement)

The farthest ancestor ‘svg’ element. Null if the current element is the outermost svg element.

Operations:

• SVGRect getBBox()

Returns the tight bounding box in current user space (i.e., after application of the ‘transform’ attribute, if
any) on the geometry of all contained graphics elements, exclusive of stroking, clipping, masking and filter
effects). Note that getBBox must return the actual bounding box at the time the method was called, even in
case the element has not yet been rendered.

Returns
An SVGRect object that defines the bounding box.

• SVGMatrix getCTM()

Returns the transformation matrix from current user units (i.e., after application of the ‘transform’ attribute,
if any) to the viewport coordinate system for the nearestViewportElement.

Returns
An SVGMatrix object that defines the CTM.

• SVGMatrix getScreenCTM()

Returns the transformation matrix from current user units (i.e., after application of the ‘transform’ attribute,
if any) to the parent user agent's notice of a "pixel". For display devices, ideally this represents a physical
screen pixel. For other devices or environments where physical pixel sizes are not known, then an algorithm
similar to the CSS2 definition of a "pixel" can be used instead. Note that null is returned if this element is not



hooked into the document tree. This method would have been more aptly named as getClientCTM, but the
name getScreenCTM is kept for historical reasons.

Returns
An SVGMatrix object that defines the given transformation matrix.

• SVGMatrix getTransformToElement(in SVGElement element)

Returns the transformation matrix from the user coordinate system on the current element (after application
of the ‘transform’ attribute, if any) to the user coordinate system on parameter element (after application of
its ‘transform’ attribute, if any).

Parameters

• SVGElement element
The target element.

Returns
An SVGMatrix object that defines the transformation.

Exceptions

• SVGException, code SVG_MATRIX_NOT_INVERTABLE
Raised if the currently defined transformation matrices make it impossible to compute the given matrix
(e.g., because one of the transformations is singular).

4.5.24 Interface SVGTransformable

Interface SVGTransformable contains properties and methods that apply to all elements which have attribute
‘transform’.

interface SVGTransformable : SVGLocatable {
readonly attribute SVGAnimatedTransformList transform;

};

Attributes:

• transform (readonly SVGAnimatedTransformList)

Corresponds to attribute ‘transform’ on the given element.



4.5.25 Interface SVGTests

Interface SVGTests defines an interface which applies to all elements which have attributes ‘requiredFeatures’, ‘re-
quiredExtensions’ and ‘systemLanguage’.

interface SVGTests {

readonly attribute SVGStringList requiredFeatures;
readonly attribute SVGStringList requiredExtensions;
readonly attribute SVGStringList systemLanguage;

boolean hasExtension(in DOMString extension);
};

Attributes:

• requiredFeatures (readonly SVGStringList)

Corresponds to attribute ‘requiredFeatures’ on the given element.

• requiredExtensions (readonly SVGStringList)

Corresponds to attribute ‘requiredExtensions’ on the given element.

• systemLanguage (readonly SVGStringList)

Corresponds to attribute ‘systemLanguage’ on the given element.

Operations:

• boolean hasExtension(in DOMString extension)

Returns true if the user agent supports the given extension, specified by a URI.

Parameters

• DOMString extension
The name of the extension, expressed as a URI.

Returns
True or false, depending on whether the given extension is supported.

4.5.26 Interface SVGLangSpace

Interface SVGLangSpace defines an interface which applies to all elements which have attributes ‘xml:lang’ and
‘xml:space’.



interface SVGLangSpace {
attribute DOMString xmllang setraises(DOMException);
attribute DOMString xmlspace setraises(DOMException);

};

Attributes:

• xmllang (DOMString)

Corresponds to attribute ‘xml:lang’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• xmlspace (DOMString)

Corresponds to attribute ‘xml:space’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

4.5.27 Interface SVGExternalResourcesRequired

Interface SVGExternalResourcesRequired defines an interface which applies to all elements where this element or
one of its descendants can reference an external resource.

interface SVGExternalResourcesRequired {
readonly attribute SVGAnimatedBoolean externalResourcesRequired;

};

Attributes:

• externalResourcesRequired (readonly SVGAnimatedBoolean)

Corresponds to attribute ‘externalResourcesRequired’ on the given element. Note that the SVG DOM defines
the attribute ‘externalResourcesRequired’ as being of type SVGAnimatedBoolean, whereas the SVG language
definition says that ‘externalResourcesRequired’ is not animated. Because the SVG language definition states
that ‘externalResourcesRequired’ cannot be animated, the animVal will always be the same as the baseVal.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


4.5.28 Interface SVGFitToViewBox

Interface SVGFitToViewBox defines DOM attributes that apply to elements which have XML attributes ‘viewBox’
and ‘preserveAspectRatio’.

interface SVGFitToViewBox {
readonly attribute SVGAnimatedRect viewBox;
readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;

};

Attributes:

• viewBox (readonly SVGAnimatedRect)

Corresponds to attribute ‘viewBox’ on the given element.

• preserveAspectRatio (readonly SVGAnimatedPreserveAspectRatio)

Corresponds to attribute ‘preserveAspectRatio’ on the given element.

4.5.29 Interface SVGZoomAndPan

The SVGZoomAndPan interface defines attribute zoomAndPan and associated constants.

interface SVGZoomAndPan {

// Zoom and Pan Types
const unsigned short SVG_ZOOMANDPAN_UNKNOWN = 0;
const unsigned short SVG_ZOOMANDPAN_DISABLE = 1;
const unsigned short SVG_ZOOMANDPAN_MAGNIFY = 2;

attribute unsigned short zoomAndPan setraises(DOMException);
};

Constants in group “Zoom and Pan Types”:

• SVG_ZOOMANDPAN_UNKNOWN (unsigned short)

The enumeration was set to a value that is not one of predefined types. It is invalid to attempt to define a
new value of this type or to attempt to switch an existing value to this type.

• SVG_ZOOMANDPAN_DISABLE (unsigned short)

Corresponds to value 'disable'.

• SVG_ZOOMANDPAN_MAGNIFY (unsigned short)

Corresponds to value 'magnify'.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Attributes:

• zoomAndPan (unsigned short)

Corresponds to attribute ‘zoomAndPan’ on the given element. The value must be one of the
SVG_ZOOMANDPAN_* constants defined on this interface.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

4.5.30 Interface SVGViewSpec

The interface corresponds to an SVG View Specification.

interface SVGViewSpec : SVGZoomAndPan,
SVGFitToViewBox {

readonly attribute SVGTransformList transform;
readonly attribute SVGElement viewTarget;
readonly attribute DOMString viewBoxString;
readonly attribute DOMString preserveAspectRatioString;
readonly attribute DOMString transformString;
readonly attribute DOMString viewTargetString;

};

Attributes:

• transform (readonly SVGTransformList)

Corresponds to the transform setting on the SVG View Specification.

• viewTarget (readonly SVGElement)

Corresponds to the viewTarget setting on the SVG View Specification.

• viewBoxString (readonly DOMString)

Corresponds to the viewBox setting on the SVG View Specification.

• preserveAspectRatioString (readonly DOMString)

Corresponds to the preserveAspectRatio setting on the SVG View Specification.

• transformString (readonly DOMString)

Corresponds to the transform setting on the SVG View Specification.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• viewTargetString (readonly DOMString)

Corresponds to the viewTarget setting on the SVG View Specification.

4.5.31 Interface SVGURIReference

Interface SVGURIReference defines an interface which applies to all elements which have the collection of XLink
attributes, such as ‘xlink:href’, which define a URI reference.

interface SVGURIReference {
readonly attribute SVGAnimatedString href;

};

Attributes:

• href (readonly SVGAnimatedString)

Corresponds to attribute ‘xlink:href’ on the given element.

4.5.32 Interface SVGCSSRule

SVG extends interface CSSRule with interface SVGCSSRule by adding an SVGColorProfileRule rule to allow for
specification of ICC-based color.

It is likely that this extension will become part of a future version of CSS and DOM.

interface SVGCSSRule : CSSRule {
const unsigned short COLOR_PROFILE_RULE = 7;

};

Constants:

• COLOR_PROFILE_RULE (unsigned short)

The rule is an @color-profile.

4.5.33 Interface SVGRenderingIntent

The SVGRenderingIntent interface defines the enumerated list of possible values for ‘rendering-intent’ attributes
or descriptors.

interface SVGRenderingIntent {
// Rendering Intent Types
const unsigned short RENDERING_INTENT_UNKNOWN = 0;
const unsigned short RENDERING_INTENT_AUTO = 1;
const unsigned short RENDERING_INTENT_PERCEPTUAL = 2;
const unsigned short RENDERING_INTENT_RELATIVE_COLORIMETRIC = 3;
const unsigned short RENDERING_INTENT_SATURATION = 4;
const unsigned short RENDERING_INTENT_ABSOLUTE_COLORIMETRIC = 5;

};

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSRule
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSRule
http://www.w3.org/TR/SVG/color.html#InterfaceSVGColorProfileRule


Constants in group “Rendering Intent Types”:

• RENDERING_INTENT_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.

• RENDERING_INTENT_AUTO (unsigned short)

Corresponds to a value of 'auto'.

• RENDERING_INTENT_PERCEPTUAL (unsigned short)

Corresponds to a value of 'perceptual'.

• RENDERING_INTENT_RELATIVE_COLORIMETRIC (unsigned short)

Corresponds to a value of 'relative-colorimetric'.

• RENDERING_INTENT_SATURATION (unsigned short)

Corresponds to a value of 'saturation'.

• RENDERING_INTENT_ABSOLUTE_COLORIMETRIC (unsigned short)

Corresponds to a value of 'absolute-colorimetric'.



6 Styling

Contents

6.1 SVG's styling properties
6.2 Usage scenarios for styling
6.3 Alternative ways to specify styling properties
6.4 Specifying properties using the presentation attributes
6.5 Styling with XSL
6.6 Styling with CSS
6.7 Case sensitivity of property names and values
6.8 Facilities from CSS and XSL used by SVG
6.9 Referencing external style sheets
6.10 The ‘style’ element
6.11 The ‘class’ attribute
6.12 The ‘style’ attribute
6.13 Specifying the default style sheet language
6.14 Property inheritance
6.15 The scope/range of styles
6.16 User agent style sheet
6.17 Aural style sheets
6.18 DOM interfaces

6.18.1 Interface SVGStyleElement

6.1 SVG's styling properties

SVG uses styling properties to describe many of its document parameters. Styling properties define how the
graphics elements in the SVG content are to be rendered. SVG uses styling properties for the following:

• Parameters which are clearly visual in nature and thus lend themselves to styling. Examples include all at-
tributes that define how an object is "painted," such as fill and stroke colors, linewidths and dash styles.

• Parameters having to do with text styling such as font family and size.
• Parameters which impact the way that graphical elements are rendered, such as specifying clipping paths,

masks, arrowheads, markers and filter effects.

SVG shares many of its styling properties with CSS [CSS2] and XSL [XSL]. Except for any additional SVG-specific
rules explicitly mentioned in this specification, the normative definition of properties that are shared with CSS
and XSL is the definition of the property from the CSS2 specification [CSS2].

The following properties are shared between CSS2 and SVG. Most of these properties are also defined in XSL:

http://www.w3.org/TR/2008/REC-CSS2-20080411/


• Font properties:
◦ ‘font’
◦ ‘font-family’
◦ ‘font-size’
◦ ‘font-size-adjust’
◦ ‘font-stretch’
◦ ‘font-style’
◦ ‘font-variant’
◦ ‘font-weight’

• Text properties:
◦ ‘direction’
◦ ‘letter-spacing’
◦ ‘text-decoration’
◦ ‘unicode-bidi’
◦ ‘word-spacing’

• Other properties for visual media:
◦ ‘clip’, only applicable to outermost svg element.
◦ ‘color’, used to provide a potential indirect value (currentColor) for the ‘fill’, ‘stroke’, ‘stop-color’, ‘flood-

color’ and ‘lighting-color’ properties. (The SVG properties which support color allow a color specification
which is extended from CSS2 to accommodate color definitions in arbitrary color spaces. See Color pro-
file descriptions.)

◦ ‘cursor’
◦ ‘display’
◦ ‘overflow’, only applicable to elements which establish a new viewport.
◦ ‘visibility’

The following SVG properties are not defined in CSS2. The complete normative definitions for these properties are
found in this specification:

• Clipping, Masking and Compositing properties:
◦ ‘clip-path’
◦ ‘clip-rule’
◦ ‘mask’
◦ ‘opacity’

• Filter Effects properties:
◦ ‘enable-background’
◦ ‘filter’
◦ ‘flood-color’
◦ ‘flood-opacity’
◦ ‘lighting-color’

• Gradient properties:
◦ ‘stop-color’



◦ ‘stop-opacity’
• Interactivity properties:

◦ ‘pointer-events’
• Color and Painting properties:

◦ ‘color-interpolation’
◦ ‘color-interpolation-filters’
◦ ‘color-profile’
◦ ‘color-rendering’
◦ ‘fill’
◦ ‘fill-opacity’
◦ ‘fill-rule’
◦ ‘image-rendering’
◦ ‘marker’
◦ ‘marker-end’
◦ ‘marker-mid’
◦ ‘marker-start’
◦ ‘shape-rendering’
◦ ‘stroke’
◦ ‘stroke-dasharray’
◦ ‘stroke-dashoffset’
◦ ‘stroke-linecap’
◦ ‘stroke-linejoin’
◦ ‘stroke-miterlimit’
◦ ‘stroke-opacity’
◦ ‘stroke-width’
◦ ‘text-rendering’

• Text properties:
◦ ‘alignment-baseline’
◦ ‘baseline-shift’
◦ ‘dominant-baseline’
◦ ‘glyph-orientation-horizontal’
◦ ‘glyph-orientation-vertical’
◦ ‘kerning’
◦ ‘text-anchor’
◦ ‘writing-mode’

A table that lists and summarizes the styling properties can be found in the Property Index.

6.2 Usage scenarios for styling

SVG has many usage scenarios, each with different needs. Here are three common usage scenarios:



1. SVG content used as an exchange format (style sheet language-independent):
In some usage scenarios, reliable interoperability of SVG content across software tools is the main goal.

Since support for a particular style sheet language is not guaranteed across all implementations, it is a re-
quirement that SVG content can be fully specified without the use of a style sheet language.

2. SVG content generated as the output from XSLT:
XSLT offers the ability to take a stream of arbitrary XML content as input, apply potentially complex

transformations, and then generate SVG content as output [XSLT]. XSLT can be used to transform XML data
extracted from databases into an SVG graphical representation of that data. It is a requirement that fully spe-
cified SVG content can be generated from XSLT.

3. SVG content styled with CSS:
CSS is a widely implemented declarative language for assigning styling properties to XML content, in-

cluding SVG [CSS2]. It represents a combination of features, simplicity and compactness that makes it very
suitable for many applications of SVG. It is a requirement that CSS styling can be applied to SVG content.

6.3 Alternative ways to specify styling properties

Styling properties can be assigned to SVG elements in the following two ways:

• Presentation attributes
Styling properties can be assigned using SVG's presentation attributes. For each styling property

defined in this specification, there is a corresponding XML presentation attribute available on all relevant
SVG elements. Detailed information on the presentation attributes can be found in Specifying properties us-
ing the presentation attributes.

The presentation attributes are style sheet language independent and thus are applicable to usage scen-
ario 1 above (i.e., tool interoperability). Because it is straightforward to assign values to XML attributes from
XSLT, the presentation attributes are well-suited to usage scenario 2 above (i.e., SVG generation from XSLT).
(See Styling with XSL below.)

Conforming SVG Interpreters and Conforming SVG Viewers are required to support SVG's presentation
attributes.

• CSS Stylesheets
To support usage scenario 3 above, SVG content can be styled with CSS. For more information, see Styl-

ing with CSS.
Conforming SVG Interpreters and Conforming SVG Viewers that support CSS styling of generic (i.e.,

text-based) XML content are required to also support CSS styling of SVG content.

6.4 Specifying properties using the presentation attributes

For each styling property defined in this specification (see Property Index), there is a corresponding XML attribute
(the presentation attribute) with the same name that is available on all relevant SVG elements. For example, SVG
has a ‘fill’ property that defines how to paint the interior of a shape. There is a corresponding presentation attrib-
ute with the same name (i.e., ‘fill’) that can be used to specify a value for the ‘fill’ property on a given element.



The following example shows how the ‘fill’ and ‘stroke’ properties can be specified on a ‘rect’ using the ‘fill’
and ‘stroke’ presentation attributes. The rectangle will be filled with red and outlined with blue:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"

width="10cm" height="5cm" viewBox="0 0 1000 500">
<rect x="200" y="100" width="600" height="300"

fill="red" stroke="blue" stroke-width="3"/>
</svg>

The presentation attributes offer the following advantages:

• Broad support. All versions of Conforming SVG Interpreters and Conforming SVG Viewers are required to
support the presentation attributes.

• Simplicity. Styling properties can be attached to elements by simply providing a value for the presentation
attribute on the proper elements.

• Restyling. SVG content that uses the presentation attributes is highly compatible with downstream process-
ing using XSLT [XSLT] [XSLT2] or supplemental styling by adding CSS style rules to override some of the
presentation attributes.

• Convenient generation using XSLT. In some cases, XSLT can be used to generate fully styled SVG content.
The presentation attributes are compatible with convenient generation of SVG from XSLT.

In some situations, SVG content that uses the presentation attributes has potential limitations versus SVG content
that is styled with a style sheet language such as CSS (see Styling with CSS). In other situations, such as when
an XSLT style sheet generates SVG content from semantically rich XML source files, the limitations below may
not apply. Depending on the situation, some of the following potential limitations may or may not apply to the
presentation attributes:

• Styling attached to content. The presentation attributes are attached directly to particular elements, thereby
diminishing potential advantages that comes from abstracting styling from content, such as the ability to re-
style documents for different uses and environments.

• Flattened data model. In and of themselves, the presentation attributes do not offer the higher level abstrac-
tions that you get with a styling system, such as the ability to define named collections of properties which
are applied to particular categories of elements. The result is that, in many cases, important higher level se-
mantic information can be lost, potentially making document reuse and restyling more difficult.

• Potential increase in file size. Many types of graphics use similar styling properties across multiple ele-
ments. For example, a company organization chart might assign one collection of styling properties to the
boxes around temporary workers (e.g., dashed outlines, red fill), and a different collection of styling prop-
erties to permanent workers (e.g., solid outlines, blue fill). Styling systems such as CSS allow collections of
properties to be defined once in a file. With the styling attributes, it might be necessary to specify presenta-
tion attributes on each different element.

• Potential difficulty when embedded into a CSS-styled parent document. When SVG content is embedded
in other XML, and the desire is to style all aspects of the compound document with CSS, use of the present-



ation attributes might introduce complexity and difficulty. In this case, it is sometimes easier if the SVG con-
tent does not use the presentation attributes and instead is styled using CSS facilities.

For user agents that support CSS, the presentation attributes must be translated to corresponding CSS style rules
according to rules described in Precedence of non-CSS presentational hints ([CSS2], section 6.4.4), with the addi-
tional clarification that the presentation attributes are conceptually inserted into a new author style sheet which is
the first in the author style sheet collection. The presentation attributes thus will participate in the CSS2 cascade
as if they were replaced by corresponding CSS style rules placed at the start of the author style sheet with a speci-
ficity of zero. In general, this means that the presentation attributes have lower priority than other CSS style rules
specified in author style sheets or ‘style’ attributes.

User agents that do not support CSS must ignore any CSS style rules defined in CSS style sheets and ‘style’
attributes. In this case, the CSS cascade does not apply. (Inheritance of properties, however, does apply. See Prop-
erty inheritance.)

An !important declaration ([CSS2], section 6.4.2) within a presentation attribute definition is an invalid value.
Animation of presentation attributes is equivalent to animating the corresponding property. Thus, the same

effect occurs from animating the presentation attribute with attributeType="XML" as occurs with animating the
corresponding property with attributeType="CSS" (see ‘attributeType’).

6.5 Styling with XSL

XSL style sheets [XSLT] [XSLT2] define how to transform XML content into something else, usually other XML.
When XSLT is used in conjunction with SVG, sometimes SVG content will serve as both input and output for XSL
style sheets. Other times, XSL style sheets will take non-SVG content as input and generate SVG content as output.

The following example uses an external XSL style sheet to transform SVG content into modified SVG content
(see Referencing external style sheets). The style sheet sets the ‘fill’ and ‘stroke’ properties on all rectangles to red
and blue, respectively:

mystyle.xsl
<?xml version="1.0" standalone="no"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:svg="http://www.w3.org/2000/svg">
<xsl:output

method="xml"
encoding="utf-8"
doctype-public="-//W3C//DTD SVG 1.1//EN"
doctype-system="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"/>

<!-- Add version to topmost 'svg' element -->
<xsl:template match="/svg:svg">

<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:attribute name="version">1.1</xsl:attribute>
<xsl:apply-templates/>

</xsl:copy>
</xsl:template>
<!-- Add styling to all 'rect' elements -->
<xsl:template match="svg:rect">

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#q12
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#important-rules


<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:attribute name="fill">red</xsl:attribute>
<xsl:attribute name="stroke">blue</xsl:attribute>
<xsl:attribute name="stroke-width">3</xsl:attribute>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

SVG file to be transformed by mystyle.xsl
<?xml version="1.0" standalone="no"?>
<?xml-stylesheet href="mystyle.xsl" type="application/xml"?>
<svg xmlns="http://www.w3.org/2000/svg"

width="10cm" height="5cm">
<rect x="2cm" y="1cm" width="6cm" height="3cm"/>

</svg>

SVG content after applying mystyle.xsl
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg"

width="10cm" height="5cm" version="1.1">
<rect x="2cm" y="1cm" width="6cm" height="3cm" fill="red" stroke="blue" stroke-width="3"/>

</svg>

6.6 Styling with CSS

SVG implementations that support CSS are required to support the following:

• External CSS style sheets referenced from the current document (see Referencing external style sheets)
• Internal CSS style sheets (i.e., style sheets embedded within the current document, such as within an SVG

‘style’ element)
• Inline style (i.e., CSS property declarations within a ‘style’ attribute on a particular SVG element)

The following example shows the use of an external CSS style sheet to set the ‘fill’ and ‘stroke’ properties on all
rectangles to red and blue, respectively:

mystyle.css
rect {

fill: red;
stroke: blue;
stroke-width: 3

}

SVG file referencing mystyle.css
<?xml version="1.0" standalone="no"?>
<?xml-stylesheet href="mystyle.css" type="text/css"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"

width="10cm" height="5cm" viewBox="0 0 1000 500">



<rect x="200" y="100" width="600" height="300"/>
</svg>

CSS style sheets can be embedded within SVG content inside of a ‘style’ element. The following example uses an
internal CSS style sheet to achieve the same result as the previous example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"

width="10cm" height="5cm" viewBox="0 0 1000 500">
<defs>

<style type="text/css"><![CDATA[
rect {

fill: red;
stroke: blue;
stroke-width: 3

}
]]></style>

</defs>
<rect x="200" y="100" width="600" height="300"/>

</svg>

Note how the CSS style sheet is placed within a CDATA construct (i.e., <![CDATA[ ... ]]>). Placing internal CSS
style sheets within CDATA blocks is sometimes necessary since CSS style sheets can include characters, such as ">",
which conflict with XML parsers. Even if a given style sheet does not use characters that conflict with XML pars-
ing, it is highly recommended that internal style sheets be placed inside CDATA blocks.

Implementations that support CSS are also required to support CSS inline style. Similar to the ‘style’ attribute
in HTML, CSS inline style can be declared within a ‘style’ attribute in SVG by specifying a semicolon-separated
list of property declarations, where each property declaration has the form "name: value". Note that property de-
clarations inside the ‘style’ attribute must follow CSS style rules, see The 'style' attribute.

The following example shows how the ‘fill’ and ‘stroke’ properties can be specified on a ‘rect’ using the ‘style’
attribute. Just like the previous example, the rectangle will be filled with red and outlined with blue:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"

width="10cm" height="5cm" viewBox="0 0 1000 500">
<rect x="200" y="100" width="600" height="300"

style="fill: red; stroke: blue; stroke-width: 3"/>
</svg>

In an SVG user agent that supports CSS style sheets, the following facilities from CSS2 must be supported:

• CSS2 selectors within style sheets ([CSS2], chapter 5). Because SVG is intended to be used as one component
in a multiple namespace XML application and CSS2 is not namespace aware, type selectors will only match
against the local part of the element's qualified name.

• External CSS style sheets [XML-SS], CSS style sheets within ‘style’ elements and CSS declaration blocks
([CSS2], section 4.1.7) within ‘style’ attributes attached to specific SVG elements.

• CSS2 rules for assigning property values, cascading and inheritance ([CSS2], chapter 6).
• @font-face, @media, @import and @charset rules within style sheets ([CSS2], sections 15.3.1, 7.2.1, 6.3 and

4.4).
• CSS2's dynamic pseudo-classes :hover, :active and :focus and pseudo-classes :first-child, :visited, :link and

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-cdata-sect
http://www.w3.org/TR/1999/REC-html401-19991224/present/styles.html#h-14.2.2
http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#q8
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#at-media-rule
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#at-import
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#x66
http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html#dynamic-pseudo-classes
http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html#q15


:lang ([CSS2], section 5.11). The remaining CSS2 pseudo-classes, including those having to do with generated
content ([CSS2], chapter 12), are not part of the SVG language definition. An SVG element gains focus when
it is selected. See Text selection.

• For the purposes of aural media, SVG represents a CSS-stylable XML grammar. In user agents that support
aural style sheets, CSS aural style properties can be applied as defined in CSS2 ([CSS2], chapter 19). (See
Aural style sheets.)

• CSS style sheets defined within a ‘style’ element can be immediate character data content of the ‘style’ ele-
ment or can be embedded within a CDATA section ([XML10], section 2.7).

SVG defines an @color-profile at-rule ([CSS2], section 4.1.6) for defining color profiles so that ICC color profiles
can be applied to CSS-styled SVG content.

Note the following about relative URIs and external CSS style sheets: The CSS2 specification says ([CSS2],
section 4.3.4) that relative URIs (as defined in Uniform Resource Identifiers (URI): Generic Syntax [RFC3986]) with-
in style sheets are resolved such that the base URI is that of the style sheet, not that of the referencing document.

6.7 Case sensitivity of property names and values

Property declarations via presentation attributes are expressed in XML [XML10], which is case-sensitive. CSS
property declarations specified either in CSS style sheets or in a ‘style’ attribute, on the other hand, are generally
case-insensitive with some exceptions ([CSS2], section 4.1.3).

Because presentation attributes are expressed as XML attributes, presentation attributes are case-sensitive
and must match the exact name as specified in the DTD (see the SVG.Presentation.attrib entity in the DTD,
which expands to all of the presentation attributes). When using a presentation attribute to specify a value for
the ‘fill’ property, the presentation attribute must be be specified as fill="..." and not fill="..." or Fill="...". Keyword
values, such as italic in font-style="italic", are also case-sensitive and must be specified using the exact case used in
the specification which defines the given keyword. For example, the keyword sRGB must have lowercase "s" and
uppercase "RGB".

Property declarations within CSS style sheets or in a ‘style’ attribute must only conform to CSS rules, which
are generally more lenient with regard to case sensitivity. However, to promote consistency across the different
ways for expressing styling properties, it is strongly recommended that authors use the exact property names (usu-
ally, lowercase letters and hyphens) as defined in the relevant specification and express all keywords using the
same case as is required by presentation attributes and not take advantage of CSS's ability to ignore case.

6.8 Facilities from CSS and XSL used by SVG

SVG shares various relevant properties and approaches common to CSS and XSL, plus the semantics of many of
the processing rules.

SVG shares the following facilities with CSS and XSL:

• Shared properties. Many of SVG's properties are shared between CSS2, XSL and SVG. (See list of shared prop-
erties).

http://www.w3.org/TR/2008/REC-CSS2-20080411/generate.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/generate.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html
http://www.w3.org/TR/2008/REC-xml-20081126/#sec-cdata-sect
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#at-rules
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#uri
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#q4
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#q4


‘style’

• Syntax rules. (The normative references are CSS2 syntax and basic data types and The grammar of CSS2; in
[CSS2], chapter 4 and appendix D.)

• Allowable data types. (The normative reference is CSS2 syntax and basic data types ([CSS2], chapter 4), with
the exception that SVG length and angle values without a unit identifier. See Units.)

• Inheritance rules.
• The color keywords from CSS2 that correspond to the colors used by objects in the user's environment. (The

normative reference is CSS2 system colors; in [CSS2], section 18.2.)
• For implementations that support CSS styling of SVG content, then that styling must be compatible with

various other rules in CSS. (See Styling with CSS.)

6.9 Referencing external style sheets

External style sheets are referenced using the mechanism documented in Associating Style Sheets with XML doc-
uments Version 1.0 [XML-SS].

6.10 The ‘style’ element

The ‘style’ element allows style sheets to be embedded directly within SVG content. SVG's ‘style’ element has the
same attributes as the corresponding element in HTML (see HTML's ‘style’ element).

Categories:
None

Content model:
Any elements or character data.

Attributes:
core attributes
‘type’
‘media’
‘title’

DOM Interfaces:
SVGStyleElement

Attribute definitions:

type = content-type
This attribute specifies the style sheet language of the element's contents. The style sheet language is specified
as a content type (e.g., "text/css"), as per MIME Part Two: Media Types [RFC2046]. If a ‘type’ is not provided,
the value of ‘contentStyleType’ on the ‘svg’ element shall be used, which in turn defaults to "text/css"
[RFC2046]. If a ‘style’ element falls outside of the outermost svg element and the ‘type’ is not provided, the

http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/grammar.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/ui.html#system-colors
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/TR/1999/REC-html401-19991224/present/styles.html#h-14.2.3
http://www.ietf.org/rfc/rfc2046.txt


‘type’ must default to "text/css" [RFC2046].
Animatable: no.

media = media-descriptors
This attribute specifies the intended destination medium for style information. It may be a single media
descriptor or a comma-separated list. The default value for this attribute is "all". The set of recognized media-
descriptors are the list of media types recognized by CSS2 ([CSS2], section 7.3).
Animatable: no.

title = advisory-title
(For compatibility with HTML 4 [HTML4].) This attribute specifies an advisory title for the ‘style’ element.
Animatable: no.

The syntax of style data depends on the style sheet language.
Some style sheet languages might allow a wider variety of rules in the ‘style’ element than in the ‘style’. For

example, with CSS, rules can be declared within a ‘style’ element that cannot be declared within a ‘style’ attribute.
An example showing the ‘style’ element is provided above (see example).

6.11 The ‘class’ attribute

Attribute definitions:

class = list
This attribute assigns a class name or set of class names to an element. Any number of elements may be
assigned the same class name or names. Multiple class names must be separated by white space characters.
Animatable: yes.

The ‘class’ attribute assigns one or more class names to an element. The element may be said to belong to these
classes. A class name may be shared by several element instances. The ‘class’ attribute has several roles:

• As a style sheet selector (when an author wishes to assign style information to a set of elements).
• For general purpose processing by user agents.

In the following example, the ‘text’ element is used in conjunction with the ‘class’ attribute to markup document
messages. Messages appear in both English and French versions.

<!-- English messages -->
<text class="info" lang="en">Variable declared twice</text>
<text class="warning" lang="en">Undeclared variable</text>
<text class="error" lang="en">Bad syntax for variable name</text>
<!-- French messages -->
<text class="info" lang="fr">Variable déclarée deux fois</text>
<text class="warning" lang="fr">Variable indéfinie</text>
<text class="error" lang="fr">Erreur de syntaxe pour variable</text>

http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#media-types


In an SVG user agent that supports CSS styling, the following CSS style rules would tell visual user agents to dis-
play informational messages in green, warning messages in yellow, and error messages in red:

text.info    { color: green }
text.warning { color: yellow }
text.error   { color: red }

6.12 The ‘style’ attribute

The ‘style’ attribute allows per-element style rules to be specified directly on a given element. When CSS styling
is used, CSS inline style is specified by including semicolon-separated property declarations of the form "name :
value" within the ‘style’ attribute. Property declarations must follow CSS style rules thus CSS defined properties
(e.g. 'font-size') when having a <length> value must include a unit (for non-zero values). See SVG's styling proper-
ties for a list of CSS defined properties.

Attribute definitions:

style = style
This attribute specifies style information for the current element. The style attribute specifies style inform-
ation for a single element. The style sheet language of inline style rules is given by the value of attribute
‘contentStyleType’ on the ‘svg’ element. The syntax of style data depends on the style sheet language.
Animatable: no.

The style attribute may be used to apply a particular style to an individual SVG element. If the style will be reused
for several elements, authors should use the ‘style’ element to regroup that information. For optimal flexibility,
authors should define styles in external style sheets.

An example showing the ‘style’ attribute is provided above (see example).

6.13 Specifying the default style sheet language

The ‘contentStyleType’ attribute on the ‘svg’ element specifies the default style sheet language for the given docu-
ment fragment.

contentStyleType = "content-type"
Identifies the default style sheet language for the given document. That language must then be used for
all instances of style that do not specify their own style sheet language, such as the ‘style’ attributes that
are available on many elements. The value content-type specifies a media type, per MIME Part Two: Media
Types [RFC2046]. The default value is "text/css" [RFC2318].
Animatable: no.

Since the only widely deployed language used for inline styling (in style elements and style attributes) is CSS, and
since that is already the default language if contentStyleType is omitted, in practice contentStyleType is not well

http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt


supported in user agents. XSL style sheets are typically external. If a new style sheet language becomes popular,
it might not use style attributes and could easily declare which language is in use with the type attribute on the
style element.

The use of contentStyleType is therefore deprecated; new content should not use it. Future versions of the
SVG specification may remove contentStyleType.

6.14 Property inheritance

Whether or not the user agent supports CSS, property inheritance in SVG follows the property inheritance rules
defined in the CSS2 specification. The normative definition for property inheritance is the Inheritance section of
the CSS2 specification ([CSS2], section 6.2).

The definition of each property indicates whether the property can inherit the value of its parent.
In SVG, as in CSS2, most elements inherit computed values ([CSS2], section 6.1.2). For cases where something

other than computed values are inherited, the property definition will describe the inheritance rules. For specified
values ([CSS2], section 6.1.1) which are expressed in user units, in pixels (e.g., 20px) or in absolute values, the
computed value equals the specified value. For specified values which use certain relative units (i.e., em, ex and
percentages), the computed value will have the same units as the value to which it is relative. Thus, if the parent
element has a ‘font-size’ of 10pt and the current element has a ‘font-size’ of 120%, then the computed value for ‘font-
size’ on the current element will be 12pt. In cases where the referenced value for relative units is not expressed
in any of the standard SVG units (i.e., CSS units or user units), such as when a percentage is used relative to the
current viewport or an object bounding box, then the computed value will be in user units.

Note that SVG has some facilities wherein a property which is specified on an ancestor element might effect
its descendant element, even if the descendant element has a different assigned value for that property. For ex-
ample, if a ‘clip-path’ property is specified on an ancestor element, and the current element has a ‘clip-path’ of
none, the ancestor's clipping path still applies to the current element because the semantics of SVG state that the
clipping path used on a given element is the intersection of all clipping paths specified on itself and all ancestor
elements. The key concept is that property assignment (with possible property inheritance) happens first. After
properties values have been assigned to the various elements, then the user agent applies the semantics of each
assigned property, which might result in the property assignment of an ancestor element affecting the rendering
of its descendants.

6.15 The scope/range of styles

The following define the scope/range of style sheets:

Stand-alone SVG document
There is one parse tree. Style sheets defined anywhere within the SVG document (in style elements or style
attributes, or in external style sheets linked with the style sheet processing instruction) apply across the en-
tire SVG document.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#inheritance
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#computed-value
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#specified-value
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#specified-value


Stand-alone SVG document embedded in an HTML or XML document with the ‘img’, ‘object’ (HTML) or ‘im-
age’ (SVG) elements

There are two completely separate parse trees; one for the referencing document (perhaps HTML or
XHTML), and one for the SVG document. Style sheets defined anywhere within the referencing document
(in style elements or style attributes, or in external style sheets linked with the style sheet processing instruc-
tion) apply across the entire referencing document but have no effect on the referenced SVG document. Style
sheets defined anywhere within the referenced SVG document (in style elements or style attributes, or in ex-
ternal style sheets linked with the style sheet processing instruction) apply across the entire SVG document,
but do not affect the referencing document (perhaps HTML or XHTML). To get the same styling across both
the [X]HTML document and the SVG document, link them both to the same style sheet.

Stand-alone SVG content textually included in an XML document
There is a single parse tree, using multiple namespaces; one or more subtrees are in the SVG namespace.
Style sheets defined anywhere within the XML document (in style elements or style attributes, or in external
style sheets linked with the style sheet processing instruction) apply across the entire document, including
those parts of it in the SVG namespace. To get different styling for the SVG part, use the ‘style’ attribute, or
put an ‘id’ on the ‘svg’ element and use contextual CSS selectors, or use XSL selectors.

6.16 User agent style sheet

The user agent shall maintain a user agent style sheet ([CSS2], section 6.4) for elements in the SVG namespace for
visual media ([CSS2], section 7.3.1). The user agent style sheet below is expressed using CSS syntax; however, user
agents are required to support the behavior that corresponds to this default style sheet even if CSS style sheets are
not supported in the user agent:

svg, symbol, image, marker, pattern, foreignObject { overflow: hidden }
svg { width:attr(width); height:attr(height) }

The first line of the above user agent style sheet will cause the initial clipping path to be established at the bounds
of the initial viewport. Furthermore, it will cause new clipping paths to be established at the bounds of the listed
elements, all of which are elements that establish a new viewport. (Refer to the description of SVG's use of the
‘overflow’ property for more information.)

The second line of the above user agent style sheet will cause the ‘width’ and ‘height’ attributes on the ‘svg’
element to be used as the default values for the 'width' and 'height' properties during layout ([CSS2], chapter 9).

6.17 Aural style sheets

For the purposes of aural media, SVG represents a stylable XML grammar. In user agents that support CSS aural
style sheets, aural style properties ([CSS2], chapter 19) can be applied as defined in CSS2.

Aural style properties can be applied to any SVG element that can contain character data content, including
‘desc’ ‘title’ ‘tspan’, ‘tref’, ‘altGlyph’ and ‘textPath’. On user agents that support aural style sheets, the following
CSS2 properties can be applied:

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#cascade
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/visudet.html#propdef-width
http://www.w3.org/TR/2008/REC-CSS2-20080411/visudet.html#propdef-height
http://www.w3.org/TR/2008/REC-CSS2-20080411/visuren.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html


Aural property Definition in [CSS2]

‘azimuth’ Section 19.7

‘cue’ Section 19.5

‘cue-after’ Section 19.5

‘cue-before’ Section 19.5

‘elevation’ Section 19.7

‘pause’ Section 19.4

‘pause-after’ Section 19.4

‘pause-before’ Section 19.4

‘pitch’ Section 19.8

‘pitch-range’ Section 19.8

‘play-during’ Section 19.6

‘richness’ Section 19.8

‘speak’ Section 19.3

‘speak-header’ Section 17.7.1

‘speak-numeral’ Section 19.9

‘speak-punctuation’ Section 19.9

‘speech-rate’ Section 19.8

‘stress’ Section 19.8

‘voice-family’ Section 19.8

‘volume’ Section 19.2

For user agents that support aural style sheets and also support DOM Level 2 Core [DOM2], the user agent is
required to support the DOM interfaces defined in Document Object Model CSS ([DOM2STYLE], chapter 2) that
correspond to aural properties. (See Relationship with DOM2 CSS object model.)

http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-azimuth
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-cue
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-cue-after
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-cue-before
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-elevation
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-pause
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-pause-after
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-pause-before
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-pitch
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-pitch-range
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-play-during
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-richness
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-speak
http://www.w3.org/TR/2008/REC-CSS2-20080411/tables.html#propdef-speak-header
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-speak-numeral
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-speak-punctuation
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-speech-rate
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-stress
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-voice-family
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-volume
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html


6.18 DOM interfaces

6.18.1 Interface SVGStyleElement

The SVGStyleElement interface corresponds to the ‘style’ element.

interface SVGStyleElement : SVGElement,
SVGLangSpace {

attribute DOMString type setraises(DOMException);
attribute DOMString media setraises(DOMException);
attribute DOMString title setraises(DOMException);

};

Attributes:

• type (DOMString)

Corresponds to attribute ‘type’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• media (DOMString)

Corresponds to attribute ‘media’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• title (DOMString)

Corresponds to attribute ‘title’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


7 Coordinate Systems, Transformations and Units

Contents

7.1 Introduction
7.2 The initial viewport
7.3 The initial coordinate system
7.4 Coordinate system transformations
7.5 Nested transformations
7.6 The ‘transform’ attribute
7.7 The ‘viewBox’ attribute
7.8 The ‘preserveAspectRatio’ attribute
7.9 Establishing a new viewport
7.10 Units
7.11 Object bounding box units
7.12 Intrinsic sizing properties of the viewport of SVG content
7.13 Geographic coordinate systems
7.14 The ‘svg:transform’ attribute
7.15 DOM interfaces

7.15.1 Interface SVGPoint
7.15.2 Interface SVGPointList
7.15.3 Interface SVGMatrix
7.15.4 Interface SVGTransform
7.15.5 Interface SVGTransformList
7.15.6 Interface SVGAnimatedTransformList
7.15.7 Interface SVGPreserveAspectRatio
7.15.8 Interface SVGAnimatedPreserveAspectRatio

7.1 Introduction

For all media, the SVG canvas describes "the space where the SVG content is rendered." The canvas is infinite for
each dimension of the space, but rendering occurs relative to a finite rectangular region of the canvas. This finite
rectangular region is called the SVG viewport. For visual media ([CSS2], section 7.3.1) the SVG viewport is the
viewing area where the user sees the SVG content.

The size of the SVG viewport (i.e., its width and height) is determined by a negotiation process (see Estab-
lishing the size of the initial viewport) between the SVG document fragment and its parent (real or implicit). Once
that negotiation process is completed, the SVG user agent is provided the following information:

• a number (usually an integer) that represents the width in "pixels" of the viewport
• a number (usually an integer) that represents the height in "pixels" of the viewport

http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group


• (highly desirable but not required) a real number value that indicates the size in real world units, such as
millimeters, of a "pixel" (i.e., a px unit as defined in CSS2 ([CSS2], section 4.3.2)

Using the above information, the SVG user agent determines the viewport, an initial viewport coordinate sys-
tem and an initial user coordinate system such that the two coordinates systems are identical. Both coordinates
systems are established such that the origin matches the origin of the viewport (for the root viewport, the viewport
origin is at the top/left corner), and one unit in the initial coordinate system equals one "pixel" in the viewport.
(See Initial coordinate system.) The viewport coordinate system is also called viewport space and the user co-
ordinate system is also called user space.

Lengths in SVG can be specified as:

• (if no unit identifier is provided) values in user space — for example, "15"
• (if a unit identifier is provided) a length expressed as an absolute or relative unit measure — for example,

"15mm" or "5em"

The supported length unit identifiers are: em, ex, px, pt, pc, cm, mm, in, and percentages.
A new user space (i.e., a new current coordinate system) can be established at any place within an SVG docu-

ment fragment by specifying transformations in the form of transformation matrices or simple transformation
operations such as rotation, skewing, scaling and translation. Establishing new user spaces via coordinate system
transformations are fundamental operations to 2D graphics and represent the usual method of controlling the size,
position, rotation and skew of graphic objects.

New viewports also can be established. By establishing a new viewport, you can redefine the meaning of
percentages units and provide a new reference rectangle for "fitting" a graphic into a particular rectangular area.
("Fit" means that a given graphic is transformed in such a way that its bounding box in user space aligns exactly
with the edges of a given viewport.)

7.2 The initial viewport

The SVG user agent negotiates with its parent user agent to determine the viewport into which the SVG user agent
can render the document. In some circumstances, SVG content will be embedded (by reference or inline) within a
containing document. This containing document might include attributes, properties and/or other parameters (ex-
plicit or implicit) which specify or provide hints about the dimensions of the viewport for the SVG content. SVG
content itself optionally can provide information about the appropriate viewport region for the content via the
‘width’ and ‘height’ XML attributes on the outermost svg element. The negotiation process uses any information
provided by the containing document and the SVG content itself to choose the viewport location and size.

The ‘width’ attribute on the outermost svg element establishes the viewport's width, unless the following con-
ditions are met:

• the SVG content is a separately stored resource that is embedded by reference (such as the ‘object’ element in
XHTML [XHTML]), or the SVG content is embedded inline within a containing document;

• and the referencing element or containing document is styled using CSS [CSS2] or XSL [XSL];
• and there are CSS-compatible positioning properties ([CSS2], section 9.3) specified on the referencing element

http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#length-units
http://www.w3.org/TR/2008/REC-CSS2-20080411/visuren.html#positioning-scheme


(e.g., the ‘object’ element) or on the containing document's outermost svg element that are sufficient to estab-
lish the width of the viewport.

Under these conditions, the positioning properties establish the viewport's width.
Similarly, if there are positioning properties specified on the referencing element or on the outermost svg

element that are sufficient to establish the height of the viewport, then these positioning properties establish the
viewport's height; otherwise, the ‘height’ attribute on the outermost svg element establishes the viewport's height.

If the ‘width’ or ‘height’ attributes on the outermost svg element are in user units (i.e., no unit identifier has
been provided), then the value is assumed to be equivalent to the same number of "px" units (see Units).

In the following example, an SVG graphic is embedded inline within a parent XML document which is
formatted using CSS layout rules. Since CSS positioning properties are not provided on the outermost svg element,
the width="100px" and height="200px" attributes determine the size of the initial viewport:

<?xml version="1.0" standalone="yes"?>
<parent xmlns="http://some.url">

<!-- SVG graphic -->
<svg xmlns='http://www.w3.org/2000/svg'

width="100px" height="200px" version="1.1">
<path d="M100,100 Q200,400,300,100"/>
<!-- rest of SVG graphic would go here -->

</svg>

</parent>

The initial clipping path for the SVG document fragment is established according to the rules described in The
initial clipping path.

7.3 The initial coordinate system

For the outermost svg element, the SVG user agent determines an initial viewport coordinate system and an
initial user coordinate system such that the two coordinates systems are identical. The origin of both coordinate
systems is at the origin of the viewport, and one unit in the initial coordinate system equals one "pixel" (i.e., a px
unit as defined in CSS2 ([CSS2], section 4.3.2) in the viewport. In most cases, such as stand-alone SVG documents
or SVG document fragments embedded (by reference or inline) within XML parent documents where the parent's
layout is determined by CSS [CSS2] or XSL [XSL], the initial viewport coordinate system (and therefore the initial
user coordinate system) has its origin at the top/left of the viewport, with the positive x-axis pointing towards the
right, the positive y-axis pointing down, and text rendered with an "upright" orientation, which means glyphs are
oriented such that Roman characters and full-size ideographic characters for Asian scripts have the top edge of the
corresponding glyphs oriented upwards and the right edge of the corresponding glyphs oriented to the right.

If the SVG implementation is part of a user agent which supports styling XML documents using CSS2 com-
patible px units, then the SVG user agent should get its initial value for the size of a px unit in real world units to
match the value used for other XML styling operations; otherwise, if the user agent can determine the size of a px
unit from its environment, it should use that value; otherwise, it should choose an appropriate size for one px unit.
In all cases, the size of a px must be in conformance with the rules described in CSS2 ([CSS2], section 4.3.2).

http://www.w3.org/TR/2008/REC-CSS2-20080411/visuren.html#positioning-scheme
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#length-units
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#length-units


Example InitialCoords below shows that the initial coordinate system has the origin at the top/left with the
x-axis pointing to the right and the y-axis pointing down. The initial user coordinate system has one user unit
equal to the parent (implicit or explicit) user agent's "pixel".

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="300px" height="100px" version="1.1"

xmlns="http://www.w3.org/2000/svg">
<desc>Example InitialCoords - SVG's initial coordinate system</desc>

<g fill="none" stroke="black" stroke-width="3" >
<line x1="0" y1="1.5" x2="300" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="100" />

</g>
<g fill="red" stroke="none" >

<rect x="0" y="0" width="3" height="3" />
<rect x="297" y="0" width="3" height="3" />
<rect x="0" y="97" width="3" height="3" />

</g>
<g font-size="14" font-family="Verdana" >

<text x="10" y="20">(0,0)</text>
<text x="240" y="20">(300,0)</text>
<text x="10" y="90">(0,100)</text>

</g>
</svg>

Example InitialCoords

7.4 Coordinate system transformations

A new user space (i.e., a new current coordinate system) can be established by specifying transformations in the
form of a ‘transform’ attribute on a container element or graphics element or a ‘viewBox’ attribute on an ‘svg’,
‘symbol’, ‘marker’, ‘pattern’ and the ‘view’ element. The ‘transform’ and ‘viewBox’ attributes transform user space
coordinates and lengths on sibling attributes on the given element (see effect of the ‘transform’ attribute on sibling
attributes and effect of the ‘viewBox’ attribute on sibling attributes) and all of its descendants. Transformations
can be nested, in which case the effect of the transformations are cumulative.

Example OrigCoordSys below shows a document without transformations. The text string is specified in the
initial coordinate system.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="400px" height="150px"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example OrigCoordSys - Simple transformations: original picture</desc>
<g fill="none" stroke="black" stroke-width="3" >

<!-- Draw the axes of the original coordinate system -->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />

</g>
<g>



<text x="30" y="30" font-size="20" font-family="Verdana" >
ABC (orig coord system)

</text>
</g>

</svg>

Example OrigCoordSys

Example NewCoordSys establishes a new user coordinate system by specifying transform="translate(50,50)" on the
third ‘g’ element below. The new user coordinate system has its origin at location (50,50) in the original coordin-
ate system. The result of this transformation is that the coordinate (30,30) in the new user coordinate system gets
mapped to coordinate (80,80) in the original coordinate system (i.e., the coordinates have been translated by 50
units in X and 50 units in Y).

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="400px" height="150px"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example NewCoordSys - New user coordinate system</desc>
<g fill="none" stroke="black" stroke-width="3" >

<!-- Draw the axes of the original coordinate system -->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />

</g>
<g>

<text x="30" y="30" font-size="20" font-family="Verdana" >
ABC (orig coord system)

</text>
</g>
<!-- Establish a new coordinate system, which is

shifted (i.e., translated) from the initial coordinate
system by 50 user units along each axis. -->

<g transform="translate(50,50)">
<g fill="none" stroke="red" stroke-width="3" >

<!-- Draw lines of length 50 user units along
the axes of the new coordinate system -->

<line x1="0" y1="0" x2="50" y2="0" stroke="red" />
<line x1="0" y1="0" x2="0" y2="50" />

</g>
<text x="30" y="30" font-size="20" font-family="Verdana" >

ABC (translated coord system)
</text>

</g>
</svg>



Example NewCoordSys

Example RotateScale illustrates simple rotate and scale transformations. The example defines two new coordinate
systems:

• one which is the result of a translation by 50 units in X and 30 units in Y, followed by a rotation of 30 degrees
• another which is the result of a translation by 200 units in X and 40 units in Y, followed by a scale transform-

ation of 1.5.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="400px" height="120px" version="1.1"

xmlns="http://www.w3.org/2000/svg">
<desc>Example RotateScale - Rotate and scale transforms</desc>
<g fill="none" stroke="black" stroke-width="3" >

<!-- Draw the axes of the original coordinate system -->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="120" />

</g>
<!-- Establish a new coordinate system whose origin is at (50,30)

in the initial coord. system and which is rotated by 30 degrees. -->
<g transform="translate(50,30)">

<g transform="rotate(30)">
<g fill="none" stroke="red" stroke-width="3" >

<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />

</g>
<text x="0" y="0" font-size="20" font-family="Verdana" fill="blue" >

ABC (rotate)
</text>

</g>
</g>
<!-- Establish a new coordinate system whose origin is at (200,40)

in the initial coord. system and which is scaled by 1.5. -->
<g transform="translate(200,40)">

<g transform="scale(1.5)">
<g fill="none" stroke="red" stroke-width="3" >

<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />

</g>
<text x="0" y="0" font-size="20" font-family="Verdana" fill="blue" >

ABC (scale)
</text>

</g>
</g>

</svg>



Example RotateScale

Example Skew defines two coordinate systems which are skewed relative to the origin coordinate system.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="400px" height="120px" version="1.1"

xmlns="http://www.w3.org/2000/svg">
<desc>Example Skew - Show effects of skewX and skewY</desc>
<g fill="none" stroke="black" stroke-width="3" >

<!-- Draw the axes of the original coordinate system -->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="120" />

</g>
<!-- Establish a new coordinate system whose origin is at (30,30)

in the initial coord. system and which is skewed in X by 30 degrees. -->
<g transform="translate(30,30)">

<g transform="skewX(30)">
<g fill="none" stroke="red" stroke-width="3" >

<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />

</g>
<text x="0" y="0" font-size="20" font-family="Verdana" fill="blue" >

ABC (skewX)
</text>

</g>
</g>
<!-- Establish a new coordinate system whose origin is at (200,30)

in the initial coord. system and which is skewed in Y by 30 degrees. -->
<g transform="translate(200,30)">

<g transform="skewY(30)">
<g fill="none" stroke="red" stroke-width="3" >

<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />

</g>
<text x="0" y="0" font-size="20" font-family="Verdana" fill="blue" >

ABC (skewY)
</text>

</g>
</g>

</svg>

Example Skew



Mathematically, all transformations can be represented as 3x3 transformation matrices of the following form:

Since only six values are used in the above 3x3 matrix, a transformation matrix is also expressed as a vector:
[a b c d e f].

Transformations map coordinates and lengths from a new coordinate system into a previous coordinate sys-
tem:

Simple transformations are represented in matrix form as follows:

• Translation is equivalent to the matrix

or [1 0 0 1 tx ty], where tx and ty are the distances to translate coordinates in X and Y, respectively.

• Scaling is equivalent to the matrix

or [sx 0 0 sy 0 0]. One unit in the X and Y directions in the new coordinate system equals sx and sy units in
the previous coordinate system, respectively.

• Rotation about the origin is equivalent to the matrix

or [cos(a) sin(a) -sin(a) cos(a) 0 0], which has the effect of rotating the coordinate system axes by angle a.



• A skew transformation along the x-axis is equivalent to the matrix

or [1 0 tan(a) 1 0 0], which has the effect of skewing X coordinates by angle a.

• A skew transformation along the y-axis is equivalent to the matrix

or [1 tan(a) 0 1 0 0], which has the effect of skewing Y coordinates by angle a.

7.5 Nested transformations

Transformations can be nested to any level. The effect of nested transformations is to post-multiply (i.e., concat-
enate) the subsequent transformation matrices onto previously defined transformations:

For each given element, the accumulation of all transformations that have been defined on the given element
and all of its ancestors up to and including the element that established the current viewport (usually, the ‘svg’
element which is the most immediate ancestor to the given element) is called the current transformation matrix
or CTM. The CTM thus represents the mapping of current user coordinates to viewport coordinates:

Example Nested illustrates nested transformations.



<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="400px" height="150px" version="1.1"

xmlns="http://www.w3.org/2000/svg">
<desc>Example Nested - Nested transformations</desc>
<g fill="none" stroke="black" stroke-width="3" >

<!-- Draw the axes of the original coordinate system -->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />

</g>
<!-- First, a translate -->
<g transform="translate(50,90)">

<g fill="none" stroke="red" stroke-width="3" >
<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />

</g>
<text x="0" y="0" font-size="16" font-family="Verdana" >

....Translate(1)
</text>
<!-- Second, a rotate -->
<g transform="rotate(-45)">

<g fill="none" stroke="green" stroke-width="3" >
<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />

</g>
<text x="0" y="0" font-size="16" font-family="Verdana" >

....Rotate(2)
</text>
<!-- Third, another translate -->
<g transform="translate(130,160)">

<g fill="none" stroke="blue" stroke-width="3" >
<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />

</g>
<text x="0" y="0" font-size="16" font-family="Verdana" >

....Translate(3)
</text>

</g>
</g>

</g>
</svg>

Example Nested

In the example above, the CTM within the third nested transformation (i.e., the transform="translate(130,160)")



consists of the concatenation of the three transformations, as follows:

7.6 The ‘transform’ attribute

The value of the ‘transform’ attribute is a <transform-list>, which is defined as a list of transform definitions,
which are applied in the order provided. The individual transform definitions are separated by whitespace and/or
a comma. The available types of transform definitions include:

• matrix(<a> <b> <c> <d> <e> <f>), which specifies a transformation in the form of a transformation matrix of
six values. matrix(a,b,c,d,e,f) is equivalent to applying the transformation matrix [a b c d e f].

• translate(<tx> [<ty>]), which specifies a translation by tx and ty. If <ty> is not provided, it is assumed to be
zero.

• scale(<sx> [<sy>]), which specifies a scale operation by sx and sy. If <sy> is not provided, it is assumed to be
equal to <sx>.

• rotate(<rotate-angle> [<cx> <cy>]), which specifies a rotation by <rotate-angle> degrees about a given point.
If optional parameters <cx> and <cy> are not supplied, the rotate is about the origin of the current user co-
ordinate system. The operation corresponds to the matrix [cos(a) sin(a) -sin(a) cos(a) 0 0].
If optional parameters <cx> and <cy> are supplied, the rotate is about the point (cx, cy). The operation repres-
ents the equivalent of the following specification: translate(<cx>, <cy>) rotate(<rotate-angle>) translate(-<cx>,



-<cy>).

• skewX(<skew-angle>), which specifies a skew transformation along the x-axis.

• skewY(<skew-angle>), which specifies a skew transformation along the y-axis.

All numeric values are <number>s.
If a list of transforms is provided, then the net effect is as if each transform had been specified separately in

the order provided. For example,

<g transform="translate(-10,-20) scale(2) rotate(45) translate(5,10)">
<!-- graphics elements go here -->

</g>

is functionally equivalent to:

<g transform="translate(-10,-20)">
<g transform="scale(2)">

<g transform="rotate(45)">
<g transform="translate(5,10)">

<!-- graphics elements go here -->
</g>

</g>
</g>

</g>

The ‘transform’ attribute is applied to an element before processing any other coordinate or length values supplied
for that element. In the element

<rect x="10" y="10" width="20" height="20" transform="scale(2)"/>

the x, y, width and height values are processed after the current coordinate system has been scaled uniformly by
a factor of 2 by the ‘transform’ attribute. Attributes x, y, width and height (and any other attributes or properties)
are treated as values in the new user coordinate system, not the previous user coordinate system. Thus, the above
‘rect’ element is functionally equivalent to:

<g transform="scale(2)">
<rect x="10" y="10" width="20" height="20"/>

</g>

The following is the Backus-Naur Form (BNF) for values for the ‘transform’ attribute. The following notation is
used:

• *: 0 or more
• +: 1 or more
• ?: 0 or 1
• (): grouping



• |: separates alternatives
• double quotes surround literals

transform-list:
wsp* transforms? wsp*

transforms:
transform
| transform comma-wsp+ transforms

transform:
matrix
| translate
| scale
| rotate
| skewX
| skewY

matrix:
"matrix" wsp* "(" wsp*

number comma-wsp
number comma-wsp
number comma-wsp
number comma-wsp
number comma-wsp
number wsp* ")"

translate:
"translate" wsp* "(" wsp* number ( comma-wsp number )? wsp* ")"

scale:
"scale" wsp* "(" wsp* number ( comma-wsp number )? wsp* ")"

rotate:
"rotate" wsp* "(" wsp* number ( comma-wsp number comma-wsp number )? wsp* ")"

skewX:
"skewX" wsp* "(" wsp* number wsp* ")"

skewY:
"skewY" wsp* "(" wsp* number wsp* ")"

number:
sign? integer-constant
| sign? floating-point-constant

comma-wsp:
(wsp+ comma? wsp*) | (comma wsp*)

comma:
","

integer-constant:
digit-sequence

floating-point-constant:
fractional-constant exponent?
| digit-sequence exponent

fractional-constant:
digit-sequence? "." digit-sequence
| digit-sequence "."

exponent:
( "e" | "E" ) sign? digit-sequence

sign:
"+" | "-"

digit-sequence:
digit
| digit digit-sequence

digit:
"0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"



wsp:
(#x20 | #x9 | #xD | #xA)

For the ‘transform’ attribute:
Animatable: yes.

See the ‘animateTransform’ element for information on animating transformations.

7.7 The ‘viewBox’ attribute

It is often desirable to specify that a given set of graphics stretch to fit a particular container element. The ‘viewBox’
attribute provides this capability.

All elements that establish a new viewport (see elements that establish viewports), plus the ‘marker’, ‘pattern’
and ‘view’ elements have attribute ‘viewBox’. The value of the ‘viewBox’ attribute is a list of four numbers <min-x>,
<min-y>, <width> and <height>, separated by whitespace and/or a comma, which specify a rectangle in user space
which should be mapped to the bounds of the viewport established by the given element, taking into account at-
tribute ‘preserveAspectRatio’. If specified, an additional transformation is applied to all descendants of the given
element to achieve the specified effect.

A negative value for <width> or <height> is an error (see Error processing). A value of zero disables rendering
of the element.

Example ViewBox illustrates the use of the ‘viewBox’ attribute on the outermost svg element to specify that
the SVG content should stretch to fit bounds of the viewport.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="300px" height="200px" version="1.1"

viewBox="0 0 1500 1000" preserveAspectRatio="none"
xmlns="http://www.w3.org/2000/svg">

<desc>Example ViewBox - uses the viewBox
attribute to automatically create an initial user coordinate
system which causes the graphic to scale to fit into the
viewport no matter what size the viewport is.</desc>

<!-- This rectangle goes from (0,0) to (1500,1000) in user space.
Because of the viewBox attribute above,
the rectangle will end up filling the entire area
reserved for the SVG content. -->

<rect x="0" y="0" width="1500" height="1000"
fill="yellow" stroke="blue" stroke-width="12"  />

<!-- A large, red triangle -->
<path fill="red"  d="M 750,100 L 250,900 L 1250,900 z"/>
<!-- A text string that spans most of the viewport -->
<text x="100" y="600" font-size="200" font-family="Verdana" >

Stretch to fit
</text>

</svg>



Example ViewBox

Rendered into

viewport with

width=300px,

height=200px

Rendered into

viewport with

width=150px,

height=200px

The effect of the ‘viewBox’ attribute is that the user agent automatically supplies the appropriate transformation
matrix to map the specified rectangle in user space to the bounds of a designated region (often, the viewport). To
achieve the effect of the example on the left, with viewport dimensions of 300 by 200 pixels, the user agent needs
to automatically insert a transformation which scales both X and Y by 0.2. The effect is equivalent to having a
viewport of size 300px by 200px and the following supplemental transformation in the document, as follows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="300px" height="200px" version="1.1"

xmlns="http://www.w3.org/2000/svg">
<g transform="scale(0.2)">

<!-- Rest of document goes here -->
</g>

</svg>

To achieve the effect of the example on the right, with viewport dimensions of 150 by 200 pixels, the user agent
needs to automatically insert a transformation which scales X by 0.1 and Y by 0.2. The effect is equivalent to hav-
ing a viewport of size 150px by 200px and the following supplemental transformation in the document, as follows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="150px" height="200px" version="1.1"

xmlns="http://www.w3.org/2000/svg">
<g transform="scale(0.1 0.2)">

<!-- Rest of document goes here -->
</g>

</svg>



(Note: in some cases the user agent will need to supply a translate transformation in addition to a scale trans-
formation. For example, on an outermost svg element, a translate transformation will be needed if the ‘viewBox’
attributes specifies values other than zero for <min-x> or <min-y>.)

Unlike the ‘transform’ attribute (see effect of the ‘transform’ on sibling attributes), the automatic transforma-
tion that is created due to a ‘viewBox’ does not affect the ‘x’, ‘y’, ‘width’ and ‘height’ attributes (or in the case of the
‘marker’ element, the ‘markerWidth’ and ‘markerHeight’ attributes) on the element with the ‘viewBox’ attribute.
Thus, in the example above which shows an ‘svg’ element which has attributes ‘width’, ‘height’ and ‘viewBox’, the
‘width’ and ‘height’ attributes represent values in the coordinate system that exists before the ‘viewBox’ transform-
ation is applied. On the other hand, like the ‘transform’ attribute, it does establish a new coordinate system for all
other attributes and for descendant elements.

For the ‘viewBox’ attribute:
Animatable: yes.

7.8 The ‘preserveAspectRatio’ attribute

In some cases, typically when using the ‘viewBox’ attribute, it is desirable that the graphics stretch to fit non-uni-
formly to take up the entire viewport. In other cases, it is desirable that uniform scaling be used for the purposes
of preserving the aspect ratio of the graphics.

Attribute preserveAspectRatio="[defer] <align> [<meetOrSlice>]", which is available for all elements that es-
tablish a new viewport (see elements that establish viewports), plus the ‘image’, ‘marker’, ‘pattern’ and ‘view’ ele-
ments, indicates whether or not to force uniform scaling.

For elements that establish a new viewport (see elements that establish viewports), plus the ‘marker’, ‘pattern’
and ‘view’ elements, ‘preserveAspectRatio’ only applies when a value has been provided for ‘viewBox’ on the same
element. For these elements, if attribute ‘viewBox’ is not provided, then ‘preserveAspectRatio’ is ignored.

For ‘image’ elements, ‘preserveAspectRatio’ indicates how referenced images should be fitted with respect to
the reference rectangle and whether the aspect ratio of the referenced image should be preserved with respect to
the current user coordinate system.

If the value of ‘preserveAspectRatio’ on an ‘image’ element starts with 'defer' then the value of the ‘pre-
serveAspectRatio’ attribute on the referenced content if present should be used. If the referenced content lacks a
value for ‘preserveAspectRatio’ then the ‘preserveAspectRatio’ attribute should be processed as normal (ignoring
'defer'). For ‘preserveAspectRatio’ on all other elements the 'defer' portion of the attribute is ignored.

The <align> parameter indicates whether to force uniform scaling and, if so, the alignment method to use in
case the aspect ratio of the ‘viewBox’ doesn't match the aspect ratio of the viewport. The <align> parameter must
be one of the following strings:

• none - Do not force uniform scaling. Scale the graphic content of the given element non-uniformly if neces-
sary such that the element's bounding box exactly matches the viewport rectangle.
(Note: if <align> is none, then the optional <meetOrSlice> value is ignored.)

• xMinYMin - Force uniform scaling.
Align the <min-x> of the element's ‘viewBox’ with the smallest X value of the viewport.
Align the <min-y> of the element's ‘viewBox’ with the smallest Y value of the viewport.



• xMidYMin - Force uniform scaling.
Align the midpoint X value of the element's ‘viewBox’ with the midpoint X value of the viewport.
Align the <min-y> of the element's ‘viewBox’ with the smallest Y value of the viewport.

• xMaxYMin - Force uniform scaling.
Align the <min-x>+<width> of the element's ‘viewBox’ with the maximum X value of the viewport.
Align the <min-y> of the element's ‘viewBox’ with the smallest Y value of the viewport.

• xMinYMid - Force uniform scaling.
Align the <min-x> of the element's ‘viewBox’ with the smallest X value of the viewport.
Align the midpoint Y value of the element's ‘viewBox’ with the midpoint Y value of the viewport.

• xMidYMid (the default) - Force uniform scaling.
Align the midpoint X value of the element's ‘viewBox’ with the midpoint X value of the viewport.
Align the midpoint Y value of the element's ‘viewBox’ with the midpoint Y value of the viewport.

• xMaxYMid - Force uniform scaling.
Align the <min-x>+<width> of the element's ‘viewBox’ with the maximum X value of the viewport.
Align the midpoint Y value of the element's ‘viewBox’ with the midpoint Y value of the viewport.

• xMinYMax - Force uniform scaling.
Align the <min-x> of the element's ‘viewBox’ with the smallest X value of the viewport.
Align the <min-y>+<height> of the element's ‘viewBox’ with the maximum Y value of the viewport.

• xMidYMax - Force uniform scaling.
Align the midpoint X value of the element's ‘viewBox’ with the midpoint X value of the viewport.
Align the <min-y>+<height> of the element's ‘viewBox’ with the maximum Y value of the viewport.

• xMaxYMax - Force uniform scaling.
Align the <min-x>+<width> of the element's ‘viewBox’ with the maximum X value of the viewport.
Align the <min-y>+<height> of the element's ‘viewBox’ with the maximum Y value of the viewport.

The <meetOrSlice> parameter is optional and, if provided, is separated from the <align> value by one or more
spaces and then must be one of the following strings:

• meet (the default) - Scale the graphic such that:
◦ aspect ratio is preserved
◦ the entire ‘viewBox’ is visible within the viewport
◦ the ‘viewBox’ is scaled up as much as possible, while still meeting the other criteria

In this case, if the aspect ratio of the graphic does not match the viewport, some of the viewport will extend
beyond the bounds of the ‘viewBox’ (i.e., the area into which the ‘viewBox’ will draw will be smaller than the
viewport).

• slice - Scale the graphic such that:
◦ aspect ratio is preserved
◦ the entire viewport is covered by the ‘viewBox’
◦ the ‘viewBox’ is scaled down as much as possible, while still meeting the other criteria

In this case, if the aspect ratio of the ‘viewBox’ does not match the viewport, some of the ‘viewBox’ will
extend beyond the bounds of the viewport (i.e., the area into which the ‘viewBox’ will draw is larger than the
viewport).



Example PreserveAspectRatio illustrates the various options on ‘preserveAspectRatio’. To save space, XML entities
have been defined for the three repeated graphic objects, the rectangle with the smile inside and the outlines of
the two rectangles which have the same dimensions as the target viewports. The example creates several new
viewports by including ‘svg’ sub-elements embedded inside the outermost svg element (see Establishing a new
viewport).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"
[ <!ENTITY Smile "
<rect x='.5' y='.5' width='29' height='39' fill='black' stroke='red'/>
<g transform='translate(0, 5)'>
<circle cx='15' cy='15' r='10' fill='yellow'/>
<circle cx='12' cy='12' r='1.5' fill='black'/>
<circle cx='17' cy='12' r='1.5' fill='black'/>
<path d='M 10 19 A 8 8 0 0 0 20 19' stroke='black' stroke-width='2'/>
</g>
">
<!ENTITY Viewport1 "<rect x='.5' y='.5' width='49' height='29'
fill='none' stroke='blue'/>">
<!ENTITY Viewport2 "<rect x='.5' y='.5' width='29' height='59'
fill='none' stroke='blue'/>">
]>

<svg width="450px" height="300px" version="1.1"
xmlns="http://www.w3.org/2000/svg">

<desc>Example PreserveAspectRatio - illustrates preserveAspectRatio attribute</desc>
<rect x="1" y="1" width="448" height="298"

fill="none" stroke="blue"/>
<g font-size="9">

<text x="10" y="30">SVG to fit</text>
<g transform="translate(20,40)">&Smile;</g>
<text x="10" y="110">Viewport 1</text>
<g transform="translate(10,120)">&Viewport1;</g>
<text x="10" y="180">Viewport 2</text>
<g transform="translate(20,190)">&Viewport2;</g>

<g id="meet-group-1" transform="translate(100, 60)">
<text x="0" y="-30">--------------- meet ---------------</text>
<g><text y="-10">xMin*</text>&Viewport1;

<svg preserveAspectRatio="xMinYMin meet" viewBox="0 0 30 40"
width="50" height="30">&Smile;</svg></g>

<g transform="translate(70,0)"><text y="-10">xMid*</text>&Viewport1;
<svg preserveAspectRatio="xMidYMid meet" viewBox="0 0 30 40"

width="50" height="30">&Smile;</svg></g>
<g transform="translate(0,70)"><text y="-10">xMax*</text>&Viewport1;

<svg preserveAspectRatio="xMaxYMax meet" viewBox="0 0 30 40"
width="50" height="30">&Smile;</svg></g>

</g>

<g id="meet-group-2" transform="translate(250, 60)">
<text x="0" y="-30">---------- meet ----------</text>
<g><text y="-10">*YMin</text>&Viewport2;

<svg preserveAspectRatio="xMinYMin meet" viewBox="0 0 30 40"
width="30" height="60">&Smile;</svg></g>

<g transform="translate(50, 0)"><text y="-10">*YMid</text>&Viewport2;
<svg preserveAspectRatio="xMidYMid meet" viewBox="0 0 30 40"

width="30" height="60">&Smile;</svg></g>
<g transform="translate(100, 0)"><text y="-10">*YMax</text>&Viewport2;

<svg preserveAspectRatio="xMaxYMax meet" viewBox="0 0 30 40"
width="30" height="60">&Smile;</svg></g>

</g>

<g id="slice-group-1" transform="translate(100, 220)">
<text x="0" y="-30">---------- slice ----------</text>
<g><text y="-10">xMin*</text>&Viewport2;

<svg preserveAspectRatio="xMinYMin slice" viewBox="0 0 30 40"
width="30" height="60">&Smile;</svg></g>

<g transform="translate(50,0)"><text y="-10">xMid*</text>&Viewport2;
<svg preserveAspectRatio="xMidYMid slice" viewBox="0 0 30 40"

width="30" height="60">&Smile;</svg></g>
<g transform="translate(100,0)"><text y="-10">xMax*</text>&Viewport2;

<svg preserveAspectRatio="xMaxYMax slice" viewBox="0 0 30 40"



width="30" height="60">&Smile;</svg></g>
</g>

<g id="slice-group-2" transform="translate(250, 220)">
<text x="0" y="-30">--------------- slice ---------------</text>
<g><text y="-10">*YMin</text>&Viewport1;

<svg preserveAspectRatio="xMinYMin slice" viewBox="0 0 30 40"
width="50" height="30">&Smile;</svg></g>

<g transform="translate(70,0)"><text y="-10">*YMid</text>&Viewport1;
<svg preserveAspectRatio="xMidYMid slice" viewBox="0 0 30 40"

width="50" height="30">&Smile;</svg></g>
<g transform="translate(140,0)"><text y="-10">*YMax</text>&Viewport1;

<svg preserveAspectRatio="xMaxYMax slice" viewBox="0 0 30 40"
width="50" height="30">&Smile;</svg></g>

</g>
</g>

</svg>

Example PreserveAspectRatio

For the ‘preserveAspectRatio’ attribute:
Animatable: yes.

7.9 Establishing a new viewport

At any point in an SVG drawing, you can establish a new viewport into which all contained graphics is drawn by
including an ‘svg’ element inside SVG content. By establishing a new viewport, you also implicitly establish a new
viewport coordinate system, a new user coordinate system, and, potentially, a new clipping path (see the defini-
tion of the ‘overflow’ property). Additionally, there is a new meaning for percentage units defined to be relative to
the current viewport since a new viewport has been established (see Units).

The bounds of the new viewport are defined by the ‘x’, ‘y’, ‘width’ and ‘height’ attributes on the element es-
tablishing the new viewport, such as an ‘svg’ element. Both the new viewport coordinate system and the new user



coordinate system have their origins at (‘x’, ‘y’), where ‘x’ and ‘y’ represent the value of the corresponding attrib-
utes on the element establishing the viewport. The orientation of the new viewport coordinate system and the new
user coordinate system correspond to the orientation of the current user coordinate system for the element estab-
lishing the viewport. A single unit in the new viewport coordinate system and the new user coordinate system are
the same size as a single unit in the current user coordinate system for the element establishing the viewport.

Here is an example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4in" height="3in" version="1.1"

xmlns="http://www.w3.org/2000/svg">
<desc>This SVG drawing embeds another one,

thus establishing a new viewport
</desc>
<!-- The following statement establishing a new viewport

and renders SVG drawing B into that viewport -->
<svg x="25%" y="25%" width="50%" height="50%">

<!-- drawing B goes here -->
</svg>

</svg>

For an extensive example of creating new viewports, see Example PreserveAspectRatio.
The following elements establish new viewports:

• The ‘svg’ element
• A ‘symbol’ element define new viewports whenever they are instanced by a ‘use’ element.
• An ‘image’ element that references an SVG file will result in the establishment of a temporary new viewport

since the referenced resource by definition will have an ‘svg’ element.
• A ‘foreignObject’ element creates a new viewport for rendering the content that is within the element.

Whether a new viewport also establishes a new additional clipping path is determined by the value of the ‘over-
flow’ property on the element that establishes the new viewport. If a clipping path is created to correspond to
the new viewport, the clipping path's geometry is determined by the value of the ‘clip’ property. Also, see Clip to
viewport vs. clip to ‘viewBox’.

7.10 Units

All coordinates and lengths in SVG can be specified with or without a unit identifier.
When a coordinate or length value is a number without a unit identifier (e.g., "25"), then the given coordinate

or length is assumed to be in user units (i.e., a value in the current user coordinate system). For example:

<text font-size="50">Text size is 50 user units</text>

Alternatively, a coordinate or length value can be expressed as a number followed by a unit identifier (e.g., "25cm"
or "15em"). (Note that CSS defined properties used in a CSS style sheet or the ‘style’ attribute require units for non-



zero lengths, see SVG's styling properties.) The list of unit identifiers in SVG matches the list of unit identifiers in
CSS: em, ex, px, pt, pc, cm, mm and in. The <length> type can also have a percentage unit identifier. The following
describes how the various unit identifiers are processed:

• As in CSS, the em and ex unit identifiers are relative to the current font's font-size and x-height, respectively.
• One px unit is defined to be equal to one user unit. Thus, a length of "5px" is the same as a length of "5".

Note that at initialization, a user unit in the the initial coordinate system is equivalenced to the parent
environment's notion of a px unit. Thus, in the the initial coordinate system, because the user coordinate
system aligns exactly with the parent's coordinate system, and because often the parent's coordinate system
aligns with the device pixel grid, "5px" might actually map to 5 devices pixels. However, if there are any co-
ordinate system transformation due to the use of ‘transform’ or ‘viewBox’ attributes, because "5px" maps to
5 user units and because the coordinate system transformations have resulted in a revised user coordinate
system, "5px" likely will not map to 5 device pixels. As a result, in most circumstances, "px" units will not
map to the device pixel grid.

• The other absolute unit identifiers from CSS (i.e., pt, pc, cm, mm, in) are all defined as an appropriate multiple
of one px unit (which, according to the previous item, is defined to be equal to one user unit), based on what
the SVG user agent determines is the size of a px unit (possibly passed from the parent processor or envir-
onment at initialization time). For example, suppose that the user agent can determine from its environment
that "1px" corresponds to "0.2822222mm" (i.e., 90dpi). Then, for all processing of SVG content:

◦ "1pt" equals "1.25px" (and therefore 1.25 user units)
◦ "1pc" equals "15px" (and therefore 15 user units)
◦ "1mm" would be "3.543307px" (3.543307 user units)
◦ "1cm" equals "35.43307px" (and therefore 35.43307 user units)
◦ "1in" equals "90px" (and therefore 90 user units)

Note that use of px units or any other absolute unit identifiers can cause inconsistent visual results on different
viewing environments since the size of "1px" may map to a different number of user units on different systems;
thus, absolute units identifiers are only recommended for the ‘width’ and the ‘height’ on and situations where the
content contains no transformations and it is desirable to specify values relative to the device pixel grid or to a
particular real world unit size.

For percentage values that are defined to be relative to the size of viewport:

• For any x-coordinate value or width value expressed as a percentage of the viewport, the value to use is the
specified percentage of the actual-width in user units for the nearest containing viewport, where actual-width
is the width dimension of the viewport element within the user coordinate system for the viewport element.

• For any y-coordinate value or height value expressed as a percentage of the viewport, the value to use is
the specified percentage of the actual-height in user units for the nearest containing viewport, where actual-
height is the height dimension of the viewport element within the user coordinate system for the viewport
element.

• For any other length value expressed as a percentage of the viewport, the percentage is calculated as the spe-
cified percentage of sqrt((actual-width)**2 + (actual-height)**2))/sqrt(2).



Example Units below illustrates some of the processing rules for different types of units.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="400px" height="200px" viewBox="0 0 4000 2000"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<title>Example Units</title>
<desc>Illustrates various units options</desc>

<!-- Frame the picture -->
<rect x="5" y="5" width="3990" height="1990"

fill="none" stroke="blue" stroke-width="10"/>

<g fill="blue" stroke="red" font-family="Verdana" font-size="150">
<!-- Absolute unit specifiers -->
<g transform="translate(400,0)">

<text x="-50" y="300" fill="black" stroke="none">Abs. units:</text>
<rect x="0" y="400" width="4in" height="2in" stroke-width=".4in"/>
<rect x="0" y="750" width="384" height="192" stroke-width="38.4"/>
<g transform="scale(2)">

<rect x="0" y="600" width="4in" height="2in" stroke-width=".4in"/>
</g>

</g>

<!-- Relative unit specifiers -->
<g transform="translate(1600,0)">

<text x="-50" y="300" fill="black" stroke="none">Rel. units:</text>
<rect x="0" y="400" width="2.5em" height="1.25em" stroke-width=".25em"/>
<rect x="0" y="750" width="375" height="187.5" stroke-width="37.5"/>
<g transform="scale(2)">

<rect x="0" y="600" width="2.5em" height="1.25em" stroke-width=".25em"/>
</g>

</g>

<!-- Percentages -->
<g transform="translate(2800,0)">

<text x="-50" y="300" fill="black" stroke="none">Percentages:</text>
<rect x="0" y="400" width="10%" height="10%" stroke-width="1%"/>
<rect x="0" y="750" width="400" height="200" stroke-width="31.62"/>
<g transform="scale(2)">

<rect x="0" y="600" width="10%" height="10%" stroke-width="1%"/>
</g>

</g>
</g>

</svg>

Example Units

The three rectangles on the left demonstrate the use of one of the absolute unit identifiers, the "in" unit (inch). The
reference image above was generated on a 96dpi system (i.e., 1 inch = 96 pixels). Therefore, the topmost rectangle,



which is specified in inches, is exactly the same size as the middle rectangle, which is specified in user units such
that there are 96 user units for each corresponding inch in the topmost rectangle. (Note: on systems with different
screen resolutions, the top and middle rectangles will likely be rendered at different sizes.) The bottom rectangle
of the group illustrates what happens when values specified in inches are scaled.

The three rectangles in the middle demonstrate the use of one of the relative unit identifiers, the "em" unit.
Because the ‘font-size’ property has been set to 150 on the outermost ‘g’ element, each "em" unit is equal to 150
user units. The topmost rectangle, which is specified in "em" units, is exactly the same size as the middle rect-
angle, which is specified in user units such that there are 150 user units for each corresponding "em" unit in the
topmost rectangle. The bottom rectangle of the group illustrates what happens when values specified in "em" units
are scaled.

The three rectangles on the right demonstrate the use of percentages. Note that the width and height of the
viewport in the user coordinate system for the viewport element (in this case, the outermost svg element) are 4000
and 2000, respectively, because processing the ‘viewBox’ attribute results in a transformed user coordinate system.
The topmost rectangle, which is specified in percentage units, is exactly the same size as the middle rectangle,
which is specified in equivalent user units. In particular, note that the ‘stroke-width’ property in the middle rect-
angle is set to 1% of the sqrt((actual-width)**2 + (actual-height)**2)) / sqrt(2), which in this case is
.01*sqrt(4000*4000+2000*2000)/sqrt(2), or 31.62. The bottom rectangle of the group illustrates what happens when
values specified in percentage units are scaled.

7.11 Object bounding box units

The following elements offer the option of expressing coordinate values and lengths as fractions (and, in some
cases, percentages) of the bounding box, by setting a specified attribute to 'objectBoundingBox' on the given ele-
ment:



Element Attribute Effect

‘linearGradient’ ‘gradientUnits’ Indicates that the attributes which specify the gradient vector (‘x1’, ‘y1’,

‘x2’, ‘y2’) represent fractions or percentages of the bounding box of the

element to which the gradient is applied.

‘radialGradient’ ‘gradientUnits’ Indicates that the attributes which specify the center (‘cx’, ‘cy’), the radius

(‘r’) and focus (‘fx’, ‘fy’) represent fractions or percentages of the

bounding box of the element to which the gradient is applied.

‘pattern’ ‘patternUnits’ Indicates that the attributes which define how to tile the pattern (‘x’, ‘y’,

‘width’, ‘height’) are established using the bounding box of the element to

which the pattern is applied.

‘pattern’ ‘patternContentUnits’ Indicates that the user coordinate system for the contents of the pattern is

established using the bounding box of the element to which the pattern is

applied.

‘clipPath’ ‘clipPathUnits’ Indicates that the user coordinate system for the contents of the ‘clipPath’

element is established using the bounding box of the element to which

the clipping path is applied.

‘mask’ ‘maskUnits’ Indicates that the attributes which define the masking region (‘x’, ‘y’,

‘width’, ‘height’) is established using the bounding box of the element to

which the mask is applied.

‘mask’ ‘maskContentUnits’ Indicates that the user coordinate system for the contents of the ‘mask’

element are established using the bounding box of the element to which

the mask is applied.

‘filter’ ‘filterUnits’ Indicates that the attributes which define the filter effects region (‘x’, ‘y’,

‘width’, ‘height’) represent fractions or percentages of the bounding box of

the element to which the filter is applied.

‘filter’ ‘primitiveUnits’ Indicates that the various length values within the filter primitives

represent fractions or percentages of the bounding box of the element to

which the filter is applied.

In the discussion that follows, the term applicable element is the element to which the given effect applies. For
gradients and patterns, the applicable element is the graphics element which has its ‘fill’ or ‘stroke’ property ref-
erencing the given gradient or pattern. (See Inheritance of Painting Properties. For special rules concerning text
elements, see the discussion of object bounding box units and text elements.) For clipping paths, masks and filters,
the applicable element can be either a container element or a graphics element.



When keyword objectBoundingBox is used, then the effect is as if a supplemental transformation matrix were
inserted into the list of nested transformation matrices to create a new user coordinate system.

First, the (minx,miny) and (maxx,maxy) coordinates are determined for the applicable element and all of its
descendants. The values minx, miny, maxx and maxy are determined by computing the maximum extent of the
shape of the element in X and Y with respect to the user coordinate system for the applicable element. The bound-
ing box is the tightest fitting rectangle aligned with the axes of the applicable element's user coordinate system
that entirely encloses the applicable element and its descendants. The bounding box is computed exclusive of any
values for clipping, masking, filter effects, opacity and stroke-width. For curved shapes, the bounding box encloses
all portions of the shape, not just end points. For ‘text’ elements, for the purposes of the bounding box calculation,
each glyph is treated as a separate graphics element. The calculations assume that all glyphs occupy the full glyph
cell. For example, for horizontal text, the calculations assume that each glyph extends vertically to the full ascent
and descent values for the font.

Then, coordinate (0,0) in the new user coordinate system is mapped to the (minx,miny) corner of the tight
bounding box within the user coordinate system of the applicable element and coordinate (1,1) in the new user
coordinate system is mapped to the (maxx,maxy) corner of the tight bounding box of the applicable element. In
most situations, the following transformation matrix produces the correct effect:

[ (maxx-minx) 0 0 (maxy-miny) minx miny ]

When percentages are used with attributes that define the gradient vector, the pattern tile, the filter region or
the masking region, a percentage represents the same value as the corresponding decimal value (e.g., 50% means
the same as 0.5). If percentages are used within the content of a ‘pattern’, ‘clipPath’, ‘mask’ or ‘filter’ element, these
values are treated according to the processing rules for percentages as defined in Units.

Any numeric value can be specified for values expressed as a fraction or percentage of object bounding box
units. In particular, fractions less are zero or greater than one and percentages less than 0% or greater than 100%
can be specified.

Keyword objectBoundingBox should not be used when the geometry of the applicable element has no width
or no height, such as the case of a horizontal or vertical line, even when the line has actual thickness when viewed
due to having a non-zero stroke width since stroke width is ignored for bounding box calculations. When the geo-
metry of the applicable element has no width or height and objectBoundingBox is specified, then the given effect
(e.g., a gradient or a filter) will be ignored.

7.12 Intrinsic sizing properties of the viewport of SVG content

SVG needs to specify how to calculate some intrinsic sizing properties to enable inclusion within other languages.
The intrinsic width and height of the viewport of SVG content must be determined from the ‘width’ and ‘height’
attributes. If either of these are not specified, a value of '100%' must be assumed. Note: the ‘width’ and ‘height’
attributes are not the same as the CSS width and height properties. Specifically, percentage values do not provide
an intrinsic width or height, and do not indicate a percentage of the containing block. Rather, once the viewport is
established, they indicate the portion of the viewport that is actually covered by image data.

The intrinsic aspect ratio of the viewport of SVG content is necessary for example, when including SVG from



an ‘object’ element in HTML styled with CSS. It is possible (indeed, common) for an SVG graphic to have an in-
trinsic aspect ratio but not to have an intrinsic width or height. The intrinsic aspect ratio must be calculated based
upon the following rules:

• The aspect ratio is calculated by dividing a width by a height.
• If the ‘width’ and ‘height’ of the rootmost ‘svg’ element are both specified with unit identifiers (in, mm, cm,

pt, pc, px, em, ex) or in user units, then the aspect ratio is calculated from the ‘width’ and ‘height’ attributes
after resolving both values to user units.

• If either/both of the ‘width’ and ‘height’ of the rootmost ‘svg’ element are in percentage units (or omitted),
the aspect ratio is calculated from the width and height values of the ‘viewBox’ specified for the current SVG
document fragment. If the ‘viewBox’ is not correctly specified, or set to 'none', the intrinsic aspect ratio can-
not be calculated and is considered unspecified.

Examples:
Example: Intrinsic Aspect Ratio 1

<svg xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny"
width="10cm" height="5cm">

...
</svg>

In this example the intrinsic aspect ratio of the viewport is 2:1. The intrinsic width is 10cm and the intrinsic height
is 5cm.
Example: Intrinsic Aspect Ratio 2

<svg xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny"
width="100%" height="50%" viewBox="0 0 200 200">

...
</svg>

In this example the intrinsic aspect ratio of the rootmost viewport is 1:1. An aspect ratio calculation in this case
allows embedding in an object within a containing block that is only constrained in one direction.
Example: Intrinsic Aspect Ratio 3

<svg xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny"
width="10cm" viewBox="0 0 200 200">

...
</svg>

In this case the intrinsic aspect ratio is 1:1.
Example: Intrinsic Aspect Ratio 4

<svg xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny"
width="75%" height="10cm" viewBox="0 0 200 200">

...
</svg>

In this example, the intrinsic aspect ratio is 1:1.



7.13 Geographic coordinate systems

In order to allow interoperability between SVG content generators and user agents dealing with maps encoded in
SVG, the use of a common metadata definition for describing the coordinate system used to generate SVG docu-
ments is encouraged.

Such metadata must be added under the ‘metadata’ element of the topmost ‘svg’ element describing the map,
consisting of an RDF description of the Coordinate Reference System definition used to generate the SVG map
[RDF-PRIMER]. Note that the presence of this metadata does not affect the rendering of the SVG in any way; it
merely provides added semantic value for applications that make use of combined maps.

The definition must be conformant to the XML grammar described in GML 3.2.1, an OpenGIS Standard for
encoding common CRS data types in XML [GML]. In order to correctly map the 2-dimensional data used by SVG,
the CRS must be of subtype ProjectedCRS or Geographic2dCRS. The first axis of the described CRS maps the
SVG x-axis and the second axis maps the SVG y-axis.

The main purpose of such metadata is to indicate to the user agent that two or more SVG documents can be
overlayed or merged into a single document. Obviously, if two maps reference the same Coordinate Reference Sys-
tem definition and have the same SVG ‘transform’ attribute value then they can be overlayed without reprojecting
the data. If the maps reference different Coordinate Reference Systems and/or have different SVG ‘transform’ at-
tribute values, then a specialized cartographic user agent may choose to transform the coordinate data to overlay
the data. However, typical SVG user agents are not required to perform these types of transformations, or even
recognize the metadata. It is described in this specification so that the connection between geographic coordinate
systems and the SVG coordinate system is clear.

7.14 The ‘svg:transform’ attribute

Attribute definition:

svg:transform = "<transform>" | "none"

<transform>
Specifies the affine transformation that has been applied to the map data. The syntax is identical to that
described in The ‘transform’ attribute section.

none
Specifies that no supplemental affine transformation has been applied to the map data. Using this value
has the same meaning as specifying the identity matrix, which in turn is just the same as not specify-
ing the ‘svg:transform’ the attribute at all.

Animatable: no.

This attribute describes an optional additional affine transformation that may have been applied during this map-
ping. This attribute may be added to the OpenGIS ‘CoordinateReferenceSystem’ element. Note that, unlike the

http://portal.opengeospatial.org/files/?artifact_id=20509


‘transform’ attribute, it does not indicate that a transformation is to be applied to the data within the file. Instead,
it simply describes the transformation that was already applied to the data when being encoded in SVG.

There are three typical uses for the ‘svg:transform’ global attribute. These are described below and used in the
examples.

• Most ProjectedCRS have the north direction represented by positive values of the second axis and conversely
SVG has a y-down coordinate system. That's why, in order to follow the usual way to represent a map with
the north at its top, it is recommended for that kind of ProjectedCRS to use the ‘svg:transform’ global attrib-
ute with a 'scale(1, -1)' value as in the third example below.

• Most Geographic2dCRS have the latitude as their first axis rather than the longitude, which means that the
south-north axis would be represented by the x-axis in SVG instead of the usual y-axis. That's why, in or-
der to follow the usual way to represent a map with the north at its top, it is recommended for that kind of
Geographic2dCRS to use the ‘svg:transform’ global attribute with a 'rotate(-90)' value as in the first example
(while also adding the 'scale(1, -1)' as for ProjectedCRS).

• In addition, when converting for profiles which place restrictions on precision of real number values, it may
be useful to add an additional scaling factor to retain good precision for a specific area. When generating an
SVG document from WGS84 geographic coordinates (EPGS 4326), we recommend the use of an additional
100 times scaling factor corresponding to an ‘svg:transform’ global attribute with a 'rotate(-90) scale(100)' value
(shown in the second example). Different scaling values may be required depending on the particular CRS.

Below is a simple example of the coordinate metadata, which describes the coordinate system used by the docu-
ment via a URI.

<?xml version="1.0"?>
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"

width="100" height="100" viewBox="0 0 1000 1000">

<desc>An example that references coordinate data.</desc>

<metadata>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:crs="http://www.ogc.org/crs"
xmlns:svg="http://www.w3.org/2000/svg">

<rdf:Description rdf:about="">
<!-- The Coordinate Reference System is described

through a URI. -->
<crs:CoordinateReferenceSystem

svg:transform="rotate(-90)"
rdf:resource="http://www.example.org/srs/epsg.xml#4326"/>

</rdf:Description>
</rdf:RDF>

</metadata>

<!-- The actual map content -->
</svg>

The second example uses a well-known identifier to describe the coordinate system. Note that the coordinates
used in the document have had the supplied transform applied.

<?xml version="1.0"?>
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"

width="100" height="100" viewBox="0 0 1000 1000">

<desc>Example using a well known coordinate system.</desc>

<metadata>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"



xmlns:crs="http://www.ogc.org/crs"
xmlns:svg="http://www.w3.org/2000/svg">

<rdf:Description rdf:about="">
<!-- In case of a well-known Coordinate Reference System

an 'Identifier' is enough to describe the CRS -->
<crs:CoordinateReferenceSystem svg:transform="rotate(-90) scale(100, 100)">

<crs:Identifier>
<crs:code>4326</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>

</crs:Identifier>
</crs:CoordinateReferenceSystem>

</rdf:Description>
</rdf:RDF>

</metadata>

<!-- The actual map content -->
</svg>

The third example defines the coordinate system completely within the SVG document.

<?xml version="1.0"?>
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"

width="100" height="100" viewBox="0 0 1000 1000">

<desc>Coordinate metadata defined within the SVG document</desc>

<metadata>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:crs="http://www.ogc.org/crs"
xmlns:svg="http://www.w3.org/2000/svg">

<rdf:Description rdf:about="">
<!-- For other CRS it should be entirely defined -->
<crs:CoordinateReferenceSystem svg:transform="scale(1,-1)">

<crs:NameSet>
<crs:name>Mercator projection of WGS84</crs:name>

</crs:NameSet>
<crs:ProjectedCRS>

<!-- The actual definition of the CRS -->
<crs:CartesianCoordinateSystem>

<crs:dimension>2</crs:dimension>
<crs:CoordinateAxis>

<crs:axisDirection>north</crs:axisDirection>
<crs:AngularUnit>

<crs:Identifier>
<crs:code>9108</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>

</crs:Identifier>
</crs:AngularUnit>

</crs:CoordinateAxis>
<crs:CoordinateAxis>

<crs:axisDirection>east</crs:axisDirection>
<crs:AngularUnit>

<crs:Identifier>
<crs:code>9108</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>

</crs:Identifier>
</crs:AngularUnit>

</crs:CoordinateAxis>
</crs:CartesianCoordinateSystem>
<crs:CoordinateReferenceSystem>

<!-- the reference system of that projected system is
WGS84 which is EPSG 4326 in EPSG codeSpace -->

<crs:NameSet>
<crs:name>WGS 84</crs:name>

</crs:NameSet>
<crs:Identifier>

<crs:code>4326</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>

</crs:Identifier>
</crs:CoordinateReferenceSystem>
<crs:CoordinateTransformationDefinition>



<crs:sourceDimensions>2</crs:sourceDimensions>
<crs:targetDimensions>2</crs:targetDimensions>
<crs:ParameterizedTransformation>

<crs:TransformationMethod>
<!-- the projection is a Mercator projection which is

EPSG 9805 in EPSG codeSpace -->
<crs:NameSet>

<crs:name>Mercator</crs:name>
</crs:NameSet>
<crs:Identifier>

<crs:code>9805</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>

</crs:Identifier>
<crs:description>Mercator (2SP)</crs:description>

</crs:TransformationMethod>
<crs:Parameter>

<crs:NameSet>
<crs:name>Latitude of 1st standart parallel</crs:name>

</crs:NameSet>
<crs:Identifier>

<crs:code>8823</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>

</crs:Identifier>
<crs:value>0</crs:value>

</crs:Parameter>
<crs:Parameter>

<crs:NameSet>
<crs:name>Longitude of natural origin</crs:name>

</crs:NameSet>
<crs:Identifier>

<crs:code>8802</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>

</crs:Identifier>
<crs:value>0</crs:value>

</crs:Parameter>
<crs:Parameter>

<crs:NameSet>
<crs:name>False Easting</crs:name>

</crs:NameSet>
<crs:Identifier>

<crs:code>8806</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>

</crs:Identifier>
<crs:value>0</crs:value>

</crs:Parameter>
<crs:Parameter>

<crs:NameSet>
<crs:name>False Northing</crs:name>

</crs:NameSet>
<crs:Identifier>

<crs:code>8807</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>

</crs:Identifier>
<crs:value>0</crs:value>

</crs:Parameter>
</crs:ParameterizedTransformation>

</crs:CoordinateTransformationDefinition>
</crs:ProjectedCRS>

</crs:CoordinateReferenceSystem>
</rdf:Description>

</rdf:RDF>
</metadata>

<!-- the actual map content -->
</svg>



7.15 DOM interfaces

7.15.1 Interface SVGPoint

Many of the SVG DOM interfaces refer to objects of class SVGPoint. An SVGPoint is an (x, y) coordinate pair.
When used in matrix operations, an SVGPoint is treated as a vector of the form:

[x]
[y]
[1]

If an SVGRect object is designated as read only, then attempting to assign to one of its attributes will result in an
exception being thrown.

interface SVGPoint {

attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

SVGPoint matrixTransform(in SVGMatrix matrix);
};

Attributes:

• x (float)

The x coordinate.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised if the SVGPoint object is read only, or corresponds to a DOM attribute that is read only.

• y (float)

The y coordinate.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised if the SVGPoint object is read only, or corresponds to a DOM attribute that is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Operations:

• SVGPoint matrixTransform(in SVGMatrix matrix)

Applies a 2x3 matrix transformation on this SVGPoint object and returns a new, transformed SVGPoint ob-
ject:

newpoint = matrix * thispoint

Parameters

• SVGMatrix matrix
The matrix which is to be applied to this SVGPoint object.

Returns
A new SVGPoint object.

7.15.2 Interface SVGPointList

This interface defines a list of SVGPoint objects.
SVGPointList has the same attributes and methods as other SVGxxxList interfaces. Implementers may con-

sider using a single base class to implement the various SVGxxxList interfaces.

interface SVGPointList {

readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);
SVGPoint initialize(in SVGPoint newItem) raises(DOMException);
SVGPoint getItem(in unsigned long index) raises(DOMException);
SVGPoint insertItemBefore(in SVGPoint newItem, in unsigned long index) raises(DOMException);
SVGPoint replaceItem(in SVGPoint newItem, in unsigned long index) raises(DOMException);
SVGPoint removeItem(in unsigned long index) raises(DOMException);
SVGPoint appendItem(in SVGPoint newItem) raises(DOMException);

};

Attributes:

• numberOfItems (readonly unsigned long)

The number of items in the list.

Operations:

• void clear()

Clears all existing current items from the list, with the result being an empty list.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• SVGPoint initialize(in SVGPoint newItem)

Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter. If the inserted item is already in a list, it is removed from its previous list before it is inserted
into this list. The inserted item is the item itself and not a copy.

Parameters

• SVGPoint newItem
The item which should become the only member of the list.

Returns
The item being inserted into the list.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• SVGPoint getItem(in unsigned long index)

Returns the specified item from the list. The returned item is the item itself and not a copy. Any changes
made to the item are immediately reflected in the list.

Parameters

• unsigned long index
The index of the item from the list which is to be returned. The first item is number 0.

Returns
The selected item.

Exceptions

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• SVGPoint insertItemBefore(in SVGPoint newItem, in unsigned long index)

Inserts a new item into the list at the specified position. The first item is number 0. If newItem is already in
a list, it is removed from its previous list before it is inserted into this list. The inserted item is the item itself
and not a copy. If the item is already in this list, note that the index of the item to insert before is before the
removal of the item.

Parameters

• SVGPoint newItem
The item which is to be inserted into the list.

• unsigned long index
The index of the item before which the new item is to be inserted. The first item is number 0. If the
index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or
equal to numberOfItems, then the new item is appended to the end of the list.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• SVGPoint replaceItem(in SVGPoint newItem, in unsigned long index)

Replaces an existing item in the list with a new item. If newItem is already in a list, it is removed from its
previous list before it is inserted into this list. The inserted item is the item itself and not a copy. If the item
is already in this list, note that the index of the item to replace is before the removal of the item.

Parameters

• SVGPoint newItem
The item which is to be inserted into the list.

• unsigned long index
The index of the item which is to be replaced. The first item is number 0.

Returns
The inserted item.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• SVGPoint removeItem(in unsigned long index)

Removes an existing item from the list.

Parameters

• unsigned long index
The index of the item which is to be removed. The first item is number 0.

Returns
The removed item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• SVGPoint appendItem(in SVGPoint newItem)

Inserts a new item at the end of the list. If newItem is already in a list, it is removed from its previous list
before it is inserted into this list. The inserted item is the item itself and not a copy.

Parameters

• SVGPoint newItem
The item which is to be inserted. The first item is number 0.

Returns
The inserted item.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

7.15.3 Interface SVGMatrix

Many of SVG's graphics operations utilize 2x3 matrices of the form:

[a c e]
[b d f]

which, when expanded into a 3x3 matrix for the purposes of matrix arithmetic, become:

[a c e]
[b d f]
[0 0 1]

interface SVGMatrix {

attribute float a setraises(DOMException);
attribute float b setraises(DOMException);
attribute float c setraises(DOMException);
attribute float d setraises(DOMException);
attribute float e setraises(DOMException);
attribute float f setraises(DOMException);

SVGMatrix multiply(in SVGMatrix secondMatrix);
SVGMatrix inverse() raises(SVGException);
SVGMatrix translate(in float x, in float y);
SVGMatrix scale(in float scaleFactor);
SVGMatrix scaleNonUniform(in float scaleFactorX, in float scaleFactorY);
SVGMatrix rotate(in float angle);
SVGMatrix rotateFromVector(in float x, in float y) raises(SVGException);
SVGMatrix flipX();
SVGMatrix flipY();
SVGMatrix skewX(in float angle);
SVGMatrix skewY(in float angle);

};

Attributes:

• a (float)

The a component of the matrix.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• b (float)

The b component of the matrix.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• c (float)

The c component of the matrix.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• d (float)

The d component of the matrix.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• e (float)

The e component of the matrix.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• f (float)

The f component of the matrix.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

Operations:

• SVGMatrix multiply(in SVGMatrix secondMatrix)

Performs matrix multiplication. This matrix is post-multiplied by another matrix, returning the resulting
new matrix.

Parameters

• SVGMatrix secondMatrix
The matrix which is post-multiplied to this matrix.

Returns
The resulting matrix.

• SVGMatrix inverse()

Returns the inverse matrix.

Returns
The inverse matrix.

Exceptions

• SVGException, code SVG_MATRIX_NOT_INVERTABLE
Raised if this matrix is not invertable.

• SVGMatrix translate(in float x, in float y)

Post-multiplies a translation transformation on the current matrix and returns the resulting matrix.

Parameters

• float x
The distance to translate along the x-axis.

• float y
The distance to translate along the y-axis.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Returns
The resulting matrix.

• SVGMatrix scale(in float scaleFactor)

Post-multiplies a uniform scale transformation on the current matrix and returns the resulting matrix.

Parameters

• float scaleFactor
Scale factor in both X and Y.

Returns
The resulting matrix.

• SVGMatrix scaleNonUniform(in float scaleFactorX, in float scaleFactorY)

Post-multiplies a non-uniform scale transformation on the current matrix and returns the resulting matrix.

Parameters

• float scaleFactorX
Scale factor in X.

• float scaleFactorY
Scale factor in Y.

Returns
The resulting matrix.

• SVGMatrix rotate(in float angle)

Post-multiplies a rotation transformation on the current matrix and returns the resulting matrix.

Parameters

• float angle
Rotation angle.

Returns
The resulting matrix.



• SVGMatrix rotateFromVector(in float x, in float y)

Post-multiplies a rotation transformation on the current matrix and returns the resulting matrix. The rotation
angle is determined by taking (+/-) atan(y/x). The direction of the vector (x, y) determines whether the pos-
itive or negative angle value is used.

Parameters

• float x
The X coordinate of the vector (x,y). Must not be zero.

• float y
The Y coordinate of the vector (x,y). Must not be zero.

Returns
The resulting matrix.

Exceptions

• SVGException, code SVG_INVALID_VALUE_ERR
Raised if one of the parameters has an invalid value.

• SVGMatrix flipX()

Post-multiplies the transformation [-1 0 0 1 0 0] and returns the resulting matrix.

Returns
The resulting matrix.

• SVGMatrix flipY()

Post-multiplies the transformation [1 0 0 -1 0 0] and returns the resulting matrix.

Returns
The resulting matrix.

• SVGMatrix skewX(in float angle)

Post-multiplies a skewX transformation on the current matrix and returns the resulting matrix.

Parameters

• float angle
Skew angle.



Returns
The resulting matrix.

• SVGMatrix skewY(in float angle)

Post-multiplies a skewY transformation on the current matrix and returns the resulting matrix.

Parameters

• float angle
Skew angle.

Returns
The resulting matrix.

7.15.4 Interface SVGTransform

SVGTransform is the interface for one of the component transformations within an SVGTransformList; thus, an
SVGTransform object corresponds to a single component (e.g., 'scale(...)' or 'matrix(...)') within a ‘transform’ attrib-
ute specification.

interface SVGTransform {

// Transform Types
const unsigned short SVG_TRANSFORM_UNKNOWN = 0;
const unsigned short SVG_TRANSFORM_MATRIX = 1;
const unsigned short SVG_TRANSFORM_TRANSLATE = 2;
const unsigned short SVG_TRANSFORM_SCALE = 3;
const unsigned short SVG_TRANSFORM_ROTATE = 4;
const unsigned short SVG_TRANSFORM_SKEWX = 5;
const unsigned short SVG_TRANSFORM_SKEWY = 6;

readonly attribute unsigned short type;
readonly attribute SVGMatrix matrix;
readonly attribute float angle;

void setMatrix(in SVGMatrix matrix) raises(DOMException);
void setTranslate(in float tx, in float ty) raises(DOMException);
void setScale(in float sx, in float sy) raises(DOMException);
void setRotate(in float angle, in float cx, in float cy) raises(DOMException);
void setSkewX(in float angle) raises(DOMException);
void setSkewY(in float angle) raises(DOMException);

};

Constants in group “Transform Types”:

• SVG_TRANSFORM_UNKNOWN (unsigned short)

The unit type is not one of predefined types. It is invalid to attempt to define a new value of this type or to
attempt to switch an existing value to this type.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• SVG_TRANSFORM_MATRIX (unsigned short)

A 'matrix(...)' transformation.

• SVG_TRANSFORM_TRANSLATE (unsigned short)

A 'translate(...)' transformation.

• SVG_TRANSFORM_SCALE (unsigned short)

A 'scale(...)' transformation.

• SVG_TRANSFORM_ROTATE (unsigned short)

A 'rotate(...)' transformation.

• SVG_TRANSFORM_SKEWX (unsigned short)

A 'skewX(...)' transformation.

• SVG_TRANSFORM_SKEWY (unsigned short)

A 'skewY(...)' transformation.

Attributes:

• type (readonly unsigned short)

The type of the value as specified by one of the SVG_TRANSFORM_* constants defined on this interface.

• matrix (readonly SVGMatrix)

The matrix that represents this transformation. The matrix object is live, meaning that any changes made to
the SVGTransform object are immediately reflected in the matrix object and vice versa. In case the matrix
object is changed directly (i.e., without using the methods on the SVGTransform interface itself) then the
type of the SVGTransform changes to SVG_TRANSFORM_MATRIX.

• For SVG_TRANSFORM_MATRIX, the matrix contains the a, b, c, d, e, f values supplied by the user.
• For SVG_TRANSFORM_TRANSLATE, e and f represent the translation amounts (a=1, b=0, c=0 and

d=1).
• For SVG_TRANSFORM_SCALE, a and d represent the scale amounts (b=0, c=0, e=0 and f=0).
• For SVG_TRANSFORM_SKEWX and SVG_TRANSFORM_SKEWY, a, b, c and d represent the matrix

which will result in the given skew (e=0 and f=0).



• For SVG_TRANSFORM_ROTATE, a, b, c, d, e and f together represent the matrix which will result in
the given rotation. When the rotation is around the center point (0, 0), e and f will be zero.

• angle (readonly float)

A convenience attribute for SVG_TRANSFORM_ROTATE, SVG_TRANSFORM_SKEWX and
SVG_TRANSFORM_SKEWY. It holds the angle that was specified.

For SVG_TRANSFORM_MATRIX, SVG_TRANSFORM_TRANSLATE and SVG_TRANSFORM_SCALE,
angle will be zero.

Operations:

• void setMatrix(in SVGMatrix matrix)

Sets the transform type to SVG_TRANSFORM_MATRIX, with parameter matrix defining the new trans-
formation. The values from the parameter matrix are copied, the matrix parameter does not replace
SVGTransform::matrix.

Parameters

• SVGMatrix matrix
The new matrix for the transformation.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• void setTranslate(in float tx, in float ty)

Sets the transform type to SVG_TRANSFORM_TRANSLATE, with parameters tx and ty defining the trans-
lation amounts.

Parameters

• float tx
The translation amount in X.

• float ty
The translation amount in Y.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• void setScale(in float sx, in float sy)

Sets the transform type to SVG_TRANSFORM_SCALE, with parameters sx and sy defining the scale
amounts.

Parameters

• float sx
The scale amount in X.

• float sy
The scale amount in Y.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• void setRotate(in float angle, in float cx, in float cy)

Sets the transform type to SVG_TRANSFORM_ROTATE, with parameter angle defining the rotation angle
and parameters cx and cy defining the optional center of rotation.

Parameters

• float angle
The rotation angle.

• float cx
The x coordinate of center of rotation.

• float cy
The y coordinate of center of rotation.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• void setSkewX(in float angle)

Sets the transform type to SVG_TRANSFORM_SKEWX, with parameter angle defining the amount of skew.

Parameters

• float angle
The skew angle.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• void setSkewY(in float angle)

Sets the transform type to SVG_TRANSFORM_SKEWY, with parameter angle defining the amount of skew.

Parameters

• float angle
The skew angle.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

7.15.5 Interface SVGTransformList

This interface defines a list of SVGTransform objects.
The SVGTransformList and SVGTransform interfaces correspond to the various attributes which specify a set

of transformations, such as the ‘transform’ attribute which is available for many of SVG's elements.
SVGTransformList has the same attributes and methods as other SVGxxxList interfaces. Implementers may

consider using a single base class to implement the various SVGxxxList interfaces.
An SVGTransformList object can be designated as read only, which means that attempts to modify the object

will result in an exception being thrown, as described below.

interface SVGTransformList {

readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);
SVGTransform initialize(in SVGTransform newItem) raises(DOMException);
SVGTransform getItem(in unsigned long index) raises(DOMException);
SVGTransform insertItemBefore(in SVGTransform newItem, in unsigned long index) raises(DOMException);

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


SVGTransform replaceItem(in SVGTransform newItem, in unsigned long index) raises(DOMException);
SVGTransform removeItem(in unsigned long index) raises(DOMException);
SVGTransform appendItem(in SVGTransform newItem) raises(DOMException);
SVGTransform createSVGTransformFromMatrix(in SVGMatrix matrix);
SVGTransform consolidate() raises(DOMException);

};

Attributes:

• numberOfItems (readonly unsigned long)

The number of items in the list.

Operations:

• void clear()

Clears all existing current items from the list, with the result being an empty list.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

• SVGTransform initialize(in SVGTransform newItem)

Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter. If the inserted item is already in a list, it is removed from its previous list before it is inserted
into this list. The inserted item is the item itself and not a copy.

Parameters

• SVGTransform newItem
The item which should become the only member of the list.

Returns
The item being inserted into the list.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• SVGTransform getItem(in unsigned long index)

Returns the specified item from the list. The returned item is the item itself and not a copy. Any changes
made to the item are immediately reflected in the list.

Parameters

• unsigned long index
The index of the item from the list which is to be returned. The first item is number 0.

Returns
The selected item.

Exceptions

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• SVGTransform insertItemBefore(in SVGTransform newItem, in unsigned long index)

Inserts a new item into the list at the specified position. The first item is number 0. If newItem is already in
a list, it is removed from its previous list before it is inserted into this list. The inserted item is the item itself
and not a copy. If the item is already in this list, note that the index of the item to insert before is before the
removal of the item.

Parameters

• SVGTransform newItem
The item which is to be inserted into the list.

• unsigned long index
The index of the item before which the new item is to be inserted. The first item is number 0. If the
index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or
equal to numberOfItems, then the new item is appended to the end of the list.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• SVGTransform replaceItem(in SVGTransform newItem, in unsigned long index)

Replaces an existing item in the list with a new item. If newItem is already in a list, it is removed from its
previous list before it is inserted into this list. The inserted item is the item itself and not a copy. If the item
is already in this list, note that the index of the item to replace is before the removal of the item.

Parameters

• SVGTransform newItem
The item which is to be inserted into the list.

• unsigned long index
The index of the item which is to be replaced. The first item is number 0.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• SVGTransform removeItem(in unsigned long index)

Removes an existing item from the list.

Parameters

• unsigned long index
The index of the item which is to be removed. The first item is number 0.

Returns
The removed item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• SVGTransform appendItem(in SVGTransform newItem)

Inserts a new item at the end of the list. If newItem is already in a list, it is removed from its previous list
before it is inserted into this list. The inserted item is the item itself and not a copy.

Parameters

• SVGTransform newItem
The item which is to be inserted. The first item is number 0.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

• SVGTransform createSVGTransformFromMatrix(in SVGMatrix matrix)

Creates an SVGTransform object which is initialized to transform of type SVG_TRANSFORM_MATRIX and
whose values are the given matrix. The values from the parameter matrix are copied, the matrix parameter
is not adopted as SVGTransform::matrix.

Parameters

• SVGMatrix matrix
The matrix which defines the transformation.

Returns
The returned SVGTransform object.

• SVGTransform consolidate()

Consolidates the list of separate SVGTransform objects by multiplying the equivalent transformation
matrices together to result in a list consisting of a single SVGTransform object of type
SVG_TRANSFORM_MATRIX. The consolidation operation creates new SVGTransform object as the first
and only item in the list. The returned item is the item itself and not a copy. Any changes made to the item
are immediately reflected in the list.

Returns
The resulting SVGTransform object which becomes single item in the list. If the list was empty, then a
value of null is returned.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

7.15.6 Interface SVGAnimatedTransformList

Used for the various attributes which specify a set of transformations, such as the ‘transform’ attribute which is
available for many of SVG's elements, and which can be animated.

interface SVGAnimatedTransformList {
readonly attribute SVGTransformList baseVal;
readonly attribute SVGTransformList animVal;

};

Attributes:

• baseVal (readonly SVGTransformList)

The base value of the given attribute before applying any animations.

• animVal (readonly SVGTransformList)

A read only SVGTransformList representing the current animated value of the given attribute. If the given
attribute is not currently being animated, then the SVGTransformList will have the same contents as baseVal.
The object referenced by animVal will always be distinct from the one referenced by baseVal, even when the
attribute is not animated.

7.15.7 Interface SVGPreserveAspectRatio

The SVGPreserveAspectRatio interface corresponds to the ‘preserveAspectRatio’ attribute, which is available for
some of SVG's elements.
An SVGPreserveAspectRatio object can be designated as read only, which means that attempts to modify the ob-
ject will result in an exception being thrown, as described below.

interface SVGPreserveAspectRatio {

// Alignment Types
const unsigned short SVG_PRESERVEASPECTRATIO_UNKNOWN = 0;
const unsigned short SVG_PRESERVEASPECTRATIO_NONE = 1;
const unsigned short SVG_PRESERVEASPECTRATIO_XMINYMIN = 2;
const unsigned short SVG_PRESERVEASPECTRATIO_XMIDYMIN = 3;
const unsigned short SVG_PRESERVEASPECTRATIO_XMAXYMIN = 4;
const unsigned short SVG_PRESERVEASPECTRATIO_XMINYMID = 5;
const unsigned short SVG_PRESERVEASPECTRATIO_XMIDYMID = 6;
const unsigned short SVG_PRESERVEASPECTRATIO_XMAXYMID = 7;
const unsigned short SVG_PRESERVEASPECTRATIO_XMINYMAX = 8;
const unsigned short SVG_PRESERVEASPECTRATIO_XMIDYMAX = 9;
const unsigned short SVG_PRESERVEASPECTRATIO_XMAXYMAX = 10;

// Meet-or-slice Types

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


const unsigned short SVG_MEETORSLICE_UNKNOWN = 0;
const unsigned short SVG_MEETORSLICE_MEET = 1;
const unsigned short SVG_MEETORSLICE_SLICE = 2;

attribute unsigned short align setraises(DOMException);
attribute unsigned short meetOrSlice setraises(DOMException);

};

Constants in group “Alignment Types”:

• SVG_PRESERVEASPECTRATIO_UNKNOWN (unsigned short)

The enumeration was set to a value that is not one of predefined types. It is invalid to attempt to define a
new value of this type or to attempt to switch an existing value to this type.

• SVG_PRESERVEASPECTRATIO_NONE (unsigned short)

Corresponds to value 'none' for attribute ‘preserveAspectRatio’.

• SVG_PRESERVEASPECTRATIO_XMINYMIN (unsigned short)

Corresponds to value 'xMinYMin' for attribute ‘preserveAspectRatio’.

• SVG_PRESERVEASPECTRATIO_XMIDYMIN (unsigned short)

Corresponds to value 'xMidYMin' for attribute ‘preserveAspectRatio’.

• SVG_PRESERVEASPECTRATIO_XMAXYMIN (unsigned short)

Corresponds to value 'xMaxYMin' for attribute ‘preserveAspectRatio’.

• SVG_PRESERVEASPECTRATIO_XMINYMID (unsigned short)

Corresponds to value 'XMinYMid' for attribute ‘preserveAspectRatio’.

• SVG_PRESERVEASPECTRATIO_XMIDYMID (unsigned short)

Corresponds to value 'xMidYMid' for attribute ‘preserveAspectRatio’.

• SVG_PRESERVEASPECTRATIO_XMAXYMID (unsigned short)

Corresponds to value 'xMaxYMid' for attribute ‘preserveAspectRatio’.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• SVG_PRESERVEASPECTRATIO_XMINYMAX (unsigned short)

Corresponds to value 'xMinYMax' for attribute ‘preserveAspectRatio’.

• SVG_PRESERVEASPECTRATIO_XMIDYMAX (unsigned short)

Corresponds to value 'xMidYMax' for attribute ‘preserveAspectRatio’.

• SVG_PRESERVEASPECTRATIO_XMAXYMAX (unsigned short)

Corresponds to value 'xMaxYMax' for attribute ‘preserveAspectRatio’.

Constants in group “Meet-or-slice Types”:

• SVG_MEETORSLICE_UNKNOWN (unsigned short)

The enumeration was set to a value that is not one of predefined types. It is invalid to attempt to define a
new value of this type or to attempt to switch an existing value to this type.

• SVG_MEETORSLICE_MEET (unsigned short)

Corresponds to value 'meet' for attribute ‘preserveAspectRatio’.

• SVG_MEETORSLICE_SLICE (unsigned short)

Corresponds to value 'slice' for attribute ‘preserveAspectRatio’.

Attributes:

• align (unsigned short)

The type of the alignment value as specified by one of the SVG_PRESERVEASPECTRATIO_* constants
defined on this interface.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the object corresponds to a read only attribute or when the object itself is read only.

• meetOrSlice (unsigned short)

The type of the meet-or-slice value as specified by one of the SVG_MEETORSLICE_* constants defined on
this interface.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the object corresponds to a read only attribute or when the object itself is read only.

7.15.8 Interface SVGAnimatedPreserveAspectRatio

Used for attributes of type SVGPreserveAspectRatio which can be animated.

interface SVGAnimatedPreserveAspectRatio {
readonly attribute SVGPreserveAspectRatio baseVal;
readonly attribute SVGPreserveAspectRatio animVal;

};

Attributes:

• baseVal (readonly SVGPreserveAspectRatio)

The base value of the given attribute before applying any animations.

• animVal (readonly SVGPreserveAspectRatio)

A read only SVGPreserveAspectRatio representing the current animated value of the given attribute. If
the given attribute is not currently being animated, then the SVGPreserveAspectRatio will have the same
contents as baseVal. The object referenced by animVal will always be distinct from the one referenced by
baseVal, even when the attribute is not animated.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


8 Paths

Contents

8.1 Introduction
8.2 The ‘path’ element
8.3 Path data

8.3.1 General information about path data
8.3.2 The "moveto" commands
8.3.3 The "closepath" command
8.3.4 The "lineto" commands
8.3.5 The curve commands
8.3.6 The cubic Bézier curve commands
8.3.7 The quadratic Bézier curve commands
8.3.8 The elliptical arc curve commands
8.3.9 The grammar for path data

8.4 Distance along a path
8.5 DOM interfaces

8.5.1 Interface SVGPathSeg
8.5.2 Interface SVGPathSegClosePath
8.5.3 Interface SVGPathSegMovetoAbs
8.5.4 Interface SVGPathSegMovetoRel
8.5.5 Interface SVGPathSegLinetoAbs
8.5.6 Interface SVGPathSegLinetoRel
8.5.7 Interface SVGPathSegCurvetoCubicAbs
8.5.8 Interface SVGPathSegCurvetoCubicRel
8.5.9 Interface SVGPathSegCurvetoQuadraticAbs
8.5.10 Interface SVGPathSegCurvetoQuadraticRel
8.5.11 Interface SVGPathSegArcAbs
8.5.12 Interface SVGPathSegArcRel
8.5.13 Interface SVGPathSegLinetoHorizontalAbs
8.5.14 Interface SVGPathSegLinetoHorizontalRel
8.5.15 Interface SVGPathSegLinetoVerticalAbs
8.5.16 Interface SVGPathSegLinetoVerticalRel
8.5.17 Interface SVGPathSegCurvetoCubicSmoothAbs
8.5.18 Interface SVGPathSegCurvetoCubicSmoothRel
8.5.19 Interface SVGPathSegCurvetoQuadraticSmoothAbs
8.5.20 Interface SVGPathSegCurvetoQuadraticSmoothRel
8.5.21 Interface SVGPathSegList
8.5.22 Interface SVGAnimatedPathData
8.5.23 Interface SVGPathElement



‘path’

8.1 Introduction

Paths represent the outline of a shape which can be filled, stroked, used as a clipping path, or any combination of
the three. (See Filling, Stroking and Paint Servers and Clipping, Masking and Compositing.)

A path is described using the concept of a current point. In an analogy with drawing on paper, the current
point can be thought of as the location of the pen. The position of the pen can be changed, and the outline of a
shape (open or closed) can be traced by dragging the pen in either straight lines or curves.

Paths represent the geometry of the outline of an object, defined in terms of moveto (set a new current point),
lineto (draw a straight line), curveto (draw a curve using a cubic Bézier), arc (elliptical or circular arc) and closepath
(close the current shape by drawing a line to the last moveto) elements. Compound paths (i.e., a path with multiple
subpaths) are possible to allow effects such as "donut holes" in objects.

This chapter describes the syntax, behavior and DOM interfaces for SVG paths. Various implementation notes
for SVG paths can be found in ‘path’ element implementation notes and Elliptical arc implementation notes.

A path is defined in SVG using the ‘path’ element.

8.2 The ‘path’ element

Categories:
Graphics element, shape element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’
‘d’
‘pathLength’

DOM Interfaces:
SVGPathElement



Attribute definitions:

d = "path data"
The definition of the outline of a shape. See Path data.
Animatable: yes. Path data animation is only possible when each path data specification within an animation
specification has exactly the same list of path data commands as the ‘d’ attribute. If an animation is specified
and the list of path data commands is not the same, then the animation specification is in error (see Error
Processing). The animation engine interpolates each parameter to each path data command separately based
on the attributes to the given animation element. Flags and booleans are interpolated as fractions between
zero and one, with any non-zero value considered to be a value of one/true.

pathLength = "<number>"
The author's computation of the total length of the path, in user units. This value is used to calibrate the user
agent's own distance-along-a-path calculations with that of the author. The user agent will scale all distance-
along-a-path computations by the ratio of ‘pathLength’ to the user agent's own computed value for total path
length. ‘pathLength’ potentially affects calculations for text on a path, motion animation and various stroke
operations.
A negative value is an error (see Error processing).
Animatable: yes.

8.3 Path data

8.3.1 General information about path data

A path is defined by including a ‘path’ element which contains a d="(path data)" attribute, where the ‘d’ attribute
contains the moveto, line, curve (both cubic and quadratic Béziers), arc and closepath instructions.

Example triangle01 specifies a path in the shape of a triangle. (The M indicates a moveto, the Ls indicate
linetos, and the z indicates a closepath).

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4cm" height="4cm" viewBox="0 0 400 400"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<title>Example triangle01- simple example of a 'path'</title>
<desc>A path that draws a triangle</desc>
<rect x="1" y="1" width="398" height="398"

fill="none" stroke="blue" />
<path d="M 100 100 L 300 100 L 200 300 z"

fill="red" stroke="blue" stroke-width="3" />
</svg>



Example triangle01

Path data can contain newline characters and thus can be broken up into multiple lines to improve readability.
Because of line length limitations with certain related tools, it is recommended that SVG generators split long path
data strings across multiple lines, with each line not exceeding 255 characters. Also note that newline characters
are only allowed at certain places within path data.

The syntax of path data is concise in order to allow for minimal file size and efficient downloads, since many
SVG files will be dominated by their path data. Some of the ways that SVG attempts to minimize the size of path
data are as follows:

• All instructions are expressed as one character (e.g., a moveto is expressed as an M).
• Superfluous white space and separators such as commas can be eliminated (e.g., "M 100 100 L 200 200" con-

tains unnecessary spaces and could be expressed more compactly as "M100 100L200 200").
• The command letter can be eliminated on subsequent commands if the same command is used multiple times

in a row (e.g., you can drop the second "L" in "M 100 200 L 200 100 L -100 -200" and use "M 100 200 L 200 100
-100 -200" instead).

• Relative versions of all commands are available (uppercase means absolute coordinates, lowercase means re-
lative coordinates).

• Alternate forms of lineto are available to optimize the special cases of horizontal and vertical lines (absolute
and relative).

• Alternate forms of curve are available to optimize the special cases where some of the control points on the
current segment can be determined automatically from the control points on the previous segment.

The path data syntax is a prefix notation (i.e., commands followed by parameters). The only allowable decimal
point is a Unicode U+0046 FULL STOP (".") character (also referred to in Unicode as PERIOD, dot and decimal
point) and no other delimiter characters are allowed [UNICODE]. (For example, the following is an invalid nu-
meric value in a path data stream: "13,000.56". Instead, say: "13000.56".)

For the relative versions of the commands, all coordinate values are relative to the current point at the start
of the command.

In the tables below, the following notation is used:

• (): grouping of parameters
• +: 1 or more of the given parameter(s) is required



The following sections list the commands.

8.3.2 The "moveto" commands

The "moveto" commands (M or m) establish a new current point. The effect is as if the "pen" were lifted and
moved to a new location. A path data segment (if there is one) must begin with a "moveto" command. Subsequent
"moveto" commands (i.e., when the "moveto" is not the first command) represent the start of a new subpath:

Command Name Parameters Description

M

(absolute)

m

(relative)

moveto (x y)+

Start a new sub-path at the given (x,y) coordinate. M (uppercase)

indicates that absolute coordinates will follow; m (lowercase) indicates

that relative coordinates will follow. If a moveto is followed by multiple

pairs of coordinates, the subsequent pairs are treated as implicit lineto

commands. Hence, implicit lineto commands will be relative if the

moveto is relative, and absolute if the moveto is absolute. If a relative

moveto (m) appears as the first element of the path, then it is treated

as a pair of absolute coordinates. In this case, subsequent pairs of

coordinates are treated as relative even though the initial moveto is

interpreted as an absolute moveto.

8.3.3 The "closepath" command

The "closepath" (Z or z) ends the current subpath and causes an automatic straight line to be drawn from the cur-
rent point to the initial point of the current subpath. If a "closepath" is followed immediately by a "moveto", then
the "moveto" identifies the start point of the next subpath. If a "closepath" is followed immediately by any other
command, then the next subpath starts at the same initial point as the current subpath.

When a subpath ends in a "closepath," it differs in behavior from what happens when "manually" closing a
subpath via a "lineto" command in how ‘stroke-linejoin’ and ‘stroke-linecap’ are implemented. With "closepath",
the end of the final segment of the subpath is "joined" with the start of the initial segment of the subpath using
the current value of ‘stroke-linejoin’. If you instead "manually" close the subpath via a "lineto" command, the start
of the first segment and the end of the last segment are not joined but instead are each capped using the current
value of ‘stroke-linecap’. At the end of the command, the new current point is set to the initial point of the current
subpath.

Command Name Parameters Description

Z or

z
closepath (none)

Close the current subpath by drawing a straight line from the current

point to current subpath's initial point. Since the Z and z commands

take no parameters, they have an identical effect.



8.3.4 The "lineto" commands

The various "lineto" commands draw straight lines from the current point to a new point:

Command Name Parameters Description

L

(absolute)

l (relative)

lineto (x y)+

Draw a line from the current point to the given (x,y) coordinate which

becomes the new current point. L (uppercase) indicates that

absolute coordinates will follow; l (lowercase) indicates that relative

coordinates will follow. A number of coordinates pairs may be

specified to draw a polyline. At the end of the command, the new

current point is set to the final set of coordinates provided.

H

(absolute)

h (relative)

horizontal

lineto
x+

Draws a horizontal line from the current point (cpx, cpy) to (x, cpy). H

(uppercase) indicates that absolute coordinates will follow; h

(lowercase) indicates that relative coordinates will follow. Multiple x

values can be provided (although usually this doesn't make sense).

At the end of the command, the new current point becomes (x, cpy)

for the final value of x.

V

(absolute)

v (relative)

vertical

lineto
y+

Draws a vertical line from the current point (cpx, cpy) to (cpx, y). V

(uppercase) indicates that absolute coordinates will follow; v

(lowercase) indicates that relative coordinates will follow. Multiple y

values can be provided (although usually this doesn't make sense).

At the end of the command, the new current point becomes (cpx, y)

for the final value of y.

8.3.5 The curve commands

These three groups of commands draw curves:

• Cubic Bézier commands (C, c, S and s). A cubic Bézier segment is defined by a start point, an end point, and
two control points.

• Quadratic Bézier commands (Q, q, T and t). A quadratic Bézier segment is defined by a start point, an end
point, and one control point.

• Elliptical arc commands (A and a). An elliptical arc segment draws a segment of an ellipse.

8.3.6 The cubic Bézier curve commands

The cubic Bézier commands are as follows:



Command Name Parameters Description

C

(absolute)

c (relative)

curveto
(x1 y1 x2 y2

x y)+

Draws a cubic Bézier curve from the current point to (x,y) using

(x1,y1) as the control point at the beginning of the curve and (x2,y2)

as the control point at the end of the curve. C (uppercase) indicates

that absolute coordinates will follow; c (lowercase) indicates that

relative coordinates will follow. Multiple sets of coordinates may be

specified to draw a polybézier. At the end of the command, the new

current point becomes the final (x,y) coordinate pair used in the

polybézier.

S

(absolute)

s (relative)

shorthand/

smooth

curveto

(x2 y2 x y)+

Draws a cubic Bézier curve from the current point to (x,y). The first

control point is assumed to be the reflection of the second control

point on the previous command relative to the current point. (If there

is no previous command or if the previous command was not an C,

c, S or s, assume the first control point is coincident with the current

point.) (x2,y2) is the second control point (i.e., the control point at

the end of the curve). S (uppercase) indicates that absolute

coordinates will follow; s (lowercase) indicates that relative

coordinates will follow. Multiple sets of coordinates may be specified

to draw a polybézier. At the end of the command, the new current

point becomes the final (x,y) coordinate pair used in the polybézier.

Example cubic01 shows some simple uses of cubic Bézier commands within a path. The example uses an internal
CSS style sheet to assign styling properties. Note that the control point for the "S" command is computed auto-
matically as the reflection of the control point for the previous "C" command relative to the start point of the "S"
command.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="4cm" viewBox="0 0 500 400"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<title>Example cubic01- cubic Bézier commands in path data</title>
<desc>Picture showing a simple example of path data

using both a "C" and an "S" command,
along with annotations showing the control points
and end points</desc>

<style type="text/css"><![CDATA[
.Border { fill:none; stroke:blue; stroke-width:1 }
.Connect { fill:none; stroke:#888888; stroke-width:2 }
.SamplePath { fill:none; stroke:red; stroke-width:5 }
.EndPoint { fill:none; stroke:#888888; stroke-width:2 }
.CtlPoint { fill:#888888; stroke:none }
.AutoCtlPoint { fill:none; stroke:blue; stroke-width:4 }
.Label { font-size:22; font-family:Verdana }

]]></style>

<rect class="Border" x="1" y="1" width="498" height="398" />

<polyline class="Connect" points="100,200 100,100" />
<polyline class="Connect" points="250,100 250,200" />
<polyline class="Connect" points="250,200 250,300" />
<polyline class="Connect" points="400,300 400,200" />



<path class="SamplePath" d="M100,200 C100,100 250,100 250,200
S400,300 400,200" />

<circle class="EndPoint" cx="100" cy="200" r="10" />
<circle class="EndPoint" cx="250" cy="200" r="10" />
<circle class="EndPoint" cx="400" cy="200" r="10" />
<circle class="CtlPoint" cx="100" cy="100" r="10" />
<circle class="CtlPoint" cx="250" cy="100" r="10" />
<circle class="CtlPoint" cx="400" cy="300" r="10" />
<circle class="AutoCtlPoint" cx="250" cy="300" r="9" />
<text class="Label" x="25" y="70">M100,200 C100,100 250,100 250,200</text>
<text class="Label" x="325" y="350"

style="text-anchor:middle">S400,300 400,200</text>
</svg>

Example cubic01

The following picture shows some how cubic Bézier curves change their shape depending on the position of the
control points. The first five examples illustrate a single cubic Bézier path segment. The example at the lower right
shows a "C" command followed by an "S" command.



8.3.7 The quadratic Bézier curve commands

The quadratic Bézier commands are as follows:

Command Name Parameters Description

Q

(absolute)

q (relative)

quadratic

Bézier

curveto

(x1 y1 x y)+

Draws a quadratic Bézier curve from the current point to (x,y) using

(x1,y1) as the control point. Q (uppercase) indicates that absolute

coordinates will follow; q (lowercase) indicates that relative

coordinates will follow. Multiple sets of coordinates may be

specified to draw a polybézier. At the end of the command, the new

current point becomes the final (x,y) coordinate pair used in the

polybézier.

T

(absolute)

t (relative)

Shorthand/

smooth

quadratic

Bézier

curveto

(x y)+

Draws a quadratic Bézier curve from the current point to (x,y). The

control point is assumed to be the reflection of the control point on

the previous command relative to the current point. (If there is no

previous command or if the previous command was not a Q, q, T or

t, assume the control point is coincident with the current point.) T

(uppercase) indicates that absolute coordinates will follow; t

(lowercase) indicates that relative coordinates will follow. At the end

of the command, the new current point becomes the final (x,y)

coordinate pair used in the polybézier.

Example quad01 shows some simple uses of quadratic Bézier commands within a path. Note that the control point
for the "T" command is computed automatically as the reflection of the control point for the previous "Q" com-
mand relative to the start point of the "T" command.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="6cm" viewBox="0 0 1200 600"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<title>Example quad01 - quadratic Bézier commands in path data</title>
<desc>Picture showing a "Q" a "T" command,

along with annotations showing the control points
and end points</desc>

<rect x="1" y="1" width="1198" height="598"
fill="none" stroke="blue" stroke-width="1" />

<path d="M200,300 Q400,50 600,300 T1000,300"
fill="none" stroke="red" stroke-width="5"  />

<!-- End points -->
<g fill="black" >

<circle cx="200" cy="300" r="10"/>
<circle cx="600" cy="300" r="10"/>
<circle cx="1000" cy="300" r="10"/>

</g>
<!-- Control points and lines from end points to control points -->
<g fill="#888888" >

<circle cx="400" cy="50" r="10"/>
<circle cx="800" cy="550" r="10"/>

</g>
<path d="M200,300 L400,50 L600,300



L800,550 L1000,300"
fill="none" stroke="#888888" stroke-width="2" />

</svg>

Example quad01

8.3.8 The elliptical arc curve commands

The elliptical arc commands are as follows:

Command Name Parameters Description

A

(absolute)

a (relative)

elliptical

arc

(rx ry

x-axis-rotation

large-arc-flag

sweep-flag x

y)+

Draws an elliptical arc from the current point to (x, y). The size and

orientation of the ellipse are defined by two radii (rx, ry) and an

x-axis-rotation, which indicates how the ellipse as a whole is

rotated relative to the current coordinate system. The center (cx, cy)

of the ellipse is calculated automatically to satisfy the constraints

imposed by the other parameters. large-arc-flag and sweep-flag

contribute to the automatic calculations and help determine how the

arc is drawn.

Example arcs01 shows some simple uses of arc commands within a path.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="5.25cm" viewBox="0 0 1200 400"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<title>Example arcs01 - arc commands in path data</title>
<desc>Picture of a pie chart with two pie wedges and

a picture of a line with arc blips</desc>
<rect x="1" y="1" width="1198" height="398"

fill="none" stroke="blue" stroke-width="1" />

<path d="M300,200 h-150 a150,150 0 1,0 150,-150 z"
fill="red" stroke="blue" stroke-width="5" />

<path d="M275,175 v-150 a150,150 0 0,0 -150,150 z"



fill="yellow" stroke="blue" stroke-width="5" />

<path d="M600,350 l 50,-25
a25,25 -30 0,1 50,-25 l 50,-25
a25,50 -30 0,1 50,-25 l 50,-25
a25,75 -30 0,1 50,-25 l 50,-25
a25,100 -30 0,1 50,-25 l 50,-25"

fill="none" stroke="red" stroke-width="5"  />
</svg>

Example arcs01

The elliptical arc command draws a section of an ellipse which meets the following constraints:

• the arc starts at the current point
• the arc ends at point (x, y)
• the ellipse has the two radii (rx, ry)
• the x-axis of the ellipse is rotated by x-axis-rotation relative to the x-axis of the current coordinate system.

For most situations, there are actually four different arcs (two different ellipses, each with two different arc sweeps)
that satisfy these constraints. large-arc-flag and sweep-flag indicate which one of the four arcs are drawn, as
follows:

• Of the four candidate arc sweeps, two will represent an arc sweep of greater than or equal to 180 degrees
(the "large-arc"), and two will represent an arc sweep of less than or equal to 180 degrees (the "small-arc"). If
large-arc-flag is '1', then one of the two larger arc sweeps will be chosen; otherwise, if large-arc-flag is '0',
one of the smaller arc sweeps will be chosen,

• If sweep-flag is '1', then the arc will be drawn in a "positive-angle" direction (i.e., the ellipse formula
x=cx+rx*cos(theta) and y=cy+ry*sin(theta) is evaluated such that theta starts at an angle corresponding to
the current point and increases positively until the arc reaches (x,y)). A value of 0 causes the arc to be drawn
in a "negative-angle" direction (i.e., theta starts at an angle value corresponding to the current point and de-
creases until the arc reaches (x,y)).

The following illustrates the four combinations of large-arc-flag and sweep-flag and the four different arcs that
will be drawn based on the values of these flags. For each case, the following path data command was used:



<path d="M 125,75 a100,50 0 ?,? 100,50"
style="fill:none; stroke:red; stroke-width:6"/>

where "?,?" is replaced by "0,0" "0,1" "1,0" and "1,1" to generate the four possible cases.

Refer to Elliptical arc implementation notes for detailed implementation notes for the path data elliptical arc com-
mands.

8.3.9 The grammar for path data

The following notation is used in the Backus-Naur Form (BNF) description of the grammar for path data:

• *: 0 or more
• +: 1 or more
• ?: 0 or 1
• (): grouping
• |: separates alternatives
• double quotes surround literals

The following is the BNF for SVG paths.

svg-path:
wsp* moveto-drawto-command-groups? wsp*

moveto-drawto-command-groups:
moveto-drawto-command-group
| moveto-drawto-command-group wsp* moveto-drawto-command-groups

moveto-drawto-command-group:
moveto wsp* drawto-commands?

drawto-commands:
drawto-command
| drawto-command wsp* drawto-commands

drawto-command:
closepath
| lineto
| horizontal-lineto
| vertical-lineto



| curveto
| smooth-curveto
| quadratic-bezier-curveto
| smooth-quadratic-bezier-curveto
| elliptical-arc

moveto:
( "M" | "m" ) wsp* moveto-argument-sequence

moveto-argument-sequence:
coordinate-pair
| coordinate-pair comma-wsp? lineto-argument-sequence

closepath:
("Z" | "z")

lineto:
( "L" | "l" ) wsp* lineto-argument-sequence

lineto-argument-sequence:
coordinate-pair
| coordinate-pair comma-wsp? lineto-argument-sequence

horizontal-lineto:
( "H" | "h" ) wsp* horizontal-lineto-argument-sequence

horizontal-lineto-argument-sequence:
coordinate
| coordinate comma-wsp? horizontal-lineto-argument-sequence

vertical-lineto:
( "V" | "v" ) wsp* vertical-lineto-argument-sequence

vertical-lineto-argument-sequence:
coordinate
| coordinate comma-wsp? vertical-lineto-argument-sequence

curveto:
( "C" | "c" ) wsp* curveto-argument-sequence

curveto-argument-sequence:
curveto-argument
| curveto-argument comma-wsp? curveto-argument-sequence

curveto-argument:
coordinate-pair comma-wsp? coordinate-pair comma-wsp? coordinate-pair

smooth-curveto:
( "S" | "s" ) wsp* smooth-curveto-argument-sequence

smooth-curveto-argument-sequence:
smooth-curveto-argument
| smooth-curveto-argument comma-wsp? smooth-curveto-argument-sequence

smooth-curveto-argument:
coordinate-pair comma-wsp? coordinate-pair

quadratic-bezier-curveto:
( "Q" | "q" ) wsp* quadratic-bezier-curveto-argument-sequence

quadratic-bezier-curveto-argument-sequence:
quadratic-bezier-curveto-argument
| quadratic-bezier-curveto-argument comma-wsp?

quadratic-bezier-curveto-argument-sequence
quadratic-bezier-curveto-argument:

coordinate-pair comma-wsp? coordinate-pair
smooth-quadratic-bezier-curveto:

( "T" | "t" ) wsp* smooth-quadratic-bezier-curveto-argument-sequence
smooth-quadratic-bezier-curveto-argument-sequence:

coordinate-pair
| coordinate-pair comma-wsp? smooth-quadratic-bezier-curveto-argument-sequence

elliptical-arc:
( "A" | "a" ) wsp* elliptical-arc-argument-sequence

elliptical-arc-argument-sequence:
elliptical-arc-argument



| elliptical-arc-argument comma-wsp? elliptical-arc-argument-sequence
elliptical-arc-argument:

nonnegative-number comma-wsp? nonnegative-number comma-wsp?
number comma-wsp flag comma-wsp? flag comma-wsp? coordinate-pair

coordinate-pair:
coordinate comma-wsp? coordinate

coordinate:
number

nonnegative-number:
integer-constant
| floating-point-constant

number:
sign? integer-constant
| sign? floating-point-constant

flag:
"0" | "1"

comma-wsp:
(wsp+ comma? wsp*) | (comma wsp*)

comma:
","

integer-constant:
digit-sequence

floating-point-constant:
fractional-constant exponent?
| digit-sequence exponent

fractional-constant:
digit-sequence? "." digit-sequence
| digit-sequence "."

exponent:
( "e" | "E" ) sign? digit-sequence

sign:
"+" | "-"

digit-sequence:
digit
| digit digit-sequence

digit:
"0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

wsp:
(#x20 | #x9 | #xD | #xA)

The processing of the BNF must consume as much of a given BNF production as possible, stopping at the point
when a character is encountered which no longer satisfies the production. Thus, in the string "M 100-200", the first
coordinate for the "moveto" consumes the characters "100" and stops upon encountering the minus sign because
the minus sign cannot follow a digit in the production of a "coordinate". The result is that the first coordinate will
be "100" and the second coordinate will be "-200".

Similarly, for the string "M 0.6.5", the first coordinate of the "moveto" consumes the characters "0.6" and stops
upon encountering the second decimal point because the production of a "coordinate" only allows one decimal
point. The result is that the first coordinate will be "0.6" and the second coordinate will be ".5".

Note that the BNF allows the path ‘d’ attribute to be empty. This is not an error, instead it disables rendering
of the path.



8.4 Distance along a path

Various operations, including text on a path and motion animation and various stroke operations, require that the
user agent compute the distance along the geometry of a graphics element, such as a ‘path’.

Exact mathematics exist for computing distance along a path, but the formulas are highly complex and re-
quire substantial computation. It is recommended that authoring products and user agents employ algorithms that
produce as precise results as possible; however, to accommodate implementation differences and to help distance
calculations produce results that approximate author intent, the ‘pathLength’ attribute can be used to provide the
author's computation of the total length of the path so that the user agent can scale distance-along-a-path compu-
tations by the ratio of ‘pathLength’ to the user agent's own computed value for total path length.

A "moveto" operation within a ‘path’ element is defined to have zero length. Only the various "lineto", "cur-
veto" and "arcto" commands contribute to path length calculations.

8.5 DOM interfaces

8.5.1 Interface SVGPathSeg

The SVGPathSeg interface is a base interface that corresponds to a single command within a path data specifica-
tion.

interface SVGPathSeg {

// Path Segment Types
const unsigned short PATHSEG_UNKNOWN = 0;
const unsigned short PATHSEG_CLOSEPATH = 1;
const unsigned short PATHSEG_MOVETO_ABS = 2;
const unsigned short PATHSEG_MOVETO_REL = 3;
const unsigned short PATHSEG_LINETO_ABS = 4;
const unsigned short PATHSEG_LINETO_REL = 5;
const unsigned short PATHSEG_CURVETO_CUBIC_ABS = 6;
const unsigned short PATHSEG_CURVETO_CUBIC_REL = 7;
const unsigned short PATHSEG_CURVETO_QUADRATIC_ABS = 8;
const unsigned short PATHSEG_CURVETO_QUADRATIC_REL = 9;
const unsigned short PATHSEG_ARC_ABS = 10;
const unsigned short PATHSEG_ARC_REL = 11;
const unsigned short PATHSEG_LINETO_HORIZONTAL_ABS = 12;
const unsigned short PATHSEG_LINETO_HORIZONTAL_REL = 13;
const unsigned short PATHSEG_LINETO_VERTICAL_ABS = 14;
const unsigned short PATHSEG_LINETO_VERTICAL_REL = 15;
const unsigned short PATHSEG_CURVETO_CUBIC_SMOOTH_ABS = 16;
const unsigned short PATHSEG_CURVETO_CUBIC_SMOOTH_REL = 17;
const unsigned short PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS = 18;
const unsigned short PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL = 19;

readonly attribute unsigned short pathSegType;
readonly attribute DOMString pathSegTypeAsLetter;

};



Constants in group “Path Segment Types”:

• PATHSEG_UNKNOWN (unsigned short)

The unit type is not one of predefined types. It is invalid to attempt to define a new value of this type or to
attempt to switch an existing value to this type.

• PATHSEG_CLOSEPATH (unsigned short)

Corresponds to a "closepath" (z) path data command.

• PATHSEG_MOVETO_ABS (unsigned short)

Corresponds to a "absolute moveto" (M) path data command.

• PATHSEG_MOVETO_REL (unsigned short)

Corresponds to a "relative moveto" (m) path data command.

• PATHSEG_LINETO_ABS (unsigned short)

Corresponds to a "absolute lineto" (L) path data command.

• PATHSEG_LINETO_REL (unsigned short)

Corresponds to a "relative lineto" (l) path data command.

• PATHSEG_CURVETO_CUBIC_ABS (unsigned short)

Corresponds to a "absolute cubic Bézier curveto" (C) path data command.

• PATHSEG_CURVETO_CUBIC_REL (unsigned short)

Corresponds to a "relative cubic Bézier curveto" (c) path data command.

• PATHSEG_CURVETO_QUADRATIC_ABS (unsigned short)

Corresponds to a "absolute quadratic Bézier curveto" (Q) path data command.

• PATHSEG_CURVETO_QUADRATIC_REL (unsigned short)

Corresponds to a "relative quadratic Bézier curveto" (q) path data command.



• PATHSEG_ARC_ABS (unsigned short)

Corresponds to a "absolute arcto" (A) path data command.

• PATHSEG_ARC_REL (unsigned short)

Corresponds to a "relative arcto" (a) path data command.

• PATHSEG_LINETO_HORIZONTAL_ABS (unsigned short)

Corresponds to a "absolute horizontal lineto" (H) path data command.

• PATHSEG_LINETO_HORIZONTAL_REL (unsigned short)

Corresponds to a "relative horizontal lineto" (h) path data command.

• PATHSEG_LINETO_VERTICAL_ABS (unsigned short)

Corresponds to a "absolute vertical lineto" (V) path data command.

• PATHSEG_LINETO_VERTICAL_REL (unsigned short)

Corresponds to a "relative vertical lineto" (v) path data command.

• PATHSEG_CURVETO_CUBIC_SMOOTH_ABS (unsigned short)

Corresponds to a "absolute smooth cubic curveto" (S) path data command.

• PATHSEG_CURVETO_CUBIC_SMOOTH_REL (unsigned short)

Corresponds to a "relative smooth cubic curveto" (s) path data command.

• PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS (unsigned short)

Corresponds to a "absolute smooth quadratic curveto" (T) path data command.

• PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL (unsigned short)

Corresponds to a "relative smooth quadratic curveto" (t) path data command.



Attributes:

• pathSegType (readonly unsigned short)

The type of the path segment as specified by one of the constants defined on this interface.

• pathSegTypeAsLetter (readonly DOMString)

The type of the path segment, specified by the corresponding one character command name.

8.5.2 Interface SVGPathSegClosePath

The SVGPathSegClosePath interface corresponds to a "closepath" (z) path data command.

interface SVGPathSegClosePath : SVGPathSeg {
};

8.5.3 Interface SVGPathSegMovetoAbs

The SVGPathSegMovetoAbs interface corresponds to an "absolute moveto" (M) path data command.

interface SVGPathSegMovetoAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

};

Attributes:

• x (float)

The absolute X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The absolute Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


8.5.4 Interface SVGPathSegMovetoRel

The SVGPathSegMovetoRel interface corresponds to a "relative moveto" (m) path data command.

interface SVGPathSegMovetoRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

};

Attributes:

• x (float)

The relative X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The relative Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.5 Interface SVGPathSegLinetoAbs

The SVGPathSegLinetoAbs interface corresponds to an "absolute lineto" (L) path data command.

interface SVGPathSegLinetoAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

};

Attributes:

• x (float)

The absolute X coordinate for the end point of this path segment.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The absolute Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.6 Interface SVGPathSegLinetoRel

The SVGPathSegLinetoRel interface corresponds to a "relative lineto" (l) path data command.

interface SVGPathSegLinetoRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

};

Attributes:

• x (float)

The relative X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The relative Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


8.5.7 Interface SVGPathSegCurvetoCubicAbs

The SVGPathSegCurvetoCubicAbs interface corresponds to an "absolute cubic Bézier curveto" (C) path data com-
mand.

interface SVGPathSegCurvetoCubicAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x1 setraises(DOMException);
attribute float y1 setraises(DOMException);
attribute float x2 setraises(DOMException);
attribute float y2 setraises(DOMException);

};

Attributes:

• x (float)

The absolute X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The absolute Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• x1 (float)

The absolute X coordinate for the first control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y1 (float)

The absolute Y coordinate for the first control point.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• x2 (float)

The absolute X coordinate for the second control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y2 (float)

The absolute Y coordinate for the second control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.8 Interface SVGPathSegCurvetoCubicRel

The SVGPathSegCurvetoCubicRel interface corresponds to a "relative cubic Bézier curveto" (c) path data com-
mand.

interface SVGPathSegCurvetoCubicRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x1 setraises(DOMException);
attribute float y1 setraises(DOMException);
attribute float x2 setraises(DOMException);
attribute float y2 setraises(DOMException);

};

Attributes:

• x (float)

The relative X coordinate for the end point of this path segment.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The relative Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• x1 (float)

The relative X coordinate for the first control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y1 (float)

The relative Y coordinate for the first control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• x2 (float)

The relative X coordinate for the second control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• y2 (float)

The relative Y coordinate for the second control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.9 Interface SVGPathSegCurvetoQuadraticAbs

The SVGPathSegCurvetoQuadraticAbs interface corresponds to an "absolute quadratic Bézier curveto" (Q) path
data command.

interface SVGPathSegCurvetoQuadraticAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x1 setraises(DOMException);
attribute float y1 setraises(DOMException);

};

Attributes:

• x (float)

The absolute X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The absolute Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• x1 (float)

The absolute X coordinate for the first control point.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y1 (float)

The absolute Y coordinate for the first control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.10 Interface SVGPathSegCurvetoQuadraticRel

The SVGPathSegCurvetoQuadraticRel interface corresponds to a "relative quadratic Bézier curveto" (q) path data
command.

interface SVGPathSegCurvetoQuadraticRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x1 setraises(DOMException);
attribute float y1 setraises(DOMException);

};

Attributes:

• x (float)

The relative X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The relative Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• x1 (float)

The relative X coordinate for the first control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y1 (float)

The relative Y coordinate for the first control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.11 Interface SVGPathSegArcAbs

The SVGPathSegArcAbs interface corresponds to an "absolute arcto" (A) path data command.

interface SVGPathSegArcAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float r1 setraises(DOMException);
attribute float r2 setraises(DOMException);
attribute float angle setraises(DOMException);
attribute boolean largeArcFlag setraises(DOMException);
attribute boolean sweepFlag setraises(DOMException);

};

Attributes:

• x (float)

The absolute X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The absolute Y coordinate for the end point of this path segment.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• r1 (float)

The x-axis radius for the ellipse (i.e., r1).

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• r2 (float)

The y-axis radius for the ellipse (i.e., r2).

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• angle (float)

The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• largeArcFlag (boolean)

The value of the large-arc-flag parameter.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• sweepFlag (boolean)

The value of the sweep-flag parameter.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.12 Interface SVGPathSegArcRel

The SVGPathSegArcRel interface corresponds to a "relative arcto" (a) path data command.

interface SVGPathSegArcRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float r1 setraises(DOMException);
attribute float r2 setraises(DOMException);
attribute float angle setraises(DOMException);
attribute boolean largeArcFlag setraises(DOMException);
attribute boolean sweepFlag setraises(DOMException);

};

Attributes:

• x (float)

The relative X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The relative Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• r1 (float)

The x-axis radius for the ellipse (i.e., r1).

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• r2 (float)

The y-axis radius for the ellipse (i.e., r2).

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• angle (float)

The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• largeArcFlag (boolean)

The value of the large-arc-flag parameter.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• sweepFlag (boolean)

The value of the sweep-flag parameter.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


8.5.13 Interface SVGPathSegLinetoHorizontalAbs

The SVGPathSegLinetoHorizontalAbs interface corresponds to an "absolute horizontal lineto" (H) path data com-
mand.

interface SVGPathSegLinetoHorizontalAbs : SVGPathSeg {
attribute float x setraises(DOMException);

};

Attributes:

• x (float)

The absolute X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.14 Interface SVGPathSegLinetoHorizontalRel

The SVGPathSegLinetoHorizontalRel interface corresponds to a "relative horizontal lineto" (h) path data com-
mand.

interface SVGPathSegLinetoHorizontalRel : SVGPathSeg {
attribute float x setraises(DOMException);

};

Attributes:

• x (float)

The relative X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.15 Interface SVGPathSegLinetoVerticalAbs

The SVGPathSegLinetoVerticalAbs interface corresponds to an "absolute vertical lineto" (V) path data command.

interface SVGPathSegLinetoVerticalAbs : SVGPathSeg {

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


attribute float y setraises(DOMException);
};

Attributes:

• y (float)

The absolute Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.16 Interface SVGPathSegLinetoVerticalRel

The SVGPathSegLinetoVerticalRel interface corresponds to a "relative vertical lineto" (v) path data command.

interface SVGPathSegLinetoVerticalRel : SVGPathSeg {
attribute float y setraises(DOMException);

};

Attributes:

• y (float)

The relative Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.17 Interface SVGPathSegCurvetoCubicSmoothAbs

The SVGPathSegCurvetoCubicSmoothAbs interface corresponds to an "absolute smooth cubic curveto" (S) path
data command.

interface SVGPathSegCurvetoCubicSmoothAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x2 setraises(DOMException);
attribute float y2 setraises(DOMException);

};

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Attributes:

• x (float)

The absolute X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The absolute Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• x2 (float)

The absolute X coordinate for the second control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y2 (float)

The absolute Y coordinate for the second control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.18 Interface SVGPathSegCurvetoCubicSmoothRel

The SVGPathSegCurvetoCubicSmoothRel interface corresponds to a "relative smooth cubic curveto" (s) path data
command.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


interface SVGPathSegCurvetoCubicSmoothRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x2 setraises(DOMException);
attribute float y2 setraises(DOMException);

};

Attributes:

• x (float)

The relative X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The relative Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• x2 (float)

The relative X coordinate for the second control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y2 (float)

The relative Y coordinate for the second control point.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


8.5.19 Interface SVGPathSegCurvetoQuadraticSmoothAbs

The SVGPathSegCurvetoQuadraticSmoothAbs interface corresponds to an "absolute smooth cubic curveto" (T)
path data command.

interface SVGPathSegCurvetoQuadraticSmoothAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

};

Attributes:

• x (float)

The absolute X coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The absolute Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.20 Interface SVGPathSegCurvetoQuadraticSmoothRel

The SVGPathSegCurvetoQuadraticSmoothRel interface corresponds to a "relative smooth cubic curveto" (t) path
data command.

interface SVGPathSegCurvetoQuadraticSmoothRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

};

Attributes:

• x (float)

The relative X coordinate for the end point of this path segment.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• y (float)

The relative Y coordinate for the end point of this path segment.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.21 Interface SVGPathSegList

This interface defines a list of SVGPathSeg objects.
SVGPathSegList has the same attributes and methods as other SVGxxxList interfaces. Implementers may con-

sider using a single base class to implement the various SVGxxxList interfaces.

interface SVGPathSegList {

readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);
SVGPathSeg initialize(in SVGPathSeg newItem) raises(DOMException);
SVGPathSeg getItem(in unsigned long index) raises(DOMException);
SVGPathSeg insertItemBefore(in SVGPathSeg newItem, in unsigned long index) raises(DOMException);
SVGPathSeg replaceItem(in SVGPathSeg newItem, in unsigned long index) raises(DOMException);
SVGPathSeg removeItem(in unsigned long index) raises(DOMException);
SVGPathSeg appendItem(in SVGPathSeg newItem) raises(DOMException);

};

Attributes:

• numberOfItems (readonly unsigned long)

The number of items in the list.

Operations:

• void clear()

Clears all existing current items from the list, with the result being an empty list.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• SVGPathSeg initialize(in SVGPathSeg newItem)

Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter. If the inserted item is already in a list, it is removed from its previous list before it is inserted
into this list. The inserted item is the item itself and not a copy.

Parameters

• SVGPathSeg newItem
The item which should become the only member of the list.

Returns
The item being inserted into the list.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• SVGPathSeg getItem(in unsigned long index)

Returns the specified item from the list. The returned item is the item itself and not a copy. Any changes
made to the item are immediately reflected in the list.

Parameters

• unsigned long index
The index of the item from the list which is to be returned. The first item is number 0.

Returns
The selected item.

Exceptions

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• SVGPathSeg insertItemBefore(in SVGPathSeg newItem, in unsigned long index)

Inserts a new item into the list at the specified position. The first item is number 0. If newItem is already in
a list, it is removed from its previous list before it is inserted into this list. The inserted item is the item itself
and not a copy. If the item is already in this list, note that the index of the item to insert before is before the
removal of the item.

Parameters

• SVGPathSeg newItem
The item which is to be inserted into the list.

• unsigned long index
The index of the item before which the new item is to be inserted. The first item is number 0. If the
index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or
equal to numberOfItems, then the new item is appended to the end of the list.

Returns
The inserted item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• SVGPathSeg replaceItem(in SVGPathSeg newItem, in unsigned long index)

Replaces an existing item in the list with a new item. If newItem is already in a list, it is removed from its
previous list before it is inserted into this list. The inserted item is the item itself and not a copy. If the item
is already in this list, note that the index of the item to replace is before the removal of the item.

Parameters

• SVGPathSeg newItem
The item which is to be inserted into the list.

• unsigned long index
The index of the item which is to be replaced. The first item is number 0.

Returns
The inserted item.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• SVGPathSeg removeItem(in unsigned long index)

Removes an existing item from the list.

Parameters

• unsigned long index
The index of the item which is to be removed. The first item is number 0.

Returns
The removed item.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

• DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

• SVGPathSeg appendItem(in SVGPathSeg newItem)

Inserts a new item at the end of the list. If newItem is already in a list, it is removed from its previous list
before it is inserted into this list. The inserted item is the item itself and not a copy.

Parameters

• SVGPathSeg newItem
The item which is to be inserted. The first item is number 0.

Returns
The inserted item.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

8.5.22 Interface SVGAnimatedPathData

The SVGAnimatedPathData interface supports elements which have a ‘d’ attribute which holds SVG path data,
and supports the ability to animate that attribute.

The SVGAnimatedPathData interface provides two lists to access and modify the base (i.e., static) contents of
the ‘d’ attribute:

• DOM attribute pathSegList provides access to the static/base contents of the ‘d’ attribute in a form which
matches one-for-one with SVG's syntax.

• DOM attribute normalizedPathSegList provides normalized access to the static/base contents of the ‘d’
attribute where all path data commands are expressed in terms of the following subset of SVGPathSeg
types: SVG_PATHSEG_MOVETO_ABS (M), SVG_PATHSEG_LINETO_ABS (L),
SVG_PATHSEG_CURVETO_CUBIC_ABS (C) and SVG_PATHSEG_CLOSEPATH (z).

and two lists to access the current animated values of the ‘d’ attribute:

• DOM attribute animatedPathSegList provides access to the current animated contents of the ‘d’ attribute in a
form which matches one-for-one with SVG's syntax.

• DOM attribute animatedNormalizedPathSegList provides normalized access to the current animated contents
of the ‘d’ attribute where all path data commands are expressed in terms of the following subset of
SVGPathSeg types: SVG_PATHSEG_MOVETO_ABS (M), SVG_PATHSEG_LINETO_ABS (L),
SVG_PATHSEG_CURVETO_CUBIC_ABS (C) and SVG_PATHSEG_CLOSEPATH (z).

Each of the two lists are always kept synchronized. Modifications to one list will immediately cause the cor-
responding list to be modified. Modifications to normalizedPathSegList might cause entries in pathSegList to be
broken into a set of normalized path segments.

Additionally, the ‘d’ attribute on the ‘path’ element accessed via the XML DOM (e.g., using the getAttrib-

ute() method call) will reflect any changes made to pathSegList or normalizedPathSegList.

interface SVGAnimatedPathData {
readonly attribute SVGPathSegList pathSegList;
readonly attribute SVGPathSegList normalizedPathSegList;
readonly attribute SVGPathSegList animatedPathSegList;
readonly attribute SVGPathSegList animatedNormalizedPathSegList;

};

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Attributes:

• pathSegList (readonly SVGPathSegList)

Provides access to the base (i.e., static) contents of the ‘d’ attribute in a form which matches one-for-
one with SVG's syntax. Thus, if the ‘d’ attribute has an "absolute moveto (M)" and an "absolute arcto
(A)" command, then pathSegList will have two entries: a SVG_PATHSEG_MOVETO_ABS and a
SVG_PATHSEG_ARC_ABS.

• normalizedPathSegList (readonly SVGPathSegList)

Provides access to the base (i.e., static) contents of the ‘d’ attribute in a form where all path data commands
are expressed in terms of the following subset of SVGPathSeg types: SVG_PATHSEG_MOVETO_ABS
(M), SVG_PATHSEG_LINETO_ABS (L), SVG_PATHSEG_CURVETO_CUBIC_ABS (C) and
SVG_PATHSEG_CLOSEPATH (z). Thus, if the ‘d’ attribute has an "absolute moveto (M)" and an "absolute
arcto (A)" command, then pathSegList will have one SVG_PATHSEG_MOVETO_ABS entry followed by a
series of SVG_PATHSEG_LINETO_ABS entries which approximate the arc. This alternate representation is
available to provide a simpler interface to developers who would benefit from a more limited set of com-
mands.

The only valid SVGPathSeg types are SVG_PATHSEG_MOVETO_ABS (M),
SVG_PATHSEG_LINETO_ABS (L), SVG_PATHSEG_CURVETO_CUBIC_ABS (C) and
SVG_PATHSEG_CLOSEPATH (z).

• animatedPathSegList (readonly SVGPathSegList)

Provides access to the current animated contents of the ‘d’ attribute in a form which matches one-for-one
with SVG's syntax. If the given attribute or property is being animated, contains the current animated value
of the attribute or property, and both the object itself and its contents are read only. If the given attribute or
property is not currently being animated, contains the same value as pathSegList.

• animatedNormalizedPathSegList (readonly SVGPathSegList)

Provides access to the current animated contents of the ‘d’ attribute in a form where all path data commands
are expressed in terms of the following subset of SVGPathSeg types: SVG_PATHSEG_MOVETO_ABS
(M), SVG_PATHSEG_LINETO_ABS (L), SVG_PATHSEG_CURVETO_CUBIC_ABS (C) and
SVG_PATHSEG_CLOSEPATH (z). If the given attribute or property is being animated, contains the current
animated value of the attribute or property, and both the object itself and its contents are read only.
If the given attribute or property is not currently being animated, contains the same value as normal-
izedPathSegList.

8.5.23 Interface SVGPathElement

The SVGPathElement interface corresponds to the ‘path’ element.



interface SVGPathElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable,
SVGAnimatedPathData {

readonly attribute SVGAnimatedNumber pathLength;

float getTotalLength();
SVGPoint getPointAtLength(in float distance);
unsigned long getPathSegAtLength(in float distance);
SVGPathSegClosePath createSVGPathSegClosePath();
SVGPathSegMovetoAbs createSVGPathSegMovetoAbs(in float x, in float y);
SVGPathSegMovetoRel createSVGPathSegMovetoRel(in float x, in float y);
SVGPathSegLinetoAbs createSVGPathSegLinetoAbs(in float x, in float y);
SVGPathSegLinetoRel createSVGPathSegLinetoRel(in float x, in float y);
SVGPathSegCurvetoCubicAbs createSVGPathSegCurvetoCubicAbs(in float x, in float y, in float x1, in float y1, in float

x2, in float y2);
SVGPathSegCurvetoCubicRel createSVGPathSegCurvetoCubicRel(in float x, in float y, in float x1, in float y1, in float

x2, in float y2);
SVGPathSegCurvetoQuadraticAbs createSVGPathSegCurvetoQuadraticAbs(in float x, in float y, in float x1, in float y1);
SVGPathSegCurvetoQuadraticRel createSVGPathSegCurvetoQuadraticRel(in float x, in float y, in float x1, in float y1);
SVGPathSegArcAbs createSVGPathSegArcAbs(in float x, in float y, in float r1, in float r2, in float angle, in boolean

largeArcFlag, in boolean sweepFlag);
SVGPathSegArcRel createSVGPathSegArcRel(in float x, in float y, in float r1, in float r2, in float angle, in boolean

largeArcFlag, in boolean sweepFlag);
SVGPathSegLinetoHorizontalAbs createSVGPathSegLinetoHorizontalAbs(in float x);
SVGPathSegLinetoHorizontalRel createSVGPathSegLinetoHorizontalRel(in float x);
SVGPathSegLinetoVerticalAbs createSVGPathSegLinetoVerticalAbs(in float y);
SVGPathSegLinetoVerticalRel createSVGPathSegLinetoVerticalRel(in float y);
SVGPathSegCurvetoCubicSmoothAbs createSVGPathSegCurvetoCubicSmoothAbs(in float x, in float y, in float x2, in float

y2);
SVGPathSegCurvetoCubicSmoothRel createSVGPathSegCurvetoCubicSmoothRel(in float x, in float y, in float x2, in float

y2);
SVGPathSegCurvetoQuadraticSmoothAbs createSVGPathSegCurvetoQuadraticSmoothAbs(in float x, in float y);
SVGPathSegCurvetoQuadraticSmoothRel createSVGPathSegCurvetoQuadraticSmoothRel(in float x, in float y);

};

Attributes:

• pathLength (readonly SVGAnimatedNumber)

Corresponds to attribute pathLength on the given ‘path’ element.

Operations:

• float getTotalLength()

Returns the user agent's computed value for the total length of the path using the user agent's distance-
along-a-path algorithm, as a distance in the current user coordinate system.

Returns
The total length of the path.

• SVGPoint getPointAtLength(in float distance)

Returns the (x,y) coordinate in user space which is distance units along the path, utilizing the user agent's
distance-along-a-path algorithm.



Parameters

• float distance
The distance along the path, relative to the start of the path, as a distance in the current user coordinate
system.

Returns
The returned point in user space.

• unsigned long getPathSegAtLength(in float distance)

Returns the index into pathSegList which is distance units along the path, utilizing the user agent's distance-
along-a-path algorithm.

Parameters

• float distance
The distance along the path, relative to the start of the path, as a distance in the current user coordinate
system.

Returns
The index of the path segment, where the first path segment is number 0.

• SVGPathSegClosePath createSVGPathSegClosePath()

Returns a stand-alone, parentless SVGPathSegClosePath object.

Returns
A stand-alone, parentless SVGPathSegClosePath object.

• SVGPathSegMovetoAbs createSVGPathSegMovetoAbs(in float x, in float y)

Returns a stand-alone, parentless SVGPathSegMovetoAbs object.

Parameters

• float x
The absolute X coordinate for the end point of this path segment.

• float y
The absolute Y coordinate for the end point of this path segment.



Returns
A stand-alone, parentless SVGPathSegMovetoAbs object.

• SVGPathSegMovetoRel createSVGPathSegMovetoRel(in float x, in float y)

Returns a stand-alone, parentless SVGPathSegMovetoRel object.

Parameters

• float x
The relative X coordinate for the end point of this path segment.

• float y
The relative Y coordinate for the end point of this path segment.

Returns
A stand-alone, parentless SVGPathSegMovetoRel object.

• SVGPathSegLinetoAbs createSVGPathSegLinetoAbs(in float x, in float y)

Returns a stand-alone, parentless SVGPathSegLinetoAbs object.

Parameters

• float x
The absolute X coordinate for the end point of this path segment.

• float y
The absolute Y coordinate for the end point of this path segment.

Returns
A stand-alone, parentless SVGPathSegLinetoAbs object.

• SVGPathSegLinetoRel createSVGPathSegLinetoRel(in float x, in float y)

Returns a stand-alone, parentless SVGPathSegLinetoRel object.

Parameters

• float x
The relative X coordinate for the end point of this path segment.

• float y



The relative Y coordinate for the end point of this path segment.

Returns
A stand-alone, parentless SVGPathSegLinetoRel object.

• SVGPathSegCurvetoCubicAbs createSVGPathSegCurvetoCubicAbs(in float x, in float y, in float x1, in float
y1, in float x2, in float y2)

Returns a stand-alone, parentless SVGPathSegCurvetoCubicAbs object.

Parameters

• float x
The absolute X coordinate for the end point of this path segment.

• float y
The absolute Y coordinate for the end point of this path segment.

• float x1
The absolute X coordinate for the first control point.

• float y1
The absolute Y coordinate for the first control point.

• float x2
The absolute X coordinate for the second control point.

• float y2
The absolute Y coordinate for the second control point.

Returns
A stand-alone, parentless SVGPathSegCurvetoCubicAbs object.

• SVGPathSegCurvetoCubicRel createSVGPathSegCurvetoCubicRel(in float x, in float y, in float x1, in float
y1, in float x2, in float y2)

Returns a stand-alone, parentless SVGPathSegCurvetoCubicRel object.

Parameters

• float x
The relative X coordinate for the end point of this path segment.

• float y



The relative Y coordinate for the end point of this path segment.

• float x1
The relative X coordinate for the first control point.

• float y1
The relative Y coordinate for the first control point.

• float x2
The relative X coordinate for the second control point.

• float y2
The relative Y coordinate for the second control point.

Returns
A stand-alone, parentless SVGPathSegCurvetoCubicRel object.

• SVGPathSegCurvetoQuadraticAbs createSVGPathSegCurvetoQuadraticAbs(in float x, in float y, in float
x1, in float y1)

Returns a stand-alone, parentless SVGPathSegCurvetoQuadraticAbs object.

Parameters

• float x
The absolute X coordinate for the end point of this path segment.

• float y
The absolute Y coordinate for the end point of this path segment.

• float x1
The absolute X coordinate for the first control point.

• float y1
The absolute Y coordinate for the first control point.

Returns
A stand-alone, parentless SVGPathSegCurvetoQuadraticAbs object.

• SVGPathSegCurvetoQuadraticRel createSVGPathSegCurvetoQuadraticRel(in float x, in float y, in float x1,
in float y1)

Returns a stand-alone, parentless SVGPathSegCurvetoQuadraticRel object.



Parameters

• float x
The relative X coordinate for the end point of this path segment.

• float y
The relative Y coordinate for the end point of this path segment.

• float x1
The relative X coordinate for the first control point.

• float y1
The relative Y coordinate for the first control point.

Returns
A stand-alone, parentless SVGPathSegCurvetoQuadraticRel object.

• SVGPathSegArcAbs createSVGPathSegArcAbs(in float x, in float y, in float r1, in float r2, in float angle, in
boolean largeArcFlag, in boolean sweepFlag)

Returns a stand-alone, parentless SVGPathSegArcAbs object.

Parameters

• float x
The absolute X coordinate for the end point of this path segment.

• float y
The absolute Y coordinate for the end point of this path segment.

• float r1
The x-axis radius for the ellipse (i.e., r1).

• float r2
The y-axis radius for the ellipse (i.e., r2).

• float angle
The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.

• boolean largeArcFlag
The value of the large-arc-flag parameter.

• boolean sweepFlag
The value of the large-arc-flag parameter.



Returns
A stand-alone, parentless SVGPathSegArcAbs object.

• SVGPathSegArcRel createSVGPathSegArcRel(in float x, in float y, in float r1, in float r2, in float angle, in
boolean largeArcFlag, in boolean sweepFlag)

Returns a stand-alone, parentless SVGPathSegArcRel object.

Parameters

• float x
The relative X coordinate for the end point of this path segment.

• float y
The relative Y coordinate for the end point of this path segment.

• float r1
The x-axis radius for the ellipse (i.e., r1).

• float r2
The y-axis radius for the ellipse (i.e., r2).

• float angle
The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.

• boolean largeArcFlag
The value of the large-arc-flag parameter.

• boolean sweepFlag
The value of the large-arc-flag parameter.

Returns
A stand-alone, parentless SVGPathSegArcRel object.

• SVGPathSegLinetoHorizontalAbs createSVGPathSegLinetoHorizontalAbs(in float x)

Returns a stand-alone, parentless SVGPathSegLinetoHorizontalAbs object.

Parameters

• float x
The absolute X coordinate for the end point of this path segment.



Returns
A stand-alone, parentless SVGPathSegLinetoHorizontalAbs object.

• SVGPathSegLinetoHorizontalRel createSVGPathSegLinetoHorizontalRel(in float x)

Returns a stand-alone, parentless SVGPathSegLinetoHorizontalRel object.

Parameters

• float x
The relative X coordinate for the end point of this path segment.

Returns
A stand-alone, parentless SVGPathSegLinetoHorizontalRel object.

• SVGPathSegLinetoVerticalAbs createSVGPathSegLinetoVerticalAbs(in float y)

Returns a stand-alone, parentless SVGPathSegLinetoVerticalAbs object.

Parameters

• float y
The absolute Y coordinate for the end point of this path segment.

Returns
A stand-alone, parentless SVGPathSegLinetoVerticalAbs object.

• SVGPathSegLinetoVerticalRel createSVGPathSegLinetoVerticalRel(in float y)

Returns a stand-alone, parentless SVGPathSegLinetoVerticalRel object.

Parameters

• float y
The relative Y coordinate for the end point of this path segment.

Returns
A stand-alone, parentless SVGPathSegLinetoVerticalRel object.

• SVGPathSegCurvetoCubicSmoothAbs createSVGPathSegCurvetoCubicSmoothAbs(in float x, in float y, in
float x2, in float y2)

Returns a stand-alone, parentless SVGPathSegCurvetoCubicSmoothAbs object.



Parameters

• float x
The absolute X coordinate for the end point of this path segment.

• float y
The absolute Y coordinate for the end point of this path segment.

• float x2
The absolute X coordinate for the second control point.

• float y2
The absolute Y coordinate for the second control point.

Returns
A stand-alone, parentless SVGPathSegCurvetoCubicSmoothAbs object.

• SVGPathSegCurvetoCubicSmoothRel createSVGPathSegCurvetoCubicSmoothRel(in float x, in float y, in
float x2, in float y2)

Returns a stand-alone, parentless SVGPathSegCurvetoCubicSmoothRel object.

Parameters

• float x
The relative X coordinate for the end point of this path segment.

• float y
The relative Y coordinate for the end point of this path segment.

• float x2
The relative X coordinate for the second control point.

• float y2
The relative Y coordinate for the second control point.

Returns
A stand-alone, parentless SVGPathSegCurvetoCubicSmoothRel object.

• SVGPathSegCurvetoQuadraticSmoothAbs createSVGPathSegCurvetoQuadraticSmoothAbs(in float x, in
float y)

Returns a stand-alone, parentless SVGPathSegCurvetoQuadraticSmoothAbs object.



Parameters

• float x
The absolute X coordinate for the end point of this path segment.

• float y
The absolute Y coordinate for the end point of this path segment.

Returns
A stand-alone, parentless SVGPathSegCurvetoQuadraticSmoothAbs object.

• SVGPathSegCurvetoQuadraticSmoothRel createSVGPathSegCurvetoQuadraticSmoothRel(in float x, in
float y)

Returns a stand-alone, parentless SVGPathSegCurvetoQuadraticSmoothRel object.

Parameters

• float x
The relative X coordinate for the end point of this path segment.

• float y
The relative Y coordinate for the end point of this path segment.

Returns
A stand-alone, parentless SVGPathSegCurvetoQuadraticSmoothRel object.



9 Basic Shapes

Contents

9.1 Introduction
9.2 The ‘rect’ element
9.3 The ‘circle’ element
9.4 The ‘ellipse’ element
9.5 The ‘line’ element
9.6 The ‘polyline’ element
9.7 The ‘polygon’ element

9.7.1 The grammar for points specifications in ‘polyline’ and ‘polygon’ elements
9.8 DOM interfaces

9.8.1 Interface SVGRectElement
9.8.2 Interface SVGCircleElement
9.8.3 Interface SVGEllipseElement
9.8.4 Interface SVGLineElement
9.8.5 Interface SVGAnimatedPoints
9.8.6 Interface SVGPolylineElement
9.8.7 Interface SVGPolygonElement

9.1 Introduction

SVG contains the following set of basic shape elements:

• rectangles (including optional rounded corners), created with the ‘rect’ element,
• circles, created with the ‘circle’ element,
• ellipses, created with the ‘ellipse’ element,
• straight lines, created with the ‘line’ element,
• polylines, created with the ‘polyline’ element, and
• polygons, created with the ‘polygon’ element.

Mathematically, these shape elements are equivalent to a ‘path’ element that would construct the same shape. The
basic shapes may be stroked, filled and used as clip paths. All of the properties available for ‘path’ elements also
apply to the basic shapes.



‘rect’

9.2 The ‘rect’ element

The ‘rect’ element defines a rectangle which is axis-aligned with the current user coordinate system. Rounded rect-
angles can be achieved by setting appropriate values for attributes ‘rx’ and ‘ry’.

Categories:
Basic shape element, graphics element, shape element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’
‘x’
‘y’
‘width’
‘height’
‘rx’
‘ry’

DOM Interfaces:
SVGRectElement

Attribute definitions:

x = "<coordinate>"
The x-axis coordinate of the side of the rectangle which has the smaller x-axis coordinate value in the current
user coordinate system.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y = "<coordinate>"
The y-axis coordinate of the side of the rectangle which has the smaller y-axis coordinate value in the current



user coordinate system.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

width = "<length>"
The width of the rectangle.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

height = "<length>"
The height of the rectangle.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

rx = "<length>"
For rounded rectangles, the x-axis radius of the ellipse used to round off the corners of the rectangle.
A negative value is an error (see Error processing).
See the notes below about what happens if the attribute is not specified.
Animatable: yes.

ry = "<length>"
For rounded rectangles, the y-axis radius of the ellipse used to round off the corners of the rectangle.
A negative value is an error (see Error processing).
See the notes below about what happens if the attribute is not specified.
Animatable: yes.

The values used for the x- and y-axis rounded corner radii are determined implicitly if the ‘rx’ or ‘ry’ attributes
(or both) are not specified, or are specified but with invalid values. The values are also subject to clamping so that
the lengths of the straight segments of the rectangle are never negative. The effective values for ‘rx’ and ‘ry’ are
determined by following these steps in order:

1. Let rx and ry be length values.
2. If neither ‘rx’ nor ‘ry’ are properly specified, then set both rx and ry to 0. (This will result in square corners.)
3. Otherwise, if a properly specified value is provided for ‘rx’, but not for ‘ry’, then set both rx and ry to the

value of ‘rx’.
4. Otherwise, if a properly specified value is provided for ‘ry’, but not for ‘rx’, then set both rx and ry to the

value of ‘ry’.
5. Otherwise, both ‘rx’ and ‘ry’ were specified properly. Set rx to the value of ‘rx’ and ry to the value of ‘ry’.
6. If rx is greater than half of ‘width’, then set rx to half of ‘width’.
7. If ry is greater than half of ‘height’, then set ry to half of ‘height’.
8. The effective values of ‘rx’ and ‘ry’ are rx and ry, respectively.



Mathematically, a ‘rect’ element can be mapped to an equivalent ‘path’ element as follows: (Note: all coordinate
and length values are first converted into user space coordinates according to Units.)

• perform an absolute moveto operation to location (x+rx,y), where x is the value of the ‘rect’ element's ‘x’ at-
tribute converted to user space, rx is the effective value of the ‘rx’ attribute converted to user space and y is
the value of the ‘y’ attribute converted to user space

• perform an absolute horizontal lineto operation to location (x+width-rx,y), where width is the ‘rect’ element's
‘width’ attribute converted to user space

• perform an absolute elliptical arc operation to coordinate (x+width,y+ry), where the effective values for the
‘rx’ and ‘ry’ attributes on the ‘rect’ element converted to user space are used as the rx and ry attributes on the
elliptical arc command, respectively, the x-axis-rotation is set to zero, the large-arc-flag is set to zero, and the
sweep-flag is set to one

• perform a absolute vertical lineto to location (x+width,y+height-ry), where height is the ‘rect’ element's
‘height’ attribute converted to user space

• perform an absolute elliptical arc operation to coordinate (x+width-rx,y+height)
• perform an absolute horizontal lineto to location (x+rx,y+height)
• perform an absolute elliptical arc operation to coordinate (x,y+height-ry)
• perform an absolute absolute vertical lineto to location (x,y+ry)
• perform an absolute elliptical arc operation to coordinate (x+rx,y)

Example rect01 shows a rectangle with sharp corners. The ‘rect’ element is filled with yellow and stroked with
navy.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example rect01 - rectangle with sharp corners</desc>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="1198" height="398"

fill="none" stroke="blue" stroke-width="2"/>

<rect x="400" y="100" width="400" height="200"
fill="yellow" stroke="navy" stroke-width="10"  />

</svg>

Example rect01



‘circle’

Example rect02 shows two rounded rectangles. The ‘rx’ specifies how to round the corners of the rectangles. Note
that since no value has been specified for the ‘ry’ attribute, it will be assigned the same value as the ‘rx’ attribute.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example rect02 - rounded rectangles</desc>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="1198" height="398"

fill="none" stroke="blue" stroke-width="2"/>

<rect x="100" y="100" width="400" height="200" rx="50"
fill="green" />

<g transform="translate(700 210) rotate(-30)">
<rect x="0" y="0" width="400" height="200" rx="50"

fill="none" stroke="purple" stroke-width="30" />
</g>

</svg>

Example rect02

9.3 The ‘circle’ element

The ‘circle’ element defines a circle based on a center point and a radius.

Categories:
Basic shape element, graphics element, shape element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes



‘class’
‘style’
‘externalResourcesRequired’
‘transform’
‘cx’
‘cy’
‘r’

DOM Interfaces:
SVGCircleElement

Attribute definitions:

cx = "<coordinate>"
The x-axis coordinate of the center of the circle.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

cy = "<coordinate>"
The y-axis coordinate of the center of the circle.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

r = "<length>"
The radius of the circle.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

The arc of a ‘circle’ element begins at the "3 o'clock" point on the radius and progresses towards the "9 o'clock"
point. The starting point and direction of the arc are affected by the user space transform in the same manner as
the geometry of the element.

Example circle01 consists of a ‘circle’ element that is filled with red and stroked with blue.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example circle01 - circle filled with red and stroked with blue</desc>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="1198" height="398"

fill="none" stroke="blue" stroke-width="2"/>

<circle cx="600" cy="200" r="100"
fill="red" stroke="blue" stroke-width="10"  />

</svg>



‘ellipse’

Example circle01

9.4 The ‘ellipse’ element

The ‘ellipse’ element defines an ellipse which is axis-aligned with the current user coordinate system based on a
center point and two radii.

Categories:
Basic shape element, graphics element, shape element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’
‘cx’
‘cy’
‘rx’
‘ry’

DOM Interfaces:
SVGEllipseElement



Attribute definitions:

cx = "<coordinate>"
The x-axis coordinate of the center of the ellipse.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

cy = "<coordinate>"
The y-axis coordinate of the center of the ellipse.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

rx = "<length>"
The x-axis radius of the ellipse.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

ry = "<length>"
The y-axis radius of the ellipse.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

The arc of an ‘ellipse’ element begins at the "3 o'clock" point on the radius and progresses towards the "9 o'clock"
point. The starting point and direction of the arc are affected by the user space transform in the same manner as
the geometry of the element.

Example ellipse01 below specifies the coordinates of the two ellipses in the user coordinate system established
by the ‘viewBox’ attribute on the ‘svg’ element and the ‘transform’ attribute on the ‘g’ and ‘ellipse’ elements. Both
ellipses use the default values of zero for the ‘cx’ and ‘cy’ attributes (the center of the ellipse). The second ellipse is
rotated.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example ellipse01 - examples of ellipses</desc>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="1198" height="398"

fill="none" stroke="blue" stroke-width="2" />

<g transform="translate(300 200)">
<ellipse rx="250" ry="100"

fill="red"  />
</g>

<ellipse transform="translate(900 200) rotate(-30)"
rx="250" ry="100"
fill="none" stroke="blue" stroke-width="20"  />

</svg>



‘line’

Example ellipse01

9.5 The ‘line’ element

The ‘line’ element defines a line segment that starts at one point and ends at another.

Categories:
Basic shape element, graphics element, shape element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’
‘x1’
‘y1’
‘x2’
‘y2’

DOM Interfaces:
SVGLineElement



Attribute definitions:

x1 = "<coordinate>"
The x-axis coordinate of the start of the line.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y1 = "<coordinate>"
The y-axis coordinate of the start of the line.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

x2 = "<coordinate>"
The x-axis coordinate of the end of the line.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y2 = "<coordinate>"
The y-axis coordinate of the end of the line.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

Mathematically, a ‘line’ element can be mapped to an equivalent ‘path’ element as follows: (Note: all coordinate
and length values are first converted into user space coordinates according to Units.)

• perform an absolute moveto operation to absolute location (x1,y1), where x1 and y1 are the values of the ‘line’
element's ‘x1’ and ‘y1’ attributes converted to user space, respectively

• perform an absolute lineto operation to absolute location (x2,y2), where x2 and y2 are the values of the ‘line’
element's ‘x2’ and ‘y2’ attributes converted to user space, respectively

Because ‘line’ elements are single lines and thus are geometrically one-dimensional, they have no interior; thus,
‘line’ elements are never filled (see the ‘fill’ property).

Example line01 below specifies the coordinates of the five lines in the user coordinate system established by
the ‘viewBox’ attribute on the ‘svg’ element. The lines have different thicknesses.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example line01 - lines expressed in user coordinates</desc>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="1198" height="398"

fill="none" stroke="blue" stroke-width="2" />

<g stroke="green" >
<line x1="100" y1="300" x2="300" y2="100"

stroke-width="5"  />
<line x1="300" y1="300" x2="500" y2="100"



‘polyline’

stroke-width="10"  />
<line x1="500" y1="300" x2="700" y2="100"

stroke-width="15"  />
<line x1="700" y1="300" x2="900" y2="100"

stroke-width="20"  />
<line x1="900" y1="300" x2="1100" y2="100"

stroke-width="25"  />
</g>

</svg>

Example line01

9.6 The ‘polyline’ element

The ‘polyline’ element defines a set of connected straight line segments. Typically, ‘polyline’ elements define open
shapes.

Categories:
Basic shape element, graphics element, shape element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’
‘points’

DOM Interfaces:
SVGPolylineElement



Attribute definitions:

points = "<list-of-points>"
The points that make up the polyline. All coordinate values are in the user coordinate system.
Animatable: yes.

If an odd number of coordinates is provided, then the element is in error, with the same user agent behavior as
occurs with an incorrectly specified ‘path’ element.

Mathematically, a ‘polyline’ element can be mapped to an equivalent ‘path’ element as follows:

• perform an absolute moveto operation to the first coordinate pair in the list of points
• for each subsequent coordinate pair, perform an absolute lineto operation to that coordinate pair.

Example polyline01 below specifies a polyline in the user coordinate system established by the ‘viewBox’ attribute
on the ‘svg’ element.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example polyline01 - increasingly larger bars</desc>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="1198" height="398"

fill="none" stroke="blue" stroke-width="2" />

<polyline fill="none" stroke="blue" stroke-width="10"
points="50,375

150,375 150,325 250,325 250,375
350,375 350,250 450,250 450,375
550,375 550,175 650,175 650,375
750,375 750,100 850,100 850,375
950,375 950,25 1050,25 1050,375
1150,375" />

</svg>

Example polyline01

9.7 The ‘polygon’ element

The ‘polygon’ element defines a closed shape consisting of a set of connected straight line segments.



‘polygon’Categories:
Basic shape element, graphics element, shape element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’
‘points’

DOM Interfaces:
SVGPolygonElement

Attribute definitions:

points = "<list-of-points>"
The points that make up the polygon. All coordinate values are in the user coordinate system.
Animatable: yes.

If an odd number of coordinates is provided, then the element is in error, with the same user agent behavior as
occurs with an incorrectly specified ‘path’ element.

Mathematically, a ‘polygon’ element can be mapped to an equivalent ‘path’ element as follows:

• perform an absolute moveto operation to the first coordinate pair in the list of points
• for each subsequent coordinate pair, perform an absolute lineto operation to that coordinate pair
• perform a closepath command

Example polygon01 below specifies two polygons (a star and a hexagon) in the user coordinate system established
by the ‘viewBox’ attribute on the ‘svg’ element.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example polygon01 - star and hexagon</desc>

<!-- Show outline of canvas using 'rect' element -->



<rect x="1" y="1" width="1198" height="398"
fill="none" stroke="blue" stroke-width="2" />

<polygon fill="red" stroke="blue" stroke-width="10"
points="350,75  379,161 469,161 397,215

423,301 350,250 277,301 303,215
231,161 321,161" />

<polygon fill="lime" stroke="blue" stroke-width="10"
points="850,75  958,137.5 958,262.5

850,325 742,262.6 742,137.5" />
</svg>

Example polygon01

9.7.1 The grammar for points specifications in ‘polyline’ and ‘polygon’ elements

The following is the Extended Backus-Naur Form (EBNF) for points specifications in ‘polyline’ and ‘polygon’ ele-
ments. The following notation is used:

• *: 0 or more
• +: 1 or more
• ?: 0 or 1
• (): grouping
• |: separates alternatives
• double quotes surround literals

list-of-points:
wsp* coordinate-pairs? wsp*

coordinate-pairs:
coordinate-pair
| coordinate-pair comma-wsp coordinate-pairs

coordinate-pair:
coordinate comma-wsp coordinate
| coordinate negative-coordinate

coordinate:
number

number:
sign? integer-constant
| sign? floating-point-constant

negative-coordinate:
"-" integer-constant
| "-" floating-point-constant

comma-wsp:



(wsp+ comma? wsp*) | (comma wsp*)
comma:

","
integer-constant:

digit-sequence
floating-point-constant:

fractional-constant exponent?
| digit-sequence exponent

fractional-constant:
digit-sequence? "." digit-sequence
| digit-sequence "."

exponent:
( "e" | "E" ) sign? digit-sequence

sign:
"+" | "-"

digit-sequence:
digit
| digit digit-sequence

digit:
"0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

wsp:
(#x20 | #x9 | #xD | #xA)+

9.8 DOM interfaces

9.8.1 Interface SVGRectElement

The SVGRectElement interface corresponds to the ‘rect’ element.

interface SVGRectElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;
readonly attribute SVGAnimatedLength rx;
readonly attribute SVGAnimatedLength ry;

};

Attributes:

• x (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given ‘rect’ element.

• y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given ‘rect’ element.



• width (readonly SVGAnimatedLength)

Corresponds to attribute ‘width’ on the given ‘rect’ element.

• height (readonly SVGAnimatedLength)

Corresponds to attribute ‘height’ on the given ‘rect’ element.

• rx (readonly SVGAnimatedLength)

Corresponds to attribute ‘rx’ on the given ‘rect’ element.

• ry (readonly SVGAnimatedLength)

Corresponds to attribute ‘ry’ on the given ‘rect’ element.

9.8.2 Interface SVGCircleElement

The SVGCircleElement interface corresponds to the ‘circle’ element.

interface SVGCircleElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength cx;
readonly attribute SVGAnimatedLength cy;
readonly attribute SVGAnimatedLength r;

};

Attributes:

• cx (readonly SVGAnimatedLength)

Corresponds to attribute ‘cx’ on the given ‘circle’ element.

• cy (readonly SVGAnimatedLength)

Corresponds to attribute ‘cy’ on the given ‘circle’ element.

• r (readonly SVGAnimatedLength)

Corresponds to attribute ‘r’ on the given ‘circle’ element.



9.8.3 Interface SVGEllipseElement

The SVGEllipseElement interface corresponds to the ‘ellipse’ element.

interface SVGEllipseElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength cx;
readonly attribute SVGAnimatedLength cy;
readonly attribute SVGAnimatedLength rx;
readonly attribute SVGAnimatedLength ry;

};

Attributes:

• cx (readonly SVGAnimatedLength)

Corresponds to attribute ‘cx’ on the given ‘ellipse’ element.

• cy (readonly SVGAnimatedLength)

Corresponds to attribute ‘cy’ on the given ‘ellipse’ element.

• rx (readonly SVGAnimatedLength)

Corresponds to attribute ‘rx’ on the given ‘ellipse’ element.

• ry (readonly SVGAnimatedLength)

Corresponds to attribute ‘ry’ on the given ‘ellipse’ element.

9.8.4 Interface SVGLineElement

The SVGLineElement interface corresponds to the ‘line’ element.

interface SVGLineElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength x1;
readonly attribute SVGAnimatedLength y1;
readonly attribute SVGAnimatedLength x2;
readonly attribute SVGAnimatedLength y2;

};



Attributes:

• x1 (readonly SVGAnimatedLength)

Corresponds to attribute ‘x1’ on the given ‘line’ element.

• y1 (readonly SVGAnimatedLength)

Corresponds to attribute ‘y1’ on the given ‘line’ element.

• x2 (readonly SVGAnimatedLength)

Corresponds to attribute ‘x2’ on the given ‘line’ element.

• y2 (readonly SVGAnimatedLength)

Corresponds to attribute ‘y2’ on the given ‘line’ element.

9.8.5 Interface SVGAnimatedPoints

The SVGAnimatedPoints interface supports elements which have a ‘points’ attribute which holds a list of coordin-
ate values and which support the ability to animate that attribute.

Additionally, the ‘points’ attribute on the original element accessed via the XML DOM (e.g., using the getAt-
tribute() method call) will reflect any changes made to points.

interface SVGAnimatedPoints {
readonly attribute SVGPointList points;
readonly attribute SVGPointList animatedPoints;

};

Attributes:

• points (readonly SVGPointList)

Provides access to the base (i.e., static) contents of the ‘points’ attribute.

• animatedPoints (readonly SVGPointList)

Provides access to the current animated contents of the ‘points’ attribute. If the given attribute or property
is being animated, contains the current animated value of the attribute or property. If the given attribute or
property is not currently being animated, contains the same value as points.



9.8.6 Interface SVGPolylineElement

The SVGPolylineElement interface corresponds to the ‘polyline’ element.

interface SVGPolylineElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable,
SVGAnimatedPoints {

};

9.8.7 Interface SVGPolygonElement

The SVGPolygonElement interface corresponds to the ‘polygon’ element.

interface SVGPolygonElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable,
SVGAnimatedPoints {

};



10 Text

Contents

10.1 Introduction
10.2 Characters and their corresponding glyphs
10.3 Fonts, font tables and baselines
10.4 The ‘text’ element
10.5 The ‘tspan’ element
10.6 The ‘tref’ element
10.7 Text layout

10.7.1 Text layout introduction
10.7.2 Setting the inline-progression-direction
10.7.3 Glyph orientation within a text run
10.7.4 Relationship with bidirectionality

10.8 Text rendering order
10.9 Alignment properties

10.9.1 Text alignment properties
10.9.2 Baseline alignment properties

10.10 Font selection properties
10.11 Spacing properties
10.12 Text decoration
10.13 Text on a path

10.13.1 Introduction to text on a path
10.13.2 The ‘textPath’ element
10.13.3 Text on a path layout rules

10.14 Alternate glyphs
10.14.1 The ‘altGlyph’ element
10.14.2 The ‘altGlyphDef’, ‘altGlyphItem’ and ‘glyphRef’ elements

10.15 White space handling
10.16 Text selection and clipboard operations
10.17 DOM interfaces

10.17.1 Interface SVGTextContentElement
10.17.2 Interface SVGTextPositioningElement
10.17.3 Interface SVGTextElement
10.17.4 Interface SVGTSpanElement
10.17.5 Interface SVGTRefElement
10.17.6 Interface SVGTextPathElement
10.17.7 Interface SVGAltGlyphElement
10.17.8 Interface SVGAltGlyphDefElement
10.17.9 Interface SVGAltGlyphItemElement



10.17.10 Interface SVGGlyphRefElement

10.1 Introduction

Text that is to be rendered as part of an SVG document fragment is specified using the ‘text’ element. The charac-
ters to be drawn are expressed as XML character data ([XML10], section 2.4) inside the ‘text’ element.

SVG's ‘text’ elements are rendered like other graphics elements. Thus, coordinate system transformations,
painting, clipping and masking features apply to ‘text’ elements in the same way as they apply to shapes such as
paths and rectangles.

Each ‘text’ element causes a single string of text to be rendered. SVG performs no automatic line breaking or
word wrapping. To achieve the effect of multiple lines of text, use one of the following methods:

• The author or authoring package needs to pre-compute the line breaks and use multiple ‘text’ elements (one
for each line of text).

• The author or authoring package needs to pre-compute the line breaks and use a single ‘text’ element with
one or more ‘tspan’ child elements with appropriate values for attributes ‘x’, ‘y’, ‘dx’ and ‘dy’ to set new start
positions for those characters which start new lines. (This approach allows user text selection across multiple
lines of text -- see Text selection and clipboard operations.)

• Express the text to be rendered in another XML namespace such as XHTML [XHTML] embedded inline
within a ‘foreignObject’ element. (Note: the exact semantics of this approach are not completely defined at
this time.)

The text strings within ‘text’ elements can be rendered in a straight line or rendered along the outline of a ‘path’
element. SVG supports the following international text processing features for both straight line text and text on a
path:

• horizontal and vertical orientation of text
• left-to-right or bidirectional text (i.e., languages which intermix right-to-left and left-to-right text, such as Ar-

abic and Hebrew)
• when SVG fonts are used, automatic selection of the correct glyph corresponding to the current form for Ar-

abic and Han text

(The layout rules for straight line text are described in Text layout. The layout rules for text on a path are described
in Text on a path layout rules.)

Because SVG text is packaged as XML character data:

• Text data in SVG content is readily accessible to the visually impaired (see Accessibility Support)
• In many viewing scenarios, the user will be able to search for and select text strings and copy selected text

strings to the system clipboard (see Text selection and clipboard operations)
• XML-compatible Web search engines will find text strings in SVG content with no additional effort over what

they need to do to find text strings in other XML documents

http://www.w3.org/TR/2008/REC-xml-20081126/#syntax


Multi-language SVG content is possible by substituting different text strings based on the user's preferred lan-
guage.

For accessibility reasons, it is recommended that text which is included in a document have appropriate se-
mantic markup to indicate its function. See SVG accessibility guidelines for more information.

10.2 Characters and their corresponding glyphs

In XML [XML10], textual content is defined in terms of a sequence of XML characters, where each character is
defined by a particular Unicode code point [UNICODE]. Fonts, on the other hand, consist of a collection of glyphs
and other associated information, such as font tables. A glyph is a presentable form of one or more characters (or
a part of a character in some cases). Each glyph consists of some sort of identifier (in some cases a string, in other
cases a number) along with drawing instructions for rendering that particular glyph.

In many cases, there is a one-to-one mapping of Unicode characters (i.e., Unicode code points) to glyphs in a
font. For example, it is common for a font designed for Latin languages (where the term Latin is used for European
languages such as English with alphabets similar to and/or derivative to the Latin language) to contain a single
glyph for each of the standard ASCII characters (i.e., A-to-Z, a-to-z, 0-to-9, plus the various punctuation characters
found in ASCII). Thus, in most situations, the string "XML", which consists of three Unicode characters, would be
rendered by the three glyphs corresponding to "X", "M" and "L", respectively.

In various other cases, however, there is not a strict one-to-one mapping of Unicode characters to glyphs.
Some of the circumstances when the mapping is not one-to-one:

• Ligatures - For best looking typesetting, it is often desirable that particular sequences of characters are
rendered as a single glyph. An example is the word "office". Many fonts will define an "ffi" ligature. When
the word "office" is rendered, sometimes the user agent will render the glyph for the "ffi" ligature instead of
rendering distinct glyphs (i.e., "f", "f" and "i") for each of the three characters. Thus, for ligatures, multiple
Unicode characters map to a single glyph. (Note that for proper rendering of some languages, ligatures are
required for certain character combinations.)

• Composite characters - In various situations, commonly used adornments such as diacritical marks will be
stored once in a font as a particular glyph and then composed with one or more other glyphs to result in the
desired character. For example, it is possible that a font engine might render the é character by first rendering
the glyph for e and then rendering the glyph for ´ (the accent mark) such that the accent mark will appear
over the e. In this situation, a single Unicode character maps to multiple glyphs.

• Glyph substitution - Some typography systems examine the nature of the textual content and utilize different
glyphs in different circumstances. For example, in Arabic, the same Unicode character might render as any
of four different glyphs, depending on such factors as whether the character appears at the start, the end or
the middle of a sequence of cursively joined characters. Different glyphs might be used for a punctuation
character depending on inline-progression-direction (e.g., horizontal vs. vertical). In these situations, a single
Unicode character might map to one of several alternative glyphs.

• In some languages, particular sequences of characters will be converted into multiple glyphs such that parts
of a particular character are in one glyph and the remainder of that character is in another glyph.

• Alternative glyph specification - SVG contains a facility for the author to explicitly specify that a particular

http://www.w3.org/TR/2008/REC-xml-20081126/


sequence of Unicode characters is to be rendered using a particular glyph. (See Alternate glyphs.) When this
facility is used, multiple Unicode characters map to a single glyph.

In many situations, the algorithms for mapping from characters to glyphs are system-dependent, resulting in the
possibility that the rendering of text might be (usually slightly) different when viewed in different user environ-
ments. If the author of SVG content requires precise selection of fonts and glyphs, then the recommendation is that
the necessary fonts (potentially subsetted to include only the glyphs needed for the given document) be available
either as SVG fonts embedded within the SVG content or as WebFonts ([CSS2], section 15.1) posted at the same
Web location as the SVG content.

Throughout this chapter, the term character shall be equivalent to the definition of a character in XML
[XML10].

10.3 Fonts, font tables and baselines

A font consists of a collection of glyphs together with the information (the font tables) necessary to use those
glyphs to present characters on some medium. The combination of the collection of glyphs and the font tables is
called the font data. The font tables include the information necessary to map characters to glyphs, to determine
the size of glyph areas and to position the glyph area. Each font table consists of one or more font characteristics,
such as the font-weight and font-style.

The geometric font characteristics are expressed in a coordinate system based on the EM box. (The EM is a
relative measure of the height of the glyphs in the font; see Coordinate units on the em square; in [CSS2], section
15.4.3.) The box 1 EM high and 1 EM wide is called the design space. This space is given a geometric coordinates
by sub-dividing the EM into a number of units per em.

Note: Units per em is a font characteristic. A typical value for units per em is 1000 or 2048.
The coordinate space of the EM box is called the design space coordinate system. For scalable fonts, the curves

and lines that are used to draw a glyph are represented using this coordinate system.
Note: Most often, the (0,0) point in this coordinate system is positioned on the left edge of the EM box, but

not at the bottom left corner. The Y coordinate of the bottom of a roman capital letter is usually zero. And the
descenders on lowercase roman letters have negative coordinate values.

SVG assumes that the font tables will provide at least three font characteristics: an ascent, a descent and a set
of baseline-tables. The ascent is the distance to the top of the EM box from the (0,0) point of the font; the descent
is the distance to the bottom of the EM box from the (0.0) point of the font. The baseline-table is explained below.

Note: Within an OpenType font, for horizontal writing-modes, the ascent and descent are given by the sTy-
poAscender and sTypoDescender entries in the OS/2 table. For vertical writing-modes, the descent (the distance,
in this case from the (0,0) point to the left edge of the glyph) is normally zero because the (0,0) point is on the left
edge. The ascent for vertical writing-modes is either 1 em or is specified by the ideographic top baseline value in
the OpenType Base table for vertical writing-modes.

In horizontal writing-modes, the glyphs of a given script are positioned so that a particular point on each
glyph, the alignment-point, is aligned with the alignment-points of the other glyphs in that script. The glyphs of
different scripts, for example, Western, Northern Indic and Far-Eastern scripts, are typically aligned at different
points on the glyph. For example, Western glyphs are aligned on the bottoms of the capital letters, northern indic
glyphs are aligned at the top of a horizontal stroke near the top of the glyphs and far-eastern glyphs are aligned

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#q1
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#emsq


either at the bottom or center of the glyph. Within a script and within a line of text having a single font-size,
the sequence of alignment-points defines, in the inline- progression-direction, a geometric line called a baseline.
Western and most other alphabetic and syllabic glyphs are aligned to an "alphabetic" baseline, the northern indic
glyphs are aligned to a "hanging" baseline and the far-eastern glyphs are aligned to an "ideographic" baseline.

A baseline-table specifies the position of one or more baselines in the design space coordinate system. The
function of the baseline table is to facilitate the alignment of different scripts with respect to each other when they
are mixed on the same text line. Because the desired relative alignments may depend on which script is dominant
in a line (or block), there may be a different baseline table for each script. In addition, different alignment positions
are needed for horizontal and vertical writing modes. Therefore, the font may have a set of baseline tables: typic-
ally, one or more for horizontal writing-modes and zero or more for vertical writing-modes.

Note: Some fonts may not have values for the baseline tables. Heuristics are suggested for approximating the
baseline tables when a given font does not supply baseline tables.

SVG further assumes that for each glyph in the font data for a font, there are two width values, two
alignment-baselines and two alignment-points, one each for horizontal writing-modes and the other for vertical
writing-modes. (Even though it is specified as a width, for vertical writing-modes the width is used in the vertical
direction.) The script to which a glyph belongs determines an alignment-baseline to which the glyph is to be
aligned. The inline-progression-direction position of the alignment-point is on the start-edge of the glyph.

Properties related to baselines are described below under Baseline alignment properties.
In addition to the font characteristics required above, a font may also supply substitution and positioning

tables that can be used by a formatter to re-order, combine and position a sequence of glyphs to make one or more
composite glyphs. The combination may be as simple as a ligature, or as complex as an indic syllable which com-
bines, usually with some re-ordering, multiple consonants and vowel glyphs.

10.4 The ‘text’ element

The ‘text’ element defines a graphics element consisting of text. The XML character data within the ‘text’ element,
along with relevant attributes and properties and character-to-glyph mapping tables within the font itself, define
the glyphs to be rendered. (See Characters and their corresponding glyphs.) The attributes and properties on the
‘text’ element indicate such things as the writing direction, font specification and painting attributes which de-
scribe how exactly to render the characters. Subsequent sections of this chapter describe the relevant text-specific
attributes and properties, particular text layout and bidirectionality.

Since ‘text’ elements are rendered using the same rendering methods as other graphics elements, all of the
same coordinate system transformations, painting, clipping and masking features that apply to shapes such as
paths and rectangles also apply to ‘text’ elements.

It is possible to apply a gradient, pattern, clipping path, mask or filter to text. When one of these facilities
is applied to text and keyword 'objectBoundingBox' is used (see Object bounding box units) to specify a graphical
effect relative to the "object bounding box", then the object bounding box units are computed relative to the entire
‘text’ element in all cases, even when different effects are applied to different ‘tspan’ elements within the same
‘text’ element.

The ‘text’ element renders its first glyph (after bidirectionality reordering) at the initial current text position,
which is established by the ‘x’ and ‘y’ attributes on the ‘text’ element (with possible adjustments due to the value
of the ‘text-anchor’ property, the presence of a ‘textPath’ element containing the first character, and/or an ‘x’, ‘y’,



‘text’

‘dx’ or ‘dy’ attributes on a ‘tspan’, ‘tref’ or ‘altGlyph’ element which contains the first character). After the glyph(s)
corresponding to the given character is(are) rendered, the current text position is updated for the next character.
In the simplest case, the new current text position is the previous current text position plus the glyphs' advance
value (horizontal or vertical). See text layout for a description of glyph placement and glyph advance.

Categories:
Graphics element, text content element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements
text content child elements
‘a’

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’
‘lengthAdjust’
‘x’
‘y’
‘dx’
‘dy’
‘rotate’
‘textLength’

DOM Interfaces:
SVGTextElement

Attribute definitions:

x = "<list-of-coordinates>"
If a single <coordinate> is provided, then the value represents the new absolute X coordinate for the current
text position for rendering the glyphs that correspond to the first character within this element or any of its
descendants.
If a comma- or space-separated list of n <coordinate>s is provided, then the values represent new absolute X
coordinates for the current text position for rendering the glyphs corresponding to each of the first n charac-



ters within this element or any of its descendants.
For additional processing rules, refer to the description of the ‘x’ attribute on the ‘tspan’ element.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y = "<list-of-coordinates>"
The corresponding list of absolute Y coordinates for the glyphs corresponding to the characters within this
element. The processing rules for the ‘y’ attribute parallel the processing rules for the ‘x’ attribute.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

dx = "<list-of-lengths>"
Shifts in the current text position along the x-axis for the characters within this element or any of its des-
cendants.
Refer to the description of the ‘dx’ attribute on the ‘tspan’ element.
If the attribute is not specified on this element or any of its descendants, no supplemental shifts along the
x-axis will occur.
Animatable: yes.

dy = "<list-of-lengths>"
Shifts in the current text position along the y-axis for the characters within this element or any of its des-
cendants.
Refer to the description of the ‘dy’ attribute on the ‘tspan’ element.
If the attribute is not specified on this element or any of its descendants, no supplemental shifts along the
y-axis will occur.
Animatable: yes.

rotate = "<list-of-numbers>"
The supplemental rotation about the current text position that will be applied to all of the glyphs corres-
ponding to each character within this element.
Refer to the description of the ‘rotate’ attribute on the ‘tspan’ element.
If the attribute is not specified on this element or any of its descendants, no supplemental rotations will oc-
cur.
Animatable: yes (non-additive).

textLength = "<length>"
The author's computation of the total sum of all of the advance values that correspond to character data
within this element, including the advance value on the glyph (horizontal or vertical), the effect of proper-
ties ‘kerning’, ‘letter-spacing’ and ‘word-spacing’ and adjustments due to attributes ‘dx’ and ‘dy’ on ‘tspan’
elements. This value is used to calibrate the user agent's own calculations with that of the author.
The purpose of this attribute is to allow the author to achieve exact alignment, in visual rendering order after
any bidirectional reordering, for the first and last rendered glyphs that correspond to this element; thus, for
the last rendered character (in visual rendering order after any bidirectional reordering), any supplemental



inter-character spacing beyond normal glyph advances are ignored (in most cases) when the user agent de-
termines the appropriate amount to expand/compress the text string to fit within a length of ‘textLength’.
A negative value is an error (see Error processing).
If the attribute is not specified, the effect is as if the author's computation exactly matched the value calcu-
lated by the user agent; thus, no advance adjustments are made.
Animatable: yes.

lengthAdjust = "spacing|spacingAndGlyphs"
Indicates the type of adjustments which the user agent shall make to make the rendered length of the text
match the value specified on the ‘textLength’ attribute.
'spacing' indicates that only the advance values are adjusted. The glyphs themselves are not stretched or com-
pressed.
'spacingAndGlyphs' indicates that the advance values are adjusted and the glyphs themselves stretched or
compressed in one axis (i.e., a direction parallel to the inline-progression-direction).
The user agent is required to achieve correct start and end positions for the text strings, but the locations of
intermediate glyphs are not predictable because user agents might employ advanced algorithms to stretch or
compress text strings in order to balance correct start and end positioning with optimal typography.
Note that, for a text string that contains n characters, the adjustments to the advance values often occur only
for n−1 characters (see description of attribute ‘textLength’), whereas stretching or compressing of the glyphs
will be applied to all n characters.
If the attribute is not specified, the effect is as a value of 'spacing' were specified.
Animatable: yes.

Example text01 below contains the text string "Hello, out there" which will be rendered onto the canvas using the
Verdana font family with the glyphs filled with the color blue.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 1000 300"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example text01 - 'Hello, out there' in blue</desc>

<text x="250" y="150"
font-family="Verdana" font-size="55" fill="blue" >

Hello, out there
</text>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="998" height="298"

fill="none" stroke="blue" stroke-width="2" />
</svg>



‘tspan’

Example test01

10.5 The ‘tspan’ element

Within a ‘text’ element, text and font properties and the current text position can be adjusted with absolute or
relative coordinate values by including a ‘tspan’ element.

Categories:
Text content element, text content child element

Content model:
Any number of the following elements, in any order:

descriptive elements
‘a’
‘altGlyph’
‘animate’
‘animateColor’
‘set’
‘tref’
‘tspan’

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘x’
‘y’
‘dx’
‘dy’
‘rotate’
‘textLength’



‘lengthAdjust’

DOM Interfaces:
SVGTSpanElement

Attribute definitions:

x = "<list-of-coordinates>"
If a single <coordinate> is provided, then the value represents the new absolute X coordinate for the current
text position for rendering the glyphs that correspond to the first character within this element or any of its
descendants.
If a comma- or space-separated list of n <coordinate>s is provided, then the values represent new absolute X
coordinates for the current text position for rendering the glyphs corresponding to each of the first n charac-
ters within this element or any of its descendants.
If more <coordinate>s are provided than characters, then the extra <coordinate>s will have no effect on glyph
positioning.
If more characters exist than <coordinate>s, then for each of these extra characters: (a) if an ancestor ‘text’
or ‘tspan’ element specifies an absolute X coordinate for the given character via an ‘x’ attribute, then that
absolute X coordinate is used as the starting X coordinate for that character (nearest ancestor has preceden-
ce), else (b) the starting X coordinate for rendering the glyphs corresponding to the given character is the X
coordinate of the resulting current text position from the most recently rendered glyph for the current ‘text’
element.
If the attribute is not specified: (a) if an ancestor ‘text’ or ‘tspan’ element specifies an absolute X coordinate
for a given character via an ‘x’ attribute, then that absolute X coordinate is used (nearest ancestor has pre-
cedence), else (b) the starting X coordinate for rendering the glyphs corresponding to a given character is
the X coordinate of the resulting current text position from the most recently rendered glyph for the current
‘text’ element.
Animatable: yes.

y = "<list-of-coordinates>"
The corresponding list of absolute Y coordinates for the glyphs corresponding to the characters within this
element. The processing rules for the ‘y’ attribute parallel the processing rules for the ‘x’ attribute.
Animatable: yes.

dx = "<list-of-lengths>"
If a single <length> is provided, this value represents the new relative X coordinate for the current text pos-
ition for rendering the glyphs corresponding to the first character within this element or any of its descend-
ants. The current text position is shifted along the x-axis of the current user coordinate system by <length>
before the first character's glyphs are rendered.
If a comma- or space-separated list of n <length>s is provided, then the values represent incremental shifts
along the x-axis for the current text position before rendering the glyphs corresponding to the first n char-
acters within this element or any of its descendants. Thus, before the glyphs are rendered corresponding to



each character, the current text position resulting from drawing the glyphs for the previous character within
the current ‘text’ element is shifted along the X axis of the current user coordinate system by <length>.
If more <length>s are provided than characters, then any extra <length>s will have no effect on glyph posi-
tioning.
If more characters exist than <length>s, then for each of these extra characters: (a) if an ancestor ‘text’ or
‘tspan’ element specifies a relative X coordinate for the given character via a ‘dx’ attribute, then the current
text position is shifted along the x-axis of the current user coordinate system by that amount (nearest an-
cestor has precedence), else (b) no extra shift along the x-axis occurs.
If the attribute is not specified: (a) if an ancestor ‘text’ or ‘tspan’ element specifies a relative X coordinate for
a given character via a ‘dx’ attribute, then the current text position is shifted along the x-axis of the current
user coordinate system by that amount (nearest ancestor has precedence), else (b) no extra shift along the
x-axis occurs.
Animatable: yes.

dy = "<list-of-lengths>"
The corresponding list of relative Y coordinates for the characters within the ‘tspan’ element. The processing
rules for the ‘dy’ attribute parallel the processing rules for the ‘dx’ attribute.
Animatable: yes.

rotate = "<list-of-numbers>"
The supplemental rotation about the current text position that will be applied to all of the glyphs corres-
ponding to each character within this element.
If a comma- or space-separated list of <number>s is provided, then the first <number> represents the sup-
plemental rotation for the glyphs corresponding to the first character within this element or any of its des-
cendants, the second <number> represents the supplemental rotation for the glyphs that correspond to the
second character, and so on.
If more <number>s are provided than there are characters, then the extra <number>s will be ignored.
If more characters are provided than <number>s, then for each of these extra characters the rotation value
specified by the last number must be used.
If the attribute is not specified and if an ancestor ‘text’ or ‘tspan’ element specifies a supplemental rotation for
a given character via a ‘rotate’ attribute, then the given supplemental rotation is applied to the given charac-
ter (nearest ancestor has precedence). If there are more characters than <number>s specified in the ancestor's
‘rotate’ attribute, then for each of these extra characters the rotation value specified by the last number must
be used.
This supplemental rotation has no impact on the rules by which current text position is modified as glyphs
get rendered and is supplemental to any rotation due to text on a path and to ‘glyph-orientation-horizontal’
or ‘glyph-orientation-vertical’.
Animatable: yes (non-additive).

textLength = "<length>"
The author's computation of the total sum of all of the advance values that correspond to character data
within this element, including the advance value on the glyph (horizontal or vertical), the effect of properties
‘kerning’, ‘letter-spacing’ and ‘word-spacing’ and adjustments due to attributes ‘dx’ and ‘dy’ on this ‘tspan’



element or any descendants. This value is used to calibrate the user agent's own calculations with that of the
author.
The purpose of this attribute is to allow the author to achieve exact alignment, in visual rendering order after
any bidirectional reordering, for the first and last rendered glyphs that correspond to this element; thus, for
the last rendered character (in visual rendering order after any bidirectional reordering), any supplemental
inter-character spacing beyond normal glyph advances are ignored (in most cases) when the user agent de-
termines the appropriate amount to expand/compress the text string to fit within a length of ‘textLength’.
If attribute ‘textLength’ is specified on a given element and also specified on an ancestor, the adjustments on
all character data within this element are controlled by the value of ‘textLength’ on this element exclusively,
with the possible side-effect that the adjustment ratio for the contents of this element might be different than
the adjustment ratio used for other content that shares the same ancestor. The user agent must assume that
the total advance values for the other content within that ancestor is the difference between the advance
value on that ancestor and the advance value for this element.
A negative value is an error (see Error processing).
If the attribute is not specified anywhere within a ‘text’ element, the effect is as if the author's computation
exactly matched the value calculated by the user agent; thus, no advance adjustments are made.
Animatable: yes.

The ‘x’, ‘y’, ‘dx’, ‘dy’ and ‘rotate’ on the ‘tspan’ element are useful in high-end typography scenarios where in-
dividual glyphs require exact placement. These attributes are useful for minor positioning adjustments between
characters or for major positioning adjustments, such as moving the current text position to a new location to
achieve the visual effect of a new line of text. Multi-line ‘text’ elements are possible by defining different ‘tspan’
elements for each line of text, with attributes ‘x’, ‘y’, ‘dx’ and/or ‘dy’ defining the position of each ‘tspan’. (An ad-
vantage of such an approach is that users will be able to perform multi-line text selection.)

In situations where micro-level positioning adjustment are necessary for advanced typographic control, the
SVG content designer needs to ensure that the necessary font will be available for all viewers of the document
(e.g., package up the necessary font data in the form of an SVG font or an alternative WebFont format which is
stored at the same Web site as the SVG content) and that the viewing software will process the font in the expected
way (the capabilities, characteristics and font layout mechanisms vary greatly from system to system). If the SVG
content contains ‘x’, ‘y’, ‘dx’ or ‘dy’ attribute values which are meant to correspond to a particular font processed
by a particular set of viewing software and either of these requirements is not met, then the text might display
with poor quality.

The following additional rules apply to attributes ‘x’, ‘y’, ‘dx’, ‘dy’ and ‘rotate’ when they contain a list of
numbers:

• When a single XML character maps to a single glyph - In this case, the i-th value for the ‘x’, ‘y’, ‘dx’, ‘dy’ and
‘rotate’ attributes is applied to the glyph that corresponds to the i-th character.

• When a single XML character maps to multiple glyphs (e.g., when an accent glyph is placed on top of a
base glyph) - In this case, the i-th value for the ‘x’, ‘y’, ‘dx’ and ‘dy’ values are applied (i.e., the current text
position is adjusted) before rendering the first glyph. The rotation transformation corresponding to the i-th
‘rotate’ value is applied to the glyphs and to the inter-glyph advance values corresponding to this character



on a group basis (i.e., the rotation value creates a temporary new rotated coordinate system, and the glyphs
orresponding to the character are rendered into this rotated coordinate system).

• When multiple XML characters map to a single glyph (e.g., when a ligature is used) - Suppose that the i-th
and (i+1)-th XML characters map to a single glyph. In this case, the i-th value for the ‘x’, ‘y’, ‘dx’, ‘dy’ and
‘rotate’ attributes all apply when rendering the glyph. The (i+1)-th values, however, for ‘x’, ‘y’ and ‘rotate’ are
ignored (exception: the final ‘rotate’ value in the list would still apply to subsequent characters), whereas the
‘dx’ and ‘dy’ are applied to the subsequent XML character (i.e., the (i+2)-th character), if one exists, by trans-
lating the current text position by the given amounts before rendering the first glyph associated with that
character.

• When there is a many-to-many mapping of characters to glyphs (e.g., when three characters map to two
glyphs, such as when the first glyph expresses the first character and half of the second character, and the
second glyph expresses the other half of the second character plus the third character) - Suppose that the i-th,
(i+1)-th and (i+2)-th XML characters map to two glyphs. In this case, the i-th value for the ‘x’, ‘y’, ‘dx’ and
‘dy’ values are applied (i.e., the current text position is adjusted) before rendering the first glyph. The rotation
transformation corresponding to the i-th ‘rotate’ value is applied to both the two glyphs and the glyph ad-
vance values for the first glyph on a group basis (i.e., the rotation value creates a temporary new rotated co-
ordinate system, and the two glyphs are rendered into the temporary rotated coordinate system). The (i+1)-th
and (i+2)-th values, however, for the ‘x’, ‘y’ and ‘rotate’ attributes are not applied (exception: the final ‘rotate’
value in the list would still apply to subsequent characters), whereas the (i+1)-th and (i+2)-th values for the
‘dx’ and ‘dy’ attributes are applied to the subsequent XML character (i.e., the (i+3)-th character), if one exists,
by translating the current text position by the given amounts before rendering the first glyph associated with
that character.

• Relationship to bidirectionality - As described below in the discussion on bidirectionality, text is laid out in
a two-step process, where any bidirectional text is first re-ordered into a left-to-right string, and then text
layout occurs with the re-ordered text string. Whenever the character data within a ‘tspan’ element is re-
ordered, the corresponding elements within the ‘x’, ‘y’, ‘dx’, ‘dy’ and ‘rotate’ are also re-ordered to maintain
the correspondence. For example, suppose that you have the following ‘tspan’ element:

<tspan dx="11 12 13 14 15 0 21 22 23 0 31 32 33 34 35 36">Latin and Hebrew</tspan>

and that the word "Hebrew" will be drawn right-to-left. First, the character data and the corresponding values
in the ‘dx’ list will be reordered, such that the text string will be "Latin and werbeH" and the list of values
for the ‘dx’ attribute will be "11 12 13 14 15 0 21 22 23 0 36 35 34 33 32 31". After this re-ordering, the glyphs
corresponding to the characters will be positioned using standard left-to-right layout rules.

The following examples show basic use of the ‘tspan’ element.
Example tspan01 uses a ‘tspan’ element to indicate that the word "not" is to use a bold font and have red fill.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 1000 300"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example tspan01 - using tspan to change visual attributes</desc>

<g font-family="Verdana" font-size="45" >
<text x="200" y="150" fill="blue" >

You are



<tspan font-weight="bold" fill="red" >not</tspan>
a banana.

</text>
</g>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="998" height="298"

fill="none" stroke="blue" stroke-width="2" />
</svg>

Example tspan01

Example tspan02 uses the ‘dx’ and ‘dy’ attributes on the ‘tspan’ element to adjust the current text position hori-
zontally and vertically for particular text strings within a ‘text’ element.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 1000 300"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example tspan02 - using tspan's dx and dy attributes

for incremental positioning adjustments</desc>

<g font-family="Verdana" font-size="45" >
<text x="200" y="150" fill="blue" >

But you
<tspan dx="2em" dy="-50" font-weight="bold" fill="red" >

are
</tspan>
<tspan dy="100">

a peach!
</tspan>

</text>
</g>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="998" height="298"

fill="none" stroke="blue" stroke-width="2" />
</svg>

Example tspan02

Example tspan03 uses the ‘x’ and ‘y’ attributes on the ‘tspan’ element to establish a new absolute current text po-
sition for each glyph to be rendered. The example shows two lines of text within a single ‘text’ element. Because



both lines of text are within the same ‘text’ element, the user will be able to select through both lines of text and
copy the text to the system clipboard in user agents that support text selection and clipboard operations.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 1000 300"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example tspan03 - using tspan's x and y attributes

for multiline text and precise glyph positioning</desc>

<g font-family="Verdana" font-size="45" >
<text fill="rgb(255,164,0)" >

<tspan x="300 350 400 450 500 550 600 650" y="100">
Cute and

</tspan>
<tspan x="375 425 475 525 575" y="200">

fuzzy
</tspan>

</text>
</g>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="998" height="298"

fill="none" stroke="blue" stroke-width="2" />
</svg>

Example tspan03

Example tspan04 uses the ‘rotate’ attribute on the ‘tspan’ element to rotate the glyphs to be rendered. This example
shows a single text string in a ‘tspan’ element that contains more characters than the number of values specified
in the ‘rotate’ attribute. In this case the last value specified in the ‘rotate’ attribute of the ‘tspan’ must be applied to
the remaining characters in the string.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 1000 300"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>

Example tspan04 - The number of rotate values is less than the number of
characters in the string.

</desc>
<text font-family="Verdana" font-size="55" fill="blue" >

<tspan x="250" y="150" rotate="-30,0,30">
Hello, out there

</tspan>
</text>
<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="998" height="298"
fill="none" stroke="blue" stroke-width="2" />

</svg>



Example tspan04

Example tspan05 specifies the ‘rotate’ attribute on the ‘text’ element and on all but one of the child ‘tspan’ elements
to rotate the glyphs to be rendered. The example demonstrates the propagation of the ‘rotate’ attribute.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="100%" height="100%" viewBox="0 0 500 120"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>

Example tspan05 - propagation of rotation values to nested tspan elements.
</desc>
<text id="parent" font-family="Arial, sans-serif" font-size="32" fill="red" x="40" y="40"

rotate="5,15,25,35,45,55">
Not

<tspan id="child1" rotate="-10,-20,-30,-40" fill="orange">
all characters

<tspan id="child2" rotate="70,60,50,40,30,20,10" fill="yellow">
in

<tspan id="child3">
the

</tspan>
</tspan>

<tspan id="child4" fill="orange" x="40" y="90">
text

</tspan>

have a
</tspan>

<tspan id="child5" rotate="-10" fill="blue">
specified

</tspan>

rotation
</text>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="498" height="118" fill="none"

stroke="blue" stroke-width="2" />
</svg>



Example tspan05

Rotation of red text inside the ‘text’ element:

• The ‘rotate’ value will rotate the characters in the text "Not " by 5, 15, 25 and 35 degrees respectively.
• A ‘rotate’ value is applied to the space that follows the text "Not", to the space in between the text in the

"child1" and "child5" ‘tspan’ elements, and to the space before the text "rotation".
• The next current ‘rotate’ value specified is 45 followed by 55. The current ‘rotate’ value in the ‘text’ element is

incremented as subsequent characters in the text of the child ‘tspan’ elements are processed.
• The next immediate ‘tspan’ element specifies rotate values for the text, hence the current ‘rotate’ value will

change to the next value in the list (but is not used) as each character is processed until the last value of 55
degrees is reached.

• The last ‘rotate’ value of 55 degrees will be applied to all the characters in the text "rotation".

Rotation of the orange text inside the "child1" ‘tspan’ element:

• The ‘rotate’ value will rotate the first 4 characters in the text "all characters " by -10, -20, -30 and -40 respect-
ively.

• The last ‘rotate’ value of -40 becomes the current ‘rotate’ value and will be applied to all subsequent characters
in the ‘tspan’ element and to any child ‘tspan’ elements that do not specify ‘rotate’ values.

• The "child4" ‘tspan’ element does not specify any ‘rotate’ values and thus uses the current ‘rotate’ of its ancest-
or ("child1" ‘tspan’ element). All the characters in the text "text" specified within the "child4" ‘tspan’ element
will be rotated by -40 degrees.

• The last ‘rotate’ value of -40 degrees will be applied to all the characters in the text "have a".
• A ‘rotate’ value is applied to the space in between the text in the "child2" and "child4" ‘tspan’ elements, and to

the space before the text "have a".

Rotation of the yellow text inside the "child2" ‘tspan’ element:

• The ‘rotate’ value will rotate the characters in the (yellow) text "in " by 70, 60, and 50 degrees respectively.
• A ‘rotate’ value is applied to the space that follows the text "in".
• There are more ‘rotate’ values specified than characters, thus the additional ‘rotate’ values will be applied to

the "child3" ‘tspan’ element which does not specified any ‘rotate’ values.



• The characters in the text "the" specified within the "child3" ‘tspan’ element will be rotated 40, 30 and 20 de-
grees respectively.

Rotation of the blue text inside the "child5" ‘tspan’ element:

• The ‘rotate’ value will rotate all the characters in text "specified" by -10 degrees.
• Only one ‘rotate’ value is specified and is thus applied to all characters in the ‘tspan’ element.

The following diagram illustrates how the rotation values propagate to ‘tspan’ elements nested withing a ‘text’
element





‘tref’

10.6 The ‘tref’ element

The textual content for a ‘text’ can be either character data directly embedded within the ‘text’ element or the
character data content of a referenced element, where the referencing is specified with a ‘tref’ element.

Categories:
Text content element, text content child element

Content model:
Any number of the following elements, in any order:

descriptive elements
‘animate’
‘animateColor’
‘set’

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
xlink attributes
‘class’
‘style’
‘externalResourcesRequired’
‘xlink:href’

DOM Interfaces:
SVGTRefElement

Attribute definitions:

xlink:href = "<iri>"
An IRI reference to an element whose character data content shall be used as character data for this ‘tref’
element.
Animatable: yes.

All character data within the referenced element, including character data enclosed within additional markup, will
be rendered.

The ‘x’, ‘y’, ‘dx’, ‘dy’ and ‘rotate’ attributes have the same meanings as for the ‘tspan’ element. The attributes
are applied as if the ‘tref’ element was replaced by a ‘tspan’ with the referenced character data (stripped of all
supplemental markup) embedded within the hypothetical ‘tspan’ element.

Example tref01 shows how to use character data from a different element as the character data for a given



‘tspan’ element. The first ‘text’ element (with id="ReferencedText") will not draw because it is part of a ‘defs’ ele-
ment. The second ‘text’ element draws the string "Inline character data". The third ‘text’ element draws the string
"Reference character data" because it includes a ‘tref’ element which is a reference to element "ReferencedText",
and that element's character data is "Referenced character data".

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 1000 300" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>

<text id="ReferencedText">
Referenced character data

</text>
</defs>
<desc>Example tref01 - inline vs reference text content</desc>

<text x="100" y="100" font-size="45" fill="blue" >
Inline character data

</text>
<text x="100" y="200" font-size="45" fill="red" >

<tref xlink:href="#ReferencedText"/>
</text>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="998" height="298"

fill="none" stroke="blue" stroke-width="2" />
</svg>

Example tref01

10.7 Text layout

10.7.1 Text layout introduction

This section describes the text layout features supported by SVG, which includes support for various international
writing directions, such as left-to-right (e.g., Latin scripts) and bidirectional (e.g., Hebrew or Arabic) and vertical
(e.g., Asian scripts). The descriptions in this section assume straight line text (i.e., text that is either strictly ho-
rizontal or vertical with respect to the current user coordinate system). Subsequent sections describe the supple-
mental layout rules for text on a path.

SVG does not provide for automatic line breaks or word wrapping, which makes internationalized text layout
for SVG relatively simpler than it is for languages which support formatting of multi-line text blocks.

For each ‘text’ element, the SVG user agent determines the current reference orientation. For standard ho-
rizontal or vertical text (i.e., no text-on-a-path), the reference orientation is the vector pointing towards negative
infinity in Y within the current user coordinate system. (Note: in the initial coordinate system, the reference ori-
entation is up.) For text on a path, the reference orientation is reset with each character.



Based on the reference orientation and the value for property ‘writing-mode’, the SVG user agent determines
the current inline-progression-direction. For left-to-right text, the inline-progression-direction points 90 degrees
clockwise from the reference orientation vector. For right-to-left text, the inline progression points 90 degrees
counter-clockwise from the reference orientation vector. For top-to-bottom text, the inline-progression-direction
points 180 degrees from the reference orientation vector.

Based on the reference orientation and the value for property ‘writing-mode’, the SVG user agent determines
the current block-progression-direction. For left-to-right and right-to-left text, the block-progression-direction
points 180 degrees from the reference orientation vector because the only available horizontal ‘writing-mode’s are
lr-tb and rl-tb. For top-to-bottom text, the block-progression-direction always points 90 degrees counter-clockwise
from the reference orientation vector because the only available top-to-bottom ‘writing-mode’ is tb-rl.

The shift direction is the direction towards which the baseline table moves due to positive values for property
‘baseline-shift’. The shift direction is such that a positive value shifts the baseline table towards the topmost entry
in the parent's baseline table.

In processing a given ‘text’ element, the SVG user agent keeps track of the current text position. The initial
current text position is established by the ‘x’ and ‘y’ attributes on the ‘text’ element.

The current text position is adjusted after each glyph to establish a new current text position at which the next
glyph shall be rendered. The adjustment to the current text position is based on the current inline-progression-dir-
ection, glyph-specific advance values corresponding to the glyph orientation of the glyph just rendered, kerning
tables in the font and the current values of various attributes and properties, such as the spacing properties and
any ‘x’, ‘y’, ‘dx’ and ‘dy’ attributes on ‘text’, ‘tspan’, ‘tref’ or ‘altGlyph’ elements. If a glyph does not provide ex-
plicit advance values corresponding to the current glyph orientation, then an appropriate approximation should
be used. For vertical text, a suggested approximation is the sum of the ascent and descent values for the glyph.
Another suggested approximation for an advance value for both horizontal and vertical text is the size of an em
(see units-per-em).

For each glyph to be rendered, the SVG user agent determines an appropriate alignment-point on the glyph
which will be placed exactly at the current text position. The alignment-point is determined based on glyph
cell metrics in the glyph itself, the current inline-progression-direction and the glyph orientation relative to the
inline-progression-direction. For most uses of Latin text (i.e., writing-mode:lr, text-anchor:start and alignment-
baseline:baseline) the alignment-point in the glyph will be the intersection of left edge of the glyph cell (or some
other glyph-specific x-axis coordinate indicating a left-side origin point) with the Latin baseline of the glyph. For
many cases with top-to-bottom vertical text layout, the reference point will be either a glyph-specific origin point
based on the set of vertical baselines for the font or the intersection of the center of the glyph with its top line
(see Top Baseline; in [CSS2], section 15.4.18). If a glyph does not provide explicit origin points corresponding to
the current glyph orientation, then an appropriate approximation should be used, such as the intersection of the
left edge of the glyph with the appropriate horizontal baseline for the glyph or intersection of the top edge of
the glyph with the appropriate vertical baseline. If baseline tables are not available, user agents should establish
baseline tables that reflect common practice.

Adjustments to the current text position are either absolute position adjustments or relative position ad-
justments. An absolute position adjustment occurs in the following circumstances:

• At the start of a ‘text’ element
• At the start of each ‘textPath’ element

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#tline


• For each character within a ‘text’, ‘tspan’, ‘tref’ and ‘altGlyph’ element which has an ‘x’ or ‘y’ attribute value
assigned to it explicitly

All other position adjustments to the current text position are relative position adjustments.
Each absolute position adjustment defines a new text chunk. Absolute position adjustments impact text lay-

out in the following ways:

• Ligatures only occur when a set of characters which might map to a ligature are all in the same text chunk.
• Each text chunk represents a separate block of text for alignment due to ‘text-anchor’ property values.
• Reordering of characters due to bidirectionality only occurs within a text chunk. Reordering does not happen

across text chunks.

The following additional rules apply to ligature formation:

• As defined in CSS2, ([CSS2], section 16.4), when the resultant space between two characters is not the same
as the default space, user agents should not use ligatures; thus, if there are non-default values for properties
‘kerning’ or ‘letter-spacing’, the user agent should not use ligatures.

• Ligature formation should not be enabled for the glyphs corresponding to characters within different DOM
text nodes; thus, characters separated by markup should not use ligatures.

• As mentioned above, ligature formation should not be enabled for the glyphs corresponding to characters
within different text chunks.

10.7.2 Setting the inline-progression-direction

The ‘writing-mode’ property specifies whether the initial inline-progression-direction for a ‘text’ element shall be
left-to-right, right-to-left, or top-to-bottom. The ‘writing-mode’ property applies only to ‘text’ elements; the prop-
erty is ignored for ‘tspan’, ‘tref’, ‘altGlyph’ and ‘textPath’ sub-elements. (Note that the inline-progression-direc-
tion can change within a ‘text’ element due to the Unicode bidirectional algorithm and properties ‘direction’ and
‘unicode-bidi’. For more on bidirectional text, see Relationship with bidirectionality.)

‘writing-mode’
Value: lr-tb | rl-tb | tb-rl | lr | rl | tb | inherit

Initial: lr-tb

Applies to: ‘text’ elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: no

lr-tb | lr
Sets the initial inline-progression-direction to left-to-right, as is common in most Latin-based documents.
For most characters, the current text position is advanced from left to right after each glyph is rendered.

http://www.w3.org/TR/2008/REC-CSS2-20080411/text.html#spacing-props
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


(When the character data includes characters which are subject to the Unicode bidirectional algorithm, the
text advance rules are more complex. See Relationship with bidirectionality).

rl-tb | rl
Sets the initial inline-progression-direction to right-to-left, as is common in Arabic or Hebrew scripts. (See
Relationship with bidirectionality.)

tb-rl | tb
Sets the initial inline-progression-direction to top-to-bottom, as is common in some Asian scripts, such as
Chinese and Japanese. Though hardly as frequent as horizontal, this type of vertical layout also occurs in
Latin based documents, particularly in table column or row labels. In most cases, the vertical baselines run-
ning through the middle of each glyph are aligned.

10.7.3 Glyph orientation within a text run

In some cases, it is required to alter the orientation of a sequence of characters relative to the inline-progression-
direction. The requirement is particularly applicable to vertical layouts of East Asian documents, where sometimes
narrow-cell Latin text is to be displayed horizontally and other times vertically.

Two properties control the glyph orientation relative to the reference orientation for each of the two possible
inline-progression-directions. ‘glyph-orientation-vertical’ controls glyph orientation when the inline-progression-
direction is vertical. ‘glyph-orientation-horizontal’ controls glyph orientation when the inline-progression-direc-
tion is horizontal.

‘glyph-orientation-vertical’
Value: auto | <angle> | inherit

Initial: auto

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: no

auto

• Fullwidth ideographic and fullwidth Latin text will be set with a glyph-orientation of 0-degrees.
Ideographic punctuation and other ideographic characters having alternate horizontal and vertical

forms will use the vertical form of the glyph.
• Text which is not fullwidth will be set with a glyph-orientation of 90-degrees.

This reorientation rule applies only to the first-level non-ideographic text. All further embedding
of writing-modes or bidi processing will be based on the first-level rotation.

NOTE:

◦ This is equivalent to having set the non-ideographic text string horizontally honoring

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


the bidi-rule, then rotating the resultant sequence of inline-areas (one area for each
change of glyph direction) 90-degrees clockwise.

It should be noted that text set in this "rotated" manner may contain ligatures or
other glyph combining and reordering common to the language and script. (This "ro-
tated" presentation form does not disable auto-ligature formation or similar context-
driven variations.)

◦ The determination of which characters should be auto-rotated may vary across user
agents. The determination is based on a complex interaction between country, lan-
guage, script, character properties, font, and character context. It is suggested that one
consult the Unicode TR 11 and the various JIS or other national standards.

<angle>
The value of the angle is restricted to 0, 90, 180, and 270 degrees. The user agent shall round the value of the
angle to the closest of the permitted values.
A value of 0deg indicates that all glyphs are set with the top of the glyphs oriented towards the reference
orientation. A value of 90deg indicates an orientation of 90 degrees clockwise from the reference orientation.

This property is applied only to text written in a vertical ‘writing-mode’.
The glyph orientation affects the amount that the current text position advances as each glyph is rendered.

When the inline-progression-direction is vertical and the ‘glyph-orientation-vertical’ results in an orientation angle
that is a multiple of 180 degrees, then the current text position is incremented according to the vertical metrics of
the glyph. Otherwise, if the ‘glyph-orientation-vertical’ results in an orientation angle that is not a multiple of 180
degrees, then the current text position is incremented according to the horizontal metrics of the glyph.

The text layout diagrams in this section use the following symbols:

wide-cell glyph (e.g. Han) which is the n-th glyph in the text run

narrow-cell glyph (e.g. Latin) which is the n-th glyph in the text run

The orientation which the above symbols assume in the diagrams corresponds to the orientation that the Unicode
characters they represent are intended to assume when rendered in the user agent. Spacing between the glyphs in
the diagrams is usually symbolic, unless intentionally changed to make a point.

The diagrams below illustrate different uses of ‘glyph-orientation-vertical’. The diagram on the left shows the
result of the mixing of full-width ideographic glyphs with narrow-cell Latin glyphs when ‘glyph-orientation-ver-
tical’ for the Latin characters is either auto or 90. The diagram on the right show the result of mixing full-width
ideographic glyphs with narrow-cell Latin glyphs when Latin glyphs are specified to have a ‘glyph-orientation-
vertical’ of 0.



‘glyph-orientation-horizontal’
Value: <angle> | inherit

Initial: 0deg

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: no

<angle>
The value of the angle is restricted to 0, 90, 180, and 270 degrees. The user agent shall round the value of the
angle to the closest of the permitted values.
A value of 0deg indicates that all glyphs are set with the top of the glyphs oriented towards the reference
orientation. A value of 90deg indicates an orientation of 90 degrees clockwise from the reference orientation.

This property is applied only to text written in a horizontal ‘writing-mode’.
The glyph orientation affects the amount that the current text position advances as each glyph is rendered.

When the reference orientation direction is horizontal and the ‘glyph-orientation-horizontal’ results in an orient-
ation angle that is a multiple of 180 degrees, then the current text position is incremented according to the hori-
zontal metrics of the glyph. Otherwise, if the ‘glyph-orientation-horizontal’ results in an orientation angle that is
not a multiple of 180 degrees, then the current text position is incremented according to the vertical metrics of the
glyph.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


10.7.4 Relationship with bidirectionality

The characters in certain scripts are written from right to left. In some documents, in particular those written with
the Arabic or Hebrew script, and in some mixed-language contexts, text in a single line may appear with mixed
directionality. This phenomenon is called bidirectionality, or "bidi" for short.

The Unicode standard ([UNICODE], specifically [UAX9]) defines a complex algorithm for determining the
proper directionality of text. The algorithm consists of an implicit part based on character properties, as well as
explicit controls for embeddings and overrides. The SVG user agent applies this bidirectional algorithm when de-
termining the layout of characters within a text content block element.

The ‘direction’ and ‘unicode-bidi’ properties allow authors to override the inherent directionality of the con-
tent characters and thus explicitly control how the elements and attributes of a document language map to this
algorithm. These two properties are applicable to all characters whose glyphs are perpendicular to the inline-
progression-direction.

In many cases, the bidirectional algorithm from Unicode [UNICODE] produces the desired result automat-
ically, and in such cases the author does not need to use these properties. For other cases, such as when using
right-to-left languages, it may be sufficient to add the ‘direction’ property to the rootmost ‘svg’ element, and allow
that direction to inherit to all text elements, as in the following example (which may be used as a template):

<svg xmlns="http://www.w3.org/2000/svg"
width="100%" height="100%" viewBox="0 0 400 400"
direction="rtl" xml:lang="fa">

<title direction="ltr" xml:lang="en">Right-to-left Text</title>
<desc direction="ltr" xml:lang="en">

A simple example for using the 'direction' property in documents
that predominantly use right-to-left languages.

</desc>

<text x="200" y="200" font-size="20">داستان SVG 1.1 SE <text/>.طولا ني است

</svg>

Example

Below is another example, where where implicit bidi reordering is not sufficient:

<?xml version="1.0" encoding="utf-8"?>
<svg xmlns="http://www.w3.org/2000/svg"

width="100%" height="100%" viewBox="0 0 400 400"
direction="rtl" xml:lang="he">

<title direction="ltr" xml:lang="en">Right-to-left Text</title>
<desc direction="ltr" xml:lang="en">

An example for using the 'direction' and 'unicode-bidi' properties
in documents that predominantly use right-to-left languages.

</desc>

<text x="200" y="200" font-size="20"> כתובת
MAC:&#x200F;

<tspan direction="ltr" unicode-bidi="embed">00-24-AF-2A-55-FC</tspan>
</text>



</svg>

Example

Within text content elements, the alignment of text with regards to the ‘text-anchor’ property is determined by
the value of the ‘direction’ property. For example, given a ‘text’ element with a ‘text-anchor’ value of "end", for a
‘direction’ value of "ltr", the text will extend to the left of the position of the ‘text’ element's ‘x’ attribute value,
while for ‘direction’ value of "rtl", the text will extend to the right of the position of the ‘text’ element's ‘x’ attribute
value.

A more complete discussion of bidirectionality can be found in the Text direction section of CSS 2 ([CSS2],
section 9.10).

The processing model for bidirectional text is as follows. The user agent processes the characters which are
provided in logical order (i.e., the order the characters appear in the original document, either via direct inclusion
or via indirect reference due a ‘tref’ element). The user agent determines the set of independent blocks within each
of which it should apply the Unicode bidirectional algorithm. Each text chunk represents an independent block of
text. Additionally, any change in glyph orientation due to processing of properties ‘glyph-orientation-horizontal’ or
‘glyph-orientation-vertical’ will subdivide the independent blocks of text further. After processing the Unicode bi-
directional algorithm and properties ‘direction’ and ‘unicode-bidi’ on each of the independent text blocks, the user
agent will have a potentially re-ordered list of characters which are now in left-to-right rendering order. Simul-
taneous with re-ordering of the characters, the dx, dy and rotate attributes on the ‘tspan’ and ‘tref’ elements are
also re-ordered to maintain the original correspondence between characters and attribute values. While kerning
or ligature processing might be font-specific, the preferred model is that kerning and ligature processing occurs
between combinations of characters or glyphs after the characters have been re-ordered.

‘direction’
Value: ltr | rtl | inherit

Initial: ltr

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: no

This property specifies the base writing direction of text and the direction of embeddings and overrides (see
‘unicode-bidi’) for the Unicode bidirectional algorithm. For the ‘direction’ property to have any effect on an element
that does not by itself establish a new text chunk (such as a ‘tspan’ element without absolute position adjustments
due to ‘x’ or ‘y’ attributes), the ‘unicode-bidi’ property's value must be embed or bidi-override.

http://www.w3.org/TR/CSS2/visuren.html#direction
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


Except for any additional information provided in this specification, the normative definition of the ‘direction’
property is in CSS2 ([CSS2], section 9.10).

The ‘direction’ property applies only to glyphs oriented perpendicular to the inline-progression-direction,
which includes the usual case of horizontally-oriented Latin or Arabic text and the case of narrow-cell Latin or
Arabic characters rotated 90 degrees clockwise relative to a top-to-bottom inline-progression-direction.

‘unicode-bidi’
Value: normal | embed | bidi-override | inherit

Initial: normal

Applies to: text content elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: no

Except for any additional information provided in this specification, the normative definition of the ‘unicode-bidi’
property is in CSS2 ([CSS2], section 9.10).

10.8 Text rendering order

The glyphs associated with the characters within a ‘text’ element are rendered in the logical order of the characters
in the original document, independent of any re-ordering necessary to implement bidirectionality. Thus, for text
that goes right-to-left visually, the glyphs associated with the rightmost character are rendered before the glyphs
associated with the other characters.

Additionally, each distinct glyph is rendered in its entirety (i.e., it is filled and stroked as specified by the ‘fill’
and ‘stroke’ properties) before the next glyph gets rendered.

10.9 Alignment properties

10.9.1 Text alignment properties

The ‘text-anchor’ property is used to align (start-, middle- or end-alignment) a string of text relative to a given
point.

The ‘text-anchor’ property is applied to each individual text chunk within a given ‘text’ element. Each text
chunk has an initial current text position, which represents the point in the user coordinate system resulting from
(depending on context) application of the ‘x’ and ‘y’ attributes on the ‘text’ element, any ‘x’ or ‘y’ attribute values
on a ‘tspan’, ‘tref’ or ‘altGlyph’ element assigned explicitly to the first rendered character in a text chunk, or de-
termination of the initial current text position for a ‘textPath’ element.

http://www.w3.org/TR/2008/REC-CSS2-20080411/visuren.html#propdef-direction
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/visuren.html#propdef-unicode-bidi


‘text-anchor’
Value: start | middle | end | inherit

Initial: start

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Values have the following meanings:

start
The rendered characters are aligned such that the start of the resulting rendered text is at the initial current
text position. For an element with a ‘direction’ property value of "ltr" (typical for most European languages),
the left side of the text is rendered at the initial text position. For an element with a ‘direction’ property value
of "rtl" (typical for Arabic and Hebrew), the right side of the text is rendered at the initial text position. For
an element with a vertical primary text direction (often typical for Asian text), the top side of the text is
rendered at the initial text position.

middle
The rendered characters are aligned such that the geometric middle of the resulting rendered text is at the
initial current text position.

end
The rendered characters are aligned such that the end of the resulting rendered text is at the initial current
text position. For an element with a ‘direction’ property value of "ltr" (typical for most European languages),
the right side of the text is rendered at the initial text position. For an element with a ‘direction’ property
value of "rtl" (typical for Arabic and Hebrew), the left side of the text is rendered at the initial text position.
For an element with a vertical primary text direction (often typical for Asian text), the bottom of the text is
rendered at the initial text position.

10.9.2 Baseline alignment properties

An overview of baseline alignment and baseline tables can be found above in Fonts, font tables and baselines.
One of the characteristics of international text is that there are different baselines (different alignment points)

for glyphs in different scripts. For example, in horizontal writing, ideographic scripts, such as Han Ideographs,
Katakana, Hiragana, and Hangul, alignment occurs with a baseline near the bottoms of the glyphs; alphabetic
based scripts, such as Latin, Cyrillic, Hebrew, Arabic, align a point that is the bottom of most glyphs, but some
glyphs descend below the baseline; and Indic based scripts are aligned at a point that is near the top of the glyphs.

When different scripts are mixed on a line of text, an adjustment must be made to ensure that the glyphs in
the different scripts are aligned correctly with one another. OpenType [OPENTYPE] fonts have a Baseline table
(BASE) [OPENTYPE-BASETABLE] that specifies the offsets of the alternative baselines from the current baseline.

SVG uses a similar baseline table model that assumes one script (at one font-size) is the "dominant run" dur-
ing processing of a ‘text’ element; that is, all other baselines are defined in relation to this dominant run. The

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.microsoft.com/typography/otspec/
http://www.microsoft.com/typography/otspec/base.htm


baseline of the script with the dominant run is called the dominant baseline. So, for example, if the dominant
baseline is the alphabetic baseline, there will be offsets in the baseline table for the alternate baselines, such as the
ideographic baseline and the Indic baseline. There will also be an offset for the math baseline which is used for
some math fonts. Note that there are separate baseline tables for horizontal and vertical writing-modes. The offsets
in these tables may be different for horizontal and vertical writing.

The baseline table established at the start of processing of a ‘text’ element is called the dominant baseline
table.

Because the value of the ‘font-family’ property is a list of fonts, to insure a consistent choice of baseline table
we define the nominal font in a font list as the first font in the list for which a glyph is available. This is the first
font that could contain a glyph for each character encountered. (For this definition, glyph data is assumed to be
present if a font substitution is made or if the font is synthesized.) This definition insures a content independent
determination of the font and baseline table that is to be used.

The value of the ‘font-size’ property on the ‘text’ element establishes the dominant baseline table font size.
The model assumes that each glyph has a 'alignment-baseline' value which specifies the baseline with which

the glyph is to be aligned. (The 'alignment-baseline' is called the "Baseline Tag" in the OpenType baseline table
description.) The initial value of the ‘alignment-baseline’ property uses the baseline identifier associated with the
given glyph. Alternate values for ‘alignment-baseline’ can be useful for glyphs such as a "*" which are ambiguous
with respect to script membership.

The model assumes that the font from which the glyph is drawn also has a baseline table, the font baseline
table. This baseline table has offsets in units-per-em from the (0,0) point to each of the baselines the font knows
about. In particular, it has the offset from the glyph's (0,0) point to the baseline identified by the 'alignment-
baseline'.

The offset values in the baseline table are in "design units" which means fractional units of the EM. CSS calls
these "units-per-em" ([CSS2], section 15.3.4). Thus, the current ‘font-size’ is used to determine the actual offset
from the dominant baseline to the alternate baselines.

The glyph is aligned so that its baseline identified by its 'alignment-baseline' is aligned with the baseline with
the same name from the dominant baseline table.

The offset from the dominant baseline of the parent to the baseline identified by the 'alignment-baseline' is
computed using the dominant baseline table and dominant baseline table font size. The font baseline table and
font size applicable to the glyph are used to compute the offset from the identified baseline to the (0,0) point of the
glyph. This second offset is subtracted from the first offset to get the position of the (0,0) point in the shift direction.
Both offsets are computed by multiplying the baseline value from the baseline table times the appropriate font size
value.

If the 'alignment-baseline' identifies the dominant baseline, then the first offset is zero and the glyph is aligned
with the dominant baseline; otherwise, the glyph is aligned with the chosen alternate baseline.

The baseline-identifiers below are used in this specification. Some of these are determined by baseline-tables
contained in a font as described in XSL ([XSL], section 7.9.1). Others are computed from other font characteristics
as described below.

alphabetic
This identifies the baseline used by most alphabetic and syllabic scripts. These include, but are not limited to,
many Western, Southern Indic, Southeast Asian (non-ideographic) scripts.

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#unitsperem
http://www.w3.org/TR/2006/REC-xsl11-20061205/#font-model


ideographic
This identifies the baseline used by ideographic scripts. For historical reasons, this baseline is at the bottom
of the ideographic EM box and not in the center of the ideographic EM box. See the "central" baseline. The
ideographic scripts include Chinese, Japanese, Korean, and Vietnamese Chu Nom.

hanging
This identifies the baseline used by certain Indic scripts. These scripts include Devanagari, Gurmukhi and
Bengali.

mathematical
This identifies the baseline used by mathematical symbols.

central
This identifies a computed baseline that is at the center of the EM box. This baseline lies halfway between
the text-before-edge and text-after-edge baselines.

NOTE:
For ideographic fonts, this baseline is often used to align the glyphs; it is an alternative to the
ideographic baseline.

middle
This identifies a baseline that is offset from the alphabetic baseline in the shift-direction by 1/2 the value of
the x-height font characteristic. The position of this baseline may be obtained from the font data or, for fonts
that have a font characteristic for "x-height", it may be computed using 1/2 the "x-height". Lacking either of
these pieces of information, the position of this baseline may be approximated by the "central" baseline.

text-before-edge
This identifies the before-edge of the EM box. The position of this baseline may be specified in the baseline-
table or it may be calculated.

NOTE:
The position of this baseline is normally around or at the top of the ascenders, but it may not
encompass all accents that can appear above a glyph. For these fonts the value of the "ascent"
font characteristic is used. For ideographic fonts, the position of this baseline is normally 1 EM
in the shift-direction from the "ideographic" baseline. However, some ideographic fonts have
a reduced width in the inline-progression-direction to allow tighter setting. When such a font,
designed only for vertical writing-modes, is used in a horizontal writing-mode, the "text-before-
edge" baseline may be less than 1 EM from the text-after-edge.

text-after-edge
This identifies the after-edge of the EM box. The position of this baseline may be specified in the baseline-
table or it may be calculated.

NOTE:
For fonts with descenders, the position of this baseline is normally around or at the bottom of the
descenders. For these fonts the value of the "descent" font characteristic is used. For ideographic
fonts, the position of this baseline is normally at the "ideographic" baseline.



There are, in addition, two computed baselines that are only defined for line areas. Since SVG does not support the
notion of computations based on line areas, the two computed baselines are mapped as follows:

before-edge
For SVG, this is equivalent to text-before-edge.

after-edge
For SVG, this is equivalent to text-after-edge.

There are also four baselines that are defined only for horizontal writing-modes.

top
This baseline is the same as the "before-edge" baseline in a horizontal writing-mode and is undefined in a
vertical writing mode.

text-top
This baseline is the same as the "text-before-edge" baseline in a horizontal writing-mode and is undefined in
a vertical writing mode.

bottom
This baseline is the same as the "after-edge" baseline in a horizontal writing-mode and is undefined in a ver-
tical writing mode.

text-bottom
This baseline is the same as the "text-after-edge" baseline in a horizontal writing-mode and is undefined in a
vertical writing mode.

The baseline-alignment properties follow.

‘dominant-baseline’

Value:
auto | use-script | no-change | reset-size | ideographic | alphabetic | hanging | mathematical |

central | middle | text-after-edge | text-before-edge | inherit

Initial: auto

Applies to: text content elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

The "dominant-baseline" property is used to determine or re-determine a scaled-baseline-table. A scaled-baseline-
table is a compound value with three components: a baseline-identifier for the dominant-baseline, a baseline-table
and a baseline-table font-size. Some values of the property re-determine all three values; other only re-establish
the baseline-table font-size. When the initial value, auto, would give an undesired result, this property can be used
to explicitly set the desire scaled-baseline-table.

Values for the property have the following meaning:

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


auto
If this property occurs on a ‘text’ element, then the computed value depends on the value of the ‘writing-
mode’ property. If the 'writing-mode' is horizontal, then the value of the dominant-baseline component is
'alphabetic', else if the 'writing-mode' is vertical, then the value of the dominant-baseline component is 'cent-
ral'.

If this property occurs on a ‘tspan’, ‘tref’, ‘altGlyph’ or ‘textPath’ element, then the dominant-baseline
and the baseline-table components remain the same as those of the parent text content element. If the com-
puted ‘baseline-shift’ value actually shifts the baseline, then the baseline-table font-size component is set to
the value of the ‘font-size’ property on the element on which the ‘dominant-baseline’ property occurs, other-
wise the baseline-table font-size remains the same as that of the element. If there is no parent text content
element, the scaled-baseline-table value is constructed as above for ‘text’ elements.

use-script
The dominant-baseline and the baseline-table components are set by determining the predominant script of
the character data content. The ‘writing-mode’, whether horizontal or vertical, is used to select the appro-
priate set of baseline-tables and the dominant baseline is used to select the baseline-table that corresponds
to that baseline. The baseline-table font-size component is set to the value of the ‘font-size’ property on the
element on which the ‘dominant-baseline’ property occurs.

no-change
The dominant-baseline, the baseline-table, and the baseline-table font-size remain the same as that of the
parent text content element.

reset-size
The dominant-baseline and the baseline-table remain the same, but the baseline-table font-size is changed
to the value of the ‘font-size’ property on this element. This re-scales the baseline-table for the current ‘font-
size’.

ideographic
The baseline-identifier for the dominant-baseline is set to be 'ideographic', the derived baseline-table is con-
structed using the 'ideographic' baseline-table in the nominal font, and the baseline-table font-size is changed
to the value of the ‘font-size’ property on this element.

alphabetic
The baseline-identifier for the dominant-baseline is set to be 'alphabetic', the derived baseline-table is con-
structed using the 'alphabetic' baseline-table in the nominal font, and the baseline-table font-size is changed
to the value of the ‘font-size’ property on this element.

hanging
The baseline-identifier for the dominant-baseline is set to be 'hanging', the derived baseline-table is construc-
ted using the 'hanging' baseline-table in the nominal font, and the baseline-table font-size is changed to the
value of the ‘font-size’ property on this element.

mathematical
The baseline-identifier for the dominant-baseline is set to be 'mathematical', the derived baseline-table is
constructed using the 'mathematical' baseline-table in the nominal font, and the baseline-table font-size is
changed to the value of the ‘font-size’ property on this element.

central
The baseline-identifier for the dominant-baseline is set to be 'central'. The derived baseline-table is construc-



ted from the defined baselines in a baseline-table in the nominal font. That font baseline-table is chosen using
the following priority order of baseline-table names: 'ideographic', 'alphabetic', 'hanging', 'mathematical'. The
baseline-table font-size is changed to the value of the ‘font-size’ property on this element.

middle
The baseline-identifier for the dominant-baseline is set to be 'middle'. The derived baseline-table is construc-
ted from the defined baselines in a baseline-table in the nominal font. That font baseline -table is chosen
using the following priority order of baseline-table names: 'alphabetic', 'ideographic', 'hanging', 'mathemat-
ical'. The baseline-table font-size is changed to the value of the ‘font-size’ property on this element.

text-after-edge
The baseline-identifier for the dominant-baseline is set to be 'text-after-edge'. The derived baseline-table is
constructed from the defined baselines in a baseline-table in the nominal font. The choice of which font
baseline-table to use from the baseline-tables in the nominal font is implementation defined. The baseline-
table font-size is changed to the value of the ‘font-size’ property on this element.

NOTE: using the following priority order of baseline-table names: 'alphabetic', 'ideographic', 'hanging',
'mathematical' is probably a reasonable strategy for determining which font baseline-table to use.

text-before-edge
The baseline-identifier for the dominant-baseline is set to be 'text-before-edge'. The derived baseline-table is
constructed from the defined baselines in a baseline-table in the nominal font. The choice of which baseline-
table to use from the baseline-tables in the nominal font is implementation defined. The baseline-table font-
size is changed to the value of the ‘font-size’ property on this element.

NOTE: Using the following priority order of baseline-table names: 'alphabetic', 'ideographic', 'hanging',
'mathematical' is probably a reasonable strategy for determining which font baseline-table to use.

If there is no baseline table in the nominal font or if the baseline table lacks an entry for the desired baseline, then
the user agent may use heuristics to determine the position of the desired baseline.

‘alignment-baseline’

Value:
auto | baseline | before-edge | text-before-edge | middle | central | after-edge | text-after-edge |

ideographic | alphabetic | hanging | mathematical | inherit

Initial: auto

Applies to: ‘tspan’, ‘tref’, ‘altGlyph’, ‘textPath’ elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

This property specifies how an object is aligned with respect to its parent. This property specifies which baseline
of this element is to be aligned with the corresponding baseline of the parent. For example, this allows alphabetic
baselines in Roman text to stay aligned across font size changes. It defaults to the baseline with the same name
as the computed value of the alignment-baseline property. That is, the position of "ideographic" alignment-point

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


in the block-progression-direction is the position of the "ideographic" baseline in the baseline-table of the object
being aligned.

Values have the following meanings:

auto
The value is the dominant-baseline of the script to which the character belongs - i.e., use the dominant-
baseline of the parent.

baseline
The alignment-point of the object being aligned is aligned with the dominant-baseline of the parent text
content element.

before-edge
The alignment-point of the object being aligned is aligned with the "before-edge" baseline of the parent text
content element.

text-before-edge
The alignment-point of the object being aligned is aligned with the "text-before-edge" baseline of the parent
text content element.

middle
The alignment-point of the object being aligned is aligned with the "middle" baseline of the parent text con-
tent element.

central
The alignment-point of the object being aligned is aligned with the "central" baseline of the parent text con-
tent element.

after-edge
The alignment-point of the object being aligned is aligned with the "after-edge" baseline of the parent text
content element.

text-after-edge
The alignment-point of the object being aligned is aligned with the "text-after-edge" baseline of the parent
text content element.

ideographic
The alignment-point of the object being aligned is aligned with the "ideographic" baseline of the parent text
content element.

alphabetic
The alignment-point of the object being aligned is aligned with the "alphabetic" baseline of the parent text
content element.

hanging
The alignment-point of the object being aligned is aligned with the "hanging" baseline of the parent text
content element.

mathematical
The alignment-point of the object being aligned is aligned with the "mathematical" baseline of the parent
text content element.



‘baseline-shift’
Value: baseline | sub | super | <percentage> | <length> | inherit

Initial: baseline

Applies to: ‘tspan’, ‘tref’, ‘altGlyph’, ‘textPath’ elements

Inherited: no

Percentages:
refers to the "line-height" of the ‘text’ element, which in the case of SVG is defined to be equal to

the ‘font-size’

Media: visual

Animatable: yes

The ‘baseline-shift’ property allows repositioning of the dominant-baseline relative to the dominant-baseline of the
parent text content element. The shifted object might be a sub- or superscript. Within the shifted object, the whole
baseline-table is offset; not just a single baseline. The amount of the shift is determined from information from
the parent text content element, the sub- or superscript offset from the nominal font of the parent text content
element, percent of the "line-height" of the parent text content element or an absolute value.

In SVG, the ‘baseline-shift’ property represents a supplemental adjustment to the baseline tables. The ‘baseline-
shift’ property shifts the baseline tables for each glyph to temporary new positions, for example to lift the glyph
into superscript or subscript position, but it does not effect the current text position. When the current text pos-
ition is adjusted after rendering a glyph to take into account glyph advance values, the adjustment happens as if
there were no baseline shift.

‘baseline-shift’ properties can nest. Each nested ‘baseline-shift’ is added to previous baseline shift values.
Values for the property have the following meaning:

baseline
There is no baseline shift; the dominant-baseline remains in its original position.

sub
The dominant-baseline is shifted to the default position for subscripts. The offset to this position is determ-
ined using the font data for the nominal font. Because in most fonts the subscript position is normally given
relative to the "alphabetic" baseline, the user agent may compute the effective position for subscripts for su-
perscripts when some other baseline is dominant. The suggested computation is to subtract the difference
between the position of the dominant baseline and the position of the "alphabetic" baseline from the pos-
ition of the subscript. The resulting offset is determined by multiplying the effective subscript position by
the dominant baseline-table font-size. If there is no applicable font data the user agent may use heuristics to
determine the offset.

super
The dominant-baseline is shifted to the default position for superscripts. The offset to this position is determ-
ined using the font data for the nominal font. Because in most fonts the superscript position is normally
given relative to the "alphabetic" baseline, the user agent may compute the effective position for superscripts
when some other baseline is dominant. The suggested computation is to subtract the difference between the
position of the dominant baseline and the position of the "alphabetic" baseline from the position of the super-
script. The resulting offset is determined by multiplying the effective superscript position by the dominant

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


baseline-table font-size. If there is no applicable font data the user agent may use heuristics to determine the
offset.

<percentage>
The computed value of the property is this percentage multiplied by the computed "line-height" of the ‘text’
element. The dominant-baseline is shifted in the shift direction (positive value) or opposite to the shift direc-
tion (negative value) of the parent text content element by the computed value. A value of "0%" is equivalent
to "baseline".

<length>
The dominant-baseline is shifted in the shift direction (positive value) or opposite to the shift direction (neg-
ative value) of the parent text content element by the <length> value. A value of "0cm" is equivalent to
"baseline".

10.10 Font selection properties

SVG uses the following font specification properties. Except for any additional information provided in this spe-
cification, the normative definition of these properties is in CSS2 ([CSS2], chapter section 15.2). Any SVG-specific
notes about these properties are contained in the descriptions below.

Note also the rules for expressing the syntax of CSS property values ([CSS2], section 1.3.2).

‘font-family’

Value:

[[ <family-name> |

<generic-family> ],]* [<family-name> |

<generic-family>] | inherit

Initial: depends on user agent

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property indicates which font family is to be used to render the text, specified as a prioritized list of font fam-
ily names and/or generic family names. Unless the family name corresponds to a CSS IDENT, it must be quoted.
Except for any additional information provided in this specification, the normative definition of the property is in
CSS2 ([CSS2], section 15.2.2).

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-specification
http://www.w3.org/TR/2008/REC-CSS2-20080411/about.html#property-defs
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#propdef-font-family


‘font-style’
Value: normal | italic | oblique | inherit

Initial: normal

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property specifies whether the text is to be rendered using a normal, italic or oblique face. Except for any
additional information provided in this specification, the normative definition of the property is in CSS2 ([CSS2],
section 15.2.3).

‘font-variant’
Value: normal | small-caps | inherit

Initial: normal

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property indicates whether the text is to be rendered using the normal glyphs for lowercase characters or
using small-caps glyphs for lowercase characters. Except for any additional information provided in this specific-
ation, the normative definition of the property is in CSS2 ([CSS2], section 15.2.3).

‘font-weight’

Value:
normal | bold | bolder | lighter | 100 | 200 | 300

| 400 | 500 | 600 | 700 | 800 | 900 | inherit

Initial: normal

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property refers to the boldness or lightness of the glyphs used to render the text, relative to other fonts in the
same font family. Except for any additional information provided in this specification, the normative definition of
the property is in CSS2 ([CSS2], section 15.2.3).

‘font-stretch’
Value: normal | wider | narrower |

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#propdef-font-style
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#propdef-font-variant
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#propdef-font-weight
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#propdef-font-weight


ultra-condensed | extra-condensed |

condensed | semi-condensed |

semi-expanded | expanded |

extra-expanded | ultra-expanded | inherit

Initial: normal

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property indicates the desired amount of condensing or expansion in the glyphs used to render the text. Ex-
cept for any additional information provided in this specification, the normative definition of the property is in
CSS2 ([CSS2], section 15.2.3).

‘font-size’

Value:
<absolute-size> | <relative-size> |

<length> | <percentage> | inherit

Initial: medium

Applies to: text content elements

Inherited: yes, the computed value is inherited

Percentages: refer to parent element's font size

Media: visual

Animatable: yes

This property refers to the size of the font from baseline to baseline when multiple lines of text are set solid in
a multiline layout environment. For SVG, if a <length> is provided without a unit identifier (e.g., an unqualified
number such as 128), the SVG user agent processes the <length> as a height value in the current user coordinate
system.

If a <length> is provided with one of the unit identifiers (e.g., 12pt or 10%), then the SVG user agent converts
the <length> into a corresponding value in the current user coordinate system by applying the rules described in
Units.

Except for any additional information provided in this specification, the normative definition of the property
is in CSS2 ([CSS2], section 15.2.4).

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#propdef-font-stretch
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#propdef-font-size


‘font-size-adjust’
Value: <number> | none | inherit

Initial: none

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes (non-additive)

This property allows authors to specify an aspect value for an element that will preserve the x-height of the first
choice font in a substitute font. Except for any additional information provided in this specification, the normative
definition of the property is in CSS2 ([CSS2], section 15.2.4).

‘font’

Value:

[ [ <'font-style'> || <'font-variant'> || <'font-weight'> ]?

<'font-size'> [ / <'line-height'> ]? <'font-family'> ] |

caption | icon | menu | message-box |

small-caption | status-bar | inherit

Initial: see individual properties

Applies to: text content elements

Inherited: yes

Percentages:
allowed on 'font-size' and 'line-height' (Note: for the purposes of processing the ‘font’ property in

SVG, 'line-height' is assumed to be equal the value for property ‘font-size’)

Media: visual

Animatable: yes (non-additive)

Shorthand property for setting ‘font-style’, ‘font-variant’, ‘font-weight’, ‘font-size’, ‘line-height’ and ‘font-family’.
The ‘line-height’ property has no effect on text layout in SVG. For the purposes of the ‘font’ property, ‘line-height’
is assumed to be equal to the value of the ‘font-size’ property. Conforming SVG Viewers are not required to sup-
port the various system font options (caption, icon, menu, message-box, small-caption and status-bar) and can use
a system font or one of the generic fonts instead.

Except for any additional information provided in this specification, the normative definition of the property
is in CSS2 ([CSS2], section 15.2.5).

10.11 Spacing properties

Three properties affect the space between characters and words:

• ‘kerning’ indicates whether the user agent should adjust inter-glyph spacing based on kerning tables that are
included in the relevant font (i.e., enable auto-kerning) or instead disable auto-kerning and instead set inter-
character spacing to a specific length (typically, zero).

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#propdef-font-size-adjust
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#propdef-font-size-adjust
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#propdef-font


• ‘letter-spacing’ indicates an amount of space that is to be added between text characters supplemental to any
spacing due to the ‘kerning’ property.

• ‘word-spacing’ indicates the spacing behavior between words.

‘kerning’
Value: auto | <length> | inherit

Initial: auto

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

The value of auto indicates that the user agent should adjust inter-glyph spacing based on kerning tables that are
included in the font that will be used (i.e., enable auto-kerning).

If a <length> is provided, then auto-kerning is disabled. Instead, inter-character spacing is set to the given
<length>. The most common scenario, other than auto, is to set ‘kerning’ to a value of 0 so that auto-kerning is
disabled.

If a <length> is provided without a unit identifier (e.g., an unqualified number such as 128), the SVG user
agent processes the <length> as a width value in the current user coordinate system.

If a <length> is provided with one of the unit identifiers (e.g., .25em or 1%), then the SVG user agent converts
the <length> into a corresponding value in the current user coordinate system by applying the rules described in
Units.

When a <length> is provided, its value is added to the inter-character spacing value specified by the ‘letter-
spacing’ property.

‘letter-spacing’
Value: normal | <length> | inherit

Initial: normal

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property specifies spacing behavior between text characters supplemental to any spacing due to the ‘kerning’
property.

For SVG, if a <length> is provided without a unit identifier (e.g., an unqualified number such as 128), the SVG
user agent processes the <length> as a width value in the current user coordinate system.

If a <length> is provided with one of the unit identifiers (e.g., .25em or 1%), then the SVG user agent converts
the <length> into a corresponding value in the current user coordinate system by applying the rules described in
Units.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


Except for any additional information provided in this specification, the normative definition of the property
is in CSS2 ([CSS2], section 16.4).

‘word-spacing’
Value: normal | <length> | inherit

Initial: normal

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property specifies spacing behavior between words. For SVG, if a <length> is provided without a unit identifier
(e.g., an unqualified number such as 128), the SVG user agent processes the <length> as a width value in the current
user coordinate system.

If a <length> is provided with one of the unit identifiers (e.g., .25em or 1%), then the SVG user agent converts
the <length> into a corresponding value in the current user coordinate system by applying the rules described in
Units.

Except for any additional information provided in this specification, the normative definition of the property
is in CSS2 ([CSS2], section 16.4).

10.12 Text decoration

‘text-decoration’
Value: none | [ underline || overline || line-through || blink ] | inherit

Initial: none

Applies to: text content elements

Inherited: no (see prose)

Percentages: N/A

Media: visual

Animatable: yes

This property describes decorations that are added to the text of an element. Conforming SVG Viewers are not
required to support the blink value.

Except for any additional information provided in this specification, the normative definition of the property
is in CSS2 ([CSS2], section 16.3.1).

The CSS2 specification defines the behavior of the ‘text-decoration’ property using the terminology "block-
level elements" and "inline elements". For the purposes of the ‘text-decoration’ property and SVG, a ‘text’ element
represents a block-level element and any of the potential children of a ‘text’ element (e.g., a ‘tspan’) represent inline
elements.

Also, the CSS2 definition of ‘text-decoration’ specifies that the "color of the decorations" remain the same on
descendant elements. Since SVG offers a painting model consisting of the ability to apply various types of paint

http://www.w3.org/TR/2008/REC-CSS2-20080411/text.html#propdef-letter-spacing
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/text.html#propdef-word-spacing
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/text.html#propdef-text-decoration


(see Painting: Filling, Stroking and Marker Symbols) to both the interior (i.e., the "fill") and the outline (i.e., the
"stroke") of text, for SVG the ‘text-decoration’ property is defined such that, for an element which has a specified
value for the ‘text-decoration’ property, all decorations on its content and that of its descendants are rendered using
the same fill and stroke properties as are present on the given element. If the ‘text-decoration’ property is specified
on a descendant, then that overrides the ancestor.

Because SVG allows text to be both filled and stroked, drawing order matters in some circumstances with
text decorations. Text decoration drawing order should be as follows:

• All text decorations except line-through should be drawn before the text is filled and stroked; thus, the text
is rendered on top of these decorations.

• Line-through should be drawn after the text is filled and stroked; thus, the line-through is rendered on top of
the text.

Example textdecoration01 provides examples for ‘text-decoration’. The first line of text has no value for ‘text-dec-
oration’, so the initial value of text-decoration:none is used. The second line shows text-decoration:line-through. The
third line shows text-decoration:underline. The fourth line illustrates the rule whereby decorations are rendered
using the same fill and stroke properties as are present on the element for which the ‘text-decoration’ is specified.
Since ‘text-decoration’ is specified on the ‘text’ element, all text within the ‘text’ element has its underline rendered
with the same fill and stroke properties as exist on the ‘text’ element (i.e., blue fill, red stroke), even though the
various words have different fill and stroke property values. However, the word "different" explicitly specifies a
value for ‘text-decoration’; thus, its underline is rendered using the fill and stroke properties as the ‘tspan’ element
that surrounds the word "different" (i.e., yellow fill, darkgreen stroke):

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example textdecoration01 - behavior of 'text-decoration' property</desc>
<rect x="1" y="1" width="1198" height="398" fill="none" stroke="blue" stroke-width="2" />
<g font-size="60" fill="blue" stroke="red" stroke-width="1" >

<text x="100" y="75">Normal text</text>
<text x="100" y="165" text-decoration="line-through" >Text with line-through</text>
<text x="100" y="255" text-decoration="underline" >Underlined text</text>
<text x="100" y="345" text-decoration="underline" >

<tspan>One </tspan>
<tspan fill="yellow" stroke="purple" >word </tspan>
<tspan fill="yellow" stroke="black" >has </tspan>
<tspan fill="yellow" stroke="darkgreen" text-decoration="underline" >different </tspan>
<tspan fill="yellow" stroke="blue" >underlining</tspan>

</text>
</g>

</svg>



‘textPath’

Example textdecoration01

10.13 Text on a path

10.13.1 Introduction to text on a path

In addition to text drawn in a straight line, SVG also includes the ability to place text along the shape of a ‘path’
element. To specify that a block of text is to be rendered along the shape of a ‘path’, include the given text within
a ‘textPath’ element which includes an ‘xlink:href’ attribute with an IRI reference to a ‘path’ element.

10.13.2 The ‘textPath’ element

Categories:
Text content element, text content child element

Content model:
Any number of the following elements, in any order:

descriptive elements
‘a’
‘altGlyph’
‘animate’
‘animateColor’
‘set’
‘tref’
‘tspan’

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
xlink attributes



‘class’
‘style’
‘externalResourcesRequired’
‘xlink:href’
‘startOffset’
‘method’
‘spacing’

DOM Interfaces:
SVGTextPathElement

Attribute definitions:

startOffset = "<length>"
An offset from the start of the ‘path’ for the initial current text position, calculated using the user agent's
distance along the path algorithm.
If a <length> other than a percentage is given, then the ‘startOffset’ represents a distance along the path
measured in the current user coordinate system.
If a percentage is given, then the ‘startOffset’ represents a percentage distance along the entire path. Thus,
startOffset="0%" indicates the start point of the ‘path’ and startOffset="100%" indicates the end point of the
‘path’.

If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

method = "align | stretch"
Indicates the method by which text should be rendered along the path.
A value of align indicates that the glyphs should be rendered using simple 2x3 transformations such that
there is no stretching/warping of the glyphs. Typically, supplemental rotation, scaling and translation trans-
formations are done for each glyph to be rendered. As a result, with align, fonts where the glyphs are de-
signed to be connected (e.g., cursive fonts), the connections may not align properly when text is rendered
along a path.
A value of stretch indicates that the glyph outlines will be converted into paths, and then all end points and
control points will be adjusted to be along the perpendicular vectors from the path, thereby stretching and
possibly warping the glyphs. With this approach, connected glyphs, such as in cursive scripts, will maintain
their connections.
If the attribute is not specified, the effect is as if a value of align were specified.
Animatable: yes.

spacing = "auto | exact"
Indicates how the user agent should determine the spacing between glyphs that are to be rendered along a



path.
A value of exact indicates that the glyphs should be rendered exactly according to the spacing rules as spe-
cified in Text on a path layout rules.
A value of auto indicates that the user agent should use text-on-a-path layout algorithms to adjust the spa-
cing between glyphs in order to achieve visually appealing results.
If the attribute is not specified, the effect is as if a value of exact were specified.
Animatable: yes.

xlink:href = "<iri>"
An IRI reference to the ‘path’ element onto which the glyphs will be rendered. If <iri> is an invalid reference
(e.g., no such element exists, or the referenced element is not a ‘path’), then the ‘textPath’ element is in error
and its entire contents shall not be rendered by the user agent.
Animatable: yes.

The path data coordinates within the referenced ‘path’ element are assumed to be in the same coordinate system
as the current ‘text’ element, not in the coordinate system where the ‘path’ element is defined. The ‘transform’
attribute on the referenced ‘path’ element represents a supplemental transformation relative to the current user
coordinate system for the current ‘text’ element, including any adjustments to the current user coordinate system
due to a possible ‘transform’ attribute on the current ‘text’ element. For example, the following fragment of SVG
content:

<svg xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1">

<g transform="translate(25,25)">
<defs>

<path id="path1" transform="scale(2)" d="..." fill="none" stroke="red"/>
</defs>

</g>
<text transform="rotate(45)">

<textPath xlink:href="#path1">Text along path1</textPath>
</text>

</svg>

should have the same effect as the following:

<svg xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1">

<g transform="rotate(45)">
<defs>

<path id="path1" transform="scale(2)" d="..." fill="none" stroke="red"/>
</defs>
<text>

<textPath xlink:href="#path1">Text along path1</textPath>
</text>

</g>
</svg>

Note that the transform="translate(25,25)" has no effect on the ‘textPath’ element, whereas the trans-



form="rotate(45)" applies to both the ‘text’ and the use of the ‘path’ element as the referenced shape for text on
a path.

Example toap01 provides a simple example of text on a path:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="3.6cm" viewBox="0 0 1000 300" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>

<path id="MyPath"
d="M 100 200

C 200 100 300   0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />

</defs>
<desc>Example toap01 - simple text on a path</desc>

<use xlink:href="#MyPath" fill="none" stroke="red"  />
<text font-family="Verdana" font-size="42.5" fill="blue" >

<textPath xlink:href="#MyPath">
We go up, then we go down, then up again

</textPath>
</text>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="998" height="298"

fill="none" stroke="blue" stroke-width="2" />
</svg>

Example toap01

Example toap02 shows how ‘tspan’ elements can be included within ‘textPath’ elements to adjust styling attributes
and adjust the current text position before rendering a particular glyph. The first occurrence of the word "up" is
filled with the color red. Attribute ‘dy’ is used to lift the word "up" from the baseline.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="3.6cm" viewBox="0 0 1000 300" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>

<path id="MyPath"
d="M 100 200

C 200 100 300   0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />

</defs>
<desc>Example toap02 - tspan within textPath</desc>

<use xlink:href="#MyPath" fill="none" stroke="red"  />
<text font-family="Verdana" font-size="42.5" fill="blue" >

<textPath xlink:href="#MyPath">
We go
<tspan dy="-30" fill="red" >

up



</tspan>
<tspan dy="30">

,
</tspan>
then we go down, then up again

</textPath>
</text>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="998" height="298"

fill="none" stroke="blue" stroke-width="2" />
</svg>

Example toap02

Example toap03 demonstrates the use of the ‘startOffset’ attribute on the ‘textPath’ element to specify the start po-
sition of the text string as a particular position along the path. Notice that glyphs that fall off the end of the path
are not rendered (see text on a path layout rules).

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="3.6cm" viewBox="0 0 1000 300" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>

<path id="MyPath"
d="M 100 200

C 200 100 300   0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />

</defs>
<desc>Example toap03 - text on a path with startOffset attribute</desc>

<use xlink:href="#MyPath" fill="none" stroke="red"  />
<text font-family="Verdana" font-size="42.5" fill="blue" >

<textPath xlink:href="#MyPath" startOffset="80%">
We go up, then we go down, then up again

</textPath>
</text>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="998" height="298"

fill="none" stroke="blue" stroke-width="2" />
</svg>



Example toap03

10.13.3 Text on a path layout rules

Conceptually, for text on a path the target path is stretched out into either a horizontal or vertical straight line
segment. For horizontal text layout flows, the path is stretched out into a hypothetical horizontal line segment
such that the start of the path is mapped to the left of the line segment. For vertical text layout flows, the path is
stretched out into a hypothetical vertical line segment such that the start of the path is mapped to the top of the
line segment. The standard text layout rules are applied to the hypothetical straight line segment and the result is
mapped back onto the target path. Vertical and bidirectional text layout rules also apply to text on a path.

The reference orientation is determined individually for each glyph that is rendered along the path. For ho-
rizontal text layout flows, the reference orientation for a given glyph is the vector that starts at the intersection
point on the path to which the glyph is attached and which points in the direction 90 degrees counter-clockwise
from the angle of the curve at the intersection point. For vertical text layout flows, the reference orientation for a
given glyph is the vector that starts at the intersection point on the path to which the glyph is attached and which
points in the direction 180 degrees from the angle of the curve at the intersection point.

Example toap04 will be used to illustrate the particular layout rules for text on a path that supplement the
basic text layout rules for straight line horizontal or vertical text.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="3.6cm" viewBox="0 0 1000 300" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>

<path id="MyPath"
d="M 100 125

C 150 125 250 175 300 175
C 350 175 450 125 500 125
C 550 125 650 175 700 175
C 750 175 850 125 900 125" />

</defs>
<desc>Example toap04 - text on a path layout rules</desc>

<use xlink:href="#MyPath" fill="none" stroke="red"  />
<text font-family="Verdana" font-size="60" fill="blue" letter-spacing="2" >

<textPath xlink:href="#MyPath">
Choose shame or get war

</textPath>
</text>

<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="998" height="298"

fill="none" stroke="blue" stroke-width="2" />
</svg>



Example toap04

The following picture does an initial zoom in on the first glyph in the ‘text’ element.

The small dot above shows the point at which the glyph is attached to the path. The box around the glyph shows
the glyph is rotated such that its horizontal axis is parallel to the tangent of the curve at the point at which the
glyph is attached to the path. The box also shows the glyph's charwidth (i.e., the amount which the current text
position advances horizontally when the glyph is drawn using horizontal text layout).

The next picture zooms in further to demonstrate the detailed layout rules.

For left-to-right horizontal text layout along a path (i.e., when the glyph orientation is perpendicular to the inline-
progression-direction), the layout rules are as follows:

• Determine the startpoint-on-the-path for the first glyph using attribute ‘startOffset’ and property ‘text-an-
chor’. For text-anchor:start, startpoint-on-the-path is the point on the path which represents the point on the
path which is ‘startOffset’ distance along the path from the start of the path, calculated using the user agent's
distance along the path algorithm. For text-anchor:middle, startpoint-on-the-path is the point on the path
which represents the point on the path which is [ ‘startOffset’ minus half of the total advance values for all
of the glyphs in the ‘textPath’ element ] distance along the path from the start of the path, calculated using
the user agent's distance along the path algorithm. For text-anchor:end, startpoint-on-the-path is the point on



the path which represents the point on the path which is [ ‘startOffset’ minus the total advance values for
all of the glyphs in the ‘textPath’ element ]. Before rendering the first glyph, the horizontal component of
the startpoint-on-the-path is adjusted to take into account various horizontal alignment text properties and
attributes, such as a ‘dx’ attribute value on a ‘tspan’ element. (In the picture above, the startpoint-on-the-path
is the leftmost dot on the path.)

• Determine the glyph's charwidth (i.e., the amount which the current text position advances horizontally
when the glyph is drawn using horizontal text layout). (In the picture above, the charwidth is the distance
between the two dots at the side of the box.)

• Determine the point on the curve which is charwidth distance along the path from the startpoint-on-the-path
for this glyph, calculated using the user agent's distance along the path algorithm. This point is the endpoint-
on-the-path for the glyph. (In the picture above, the endpoint-on-the-path for the glyph is the rightmost dot
on the path.)

• Determine the midpoint-on-the-path, which is the point on the path which is "halfway" (user agents can
choose either a distance calculation or a parametric calculation) between the startpoint-on-the-path and the
endpoint-on-the-path. (In the picture above, the midpoint-on-the-path is shown as a white dot.)

• Determine the glyph-midline, which is the vertical line in the glyph's coordinate system that goes through
the glyph's x-axis midpoint. (In the picture above, the glyph-midline is shown as a dashed line.)

• Position the glyph such that the glyph-midline passes through the midpoint-on-the-path and is perpendicular
to the line through the startpoint-on-the-path and the endpoint-on-the-path.

• Align the glyph vertically relative to the midpoint-on-the-path based on property ‘alignment-baseline’ and
any specified values for attribute ‘dy’ on a ‘tspan’ element. In the example above, the ‘alignment-baseline’
property is unspecified, so the initial value of alignment-baseline:baseline will be used. There are no ‘tspan’
elements; thus, the baseline of the glyph is aligned to the midpoint-on-the-path.

• For each subsequent glyph, set a new startpoint-on-the-path as the previous endpoint-on-the-path, but with
appropriate adjustments taking into account horizontal kerning tables in the font and current values of vari-
ous attributes and properties, including spacing properties and ‘tspan’ elements with values provided for at-
tributes ‘dx’ and ‘dy’. All adjustments are calculated as distance adjustments along the path, calculated using
the user agent's distance along the path algorithm.

• Glyphs whose midpoint-on-the-path are off either end of the path are not rendered.
• Continue rendering glyphs until there are no more glyphs.

Comparable rules are used for top-to-bottom vertical text layout along a path (i.e., when the glyph orientation is
parallel with the inline-progression-direction), the layout rules are as follows:

• Determine the startpoint-on-the-path using the same method as for horizontal text layout along a path, ex-
cept that before rendering the first glyph, the horizontal component of the startpoint-on-the-path is adjusted
to take into account various vertical alignment text properties and attributes, such as a ‘dy’ attribute value on
a ‘tspan’ element.

• Determine the glyph's charheight (i.e., the amount which the current text position advances vertically when
the glyph is drawn using vertical text layout).

• Determine the point on the curve which is charheight distance along the path from the startpoint-on-the-path



for this glyph, calculated using the user agent's distance along the path algorithm. This point is the endpoint-
on-the-path for the glyph.

• Determine the midpoint-on-the-path, which is the point on the path which is "halfway" (user agents can
choose either a distance calculation or a parametric calculation) between the startpoint-on-the-path and the
endpoint-on-the-path.

• Determine the glyph-midline, which is the horizontal line in the glyph's coordinate system that goes through
the glyph's y-axis midpoint.

• Position the glyph such that the glyph-midline passes through the midpoint-on-the-path and is perpendicular
to the line through the startpoint-on-the-path and the endpoint-on-the-path.

• Align the glyph horizontally (where horizontal is relative to the glyph's coordinate system) relative to the
midpoint-on-the-path based on property ‘alignment-baseline’ and any specified values for attribute ‘dx’ on a
‘tspan’ element.

• For each subsequent glyph, set a new startpoint-on-the-path as the previous endpoint-on-the-path, but with
appropriate adjustments taking into account vertical kerning tables in the font and current values of various
attributes and properties, including spacing properties and ‘tspan’ elements with values provided for attrib-
utes ‘dx’ and ‘dy’. All adjustments are calculated as distance adjustments along the path, calculated using the
user agent's distance along the path algorithm.

• Glyphs whose midpoint-on-the-path are off either end of the path are not rendered.
• Continue rendering glyphs until there are no more glyphs.

In the calculations above, if either the startpoint-on-the-path or the endpoint-on-the-path is off the end of the path,
then extend the path beyond its end points with a straight line that is parallel to the tangent at the path at its end
point so that the midpoint-on-the-path can still be calculated.

When the inline-progression-direction is horizontal, then any ‘x’ attributes on ‘text’, ‘tspan’, ‘tref’ or
‘altGlyph’ elements represent new absolute offsets along the path, thus providing explicit new values for
startpoint-on-the-path. Any ‘y’ attributes on ‘text’, ‘tspan’, ‘tref’ or ‘altGlyph’ elements are ignored. When the
inline-progression-direction is vertical, then any ‘y’ attributes on ‘text’, ‘tspan’, ‘tref’ or ‘altGlyph’ elements rep-
resent new absolute offsets along the path, thus providing explicit new values for startpoint-on-the-path. Any ‘x’
attributes on ‘text’, ‘tspan’, ‘tref’ or ‘altGlyph’ elements are ignored.

10.14 Alternate glyphs

There are situations such as ligatures, special-purpose fonts (e.g., a font for music symbols) or alternate glyphs
for Asian text strings where it is required that a different set of glyphs is used than the glyph(s) which normally
corresponds to the given character data.

10.14.1 The ‘altGlyph’ element

The ‘altGlyph’ element provides control over the glyphs used to render particular character data.



‘altGlyph’Categories:
Text content element, text content child element

Content model:
Any elements or character data.

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
xlink attributes
‘class’
‘style’
‘externalResourcesRequired’
‘x’
‘y’
‘dx’
‘dy’
‘glyphRef’
‘format’
‘rotate’
‘xlink:href’

DOM Interfaces:
SVGAltGlyphElement

Attribute definitions:

xlink:href = "<iri>"
An IRI reference either to a ‘glyph’ element in an SVG document fragment or to an ‘altGlyphDef’ element.

If the reference is to a ‘glyph’ element and that glyph is available, then that glyph is rendered instead of the
character(s) that are inside of the ‘altGlyph’ element.

If the reference is to an ‘altGlyphDef’ element, then if an appropriate set of alternate glyphs is located from
processing the ‘altGlyphDef’ element, then those alternate glyphs are rendered instead of the character(s)
that are inside of the ‘altGlyph’ element.

Animatable: no.



glyphRef = "<string>"
The glyph identifier, the format of which is dependent on the ‘format’ of the given font. (Same meaning as
the ‘glyphRef’ attribute on the ‘glyphRef’ element.)
Animatable: no.

format = "<string>"
The format of the given font. If the font is in one of the formats listed in CSS2 ([CSS2], section 15.3.5), such as
TrueDoc™ Portable Font Resource or Embedded OpenType, then the <string> must contain the correspond-
ing font format string, such as truedoc-pfr or embedded-opentype. (This attribute has the same meaning as
the ‘format’ attribute on the ‘glyphRef’ element.)
Animatable: no.

x = "<list-of-coordinates>"
The <coordinate> values are processed in the same manner as the ‘x’ attribute on the ‘tspan’ element, with
the following exception: If the referenced alternate glyphs are rendered instead of the Unicode characters
inside the ‘altGlyph’ element, then any absolute X coordinates specified via an ‘x’ attribute on this element
or any ancestor ‘text’ or ‘tspan’ elements for Unicode characters 2 through n within the ‘altGlyph’ element
are ignored. Any absolute X coordinate specified via an ‘x’ attribute on this element or any ancestor ‘text’ or
‘tspan’ elements for the first Unicode character within the ‘altGlyph’ element sets a new absolute X coordin-
ate for the current text position before rendering the first alternate glyph.
Animatable: yes.

y = "<list-of-coordinates>"
The corresponding absolute Y coordinates for rendering the ‘altGlyph’ element.
Animatable: yes.

dx = "<list-of-lengths>"
The <length> values are processed in the same manner as the ‘dx’ attribute on the ‘tspan’ element, with the
following exception: If the referenced alternate glyphs are rendered instead of the Unicode characters in-
side the ‘altGlyph’ element, then any relative X coordinates specified via an ‘dx’ attribute on this element or
any ancestor ‘text’ or ‘tspan’ elements for Unicode characters 2 through n within the ‘altGlyph’ element are
ignored. Any relative X coordinate specified via an ‘dx’ attribute on this element or any ancestor ‘text’ or
‘tspan’ elements for the first Unicode character within the ‘altGlyph’ element sets a new relative X coordinate
for the current text position before rendering the first alternate glyph.
Animatable: yes.

dy = "<list-of-lengths>"
The corresponding relative Y coordinates for rendering the ‘altGlyph’ element.
Animatable: yes.

rotate = "<list-of-numbers>"
The <number> values are processed in the same manner as the ‘rotate’ attribute on the ‘tspan’ element, with
the following exception: If the referenced alternate glyphs are rendered instead of the Unicode characters

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#referencing


‘altGlyphDef’

inside the ‘altGlyph’ element, then any supplemental rotation values specified via an ‘rotate’ attribute on this
element or any ancestor ‘text’ or ‘tspan’ elements for Unicode characters 2 through n within the ‘altGlyph’
element are ignored. Supplemental rotation values specified via an ‘rotate’ attribute on this element or any
ancestor ‘text’ or ‘tspan’ elements for the first Unicode character within the ‘altGlyph’ element sets a new
supplemental rotation angle before rendering the alternate glyphs.
Animatable: yes (non-additive).

If the references to alternate glyphs do not result in successful identification of alternate glyphs to use, then the
character(s) that are inside of the ‘altGlyph’ element are rendered as if the ‘altGlyph’ element were a ‘tspan’ ele-
ment instead.

An ‘altGlyph’ element either references a ‘glyph’ element or an ‘altGlyphDef’ element via its ‘xlink:href’ at-
tribute or identifies a glyph by means of font selection properties, a glyph identifier and a font format. If the
‘xlink:href’ attribute is specified, it takes precedence, and the other glyph identification attributes and properties
are ignored.

10.14.2 The ‘altGlyphDef’, ‘altGlyphItem’ and ‘glyphRef’ elements

The ‘altGlyphDef’ element defines a set of possible glyph substitutions.

Categories:
None

Content model:
Either:

• one or more ‘glyphRef’ elements, or
• one or more ‘altGlyphItem’ elements.

Attributes:
core attributes

DOM Interfaces:
SVGAltGlyphDefElement

An ‘altGlyphDef’ can contain either of the following:

• In the simplest case, an ‘altGlyphDef’ contains one or more ‘glyphRef’ elements. Each ‘glyphRef’ element ref-
erences a single glyph within a particular font. If all of the referenced glyphs are available, then these glyphs
are rendered instead of the character(s) inside of the referencing ‘altGlyph’ element. If any of the referenced
glyphs are unavailable, then the character(s) that are inside of the ‘altGlyph’ element are rendered as if there
were not an ‘altGlyph’ element surrounding those characters.

• In the more complex case, an ‘altGlyphDef’ contains one or more ‘altGlyphItem’ elements. Each ‘altGlyphItem’
represents a candidate set of substitute glyphs. Each ‘altGlyphItem’ contains one or more ‘glyphRef’ elements.



‘altGlyphItem’

‘glyphRef’

Each ‘glyphRef’ element references a single glyph within a particular font. The first ‘altGlyphItem’ in which
all referenced glyphs are available is chosen. The glyphs referenced from this ‘altGlyphItem’ are rendered in-
stead of the character(s) that are inside of the referencing ‘altGlyph’ element. If none of the ‘altGlyphItem’
elements result in a successful match (i.e., none of the ‘altGlyphItem’ elements has all of its referenced glyphs
available), then the character(s) that are inside of the ‘altGlyph’ element are rendered as if there were not an
‘altGlyph’ element surrounding those characters.

The ‘altGlyphItem’ element defines a candidate set of possible glyph substitutions. The first ‘altGlyphItem’ element
whose referenced glyphs are all available is chosen. Its glyphs are rendered instead of the character(s) that are in-
side of the referencing ‘altGlyph’ element.

Categories:
None

Content model:
One or more ‘glyphRef’ elements.

Attributes:
core attributes

DOM Interfaces:
SVGAltGlyphItemElement

The ‘glyphRef’ element defines a possible glyph to use.

Categories:
None

Content model:
Empty.

Attributes:
core attributes
presentation attributes
xlink attributes
‘class’
‘style’
‘x’
‘y’
‘dx’
‘dy’
‘glyphRef’



‘format’
‘xlink:href’

DOM Interfaces:
SVGGlyphRefElement

Attribute definitions:

xlink:href = "<iri>"
An IRI reference to a ‘glyph’ element in an SVG document fragment. The referenced ‘glyph’ is rendered as
an alternate glyph.
Animatable: no.

glyphRef = "<string>"
The glyph identifier, the format of which is dependent on the ‘format’ of the given font.
Animatable: no.

format = "<string>"
The format of the given font. If the font is in one of the formats listed in CSS2 ([CSS2], section 15.3.5), such as
TrueDoc™ Portable Font Resource or Embedded OpenType, then the <string> must contain the correspond-
ing font format string, such as truedoc-pfr or embedded-opentype.
Animatable: no.

x = "<number>"
This value represents the new absolute X coordinate within the font's coordinate system for this glyph.
The font coordinate system is based on the em square model described in the Fonts chapter of CSS2 ([CSS2],
chapter 15).
If the attribute is not specified, for the first ‘glyphRef’ child element, the effect is as if the attribute were set
to "0", whereas for subsequent ‘glyphRef’ child elements, the effect is as if the attribute were set to the end X
coordinate from the previous ‘glyphRef’ element.
Animatable: no.

y = "<number>"
The corresponding new absolute Y coordinate within the font's coordinate system for this glyph.
Animatable: no.

dx = "<number>"
This value represents the relative X coordinate within the font's coordinate system for this glyph. The glyph
is thus shifted by <number> units along the positive X axis within the font's coordinate system supplemental
to the absolute X coordinate established by the ‘x’ attribute (either due to an explicit ‘x’ attribute or due to
default value processing for the ‘x’ attribute).
The font coordinate system is based on the em square model described in the Fonts chapter of CSS2 ([CSS2],

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#referencing
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html


chapter 15).
If the attribute is not specified, the effect is as if the attribute were set to "0".
Animatable: no.

dy = "<number>"
The corresponding number of units within the font's coordinate system to shift the glyph along the positive
Y axis relative to the absolute Y coordinate established by the ‘y’ attribute.
Animatable: no.

A ‘glyphRef’ either references a ‘glyph’ element in an SVG document fragment via its ‘xlink:href’ attribute or iden-
tifies a glyph by means of font selection properties, a glyph identifier and a font format. If insufficient attributes
and properties have been specified to identify a glyph, then the ‘glyphRef’ is processed in the same manner as
when a glyph reference is fully specified, but the given glyph is not available. If the ‘xlink:href’ attribute is speci-
fied, it takes precedence, and the other glyph identification attributes and properties are ignored.

10.15 White space handling

SVG supports the standard XML attribute ‘xml:space’ to specify the handling of white space characters within a
given ‘text’ element's character data. Note that any child element of a ‘text’ element may also have an ‘xml:space’
attribute which will apply to that child element's text content. The SVG user agent has special processing rules
associated with this attribute as described below. These are behaviors that occur subsequent to XML parsing
[XML10] and any construction of a DOM.

‘xml:space’ is an inheritable attribute which can have one of two values:

'default'
(The initial/default value for ‘xml:space’.) When xml:space="default", the SVG user agent will do the following
using a copy of the original character data content. First, it will remove all newline characters. Then it will
convert all tab characters into space characters. Then, it will strip off all leading and trailing space characters.
Then, all contiguous space characters will be consolidated.

'preserve'
When xml:space="preserve", the SVG user agent will do the following using a copy of the original character
data content. It will convert all newline and tab characters into space characters. Then, it will draw all space
characters, including leading, trailing and multiple contiguous space characters. Thus, when drawn with
xml:space="preserve", the string "a b" (three spaces between "a" and "b") will produce a larger separation
between "a" and "b" than "a b" (one space between "a" and "b").

The following example illustrates that line indentation can be important when using xml:space="default". The frag-
ment below show two pairs of similar ‘text’ elements, with both ‘text’ elements using xml:space="default". For these
examples, there is no extra white space at the end of any of the lines (i.e., the line break occurs immediately after
the last visible character).

[01]  <text xml:space='default'>
[02]    WS example

http://www.w3.org/TR/2008/REC-xml-20081126/


[03]    indented lines
[04]  </text>
[05]  <text xml:space='preserve'>WS example indented lines</text>
[06]
[07]  <text xml:space='default'>
[08]WS example
[09]non-indented lines
[10]  </text>
[11]  <text xml:space='preserve'>WS examplenon-indented lines</text>

The first pair of ‘text’ elements above show the effect of indented character data. The attribute xml:space="default"
in the first ‘text’ element instructs the user agent to:

• convert all tabs (if any) to space characters,
• strip out all line breaks (i.e., strip out the line breaks at the end of lines [01], [02] and [03]),
• strip out all leading space characters (i.e., strip out space characters before "WS example" on line [02]),
• strip out all trailing space characters (i.e., strip out space characters before "</text>" on line [04]),
• consolidate all intermediate space characters (i.e., the space characters before "indented lines" on line [03])

into a single space character.

The second pair of ‘text’ elements above show the effect of non-indented character data. The attribute
xml:space="default" in the third ‘text’ element instructs the user agent to:

• convert all tabs (if any) to space characters,
• strip out all line breaks (i.e., strip out the line breaks at the end of lines [07], [08] and [09]),
• strip out all leading space characters (there are no leading space characters in this example),
• strip out all trailing space characters (i.e., strip out space characters before "</text>" on line [10]),
• consolidate all intermediate space characters into a single space character (in this example, there are no in-

termediate space characters).

Note that XML parsers are required to convert the standard representations for a newline indicator (e.g., the literal
two-character sequence "#xD#xA" or the stand-alone literals #xD or #xA) into the single character #xA before
passing character data to the application. Thus, each newline in SVG will be represented by the single character
#xA, no matter what representation for newlines might have been used in the original resource. (See XML end-of-
line handling.)

Any features in the SVG language or the SVG DOM that are based on character position number, such as the
‘x’, ‘y’, ‘dx’, ‘dy’ and ‘rotate’ attributes on the ‘text’, ‘tspan’, ‘tref’ and ‘altGlyph’ elements, are based on character
position after applying the white space handling rules described here. In particular, if xml:space="default", it is of-
ten the case that white space characters are removed as part of processing. Character position numbers index into
the text string after the white space characters have been removed per the rules in this section.

Note that a glyph corresponding to a whitespace character should only be displayed as a visible but blank
space, even if the glyph itself happens to be non-blank. See display of unsupported characters [UNICODE].

The ‘xml:space’ attribute is:
Animatable: no.

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-line-ends
http://www.w3.org/TR/2008/REC-xml-20081126/#sec-line-ends
http://www.unicode.org/faq/unsup_char.html


10.16 Text selection and clipboard operations

Conforming SVG viewers on systems which have the capacity for text selection (e.g., systems which are equipped
with a pointer device such as a mouse) and which have system clipboards for copy/paste operations are required
to support:

• user selection of text strings in SVG content
• the ability to copy selected text strings to the system clipboard

A text selection operation starts when all of the following occur:

• the user positions the pointing device over a glyph that has been rendered as part of a ‘text’ element, initiates
a select operation (e.g., pressing the standard system mouse button for select operations) and then moves the
pointing device while continuing the select operation (e.g., continuing to press the standard system mouse
button for select operations)

• no other visible graphics element has been painted above the glyph at the point at which the pointing device
was clicked

• no links or events have been assigned to the ‘text’, ‘tspan’ or ‘textPath’ element(s) (or their ancestors) associ-
ated with the given glyph.

As the text selection operation proceeds (e.g., the user continues to press the given mouse button), all associated
events with other graphics elements are ignored (i.e., the text selection operation is modal) and the SVG user
agent shall dynamically indicate which characters are selected by an appropriate highlighting technique, such as
redrawing the selected glyphs with inverse colors. As the pointer is moved during the text selection process, the
end glyph for the text selection operation is the glyph within the same ‘text’ element whose glyph cell is closest to
the pointer. All characters within the ‘text’ element whose position within the ‘text’ element is between the start
of selection and end of selection shall be highlighted, regardless of position on the canvas and regardless of any
graphics elements that might be above the end of selection point.

Once the text selection operation ends (e.g., the user releases the given mouse button), the selected text will
stay highlighted until an event occurs which cancels text selection, such as a pointer device activation event (e.g.,
pressing a mouse button).

Detailed rules for determining which characters to highlight during a text selection operation are provided in
Text selection implementation notes.

For systems which have system clipboards, the SVG user agent is required to provide a user interface for ini-
tiating a copy of the currently selected text to the system clipboard. It is sufficient for the SVG user agent to post
the selected text string in the system's appropriate clipboard format for plain text, but it is preferable if the SVG
user agent also posts a rich text alternative which captures the various font properties associated with the given
text string.

For bidirectional text, the user agent must support text selection in logical order, which will result in discon-
tinuous highlighting of glyphs due to the bidirectional reordering of characters. User agents can provide an al-
ternative ability to select bidirectional text in visual rendering order (i.e., after bidirectional text layout algorithms
have been applied), with the result that selected character data might be discontinuous logically. In this case, if the



user requests that bidirectional text be copied to the clipboard, then the user agent is required to make appropriate
adjustments to copy only the visually selected characters to the clipboard.

When feasible, it is recommended that generators of SVG attempt to order their text strings to facilitate prop-
erly ordered text selection within SVG viewing applications such as Web browsers.

10.17 DOM interfaces

10.17.1 Interface SVGTextContentElement

The SVGTextContentElement is inherited by various text-related interfaces, such as SVGTextElement,
SVGTSpanElement, SVGTRefElement, SVGAltGlyphElement and SVGTextPathElement.

For the methods on this interface that refer to an index to a character or a number of characters, these refer-
ences are to be interpreted as an index to a UTF-16 code unit or a number of UTF-16 code units, respectively. This
is for consistency with DOM Level 2 Core, where methods on the CharacterData interface use UTF-16 code units
as indexes and counts within the character data. Thus for example, if the text content of a ‘text’ element is a single
non-BMP character, such as U+10000, then invoking getNumberOfChars on that element will return 2 since there
are two UTF-16 code units (the surrogate pair) used to represent that one character.

interface SVGTextContentElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable {

// lengthAdjust Types
const unsigned short LENGTHADJUST_UNKNOWN = 0;
const unsigned short LENGTHADJUST_SPACING = 1;
const unsigned short LENGTHADJUST_SPACINGANDGLYPHS = 2;

readonly attribute SVGAnimatedLength textLength;
readonly attribute SVGAnimatedEnumeration lengthAdjust;

long getNumberOfChars();
float getComputedTextLength();
float getSubStringLength(in unsigned long charnum, in unsigned long nchars) raises(DOMException);
SVGPoint getStartPositionOfChar(in unsigned long charnum) raises(DOMException);
SVGPoint getEndPositionOfChar(in unsigned long charnum) raises(DOMException);
SVGRect getExtentOfChar(in unsigned long charnum) raises(DOMException);
float getRotationOfChar(in unsigned long charnum) raises(DOMException);
long getCharNumAtPosition(in SVGPoint point);
void selectSubString(in unsigned long charnum, in unsigned long nchars) raises(DOMException);

};

Constants in group “lengthAdjust Types”:

• LENGTHADJUST_UNKNOWN (unsigned short)

The enumeration was set to a value that is not one of predefined types. It is invalid to attempt to define a
new value of this type or to attempt to switch an existing value to this type.

• LENGTHADJUST_SPACING (unsigned short)

Corresponds to value 'spacing'.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-FF21A306
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• LENGTHADJUST_SPACINGANDGLYPHS (unsigned short)

Corresponds to value 'spacingAndGlyphs'.

Attributes:

• textLength (readonly SVGAnimatedLength)

Corresponds to attribute ‘textLength’ on the given element.

• lengthAdjust (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘lengthAdjust’ on the given element. The value must be one of the length adjust
constants defined on this interface.

Operations:

• long getNumberOfChars()

Returns the total number of characters available for rendering within the current element, which includes
referenced characters from ‘tref’ reference, regardless of whether they will be rendered. Effectively, this is
equivalent to the length of the Node::textContent attribute from DOM Level 3 Core ([DOM3], section 1.4), if
that attribute also expanded ‘tref’ elements.

Returns
Total number of characters.

• float getComputedTextLength()

The total sum of all of the advance values from rendering all of the characters within this element, including
the advance value on the glyphs (horizontal or vertical), the effect of properties ‘kerning’, ‘letter-spacing’ and
‘word-spacing’ and adjustments due to attributes ‘dx’ and ‘dy’ on ‘tspan’ elements. For non-rendering envir-
onments, the user agent shall make reasonable assumptions about glyph metrics.

Returns
The text advance distance.

• float getSubStringLength(in unsigned long charnum, in unsigned long nchars)

The total sum of all of the advance values from rendering the specified substring of the characters, including
the advance value on the glyphs (horizontal or vertical), the effect of properties ‘kerning’, ‘letter-spacing’ and
‘word-spacing’ and adjustments due to attributes ‘dx’ and ‘dy’ on ‘tspan’ elements. For non-rendering en-
vironments, the user agent shall make reasonable assumptions about glyph metrics. If multiple consecutive
characters are rendered inseparably (e.g., as a single glyph or a sequence of glyphs, or because the range en-

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#Node3-textContent


compasses half of a surrogate pair), and nchars is greater than 0 then the measured range shall be expanded
so that each of the inseparable characters are included.

Parameters

• unsigned long charnum
The index of the first character in the substring, where the first character has an index of 0.

• unsigned long nchars
The number of characters in the substring. If nchars specifies more characters than are available, then
the substring will consist of all characters starting with charnum until the end of the list of characters.

Returns
The text advance distance.

Exceptions

• DOMException, code INDEX_SIZE_ERR
Raised if charnum or nchars is negative or if charnum is greater than or equal to the number of char-
acters at this node.

• SVGPoint getStartPositionOfChar(in unsigned long charnum)

Returns the current text position before rendering the character in the user coordinate system for rendering
the glyph(s) that correspond to the specified character. The current text position has already taken into ac-
count the effects of any inter-character adjustments due to properties ‘kerning’, ‘letter-spacing’ and ‘word-
spacing’ and adjustments due to attributes ‘x’, ‘y’, ‘dx’ and ‘dy’. If multiple consecutive characters are
rendered inseparably (e.g., as a single glyph or a sequence of glyphs), then each of the inseparable characters
will return the start position for the first glyph.

Parameters

• unsigned long charnum
The index of the character, where the first character has an index of 0.

Returns
The character's start position.

Exceptions

• DOMException, code INDEX_SIZE_ERR
Raised if the charnum is negative or if charnum is greater than or equal to the number of characters at
this node.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• SVGPoint getEndPositionOfChar(in unsigned long charnum)

Returns the current text position after rendering the character in the user coordinate system for rendering
the glyph(s) that correspond to the specified character. This current text position does not take into account
the effects of any inter-character adjustments to prepare for the next character, such as properties ‘kerning’,
‘letter-spacing’ and ‘word-spacing’ and adjustments due to attributes ‘x’, ‘y’, ‘dx’ and ‘dy’. If multiple consec-
utive characters are rendered inseparably (e.g., as a single glyph or a sequence of glyphs), then each of the
inseparable characters will return the end position for the last glyph.

Parameters

• unsigned long charnum
The index of the character, where the first character has an index of 0.

Returns
The character's end position.

Exceptions

• DOMException, code INDEX_SIZE_ERR
Raised if the charnum is negative or if charnum is greater than or equal to the number of characters at
this node.

• SVGRect getExtentOfChar(in unsigned long charnum)

Returns a tightest rectangle which defines the minimum and maximum X and Y values in the user coordinate
system for rendering the glyph(s) that correspond to the specified character. The calculations assume that all
glyphs occupy the full standard glyph cell for the font. If multiple consecutive characters are rendered insep-
arably (e.g., as a single glyph or a sequence of glyphs), then each of the inseparable characters will return the
same extent.

Parameters

• unsigned long charnum
The index of the character, where the first character has an index of 0.

Returns
The rectangle which encloses all of the rendered glyph(s).

Exceptions

• DOMException, code INDEX_SIZE_ERR
Raised if the charnum is negative or if charnum is greater than or equal to the number of characters at
this node.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• float getRotationOfChar(in unsigned long charnum)

Returns the rotation value relative to the current user coordinate system used to render the glyph(s) corres-
ponding to the specified character. If multiple glyph(s) are used to render the given character and the glyphs
each have different rotations (e.g., due to text-on-a-path), the user agent shall return an average value (e.g.,
the rotation angle at the midpoint along the path for all glyphs used to render this character). The rotation
value represents the rotation that is supplemental to any rotation due to properties ‘glyph-orientation-ho-
rizontal’ and ‘glyph-orientation-vertical’; thus, any glyph rotations due to these properties are not included
into the returned rotation value. If multiple consecutive characters are rendered inseparably (e.g., as a single
glyph or a sequence of glyphs), then each of the inseparable characters will return the same rotation value.

Parameters

• unsigned long charnum
The index of the character, where the first character has an index of 0.

Returns
The rotation angle.

Exceptions

• DOMException, code INDEX_SIZE_ERR
Raised if the charnum is negative or if charnum is greater than or equal to the number of characters at
this node.

• long getCharNumAtPosition(in SVGPoint point)

Returns the index of the character whose corresponding glyph cell bounding box contains the specified point.
The calculations assume that all glyphs occupy the full standard glyph cell for the font. If no such character
exists, a value of -1 is returned. If multiple such characters exist, the character within the element whose
glyphs were rendered last (i.e., take into account any reordering such as for bidirectional text) is used. If
multiple consecutive characters are rendered inseparably (e.g., as a single glyph or a sequence of glyphs),
then the user agent shall allocate an equal percentage of the text advance amount to each of the contributing
characters in determining which of the characters is chosen.

Parameters

• SVGPoint point
A point in user space.

Returns
The index of the character which is at the given point, where the first character has an index of 0.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• void selectSubString(in unsigned long charnum, in unsigned long nchars)

Causes the specified substring to be selected just as if the user selected the substring interactively.

Parameters

• unsigned long charnum
The index of the start character which is at the given point, where the first character has an index of 0.

• unsigned long nchars
The number of characters in the substring. If nchars specifies more characters than are available, then
the substring will consist of all characters starting with charnum until the end of the list of characters.

Exceptions

• DOMException, code INDEX_SIZE_ERR
Raised if charnum or nchars is negative or if charnum is greater than or equal to the number of char-
acters at this node.

10.17.2 Interface SVGTextPositioningElement

The SVGTextPositioningElement interface is inherited by text-related interfaces: SVGTextElement, SVGTSpanEle-
ment, SVGTRefElement and SVGAltGlyphElement.

interface SVGTextPositioningElement : SVGTextContentElement {
readonly attribute SVGAnimatedLengthList x;
readonly attribute SVGAnimatedLengthList y;
readonly attribute SVGAnimatedLengthList dx;
readonly attribute SVGAnimatedLengthList dy;
readonly attribute SVGAnimatedNumberList rotate;

};

Attributes:

• x (readonly SVGAnimatedLengthList)

Corresponds to attribute ‘x’ on the given element.

• y (readonly SVGAnimatedLengthList)

Corresponds to attribute ‘y’ on the given element.

• dx (readonly SVGAnimatedLengthList)

Corresponds to attribute ‘dx’ on the given element.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• dy (readonly SVGAnimatedLengthList)

Corresponds to attribute ‘dy’ on the given element.

• rotate (readonly SVGAnimatedNumberList)

Corresponds to attribute ‘rotate’ on the given element.

10.17.3 Interface SVGTextElement

The SVGTextElement interface corresponds to the ‘text’ element.

interface SVGTextElement : SVGTextPositioningElement,
SVGTransformable {

};

10.17.4 Interface SVGTSpanElement

The SVGTSpanElement interface corresponds to the ‘tspan’ element.

interface SVGTSpanElement : SVGTextPositioningElement {
};

10.17.5 Interface SVGTRefElement

The SVGTRefElement interface corresponds to the ‘tref’ element.

interface SVGTRefElement : SVGTextPositioningElement,
SVGURIReference {

};

10.17.6 Interface SVGTextPathElement

The SVGTextPathElement interface corresponds to the ‘textPath’ element.

interface SVGTextPathElement : SVGTextContentElement,
SVGURIReference {

// textPath Method Types
const unsigned short TEXTPATH_METHODTYPE_UNKNOWN = 0;
const unsigned short TEXTPATH_METHODTYPE_ALIGN = 1;
const unsigned short TEXTPATH_METHODTYPE_STRETCH = 2;

// textPath Spacing Types
const unsigned short TEXTPATH_SPACINGTYPE_UNKNOWN = 0;
const unsigned short TEXTPATH_SPACINGTYPE_AUTO = 1;
const unsigned short TEXTPATH_SPACINGTYPE_EXACT = 2;

readonly attribute SVGAnimatedLength startOffset;
readonly attribute SVGAnimatedEnumeration method;



readonly attribute SVGAnimatedEnumeration spacing;
};

Constants in group “textPath Method Types”:

• TEXTPATH_METHODTYPE_UNKNOWN (unsigned short)

The enumeration was set to a value that is not one of predefined types. It is invalid to attempt to define a
new value of this type or to attempt to switch an existing value to this type.

• TEXTPATH_METHODTYPE_ALIGN (unsigned short)

Corresponds to value 'align'.

• TEXTPATH_METHODTYPE_STRETCH (unsigned short)

Corresponds to value 'stretch'.

Constants in group “textPath Spacing Types”:

• TEXTPATH_SPACINGTYPE_UNKNOWN (unsigned short)

The enumeration was set to a value that is not one of predefined types. It is invalid to attempt to define a
new value of this type or to attempt to switch an existing value to this type.

• TEXTPATH_SPACINGTYPE_AUTO (unsigned short)

Corresponds to value 'auto'.

• TEXTPATH_SPACINGTYPE_EXACT (unsigned short)

Corresponds to value 'exact'.

Attributes:

• startOffset (readonly SVGAnimatedLength)

Corresponds to attribute ‘startOffset’ on the given ‘textPath’ element.

• method (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘method’ on the given ‘textPath’ element.



• spacing (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘spacing’ on the given ‘textPath’ element.

10.17.7 Interface SVGAltGlyphElement

The SVGAltGlyphElement interface corresponds to the ‘altGlyph’ element.

interface SVGAltGlyphElement : SVGTextPositioningElement,
SVGURIReference {

attribute DOMString glyphRef setraises(DOMException);
attribute DOMString format setraises(DOMException);

};

Attributes:

• glyphRef (DOMString)

Corresponds to attribute ‘glyphRef’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• format (DOMString)

Corresponds to attribute ‘format’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

10.17.8 Interface SVGAltGlyphDefElement

The SVGAltGlyphDefElement interface corresponds to the ‘altGlyphDef’ element.

interface SVGAltGlyphDefElement : SVGElement {
};

10.17.9 Interface SVGAltGlyphItemElement

The SVGAltGlyphItemElement interface corresponds to the ‘altGlyphItem’ element.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


interface SVGAltGlyphItemElement : SVGElement {
};

10.17.10 Interface SVGGlyphRefElement

The SVGGlyphRefElement interface corresponds to the ‘glyphRef’ element.

interface SVGGlyphRefElement : SVGElement,
SVGURIReference,
SVGStylable {

attribute DOMString glyphRef setraises(DOMException);
attribute DOMString format setraises(DOMException);
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float dx setraises(DOMException);
attribute float dy setraises(DOMException);

};

Attributes:

• glyphRef (DOMString)

Corresponds to attribute ‘glyphRef’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• format (DOMString)

Corresponds to attribute ‘format’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• x (float)

Corresponds to attribute ‘x’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• y (float)

Corresponds to attribute ‘y’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• dx (float)

Corresponds to attribute ‘dx’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• dy (float)

Corresponds to attribute ‘dy’ on the given element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


11 Painting: Filling, Stroking and Marker Symbols

Contents

11.1 Introduction
11.2 Specifying paint
11.3 Fill Properties
11.4 Stroke Properties
11.5 Controlling visibility
11.6 Markers

11.6.1 Introduction
11.6.2 The ‘marker’ element
11.6.3 Marker properties
11.6.4 Details on how markers are rendered

11.7 Rendering properties
11.7.1 Color interpolation properties: ‘color-interpolation’ and ‘color-interpolation-filters’
11.7.2 The ‘color-rendering’ property
11.7.3 The ‘shape-rendering’ property
11.7.4 The ‘text-rendering’ property
11.7.5 The ‘image-rendering’ property

11.8 Inheritance of painting properties
11.9 DOM interfaces

11.9.1 Interface SVGPaint
11.9.2 Interface SVGMarkerElement

11.1 Introduction

‘path’ elements, ‘text’ elements and basic shapes can be filled (which means painting the interior of the object)
and stroked (which means painting along the outline of the object). Filling and stroking both can be thought of in
more general terms as painting operations.

Certain elements (i.e., ‘path’, ‘polyline’, ‘polygon’ and ‘line’ elements) can also have marker symbols drawn at
their vertices.

With SVG, you can paint (i.e., fill or stroke) with:

• a single color
• a gradient (linear or radial)
• a pattern (vector or image, possibly tiled)
• custom paints available via extensibility



SVG uses the general notion of a paint server. Paint servers are specified using a IRI reference on a ‘fill’ or ‘stroke’
property. Gradients and patterns are just specific types of paint servers.

11.2 Specifying paint

Properties ‘fill’ and ‘stroke’ take on a value of type <paint>, which is specified as follows:

<paint>:

none |

currentColor |

<color> [<icccolor>] |

<funciri> [ none | currentColor | <color> [<icccolor>] ] |

inherit

none
Indicates that no paint is applied.

currentColor
Indicates that painting is done using the current animated value of the color specified by the ‘color’ property.
This mechanism is provided to facilitate sharing of color attributes between parent grammars such as other
(non-SVG) XML. This mechanism allows you to define a style in your HTML which sets the ‘color’ property
and then pass that style to the SVG user agent so that your SVG text will draw in the same color.

<color> [<icccolor>]
<color> is the explicit color (in the sRGB color space [SRGB]) to be used to paint the current object. SVG
supports all of the syntax alternatives for <color> defined in CSS2 ([CSS2], section 4.3.6), with the exception
that SVG contains an expanded list of recognized color keywords names. If an optional ICC color specifica-
tion [ICC42] is provided, then the user agent searches the color profile description database for a color pro-
file description entry whose name descriptor matches the <name> part of the <icccolor> and uses the last
matching entry that is found. (If no match is found, then the ICC color specification is ignored.) The comma
and/or whitespace separated list of <number>s is a set of ICC-profile-specific color values. (In most cases,
the <number>s will be in the range 0 to 1.) On platforms which support ICC-based color management, the
<icccolor> gets precedence over the <color> (which is in the sRGB color space). Note that color interpolation
occurs in an RGB color space even if an ICC-based color specification is provided (see ‘color-interpolation’
and ‘color-interpolation-filters’). For more on ICC-based colors, refer to Color profile descriptions.

<funciri>
[ none |

currentColor |
<color> [<icccolor>] ]

The <funciri> is used to identify a paint server such as a gradient, a pattern or a custom paint defined by an
extension (see Extensibility). The <funciri> points to the paint server (e.g., a gradient or pattern) to be used
to paint the current object. If the IRI reference is not valid (e.g., it points to an object that doesn't exist or the
object is not a valid paint server), then the paint method following the <funciri> (i.e., none | currentColor |
<color> [<icccolor>] is used if provided; otherwise, the document is in error (see Error processing).

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#value-def-color


11.3 Fill Properties

‘fill’
Value: <paint> (See Specifying paint)

Initial: black

Applies to: shapes and text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

The ‘fill’ property paints the interior of the given graphical element. The area to be painted consists of any areas
inside the outline of the shape. To determine the inside of the shape, all subpaths are considered, and the interior
is determined according to the rules associated with the current value of the ‘fill-rule’ property. The zero-width
geometric outline of a shape is included in the area to be painted.

The fill operation fills open subpaths by performing the fill operation as if an additional "closepath" command
were added to the path to connect the last point of the subpath with the first point of the subpath. Thus, fill op-
erations apply to both open subpaths within ‘path’ elements (i.e., subpaths without a closepath command) and
‘polyline’ elements.

‘fill-rule’
Value: nonzero | evenodd | inherit

Initial: nonzero

Applies to: shapes and text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

The ‘fill-rule’ property indicates the algorithm which is to be used to determine what parts of the canvas are
included inside the shape. For a simple, non-intersecting path, it is intuitively clear what region lies "inside";
however, for a more complex path, such as a path that intersects itself or where one subpath encloses another, the
interpretation of "inside" is not so obvious.

The ‘fill-rule’ property provides two options for how the inside of a shape is determined:

nonzero
This rule determines the "insideness" of a point on the canvas by drawing a ray from that point to infinity in
any direction and then examining the places where a segment of the shape crosses the ray. Starting with a
count of zero, add one each time a path segment crosses the ray from left to right and subtract one each time
a path segment crosses the ray from right to left. After counting the crossings, if the result is zero then the
point is outside the path. Otherwise, it is inside. The following drawing illustrates the nonzero rule:

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


evenodd
This rule determines the "insideness" of a point on the canvas by drawing a ray from that point to infinity
in any direction and counting the number of path segments from the given shape that the ray crosses. If this
number is odd, the point is inside; if even, the point is outside. The following drawing illustrates the evenodd
rule:

(Note: the above explanations do not specify what to do if a path segment coincides with or is tangent to the ray.
Since any ray will do, one may simply choose a different ray that does not have such problem intersections.)

‘fill-opacity’
Value: <opacity-value> | inherit

Initial: 1

Applies to: shapes and text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

‘fill-opacity’ specifies the opacity of the painting operation used to paint the interior the current object. (See Paint-
ing shapes and text.)

<opacity-value>
The opacity of the painting operation used to fill the current object, as a <number>. Any values outside the
range 0.0 (fully transparent) to 1.0 (fully opaque) will be clamped to this range. (See Clamping values which
are restricted to a particular range.)

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


Related properties: ‘stroke-opacity’ and ‘opacity’.

11.4 Stroke Properties

The following are the properties which affect how an element is stroked.
In all cases, all stroking properties which are affected by directionality, such as those having to do with dash

patterns, must be rendered such that the stroke operation starts at the same point at which the graphics element
starts. In particular, for ‘path’ elements, the start of the path is the first point of the initial "moveto" command.

For stroking properties such as dash patterns whose computations are dependent on progress along the out-
line of the graphics element, distance calculations are required to utilize the SVG user agent's standard Distance
along a path algorithms.

When stroking is performed using a complex paint server, such as a gradient or a pattern, the stroke operation
must be identical to the result that would have occurred if the geometric shape defined by the geometry of the
current graphics element and its associated stroking properties were converted to an equivalent ‘path’ element and
then filled using the given paint server.

‘stroke’
Value: <paint> (See Specifying paint)

Initial: none

Applies to: shapes and text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

The ‘stroke’ property paints along the outline of the given graphical element.
A subpath (see Paths) consisting of a single moveto shall not be stroked. Any zero length subpath shall not be

stroked if the ‘stroke-linecap’ property has a value of butt but shall be stroked if the ‘stroke-linecap’ property has a
value of round or square, producing respectively a circle or a square centered at the given point. Examples of zero
length subpaths include 'M 10,10 L 10,10', 'M 20,20 h 0', 'M 30,30 z' and 'M 40,40 c 0,0 0,0 0,0'.

‘stroke-width’
Value: <percentage> | <length> | inherit

Initial: 1

Applies to: shapes and text content elements

Inherited: yes

Percentages: Yes

Media: visual

Animatable: yes

This property specifies the width of the stroke on the current object. If a <percentage> is used, the value represents
a percentage of the current viewport. (See Units.)

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


A zero value causes no stroke to be painted. A negative value is an error (see Error processing).

‘stroke-linecap’
Value: butt | round | square | inherit

Initial: butt

Applies to: shapes and text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

‘stroke-linecap’ specifies the shape to be used at the end of open subpaths when they are stroked. For further details
see the path implementation notes.

butt
See drawing below.

round
See drawing below.

square
See drawing below.

‘stroke-linejoin’
Value: miter | round | bevel | inherit

Initial: miter

Applies to: shapes and text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

‘stroke-linejoin’ specifies the shape to be used at the corners of paths or basic shapes when they are stroked. For
further details see the path implementation notes.

miter
See drawing below.

round
See drawing below.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


bevel
See drawing below.

‘stroke-miterlimit’
Value: <miterlimit> | inherit

Initial: 4

Applies to: shapes and text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

When two line segments meet at a sharp angle and miter joins have been specified for ‘stroke-linejoin’, it is possible
for the miter to extend far beyond the thickness of the line stroking the path. The ‘stroke-miterlimit’ imposes a
limit on the ratio of the miter length to the ‘stroke-width’. When the limit is exceeded, the join is converted from
a miter to a bevel.

<miterlimit>
The limit on the ratio of the miter length to the ‘stroke-width’. The value of <miterlimit> must be a <number>
greater than or equal to 1. Any other value is an error (see Error processing).

The ratio of miter length (distance between the outer tip and the inner corner of the miter) to ‘stroke-width’ is
directly related to the angle (theta) between the segments in user space by the formula:

miterLength / stroke-width = 1 / sin ( theta / 2 )

For example, a miter limit of 1.414 converts miters to bevels for theta less than 90 degrees, a limit of 4.0 converts
them for theta less than approximately 29 degrees, and a limit of 10.0 converts them for theta less than approxim-
ately 11.5 degrees.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


‘stroke-dasharray’
Value: none | <dasharray> | inherit

Initial: none

Applies to: shapes and text content elements

Inherited: yes

Percentages: yes (see below)

Media: visual

Animatable: yes (non-additive)

‘stroke-dasharray’ controls the pattern of dashes and gaps used to stroke paths. <dasharray> contains a list of
comma and/or white space separated <length>s and <percentage>s that specify the lengths of alternating dashes
and gaps. If an odd number of values is provided, then the list of values is repeated to yield an even number of
values. Thus, stroke-dasharray: 5,3,2 is equivalent to stroke-dasharray: 5,3,2,5,3,2.

none
Indicates that no dashing is used. If stroked, the line is drawn solid.

<dasharray>
A list of comma and/or white space separated <length>s (which can have a unit identifier) and <percent-
age>s. A percentage represents a distance as a percentage of the current viewport (see Units). A negative
value is an error (see Error processing). If the sum of the values is zero, then the stroke is rendered as if a
value of none were specified. For further details see the path implementation notes.

The grammar for <dasharray> is as follows:

dasharray ::= (length | percentage) (comma-wsp dasharray)?

‘stroke-dashoffset’
Value: <percentage> | <length> | inherit

Initial: 0

Applies to: shapes and text content elements

Inherited: yes

Percentages: see prose

Media: visual

Animatable: yes

‘stroke-dashoffset’ specifies the distance into the dash pattern to start the dash.
If a <percentage> is used, the value represents a percentage of the current viewport (see Units).
Values can be negative.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


‘stroke-opacity’
Value: <opacity-value> | inherit

Initial: 1

Applies to: shapes and text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

‘stroke-opacity’ specifies the opacity of the painting operation used to stroke the current object. (See Painting
shapes and text.)

<opacity-value>
The opacity of the painting operation used to stroke the current object, as a <number>. Any values outside
the range 0.0 (fully transparent) to 1.0 (fully opaque) will be clamped to this range. (See Clamping values
which are restricted to a particular range.)

Related properties: ‘fill-opacity’ and ‘opacity’.

11.5 Controlling visibility

SVG uses two properties, ‘display’ and ‘visibility’, to control the visibility of graphical elements or (in the case of
the ‘display’ property) container elements.

The differences between the two properties are as follows:

• When applied to a container element, setting ‘display’ to none causes the container and all of its children to
be invisible; thus, it acts on groups of elements as a group. ‘visibility’, however, only applies to individual
graphics elements. Setting ‘visibility’ to hidden on a ‘g’ will make its children invisible as long as the children
do not specify their own ‘visibility’ properties as visible. Note that ‘visibility’ is not an inheritable property.

• When the ‘display’ property is set to none, then the given element does not become part of the rendering tree.
With ‘visibility’ set to hidden, however, processing occurs as if the element were part of the rendering tree
and still taking up space, but not actually rendered onto the canvas. This distinction has implications for the
‘tspan’, ‘tref’ and ‘altGlyph’ elements, event processing, for bounding box calculations and for calculation of
clipping paths. If ‘display’ is set to none on a ‘tspan’, ‘tref’ or ‘altGlyph’ element, then the text string is ignored
for the purposes of text layout; however, if ‘visibility’ is set to hidden, the text string is used for text layout
(i.e., it takes up space) even though it is not rendered on the canvas. Regarding events, if ‘display’ is set to
none, the element receives no events; however, if ‘visibility’ is set to hidden, the element might still receive
events, depending on the value of property ‘pointer-events’. The geometry of a graphics element with ‘display’
set to none is not included in bounding box and clipping paths calculations; however, even if ‘visibility’ is to
hidden, the geometry of the graphics element still contributes to bounding box and clipping path calculations.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


‘display’

Value:

inline | block | list-item |

run-in | compact | marker |

table | inline-table | table-row-group | table-header-group |

table-footer-group | table-row | table-column-group | table-column |

table-cell | table-caption | none | inherit

Initial: inline

Applies to:
‘svg’, ‘g’, ‘switch’, ‘a’, ‘foreignObject’, graphics elements (including the ‘text’ element) and text

sub-elements (i.e., ‘tspan’, ‘tref’, ‘altGlyph’, ‘textPath’)

Inherited: no

Percentages: N/A

Media: all

Animatable: yes

A value of display: none indicates that the given element and its children shall not be rendered directly (i.e., those
elements are not present in the rendering tree). Any value other than none or inherit indicates that the given ele-
ment shall be rendered by the SVG user agent.

The ‘display’ property only affects the direct rendering of a given element, whereas it does not prevent ele-
ments from being referenced by other elements. For example, setting display: none on a ‘path’ element will prevent
that element from getting rendered directly onto the canvas, but the ‘path’ element can still be referenced by a
‘textPath’ element; furthermore, its geometry will be used in text-on-a-path processing even if the ‘path’ has dis-
play: none.

The ‘display’ property affects direct rendering into offscreen canvases also, such as occurs with the imple-
mentation model for masks. Thus, setting display: none on a child of a ‘mask’ will prevent the given child element
from being rendered as part of the mask. Similarly, setting display: none on a child of a ‘clipPath’ element will pre-
vent the given child element from contributing to the clipping path.

Elements with display: none do not take up space in text layout operations, do not receive events, and do not
contribute to bounding box and clipping paths calculations.

Except for any additional information provided in this specification, the normative definition of the ‘display’
property is the CSS2 definition ([CSS2], section 9.2.6).

‘visibility’
Value: visible | hidden | collapse | inherit

Initial: visible

Applies to:
graphics elements (including the ‘text’ element) and text sub-elements (i.e., ‘tspan’, ‘tref’, ‘altGlyph’,

‘textPath’ and ‘a’)

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/visuren.html#propdef-display
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


visible
The current graphics element is visible.

hidden or collapse
The current graphics element is invisible (i.e., nothing is painted on the canvas).

Note that if the ‘visibility’ property is set to hidden on a ‘tspan’, ‘tref’ or ‘altGlyph’ element, then the text is invisible
but still takes up space in text layout calculations.

Depending on the value of property ‘pointer-events’, graphics elements which have their ‘visibility’ property
set to hidden still might receive events.

Except for any additional information provided in this specification, the normative definition of the ‘visibility’
property is the CSS2 definition ([CSS2], section 11.2).

11.6 Markers

11.6.1 Introduction

A marker is a symbol which is attached to one or more vertices of ‘path’, ‘line’, ‘polyline’ and ‘polygon’ elements.
Typically, markers are used to make arrowheads or polymarkers. Arrowheads can be defined by attaching a mark-
er to the start or end vertices of ‘path’, ‘line’ or ‘polyline’ elements. Polymarkers can be defined by attaching a
marker to all vertices of a ‘path’, ‘line’, ‘polyline’ or ‘polygon’ element.

The graphics for a marker are defined by a ‘marker’ element. To indicate that a particular ‘marker’ element
should be rendered at the vertices of a particular ‘path’, ‘line’, ‘polyline’ or ‘polygon’ element, set one or more
marker properties (‘marker’, ‘marker-start’, ‘marker-mid’ or ‘marker-end’) to reference the given ‘marker’ element.

Example Marker draws a triangular marker symbol as an arrowhead at the end of a path.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4in" height="2in"

viewBox="0 0 4000 2000" version="1.1"
xmlns="http://www.w3.org/2000/svg">

<defs>
<marker id="Triangle"

viewBox="0 0 10 10" refX="0" refY="5"
markerUnits="strokeWidth"
markerWidth="4" markerHeight="3"
orient="auto">
<path d="M 0 0 L 10 5 L 0 10 z" />

</marker>
</defs>
<rect x="10" y="10" width="3980" height="1980"

fill="none" stroke="blue" stroke-width="10" />
<desc>Placing an arrowhead at the end of a path.
</desc>
<path d="M 1000 750 L 2000 750 L 2500 1250"

fill="none" stroke="black" stroke-width="100"
marker-end="url(#Triangle)"  />

</svg>

http://www.w3.org/TR/2008/REC-CSS2-20080411/visufx.html#propdef-visibility


‘marker’

Example Marker

Markers can be animated. The animated effects will show on all current uses of the markers within the document.

11.6.2 The ‘marker’ element

The ‘marker’ element defines the graphics that is to be used for drawing arrowheads or polymarkers on a given
‘path’, ‘line’, ‘polyline’ or ‘polygon’ element.

Categories:
Container element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements
shape elements
structural elements
gradient elements
‘a’
‘altGlyphDef’
‘clipPath’
‘color-profile’
‘cursor’
‘filter’
‘font’
‘font-face’
‘foreignObject’
‘image’
‘marker’



‘mask’
‘pattern’
‘script’
‘style’
‘switch’
‘text’
‘view’

Attributes:
core attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘viewBox’
‘preserveAspectRatio’
‘refX’
‘refY’
‘markerUnits’
‘markerWidth’
‘markerHeight’
‘orient’

DOM Interfaces:
SVGMarkerElement

Attribute definitions:

markerUnits = "strokeWidth | userSpaceOnUse"
Defines the coordinate system for attributes ‘markerWidth’, ‘markerHeight’ and the contents of the ‘marker’.
If markerUnits="strokeWidth", ‘markerWidth’, ‘markerHeight’ and the contents of the ‘marker’ represent val-
ues in a coordinate system which has a single unit equal the size in user units of the current stroke width
(see the ‘stroke-width’ property) in place for the graphic object referencing the marker.
If markerUnits="userSpaceOnUse", ‘markerWidth’, ‘markerHeight’ and the contents of the ‘marker’ represent
values in the current user coordinate system in place for the graphic object referencing the marker (i.e.,
the user coordinate system for the element referencing the ‘marker’ element via a ‘marker’, ‘marker-start’,
‘marker-mid’ or ‘marker-end’ property).
If attribute ‘markerUnits’ is not specified, then the effect is as if a value of 'strokeWidth' were specified.
Animatable: yes.

refX = "<coordinate>"
The x-axis coordinate of the reference point which is to be aligned exactly at the marker position. The co-



ordinate is defined in the coordinate system after application of the ‘viewBox’ and ‘preserveAspectRatio’ at-
tributes.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

refY = "<coordinate>"
The y-axis coordinate of the reference point which is to be aligned exactly at the marker position. The co-
ordinate is defined in the coordinate system after application of the ‘viewBox’ and ‘preserveAspectRatio’ at-
tributes.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

markerWidth = "<length>"
Represents the width of the viewport into which the marker is to be fitted when it is rendered.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of "3" were specified.
Animatable: yes.

markerHeight = "<length>"
Represents the height of the viewport into which the marker is to be fitted when it is rendered.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of "3" were specified.
Animatable: yes.

orient = "auto | <angle>"
Indicates how the marker is rotated.

A value of 'auto' indicates that the marker is oriented such that its positive x-axis is pointing as follows:

a. If there is a path segment coming into the vertex and another path segment going out of the vertex, the
marker's positive x-axis should point toward the angle bisector for the angle at the given vertex, where
that angle has one side consisting of tangent vector for the path segment going into the vertex and the
other side the tangent vector for the path segment going out of the vertex. Note:

◦ If the tangent vectors are the same, the angle bisector equals the two tangent vectors.
◦ If an incoming and an outgoing vertex produce a zero vector the direction of marker is undefined.

b. If there is only a path segment going into the vertex (e.g., the last vertex on an open path), the marker's
positive x-axis should point in the same direction as the tangent vector for the path segment going into
the vertex.

c. If there is only a path segment going out of the vertex (e.g., the first vertex on an open path), the mark-
er's positive x-axis should point in the same direction as the tangent vector for the path segment going
out of the vertex. (Refer to ‘path’ element implementation notes for a more thorough discussion of the
directionality of path segments.)



In all cases for closed subpaths (e.g., subpaths which end with a 'closepath' command), the orientation of the
marker corresponding to the initial point of the subpath is calculated assuming that:

• the path segment going into the vertex is the path segment corresponding to the closepath
• the path segment coming out of the vertex is the first path segment in the subpath

When a 'closepath' command is followed by a command other than a 'moveto' command, then the orienta-
tion of the marker corresponding to the 'closepath' command is calculated assuming that:

• the path segment going into the vertex is the path segment corresponding to the closepath
• the path segment coming out of the vertex is the first path segment of the subsequent subpath

A <angle> value represents a particular orientation in the user space of the graphic object referencing the
marker. For example, if a value of "0" is given, then the marker will be drawn such that its x-axis will align
with the x-axis of the user space of the graphic object referencing the marker. If the attribute is not specified,
the effect is as if a value of "0" were specified.
Animatable: yes (non-additive).

Markers are drawn such that their reference point (i.e., attributes ‘refX’ and ‘refY’) is positioned at the given vertex.
In other words, a translation transformation is constructed by the user agent to achieve the effect of having point
(‘refX’ and ‘refY’) within the marker content's coordinate system (after any transformations due to the ‘viewBox’
and ‘preserveAspectRatio’ attributes) align exactly with the given vertex.

SVG's user agent style sheet sets the ‘overflow’ property for ‘marker’ elements to hidden, which causes a rect-
angular clipping path to be created at the bounds of the marker tile. Unless the ‘overflow’ property is overridden,
any graphics within the marker which goes outside of the marker rectangle will be clipped.

The contents of the ‘marker’ are relative to a new coordinate system. Attribute ‘markerUnits’ determines an
initial scale factor for transforming the graphics in the marker into the user coordinate system for the referencing
element. An additional set of transformations might occur if there is a ‘viewBox’ attribute, in which case the co-
ordinate system for the contents of the ‘marker’ will be transformed due to the processing of attributes ‘viewBox’
and ‘preserveAspectRatio’. If there is no ‘viewBox’ attribute, then the assumed default value for the the ‘viewBox’
attribute has the origin of the viewBox coincident with the origin of the viewport and the width/height of the
viewBox the same as the width/height of the viewport.

Properties inherit into the ‘marker’ element from its ancestors; properties do not inherit from the element ref-
erencing the ‘marker’ element.

‘marker’ elements are never rendered directly; their only usage is as something that can be referenced using
the ‘marker’, ‘marker-start’, ‘marker-end’ and ‘marker-mid’ properties. The ‘display’ property does not apply to the
‘marker’ element; thus, ‘marker’ elements are not directly rendered even if the ‘display’ property is set to a value
other than none, and ‘marker’ elements are available for referencing even when the ‘display’ property on the ‘mark-
er’ element or any of its ancestors is set to none.



Event attributes and event listeners attached to the contents of a ‘marker’ element are not processed; only the
rendering aspects of ‘marker’ elements are processed.

11.6.3 Marker properties

‘marker-start’ defines the arrowhead or polymarker that shall be drawn at the first vertex of the given ‘path’ ele-
ment or basic shape. ‘marker-end’ defines the arrowhead or polymarker that shall be drawn at the final vertex.
‘marker-mid’ defines the arrowhead or polymarker that shall be drawn at every other vertex (i.e., every vertex ex-
cept the first and last). Note that for a ‘path’ element which ends with a closed sub-path, the last vertex is the same
as the initial vertex on the given sub-path. In this case, if ‘marker-end’ does not equal none, then it is possible that
two markers will be rendered on the given vertex. One way to prevent this is to set ‘marker-end’ to none. (Note
that the same comment applies to ‘polygon’ elements.)

‘marker-start’
‘marker-mid’
‘marker-end’

Value: none | <funciri> | inherit

Initial: none

Applies to: ‘path’, ‘line’, ‘polyline’ and ‘polygon’ elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

none
Indicates that no marker symbol shall be drawn at the given vertex (vertices).

<funciri>
The <funciri> is a Functional IRI reference to the ‘marker’ element which shall be used as the arrowhead
symbol or polymarker at the given vertex or vertices. If the IRI reference is not valid (e.g., it points to an
object that is undefined or the object is not a ‘marker’ element), then the marker(s) shall not be drawn.

The ‘marker’ property specifies the marker symbol that shall be used for all points on the sets the value for all
vertices on the given ‘path’ element or basic shape. It is a short-hand for the three individual marker properties:

‘marker’
Value: see individual properties

Initial: see individual properties

Applies to: ‘path’, ‘line’, ‘polyline’ and ‘polygon’ elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


11.6.4 Details on how markers are rendered

Markers are drawn after the given object is filled and stroked.
For each marker that is drawn, a temporary new user coordinate system is established so that the marker will

be positioned and sized correctly, as follows:

• The axes of the temporary new user coordinate system are aligned according to the ‘orient’ attribute on the
‘marker’ element and the slope of the curve at the given vertex. (Note: if there is a discontinuity at a vertex,
the slope is the average of the slopes of the two segments of the curve that join at the given vertex. If a slope
cannot be determined, the slope is assumed to be zero.)

• A temporary new coordinate system is established by attribute ‘markerUnits’. If ‘markerUnits’ equals
'strokeWidth', then the temporary new user coordinate system is the result of scaling the current user co-
ordinate system by the current value of property ‘stroke-width’. If ‘markerUnits’ equals 'userSpaceOnUse', then
no extra scale transformation is applied.

• An additional set of transformations might occur if the ‘marker’ element includes a ‘viewBox’ attribute, in
which case additional transformations are set up to produce the necessary result due to attributes ‘viewBox’
and ‘preserveAspectRatio’.

• If the ‘overflow’ property on the ‘marker’ element indicates that the marker needs to be clipped to its viewport,
then an implicit clipping path is established at the bounds of the viewport.

The rendering effect of a marker is as if the contents of the referenced ‘marker’ element were deeply cloned into
a separate non-exposed DOM tree for each instance of the marker. Because the cloned DOM tree is non-exposed,
the SVG DOM does not show the cloned instance of the marker.

For user agents that support Styling with CSS, the conceptual deep cloning of the referenced ‘marker’ element
into a non-exposed DOM tree also copies any property values resulting from the CSS cascade ([CSS2], chapter 6)
and property inheritance on the referenced element and its contents. CSS2 selectors can be applied to the original
(i.e., referenced) elements because they are part of the formal document structure. CSS2 selectors cannot be ap-
plied to the (conceptually) cloned DOM tree because its contents are not part of the formal document structure.

For illustrative purposes, we'll repeat the marker example shown earlier:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4in" height="2in"

viewBox="0 0 4000 2000" version="1.1"
xmlns="http://www.w3.org/2000/svg">

<defs>
<marker id="Triangle"

viewBox="0 0 10 10" refX="0" refY="5"
markerUnits="strokeWidth"
markerWidth="4" markerHeight="3"
orient="auto">
<path d="M 0 0 L 10 5 L 0 10 z" />

</marker>
</defs>
<rect x="10" y="10" width="3980" height="1980"

fill="none" stroke="blue" stroke-width="10" />

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html


<desc>Placing an arrowhead at the end of a path.
</desc>
<path d="M 1000 750 L 2000 750 L 2500 1250"

fill="none" stroke="black" stroke-width="100"
marker-end="url(#Triangle)"  />

</svg>

The rendering effect of the above file will be visually identical to the following:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4in" height="2in"

viewBox="0 0 4000 2000" version="1.1"
xmlns="http://www.w3.org/2000/svg">

<desc>File which produces the same effect
as the marker example file, but without
using markers.

</desc>
<rect x="10" y="10" width="3980" height="1980"

fill="none" stroke="blue" stroke-width="10" />
<!-- The path draws as before, but without the marker properties -->
<path d="M 1000 750 L 2000 750 L 2500 1250"

fill="none" stroke="black" stroke-width="100"  />
<!-- The following logic simulates drawing a marker

at final vertex of the path. -->
<!-- First off, move the origin of the user coordinate system

so that the origin is now aligned with the end point of the path. -->
<g transform="translate(2500,1250)" >

<!-- Rotate the coordinate system 45 degrees because
the marker specified orient="auto" and the final segment
of the path is going in the direction of 45 degrees. -->

<g transform="rotate(45)" >
<!-- Scale the coordinate system to match the coordinate system

indicated by the 'markerUnits' attributes, which in this case has
a value of 'strokeWidth'. Therefore, scale the coordinate system
by the current value of the 'stroke-width' property, which is 100. -->

<g transform="scale(100)" >
<!-- Translate the coordinate system by

(-refX*viewBoxToMarkerUnitsScaleX, -refY*viewBoxToMarkerUnitsScaleY)
in order that (refX,refY) within the marker will align with the vertex.
In this case, we use the default value for preserveAspectRatio
('xMidYMid meet'), which means find a uniform scale factor
(i.e., viewBoxToMarkerUnitsScaleX=viewBoxToMarkerUnitsScaleY)
such that the viewBox fits entirely within the viewport ('meet') and
is center-aligned ('xMidYMid'). In this case, the uniform scale factor
is markerHeight/viewBoxHeight=3/10=.3. Therefore, translate by
(-refX*.3,-refY*.3)=(0*.3,-5*.3)=(0,-1.5). -->

<g transform="translate(0,-1.5)" >
<!-- There is an implicit clipping path because the user agent style

sheet says that the 'overflow' property for markers has the value
'hidden'. To achieve this, create a clipping path at the bounds
of the viewport. Note that in this case the viewport extends
0.5 units to the left and right of the viewBox due to
a uniform scale factor, different ratios for markerWidth/viewBoxWidth
and markerHeight/viewBoxHeight, and 'xMidYMid' alignment -->

<clipPath id="cp1" >



<rect x="-0.5" y="0" width="4" height="3" />
</clipPath>
<g clip-path="url(#cp1)" >

<!-- Scale the coordinate system by the uniform scale factor
markerHeight/viewBoxHeight=3/10=.3 to set the coordinate
system to viewBox units. -->

<g transform="scale(.3)" >
<!-- This 'g' element carries all property values that result from

cascading and inheritance of properties on the original 'marker' element.
In this example, neither fill nor stroke was specified on the 'marker'
element or any ancestors of the 'marker', so the initial values of
"black" and "none" are used, respectively. -->

<g fill="black" stroke="none" >
<!-- Expand out the contents of the 'marker' element. -->
<path d="M 0 0 L 10 5 L 0 10 z" />

</g>
</g>

</g>
</g>

</g>
</g>

</g>
</svg>

11.7 Rendering properties

11.7.1 Color interpolation properties: ‘color-interpolation’ and ‘color-interpolation-fil-
ters’

The SVG user agent performs color interpolations and compositing at various points as it processes SVG content.
Two properties, ‘color-interpolation’ and ‘color-interpolation-filters’, control which color space is used for particular
categories of graphics operations. The following table shows which property applies to which graphics operations:

Graphics operation Corresponding property

interpolating between gradient stops (see Gradient) ‘color-interpolation’

interpolating color when performing color animations with either ‘animate’ or

‘animateColor’

‘color-interpolation’

alpha compositing of graphics elements into the current background ‘color-interpolation’

filter effects ‘color-interpolation-filters’

Both properties choose between color operations occurring in the sRGB color space or in a (light energy linear)
linearized RGB color space. Having chosen the appropriate color space, component-wise linear interpolation is
used.

The conversion formulas between the sRGB color space (i.e., nonlinear with 2.2 gamma curve) and the lin-



earized RGB color space (i.e., color values expressed as sRGB tristimulus values without a gamma curve) can be
found in the sRGB specification [SRGB]. For illustrative purposes, the following formula shows the conversion
from sRGB to linearized RGB:

R[sRGB] = R[sRGB-8bit] / 255
G[sRGB] = G[sRGB-8bit] / 255
B[sRGB] = B[sRGB-8bit] / 255

If R[sRGB], G[sRGB], B[sRGB] <= 0.04045
R[linearRGB] = R[sRGB] / 12.92
G[linearRGB] = G[sRGB] / 12.92
B[linearRGB] = B[sRGB] / 12.92

else if R[sRGB], G[sRGB], B[sRGB] > 0.04045
R[linearRGB] = ((R[sRGB] + 0.055) / 1.055) ^ 2.4
G[linearRGB] = ((G[sRGB] + 0.055) / 1.055) ^ 2.4
B[linearRGB] = ((B[sRGB] + 0.055) / 1.055) ^ 2.4
R[linearRGB-8bit] = R[linearRGB] * 255
G[linearRGB-8bit] = G[linearRGB] * 255
B[linearRGB-8bit] = B[linearRGB] * 255

Out-of-range color values, if supported by the user agent, also are converted using the above formulas. (See
Clamping values which are restricted to a particular range.)

‘color-interpolation’
Value: auto | sRGB | linearRGB | inherit

Initial: sRGB

Applies to: container elements, graphics elements, ‘animate’ and ‘animateColor’

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

auto
Indicates that the user agent can choose either the sRGB or linearRGB spaces for color interpolation. This
option indicates that the author doesn't require that color interpolation occur in a particular color space.

sRGB
Indicates that color interpolation should occur in the sRGB color space.

linearRGB
Indicates that color interpolation should occur in the linearized RGB color space as described above.

The ‘color-interpolation’ property specifies the color space for gradient interpolations, color animations and alpha
compositing.

When a child element is blended into a background, the value of the ‘color-interpolation’ property on the
child determines the type of blending, not the value of the ‘color-interpolation’ on the parent. For gradients which
make use of the ‘xlink:href’ attribute to reference another gradient, the gradient uses the ‘color-interpolation’ prop-
erty value from the gradient element which is directly referenced by the ‘fill’ or ‘stroke’ property. When animating

http://webstore.iec.ch/webstore/webstore.nsf/artnum/025408
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


colors, color interpolation is performed according to the value of the ‘color-interpolation’ property on the element
being animated.

‘color-interpolation-filters’
Value: auto | sRGB | linearRGB | inherit

Initial: linearRGB

Applies to: filter primitives

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

auto
Indicates that the user agent can choose either the sRGB or linearRGB spaces for filter effects color operations.
This option indicates that the author doesn't require that color operations occur in a particular color space.

sRGB
Indicates that filter effects color operations should occur in the sRGB color space.

linearRGB
Indicates that filter effects color operations should occur in the linearized RGB color space.

The ‘color-interpolation-filters’ property specifies the color space for imaging operations performed via filter ef-
fects.

Note that ‘color-interpolation-filters’ has a different initial value than ‘color-interpolation’. ‘color-
interpolation-filters’ has an initial value of linearRGB, whereas ‘color-interpolation’ has an initial value of sRGB.
Thus, in the default case, filter effects operations occur in the linearRGB color space, whereas all other color inter-
polations occur by default in the sRGB color space.

11.7.2 The ‘color-rendering’ property

The creator of SVG content might want to provide a hint to the implementation about how to make speed vs.
quality tradeoffs as it performs color interpolation and compositing. The ‘color-rendering’ property provides a hint
to the SVG user agent about how to optimize its color interpolation and compositing operations.

‘color-rendering’ takes precedence over ‘color-interpolation-filters’. For example, assume color-rendering: op-
timizeSpeed and color-interpolation-filters: linearRGB. In this case, the SVG user agent should perform color op-
erations in a way that optimizes performance, which might mean sacrificing the color interpolation precision as
specified by color-interpolation-filters: linearRGB.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


‘color-rendering’
Value: auto | optimizeSpeed | optimizeQuality | inherit

Initial: auto

Applies to: container elements, graphics elements, ‘animate’ and ‘animateColor’

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but quality shall
be given more importance than speed.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over quality. For RGB display devices, this op-
tion will sometimes cause the user agent to perform color interpolation and compositing in the device RGB
color space.

optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed.

11.7.3 The ‘shape-rendering’ property

The creator of SVG content might want to provide a hint to the implementation about what tradeoffs to make as
it renders vector graphics elements such as ‘path’ elements and basic shapes such as circles and rectangles. The
‘shape-rendering’ property provides these hints.

‘shape-rendering’

Value:
auto | optimizeSpeed | crispEdges |

geometricPrecision | inherit

Initial: auto

Applies to: shapes

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed, crisp edges and geometric
precision, but with geometric precision given more importance than speed and crisp edges.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over geometric precision and crisp edges. This
option will sometimes cause the user agent to turn off shape anti-aliasing.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


crispEdges
Indicates that the user agent shall attempt to emphasize the contrast between clean edges of artwork over
rendering speed and geometric precision. To achieve crisp edges, the user agent might turn off anti-aliasing
for all lines and curves or possibly just for straight lines which are close to vertical or horizontal. Also, the
user agent might adjust line positions and line widths to align edges with device pixels.

geometricPrecision
Indicates that the user agent shall emphasize geometric precision over speed and crisp edges.

11.7.4 The ‘text-rendering’ property

The creator of SVG content might want to provide a hint to the implementation about what tradeoffs to make as
it renders text. The ‘text-rendering’ property provides these hints.

‘text-rendering’

Value:
auto | optimizeSpeed | optimizeLegibility |

geometricPrecision | inherit

Initial: auto

Applies to: ‘text’ elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed, legibility and geometric pre-
cision, but with legibility given more importance than speed and geometric precision.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over legibility and geometric precision. This
option will sometimes cause the user agent to turn off text anti-aliasing.

optimizeLegibility
Indicates that the user agent shall emphasize legibility over rendering speed and geometric precision. The
user agent will often choose whether to apply anti-aliasing techniques, built-in font hinting or both to pro-
duce the most legible text.

geometricPrecision
Indicates that the user agent shall emphasize geometric precision over legibility and rendering speed. This
option will usually cause the user agent to suspend the use of hinting so that glyph outlines are drawn with
comparable geometric precision to the rendering of path data.

11.7.5 The ‘image-rendering’ property

The creator of SVG content might want to provide a hint to the implementation about how to make speed vs.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


quality tradeoffs as it performs image processing. The ‘image-rendering’ property provides a hint to the SVG user
agent about how to optimize its image rendering.

‘image-rendering’
Value: auto | optimizeSpeed | optimizeQuality | inherit

Initial: auto

Applies to: images

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but quality shall
be given more importance than speed. The user agent shall employ a resampling algorithm at least as good
as nearest neighbor resampling, but bilinear resampling is strongly preferred. For Conforming High-Quality
SVG Viewers, the user agent shall employ a resampling algorithm at least as good as bilinear resampling.

optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed. The user agent shall employ a
resampling algorithm at least as good as bilinear resampling.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over quality. The user agent should use a res-
ampling algorithm which achieves the goal of fast rendering, with the requirement that the resampling al-
gorithm shall be at least as good as nearest neighbor resampling. If performance goals can be achieved with
higher quality algorithms, then the user agent should use the higher quality algorithms instead of nearest
neighbor resampling.

In all cases, resampling must be done in a truecolor (e.g., 24-bit) color space even if the original data and/or the
target device is indexed color.

11.8 Inheritance of painting properties

The values of any of the painting properties described in this chapter can be inherited from a given object's parent.
Painting, however, is always done on each graphics element individually, never at the container element (e.g., a
‘g’) level. Thus, for the following SVG, even though the gradient fill is specified on the ‘g’, the gradient is simply in-
herited through the ‘g’ element down into each rectangle, each of which is rendered such that its interior is painted
with the gradient.

Example Inheritance

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="7cm" height="2cm" viewBox="0 0 700 200"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Gradients apply to leaf nodes

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


</desc>
<g>

<defs>
<linearGradient id="MyGradient" gradientUnits="objectBoundingBox">

<stop offset="0%" stop-color="#F60" />
<stop offset="100%" stop-color="#FF6" />

</linearGradient>
</defs>
<rect x="1" y="1" width="698" height="198"

fill="none" stroke="blue" stroke-width="2" />
<g fill="url(#MyGradient)" >

<rect x="100" y="50" width="200" height="100"/>
<rect x="400" y="50" width="200" height="100"/>

</g>
</g>

</svg>

Example Inheritance

Any painting properties defined in terms of the object's bounding box use the bounding box of the graphics ele-
ment to which the operation applies. Note that text elements are defined such that any painting operations defined
in terms of the object's bounding box use the bounding box of the entire ‘text’ element. (See the discussion of
object bounding box units and text elements.)

11.9 DOM interfaces

11.9.1 Interface SVGPaint

The SVGPaint interface corresponds to basic type <paint> and represents the values of properties ‘fill’ and ‘stroke’.
Note: The SVGPaint interface is deprecated, and may be dropped from future versions of the SVG specifica-

tion.

interface SVGPaint : SVGColor {

// Paint Types
const unsigned short SVG_PAINTTYPE_UNKNOWN = 0;
const unsigned short SVG_PAINTTYPE_RGBCOLOR = 1;
const unsigned short SVG_PAINTTYPE_RGBCOLOR_ICCCOLOR = 2;
const unsigned short SVG_PAINTTYPE_NONE = 101;
const unsigned short SVG_PAINTTYPE_CURRENTCOLOR = 102;
const unsigned short SVG_PAINTTYPE_URI_NONE = 103;
const unsigned short SVG_PAINTTYPE_URI_CURRENTCOLOR = 104;
const unsigned short SVG_PAINTTYPE_URI_RGBCOLOR = 105;
const unsigned short SVG_PAINTTYPE_URI_RGBCOLOR_ICCCOLOR = 106;
const unsigned short SVG_PAINTTYPE_URI = 107;

readonly attribute unsigned short paintType;
readonly attribute DOMString uri;

void setUri(in DOMString uri);
void setPaint(in unsigned short paintType, in DOMString uri, in DOMString rgbColor, in DOMString iccColor)

raises(SVGException);
};



Constants in group “Paint Types”:

• SVG_PAINTTYPE_UNKNOWN (unsigned short)

The paint type is not one of predefined types. It is invalid to attempt to define a new value of this type or to
attempt to switch an existing value to this type.

• SVG_PAINTTYPE_RGBCOLOR (unsigned short)

An sRGB color has been specified without an alternative ICC color specification.

• SVG_PAINTTYPE_RGBCOLOR_ICCCOLOR (unsigned short)

An sRGB color has been specified along with an alternative ICC color specification.

• SVG_PAINTTYPE_NONE (unsigned short)

Corresponds to a none value on a <paint> specification.

• SVG_PAINTTYPE_CURRENTCOLOR (unsigned short)

Corresponds to a currentColor value on a <paint> specification.

• SVG_PAINTTYPE_URI_NONE (unsigned short)

A URI has been specified, along with an explicit none as the backup paint method in case the URI is unavail-
able or invalid.

• SVG_PAINTTYPE_URI_CURRENTCOLOR (unsigned short)

A URI has been specified, along with an sRGB color as the backup paint method in case the URI is unavail-
able or invalid.

• SVG_PAINTTYPE_URI_RGBCOLOR (unsigned short)

A URI has been specified, along with an sRGB color as the backup paint method in case the URI is unavail-
able or invalid.

• SVG_PAINTTYPE_URI_RGBCOLOR_ICCCOLOR (unsigned short)

A URI has been specified, along with both an sRGB color and alternate ICC color as the backup paint method
in case the URI is unavailable or invalid.



• SVG_PAINTTYPE_URI (unsigned short)

Only a URI has been specified.

Attributes:

• paintType (readonly unsigned short)

The type of paint, identified by one of the SVG_PAINTTYPE_* constants defined on this interface.

• uri (readonly DOMString)

When the paintType specifies a URI, this attribute holds the URI string. When the paintType does not specify
a URI, this attribute is null.

Operations:

• void setUri(in DOMString uri)

Sets the paintType to SVG_PAINTTYPE_URI_NONE and sets uri to the specified value.

Parameters

• DOMString uri
The URI for the desired paint server.

• void setPaint(in unsigned short paintType, in DOMString uri, in DOMString rgbColor, in DOMString ic-
cColor)

Sets the paint as specified by the parameters. If paintType requires a URI, then uri must be non-null; oth-
erwise, uri must be null. If paintType requires an RGBColor, then rgbColor must be a string that matches
<color>; otherwise, rgbColor must be null. If paintType requires an SVGICCColor, then iccColor must be a
string that matches <icccolor>; otherwise, iccColor must be null.

Parameters

• unsigned short paintType
One of the defined constants for paintType.

• DOMString uri
The URI for the desired paint server, or null.

• DOMString rgbColor
The specification of an sRGB color, or null.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor


• DOMString iccColor
The specification of an ICC color, or null.

Exceptions

• SVGException, code SVG_INVALID_VALUE_ERR
Raised if one of the parameters has an invalid value.

11.9.2 Interface SVGMarkerElement

The SVGMarkerElement interface corresponds to the ‘marker’ element.

interface SVGMarkerElement : SVGElement,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGFitToViewBox {

// Marker Unit Types
const unsigned short SVG_MARKERUNITS_UNKNOWN = 0;
const unsigned short SVG_MARKERUNITS_USERSPACEONUSE = 1;
const unsigned short SVG_MARKERUNITS_STROKEWIDTH = 2;

// Marker Orientation Types
const unsigned short SVG_MARKER_ORIENT_UNKNOWN = 0;
const unsigned short SVG_MARKER_ORIENT_AUTO = 1;
const unsigned short SVG_MARKER_ORIENT_ANGLE = 2;

readonly attribute SVGAnimatedLength refX;
readonly attribute SVGAnimatedLength refY;
readonly attribute SVGAnimatedEnumeration markerUnits;
readonly attribute SVGAnimatedLength markerWidth;
readonly attribute SVGAnimatedLength markerHeight;
readonly attribute SVGAnimatedEnumeration orientType;
readonly attribute SVGAnimatedAngle orientAngle;

void setOrientToAuto() raises(DOMException);
void setOrientToAngle(in SVGAngle angle) raises(DOMException);

};

Constants in group “Marker Unit Types”:

• SVG_MARKERUNITS_UNKNOWN (unsigned short)

The marker unit type is not one of predefined types. It is invalid to attempt to define a new value of this type
or to attempt to switch an existing value to this type.

• SVG_MARKERUNITS_USERSPACEONUSE (unsigned short)

The value of attribute ‘markerUnits’ is 'userSpaceOnUse'.

• SVG_MARKERUNITS_STROKEWIDTH (unsigned short)

The value of attribute ‘markerUnits’ is 'strokeWidth'.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Constants in group “Marker Orientation Types”:

• SVG_MARKER_ORIENT_UNKNOWN (unsigned short)

The marker orientation is not one of predefined types. It is invalid to attempt to define a new value of this
type or to attempt to switch an existing value to this type.

• SVG_MARKER_ORIENT_AUTO (unsigned short)

Attribute ‘orient’ has value 'auto'.

• SVG_MARKER_ORIENT_ANGLE (unsigned short)

Attribute ‘orient’ has an angle value.

Attributes:

• refX (readonly SVGAnimatedLength)

Corresponds to attribute ‘refX’ on the given ‘marker’ element.

• refY (readonly SVGAnimatedLength)

Corresponds to attribute ‘refY’ on the given ‘marker’ element.

• markerUnits (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘markerUnits’ on the given ‘marker’ element. One of the Marker Unit Types defined
on this interface.

• markerWidth (readonly SVGAnimatedLength)

Corresponds to attribute ‘markerWidth’ on the given ‘marker’ element.

• markerHeight (readonly SVGAnimatedLength)

Corresponds to attribute ‘markerHeight’ on the given ‘marker’ element.

• orientType (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘orient’ on the given ‘marker’ element. One of the Marker Orientation Types defined
on this interface.



• orientAngle (readonly SVGAnimatedAngle)

Corresponds to attribute ‘orient’ on the given ‘marker’ element. If markerUnits is
SVG_MARKER_ORIENT_ANGLE, the angle value for attribute ‘orient’; otherwise, it will be set to zero.

Operations:

• void setOrientToAuto()

Sets the value of attribute ‘orient’ to 'auto'.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• void setOrientToAngle(in SVGAngle angle)

Sets the value of attribute ‘orient’ to the given angle.

Parameters

• SVGAngle angle
The angle value to use for attribute ‘orient’.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


12 Color

Contents

12.1 Introduction
12.2 The ‘color’ property
12.3 Color profile descriptions

12.3.1 Overview of color profile descriptions
12.3.2 Alternative ways of defining a color profile description
12.3.3 The ‘color-profile’ element
12.3.4 The CSS @color-profile rule
12.3.5 The ‘color-profile’ property

12.4 DOM interfaces
12.4.1 Interface SVGColorProfileElement
12.4.2 Interface SVGColorProfileRule

12.1 Introduction

All SVG colors are specified in the sRGB color space [SRGB]. At a minimum, SVG user agents shall conform to the
color behavior requirements specified in the color units section and the minimal gamma correction rules defined
in the CSS2 specification.

Additionally, SVG content can specify an alternate color specification using an ICC profile [ICC42] as de-
scribed in Specifying paint. If ICC-based colors are provided and the SVG user agent supports ICC color, then the
ICC-based color takes precedence over the sRGB color specification; otherwise, the RGB fallback colors must be
used. Note that, in this specification, color interpolation occurs in an RGB color space even if an ICC-based color
specification is provided (see ‘color-interpolation’).

12.2 The ‘color’ property

The ‘color’ property is used to provide a potential indirect value (currentColor) for the ‘fill’, ‘stroke’, ‘stop-color’,
‘flood-color’ and ‘lighting-color’ properties.

http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#color-units
http://www.w3.org/TR/2008/REC-CSS2-20080411/colors.html#gamma-correction


‘color-profile’

‘color’
Value: <color> | inherit

Initial: depends on user agent

Applies to: elements to which properties ‘fill’, ‘stroke’, ‘stop-color’, ‘flood-color’ and ‘lighting-color’ apply

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Except for any additional information provided in this specification, the normative definition of the property is in
CSS2 ([CSS2], section 14.1).

12.3 Color profile descriptions

12.3.1 Overview of color profile descriptions

The International Color Consortium has established a standard, the ICC Profile [ICC42], for documenting the color
characteristics of input and output devices. Using these profiles, it is possible to build a transform and correct visu-
al data for viewing on different devices.

A color profile description provides the bridge between an ICC profile and references to that ICC profile
within SVG content. The color profile description is added to the user agent's list of known color profiles and then
used to select the relevant profile. The color profile description contains descriptors for the location of the color
profile on the Web, a name to reference the profile and information about rendering intent.

12.3.2 Alternative ways of defining a color profile description

Color profile descriptions can be specified in either of the following ways:

• a ‘color-profile’ element
• an @color-profile rule within a CSS style sheet (only applicable for user agents which support using CSS to

style the SVG content [CSS2])

If a color profile with the same name value has been identified by both a ‘color-profile’ element and @color-profile
rules within a CSS style sheet, then the user agent shall first attempt to locate the profile by using the specifica-
tions in the @color-profile rules first.

12.3.3 The ‘color-profile’ element

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/colors.html#propdef-color
http://www.color.org/


Categories:
None

Content model:
Any number of the following elements, in any order:

descriptive elements

Attributes:
core attributes
xlink attributes
‘local’
‘name’
‘rendering-intent’
‘xlink:href’

DOM Interfaces:
SVGColorProfileElement

Attribute definitions:

xlink:href = "<iri>"
The location of an ICC profile resource.
Animatable: no.

local = "<string>"
The unique ID for a locally stored color profile. <string> is the profile's unique ID as specified by Interna-
tional Color Consortium. If both the ‘xlink:href’ and the ‘local’ attributes are specified, then the user agent
shall search the local system for the locally stored color profile first, and, if not available locally, then attempt
to use the resource identified by the ‘xlink:href’ attribute. (Note: Profile description fields do not represent a
profile's unique ID. With current ICC proposals, the profile's unique ID is an MD5-encoded value within the
profile header.)
Animatable: no.

name = "<name>"
The name which is used as the first parameter for icc-color specifications within ‘fill’, ‘stroke’, ‘stop-color’,
‘flood-color’ and ‘lighting-color’ property values to identify the color profile to use for the ICC color specifica-
tion and the name which can be the value of the ‘color-profile’ property. Note that if <name> is not provided,
it will be impossible to reference the given color profile description. The name "sRGB" is predefined; any col-
or profile descriptions with <name> set to "sRGB" will be ignored. For consistency with CSS lexical scanning
and parsing rules ([CSS2], section D.2), the keyword "sRGB" is case-insensitive; however, it is recommended
that the mixed capitalization "sRGB" be used for consistency with common industry practice.
Animatable: no.

http://www.color.org/
http://www.color.org/
http://www.w3.org/TR/2008/REC-CSS2-20080411/grammar.html#q2
http://www.w3.org/TR/2008/REC-CSS2-20080411/grammar.html#q2


rendering-intent = "auto | perceptual | relative-colorimetric | saturation | absolute-colorimetric"
‘rendering-intent’ permits the specification of a color profile rendering intent other than the default.
‘rendering-intent’ is applicable primarily to color profiles corresponding to CMYK color spaces. The different
options cause different methods to be used for translating colors to the color gamut of the target rendering
device:

auto
This is the default behavior. The user agent determines the best intent based on the content type. For
image content containing an embedded profile, it shall be assumed that the intent specified within the
profile is the desired intent. Otherwise, the user agent shall use the current profile and force the intent,
overriding any intent that might be stored in the profile itself.

perceptual
This method, often the preferred choice for images, preserves the relationship between colors. It at-
tempts to maintain relative color values among the pixels as they are mapped to the target device
gamut. Sometimes pixel values that were originally within the target device gamut are changed in or-
der to avoid hue shifts and discontinuities and to preserve as much as possible the overall appearance
of the scene.

saturation
Preserves the relative saturation (chroma) values of the original pixels. Out of gamut colors are conver-
ted to colors that have the same saturation but fall just inside the gamut.

relative-colorimetric
Leaves colors that fall inside the gamut unchanged. This method usually converts out of gamut colors
to colors that have the same lightness but fall just inside the gamut.

absolute-colorimetric
Disables white point matching when converting colors. This option is generally not recommended.

Animatable: no.

12.3.4 The CSS @color-profile rule

When the document is styled using CSS, the @color-profile rule can be used to specify a color profile description.
The general form is:

@color-profile { <color-profile-description> }

where the <color-profile-description> has the form:

descriptor: value;
[...]
descriptor: value;



Each @color-profile rule specifies a value for every color profile descriptor, either implicitly or explicitly. Those
not given explicit values in the rule take the initial value listed with each descriptor in this specification. These
descriptors apply solely within the context of the @color-profile rule in which they are defined, and do not apply
to document language elements. Thus, there is no notion of which elements the descriptors apply to, or whether
the values are inherited by child elements.

The following are the descriptors for a <color-profile-description>:

‘src’
Values:sRGB | <local-profile> | <iri> | (<local-profile> <iri>) | inherit

Initial: sRGB

Media: visual

sRGB
The source profile is the sRGB color space. For consistency with CSS lexical scanning and parsing rules
([CSS2], section D.2), the keyword "sRGB" is case-insensitive; however, it is recommended that the mixed
capitalization "sRGB" be used for consistency with common industry practice.

<local-profile>
The source profile is a locally-stored profile. The syntax for <local-profile> is:

"local(" + <string> + ")"

where <string> is the profile's unique ID as specified by International Color Consortium. (Note: Profile de-
scription fields do not represent a profile's unique ID. With current ICC proposals, the profile's unique ID is
an MD5-encoded value within the profile header.)

<iri>
The source profile is a IRI reference to a color profile.

(<local-profile> <iri>)
Two profiles are specified. If <local-profile> cannot be found on the local system, then the <iri> is used.

‘name’
Values:<name>

Initial: undefined

Media: visual

<name>
See the description for the ‘name’ attribute on the ‘color-profile’ element. Note that if <name> is not provided,
it will be impossible to reference the given @color-profile definition.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/grammar.html#q2
http://www.color.org/


‘rendering-intent’

Values:
auto | perceptual | relative-colorimetric |

saturation | absolute-colorimetric

Initial: auto

Media: visual

Animatable: no

See the description for the ‘rendering-intent’ attribute on the ‘color-profile’ element.

12.3.5 The ‘color-profile’ property

‘color-profile’
Value: auto | sRGB | <name> | <iri> | inherit

Initial: auto

Applies to: ‘image’ elements that refer to raster images

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

auto
This is the default behavior. All colors are presumed to be defined in the sRGB color space unless a more
precise embedded profile is specified within content data. For images that do have a profile built into their
data, that profile is used. For images that do not have a profile, the sRGB profile is used.

sRGB
The source profile is assumed to be sRGB. This differs from auto in that it overrides an embedded profile
inside an image.

For consistency with CSS lexical scanning and parsing rules ([CSS2], section D.2), the keyword "sRGB" is
case-insensitive; however, it is recommended that the mixed capitalization "sRGB" be used for consistency
with common industry practice.

<name>
A name corresponding to a defined color profile that is in the user agent's color profile description database.
The user agent searches the color profile description database for a color profile description entry whose
name descriptor matches <name> and uses the last matching entry that is found. If a match is found, the cor-
responding profile overrides an embedded profile inside an image. If no match is found, then the embedded
profile inside the image is used.

<iri>
A IRI reference to the source color profile. The referenced color profile overrides an embedded profile inside
the image.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/grammar.html#q2


12.4 DOM interfaces

12.4.1 Interface SVGColorProfileElement

The SVGColorProfileElement interface corresponds to the ‘color-profile’ element.

interface SVGColorProfileElement : SVGElement,
SVGURIReference,
SVGRenderingIntent {

attribute DOMString local;
attribute DOMString name;
attribute unsigned short renderingIntent;

};

Attributes:

• local (DOMString)

Corresponds to attribute ‘local’ on the given element.

• name (DOMString)

Corresponds to attribute ‘name’ on the given element.

• renderingIntent (unsigned short)

Corresponds to attribute ‘rendering-intent’ on the given element. The value of this attribute is the value of
the the RENDERING_INTENT_* constant defined on SVGRenderingIntent that corresponds to the value of
the ‘rendering-intent’ attribute.

12.4.2 Interface SVGColorProfileRule

The SVGColorProfileRule interface represents an @color-profile rule in a CSS style sheet. An @color-profile rule
identifies a ICC profile which can be referenced within a given document.

Support for the SVGColorProfileRule interface is only required in user agents that support styling with CSS.

interface SVGColorProfileRule : SVGCSSRule,
SVGRenderingIntent {

attribute DOMString src setraises(DOMException);
attribute DOMString name setraises(DOMException);
attribute unsigned short renderingIntent setraises(DOMException);

};

Attributes:

• src (DOMString)

Corresponds to descriptor src within an @color-profile rule.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• name (DOMString)

Corresponds to descriptor ‘name’ within an @color-profile rule.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

• renderingIntent (unsigned short)

The type of rendering intent, identified by one of the SVGRenderingIntent constants.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


13 Gradients and Patterns

Contents

13.1 Introduction
13.2 Gradients

13.2.1 Introduction
13.2.2 Linear gradients
13.2.3 Radial gradients
13.2.4 Gradient stops

13.3 Patterns
13.4 DOM interfaces

13.4.1 Interface SVGGradientElement
13.4.2 Interface SVGLinearGradientElement
13.4.3 Interface SVGRadialGradientElement
13.4.4 Interface SVGStopElement
13.4.5 Interface SVGPatternElement

13.1 Introduction

With SVG, you can fill (i.e., paint the interior) or stroke (i.e., paint the outline) of shapes and text using one of the
following:

• color (using <color>)
• gradients (linear or radial)
• patterns (vector or image, possibly tiled)

SVG uses the general notion of a paint server. Gradients and patterns are just specific types of built-in paint serv-
ers.

Paint servers are referenced using an IRI reference on a ‘fill’ or ‘stroke’ property.

13.2 Gradients

13.2.1 Introduction

Gradients consist of continuously smooth color transitions along a vector from one color to another, possibly fol-
lowed by additional transitions along the same vector to other colors. SVG provides for two types of gradients:
linear gradients and radial gradients.



‘linearGradient’

Once defined, gradients are then referenced using ‘fill’ or ‘stroke’ properties on a given graphics element to
indicate that the given element shall be filled or stroked with the referenced gradient.

The angle of the color transitions along the gradient vector is defined by the gradient normal. Before any
transforms are applied to the gradient or its referencing graphics element, the gradient normal is perpendicular
with the gradient vector. If a graphics element references a gradient, conceptually the graphics element should
take a copy of the gradient vector and gradient normal and treat it as part of its own geometry. Any transforma-
tions applied to the graphics element geometry also apply to the copied gradient vector and gradient normal. Any
gradient transforms that are specified on the reference gradient are applied before any graphics element trans-
formations are applied to the gradient.

13.2.2 Linear gradients

Linear gradients are defined by a ‘linearGradient’ element.

Categories:
Gradient element

Content model:
Any number of the following elements, in any order:

descriptive elements
‘animate’
‘animateTransform’
‘set’
‘stop’



Attributes:
core attributes
presentation attributes
xlink attributes
‘class’
‘style’
‘externalResourcesRequired’
‘x1’
‘y1’
‘x2’
‘y2’
‘gradientUnits’
‘gradientTransform’
‘spreadMethod’
‘xlink:href’

DOM Interfaces:
SVGLinearGradientElement

Attribute definitions:

gradientUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for attributes ‘x1’, ‘y1’, ‘x2’ and ‘y2’.
If gradientUnits="userSpaceOnUse", ‘x1’, ‘y1’, ‘x2’ and ‘y2’ represent values in the coordinate system that res-
ults from taking the current user coordinate system in place at the time when the gradient element is refer-
enced (i.e., the user coordinate system for the element referencing the gradient element via a ‘fill’ or ‘stroke’
property) and then applying the transform specified by attribute ‘gradientTransform’.
If gradientUnits="objectBoundingBox", the user coordinate system for attributes ‘x1’, ‘y1’, ‘x2’ and ‘y2’ is es-
tablished using the bounding box of the element to which the gradient is applied (see Object bounding box
units) and then applying the transform specified by attribute ‘gradientTransform’.
When gradientUnits="objectBoundingBox" and ‘gradientTransform’ is the identity matrix, the normal of the
linear gradient is perpendicular to the gradient vector in object bounding box space (i.e., the abstract co-
ordinate system where (0,0) is at the top/left of the object bounding box and (1,1) is at the bottom/right of the
object bounding box). When the object's bounding box is not square, the gradient normal which is initially
perpendicular to the gradient vector within object bounding box space may render non-perpendicular relat-
ive to the gradient vector in user space. If the gradient vector is parallel to one of the axes of the bounding
box, the gradient normal will remain perpendicular. This transformation is due to application of the non-
uniform scaling transformation from bounding box space to user space.
If attribute ‘gradientUnits’ is not specified, then the effect is as if a value of 'objectBoundingBox' were speci-
fied.
Animatable: yes.



gradientTransform = "<transform-list>"
Contains the definition of an optional additional transformation from the gradient coordinate system onto
the target coordinate system (i.e., userSpaceOnUse or objectBoundingBox). This allows for things such as
skewing the gradient. This additional transformation matrix is post-multiplied to (i.e., inserted to the right
of) any previously defined transformations, including the implicit transformation necessary to convert from
object bounding box units to user space.
If attribute ‘gradientTransform’ is not specified, then the effect is as if an identity transform were specified.
Animatable: yes.

x1 = "<coordinate>"
‘x1’, ‘y1’, ‘x2’ and ‘y2’ define a gradient vector for the linear gradient. This gradient vector provides starting
and ending points onto which the gradient stops are mapped. The values of ‘x1’, ‘y1’, ‘x2’ and ‘y2’ can be
either numbers or percentages.
If the attribute is not specified, the effect is as if a value of '0%' were specified.
Animatable: yes.

y1 = "<coordinate>"
See ‘x1’.
If the attribute is not specified, the effect is as if a value of '0%' were specified.
Animatable: yes.

x2 = "<coordinate>"
See ‘x1’.
If the attribute is not specified, the effect is as if a value of '100%' were specified.
Animatable: yes.

y2 = "<coordinate>"
See ‘x1’.
If the attribute is not specified, the effect is as if a value of '0%' were specified.
Animatable: yes.

spreadMethod = "pad | reflect | repeat"
Indicates what happens if the gradient starts or ends inside the bounds of the target rectangle. Possible values
are: 'pad', which says to use the terminal colors of the gradient to fill the remainder of the target region, 're-
flect', which says to reflect the gradient pattern start-to-end, end-to-start, start-to-end, etc. continuously until
the target rectangle is filled, and repeat, which says to repeat the gradient pattern start-to-end, start-to-end,
start-to-end, etc. continuously until the target region is filled.
If the attribute is not specified, the effect is as if a value of 'pad' were specified.
Animatable: yes.

xlink:href = "<iri>"
An IRI reference to a different ‘linearGradient’ or ‘radialGradient’ element within the current SVG document
fragment. Any ‘linearGradient’ attributes which are defined on the referenced element which are not defined



on this element are inherited by this element. If this element has no defined gradient stops, and the referen-
ced element does (possibly due to its own ‘xlink:href’ attribute), then this element inherits the gradient stop
from the referenced element. Inheritance can be indirect to an arbitrary level; thus, if the referenced element
inherits attribute or gradient stops due to its own ‘xlink:href’ attribute, then the current element can inherit
those attributes or gradient stops.
Animatable: yes.

Percentages are allowed for ‘x1’, ‘y1’, ‘x2’ and ‘y2’. For gradientUnits="userSpaceOnUse", percentages represent val-
ues relative to the current viewport. For gradientUnits="objectBoundingBox", percentages represent values relative
to the bounding box for the object.

If ‘x1’ = ‘x2’ and ‘y1’ = ‘y2’, then the area to be painted will be painted as a single color using the color and
opacity of the last gradient stop.

Properties inherit into the ‘linearGradient’ element from its ancestors; properties do not inherit from the ele-
ment referencing the ‘linearGradient’ element.

‘linearGradient’ elements are never rendered directly; their only usage is as something that can be referenced
using the ‘fill’ and ‘stroke’ properties. The ‘display’ property does not apply to the ‘linearGradient’ element; thus,
‘linearGradient’ elements are not directly rendered even if the ‘display’ property is set to a value other than none,
and ‘linearGradient’ elements are available for referencing even when the ‘display’ property on the ‘linearGradient’
element or any of its ancestors is set to none.

Example lingrad01 shows how to fill a rectangle by referencing a linear gradient paint server.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="4cm" viewBox="0 0 800 400" version="1.1"

xmlns="http://www.w3.org/2000/svg">
<desc>Example lingrad01 - fill a rectangle using a

linear gradient paint server</desc>
<g>

<defs>
<linearGradient id="MyGradient">

<stop offset="5%" stop-color="#F60" />
<stop offset="95%" stop-color="#FF6" />

</linearGradient>
</defs>

<!-- Outline the drawing area in blue -->
<rect fill="none" stroke="blue"

x="1" y="1" width="798" height="398"/>

<!-- The rectangle is filled using a linear gradient paint server -->
<rect fill="url(#MyGradient)" stroke="black" stroke-width="5"

x="100" y="100" width="600" height="200"/>
</g>

</svg>



‘radialGradient’

Example lingrad01

13.2.3 Radial gradients

Radial gradients are defined by a ‘radialGradient’ element.

Categories:
Gradient element

Content model:
Any number of the following elements, in any order:

descriptive elements
‘animate’
‘animateTransform’
‘set’
‘stop’

Attributes:
core attributes
presentation attributes
xlink attributes
‘class’
‘style’
‘externalResourcesRequired’
‘cx’
‘cy’
‘r’
‘fx’
‘fy’
‘gradientUnits’
‘gradientTransform’
‘spreadMethod’
‘xlink:href’



DOM Interfaces:
SVGRadialGradientElement

Attribute definitions:

gradientUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for attributes ‘cx’, ‘cy’, ‘r’, ‘fx’ and ‘fy’.
If gradientUnits="userSpaceOnUse", ‘cx’, ‘cy’, ‘r’, ‘fx’ and ‘fy’ represent values in the coordinate system that
results from taking the current user coordinate system in place at the time when the gradient element is
referenced (i.e., the user coordinate system for the element referencing the gradient element via a ‘fill’ or
‘stroke’ property) and then applying the transform specified by attribute ‘gradientTransform’.
If gradientUnits="objectBoundingBox", the user coordinate system for attributes ‘cx’, ‘cy’, ‘r’, ‘fx’ and ‘fy’ is
established using the bounding box of the element to which the gradient is applied (see Object bounding box
units) and then applying the transform specified by attribute ‘gradientTransform’.
When gradientUnits="objectBoundingBox" and ‘gradientTransform’ is the identity matrix, then the rings of
the radial gradient are circular with respect to the object bounding box space (i.e., the abstract coordinate
system where (0,0) is at the top/left of the object bounding box and (1,1) is at the bottom/right of the object
bounding box). When the object's bounding box is not square, the rings that are conceptually circular within
object bounding box space will render as elliptical due to application of the non-uniform scaling transform-
ation from bounding box space to user space.
If attribute ‘gradientUnits’ is not specified, then the effect is as if a value of 'objectBoundingBox' were speci-
fied.
Animatable: yes.

gradientTransform = "<transform-list>"
Contains the definitions of an optional additional transformation from the gradient coordinate system onto
the target coordinate system (i.e., userSpaceOnUse or objectBoundingBox). This allows for things such as
skewing the gradient. This additional transformation matrix is post-multiplied to (i.e., inserted to the right
of) any previously defined transformations, including the implicit transformation necessary to convert from
object bounding box units to user space.
If attribute ‘gradientTransform’ is not specified, then the effect is as if an identity transform were specified.
Animatable: yes.

cx = "<coordinate>"
‘cx’, ‘cy’ and ‘r’ define the largest (i.e., outermost) circle for the radial gradient. The gradient will be drawn
such that the 100% gradient stop is mapped to the perimeter of this largest (i.e., outermost) circle.
If the attribute is not specified, the effect is as if a value of '50%' were specified.
Animatable: yes.

cy = "<coordinate>"
See ‘cx’.



If the attribute is not specified, the effect is as if a value of '50%' were specified.
Animatable: yes.

r = "<length>"
See ‘cx’.
A negative value is an error (see Error processing). A value of zero will cause the area to be painted as a
single color using the color and opacity of the last gradient stop.
If the attribute is not specified, the effect is as if a value of '50%' were specified.
Animatable: yes.

fx = "<coordinate>"
‘fx’ and ‘fy’ define the focal point for the radial gradient. The gradient will be drawn such that the 0% gradi-
ent stop is mapped to (fx, fy).
If attribute ‘fx’ is not specified, ‘fx’ will coincide with the presentational value of ‘cx’ for the element whether
the value for 'cx' was inherited or not. If the element references an element that specifies a value for 'fx', then
the value of 'fx' is inherited from the referenced element.
Animatable: yes.

fy = "<coordinate>"
See ‘fx’.
If attribute ‘fy’ is not specified, ‘fy’ will coincide with the presentational value of ‘cy’ for the element whether
the value for 'cy' was inherited or not. If the element references an element that specifies a value for 'fy', then
the value of 'fy' is inherited from the referenced element.
Animatable: yes.

spreadMethod = "pad | reflect | repeat"
Indicates what happens if the gradient starts or ends inside the bounds of the object(s) being painted by the
gradient. Has the same values and meanings as the ‘spreadMethod’ attribute on ‘linearGradient’ element.
Animatable: yes.

xlink:href = "<iri>"
An IRI reference to a different ‘linearGradient’ or ‘radialGradient’ element within the current SVG document
fragment. Any ‘radialGradient’ attributes which are defined on the referenced element which are not defined
on this element are inherited by this element. If this element has no defined gradient stops, and the referen-
ced element does (possibly due to its own ‘xlink:href’ attribute), then this element inherits the gradient stop
from the referenced element. Inheritance can be indirect to an arbitrary level; thus, if the referenced element
inherits attribute or gradient stops due to its own ‘xlink:href’ attribute, then the current element can inherit
those attributes or gradient stops.
Animatable: yes.

Percentages are allowed for attributes ‘cx’, ‘cy’, ‘r’, ‘fx’ and ‘fy’. For gradientUnits="userSpaceOnUse", percentages
represent values relative to the current viewport. For gradientUnits="objectBoundingBox", percentages represent
values relative to the bounding box for the object.



If the point defined by ‘fx’ and ‘fy’ lies outside the circle defined by ‘cx’, ‘cy’ and ‘r’, then the user agent shall
set the focal point to the intersection of the line from (‘cx’, ‘cy’) to (‘fx’, ‘fy’) with the circle defined by ‘cx’, ‘cy’ and
‘r’.

Properties inherit into the ‘radialGradient’ element from its ancestors; properties do not inherit from the ele-
ment referencing the ‘radialGradient’ element.

‘radialGradient’ elements are never rendered directly; their only usage is as something that can be referenced
using the ‘fill’ and ‘stroke’ properties. The ‘display’ property does not apply to the ‘radialGradient’ element; thus,
‘radialGradient’ elements are not directly rendered even if the ‘display’ property is set to a value other than none,
and ‘radialGradient’ elements are available for referencing even when the ‘display’ property on the ‘radialGradient’
element or any of its ancestors is set to none.

Example radgrad01 shows how to fill a rectangle by referencing a radial gradient paint server.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="4cm" viewBox="0 0 800 400" version="1.1"

xmlns="http://www.w3.org/2000/svg">
<desc>Example radgrad01 - fill a rectangle by referencing a

radial gradient paint server</desc>
<g>

<defs>
<radialGradient id="MyGradient" gradientUnits="userSpaceOnUse"

cx="400" cy="200" r="300" fx="400" fy="200">
<stop offset="0%" stop-color="red" />
<stop offset="50%" stop-color="blue" />
<stop offset="100%" stop-color="red" />

</radialGradient>
</defs>

<!-- Outline the drawing area in blue -->
<rect fill="none" stroke="blue"

x="1" y="1" width="798" height="398"/>

<!-- The rectangle is filled using a radial gradient paint server -->
<rect fill="url(#MyGradient)" stroke="black" stroke-width="5"

x="100" y="100" width="600" height="200"/>
</g>

</svg>

Example radgrad01

13.2.4 Gradient stops

The ramp of colors to use on a gradient is defined by the ‘stop’ elements that are child elements to either the ‘lin-
earGradient’ element or the ‘radialGradient’ element.



‘stop’Categories:
None

Content model:
Any number of the following elements, in any order:

‘animate’
‘animateColor’
‘set’

Attributes:
core attributes
presentation attributes
‘class’
‘style’
‘offset’

DOM Interfaces:
SVGStopElement

Attribute definitions:

offset = "<number> | <percentage>"
The ‘offset’ attribute is either a <number> (usually ranging from 0 to 1) or a <percentage> (usually ranging
from 0% to 100%) which indicates where the gradient stop is placed. For linear gradients, the ‘offset’ attribute
represents a location along the gradient vector. For radial gradients, it represents a percentage distance from
(fx,fy) to the edge of the outermost/largest circle.
Animatable: yes.

The ‘stop-color’ property indicates what color to use at that gradient stop. The keyword currentColor and ICC col-
ors can be specified in the same manner as within a <paint> specification for the ‘fill’ and ‘stroke’ properties.

‘stop-color’

Value:

currentColor |

<color> <icccolor> |

inherit

Initial: black

Applies to: ‘stop’ elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


The ‘stop-opacity’ property defines the opacity of a given gradient stop.

‘stop-opacity’
Value: <opacity-value> | inherit

Initial: 1

Applies to: ‘stop’ elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

Some notes on gradients:

• Gradient offset values less than 0 (or less than 0%) are rounded up to 0%. Gradient offset values greater than
1 (or greater than 100%) are rounded down to 100%.

• It is necessary that at least two stops defined to have a gradient effect. If no stops are defined, then painting
shall occur as if 'none' were specified as the paint style. If one stop is defined, then paint with the solid color
fill using the color defined for that gradient stop.

• Each gradient offset value is required to be equal to or greater than the previous gradient stop's offset value.
If a given gradient stop's offset value is not equal to or greater than all previous offset values, then the offset
value is adjusted to be equal to the largest of all previous offset values.

• If two gradient stops have the same offset value, then the latter gradient stop controls the color value at the
overlap point. In particular:

<stop offset="0" stop-color="white"/>
<stop offset=".2" stop-color="red"/>
<stop offset=".2" stop-color="blue"/>
<stop offset="1" stop-color="black"/>

will have approximately the same effect as:

<stop offset="0" stop-color="white"/>
<stop offset=".1999999999" stop-color="red"/>
<stop offset=".2" stop-color="blue"/>
<stop offset="1" stop-color="black"/>

which is a gradient that goes smoothly from white to red, then abruptly shifts from red to blue, and then goes
smoothly from blue to black.

13.3 Patterns

A pattern is used to fill or stroke an object using a pre-defined graphic object which can be replicated ("tiled") at
fixed intervals in x and y to cover the areas to be painted. Patterns are defined using a ‘pattern’ element and then
referenced by properties ‘fill’ and ‘stroke’ on a given graphics element to indicate that the given element shall be
filled or stroked with the referenced pattern.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


‘pattern’

Attributes ‘x’, ‘y’, ‘width’, ‘height’ and ‘patternUnits’ define a reference rectangle somewhere on the infinite
canvas. The reference rectangle has its top/left at (x, y) and its bottom/right at (x + width, y + height). The tiling
theoretically extends a series of such rectangles to infinity in X and Y (positive and negative), with rectangles
starting at (x + m*width, y + n* height) for each possible integer value for m and n.

Categories:
Container element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements
shape elements
structural elements
gradient elements
‘a’
‘altGlyphDef’
‘clipPath’
‘color-profile’
‘cursor’
‘filter’
‘font’
‘font-face’
‘foreignObject’
‘image’
‘marker’
‘mask’
‘pattern’
‘script’
‘style’
‘switch’
‘text’
‘view’

Attributes:
conditional processing attributes
core attributes
presentation attributes
xlink attributes
‘class’
‘style’
‘externalResourcesRequired’



‘viewBox’
‘preserveAspectRatio’
‘x’
‘y’
‘width’
‘height’
‘patternUnits’
‘patternContentUnits’
‘patternTransform’
‘xlink:href’

DOM Interfaces:
SVGPatternElement

Attribute definitions:

patternUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for attributes ‘x’, ‘y’, ‘width’ and ‘height’.
If patternUnits="userSpaceOnUse", ‘x’, ‘y’, ‘width’ and ‘height’ represent values in the coordinate system that
results from taking the current user coordinate system in place at the time when the ‘pattern’ element is
referenced (i.e., the user coordinate system for the element referencing the ‘pattern’ element via a ‘fill’ or
‘stroke’ property) and then applying the transform specified by attribute ‘patternTransform’.
If patternUnits="objectBoundingBox", the user coordinate system for attributes ‘x’, ‘y’, ‘width’ and ‘height’ is
established using the bounding box of the element to which the pattern is applied (see Object bounding box
units) and then applying the transform specified by attribute ‘patternTransform’.
If attribute ‘patternUnits’ is not specified, then the effect is as if a value of 'objectBoundingBox' were specified.
Animatable: yes.

patternContentUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for the contents of the ‘pattern’. Note that this attribute has no effect if attrib-
ute ‘viewBox’ is specified.
If patternContentUnits="userSpaceOnUse", the user coordinate system for the contents of the ‘pattern’ element
is the coordinate system that results from taking the current user coordinate system in place at the time
when the ‘pattern’ element is referenced (i.e., the user coordinate system for the element referencing the
‘pattern’ element via a ‘fill’ or ‘stroke’ property) and then applying the transform specified by attribute ‘pat-
ternTransform’.
If patternContentUnits="objectBoundingBox", the user coordinate system for the contents of the ‘pattern’ ele-
ment is established using the bounding box of the element to which the pattern is applied (see Object bound-
ing box units) and then applying the transform specified by attribute ‘patternTransform’.
If attribute ‘patternContentUnits’ is not specified, then the effect is as if a value of 'userSpaceOnUse' were spe-



cified.
Animatable: yes.

patternTransform = "<transform-list>"
Contains the definition of an optional additional transformation from the pattern coordinate system onto the
target coordinate system (i.e., 'userSpaceOnUse' or 'objectBoundingBox'). This allows for things such as skew-
ing the pattern tiles. This additional transformation matrix is post-multiplied to (i.e., inserted to the right
of) any previously defined transformations, including the implicit transformation necessary to convert from
object bounding box units to user space.
If attribute ‘patternTransform’ is not specified, then the effect is as if an identity transform were specified.
Animatable: yes.

x = "<coordinate>"
‘x’, ‘y’, ‘width’ and ‘height’ indicate how the pattern tiles are placed and spaced. These attributes represent
coordinates and values in the coordinate space specified by the combination of attributes ‘patternUnits’ and
‘patternTransform’.
If the attribute is not specified, the effect is as if a value of zero were specified.
Animatable: yes.

y = "<coordinate>"
See ‘x’.
If the attribute is not specified, the effect is as if a value of zero were specified.
Animatable: yes.

width = "<length>"
See ‘x’.
A negative value is an error (see Error processing). A value of zero disables rendering of the element (i.e., no
paint is applied).
If the attribute is not specified, the effect is as if a value of zero were specified.
Animatable: yes.

height = "<length>"
See ‘x’.
A negative value is an error (see Error processing). A value of zero disables rendering of the element (i.e., no
paint is applied).
If the attribute is not specified, the effect is as if a value of zero were specified.
Animatable: yes.

xlink:href = "<iri>"
An IRI reference to a different ‘pattern’ element within the current SVG document fragment. Any attributes
which are defined on the referenced element which are not defined on this element are inherited by this ele-
ment. If this element has no children, and the referenced element does (possibly due to its own ‘xlink:href’
attribute), then this element inherits the children from the referenced element. Inheritance can be indirect



to an arbitrary level; thus, if the referenced element inherits attributes or children due to its own ‘xlink:href’
attribute, then the current element can inherit those attributes or children.
Animatable: yes.

preserveAspectRatio = "[defer] <align> [<meetOrSlice>]"
See ‘preserveAspectRatio’.

If the attribute is not specified, then the effect is as if a value of xMidYMid meet were specified.
Animatable: yes.

SVG's user agent style sheet sets the ‘overflow’ property for ‘pattern’ elements to hidden, which causes a rectangu-
lar clipping path to be created at the bounds of the pattern tile. Unless the ‘overflow’ property is overridden, any
graphics within the pattern which goes outside of the pattern rectangle will be clipped. Note that if the ‘overflow’
property is set to visible the rendering behavior for the pattern is undefined. Example pattern01 below shows the
effect of clipping to the pattern tile.

The contents of the ‘pattern’ are relative to a new coordinate system. If there is a ‘viewBox’ attribute, then the
new coordinate system is fitted into the region defined by the ‘x’, ‘y’, ‘width’, ‘height’ and ‘patternUnits’ attributes
on the ‘pattern’ element using the standard rules for ‘viewBox’ and ‘preserveAspectRatio’. If there is no ‘viewBox’
attribute, then the new coordinate system has its origin at (x, y), where x is established by the ‘x’ attribute on the
‘pattern’ element, and y is established by the ‘y’ attribute on the ‘pattern’ element. Thus, in the following example:

<pattern x="10" y="10" width="20" height="20">
<rect x="5" y="5" width="10" height="10"/>

</pattern>

the rectangle has its top/left located 5 units to the right and 5 units down from the origin of the pattern tile.
The ‘viewBox’ attribute introduces a supplemental transformation which is applied on top of any transforma-

tions necessary to create a new pattern coordinate system due to attributes ‘x’, ‘y’, ‘width’, ‘height’ and ‘patternUn-
its’.

Properties inherit into the ‘pattern’ element from its ancestors; properties do not inherit from the element
referencing the ‘pattern’ element.

‘pattern’ elements are never rendered directly; their only usage is as something that can be referenced using
the ‘fill’ and ‘stroke’ properties. The ‘display’ property does not apply to the ‘pattern’ element; thus, ‘pattern’ ele-
ments are not directly rendered even if the ‘display’ property is set to a value other than none, and ‘pattern’ ele-
ments are available for referencing even when the ‘display’ property on the ‘pattern’ element or any of its ancestors
is set to none.

Event attributes and event listeners attached to the contents of a ‘pattern’ element are not processed; only the
rendering aspects of ‘pattern’ elements are processed.

Example pattern01 shows how to fill a rectangle by referencing a pattern paint server. Note how the blue
stroke of each triangle has been clipped at the top and the left. This is due to SVG's user agent style sheet setting
the ‘overflow’ property for ‘pattern’ elements to hidden, which causes the pattern to be clipped to the bounds of
the pattern tile.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">



<svg width="8cm" height="4cm" viewBox="0 0 800 400" version="1.1"
xmlns="http://www.w3.org/2000/svg">

<defs>
<pattern id="TrianglePattern" patternUnits="userSpaceOnUse"

x="0" y="0" width="100" height="100"
viewBox="0 0 10 10" >

<path d="M 0 0 L 7 0 L 3.5 7 z" fill="red" stroke="blue" />
</pattern>

</defs>

<!-- Outline the drawing area in blue -->
<rect fill="none" stroke="blue"

x="1" y="1" width="798" height="398"/>

<!-- The ellipse is filled using a triangle pattern paint server
and stroked with black -->

<ellipse fill="url(#TrianglePattern)" stroke="black" stroke-width="5"
cx="400" cy="200" rx="350" ry="150" />

</svg>

Example pattern01

13.4 DOM interfaces

13.4.1 Interface SVGGradientElement

The SVGGradientElement interface is a base interface used by SVGLinearGradientElement and SVGRadialGradi-
entElement.

interface SVGGradientElement : SVGElement,
SVGURIReference,
SVGExternalResourcesRequired,
SVGStylable,
SVGUnitTypes {

// Spread Method Types
const unsigned short SVG_SPREADMETHOD_UNKNOWN = 0;
const unsigned short SVG_SPREADMETHOD_PAD = 1;
const unsigned short SVG_SPREADMETHOD_REFLECT = 2;
const unsigned short SVG_SPREADMETHOD_REPEAT = 3;

readonly attribute SVGAnimatedEnumeration gradientUnits;
readonly attribute SVGAnimatedTransformList gradientTransform;
readonly attribute SVGAnimatedEnumeration spreadMethod;

};



Constants in group “Spread Method Types”:

• SVG_SPREADMETHOD_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.

• SVG_SPREADMETHOD_PAD (unsigned short)

Corresponds to value 'pad'.

• SVG_SPREADMETHOD_REFLECT (unsigned short)

Corresponds to value 'reflect'.

• SVG_SPREADMETHOD_REPEAT (unsigned short)

Corresponds to value 'repeat'.

Attributes:

• gradientUnits (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘gradientUnits’ on the given element. Takes one of the constants defined in SVGUn-
itTypes.

• gradientTransform (readonly SVGAnimatedTransformList)

Corresponds to attribute ‘gradientTransform’ on the given element.

• spreadMethod (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘spreadMethod’ on the given element. One of the Spread Method Types defined on
this interface.

13.4.2 Interface SVGLinearGradientElement

The SVGLinearGradientElement interface corresponds to the ‘linearGradient’ element.

interface SVGLinearGradientElement : SVGGradientElement {
readonly attribute SVGAnimatedLength x1;
readonly attribute SVGAnimatedLength y1;
readonly attribute SVGAnimatedLength x2;
readonly attribute SVGAnimatedLength y2;

};



Attributes:

• x1 (readonly SVGAnimatedLength)

Corresponds to attribute ‘x1’ on the given ‘linearGradient’ element.

• y1 (readonly SVGAnimatedLength)

Corresponds to attribute ‘y1’ on the given ‘linearGradient’ element.

• x2 (readonly SVGAnimatedLength)

Corresponds to attribute ‘x2’ on the given ‘linearGradient’ element.

• y2 (readonly SVGAnimatedLength)

Corresponds to attribute ‘y2’ on the given ‘linearGradient’ element.

13.4.3 Interface SVGRadialGradientElement

The SVGRadialGradientElement interface corresponds to the ‘radialGradient’ element.

interface SVGRadialGradientElement : SVGGradientElement {
readonly attribute SVGAnimatedLength cx;
readonly attribute SVGAnimatedLength cy;
readonly attribute SVGAnimatedLength r;
readonly attribute SVGAnimatedLength fx;
readonly attribute SVGAnimatedLength fy;

};

Attributes:

• cx (readonly SVGAnimatedLength)

Corresponds to attribute ‘cx’ on the given ‘radialGradient’ element.

• cy (readonly SVGAnimatedLength)

Corresponds to attribute ‘cy’ on the given ‘radialGradient’ element.

• r (readonly SVGAnimatedLength)

Corresponds to attribute ‘r’ on the given ‘radialGradient’ element.



• fx (readonly SVGAnimatedLength)

Corresponds to attribute ‘fx’ on the given ‘radialGradient’ element.

• fy (readonly SVGAnimatedLength)

Corresponds to attribute ‘fy’ on the given ‘radialGradient’ element.

13.4.4 Interface SVGStopElement

The SVGStopElement interface corresponds to the ‘stop’ element.

interface SVGStopElement : SVGElement,
SVGStylable {

readonly attribute SVGAnimatedNumber offset;
};

Attributes:

• offset (readonly SVGAnimatedNumber)

Corresponds to attribute ‘offset’ on the given ‘stop’ element.

13.4.5 Interface SVGPatternElement

The SVGPatternElement interface corresponds to the ‘pattern’ element.

interface SVGPatternElement : SVGElement,
SVGURIReference,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGFitToViewBox,
SVGUnitTypes {

readonly attribute SVGAnimatedEnumeration patternUnits;
readonly attribute SVGAnimatedEnumeration patternContentUnits;
readonly attribute SVGAnimatedTransformList patternTransform;
readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;

};

Attributes:

• patternUnits (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘patternUnits’ on the given ‘pattern’ element. Takes one of the constants defined in
SVGUnitTypes.



• patternContentUnits (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘patternContentUnits’ on the given ‘pattern’ element. Takes one of the constants
defined in SVGUnitTypes.

• patternTransform (readonly SVGAnimatedTransformList)

Corresponds to attribute ‘patternTransform’ on the given ‘pattern’ element.

• x (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given ‘pattern’ element.

• y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given ‘pattern’ element.

• width (readonly SVGAnimatedLength)

Corresponds to attribute ‘width’ on the given ‘pattern’ element.

• height (readonly SVGAnimatedLength)

Corresponds to attribute ‘height’ on the given ‘pattern’ element.



14 Clipping, Masking and Compositing

Contents

14.1 Introduction
14.2 Simple alpha compositing
14.3 Clipping paths

14.3.1 Introduction
14.3.2 The initial clipping path
14.3.3 The ‘overflow’ and ‘clip’ properties
14.3.4 Clip to viewport vs. clip to ‘viewBox’
14.3.5 Establishing a new clipping path: the ‘clipPath’ element
14.3.6 Clipping paths, geometry, and pointer events

14.4 Masking
14.5 Object and group opacity: the ‘opacity’ property
14.6 DOM interfaces

14.6.1 Interface SVGClipPathElement
14.6.2 Interface SVGMaskElement

14.1 Introduction

SVG supports the following clipping/masking features:

• clipping paths, which uses any combination of ‘path’, ‘text’ and basic shapes to serve as the outline of a (in
the absence of anti-aliasing) 1-bit mask, where everything on the "inside" of the outline is allowed to show
through but everything on the outside is masked out

• masks, which are container elements which can contain graphics elements or other container elements which
define a set of graphics that is to be used as a semi-transparent mask for compositing foreground objects into
the current background.

One key distinction between a clipping path and a mask is that clipping paths are hard masks (i.e., the silhouette
consists of either fully opaque pixels or fully transparent pixels, with the possible exception of anti-aliasing along
the edge of the silhouette) whereas masks consist of an image where each pixel value indicates the degree of trans-
parency vs. opacity. In a mask, each pixel value can range from fully transparent to fully opaque.

SVG supports only simple alpha blending compositing (see Simple Alpha Compositing).

14.2 Simple alpha compositing

Graphics elements are blended into the elements already rendered on the canvas using simple alpha compositing,



in which the resulting color and opacity at any given pixel on the canvas is the result of the following formulas
(all color values use premultiplied alpha):

Er, Eg, Eb    - Element color value
Ea            - Element alpha value
Cr, Cg, Cb    - Canvas color value (before blending)
Ca            - Canvas alpha value (before blending)
Cr', Cg', Cb' - Canvas color value (after blending)
Ca'           - Canvas alpha value (after blending)
Ca' = 1 - (1 - Ea) * (1 - Ca)
Cr' = (1 - Ea) * Cr + Er
Cg' = (1 - Ea) * Cg + Eg
Cb' = (1 - Ea) * Cb + Eb

The following rendering properties, which provide information about the color space in which to perform the com-
positing operations, apply to compositing operations:

• ‘color-interpolation’
• ‘color-rendering’

14.3 Clipping paths

14.3.1 Introduction

The clipping path restricts the region to which paint can be applied. Conceptually, any parts of the drawing that lie
outside of the region bounded by the currently active clipping path are not drawn. A clipping path can be thought
of as a mask wherein those pixels outside the clipping path are black with an alpha value of zero and those pixels
inside the clipping path are white with an alpha value of one (with the possible exception of anti-aliasing along
the edge of the silhouette).

14.3.2 The initial clipping path

When an ‘svg’ element is either the root element in the document or is embedded within a document whose layout
is determined according to the layout rules of CSS or XSL, then the user agent must establish an initial clipping
path for the SVG document fragment. The ‘overflow’ and ‘clip’ properties along with additional SVG user agent
processing rules determine the initial clipping path which the user agent establishes for the SVG document frag-
ment:



14.3.3 The ‘overflow’ and ‘clip’ properties

‘overflow’
Value: visible | hidden | scroll | auto | inherit

Initial: see prose

Applies to: elements which establish a new viewport, ‘pattern’ elements and ‘marker’ elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

The ‘overflow’ property has the same parameter values and has the same meaning as defined in CSS2 ([CSS2],
section 11.1.1); however, the following additional points apply:

• The ‘overflow’ property applies to elements that establish new viewports (e.g., ‘svg’ elements), ‘pattern’ ele-
ments and ‘marker’ elements. For all other elements, the property has no effect (i.e., a clipping rectangle is
not created).

• For those elements to which the ‘overflow’ property can apply, if the ‘overflow’ property has the value hidden
or scroll, the effect is that a new clipping path in the shape of a rectangle is created. The result is equivalent
to defining a ‘clipPath’ element whose content is a ‘rect’ element which defines the equivalent rectangle, and
then specifying the <uri> of this ‘clipPath’ element on the ‘clip-path’ property for the given element.

• If the ‘overflow’ property has a value other than hidden or scroll, the property has no effect (i.e., a clipping
rectangle is not created).

• Within SVG content, the value auto is equivalent to the value visible.
• When an outermost svg element is embedded inline within a parent XML grammar which uses CSS layout

([CSS2], chapter 9) or XSL formatting [XSL], if the ‘overflow’ property has the value hidden or scroll, then the
user agent will establish an initial clipping path equal to the bounds of the initial viewport; otherwise, the
initial clipping path is set according to the clipping rules as defined in CSS2 ([CSS2], section 11.1.1).

• When an outermost svg element is stand-alone or embedded inline within a parent XML grammar which
does not use CSS layout or XSL formatting, the ‘overflow’ property on the outermost svg element is ignored
for the purposes of visual rendering and the initial clipping path is set to the bounds of the initial viewport.

• The initial value for ‘overflow’ as defined in [CSS2-overflow] is 'visible', and this applies also to the root ‘svg’
element; however, for child elements of an SVG document, SVG's user agent style sheet overrides this initial
value and sets the ‘overflow’ property on elements that establish new viewports (e.g., ‘svg’ elements), ‘pattern’
elements and ‘marker’ elements to the value 'hidden'.

As a result of the above, the default behavior of SVG user agents is to establish a clipping path to the bounds of
the initial viewport and to establish a new clipping path for each element which establishes a new viewport and
each ‘pattern’ and ‘marker’ element.

For related information, see Clip to viewport vs. clip to ‘viewBox’.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/visufx.html#overflow
http://www.w3.org/TR/2008/REC-CSS2-20080411/visuren.html
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/2008/REC-CSS2-20080411/visufx.html#overflow
http://www.w3.org/TR/2008/REC-CSS2-20080411/visufx.html#overflow


‘clip’
Value: <shape> | auto | inherit

Initial: auto

Applies to: elements which establish a new viewport, ‘pattern’ elements and ‘marker’ elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

The ‘clip’ property has the same parameter values as defined in CSS2 ([CSS2], section 11.1.2). Unitless values,
which indicate current user coordinates, are permitted on the coordinate values on the <shape>. The value of auto
defines a clipping path along the bounds of the viewport created by the given element.

14.3.4 Clip to viewport vs. clip to ‘viewBox’

It is important to note that initial values for the ‘overflow’ and ‘clip’ properties and the user agent style sheet will
result in an initial clipping path that is set to the bounds of the initial viewport. When attributes ‘viewBox’ and
‘preserveAspectRatio’ attributes are specified, it is sometime desirable that the clipping path be set to the bounds
of the ‘viewBox’ instead of the viewport (or reference rectangle, in the case of ‘marker’ and ‘pattern’ elements),
particularly when ‘preserveAspectRatio’ specifies uniform scaling and the aspect ratio of the ‘viewBox’ does not
match the aspect ratio of the viewport.

To set the initial clipping path to the bounds of the ‘viewBox’, set the bounds of ‘clip’ property to the same
rectangle as specified on the ‘viewBox’ attribute. (Note that the parameters do not match. ‘clip’ takes values <top>,
<right>,<bottom> and <left>, whereas ‘viewBox’ takes values <min-x>, <min-y>, <width> and <height>.)

14.3.5 Establishing a new clipping path: the ‘clipPath’ element

A clipping path is defined with a ‘clipPath’ element. A clipping path is used/referenced using the ‘clip-path’ prop-
erty.

A ‘clipPath’ element can contain ‘path’ elements, ‘text’ elements, basic shapes (such as ‘circle’) or a ‘use’ ele-
ment. If a ‘use’ element is a child of a ‘clipPath’ element, it must directly reference ‘path’, ‘text’ or basic shape
elements. Indirect references are an error (see Error processing).

The raw geometry of each child element exclusive of rendering properties such as ‘fill’, ‘stroke’, ‘stroke-width’
within a ‘clipPath’ conceptually defines a 1-bit mask (with the possible exception of anti-aliasing along the edge
of the geometry) which represents the silhouette of the graphics associated with that element. Anything outside
the outline of the object is masked out. If a child element is made invisible by ‘display’ or ‘visibility’ it does not
contribute to the clipping path. When the ‘clipPath’ element contains multiple child elements, the silhouettes of
the child elements are logically OR'd together to create a single silhouette which is then used to restrict the region
onto which paint can be applied. Thus, a point is inside the clipping path if it is inside any of the children of the
‘clipPath’.

For a given graphics element, the actual clipping path used will be the intersection of the clipping path spe-

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/visufx.html#clipping


‘clipPath’

cified by its ‘clip-path’ property (if any) with any clipping paths on its ancestors, as specified by the ‘clip-path’
property on the ancestor elements, or by the ‘overflow’ property on ancestor elements which establish a new view-
port. Also, see the discussion of the initial clipping path.)

A couple of notes:

• The ‘clipPath’ element itself and its child elements do not inherit clipping paths from the ancestors of the
‘clipPath’ element.

• The ‘clipPath’ element or any of its children can specify property ‘clip-path’.
If a valid ‘clip-path’ reference is placed on a ‘clipPath’ element, the resulting clipping path is the intersection
of the contents of the ‘clipPath’ element with the referenced clipping path.
If a valid ‘clip-path’ reference is placed on one of the children of a ‘clipPath’ element, then the given child
element is clipped by the referenced clipping path before OR'ing the silhouette of the child element with the
silhouettes of the other child elements.

• An empty clipping path will completely clip away the element that had the ‘clip-path’ property applied.

Categories:
None

Content model:
Any number of the following elements, in any order:

descriptive elements
animation elements
shape elements
‘text’
‘use’

Attributes:
conditional processing attributes
core attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’
‘clipPathUnits’

DOM Interfaces:
SVGClipPathElement



Attribute definitions:

clipPathUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for the contents of the ‘clipPath’.
If clipPathUnits="userSpaceOnUse", the contents of the ‘clipPath’ represent values in the current user coordin-
ate system in place at the time when the ‘clipPath’ element is referenced (i.e., the user coordinate system for
the element referencing the ‘clipPath’ element via the ‘clip-path’ property).
If clipPathUnits="objectBoundingBox", then the user coordinate system for the contents of the ‘clipPath’ ele-
ment is established using the bounding box of the element to which the clipping path is applied (see Object
bounding box units).
If attribute ‘clipPathUnits’ is not specified, then the effect is as if a value of 'userSpaceOnUse' were specified.
Animatable: yes.

Properties inherit into the ‘clipPath’ element from its ancestors; properties do not inherit from the element refer-
encing the ‘clipPath’ element.

‘clipPath’ elements are never rendered directly; their only usage is as something that can be referenced using
the ‘clip-path’ property. The ‘display’ property does not apply to the ‘clipPath’ element; thus, ‘clipPath’ elements are
not directly rendered even if the ‘display’ property is set to a value other than none, and ‘clipPath’ elements are
available for referencing even when the ‘display’ property on the ‘clipPath’ element or any of its ancestors is set to
none.

‘clip-path’
Value: <funciri> | none | inherit

Initial: none

Applies to: container elements, graphics elements and ‘clipPath’

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

<funciri>
An IRI reference to another graphical object within the same SVG document fragment which will be used as
the clipping path. If the IRI reference is not valid (e.g it points to an object that doesn't exist or the object is
not a ‘clipPath’ element) the ‘clip-path’ property must be treated as if it hadn't been specified.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


‘clip-rule’
Value: nonzero | evenodd | inherit

Initial: nonzero

Applies to: graphics elements within a ‘clipPath’ element

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

nonzero
See description of ‘fill-rule’ property.

evenodd
See description of ‘fill-rule’ property.

The ‘clip-rule’ property only applies to graphics elements that are contained within a ‘clipPath’ element. The fol-
lowing fragment of code will cause an evenodd clipping rule to be applied to the clipping path because ‘clip-rule’
is specified on the ‘path’ element that defines the clipping shape:

<g clip-rule="nonzero">
<clipPath id="MyClip">

<path d="..." clip-rule="evenodd" />
</clipPath>
<rect clip-path="url(#MyClip)" ... />

</g>

whereas the following fragment of code will not cause an evenodd clipping rule to be applied because the ‘clip-
rule’ is specified on the referencing element, not on the object defining the clipping shape:

<g clip-rule="nonzero">
<clipPath id="MyClip">

<path d="..." />
</clipPath>
<rect clip-path="url(#MyClip)" clip-rule="evenodd" ... />

</g>

14.3.6 Clipping paths, geometry, and pointer events

A clipping path is conceptually equivalent to a custom viewport for the referencing element. Thus, it affects the
rendering of an element, but not the element's inherent geometry. The bounding box of a clipped element (that is,
an element which references a ‘clipPath’ element via a ‘clip-path’ property, or a child of the referencing element)
must remain the same as if it were not clipped.

By default, pointer-events must not be dispatched on the clipped (non-visible) regions of a shape. For ex-
ample, a circle with a radius of 10 which is clipped to a circle with a radius of 5 will not receive 'click' events
outside the smaller radius. Later versions of SVG may define new properties to enable fine-grained control over
the interactions between hit testing and clipping.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


14.4 Masking

In SVG, you can specify that any other graphics object or ‘g’ element can be used as an alpha mask for compositing
the current object into the background.

A mask is defined with a ‘mask’ element. A mask is used/referenced using the ‘mask’ property.
A ‘mask’ can contain any graphical elements or container elements such as a ‘g’.
It is an error if the ‘mask’ property references a non-existent object or if the referenced object is not a ‘mask’

element (see Error Processing).
The effect is as if the child elements of the ‘mask’ are rendered into an offscreen image which has been ini-

tialized to transparent black. Any graphical object which uses/references the given ‘mask’ element will be painted
onto the background through the mask, thus completely or partially masking out parts of the graphical object.

For any graphics object that is used as a mask, the mask value at any point is computed from the color chan-
nel values and alpha channel value as follows. First a luminance value is computed from the color channel values:

• If the computed value of ‘color-interpolation’ on the ‘mask’ element is linearRGB, first convert the original
image color values (potentially in the sRGB color space) to the linear RGB color space (see Rendering prop-
erties). Then, using non-premultiplied linear RGB color values, apply the luminance-to-alpha coefficients (as
defined in the ‘feColorMatrix’ filter primitive) to convert the linear RGB color values to linear luminance val-
ues.

• If the computed value of ‘color-interpolation’ on the ‘mask’ element is sRGB then the luminance value is cal-
culated by taking the non-premultiplied RGB color values, applying the luminance-to-alpha coefficients (as
defined in the ‘feColorMatrix’ filter primitive) to convert the RGB color values to luminance values.

Finally if the graphics object also includes an alpha channel, then the computed luminance value is multiplied by
the corresponding alpha value to produce the mask value.

For a four-channel RGBA graphics object that is used as a mask, both the color channels and the alpha chan-
nel of the mask contribute to the masking operation. The alpha mask that is used to composite the current object
into the background represents the product of the luminance of the color channels (see previous paragraph) and
the alpha channel from the mask.

For a three-channel RGB graphics object that is used as a mask (e.g., when referencing a 3-channel image
file), the effect is as if the object were converted into a 4-channel RGBA image with the alpha channel uniformly
set to 1.

For a single-channel image that is used as a mask (e.g., when referencing a 1-channel grayscale image file),
the effect is as if the object were converted into a 4-channel RGBA image, where the single channel from the ref-
erenced object is used to compute the three color channels and the alpha channel is uniformly set to 1. Note that
when referencing a grayscale image file, the transfer curve relating the encoded grayscale values to linear light
values must be taken into account when computing the color channels.

The effect of a mask is identical to what would have happened if there were no mask but instead the alpha
channel of the given object were multiplied with the mask's resulting alpha values (i.e., the product of the mask's
luminance from its color channels multiplied by the mask's alpha channel).

Note that SVG ‘path’s, shapes (e.g., ‘circle’) and ‘text’ are all treated as four-channel RGBA images for the
purposes of masking operations.



‘mask’

Example mask01 uses an image to mask a rectangle.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="3cm" viewBox="0 0 800 300" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<desc>Example mask01 - blue text masked with gradient against red background
</desc>
<defs>

<linearGradient id="Gradient" gradientUnits="userSpaceOnUse"
x1="0" y1="0" x2="800" y2="0">

<stop offset="0" stop-color="white" stop-opacity="0" />
<stop offset="1" stop-color="white" stop-opacity="1" />

</linearGradient>
<mask id="Mask" maskUnits="userSpaceOnUse"

x="0" y="0" width="800" height="300">
<rect x="0" y="0" width="800" height="300" fill="url(#Gradient)"  />

</mask>
<text id="Text" x="400" y="200"

font-family="Verdana" font-size="100" text-anchor="middle" >
Masked text

</text>
</defs>

<!-- Draw a pale red rectangle in the background -->
<rect x="0" y="0" width="800" height="300" fill="#FF8080" />

<!-- Draw the text string twice. First, filled blue, with the mask applied.
Second, outlined in black without the mask. -->

<use xlink:href="#Text" fill="blue" mask="url(#Mask)" />
<use xlink:href="#Text" fill="none" stroke="black" stroke-width="2" />

</svg>

Example mask01

Categories:
Container element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements
shape elements
structural elements
gradient elements
‘a’
‘altGlyphDef’
‘clipPath’



‘color-profile’
‘cursor’
‘filter’
‘font’
‘font-face’
‘foreignObject’
‘image’
‘marker’
‘mask’
‘pattern’
‘script’
‘style’
‘switch’
‘text’
‘view’

Attributes:
conditional processing attributes
core attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘x’
‘y’
‘width’
‘height’
‘maskUnits’
‘maskContentUnits’

DOM Interfaces:
SVGMaskElement

Attribute definitions:

maskUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for attributes ‘x’, ‘y’, ‘width’ and ‘height’.
If maskUnits="userSpaceOnUse", ‘x’, ‘y’, ‘width’ and ‘height’ represent values in the current user coordinate
system in place at the time when the ‘mask’ element is referenced (i.e., the user coordinate system for the
element referencing the ‘mask’ element via the ‘mask’ property).
If maskUnits="objectBoundingBox", ‘x’, ‘y’, ‘width’ and ‘height’ represent fractions or percentages of the



bounding box of the element to which the mask is applied. (See Object bounding box units.)
If attribute ‘maskUnits’ is not specified, then the effect is as if a value of 'objectBoundingBox' were specified.
Animatable: yes.

maskContentUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for the contents of the ‘mask’.
If maskContentUnits="userSpaceOnUse", the user coordinate system for the contents of the ‘mask’ element is
the current user coordinate system in place at the time when the ‘mask’ element is referenced (i.e., the user
coordinate system for the element referencing the ‘mask’ element via the ‘mask’ property).
If maskContentUnits="objectBoundingBox", the user coordinate system for the contents of the ‘mask’ is estab-
lished using the bounding box of the element to which the mask is applied. (See Object bounding box units.)
If attribute ‘maskContentUnits’ is not specified, then the effect is as if a value of 'userSpaceOnUse' were spe-
cified.
Animatable: yes.

x = "<coordinate>"
The x-axis coordinate of one corner of the rectangle for the largest possible offscreen buffer. Note that the
clipping path used to render any graphics within the mask will consist of the intersection of the current clip-
ping path associated with the given object and the rectangle defined by ‘x’, ‘y’, ‘width’ and ‘height’.
If the attribute is not specified, the effect is as if a value of '-10%' were specified.
Animatable: yes.

y = "<coordinate>"
The y-axis coordinate of one corner of the rectangle for the largest possible offscreen buffer.
If the attribute is not specified, the effect is as if a value of '-10%' were specified.
Animatable: yes.

width = "<length>"
The width of the largest possible offscreen buffer. Note that the clipping path used to render any graphics
within the mask will consist of the intersection of the current clipping path associated with the given object
and the rectangle defined by ‘x’, ‘y’, ‘width’ and ‘height’.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of '120%' were specified.
Animatable: yes.

height = "<length>"
The height of the largest possible offscreen buffer.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of '120%' were specified.
Animatable: yes.

Properties inherit into the ‘mask’ element from its ancestors; properties do not inherit from the element referencing
the ‘mask’ element.



‘mask’ elements are never rendered directly; their only usage is as something that can be referenced using the
‘mask’ property. The ‘opacity’, ‘filter’ and ‘display’ properties do not apply to the ‘mask’ element; thus, ‘mask’ ele-
ments are not directly rendered even if the ‘display’ property is set to a value other than none, and ‘mask’ elements
are available for referencing even when the ‘display’ property on the ‘mask’ element or any of its ancestors is set
to none.

The following is a description of the ‘mask’ property.

‘mask’
Value: <funciri> | none | inherit

Initial: none

Applies to: container elements and graphics elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

<funciri>
A IRI reference to another graphical object which will be used as the mask.

14.5 Object and group opacity: the ‘opacity’ property

There are several opacity properties within SVG:

• ‘fill-opacity’, which specifies the opacity of a fill operation;
• ‘stroke-opacity’, which specifies the opacity of a stroking operation;
• ‘stop-opacity’, which specifies the opacity of a gradient stop; and
• ‘opacity’, which specifies object/group opacity and which is described in this section.

Except for object/group opacity (described just below), all other opacity properties are involved in intermediate
rendering operations. Object/group opacity can be thought of conceptually as a postprocessing operation. Concep-
tually, after the object/group is rendered into an RGBA offscreen image, the object/group opacity setting specifies
how to blend the offscreen image into the current background.

‘opacity’
Value: <opacity-value> | inherit

Initial: 1

Applies to: container elements (except ‘mask’) and graphics elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


<opacity-value>
The uniform opacity setting to be applied across an entire object, as a <number>. Any values outside the
range 0.0 (fully transparent) to 1.0 (fully opaque) will be clamped to this range. (See Clamping values which
are restricted to a particular range.) If the object is a container element such as a ‘g’, then the effect is as if
the contents of the ‘g’ were blended against the current background using a mask where the value of each
pixel of the mask is <opacity-value>. (See Simple alpha compositing.)

Example opacity01 illustrates various usage of the ‘opacity’ property on elements and groups.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="3.5cm" viewBox="0 0 1200 350"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example opacity01 - opacity property</desc>

<rect x="1" y="1" width="1198" height="348"
fill="none" stroke="blue" />

<!-- Background blue rectangle -->
<rect x="100" y="100" width="1000" height="150" fill="#0000ff"  />

<!-- Red circles going from opaque to nearly transparent -->
<circle cx="200" cy="100" r="50" fill="red" opacity="1"  />
<circle cx="400" cy="100" r="50" fill="red" opacity=".8"  />
<circle cx="600" cy="100" r="50" fill="red" opacity=".6"  />
<circle cx="800" cy="100" r="50" fill="red" opacity=".4"  />
<circle cx="1000" cy="100" r="50" fill="red" opacity=".2"  />

<!-- Opaque group, opaque circles -->
<g opacity="1" >

<circle cx="182.5" cy="250" r="50" fill="red" opacity="1"  />
<circle cx="217.5" cy="250" r="50" fill="green" opacity="1"  />

</g>
<!-- Group opacity: .5, opacity circles -->
<g opacity=".5" >

<circle cx="382.5" cy="250" r="50" fill="red" opacity="1"  />
<circle cx="417.5" cy="250" r="50" fill="green" opacity="1"  />

</g>
<!-- Opaque group, semi-transparent green over red -->
<g opacity="1" >

<circle cx="582.5" cy="250" r="50" fill="red" opacity=".5"  />
<circle cx="617.5" cy="250" r="50" fill="green" opacity=".5"  />

</g>
<!-- Opaque group, semi-transparent red over green -->
<g opacity="1" >

<circle cx="817.5" cy="250" r="50" fill="green" opacity=".5"  />
<circle cx="782.5" cy="250" r="50" fill="red" opacity=".5"  />

</g>
<!-- Group opacity .5, semi-transparent green over red -->
<g opacity=".5" >

<circle cx="982.5" cy="250" r="50" fill="red" opacity=".5"  />
<circle cx="1017.5" cy="250" r="50" fill="green" opacity=".5"  />

</g>
</svg>



Example opacity01

In the example above, the top row of circles have differing opacities, ranging from 1.0 to 0.2. The bottom row il-
lustrates five ‘g’ elements, each of which contains overlapping red and green circles, as follows:

• The first group shows the opaque case for reference. The group has opacity of 1, as do the circles.
• The second group shows group opacity when the elements in the group are opaque.
• The third and fourth group show that opacity is not commutative. In the third group (which has opacity of 1),

a semi-transparent green circle is drawn on top of a semi-transparent red circle, whereas in the fourth group
a semi-transparent red circle is drawn on top of a semi-transparent green circle. Note that area where the
two circles intersect display different colors. The third group shows more green color in the intersection area,
whereas the fourth group shows more red color.

• The fifth group shows the multiplicative effect of opacity settings. Both the circles and the group itself have
opacity settings of .5. The result is that the portion of the red circle which does not overlap with the green
circle (i.e., the top/right of the red circle) will blend into the blue rectangle with accumulative opacity of .25
(i.e., .5*.5), which, after blending into the blue rectangle, results in a blended color which is 25% red and 75%
blue.

14.6 DOM interfaces

14.6.1 Interface SVGClipPathElement

The SVGClipPathElement interface corresponds to the ‘clipPath’ element.

interface SVGClipPathElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable,
SVGUnitTypes {

readonly attribute SVGAnimatedEnumeration clipPathUnits;
};



Attributes:

• clipPathUnits (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘clipPathUnits’ on the given ‘clipPath’ element. Takes one of the constants defined
in SVGUnitTypes.

14.6.2 Interface SVGMaskElement

The SVGMaskElement interface corresponds to the ‘mask’ element.

interface SVGMaskElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGUnitTypes {

readonly attribute SVGAnimatedEnumeration maskUnits;
readonly attribute SVGAnimatedEnumeration maskContentUnits;
readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;

};

Attributes:

• maskUnits (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘maskUnits’ on the given ‘mask’ element. Takes one of the constants defined in
SVGUnitTypes.

• maskContentUnits (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘maskContentUnits’ on the given ‘mask’ element. Takes one of the constants defined
in SVGUnitTypes.

• x (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given ‘mask’ element.

• y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given ‘mask’ element.

• width (readonly SVGAnimatedLength)

Corresponds to attribute ‘width’ on the given ‘mask’ element.



• height (readonly SVGAnimatedLength)

Corresponds to attribute ‘height’ on the given ‘mask’ element.



15 Filter Effects

Contents

15.1 Introduction
15.2 An example
15.3 The ‘filter’ element
15.4 The ‘filter’ property
15.5 Filter effects region
15.6 Accessing the background image
15.7 Filter primitives overview

15.7.1 Overview
15.7.2 Common attributes
15.7.3 Filter primitive subregion

15.8 Light source elements and properties
15.8.1 Introduction
15.8.2 Light source ‘feDistantLight’
15.8.3 Light source ‘fePointLight’
15.8.4 Light source ‘feSpotLight’
15.8.5 The ‘lighting-color’ property

15.9 Filter primitive ‘feBlend’
15.10 Filter primitive ‘feColorMatrix’
15.11 Filter primitive ‘feComponentTransfer’
15.12 Filter primitive ‘feComposite’
15.13 Filter primitive ‘feConvolveMatrix’
15.14 Filter primitive ‘feDiffuseLighting’
15.15 Filter primitive ‘feDisplacementMap’
15.16 Filter primitive ‘feFlood’
15.17 Filter primitive ‘feGaussianBlur’
15.18 Filter primitive ‘feImage’
15.19 Filter primitive ‘feMerge’
15.20 Filter primitive ‘feMorphology’
15.21 Filter primitive ‘feOffset’
15.22 Filter primitive ‘feSpecularLighting’
15.23 Filter primitive ‘feTile’
15.24 Filter primitive ‘feTurbulence’
15.25 DOM interfaces

15.25.1 Interface SVGFilterElement
15.25.2 Interface SVGFilterPrimitiveStandardAttributes
15.25.3 Interface SVGFEBlendElement



15.25.4 Interface SVGFEColorMatrixElement
15.25.5 Interface SVGFEComponentTransferElement
15.25.6 Interface SVGComponentTransferFunctionElement
15.25.7 Interface SVGFEFuncRElement
15.25.8 Interface SVGFEFuncGElement
15.25.9 Interface SVGFEFuncBElement
15.25.10 Interface SVGFEFuncAElement
15.25.11 Interface SVGFECompositeElement
15.25.12 Interface SVGFEConvolveMatrixElement
15.25.13 Interface SVGFEDiffuseLightingElement
15.25.14 Interface SVGFEDistantLightElement
15.25.15 Interface SVGFEPointLightElement
15.25.16 Interface SVGFESpotLightElement
15.25.17 Interface SVGFEDisplacementMapElement
15.25.18 Interface SVGFEFloodElement
15.25.19 Interface SVGFEGaussianBlurElement
15.25.20 Interface SVGFEImageElement
15.25.21 Interface SVGFEMergeElement
15.25.22 Interface SVGFEMergeNodeElement
15.25.23 Interface SVGFEMorphologyElement
15.25.24 Interface SVGFEOffsetElement
15.25.25 Interface SVGFESpecularLightingElement
15.25.26 Interface SVGFETileElement
15.25.27 Interface SVGFETurbulenceElement

15.1 Introduction

This chapter describes SVG's declarative filter effects feature set, which when combined with the 2D power of SVG
can describe much of the common artwork on the Web in such a way that client-side generation and alteration can
be performed easily. In addition, the ability to apply filter effects to SVG graphics elements and container elements
helps to maintain the semantic structure of the document, instead of resorting to images which aside from gener-
ally being a fixed resolution tend to obscure the original semantics of the elements they replace. This is especially
true for effects applied to text.

A filter effect consists of a series of graphics operations that are applied to a given source graphic to produce
a modified graphical result. The result of the filter effect is rendered to the target device instead of the original
source graphic. The following illustrates the process:



Filter effects are defined by ‘filter’ elements. To apply a filter effect to a graphics element or a container element,
you set the value of the ‘filter’ property on the given element such that it references the filter effect.

Each ‘filter’ element contains a set of filter primitives as its children. Each filter primitive performs a single
fundamental graphical operation (e.g., a blur or a lighting effect) on one or more inputs, producing a graphical
result. Because most of the filter primitives represent some form of image processing, in most cases the output
from a filter primitive is a single RGBA image.

The original source graphic or the result from a filter primitive can be used as input into one or more other
filter primitives. A common application is to use the source graphic multiple times. For example, a simple filter
could replace one graphic by two by adding a black copy of original source graphic offset to create a drop shadow.
In effect, there are now two layers of graphics, both with the same original source graphics.

When applied to container elements such as ‘g’, the ‘filter’ property applies to the contents of the group as
a whole. The group's children do not render to the screen directly; instead, the graphics commands necessary to
render the children are stored temporarily. Typically, the graphics commands are executed as part of the process-
ing of the referenced ‘filter’ element via use of the keywords SourceGraphic or SourceAlpha. Filter effects can be
applied to container elements with no content (e.g., an empty ‘g’ element), in which case the SourceGraphic or
SourceAlpha consist of a transparent black rectangle that is the size of the filter effects region.

Sometimes filter primitives result in undefined pixels. For example, filter primitive ‘feOffset’ can shift an im-
age down and to the right, leaving undefined pixels at the top and left. In these cases, the undefined pixels are set
to transparent black.

15.2 An example

The following shows an example of a filter effect.
Example filters01 - introducing filter effects.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="7.5cm" height="5cm" viewBox="0 0 200 120"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<title>Example filters01.svg - introducing filter effects</title>
<desc>An example which combines multiple filter primitives

to produce a 3D lighting effect on a graphic consisting
of the string "SVG" sitting on top of oval filled in red
and surrounded by an oval outlined in red.</desc>

<defs>
<filter id="MyFilter" filterUnits="userSpaceOnUse" x="0" y="0" width="200" height="120">

<feGaussianBlur in="SourceAlpha" stdDeviation="4" result="blur"/>
<feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>
<feSpecularLighting in="blur" surfaceScale="5" specularConstant=".75"

specularExponent="20" lighting-color="#bbbbbb"
result="specOut">

<fePointLight x="-5000" y="-10000" z="20000"/>
</feSpecularLighting>
<feComposite in="specOut" in2="SourceAlpha" operator="in" result="specOut"/>
<feComposite in="SourceGraphic" in2="specOut" operator="arithmetic"

k1="0" k2="1" k3="1" k4="0" result="litPaint"/>
<feMerge>

<feMergeNode in="offsetBlur"/>
<feMergeNode in="litPaint"/>

</feMerge>
</filter>

</defs>
<rect x="1" y="1" width="198" height="118" fill="#888888" stroke="blue" />
<g filter="url(#MyFilter)" >

<g>



<path fill="none" stroke="#D90000" stroke-width="10"
d="M50,90 C0,90 0,30 50,30 L150,30 C200,30 200,90 150,90 z" />

<path fill="#D90000"
d="M60,80 C30,80 30,40 60,40 L140,40 C170,40 170,80 140,80 z" />

<g fill="#FFFFFF" stroke="black" font-size="45" font-family="Verdana" >
<text x="52" y="76">SVG</text>

</g>
</g>

</g>
</svg>

Example filters01

The filter effect used in the example above is repeated here with reference numbers in the left column before each
of the six filter primitives:

1
2
3

4
5

6

<filter id="MyFilter" filterUnits="userSpaceOnUse" x="0" y="0" width="200" height="120">
<desc>Produces a 3D lighting effect.</desc>
<feGaussianBlur in="SourceAlpha" stdDeviation="4" result="blur"/>
<feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>
<feSpecularLighting in="blur" surfaceScale="5" specularConstant=".75"

specularExponent="20" lighting-color="#bbbbbb"
result="specOut">

<fePointLight x="-5000" y="-10000" z="20000"/>
</feSpecularLighting>
<feComposite in="specOut" in2="SourceAlpha" operator="in" result="specOut"/>
<feComposite in="SourceGraphic" in2="specOut" operator="arithmetic"

k1="0" k2="1" k3="1" k4="0" result="litPaint"/>
<feMerge>

<feMergeNode in="offsetBlur"/>
<feMergeNode in="litPaint"/>

</feMerge>
</filter>

The following pictures show the intermediate image results from each of the six filter elements:



‘filter’

Source graphic After filter primitive 1 After filter primitive 2 After filter primitive 3

After filter primitive 4 After filter primitive 5 After filter primitive 6

1. Filter primitive ‘feGaussianBlur’ takes input SourceAlpha, which is the alpha channel of the source graphic.
The result is stored in a temporary buffer named "blur". Note that "blur" is used as input to both filter primit-
ives 2 and 3.

2. Filter primitive ‘feOffset’ takes buffer "blur", shifts the result in a positive direction in both x and y, and creates
a new buffer named "offsetBlur". The effect is that of a drop shadow.

3. Filter primitive ‘feSpecularLighting’, uses buffer "blur" as a model of a surface elevation and generates a light-
ing effect from a single point source. The result is stored in buffer "specOut".

4. Filter primitive ‘feComposite’ masks out the result of filter primitive 3 by the original source graphics alpha
channel so that the intermediate result is no bigger than the original source graphic.

5. Filter primitive ‘feComposite’ composites the result of the specular lighting with the original source graphic.
6. Filter primitive ‘feMerge’ composites two layers together. The lower layer consists of the drop shadow result

from filter primitive 2. The upper layer consists of the specular lighting result from filter primitive 5.

15.3 The ‘filter’ element

The description of the ‘filter’ element follows:

Categories:
None

Content model:
Any number of the following elements, in any order:

descriptive elements
filter primitive elements
‘animate’
‘set’



Attributes:
core attributes
presentation attributes
xlink attributes
‘class’
‘style’
‘externalResourcesRequired’
‘x’
‘y’
‘width’
‘height’
‘filterRes’
‘filterUnits’
‘primitiveUnits’
‘xlink:href’

DOM Interfaces:
SVGFilterElement

Attribute definitions:

filterUnits = "userSpaceOnUse | objectBoundingBox"
See Filter effects region.

primitiveUnits = "userSpaceOnUse | objectBoundingBox"
Specifies the coordinate system for the various length values within the filter primitives and for the attributes
that define the filter primitive subregion.
If primitiveUnits="userSpaceOnUse", any length values within the filter definitions represent values in the
current user coordinate system in place at the time when the ‘filter’ element is referenced (i.e., the user co-
ordinate system for the element referencing the ‘filter’ element via a ‘filter’ property).
If primitiveUnits="objectBoundingBox", then any length values within the filter definitions represent fractions
or percentages of the bounding box on the referencing element (see Object bounding box units). Note that
if only one number was specified in a <number-optional-number> value this number is expanded out before
the ‘primitiveUnits’ computation takes place.
If attribute ‘primitiveUnits’ is not specified, then the effect is as if a value of userSpaceOnUse were specified.
Animatable: yes.

x = "<coordinate>"
See Filter effects region.



y = "<coordinate>"
See Filter effects region.

width = "<length>"
See Filter effects region.

height = "<length>"
See Filter effects region.

filterRes = "<number-optional-number>"
See Filter effects region.

xlink:href = "<iri>"
An IRI reference to another ‘filter’ element within the current SVG document fragment. Any attributes which
are defined on the referenced ‘filter’ element which are not defined on this element are inherited by this ele-
ment. If this element has no defined filter nodes, and the referenced element has defined filter nodes (possibly
due to its own ‘xlink:href’ attribute), then this element inherits the filter nodes defined from the referenced
‘filter’ element. Inheritance can be indirect to an arbitrary level; thus, if the referenced ‘filter’ element inher-
its attributes or its filter node specification due to its own ‘xlink:href’ attribute, then the current element can
inherit those attributes or filter node specifications.
Animatable: yes.

Properties inherit into the ‘filter’ element from its ancestors; properties do not inherit from the element referencing
the ‘filter’ element.

‘filter’ elements are never rendered directly; their only usage is as something that can be referenced using the
‘filter’ property. The ‘display’ property does not apply to the ‘filter’ element; thus, ‘filter’ elements are not directly
rendered even if the ‘display’ property is set to a value other than none, and ‘filter’ elements are available for ref-
erencing even when the ‘display’ property on the ‘filter’ element or any of its ancestors is set to none.

15.4 The ‘filter’ property

The description of the ‘filter’ property is as follows:

‘filter’
Value: <funciri> | none | inherit

Initial: none

Applies to: container elements (except ‘mask’) and graphics elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


<funciri>
An Functional IRI reference to a ‘filter’ element which defines the filter effects that shall be applied to this
element.

none
Do not apply any filter effects to this element.

15.5 Filter effects region

A ‘filter’ element can define a region on the canvas to which a given filter effect applies and can provide a resol-
ution for any intermediate continuous tone images used to process any raster-based filter primitives. The ‘filter’
element has the following attributes which work together to define the filter effects region:

‘filterUnits’ · Defines the coordinate system for attributes ‘x’, ‘y’, ‘width’ and ‘height’.
If filterUnits="userSpaceOnUse", ‘x’, ‘y’, ‘width’ and ‘height’ represent values in the current user coordinate

system in place at the time when the ‘filter’ is referenced (i.e., the user coordinate system for the element referen-
cing the ‘filter’ via a ‘filter’ property).

If filterUnits="objectBoundingBox", then ‘x’, ‘y’, ‘width’ and ‘height’ represent fractions or percentages of the
bounding box on the referencing element (see Object bounding box units).

If attribute ‘filterUnits’ is not specified, then the effect is if a value of 'objectBoundingBox' were specified.
Animatable: yes.

‘x’, ‘y’, ‘width’ and ‘height’ · These attributes define a rectangular region on the canvas to which this filter applies.
The amount of memory and processing time required to apply the filter are related to the size of this rectangle

and the ‘filterRes’ attribute of the filter.
The coordinate system for these attributes depends on the value for attribute ‘filterUnits’.
Negative values for ‘width’ or ‘height’ are an error (see Error processing). Zero values disable rendering of the

element which referenced the filter.
The bounds of this rectangle act as a hard clipping region for each filter primitive included with a given ‘filter’

element; thus, if the effect of a given filter primitive would extend beyond the bounds of the rectangle (this some-
times happens when using a ‘feGaussianBlur’ filter primitive with a very large ‘stdDeviation’), parts of the effect
will get clipped.

If ‘x’ or ‘y’ is not specified, the effect is as if a value of -10% were specified.
If ‘width’ or ‘height’ is not specified, the effect is as if a value of 120% were specified.
Animatable: yes.

‘filterRes’ · This attribute takes the form x-pixels [y-pixels], and indicates the width and height of the inter-
mediate images in pixels. If not provided, then the user agent will use reasonable values to produce a high-quality
result on the output device.

Care should be taken when assigning a non-default value to this attribute. Too small of a value may result in
unwanted pixelation in the result. Too large of a value may result in slow processing and large memory usage.



Negative values are an error (see Error processing). Zero values disable rendering of the element which ref-
erenced the filter.

Non-integer values are truncated, i.e rounded to the closest integer value towards zero.
Animatable: yes.

Note that both of the two possible value for ‘filterUnits’ (i.e., 'objectBoundingBox' and 'userSpaceOnUse') result in a
filter region whose coordinate system has its X-axis and Y-axis each parallel to the X-axis and Y-axis, respectively,
of the user coordinate system for the element to which the filter will be applied.

Sometimes implementers can achieve faster performance when the filter region can be mapped directly to
device pixels; thus, for best performance on display devices, it is suggested that authors define their region such
that SVG user agent can align the filter region pixel-for-pixel with the background. In particular, for best filter
effects performance, avoid rotating or skewing the user coordinate system. Explicit values for attribute ‘filterRes’
can either help or harm performance. If ‘filterRes’ is smaller than the automatic (i.e., default) filter resolution, then
filter effect might have faster performance (usually at the expense of quality). If ‘filterRes’ is larger than the auto-
matic (i.e., default) filter resolution, then filter effects performance will usually be slower.

It is often necessary to provide padding space because the filter effect might impact bits slightly outside the
tight-fitting bounding box on a given object. For these purposes, it is possible to provide negative percentage val-
ues for ‘x’ and ‘y’, and percentages values greater than 100% for ‘width’ and ‘height’. This, for example, is why the
defaults for the filter effects region are x="-10%" y="-10%" width="120%" height="120%".

15.6 Accessing the background image

Two possible pseudo input images for filter effects are BackgroundImage and BackgroundAlpha, which each rep-
resent an image snapshot of the canvas under the filter region at the time that the ‘filter’ element is invoked. Back-
groundImage represents both the color values and alpha channel of the canvas (i.e., RGBA pixel values), whereas
BackgroundAlpha represents only the alpha channel.

Implementations of SVG user agents often will need to maintain supplemental background image buffers in
order to support the BackgroundImage and BackgroundAlpha pseudo input images. Sometimes, the background
image buffers will contain an in-memory copy of the accumulated painting operations on the current canvas.

Because in-memory image buffers can take up significant system resources, SVG content must explicitly in-
dicate to the SVG user agent that the document needs access to the background image before BackgroundImage
and BackgroundAlpha pseudo input images can be used. The property which enables access to the background
image is ‘enable-background’, defined below:

‘enable-background’
Value: accumulate | new [ <x> <y> <width> <height> ] | inherit

Initial: accumulate

Applies to: container elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: no

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


‘enable-background’ is only applicable to container elements and specifies how the SVG user agents manages the
accumulation of the background image.

A value of new indicates two things:

• It enables the ability of children of the current container element to access the background image.
• It indicates that a new (i.e., initially transparent black) background image canvas is established and that (in

effect) all children of the current container element shall be rendered into the new background image canvas
in addition to being rendered onto the target device.

A meaning of enable-background: accumulate (the initial/default value) depends on context:

• If an ancestor container element has a property value of enable-background: new, then all graphics elements
within the current container element are rendered both onto the parent container element's background im-
age canvas and onto the target device.

• Otherwise, there is no current background image canvas, so it is only necessary to render graphics elements
onto the target device. (No need to render to the background image canvas.)

If a filter effect specifies either the BackgroundImage or the BackgroundAlpha pseudo input images and no an-
cestor container element has a property value of enable-background: new, then the background image request is
technically in error. Processing will proceed without interruption (i.e., no error message) and a transparent black
image shall be provided in response to the request.

The optional <x>,<y>,<width>,<height> parameters on the new value are <number> values that indicate the
subregion of the container element's user space where access to the background image is allowed to happen. These
parameters enable the SVG user agent potentially to allocate smaller temporary image buffers than the default
values. Thus, the values <x>,<y>,<width>,<height> act as a clipping rectangle on the background image canvas.
Negative values for <width> or <height> are an error (see Error processing). If more than zero but less than four
of the values <x>,<y>,<width> and <height> are specified or if zero values are specified for <width> or <height>,
BackgroundImage and BackgroundAlpha are processed as if background image processing were not enabled.

Assume you have an element E in the document and that E has a series of ancestors A1 (its immediate parent),
A2, etc. (Note: A0 is E.) Each ancestor Ai will have a corresponding temporary background image offscreen buffer
BUFi. The contents of the background image available to a ‘filter’ referenced by E is defined as follows:

• Find the element Ai with the smallest subscript i (including A0=E) for which the ‘enable-background’ property
has the value new. (Note: if there is no such ancestor element, then there is no background image available to
E, in which case a transparent black image will be used as E's background image.)

• For each Ai (from i=n to 1), initialize BUFi to transparent black. Render all children of Ai up to but not includ-
ing Ai-1 into BUFi. The children are painted, then filtered, clipped, masked and composited using the various
painting, filtering, clipping, masking and object opacity settings on the given child. Any filter effects, mask-
ing and group opacity that might be set on Ai do not apply when rendering the children of Ai into BUFi.
(Note that for the case of A0=E, the graphical contents of E are not rendered into BUF1 and thus are not
part of the background image available to E. Instead, the graphical contents of E are available via the
SourceGraphic and SourceAlpha pseudo input images.)



• Then, for each Ai (from i=1 to n-1), composite BUFi into BUFi+1.
• The accumulated result (i.e., BUFn) represents the background image available to E.

Example enable-background-01 illustrates the rules for background image processing.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="13.5cm" height="2.7cm" viewBox="0 0 1350 270"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<title>Example enable-background01</title>
<desc>This test case shows five pictures which illustrate the rules

for background image processing.</desc>

<defs>
<filter id="ShiftBGAndBlur"

filterUnits="userSpaceOnUse" x="0" y="0" width="1200" height="400">
<desc>

This filter discards the SourceGraphic, if any, and just produces
a result consisting of the BackgroundImage shifted down 125 units
and then blurred.

</desc>
<feOffset in="BackgroundImage" dx="0" dy="125" />
<feGaussianBlur stdDeviation="8" />

</filter>
<filter id="ShiftBGAndBlur_WithSourceGraphic"

filterUnits="userSpaceOnUse" x="0" y="0" width="1200" height="400">
<desc>

This filter takes the BackgroundImage, shifts it down 125 units, blurs it,
and then renders the SourceGraphic on top of the shifted/blurred background.

</desc>
<feOffset in="BackgroundImage" dx="0" dy="125" />
<feGaussianBlur stdDeviation="8" result="blur" />
<feMerge>

<feMergeNode in="blur"/>
<feMergeNode in="SourceGraphic"/>

</feMerge>
</filter>

</defs>

<g transform="translate(0,0)">
<desc>The first picture is our reference graphic without filters.</desc>
<rect x="25" y="25" width="100" height="100" fill="red"/>
<g opacity=".5">

<circle cx="125" cy="75" r="45" fill="green"/>
<polygon points="160,25 160,125 240,75" fill="blue"/>

</g>
<rect x="5" y="5" width="260" height="260" fill="none" stroke="blue"/>

</g>

<g enable-background="new" transform="translate(270,0)">
<desc>The second adds an empty 'g' element which invokes ShiftBGAndBlur.</desc>
<rect x="25" y="25" width="100" height="100" fill="red"/>
<g opacity=".5">

<circle cx="125" cy="75" r="45" fill="green"/>
<polygon points="160,25 160,125 240,75" fill="blue"/>

</g>
<g filter="url(#ShiftBGAndBlur)"/>
<rect x="5" y="5" width="260" height="260" fill="none" stroke="blue"/>

</g>

<g enable-background="new" transform="translate(540,0)">
<desc>The third invokes ShiftBGAndBlur on the inner group.</desc>
<rect x="25" y="25" width="100" height="100" fill="red"/>
<g filter="url(#ShiftBGAndBlur)" opacity=".5">

<circle cx="125" cy="75" r="45" fill="green"/>
<polygon points="160,25 160,125 240,75" fill="blue"/>

</g>
<rect x="5" y="5" width="260" height="260" fill="none" stroke="blue"/>

</g>

<g enable-background="new" transform="translate(810,0)">
<desc>The fourth invokes ShiftBGAndBlur on the triangle.</desc>
<rect x="25" y="25" width="100" height="100" fill="red"/>



<g opacity=".5">
<circle cx="125" cy="75" r="45" fill="green"/>
<polygon points="160,25 160,125 240,75" fill="blue"

filter="url(#ShiftBGAndBlur)"/>
</g>
<rect x="5" y="5" width="260" height="260" fill="none" stroke="blue"/>

</g>

<g enable-background="new" transform="translate(1080,0)">
<desc>The fifth invokes ShiftBGAndBlur_WithSourceGraphic on the triangle.</desc>
<rect x="25" y="25" width="100" height="100" fill="red"/>
<g opacity=".5">

<circle cx="125" cy="75" r="45" fill="green"/>
<polygon points="160,25 160,125 240,75" fill="blue"

filter="url(#ShiftBGAndBlur_WithSourceGraphic)"/>
</g>
<rect x="5" y="5" width="260" height="260" fill="none" stroke="blue"/>

</g>
</svg>

Example enable-background-01

The example above contains five parts, described as follows:

1. The first set is the reference graphic. The reference graphic consists of a red rectangle followed by a 50% trans-
parent ‘g’ element. Inside the ‘g’ is a green circle that partially overlaps the rectangle and a a blue triangle
that partially overlaps the circle. The three objects are then outlined by a rectangle stroked with a thin blue
line. No filters are applied to the reference graphic.

2. The second set enables background image processing and adds an empty ‘g’ element which invokes the
ShiftBGAndBlur filter. This filter takes the current accumulated background image (i.e., the entire reference
graphic) as input, shifts its offscreen down, blurs it, and then writes the result to the canvas. Note that the
offscreen for the filter is initialized to transparent black, which allows the already rendered rectangle, circle
and triangle to show through after the filter renders its own result to the canvas.

3. The third set enables background image processing and instead invokes the ShiftBGAndBlur filter on the in-
ner ‘g’ element. The accumulated background at the time the filter is applied contains only the red rectangle.
Because the children of the inner ‘g’ (i.e., the circle and triangle) are not part of the inner ‘g’ element's back-
ground and because ShiftBGAndBlur ignores SourceGraphic, the children of the inner ‘g’ do not appear in
the result.

4. The fourth set enables background image processing and invokes the ShiftBGAndBlur on the ‘polygon’ ele-
ment that draws the triangle. The accumulated background at the time the filter is applied contains the red
rectangle plus the green circle ignoring the effect of the ‘opacity’ property on the inner ‘g’ element. (Note
that the blurred green circle at the bottom does not let the red rectangle show through on its left side. This is
due to ignoring the effect of the ‘opacity’ property.) Because the triangle itself is not part of the accumulated
background and because ShiftBGAndBlur ignores SourceGraphic, the triangle does not appear in the result.

5. The fifth set is the same as the fourth except that filter ShiftBGAndBlur_WithSourceGraphic is invoked in-



stead of ShiftBGAndBlur. ShiftBGAndBlur_WithSourceGraphic performs the same effect as ShiftBGAndBlur,
but then renders the SourceGraphic on top of the shifted, blurred background image. In this case,
SourceGraphic is the blue triangle; thus, the result is the same as in the fourth case except that the blue tri-
angle now appears.

15.7 Filter primitives overview

15.7.1 Overview

This section describes the various filter primtives that can be assembled to achieve a particular filter effect.
Unless otherwise stated, all image filters operate on premultiplied RGBA samples. Filters which work more

naturally on non-premultiplied data (feColorMatrix and feComponentTransfer) will temporarily undo and redo
premultiplication as specified. All raster effect filtering operations take 1 to N input RGBA images, additional at-
tributes as parameters, and produce a single output RGBA image.

The RGBA result from each filter primitive will be clamped into the allowable ranges for colors and opacity
values. Thus, for example, the result from a given filter primitive will have any negative color values or opacity
values adjusted up to color/opacity of zero.

The color space in which a particular filter primitive performs its operations is determined by the value of
property ‘color-interpolation-filters’ on the given filter primitive. A different property, ‘color-interpolation’ determ-
ines the color space for other color operations. Because these two properties have different initial values (‘color-
interpolation-filters’ has an initial value of linearRGB whereas ‘color-interpolation’ has an initial value of sRGB), in
some cases to achieve certain results (e.g., when coordinating gradient interpolation with a filtering operation) it
will be necessary to explicitly set ‘color-interpolation’ to linearRGB or ‘color-interpolation-filters’ to sRGB on partic-
ular elements. Note that the examples below do not explicitly set either ‘color-interpolation’ or ‘color-interpolation-
filters’, so the initial values for these properties apply to the examples.

15.7.2 Common attributes

With the exception of the ‘in’ attribute, all of the following attributes are available on all filter primitive elements:

Attribute definitions:

x = "<coordinate>"
The minimum x coordinate for the subregion which restricts calculation and rendering of the given filter
primitive. See filter primitive subregion.
Animatable: yes.

y = "<coordinate>"
The minimum y coordinate for the subregion which restricts calculation and rendering of the given filter
primitive. See filter primitive subregion.
Animatable: yes.



width = "<length>"
The width of the subregion which restricts calculation and rendering of the given filter primitive. See filter
primitive subregion.
A negative value is an error (see Error processing). A value of zero disables the effect of the given filter prim-
itive (i.e., the result is a transparent black image).
Animatable: yes.

height = "<length>"
The height of the subregion which restricts calculation and rendering of the given filter primitive. See filter
primitive subregion.
A negative value is an error (see Error processing). A value of zero disables the effect of the given filter prim-
itive (i.e., the result is a transparent black image).
Animatable: yes.

result = "<filter-primitive-reference>"
Assigned name for this filter primitive. If supplied, then graphics that result from processing this filter prim-
itive can be referenced by an ‘in’ attribute on a subsequent filter primitive within the same ‘filter’ element.
If no value is provided, the output will only be available for re-use as the implicit input into the next filter
primitive if that filter primitive provides no value for its ‘in’ attribute.
Note that a <filter-primitive-reference> is not an XML ID; instead, a <filter-primitive-reference> is only
meaningful within a given ‘filter’ element and thus have only local scope. It is legal for the same <filter-
primitive-reference> to appear multiple times within the same ‘filter’ element. When referenced, the <filter-
primitive-reference> will use the closest preceding filter primitive with the given result.
Animatable: yes.

in = "SourceGraphic | SourceAlpha | BackgroundImage | BackgroundAlpha | FillPaint | StrokePaint |
<filter-primitive-reference>"

Identifies input for the given filter primitive. The value can be either one of six keywords or can be a string
which matches a previous ‘result’ attribute value within the same ‘filter’ element. If no value is provided and
this is the first filter primitive, then this filter primitive will use SourceGraphic as its input. If no value is
provided and this is a subsequent filter primitive, then this filter primitive will use the result from the previ-
ous filter primitive as its input.

If the value for ‘result’ appears multiple times within a given ‘filter’ element, then a reference to that result
will use the closest preceding filter primitive with the given value for attribute ‘result’. Forward references
to results are an error.

Definitions for the six keywords:

SourceGraphic
This keyword represents the graphics elements that were the original input into the ‘filter’ element. For
raster effects filter primitives, the graphics elements will be rasterized into an initially clear RGBA ras-
ter in image space. Pixels left untouched by the original graphic will be left clear. The image is specified



to be rendered in linear RGBA pixels. The alpha channel of this image captures any anti-aliasing speci-
fied by SVG. (Since the raster is linear, the alpha channel of this image will represent the exact percent
coverage of each pixel.)

SourceAlpha
This keyword represents the graphics elements that were the original input into the ‘filter’ element.
SourceAlpha has all of the same rules as SourceGraphic except that only the alpha channel is used. The
input image is an RGBA image consisting of implicitly black color values for the RGB channels, but
whose alpha channel is the same as SourceGraphic. If this option is used, then some implementations
might need to rasterize the graphics elements in order to extract the alpha channel.

BackgroundImage
This keyword represents an image snapshot of the canvas under the filter region at the time that the
‘filter’ element was invoked. See Accessing the background image.

BackgroundAlpha
Same as BackgroundImage except only the alpha channel is used. See SourceAlpha and Accessing the
background image.

FillPaint
This keyword represents the value of the ‘fill’ property on the target element for the filter effect. The
FillPaint image has conceptually infinite extent. Frequently this image is opaque everywhere, but it
might not be if the "paint" itself has alpha, as in the case of a gradient or pattern which itself includes
transparent or semi-transparent parts.

StrokePaint
This keyword represents the value of the ‘stroke’ property on the target element for the filter effect. The
StrokePaint image has conceptually infinite extent. Frequently this image is opaque everywhere, but it
might not be if the "paint" itself has alpha, as in the case of a gradient or pattern which itself includes
transparent or semi-transparent parts.

The ‘in’ attribute is available on all filter primitive elements that require an input.
Animatable: yes.

15.7.3 Filter primitive subregion

All filter primitives have attributes ‘x’, ‘y’, ‘width’ and ‘height’ which identify a subregion which restricts calcula-
tion and rendering of the given filter primitive. These attributes are defined according to the same rules as other
filter primitives' coordinate and length attributes and thus represent values in the coordinate system established
by attribute ‘primitiveUnits’ on the ‘filter’ element.

‘x’, ‘y’, ‘width’ and ‘height’ default to the union (i.e., tightest fitting bounding box) of the subregions defined
for all referenced nodes. If there are no referenced nodes (e.g., for ‘feImage’ or ‘feTurbulence’), or one or more of
the referenced nodes is a standard input (one of SourceGraphic, SourceAlpha, BackgroundImage, BackgroundAlpha,



FillPaint or StrokePaint), or for ‘feTile’ (which is special because its principal function is to replicate the referenced
node in X and Y and thereby produce a usually larger result), the default subregion is 0%,0%,100%,100%, where as
a special-case the percentages are relative to the dimensions of the filter region, thus making the the default filter
primitive subregion equal to the filter region.

‘x’, ‘y’, ‘width’ and ‘height’ act as a hard clip clipping rectangle on both the filter primitive's input image(s)
and the filter primitive result.

All intermediate offscreens are defined to not exceed the intersection of ‘x’, ‘y’, ‘width’ and ‘height’ with the
filter region. The filter region and any of the ‘x’, ‘y’, ‘width’ and ‘height’ subregions are to be set up such that all
offscreens are made big enough to accommodate any pixels which even partly intersect with either the filter re-
gion or the x,y,width,height subregions.

‘feTile’ references a previous filter primitive and then stitches the tiles together based on the ‘x’, ‘y’, ‘width’
and ‘height’ values of the referenced filter primitive in order to fill its own filter primitive subregion.

Example primitive-subregion-01 demonstrates the effect of specifying a filter primitive subregion:

<svg width="400" height="400" xmlns="http://www.w3.org/2000/svg">
<defs>

<filter id="flood" x="0" y="0" width="100%" height="100%" primitiveUnits="objectBoundingBox">
<feFlood x="25%" y="25%" width="50%" height="50%"

flood-color="green" flood-opacity="0.75"/>
</filter>
<filter id="blend" primitiveUnits="objectBoundingBox">

<feBlend x="25%" y="25%" width="50%" height="50%"
in2="SourceGraphic" mode="multiply"/>

</filter>
<filter id="merge" primitiveUnits="objectBoundingBox">

<feMerge x="25%" y="25%" width="50%" height="50%">
<feMergeNode in="SourceGraphic"/>
<feMergeNode in="FillPaint"/>

</feMerge>
</filter>

</defs>

<g fill="none" stroke="blue" stroke-width="4">
<rect width="200" height="200"/>
<line x2="200" y2="200"/>
<line x1="200" y2="200"/>

</g>
<circle fill="green" filter="url(#flood)" cx="100" cy="100" r="90"/>

<g transform="translate(200 0)">
<g fill="none" stroke="blue" stroke-width="4">

<rect width="200" height="200"/>
<line x2="200" y2="200"/>
<line x1="200" y2="200"/>

</g>
<circle fill="green" filter="url(#blend)" cx="100" cy="100" r="90"/>

</g>

<g transform="translate(0 200)">
<g fill="none" stroke="blue" stroke-width="4">

<rect width="200" height="200"/>
<line x2="200" y2="200"/>
<line x1="200" y2="200"/>

</g>
<circle fill="green" fill-opacity="0.5" filter="url(#merge)" cx="100" cy="100" r="90"/>

</g>
</svg>



Example primitive-subregion-01

In the example above there are three rects that each have a cross and a circle in them. The circle element in each
one has a different filter applied, but with the same filter primitive subregion. The filter output should be limited
to the filter primitive subregion, so you should never see the circles themselves, just the rects that make up the
filter primitive subregion.

• The upper left rect shows an ‘feFlood’ with flood-opacity="75%" so the cross should be visible through the
green rect in the middle.

• The lower left rect shows an ‘feMerge’ that merges SourceGraphic with FillPaint. Since the circle has fill-opa-
city="0.5" it will also be transparent so that the cross is visible through the green rect in the middle.

• The upper right rect shows an ‘feBlend’ that has mode="multiply". Since the circle in this case isn't transparent
the result is totally opaque. The rect should be dark green and the cross should not be visible through it.



‘feDistantLight’

15.8 Light source elements and properties

15.8.1 Introduction

The following sections define the elements that define a light source, ‘feDistantLight’, ‘fePointLight’ and ‘feS-
potLight’, and property ‘lighting-color’, which defines the color of the light.

15.8.2 Light source ‘feDistantLight’

Categories:
Light source element

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
‘azimuth’
‘elevation’

DOM Interfaces:
SVGFEDistantLightElement

Attribute definitions:

azimuth = "<number>"
Direction angle for the light source on the XY plane (clockwise), in degrees from the x axis.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

elevation = "<number>"
Direction angle for the light source from the XY plane towards the z axis, in degrees. Note the positive Z-
axis points towards the viewer of the content.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

The following diagram illustrates the angles which ‘azimuth’ and ‘elevation’ represent in an XYZ coordinate sys-
tem.



‘fePointLight’

15.8.3 Light source ‘fePointLight’

Categories:
Light source element

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
‘x’
‘y’
‘z’

DOM Interfaces:
SVGFEPointLightElement



‘feSpotLight’

Attribute definitions:

x = "<number>"
X location for the light source in the coordinate system established by attribute ‘primitiveUnits’ on the ‘filter’
element.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

y = "<number>"
Y location for the light source in the coordinate system established by attribute ‘primitiveUnits’ on the ‘filter’
element.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

z = "<number>"
Z location for the light source in the coordinate system established by attribute ‘primitiveUnits’ on the ‘filter’
element, assuming that, in the initial coordinate system, the positive Z-axis comes out towards the person
viewing the content and assuming that one unit along the Z-axis equals one unit in X and Y.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

15.8.4 Light source ‘feSpotLight’

Categories:
Light source element

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
‘x’
‘y’
‘z’
‘pointsAtX’
‘pointsAtY’
‘pointsAtZ’
‘specularExponent’
‘limitingConeAngle’



DOM Interfaces:
SVGFESpotLightElement

Attribute definitions:

x = "<number>"
X location for the light source in the coordinate system established by attribute ‘primitiveUnits’ on the ‘filter’
element.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

y = "<number>"
Y location for the light source in the coordinate system established by attribute ‘primitiveUnits’ on the ‘filter’
element.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

z = "<number>"
Z location for the light source in the coordinate system established by attribute ‘primitiveUnits’ on the ‘filter’
element, assuming that, in the initial coordinate system, the positive Z-axis comes out towards the person
viewing the content and assuming that one unit along the Z-axis equals one unit in X and Y.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

pointsAtX = "<number>"
X location in the coordinate system established by attribute ‘primitiveUnits’ on the ‘filter’ element of the
point at which the light source is pointing.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

pointsAtY = "<number>"
Y location in the coordinate system established by attribute ‘primitiveUnits’ on the ‘filter’ element of the
point at which the light source is pointing.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

pointsAtZ = "<number>"
Z location in the coordinate system established by attribute ‘primitiveUnits’ on the ‘filter’ element of the
point at which the light source is pointing, assuming that, in the initial coordinate system, the positive Z-axis
comes out towards the person viewing the content and assuming that one unit along the Z-axis equals one
unit in X and Y.



‘feBlend’

If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

specularExponent = "<number>"
Exponent value controlling the focus for the light source.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

limitingConeAngle = "<number>"
A limiting cone which restricts the region where the light is projected. No light is projected outside the cone.
‘limitingConeAngle’ represents the angle in degrees between the spot light axis (i.e. the axis between the light
source and the point to which it is pointing at) and the spot light cone. User agents should apply a smoothing
technique such as anti-aliasing at the boundary of the cone.
If no value is specified, then no limiting cone will be applied.
Animatable: yes.

15.8.5 The ‘lighting-color’ property

The ‘lighting-color’ property defines the color of the light source for filter primitives ‘feDiffuseLighting’ and ‘feSpec-
ularLighting’.

‘lighting-color’

Value:

currentColor |

<color> [<icccolor>] |

inherit

Initial: white

Applies to: ‘feDiffuseLighting’ and ‘feSpecularLighting’ elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

15.9 Filter primitive ‘feBlend’

This filter composites two objects together using commonly used imaging software blending modes. It performs a
pixel-wise combination of two input images.

Categories:
Filter primitive element

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’
‘in’
‘in2’
‘mode’

DOM Interfaces:
SVGFEBlendElement

Attribute definitions:

mode = "normal | multiply | screen | darken | lighten"
One of the image blending modes (see table below). If attribute ‘mode’ is not specified, then the effect is as if
a value of normal were specified.
Animatable: yes.

in2 = "(see ‘in’ attribute)"
The second input image to the blending operation. This attribute can take on the same values as the ‘in’ at-
tribute.
Animatable: yes.

For all feBlend modes, the result opacity is computed as follows:

qr = 1 - (1-qa)*(1-qb)

For the compositing formulas below, the following definitions apply:

cr = Result color (RGB) - premultiplied
qa = Opacity value at a given pixel for image A
qb = Opacity value at a given pixel for image B
ca = Color (RGB) at a given pixel for image A - premultiplied
cb = Color (RGB) at a given pixel for image B - premultiplied

The following table provides the list of available image blending modes:



Image Blending Mode Formula for computing result color

normal cr = (1 - qa) * cb + ca

multiply cr = (1-qa)*cb + (1-qb)*ca + ca*cb

screen cr = cb + ca - ca * cb

darken cr = Min ((1 - qa) * cb + ca, (1 - qb) * ca + cb)

lighten cr = Max ((1 - qa) * cb + ca, (1 - qb) * ca + cb)

'normal' blend mode is equivalent to operator="over" on the ‘feComposite’ filter primitive, matches the blending
method used by ‘feMerge’ and matches the simple alpha compositing technique used in SVG for all compositing
outside of filter effects.

Example feBlend shows examples of the five blend modes.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="5cm" viewBox="0 0 500 500"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<title>Example feBlend - Examples of feBlend modes</title>
<desc>Five text strings blended into a gradient,

with one text string for each of the five feBlend modes.</desc>
<defs>

<linearGradient id="MyGradient" gradientUnits="userSpaceOnUse"
x1="100" y1="0" x2="300" y2="0">

<stop offset="0" stop-color="#000000" />
<stop offset=".33" stop-color="#ffffff" />
<stop offset=".67" stop-color="#ff0000" />
<stop offset="1" stop-color="#808080" />

</linearGradient>
<filter id="Normal">

<feBlend mode="normal" in2="BackgroundImage" in="SourceGraphic"/>
</filter>
<filter id="Multiply">

<feBlend mode="multiply" in2="BackgroundImage" in="SourceGraphic"/>
</filter>
<filter id="Screen">

<feBlend mode="screen" in2="BackgroundImage" in="SourceGraphic"/>
</filter>
<filter id="Darken">

<feBlend mode="darken" in2="BackgroundImage" in="SourceGraphic"/>
</filter>
<filter id="Lighten">

<feBlend mode="lighten" in2="BackgroundImage" in="SourceGraphic"/>
</filter>

</defs>
<rect fill="none" stroke="blue"

x="1" y="1" width="498" height="498"/>
<g enable-background="new" >

<rect x="100" y="20" width="300" height="460" fill="url(#MyGradient)" />
<g font-family="Verdana" font-size="75" fill="#888888" fill-opacity=".6" >

<text x="50" y="90" filter="url(#Normal)" >Normal</text>
<text x="50" y="180" filter="url(#Multiply)" >Multiply</text>
<text x="50" y="270" filter="url(#Screen)" >Screen</text>
<text x="50" y="360" filter="url(#Darken)" >Darken</text>
<text x="50" y="450" filter="url(#Lighten)" >Lighten</text>

</g>
</g>

</svg>



‘feColorMatrix’

Example feBlend

15.10 Filter primitive ‘feColorMatrix’

This filter applies a matrix transformation:

| R' |     | a00 a01 a02 a03 a04 |   | R |
| G' |     | a10 a11 a12 a13 a14 |   | G |
| B' |  =  | a20 a21 a22 a23 a24 | * | B |
| A' |     | a30 a31 a32 a33 a34 |   | A |
| 1  |     |  0   0   0   0   1  |   | 1 |

on the RGBA color and alpha values of every pixel on the input graphics to produce a result with a new set of
RGBA color and alpha values.

The calculations are performed on non-premultiplied color values. If the input graphics consists of premulti-
plied color values, those values are automatically converted into non-premultiplied color values for this operation.

These matrices often perform an identity mapping in the alpha channel. If that is the case, an implementation
can avoid the costly undoing and redoing of the premultiplication for all pixels with A = 1.

Categories:
Filter primitive element

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’



‘in’
‘type’
‘values’

DOM Interfaces:
SVGFEColorMatrixElement

Attribute definitions:

type = "matrix | saturate | hueRotate | luminanceToAlpha"
Indicates the type of matrix operation. The keyword 'matrix' indicates that a full 5x4 matrix of values will be
provided. The other keywords represent convenience shortcuts to allow commonly used color operations to
be performed without specifying a complete matrix. If attribute ‘type’ is not specified, then the effect is as if
a value of matrix were specified.
Animatable: yes.

values = "list of <number>s"
The contents of ‘values’ depends on the value of attribute ‘type’:

• For type="matrix", ‘values’ is a list of 20 matrix values (a00 a01 a02 a03 a04 a10 a11 ... a34), separated by
whitespace and/or a comma. For example, the identity matrix could be expressed as:

type="matrix"
values="1 0 0 0 0  0 1 0 0 0  0 0 1 0 0  0 0 0 1 0"

• For type="saturate", ‘values’ is a single real number value (0 to 1). A saturate operation is equivalent to
the following matrix operation:

| R' |     |0.213+0.787s  0.715-0.715s  0.072-0.072s 0  0 |   | R |
| G' |     |0.213-0.213s  0.715+0.285s  0.072-0.072s 0  0 |   | G |
| B' |  =  |0.213-0.213s  0.715-0.715s  0.072+0.928s 0  0 | * | B |
| A' |     |           0            0             0  1  0 |   | A |
| 1  |     |           0            0             0  0  1 |   | 1 |

• For type="hueRotate", ‘values’ is a single one real number value (degrees). A hueRotate operation is equi-
valent to the following matrix operation:

| R' |     | a00  a01  a02  0  0 |   | R |
| G' |     | a10  a11  a12  0  0 |   | G |
| B' |  =  | a20  a21  a22  0  0 | * | B |
| A' |     | 0    0    0    1  0 |   | A |
| 1  |     | 0    0    0    0  1 |   | 1 |

where the terms a00, a01, etc. are calculated as follows:

| a00 a01 a02 |    [+0.213 +0.715 +0.072]
| a10 a11 a12 | =  [+0.213 +0.715 +0.072] +
| a20 a21 a22 |    [+0.213 +0.715 +0.072]



[+0.787 -0.715 -0.072]
cos(hueRotate value) *  [-0.213 +0.285 -0.072] +

[-0.213 -0.715 +0.928]
[-0.213 -0.715+0.928]

sin(hueRotate value) *  [+0.143 +0.140-0.283]
[-0.787 +0.715+0.072]

Thus, the upper left term of the hue matrix turns out to be:

.213 + cos(hueRotate value)*.787 - sin(hueRotate value)*.213

• For type="luminanceToAlpha", ‘values’ is not applicable. A luminanceToAlpha operation is equivalent to
the following matrix operation:

| R' |     |      0        0        0  0  0 |   | R |
| G' |     |      0        0        0  0  0 |   | G |
| B' |  =  |      0        0        0  0  0 | * | B |
| A' |     | 0.2125   0.7154   0.0721  0  0 |   | A |
| 1  |     |      0        0        0  0  1 |   | 1 |

If the attribute is not specified, then the default behavior depends on the value of attribute ‘type’. If
type="matrix", then this attribute defaults to the identity matrix. If type="saturate", then this attribute defaults
to the value 1, which results in the identity matrix. If type="hueRotate", then this attribute defaults to the
value 0, which results in the identity matrix.
Animatable: yes.

Example feColorMatrix shows examples of the four types of feColorMatrix operations.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="5cm" viewBox="0 0 800 500"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<title>Example feColorMatrix - Examples of feColorMatrix operations</title>
<desc>Five text strings showing the effects of feColorMatrix:

an unfiltered text string acting as a reference,
use of the feColorMatrix matrix option to convert to grayscale,
use of the feColorMatrix saturate option,
use of the feColorMatrix hueRotate option,
and use of the feColorMatrix luminanceToAlpha option.</desc>

<defs>
<linearGradient id="MyGradient" gradientUnits="userSpaceOnUse"

x1="100" y1="0" x2="500" y2="0">
<stop offset="0" stop-color="#ff00ff" />
<stop offset=".33" stop-color="#88ff88" />
<stop offset=".67" stop-color="#2020ff" />
<stop offset="1" stop-color="#d00000" />

</linearGradient>
<filter id="Matrix" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feColorMatrix type="matrix" in="SourceGraphic"

values=".33 .33 .33 0 0
.33 .33 .33 0 0
.33 .33 .33 0 0
.33 .33 .33 0 0"/>

</filter>
<filter id="Saturate40" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feColorMatrix type="saturate" in="SourceGraphic" values="0.4"/>

</filter>
<filter id="HueRotate90" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feColorMatrix type="hueRotate" in="SourceGraphic" values="90"/>



‘feComponentTransfer’

</filter>
<filter id="LuminanceToAlpha" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feColorMatrix type="luminanceToAlpha" in="SourceGraphic" result="a"/>
<feComposite in="SourceGraphic" in2="a" operator="in" />

</filter>
</defs>
<rect fill="none" stroke="blue"

x="1" y="1" width="798" height="498"/>
<g font-family="Verdana" font-size="75"

font-weight="bold" fill="url(#MyGradient)" >
<rect x="100" y="0" width="500" height="20" />
<text x="100" y="90">Unfiltered</text>
<text x="100" y="190" filter="url(#Matrix)" >Matrix</text>
<text x="100" y="290" filter="url(#Saturate40)" >Saturate</text>
<text x="100" y="390" filter="url(#HueRotate90)" >HueRotate</text>
<text x="100" y="490" filter="url(#LuminanceToAlpha)" >Luminance</text>

</g>
</svg>

Example feColorMatrix

15.11 Filter primitive ‘feComponentTransfer’

This filter primitive performs component-wise remapping of data as follows:

R' = feFuncR( R )
G' = feFuncG( G )
B' = feFuncB( B )
A' = feFuncA( A )

for every pixel. It allows operations like brightness adjustment, contrast adjustment, color balance or thresholding.
The calculations are performed on non-premultiplied color values. If the input graphics consists of premulti-

plied color values, those values are automatically converted into non-premultiplied color values for this operation.
(Note that the undoing and redoing of the premultiplication can be avoided if feFuncA is the identity transform
and all alpha values on the source graphic are set to 1.)

Categories:
Filter primitive element



‘feFuncR’

Content model:
Any number of the following elements, in any order:

‘feFuncA’
‘feFuncB’
‘feFuncG’
‘feFuncR’

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’
‘in’

DOM Interfaces:
SVGFEComponentTransferElement

The child elements of a ‘feComponentTransfer’ element specify the transfer functions for the four channels:

• ‘feFuncR’ — transfer function for the red component of the input graphic
• ‘feFuncG’ — transfer function for the green component of the input graphic
• ‘feFuncB’ — transfer function for the blue component of the input graphic
• ‘feFuncA’ — transfer function for the alpha component of the input graphic

The following rules apply to the processing of the ‘feComponentTransfer’ element:

• If more than one transfer function element of the same kind is specified, the last occurrence is to be used.
• If any of the transfer function elements are unspecified, the ‘feComponentTransfer’ must be processed as if

those transfer function elements were specified with their ‘type’ attributes set to 'identity'.

Categories:
None

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes



‘feFuncG’

‘feFuncB’

‘feFuncA’

transfer function element attributes

DOM Interfaces:
SVGFEFuncRElement

Categories:
None

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
transfer function element attributes

DOM Interfaces:
SVGFEFuncGElement

Categories:
None

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
transfer function element attributes

DOM Interfaces:
SVGFEFuncBElement

Categories:
None

Content model:
Any number of the following elements, in any order:

‘animate’



‘set’

Attributes:
core attributes
transfer function element attributes

DOM Interfaces:
SVGFEFuncAElement

The attributes below are the transfer function element attributes, which apply to sub-elements ‘feFuncR’, ‘feFun-
cG’, ‘feFuncB’ and ‘feFuncA’ that define the transfer functions.

Attribute definitions:

type = "identity | table | discrete | linear | gamma"
Indicates the type of component transfer function. The type of function determines the applicability of the
other attributes.

In the following, C is the initial component (e.g., ‘feFuncR’), C' is the remapped component; both in the
closed interval [0,1].

• For identity:

C' = C

• For table, the function is defined by linear interpolation between values given in the attribute ‘tableVal-
ues’. The table has n+1 values (i.e., v0 to vn) specifying the start and end values for n evenly sized inter-
polation regions. Interpolations use the following formula:
For a value C < 1 find k such that:

k/n <= C < (k+1)/n

The result C' is given by:
C' = vk + (C - k/n)*n * (vk+1 - vk)

If C = 1 then:
C' = vn.

• For discrete, the function is defined by the step function given in the attribute ‘tableValues’, which
provides a list of n values (i.e., v0 to vn-1) in order to identify a step function consisting of n steps. The
step function is defined by the following formula:
For a value C < 1 find k such that:

k/n <= C < (k+1)/n

The result C' is given by:
C' = vk



If C = 1 then:
C' = vn-1.

• For linear, the function is defined by the following linear equation:
C' = slope * C + intercept

• For gamma, the function is defined by the following exponential function:
C' = amplitude * pow(C, exponent) + offset

Animatable: yes.

tableValues = "(list of <number>s)"
When type="table", the list of <number>s v0,v1,...vn, separated by white space and/or a comma, which define
the lookup table. An empty list results in an identity transfer function. If the attribute is not specified, then
the effect is as if an empty list were provided.
Animatable: yes.

slope = "<number>"
When type="linear", the slope of the linear function.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

intercept = "<number>"
When type="linear", the intercept of the linear function.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

amplitude = "<number>"
When type="gamma", the amplitude of the gamma function.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

exponent = "<number>"
When type="gamma", the exponent of the gamma function.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

offset = "<number>"
When type="gamma", the offset of the gamma function.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

Example feComponentTransfer shows examples of the four types of feComponentTransfer operations.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="4cm" viewBox="0 0 800 400"

xmlns="http://www.w3.org/2000/svg" version="1.1">



<title>Example feComponentTransfer - Examples of feComponentTransfer operations</title>
<desc>Four text strings showing the effects of feComponentTransfer:

an identity function acting as a reference,
use of the feComponentTransfer table option,
use of the feComponentTransfer linear option,
and use of the feComponentTransfer gamma option.</desc>

<defs>
<linearGradient id="MyGradient" gradientUnits="userSpaceOnUse"

x1="100" y1="0" x2="600" y2="0">
<stop offset="0" stop-color="#ff0000" />
<stop offset=".33" stop-color="#00ff00" />
<stop offset=".67" stop-color="#0000ff" />
<stop offset="1" stop-color="#000000" />

</linearGradient>
<filter id="Identity" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feComponentTransfer>

<feFuncR type="identity"/>
<feFuncG type="identity"/>
<feFuncB type="identity"/>
<feFuncA type="identity"/>

</feComponentTransfer>
</filter>
<filter id="Table" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feComponentTransfer>

<feFuncR type="table" tableValues="0 0 1 1"/>
<feFuncG type="table" tableValues="1 1 0 0"/>
<feFuncB type="table" tableValues="0 1 1 0"/>

</feComponentTransfer>
</filter>
<filter id="Linear" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feComponentTransfer>

<feFuncR type="linear" slope=".5" intercept=".25"/>
<feFuncG type="linear" slope=".5" intercept="0"/>
<feFuncB type="linear" slope=".5" intercept=".5"/>

</feComponentTransfer>
</filter>
<filter id="Gamma" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feComponentTransfer>

<feFuncR type="gamma" amplitude="2" exponent="5" offset="0"/>
<feFuncG type="gamma" amplitude="2" exponent="3" offset="0"/>
<feFuncB type="gamma" amplitude="2" exponent="1" offset="0"/>

</feComponentTransfer>
</filter>

</defs>
<rect fill="none" stroke="blue"

x="1" y="1" width="798" height="398"/>
<g font-family="Verdana" font-size="75"

font-weight="bold" fill="url(#MyGradient)" >
<rect x="100" y="0" width="600" height="20" />
<text x="100" y="90">Identity</text>
<text x="100" y="190" filter="url(#Table)" >TableLookup</text>
<text x="100" y="290" filter="url(#Linear)" >LinearFunc</text>
<text x="100" y="390" filter="url(#Gamma)" >GammaFunc</text>

</g>
</svg>



‘feComposite’

Example feComponentTransfer

15.12 Filter primitive ‘feComposite’

This filter performs the combination of the two input images pixel-wise in image space using one of the Porter-
Duff [PORTERDUFF] compositing operations: over, in, atop, out, xor [SVG-COMPOSITING]. Additionally, a
component-wise arithmetic operation (with the result clamped between [0..1]) can be applied.

The arithmetic operation is useful for combining the output from the ‘feDiffuseLighting’ and ‘feSpecularLight-
ing’ filters with texture data. It is also useful for implementing dissolve. If the arithmetic operation is chosen, each
result pixel is computed using the following formula:

result = k1*i1*i2 + k2*i1 + k3*i2 + k4

where:

• i1 and i2 indicate the corresponding pixel channel values of the input image, which map to in and in2 re-
spectively

• k1, k2, k3 and k4 indicate the values of the attributes with the same name

For this filter primitive, the extent of the resulting image might grow as described in the section that describes the
filter primitive subregion.

Categories:
Filter primitive element

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
presentation attributes
filter primitive attributes



‘class’
‘style’
‘in’
‘in2’
‘operator’
‘k1’
‘k2’
‘k3’
‘k4’

DOM Interfaces:
SVGFECompositeElement

Attribute definitions:

operator = "over | in | out | atop | xor | arithmetic"
The compositing operation that is to be performed. All of the ‘operator’ types except arithmetic match the
corresponding operation as described in [PORTERDUFF]. The arithmetic operator is described above. If at-
tribute ‘operator’ is not specified, then the effect is as if a value of over were specified.
Animatable: yes.

k1 = "<number>"
Only applicable if operator="arithmetic".
If the attribute is not specified, the effect is as if a value of 0 were specified.
Animatable: yes.

k2 = "<number>"
Only applicable if operator="arithmetic".
If the attribute is not specified, the effect is as if a value of 0 were specified.
Animatable: yes.

k3 = "<number>"
Only applicable if operator="arithmetic".
If the attribute is not specified, the effect is as if a value of 0 were specified.
Animatable: yes.

k4 = "<number>"
Only applicable if operator="arithmetic".
If the attribute is not specified, the effect is as if a value of 0 were specified.
Animatable: yes.



in2 = "(see ‘in’ attribute)"
The second input image to the compositing operation. This attribute can take on the same values as the ‘in’
attribute.
Animatable: yes.

Example feComposite shows examples of the six types of feComposite operations. It also shows two different tech-
niques to using the BackgroundImage as part of the compositing operation.

The first two rows render bluish triangles into the background. A filter is applied which composites reddish
triangles into the bluish triangles using one of the compositing operations. The result from compositing is drawn
onto an opaque white temporary surface, and then that result is written to the canvas. (The opaque white tempor-
ary surface obliterates the original bluish triangle.)

The last two rows apply the same compositing operations of reddish triangles into bluish triangles. However,
the compositing result is directly blended into the canvas (the opaque white temporary surface technique is not
used). In some cases, the results are different than when a temporary opaque white surface is used. The origin-
al bluish triangle from the background shines through wherever the compositing operation results in completely
transparent pixel. In other cases, the result from compositing is blended into the bluish triangle, resulting in a dif-
ferent final color value.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="330" height="195" viewBox="0 0 1100 650" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<title>Example feComposite - Examples of feComposite operations</title>
<desc>Four rows of six pairs of overlapping triangles depicting

the six different feComposite operators under different
opacity values and different clearing of the background.</desc>
<defs>

<desc>Define two sets of six filters for each of the six compositing operators.
The first set wipes out the background image by flooding with opaque white.
The second set does not wipe out the background, with the result
that the background sometimes shines through and is other cases
is blended into itself (i.e., "double-counting").</desc>

<filter id="overFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">
<feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="over" result="comp"/>
<feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>

</filter>
<filter id="inFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">

<feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="in" result="comp"/>
<feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>

</filter>
<filter id="outFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">

<feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="out" result="comp"/>
<feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>

</filter>
<filter id="atopFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">

<feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="atop" result="comp"/>
<feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>

</filter>
<filter id="xorFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">

<feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="xor" result="comp"/>
<feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>

</filter>
<filter id="arithmeticFlood" filterUnits="objectBoundingBox"

x="-5%" y="-5%" width="110%" height="110%">
<feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
<feComposite in="SourceGraphic" in2="BackgroundImage" result="comp"

operator="arithmetic" k1=".5" k2=".5" k3=".5" k4=".5"/>



<feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
</filter>
<filter id="overNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">

<feComposite in="SourceGraphic" in2="BackgroundImage" operator="over" result="comp"/>
</filter>
<filter id="inNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">

<feComposite in="SourceGraphic" in2="BackgroundImage" operator="in" result="comp"/>
</filter>
<filter id="outNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">

<feComposite in="SourceGraphic" in2="BackgroundImage" operator="out" result="comp"/>
</filter>
<filter id="atopNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">

<feComposite in="SourceGraphic" in2="BackgroundImage" operator="atop" result="comp"/>
</filter>
<filter id="xorNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">

<feComposite in="SourceGraphic" in2="BackgroundImage" operator="xor" result="comp"/>
</filter>
<filter id="arithmeticNoFlood" filterUnits="objectBoundingBox"

x="-5%" y="-5%" width="110%" height="110%">
<feComposite in="SourceGraphic" in2="BackgroundImage" result="comp"

operator="arithmetic" k1=".5" k2=".5" k3=".5" k4=".5"/>
</filter>
<path id="Blue100" d="M 0 0 L 100 0 L 100 100 z" fill="#00ffff" />
<path id="Red100" d="M 0 0 L 0 100 L 100 0 z" fill="#ff00ff" />
<path id="Blue50" d="M 0 125 L 100 125 L 100 225 z" fill="#00ffff" fill-opacity=".5" />
<path id="Red50" d="M 0 125 L 0 225 L 100 125 z" fill="#ff00ff" fill-opacity=".5" />
<g id="TwoBlueTriangles">

<use xlink:href="#Blue100"/>
<use xlink:href="#Blue50"/>

</g>
<g id="BlueTriangles">

<use transform="translate(275,25)" xlink:href="#TwoBlueTriangles"/>
<use transform="translate(400,25)" xlink:href="#TwoBlueTriangles"/>
<use transform="translate(525,25)" xlink:href="#TwoBlueTriangles"/>
<use transform="translate(650,25)" xlink:href="#TwoBlueTriangles"/>
<use transform="translate(775,25)" xlink:href="#TwoBlueTriangles"/>
<use transform="translate(900,25)" xlink:href="#TwoBlueTriangles"/>

</g>
</defs>

<rect fill="none" stroke="blue" x="1" y="1" width="1098" height="648"/>
<g font-family="Verdana" font-size="40" shape-rendering="crispEdges">

<desc>Render the examples using the filters that draw on top of
an opaque white surface, thus obliterating the background.</desc>

<g enable-background="new">
<text x="15" y="75">opacity 1.0</text>
<text x="15" y="115" font-size="27">(with feFlood)</text>
<text x="15" y="200">opacity 0.5</text>
<text x="15" y="240" font-size="27">(with feFlood)</text>
<use xlink:href="#BlueTriangles"/>
<g transform="translate(275,25)">

<use xlink:href="#Red100" filter="url(#overFlood)" />
<use xlink:href="#Red50" filter="url(#overFlood)" />
<text x="5" y="275">over</text>

</g>
<g transform="translate(400,25)">

<use xlink:href="#Red100" filter="url(#inFlood)" />
<use xlink:href="#Red50" filter="url(#inFlood)" />
<text x="35" y="275">in</text>

</g>
<g transform="translate(525,25)">

<use xlink:href="#Red100" filter="url(#outFlood)" />
<use xlink:href="#Red50" filter="url(#outFlood)" />
<text x="15" y="275">out</text>

</g>
<g transform="translate(650,25)">

<use xlink:href="#Red100" filter="url(#atopFlood)" />
<use xlink:href="#Red50" filter="url(#atopFlood)" />
<text x="10" y="275">atop</text>

</g>
<g transform="translate(775,25)">

<use xlink:href="#Red100" filter="url(#xorFlood)" />
<use xlink:href="#Red50" filter="url(#xorFlood)" />
<text x="15" y="275">xor</text>

</g>
<g transform="translate(900,25)">

<use xlink:href="#Red100" filter="url(#arithmeticFlood)" />



<use xlink:href="#Red50" filter="url(#arithmeticFlood)" />
<text x="-25" y="275">arithmetic</text>

</g>
</g>
<g transform="translate(0,325)" enable-background="new">
<desc>Render the examples using the filters that do not obliterate

the background, thus sometimes causing the background to continue
to appear in some cases, and in other cases the background
image blends into itself ("double-counting").</desc>

<text x="15" y="75">opacity 1.0</text>
<text x="15" y="115" font-size="27">(without feFlood)</text>
<text x="15" y="200">opacity 0.5</text>
<text x="15" y="240" font-size="27">(without feFlood)</text>
<use xlink:href="#BlueTriangles"/>
<g transform="translate(275,25)">

<use xlink:href="#Red100" filter="url(#overNoFlood)" />
<use xlink:href="#Red50" filter="url(#overNoFlood)" />
<text x="5" y="275">over</text>

</g>
<g transform="translate(400,25)">

<use xlink:href="#Red100" filter="url(#inNoFlood)" />
<use xlink:href="#Red50" filter="url(#inNoFlood)" />
<text x="35" y="275">in</text>

</g>
<g transform="translate(525,25)">

<use xlink:href="#Red100" filter="url(#outNoFlood)" />
<use xlink:href="#Red50" filter="url(#outNoFlood)" />
<text x="15" y="275">out</text>

</g>
<g transform="translate(650,25)">

<use xlink:href="#Red100" filter="url(#atopNoFlood)" />
<use xlink:href="#Red50" filter="url(#atopNoFlood)" />
<text x="10" y="275">atop</text>

</g>
<g transform="translate(775,25)">

<use xlink:href="#Red100" filter="url(#xorNoFlood)" />
<use xlink:href="#Red50" filter="url(#xorNoFlood)" />
<text x="15" y="275">xor</text>

</g>
<g transform="translate(900,25)">

<use xlink:href="#Red100" filter="url(#arithmeticNoFlood)" />
<use xlink:href="#Red50" filter="url(#arithmeticNoFlood)" />
<text x="-25" y="275">arithmetic</text>

</g>
</g>

</g>
</svg>

Example feComposite



15.13 Filter primitive ‘feConvolveMatrix’

feConvolveMatrix applies a matrix convolution filter effect. A convolution combines pixels in the input image with
neighboring pixels to produce a resulting image. A wide variety of imaging operations can be achieved through
convolutions, including blurring, edge detection, sharpening, embossing and beveling.

A matrix convolution is based on an n-by-m matrix (the convolution kernel) which describes how a given
pixel value in the input image is combined with its neighboring pixel values to produce a resulting pixel value.
Each result pixel is determined by applying the kernel matrix to the corresponding source pixel and its neighbor-
ing pixels. The basic convolution formula which is applied to each color value for a given pixel is:

COLORX,Y = (
SUM I=0 to [orderY-1] {

SUM J=0 to [orderX-1] {
SOURCE X-targetX+J, Y-targetY+I * kernelMatrixorderX-J-1, orderY-I-1

}
}

) / divisor + bias * ALPHAX,Y

where "orderX" and "orderY" represent the X and Y values for the ‘order’ attribute, "targetX" represents the value
of the ‘targetX’ attribute, "targetY" represents the value of the ‘targetY’ attribute, "kernelMatrix" represents the
value of the ‘kernelMatrix’ attribute, "divisor" represents the value of the ‘divisor’ attribute, and "bias" represents
the value of the ‘bias’ attribute.

Note in the above formulas that the values in the kernel matrix are applied such that the kernel matrix is ro-
tated 180 degrees relative to the source and destination images in order to match convolution theory as described
in many computer graphics textbooks.

To illustrate, suppose you have a input image which is 5 pixels by 5 pixels, whose color values for one of the
color channels are as follows:

0  20  40 235 235
100 120 140 235 235
200 220 240 235 235
225 225 255 255 255
225 225 255 255 255

and you define a 3-by-3 convolution kernel as follows:

1 2 3
4 5 6
7 8 9

Let's focus on the color value at the second row and second column of the image (source pixel value is 120). As-
suming the simplest case (where the input image's pixel grid aligns perfectly with the kernel's pixel grid) and as-
suming default values for attributes ‘divisor’, ‘targetX’ and ‘targetY’, then resulting color value will be:

(9*  0 + 8* 20 + 7* 40 +
6*100 + 5*120 + 4*140 +
3*200 + 2*220 + 1*240) / (9+8+7+6+5+4+3+2+1)



‘feConvolveMatrix’

Because they operate on pixels, matrix convolutions are inherently resolution-dependent. To make ‘feCon-
volveMatrix’ produce resolution-independent results, an explicit value should be provided for either the ‘filterRes’
attribute on the ‘filter’ element and/or attribute ‘kernelUnitLength’.

‘kernelUnitLength’, in combination with the other attributes, defines an implicit pixel grid in the filter effects
coordinate system (i.e., the coordinate system established by the ‘primitiveUnits’ attribute). If the pixel grid es-
tablished by ‘kernelUnitLength’ is not scaled to match the pixel grid established by attribute ‘filterRes’ (implicitly
or explicitly), then the input image will be temporarily rescaled to match its pixels with ‘kernelUnitLength’. The
convolution happens on the resampled image. After applying the convolution, the image is resampled back to the
original resolution.

When the image must be resampled to match the coordinate system defined by ‘kernelUnitLength’ prior to
convolution, or resampled to match the device coordinate system after convolution, it is recommended that high
quality viewers make use of appropriate interpolation techniques, for example bilinear or bicubic. Depending on
the speed of the available interpolents, this choice may be affected by the ‘image-rendering’ property setting. Note
that implementations might choose approaches that minimize or eliminate resampling when not necessary to pro-
duce proper results, such as when the document is zoomed out such that ‘kernelUnitLength’ is considerably smaller
than a device pixel.

Categories:
Filter primitive element

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’
‘in’
‘order’
‘kernelMatrix’
‘divisor’
‘bias’
‘targetX’
‘targetY’
‘edgeMode’
‘kernelUnitLength’
‘preserveAlpha’



DOM Interfaces:
SVGFEConvolveMatrixElement

Attribute definitions:

order = "<number-optional-number>"
Indicates the number of cells in each dimension for ‘kernelMatrix’. The values provided must be <integer>s
greater than zero. The first number, <orderX>, indicates the number of columns in the matrix. The second
number, <orderY>, indicates the number of rows in the matrix. If <orderY> is not provided, it defaults to
<orderX>.
A typical value is order="3". It is recommended that only small values (e.g., 3) be used; higher values may
result in very high CPU overhead and usually do not produce results that justify the impact on performance.
If the attribute is not specified, the effect is as if a value of 3 were specified.
Animatable: yes.

kernelMatrix = "<list of numbers>"
The list of <number>s that make up the kernel matrix for the convolution. Values are separated by space
characters and/or a comma. The number of entries in the list must equal <orderX> times <orderY>.
Animatable: yes.

divisor = "<number>"
After applying the ‘kernelMatrix’ to the input image to yield a number, that number is divided by ‘divisor’
to yield the final destination color value. A divisor that is the sum of all the matrix values tends to have an
evening effect on the overall color intensity of the result. It is an error to specify a divisor of zero. The default
value is the sum of all values in kernelMatrix, with the exception that if the sum is zero, then the divisor is
set to 1.
Animatable: yes.

bias = "<number>"
After applying the ‘kernelMatrix’ to the input image to yield a number and applying the ‘divisor’, the ‘bias’
attribute is added to each component. One application of ‘bias’ is when it is desirable to have .5 gray value
be the zero response of the filter. The bias property shifts the range of the filter. This allows representation of
values that would otherwise be clamped to 0 or 1. If ‘bias’ is not specified, then the effect is as if a value of 0
were specified.
Animatable: yes.

targetX = "<integer>"
Determines the positioning in X of the convolution matrix relative to a given target pixel in the input image.
The leftmost column of the matrix is column number zero. The value must be such that: 0 <= targetX < or-
derX. By default, the convolution matrix is centered in X over each pixel of the input image (i.e., targetX =



floor ( orderX / 2 )).
Animatable: yes.

targetY = "<integer>"
Determines the positioning in Y of the convolution matrix relative to a given target pixel in the input image.
The topmost row of the matrix is row number zero. The value must be such that: 0 <= targetY < orderY. By
default, the convolution matrix is centered in Y over each pixel of the input image (i.e., targetY = floor ( or-
derY / 2 )).
Animatable: yes.

edgeMode = "duplicate | wrap | none"
Determines how to extend the input image as necessary with color values so that the matrix operations can
be applied when the kernel is positioned at or near the edge of the input image.

"duplicate" indicates that the input image is extended along each of its borders as necessary by duplic-
ating the color values at the given edge of the input image.

Original N-by-M image, where m=M-1 and n=N-1:
11 12 ... 1m 1M
21 22 ... 2m 2M
.. .. ... .. ..
n1 n2 ... nm nM
N1 N2 ... Nm NM

Extended by two pixels using "duplicate":
11 11   11 12 ... 1m 1M   1M 1M
11 11   11 12 ... 1m 1M   1M 1M
11 11   11 12 ... 1m 1M   1M 1M
21 21   21 22 ... 2m 2M   2M 2M
.. ..   .. .. ... .. ..   .. ..
n1 n1   n1 n2 ... nm nM   nM nM
N1 N1   N1 N2 ... Nm NM   NM NM
N1 N1   N1 N2 ... Nm NM   NM NM
N1 N1   N1 N2 ... Nm NM   NM NM

"wrap" indicates that the input image is extended by taking the color values from the opposite edge of the
image.

Extended by two pixels using "wrap":
nm nM   n1 n2 ... nm nM   n1 n2
Nm NM   N1 N2 ... Nm NM   N1 N2
1m 1M   11 12 ... 1m 1M   11 12
2m 2M   21 22 ... 2m 2M   21 22
.. ..   .. .. ... .. ..   .. ..
nm nM   n1 n2 ... nm nM   n1 n2
Nm NM   N1 N2 ... Nm NM   N1 N2
1m 1M   11 12 ... 1m 1M   11 12
2m 2M   21 22 ... 2m 2M   21 22

"none" indicates that the input image is extended with pixel values of zero for R, G, B and A.
If attribute ‘edgeMode’ is not specified, then the effect is as if a value of duplicate were specified.
Animatable: yes.



kernelUnitLength = "<number-optional-number>"
The first number is the <dx> value. The second number is the <dy> value. If the <dy> value is not specified,
it defaults to the same value as <dx>. Indicates the intended distance in current filter units (i.e., units as de-
termined by the value of attribute ‘primitiveUnits’) between successive columns and rows, respectively, in
the ‘kernelMatrix’. By specifying value(s) for ‘kernelUnitLength’, the kernel becomes defined in a scalable,
abstract coordinate system. If ‘kernelUnitLength’ is not specified, the default value is one pixel in the off-
screen bitmap, which is a pixel-based coordinate system, and thus potentially not scalable. For some level of
consistency across display media and user agents, it is necessary that a value be provided for at least one of
‘filterRes’ and ‘kernelUnitLength’. In some implementations, the most consistent results and the fastest per-
formance will be achieved if the pixel grid of the temporary offscreen images aligns with the pixel grid of
the kernel.
A negative or zero value is an error (see Error processing).
Animatable: yes.

preserveAlpha = "false | true"
A value of false indicates that the convolution will apply to all channels, including the alpha channel. In this
case the ALPHAX,Y of the convolution formula for a given pixel is:

ALPHAX,Y = (
SUM I=0 to [orderY-1] {

SUM J=0 to [orderX-1] {
SOURCE X-targetX+J, Y-targetY+I * kernelMatrixorderX-J-1, orderY-I-1

}
}

) / divisor + bias

A value of true indicates that the convolution will only apply to the color channels. In this case, the filter
will temporarily unpremultiply the color component values, apply the kernel, and then re-premultiply at the
end. In this case the ALPHAX,Y of the convolution formula for a given pixel is:

ALPHAX,Y = SOURCEX,Y
If ‘preserveAlpha’ is not specified, then the effect is as if a value of false were specified.
Animatable: yes.

15.14 Filter primitive ‘feDiffuseLighting’

This filter primitive lights an image using the alpha channel as a bump map. The resulting image is an RGBA
opaque image based on the light color with alpha = 1.0 everywhere. The lighting calculation follows the standard
diffuse component of the Phong lighting model. The resulting image depends on the light color, light position and
surface geometry of the input bump map.

The light map produced by this filter primitive can be combined with a texture image using the multiply term
of the arithmetic ‘feComposite’ compositing method. Multiple light sources can be simulated by adding several of
these light maps together before applying it to the texture image.

The formulas below make use of 3x3 filters. Because they operate on pixels, such filters are inherently
resolution-dependent. To make ‘feDiffuseLighting’ produce resolution-independent results, an explicit value should
be provided for either the ‘filterRes’ attribute on the ‘filter’ element and/or attribute ‘kernelUnitLength’.



‘kernelUnitLength’, in combination with the other attributes, defines an implicit pixel grid in the filter effects
coordinate system (i.e., the coordinate system established by the ‘primitiveUnits’ attribute). If the pixel grid estab-
lished by ‘kernelUnitLength’ is not scaled to match the pixel grid established by attribute ‘filterRes’ (implicitly or
explicitly), then the input image will be temporarily rescaled to match its pixels with ‘kernelUnitLength’. The 3x3
filters are applied to the resampled image. After applying the filter, the image is resampled back to its original res-
olution.

When the image must be resampled, it is recommended that high quality viewers make use of appropriate
interpolation techniques, for example bilinear or bicubic. Depending on the speed of the available interpolents,
this choice may be affected by the ‘image-rendering’ property setting. Note that implementations might choose ap-
proaches that minimize or eliminate resampling when not necessary to produce proper results, such as when the
document is zoomed out such that ‘kernelUnitLength’ is considerably smaller than a device pixel.

For the formulas that follow, the Norm(Ax,Ay,Az) function is defined as:
Norm(Ax,Ay,Az) = sqrt(Ax^2+Ay^2+Az^2)

The resulting RGBA image is computed as follows:
Dr = kd * N.L * Lr

Dg = kd * N.L * Lg
Db = kd * N.L * Lb
Da = 1.0

where

kd = diffuse lighting constant
N = surface normal unit vector, a function of x and y
L = unit vector pointing from surface to light, a function of x and y in the point and spot light cases
Lr,Lg,Lb = RGB components of light, a function of x and y in the spot light case

N is a function of x and y and depends on the surface gradient as follows:
The surface described by the input alpha image I(x,y) is:

Z (x,y) = surfaceScale * I(x,y)

Surface normal is calculated using the Sobel gradient 3x3 filter. Different filter kernels are used depending on
whether the given pixel is on the interior or an edge. For each case, the formula is:

Nx (x,y)= - surfaceScale * FACTORx *
(Kx(0,0)*I(x-dx,y-dy) + Kx(1,0)*I(x,y-dy) + Kx(2,0)*I(x+dx,y-dy) +
Kx(0,1)*I(x-dx,y) + Kx(1,1)*I(x,y) + Kx(2,1)*I(x+dx,y) +
Kx(0,2)*I(x-dx,y+dy) + Kx(1,2)*I(x,y+dy) + Kx(2,2)*I(x+dx,y+dy))

Ny (x,y)= - surfaceScale * FACTORy *
(Ky(0,0)*I(x-dx,y-dy) + Ky(1,0)*I(x,y-dy) + Ky(2,0)*I(x+dx,y-dy) +
Ky(0,1)*I(x-dx,y) + Ky(1,1)*I(x,y) + Ky(2,1)*I(x+dx,y) +
Ky(0,2)*I(x-dx,y+dy) + Ky(1,2)*I(x,y+dy) + Ky(2,2)*I(x+dx,y+dy))

Nz (x,y) = 1.0

N = (Nx, Ny, Nz) / Norm((Nx,Ny,Nz))

In these formulas, the dx and dy values (e.g., I(x-dx,y-dy)), represent deltas relative to a given (x,y) position for



the purpose of estimating the slope of the surface at that point. These deltas are determined by the value (explicit
or implicit) of attribute ‘kernelUnitLength’.

Top/left corner:

FACTORx=2/(3*dx)
Kx =

| 0 0 0 |
| 0 -2 2 |
| 0 -1 1 |

FACTORy=2/(3*dy)
Ky =

| 0 0 0 |
| 0 -2 -1 |
| 0 2 1 |

Top row:

FACTORx=1/(3*dx)
Kx =

| 0 0 0 |
| -2 0 2 |
| -1 0 1 |

FACTORy=1/(2*dy)
Ky =

| 0 0 0 |
| -1 -2 -1 |
| 1 2 1 |

Top/right corner:

FACTORx=2/(3*dx)
Kx =

| 0 0 0 |
| -2 2 0 |
| -1 1 0 |

FACTORy=2/(3*dy)
Ky =

| 0 0 0 |
| -1 -2 0 |
| 1 2 0 |

Left column:

FACTORx=1/(2*dx)
Kx =

| 0 -1 1 |
| 0 -2 2 |
| 0 -1 1 |

FACTORy=1/(3*dy)
Ky =

| 0 -2 -1 |
| 0 0 0 |
| 0 2 1 |

Interior pixels:

FACTORx=1/(4*dx)
Kx =

| -1 0 1 |
| -2 0 2 |
| -1 0 1 |

FACTORy=1/(4*dy)
Ky =

| -1 -2 -1 |
| 0 0 0 |
| 1 2 1 |

Right column:

FACTORx=1/(2*dx)
Kx =

| -1 1 0|
| -2 2 0|
| -1 1 0|

FACTORy=1/(3*dy)
Ky =

| -1 -2 0 |
| 0 0 0 |
| 1 2 0 |

Bottom/left corner:

FACTORx=2/(3*dx)
Kx =

| 0 -1 1 |
| 0 -2 2 |
| 0 0 0 |

FACTORy=2/(3*dy)
Ky =

| 0 -2 -1 |
| 0 2 1 |
| 0 0 0 |

Bottom row:

FACTORx=1/(3*dx)
Kx =

| -1 0 1 |
| -2 0 2 |
| 0 0 0 |

FACTORy=1/(2*dy)
Ky =

| -1 -2 -1 |
| 1 2 1 |
| 0 0 0 |

Bottom/right corner:

FACTORx=2/(3*dx)
Kx =

| -1 1 0 |
| -2 2 0 |
| 0 0 0 |

FACTORy=2/(3*dy)
Ky =

| -1 -2 0 |
| 1 2 0 |
| 0 0 0 |

L, the unit vector from the image sample to the light, is calculated as follows:
For Infinite light sources it is constant:

Lx = cos(azimuth)*cos(elevation)
Ly = sin(azimuth)*cos(elevation)
Lz = sin(elevation)

For Point and spot lights it is a function of position:
Lx = Lightx - x

Ly = Lighty - y
Lz = Lightz - Z(x,y)



‘feDiffuseLighting’

L = (Lx, Ly, Lz) / Norm(Lx, Ly, Lz)

where Lightx, Lighty, and Lightz are the input light position.
Lr,Lg,Lb, the light color vector, is a function of position in the spot light case only:

Lr = Lightr*pow((-L.S),specularExponent)
Lg = Lightg*pow((-L.S),specularExponent)
Lb = Lightb*pow((-L.S),specularExponent)

where S is the unit vector pointing from the light to the point (pointsAtX, pointsAtY, pointsAtZ) in the x-y plane:
Sx = pointsAtX - Lightx

Sy = pointsAtY - Lighty
Sz = pointsAtZ - Lightz

S = (Sx, Sy, Sz) / Norm(Sx, Sy, Sz)

If L.S is positive, no light is present. (Lr = Lg = Lb = 0). If ‘limitingConeAngle’ is specified, -L.S <
cos(limitingConeAngle) also indicates that no light is present.

Categories:
Filter primitive element

Content model:
Any number of descriptive elements and exactly one light source element, in any order.

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’
‘in’
‘surfaceScale’
‘diffuseConstant’
‘kernelUnitLength’

DOM Interfaces:
SVGFEDiffuseLightingElement

Attribute definitions:

surfaceScale = "<number>"
height of surface when Ain = 1.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.



diffuseConstant = "<number>"
kd in Phong lighting model. In SVG, this can be any non-negative number.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

kernelUnitLength = "<number-optional-number>"
The first number is the <dx> value. The second number is the <dy> value. If the <dy> value is not specified,
it defaults to the same value as <dx>. Indicates the intended distance in current filter units (i.e., units as
determined by the value of attribute ‘primitiveUnits’) for dx and dy, respectively, in the surface normal cal-
culation formulas. By specifying value(s) for ‘kernelUnitLength’, the kernel becomes defined in a scalable,
abstract coordinate system. If ‘kernelUnitLength’ is not specified, the dx and dy values should represent very
small deltas relative to a given (x,y) position, which might be implemented in some cases as one pixel in
the intermediate image offscreen bitmap, which is a pixel-based coordinate system, and thus potentially not
scalable. For some level of consistency across display media and user agents, it is necessary that a value be
provided for at least one of ‘filterRes’ and ‘kernelUnitLength’. Discussion of intermediate images are in the
Introduction and in the description of attribute ‘filterRes’.
A negative or zero value is an error (see Error processing).
Animatable: yes.

The light source is defined by one of the child elements ‘feDistantLight’, ‘fePointLight’ or ‘feSpotLight’. The light
color is specified by property ‘lighting-color’.

15.15 Filter primitive ‘feDisplacementMap’

This filter primitive uses the pixels values from the image from ‘in2’ to spatially displace the image from ‘in’. This
is the transformation to be performed:

P'(x,y) <- P( x + scale * (XC(x,y) - .5), y + scale * (YC(x,y) - .5))

where P(x,y) is the input image, ‘in’, and P'(x,y) is the destination. XC(x,y) and YC(x,y) are the component values
of the channel designated by the xChannelSelector and yChannelSelector. For example, to use the R component of
‘in2’ to control displacement in x and the G component of Image2 to control displacement in y, set xChannelSelect-
or to "R" and yChannelSelector to "G".

The displacement map defines the inverse of the mapping performed.
The input image in is to remain premultiplied for this filter primitive. The calculations using the pixel values

from ‘in2’ are performed using non-premultiplied color values. If the image from ‘in2’ consists of premultiplied
color values, those values are automatically converted into non-premultiplied color values before performing this
operation.

This filter can have arbitrary non-localized effect on the input which might require substantial buffering in
the processing pipeline. However with this formulation, any intermediate buffering needs can be determined by
scale which represents the maximum range of displacement in either x or y.

When applying this filter, the source pixel location will often lie between several source pixels. In this case



‘feDisplacementMap’

it is recommended that high quality viewers apply an interpolent on the surrounding pixels, for example bilinear
or bicubic, rather than simply selecting the nearest source pixel. Depending on the speed of the available inter-
polents, this choice may be affected by the ‘image-rendering’ property setting.

The ‘color-interpolation-filters’ property only applies to the ‘in2’ source image and does not apply to the ‘in’
source image. The ‘in’ source image must remain in its current color space.

Categories:
Filter primitive element

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’
‘in’
‘in2’
‘scale’
‘xChannelSelector’
‘yChannelSelector’

DOM Interfaces:
SVGFEDisplacementMapElement

Attribute definitions:

scale = "<number>"
Displacement scale factor. The amount is expressed in the coordinate system established by attribute ‘prim-
itiveUnits’ on the ‘filter’ element.
When the value of this attribute is 0, this operation has no effect on the source image.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

xChannelSelector = "R | G | B | A"
Indicates which channel from ‘in2’ to use to displace the pixels in ‘in’ along the x-axis. If attribute ‘xChan-
nelSelector’ is not specified, then the effect is as if a value of A were specified.
Animatable: yes.



‘feFlood’

yChannelSelector = "R | G | B | A"
Indicates which channel from ‘in2’ to use to displace the pixels in ‘in’ along the y-axis. If attribute ‘yChan-
nelSelector’ is not specified, then the effect is as if a value of A were specified.
Animatable: yes.

in2 = "(see ‘in’ attribute)"
The second input image, which is used to displace the pixels in the image from attribute ‘in’. This attribute
can take on the same values as the ‘in’ attribute.
Animatable: yes.

15.16 Filter primitive ‘feFlood’

This filter primitive creates a rectangle filled with the color and opacity values from properties ‘flood-color’ and
‘flood-opacity’. The rectangle is as large as the filter primitive subregion established by the ‘x’, ‘y’, ‘width’ and
‘height’ attributes on the ‘feFlood’ element.

Categories:
Filter primitive element

Content model:
Any number of the following elements, in any order:

‘animate’
‘animateColor’
‘set’

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’

DOM Interfaces:
SVGFEFloodElement

The ‘flood-color’ property indicates what color to use to flood the current filter primitive subregion. The keyword
currentColor and ICC colors can be specified in the same manner as within a <paint> specification for the ‘fill’ and
‘stroke’ properties.

‘flood-color’
Value: currentColor |



<color> [<icccolor>] |

inherit

Initial: black

Applies to: ‘feFlood’ elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

The ‘flood-opacity’ property defines the opacity value to use across the entire filter primitive subregion.

‘flood-opacity’
Value: <opacity-value> | inherit

Initial: 1

Applies to: ‘feFlood’ elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

15.17 Filter primitive ‘feGaussianBlur’

This filter primitive performs a Gaussian blur on the input image.
The Gaussian blur kernel is an approximation of the normalized convolution:

G(x,y) = H(x)I(y)

where
H(x) = exp(-x2/ (2s2)) / sqrt(2* pi*s2)

and
I(y) = exp(-y2/ (2t2)) / sqrt(2* pi*t2)

with 's' being the standard deviation in the x direction and 't' being the standard deviation in the y direction, as
specified by ‘stdDeviation’.

The value of ‘stdDeviation’ can be either one or two numbers. If two numbers are provided, the first number
represents a standard deviation value along the x-axis of the current coordinate system and the second value rep-
resents a standard deviation in Y. If one number is provided, then that value is used for both X and Y.

Even if only one value is provided for ‘stdDeviation’, this can be implemented as a separable convolution.
For larger values of 's' (s >= 2.0), an approximation can be used: Three successive box-blurs build a piece-wise

quadratic convolution kernel, which approximates the Gaussian kernel to within roughly 3%.
let d = floor(s * 3*sqrt(2*pi)/4 + 0.5)

... if d is odd, use three box-blurs of size 'd', centered on the output pixel.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


‘feGaussianBlur’

... if d is even, two box-blurs of size 'd' (the first one centered on the pixel boundary between the output pixel
and the one to the left, the second one centered on the pixel boundary between the output pixel and the one to the
right) and one box blur of size 'd+1' centered on the output pixel.

Note: the approximation formula also applies correspondingly to 't'.

Frequently this operation will take place on alpha-only images, such as that produced by the built-in input,
SourceAlpha. The implementation may notice this and optimize the single channel case. If the input has infinite ex-
tent and is constant (e.g FillPaint where the fill is a solid color), this operation has no effect. If the input has infinite
extent and the filter result is the input to an ‘feTile’, the filter is evaluated with periodic boundary conditions.

Categories:
Filter primitive element

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’
‘in’
‘stdDeviation’

DOM Interfaces:
SVGFEGaussianBlurElement

Attribute definitions:

stdDeviation = "<number-optional-number>"
The standard deviation for the blur operation. If two <number>s are provided, the first number represents a
standard deviation value along the x-axis of the coordinate system established by attribute ‘primitiveUnits’
on the ‘filter’ element. The second value represents a standard deviation in Y. If one number is provided, then
that value is used for both X and Y.
A negative value is an error (see Error processing). A value of zero disables the effect of the given filter prim-
itive (i.e., the result is the filter input image). If ‘stdDeviation’ is 0 in only one of X or Y, then the effect is that
the blur is only applied in the direction that has a non-zero value.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.



‘feImage’

The example at the start of this chapter makes use of the ‘feGaussianBlur’ filter primitive to create a drop shadow
effect.

15.18 Filter primitive ‘feImage’

This filter primitive refers to a graphic external to this filter element, which is loaded or rendered into an RGBA
raster and becomes the result of the filter primitive.

This filter primitive can refer to an external image or can be a reference to another piece of SVG. It produces
an image similar to the built-in image source SourceGraphic except that the graphic comes from an external source.

If the ‘xlink:href’ references a stand-alone image resource such as a JPEG, PNG or SVG file, then the image re-
source is rendered according to the behavior of the ‘image’ element; otherwise, the referenced resource is rendered
according to the behavior of the ‘use’ element. In either case, the current user coordinate system depends on the
value of attribute ‘primitiveUnits’ on the ‘filter’ element. The processing of the ‘preserveAspectRatio’ attribute on
the ‘feImage’ element is identical to that of the ‘image’ element.

When the referenced image must be resampled to match the device coordinate system, it is recommended
that high quality viewers make use of appropriate interpolation techniques, for example bilinear or bicubic.
Depending on the speed of the available interpolents, this choice may be affected by the ‘image-rendering’ property
setting.

Categories:
Filter primitive element

Content model:
Any number of the following elements, in any order:

‘animate’
‘animateTransform’
‘set’

Attributes:
core attributes
presentation attributes
filter primitive attributes
xlink attributes
‘class’
‘style’
‘externalResourcesRequired’
‘preserveAspectRatio’
‘xlink:href’

DOM Interfaces:
SVGFEImageElement



Attribute definitions:

xlink:href = "<iri>"
An IRI reference to the image source.

Animatable: yes.

preserveAspectRatio = "[defer] <align> [<meetOrSlice>]"
See ‘preserveAspectRatio’.

If attribute ‘preserveAspectRatio’ is not specified, then the effect is as if a value of xMidYMid meet were
specified.

Animatable: yes.

Example feImage illustrates how images are placed relative to an object. From left to right:

• The default placement of an image. Note that the image is centered in the filter region and has the maximum
size that will fit in the region consistent with preserving the aspect ratio.

• The image stretched to fit the bounding box of an object.
• The image placed using user coordinates. Note that the image is first centered in a box the size of the filter

region and has the maximum size that will fit in the box consistent with preserving the aspect ratio. This box
is then shifted by the given 'x' and 'y' values relative to the viewport the object is in.

<svg width="600" height="250" viewBox="0 0 600 250"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">

<title>Example feImage - Examples of feImage use</title>
<desc>Three examples of using feImage, the first showing the

default rendering, the second showing the image fit
to a box and the third showing the image
shifted and clipped.</desc>

<defs>
<filter id="Default">

<feImage xlink:href="smiley.png" />
</filter>
<filter id="Fitted" primitiveUnits="objectBoundingBox">

<feImage xlink:href="smiley.png"
x="0" y="0" width="100%" height="100%"
preserveAspectRatio="none"/>

</filter>
<filter id="Shifted">

<feImage xlink:href="smiley.png"
x="500" y="5"/>

</filter>
</defs>
<rect fill="none" stroke="blue"

x="1" y="1" width="598" height="248"/>
<g>

<rect x="50"  y="25" width="100" height="200" filter="url(#Default)"/>
<rect x="50"  y="25" width="100" height="200" fill="none" stroke="green"/>
<rect x="250" y="25" width="100" height="200" filter="url(#Fitted)"/>
<rect x="250" y="25" width="100" height="200" fill="none" stroke="green"/>
<rect x="450" y="25" width="100" height="200" filter="url(#Shifted)"/>
<rect x="450" y="25" width="100" height="200" fill="none" stroke="green"/>

</g>
</svg>



‘feMerge’

Example feImage

15.19 Filter primitive ‘feMerge’

This filter primitive composites input image layers on top of each other using the over operator with Input1 (cor-
responding to the first ‘feMergeNode’ child element) on the bottom and the last specified input, InputN (corres-
ponding to the last ‘feMergeNode’ child element), on top.

Many effects produce a number of intermediate layers in order to create the final output image. This filter
allows us to collapse those into a single image. Although this could be done by using n-1 Composite-filters, it is
more convenient to have this common operation available in this form, and offers the implementation some addi-
tional flexibility.

Each ‘feMerge’ element can have any number of ‘feMergeNode’ subelements, each of which has an ‘in’ attrib-
ute.

The canonical implementation of feMerge is to render the entire effect into one RGBA layer, and then render
the resulting layer on the output device. In certain cases (in particular if the output device itself is a continuous
tone device), and since merging is associative, it might be a sufficient approximation to evaluate the effect one
layer at a time and render each layer individually onto the output device bottom to top.

If the topmost image input is SourceGraphic and this ‘feMerge’ is the last filter primitive in the filter, the im-
plementation is encouraged to render the layers up to that point, and then render the SourceGraphic directly from
its vector description on top.

Categories:
Filter primitive element

Content model:
Any number of the following elements, in any order:

‘feMergeNode’



‘feMergeNode’

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’

DOM Interfaces:
SVGFEMergeElement

Categories:
None

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
‘in’

DOM Interfaces:
SVGFEMergeNodeElement

The example at the start of this chapter makes use of the ‘feMerge’ filter primitive to composite two intermediate
filter results together.

15.20 Filter primitive ‘feMorphology’

This filter primitive performs "fattening" or "thinning" of artwork. It is particularly useful for fattening or thinning
an alpha channel.

The dilation (or erosion) kernel is a rectangle with a width of 2*x-radius and a height of 2*y-radius. In dila-
tion, the output pixel is the individual component-wise maximum of the corresponding R,G,B,A values in the
input image's kernel rectangle. In erosion, the output pixel is the individual component-wise minimum of the cor-
responding R,G,B,A values in the input image's kernel rectangle.

Frequently this operation will take place on alpha-only images, such as that produced by the built-in input,
SourceAlpha. In that case, the implementation might want to optimize the single channel case.

If the input has infinite extent and is constant (e.g FillPaint where the fill is a solid color), this operation has
no effect. If the input has infinite extent and the filter result is the input to an ‘feTile’, the filter is evaluated with
periodic boundary conditions.



‘feMorphology’

Because ‘feMorphology’ operates on premultipied color values, it will always result in color values less than
or equal to the alpha channel.

Categories:
Filter primitive element

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’
‘in’
‘operator’
‘radius’

DOM Interfaces:
SVGFEMorphologyElement

Attribute definitions:

operator = "erode | dilate"
A keyword indicating whether to erode (i.e., thin) or dilate (fatten) the source graphic. If attribute ‘operator’
is not specified, then the effect is as if a value of erode were specified.
Animatable: yes.

radius = "<number-optional-number>"
The radius (or radii) for the operation. If two <number>s are provided, the first number represents a x-radius
and the second value represents a y-radius. If one number is provided, then that value is used for both X and
Y. The values are in the coordinate system established by attribute ‘primitiveUnits’ on the ‘filter’ element.
A negative value is an error (see Error processing). A value of zero disables the effect of the given filter prim-
itive (i.e., the result is a transparent black image).
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

Example feMorphology shows examples of the four types of feMorphology operations.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">



<svg width="5cm" height="7cm" viewBox="0 0 700 500"
xmlns="http://www.w3.org/2000/svg" version="1.1">

<title>Example feMorphology - Examples of erode and dilate</title>
<desc>Five text strings drawn as outlines.

The first is unfiltered. The second and third use 'erode'.
The fourth and fifth use 'dilate'.</desc>

<defs>
<filter id="Erode3">

<feMorphology operator="erode" in="SourceGraphic" radius="3" />
</filter>
<filter id="Erode6">

<feMorphology operator="erode" in="SourceGraphic" radius="6" />
</filter>
<filter id="Dilate3">

<feMorphology operator="dilate" in="SourceGraphic" radius="3" />
</filter>
<filter id="Dilate6">

<feMorphology operator="dilate" in="SourceGraphic" radius="6" />
</filter>

</defs>
<rect fill="none" stroke="blue" stroke-width="2"

x="1" y="1" width="698" height="498"/>
<g enable-background="new" >

<g font-family="Verdana" font-size="75"
fill="none" stroke="black" stroke-width="6" >

<text x="50" y="90">Unfiltered</text>
<text x="50" y="180" filter="url(#Erode3)" >Erode radius 3</text>
<text x="50" y="270" filter="url(#Erode6)" >Erode radius 6</text>
<text x="50" y="360" filter="url(#Dilate3)" >Dilate radius 3</text>
<text x="50" y="450" filter="url(#Dilate6)" >Dilate radius 6</text>

</g>
</g>

</svg>

Example feMorphology

15.21 Filter primitive ‘feOffset’

This filter primitive offsets the input image relative to its current position in the image space by the specified vec-
tor.

This is important for effects like drop shadows.
When applying this filter, the destination location may be offset by a fraction of a pixel in device space. In



‘feOffset’

this case a high quality viewer should make use of appropriate interpolation techniques, for example bilinear or
bicubic. This is especially recommended for dynamic viewers where this interpolation provides visually smoother
movement of images. For static viewers this is less of a concern. Close attention should be made to the ‘image-ren-
dering’ property setting to determine the authors intent.

Categories:
Filter primitive element

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’
‘in’
‘dx’
‘dy’

DOM Interfaces:
SVGFEOffsetElement

Attribute definitions:

dx = "<number>"
The amount to offset the input graphic along the x-axis. The offset amount is expressed in the coordinate
system established by attribute ‘primitiveUnits’ on the ‘filter’ element.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

dy = "<number>"
The amount to offset the input graphic along the y-axis. The offset amount is expressed in the coordinate
system established by attribute ‘primitiveUnits’ on the ‘filter’ element.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

The example at the start of this chapter makes use of the ‘feOffset’ filter primitive to offset the drop shadow from
the original source graphic.



‘feSpecularLighting’

15.22 Filter primitive ‘feSpecularLighting’

This filter primitive lights a source graphic using the alpha channel as a bump map. The resulting image is an
RGBA image based on the light color. The lighting calculation follows the standard specular component of the
Phong lighting model. The resulting image depends on the light color, light position and surface geometry of the
input bump map. The result of the lighting calculation is added. The filter primitive assumes that the viewer is at
infinity in the z direction (i.e., the unit vector in the eye direction is (0,0,1) everywhere).

This filter primitive produces an image which contains the specular reflection part of the lighting calculation.
Such a map is intended to be combined with a texture using the add term of the arithmetic ‘feComposite’ method.
Multiple light sources can be simulated by adding several of these light maps before applying it to the texture
image.

The resulting RGBA image is computed as follows:
Sr = ks * pow(N.H, specularExponent) * Lr

Sg = ks * pow(N.H, specularExponent) * Lg
Sb = ks * pow(N.H, specularExponent) * Lb
Sa = max(Sr, Sg, Sb)

where

ks = specular lighting constant
N = surface normal unit vector, a function of x and y
H = "halfway" unit vector between eye unit vector and light unit vector

Lr,Lg,Lb = RGB components of light

See ‘feDiffuseLighting’ for definition of N and (Lr, Lg, Lb).
The definition of H reflects our assumption of the constant eye vector E = (0,0,1):

H = (L + E) / Norm(L+E)

where L is the light unit vector.
Unlike the ‘feDiffuseLighting’, the ‘feSpecularLighting’ filter produces a non-opaque image. This is due to the

fact that the specular result (Sr,Sg,Sb,Sa) is meant to be added to the textured image. The alpha channel of the result
is the max of the color components, so that where the specular light is zero, no additional coverage is added to the
image and a fully white highlight will add opacity.

The ‘feDiffuseLighting’ and ‘feSpecularLighting’ filters will often be applied together. An implementation may
detect this and calculate both maps in one pass, instead of two.

Categories:
Filter primitive element

Content model:
Any number of descriptive elements and exactly one light source element, in any order.



Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’
‘in’
‘surfaceScale’
‘specularConstant’
‘specularExponent’
‘kernelUnitLength’

DOM Interfaces:
SVGFESpecularLightingElement

Attribute definitions:

surfaceScale = "<number>"
height of surface when Ain = 1.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

specularConstant = "<number>"
ks in Phong lighting model. In SVG, this can be any non-negative number.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

specularExponent = "<number>"
Exponent for specular term, larger is more "shiny". Range 1.0 to 128.0.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

kernelUnitLength = "<number-optional-number>"
The first number is the <dx> value. The second number is the <dy> value. If the <dy> value is not specified,
it defaults to the same value as <dx>. Indicates the intended distance in current filter units (i.e., units as
determined by the value of attribute ‘primitiveUnits’) for dx and dy, respectively, in the surface normal cal-
culation formulas. By specifying value(s) for ‘kernelUnitLength’, the kernel becomes defined in a scalable,
abstract coordinate system. If ‘kernelUnitLength’ is not specified, the dx and dy values should represent very
small deltas relative to a given (x,y) position, which might be implemented in some cases as one pixel in
the intermediate image offscreen bitmap, which is a pixel-based coordinate system, and thus potentially not
scalable. For some level of consistency across display media and user agents, it is necessary that a value be



‘feTile’

provided for at least one of ‘filterRes’ and ‘kernelUnitLength’. Discussion of intermediate images are in the
Introduction and in the description of attribute ‘filterRes’.
A negative or zero value is an error (see Error processing).
Animatable: yes.

The light source is defined by one of the child elements ‘feDistantLight’, ‘fePointLight’ or ‘feDistantLight’. The light
color is specified by property ‘lighting-color’.

The example at the start of this chapter makes use of the ‘feSpecularLighting’ filter primitive to achieve a
highly reflective, 3D glowing effect.

15.23 Filter primitive ‘feTile’

This filter primitive fills a target rectangle with a repeated, tiled pattern of an input image. The target rectangle
is as large as the filter primitive subregion established by the ‘x’, ‘y’, ‘width’ and ‘height’ attributes on the ‘feTile’
element.

Typically, the input image has been defined with its own filter primitive subregion in order to define a ref-
erence tile. ‘feTile’ replicates the reference tile in both X and Y to completely fill the target rectangle. The top/left
corner of each given tile is at location (x+i*width,y+j*height), where (x,y) represents the top/left of the input
image's filter primitive subregion, width and height represent the width and height of the input image's filter
primitive subregion, and i and j can be any integer value. In most cases, the input image will have a smaller filter
primitive subregion than the ‘feTile’ in order to achieve a repeated pattern effect.

Implementers must take appropriate measures in constructing the tiled image to avoid artifacts between tiles,
particularly in situations where the user to device transform includes shear and/or rotation. Unless care is taken,
interpolation can lead to edge pixels in the tile having opacity values lower or higher than expected due to the
interaction of painting adjacent tiles which each have partial overlap with particular pixels.

Categories:
Filter primitive element

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’
‘in’



DOM Interfaces:
SVGFETileElement

15.24 Filter primitive ‘feTurbulence’

This filter primitive creates an image using the Perlin turbulence function. It allows the synthesis of artificial tex-
tures like clouds or marble. For a detailed description the of the Perlin turbulence function, see "Texturing and
Modeling", Ebert et al, AP Professional, 1994. The resulting image will fill the entire filter primitive subregion for
this filter primitive.

It is possible to create bandwidth-limited noise by synthesizing only one octave.
The C code below shows the exact algorithm used for this filter effect.
For fractalSum, you get a turbFunctionResult that is aimed at a range of -1 to 1 (the actual result might exceed

this range in some cases). To convert to a color value, use the formula colorValue = ((turbFunctionResult *

255) + 255) / 2, then clamp to the range 0 to 255.
For turbulence, you get a turbFunctionResult that is aimed at a range of 0 to 1 (the actual result might exceed

this range in some cases). To convert to a color value, use the formula colorValue = (turbFunctionResult *

255), then clamp to the range 0 to 255.
The following order is used for applying the pseudo random numbers. An initial seed value is computed

based on attribute ‘seed’. Then the implementation computes the lattice points for R, then continues getting ad-
ditional pseudo random numbers relative to the last generated pseudo random number and computes the lattice
points for G, and so on for B and A.

The generated color and alpha values are in the color space determined by the value of property ‘color-
interpolation-filters’:

/* Produces results in the range [1, 2**31 - 2].
Algorithm is: r = (a * r) mod m
where a = 16807 and m = 2**31 - 1 = 2147483647
See [Park & Miller], CACM vol. 31 no. 10 p. 1195, Oct. 1988
To test: the algorithm should produce the result 1043618065
as the 10,000th generated number if the original seed is 1.
*/
#define RAND_m 2147483647 /* 2**31 - 1 */
#define RAND_a 16807 /* 7**5; primitive root of m */
#define RAND_q 127773 /* m / a */
#define RAND_r 2836 /* m % a */
long setup_seed(long lSeed)
{

if (lSeed <= 0) lSeed = -(lSeed % (RAND_m - 1)) + 1;
if (lSeed > RAND_m - 1) lSeed = RAND_m - 1;
return lSeed;

}
long random(long lSeed)
{

long result;
result = RAND_a * (lSeed % RAND_q) - RAND_r * (lSeed / RAND_q);
if (result <= 0) result += RAND_m;
return result;

}
#define BSize 0x100
#define BM 0xff
#define PerlinN 0x1000
#define NP 12 /* 2^PerlinN */
#define NM 0xfff
static uLatticeSelector[BSize + BSize + 2];



static double fGradient[4][BSize + BSize + 2][2];
struct StitchInfo
{

int nWidth; // How much to subtract to wrap for stitching.
int nHeight;
int nWrapX; // Minimum value to wrap.
int nWrapY;

};
static void init(long lSeed)
{

double s;
int i, j, k;
lSeed = setup_seed(lSeed);
for(k = 0; k < 4; k++)
{

for(i = 0; i < BSize; i++)
{

uLatticeSelector[i] = i;
for (j = 0; j < 2; j++)

fGradient[k][i][j] = (double)(((lSeed = random(lSeed)) % (BSize + BSize)) - BSize) / BSize;
s = double(sqrt(fGradient[k][i][0] * fGradient[k][i][0] + fGradient[k][i][1] * fGradient[k][i][1]));
fGradient[k][i][0] /= s;
fGradient[k][i][1] /= s;

}
}
while(--i)
{

k = uLatticeSelector[i];
uLatticeSelector[i] = uLatticeSelector[j = (lSeed = random(lSeed)) % BSize];
uLatticeSelector[j] = k;

}
for(i = 0; i < BSize + 2; i++)
{

uLatticeSelector[BSize + i] = uLatticeSelector[i];
for(k = 0; k < 4; k++)

for(j = 0; j < 2; j++)
fGradient[k][BSize + i][j] = fGradient[k][i][j];

}
}
#define s_curve(t) ( t * t * (3. - 2. * t) )
#define lerp(t, a, b) ( a + t * (b - a) )
double noise2(int nColorChannel, double vec[2], StitchInfo *pStitchInfo)
{

int bx0, bx1, by0, by1, b00, b10, b01, b11;
double rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v;
register i, j;
t = vec[0] + PerlinN;
bx0 = (int)t;
bx1 = bx0+1;
rx0 = t - (int)t;
rx1 = rx0 - 1.0f;
t = vec[1] + PerlinN;
by0 = (int)t;
by1 = by0+1;
ry0 = t - (int)t;
ry1 = ry0 - 1.0f;
// If stitching, adjust lattice points accordingly.
if(pStitchInfo != NULL)
{

if(bx0 >= pStitchInfo->nWrapX)
bx0 -= pStitchInfo->nWidth;

if(bx1 >= pStitchInfo->nWrapX)
bx1 -= pStitchInfo->nWidth;

if(by0 >= pStitchInfo->nWrapY)
by0 -= pStitchInfo->nHeight;

if(by1 >= pStitchInfo->nWrapY)
by1 -= pStitchInfo->nHeight;

}
bx0 &= BM;
bx1 &= BM;
by0 &= BM;
by1 &= BM;
i = uLatticeSelector[bx0];
j = uLatticeSelector[bx1];
b00 = uLatticeSelector[i + by0];
b10 = uLatticeSelector[j + by0];
b01 = uLatticeSelector[i + by1];



b11 = uLatticeSelector[j + by1];
sx = double(s_curve(rx0));
sy = double(s_curve(ry0));
q = fGradient[nColorChannel][b00]; u = rx0 * q[0] + ry0 * q[1];
q = fGradient[nColorChannel][b10]; v = rx1 * q[0] + ry0 * q[1];
a = lerp(sx, u, v);
q = fGradient[nColorChannel][b01]; u = rx0 * q[0] + ry1 * q[1];
q = fGradient[nColorChannel][b11]; v = rx1 * q[0] + ry1 * q[1];
b = lerp(sx, u, v);
return lerp(sy, a, b);

}
double turbulence(int nColorChannel, double *point, double fBaseFreqX, double fBaseFreqY,

int nNumOctaves, bool bFractalSum, bool bDoStitching,
double fTileX, double fTileY, double fTileWidth, double fTileHeight)

{
StitchInfo stitch;
StitchInfo *pStitchInfo = NULL; // Not stitching when NULL.
// Adjust the base frequencies if necessary for stitching.
if(bDoStitching)
{

// When stitching tiled turbulence, the frequencies must be adjusted
// so that the tile borders will be continuous.
if(fBaseFreqX != 0.0)
{

double fLoFreq = double(floor(fTileWidth * fBaseFreqX)) / fTileWidth;
double fHiFreq = double(ceil(fTileWidth * fBaseFreqX)) / fTileWidth;
if(fBaseFreqX / fLoFreq < fHiFreq / fBaseFreqX)

fBaseFreqX = fLoFreq;
else

fBaseFreqX = fHiFreq;
}
if(fBaseFreqY != 0.0)
{

double fLoFreq = double(floor(fTileHeight * fBaseFreqY)) / fTileHeight;
double fHiFreq = double(ceil(fTileHeight * fBaseFreqY)) / fTileHeight;
if(fBaseFreqY / fLoFreq < fHiFreq / fBaseFreqY)

fBaseFreqY = fLoFreq;
else

fBaseFreqY = fHiFreq;
}
// Set up initial stitch values.
pStitchInfo = &stitch;
stitch.nWidth = int(fTileWidth * fBaseFreqX + 0.5f);
stitch.nWrapX = fTileX * fBaseFreqX + PerlinN + stitch.nWidth;
stitch.nHeight = int(fTileHeight * fBaseFreqY + 0.5f);
stitch.nWrapY = fTileY * fBaseFreqY + PerlinN + stitch.nHeight;

}
double fSum = 0.0f;
double vec[2];
vec[0] = point[0] * fBaseFreqX;
vec[1] = point[1] * fBaseFreqY;
double ratio = 1;
for(int nOctave = 0; nOctave < nNumOctaves; nOctave++)
{

if(bFractalSum)
fSum += double(noise2(nColorChannel, vec, pStitchInfo) / ratio);

else
fSum += double(fabs(noise2(nColorChannel, vec, pStitchInfo)) / ratio);

vec[0] *= 2;
vec[1] *= 2;
ratio *= 2;
if(pStitchInfo != NULL)
{

// Update stitch values. Subtracting PerlinN before the multiplication and
// adding it afterward simplifies to subtracting it once.
stitch.nWidth *= 2;
stitch.nWrapX = 2 * stitch.nWrapX - PerlinN;
stitch.nHeight *= 2;
stitch.nWrapY = 2 * stitch.nWrapY - PerlinN;

}
}
return fSum;

}



‘feTurbulence’Categories:
Filter primitive element

Content model:
Any number of the following elements, in any order:

‘animate’
‘set’

Attributes:
core attributes
presentation attributes
filter primitive attributes
‘class’
‘style’
‘baseFrequency’
‘numOctaves’
‘seed’
‘stitchTiles’
‘type’

DOM Interfaces:
SVGFETurbulenceElement

Attribute definitions:

baseFrequency = "<number-optional-number>"
The base frequency (frequencies) parameter(s) for the noise function. If two <number>s are provided, the
first number represents a base frequency in the X direction and the second value represents a base frequency
in the Y direction. If one number is provided, then that value is used for both X and Y.
A negative value for base frequency is an error (see Error processing).
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

numOctaves = "<integer>"
The numOctaves parameter for the noise function.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

seed = "<number>"
The starting number for the pseudo random number generator.
If the attribute is not specified, then the effect is as if a value of 0 were specified. When the seed number is
handed over to the algorithm above it must first be truncated, i.e. rounded to the closest integer value to-



wards zero.
Animatable: yes.

stitchTiles = "stitch | noStitch"
If stitchTiles="noStitch", no attempt it made to achieve smooth transitions at the border of tiles which contain
a turbulence function. Sometimes the result will show clear discontinuities at the tile borders.
If stitchTiles="stitch", then the user agent will automatically adjust baseFrequency-x and baseFrequency-y
values such that the feTurbulence node's width and height (i.e., the width and height of the current sub-
region) contains an integral number of the Perlin tile width and height for the first octave. The baseFre-
quency will be adjusted up or down depending on which way has the smallest relative (not absolute)
change as follows: Given the frequency, calculate lowFreq=floor(width*frequency)/width and hiFre-

q=ceil(width*frequency)/width. If frequency/lowFreq < hiFreq/frequency then use lowFreq, else use
hiFreq. While generating turbulence values, generate lattice vectors as normal for Perlin Noise, except for
those lattice points that lie on the right or bottom edges of the active area (the size of the resulting tile). In
those cases, copy the lattice vector from the opposite edge of the active area.
If attribute ‘stitchTiles’ is not specified, then the effect is as if a value of noStitch were specified.

Animatable: yes.

type = "fractalNoise | turbulence"
Indicates whether the filter primitive should perform a noise or turbulence function. If attribute ‘type’ is not
specified, then the effect is as if a value of turbulence were specified.
Animatable: yes.

Example feTurbulence shows the effects of various parameter settings for feTurbulence.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="450px" height="325px" viewBox="0 0 450 325"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<title>Example feTurbulence - Examples of feTurbulence operations</title>
<desc>Six rectangular areas showing the effects of

various parameter settings for feTurbulence.</desc>
<g  font-family="Verdana" text-anchor="middle" font-size="10" >

<defs>
<filter id="Turb1" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feTurbulence type="turbulence" baseFrequency="0.05" numOctaves="2"/>

</filter>
<filter id="Turb2" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feTurbulence type="turbulence" baseFrequency="0.1" numOctaves="2"/>

</filter>
<filter id="Turb3" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feTurbulence type="turbulence" baseFrequency="0.05" numOctaves="8"/>

</filter>
<filter id="Turb4" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feTurbulence type="fractalNoise" baseFrequency="0.1" numOctaves="4"/>

</filter>
<filter id="Turb5" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">
<feTurbulence type="fractalNoise" baseFrequency="0.4" numOctaves="4"/>

</filter>
<filter id="Turb6" filterUnits="objectBoundingBox"

x="0%" y="0%" width="100%" height="100%">



<feTurbulence type="fractalNoise" baseFrequency="0.1" numOctaves="1"/>
</filter>

</defs>

<rect x="1" y="1" width="448" height="323"
fill="none" stroke="blue" stroke-width="1"  />

<rect x="25" y="25" width="100" height="75" filter="url(#Turb1)"  />
<text x="75" y="117">type=turbulence</text>
<text x="75" y="129">baseFrequency=0.05</text>
<text x="75" y="141">numOctaves=2</text>

<rect x="175" y="25" width="100" height="75" filter="url(#Turb2)"  />
<text x="225" y="117">type=turbulence</text>
<text x="225" y="129">baseFrequency=0.1</text>
<text x="225" y="141">numOctaves=2</text>

<rect x="325" y="25" width="100" height="75" filter="url(#Turb3)"  />
<text x="375" y="117">type=turbulence</text>
<text x="375" y="129">baseFrequency=0.05</text>
<text x="375" y="141">numOctaves=8</text>

<rect x="25" y="180" width="100" height="75" filter="url(#Turb4)"  />
<text x="75" y="272">type=fractalNoise</text>
<text x="75" y="284">baseFrequency=0.1</text>
<text x="75" y="296">numOctaves=4</text>

<rect x="175" y="180" width="100" height="75" filter="url(#Turb5)"  />
<text x="225" y="272">type=fractalNoise</text>
<text x="225" y="284">baseFrequency=0.4</text>
<text x="225" y="296">numOctaves=4</text>

<rect x="325" y="180" width="100" height="75" filter="url(#Turb6)"  />
<text x="375" y="272">type=fractalNoise</text>
<text x="375" y="284">baseFrequency=0.1</text>
<text x="375" y="296">numOctaves=1</text>

</g>
</svg>

Example feTurbulence



15.25 DOM interfaces

15.25.1 Interface SVGFilterElement

The SVGFilterElement interface corresponds to the ‘filter’ element.

interface SVGFilterElement : SVGElement,
SVGURIReference,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGUnitTypes {

readonly attribute SVGAnimatedEnumeration filterUnits;
readonly attribute SVGAnimatedEnumeration primitiveUnits;
readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;
readonly attribute SVGAnimatedInteger filterResX;
readonly attribute SVGAnimatedInteger filterResY;

void setFilterRes(in unsigned long filterResX, in unsigned long filterResY) raises(DOMException);
};

Attributes:

• filterUnits (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘filterUnits’ on the given ‘filter’ element. Takes one of the constants defined in
SVGUnitTypes.

• primitiveUnits (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘primitiveUnits’ on the given ‘filter’ element. Takes one of the constants defined in
SVGUnitTypes.

• x (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given ‘filter’ element.

• y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given ‘filter’ element.

• width (readonly SVGAnimatedLength)

Corresponds to attribute ‘width’ on the given ‘filter’ element.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• height (readonly SVGAnimatedLength)

Corresponds to attribute ‘height’ on the given ‘filter’ element.

• filterResX (readonly SVGAnimatedInteger)

Corresponds to attribute ‘filterRes’ on the given ‘filter’ element. Contains the X component of attribute ‘fil-
terRes’.

• filterResY (readonly SVGAnimatedInteger)

Corresponds to attribute ‘filterRes’ on the given ‘filter’ element. Contains the Y component (possibly com-
puted automatically) of attribute ‘filterRes’.

Operations:

• void setFilterRes(in unsigned long filterResX, in unsigned long filterResY)

Sets the values for attribute ‘filterRes’.

Parameters

• unsigned long filterResX
The X component of attribute ‘filterRes’.

• unsigned long filterResY
The Y component of attribute ‘filterRes’.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

15.25.2 Interface SVGFilterPrimitiveStandardAttributes

This interface defines the set of DOM attributes that are common across the filter primitive interfaces.

interface SVGFilterPrimitiveStandardAttributes : SVGStylable {
readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;
readonly attribute SVGAnimatedString result;

};

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


Attributes:

• x (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given element.

• y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given element.

• width (readonly SVGAnimatedLength)

Corresponds to attribute ‘width’ on the given element.

• height (readonly SVGAnimatedLength)

Corresponds to attribute ‘height’ on the given element.

• result (readonly SVGAnimatedString)

Corresponds to attribute ‘result’ on the given element.

15.25.3 Interface SVGFEBlendElement

The SVGFEBlendElement interface corresponds to the ‘feBlend’ element.

interface SVGFEBlendElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

// Blend Mode Types
const unsigned short SVG_FEBLEND_MODE_UNKNOWN = 0;
const unsigned short SVG_FEBLEND_MODE_NORMAL = 1;
const unsigned short SVG_FEBLEND_MODE_MULTIPLY = 2;
const unsigned short SVG_FEBLEND_MODE_SCREEN = 3;
const unsigned short SVG_FEBLEND_MODE_DARKEN = 4;
const unsigned short SVG_FEBLEND_MODE_LIGHTEN = 5;

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedString in2;
readonly attribute SVGAnimatedEnumeration mode;

};

Constants in group “Blend Mode Types”:

• SVG_FEBLEND_MODE_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.



• SVG_FEBLEND_MODE_NORMAL (unsigned short)

Corresponds to value 'normal'.

• SVG_FEBLEND_MODE_MULTIPLY (unsigned short)

Corresponds to value 'multiply'.

• SVG_FEBLEND_MODE_SCREEN (unsigned short)

Corresponds to value 'screen'.

• SVG_FEBLEND_MODE_DARKEN (unsigned short)

Corresponds to value 'darken'.

• SVG_FEBLEND_MODE_LIGHTEN (unsigned short)

Corresponds to value 'lighten'.

Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feBlend’ element.

• in2 (readonly SVGAnimatedString)

Corresponds to attribute ‘in2’ on the given ‘feBlend’ element.

• mode (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘mode’ on the given ‘feBlend’ element. Takes one of the SVG_FEBLEND_MODE_*
constants defined on this interface.

15.25.4 Interface SVGFEColorMatrixElement

The SVGFEColorMatrixElement interface corresponds to the ‘feColorMatrix’ element.

interface SVGFEColorMatrixElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

// Color Matrix Types
const unsigned short SVG_FECOLORMATRIX_TYPE_UNKNOWN = 0;
const unsigned short SVG_FECOLORMATRIX_TYPE_MATRIX = 1;
const unsigned short SVG_FECOLORMATRIX_TYPE_SATURATE = 2;
const unsigned short SVG_FECOLORMATRIX_TYPE_HUEROTATE = 3;



const unsigned short SVG_FECOLORMATRIX_TYPE_LUMINANCETOALPHA = 4;

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedEnumeration type;
readonly attribute SVGAnimatedNumberList values;

};

Constants in group “Color Matrix Types”:

• SVG_FECOLORMATRIX_TYPE_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.

• SVG_FECOLORMATRIX_TYPE_MATRIX (unsigned short)

Corresponds to value 'matrix'.

• SVG_FECOLORMATRIX_TYPE_SATURATE (unsigned short)

Corresponds to value 'saturate'.

• SVG_FECOLORMATRIX_TYPE_HUEROTATE (unsigned short)

Corresponds to value 'hueRotate'.

• SVG_FECOLORMATRIX_TYPE_LUMINANCETOALPHA (unsigned short)

Corresponds to value 'luminanceToAlpha'.

Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feColorMatrix’ element.

• type (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘type’ on the given ‘feColorMatrix’ element. Takes one of the
SVG_FECOLORMATRIX_TYPE_* constants defined on this interface.

• values (readonly SVGAnimatedNumberList)

Corresponds to attribute ‘values’ on the given ‘feColorMatrix’ element.



15.25.5 Interface SVGFEComponentTransferElement

The SVGFEComponentTransferElement interface corresponds to the ‘feComponentTransfer’ element.

interface SVGFEComponentTransferElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedString in1;
};

Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feComponentTransfer’ element.

15.25.6 Interface SVGComponentTransferFunctionElement

This interface defines a base interface used by the component transfer function interfaces.

interface SVGComponentTransferFunctionElement : SVGElement {

// Component Transfer Types
const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_UNKNOWN = 0;
const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_IDENTITY = 1;
const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_TABLE = 2;
const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_DISCRETE = 3;
const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_LINEAR = 4;
const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_GAMMA = 5;

readonly attribute SVGAnimatedEnumeration type;
readonly attribute SVGAnimatedNumberList tableValues;
readonly attribute SVGAnimatedNumber slope;
readonly attribute SVGAnimatedNumber intercept;
readonly attribute SVGAnimatedNumber amplitude;
readonly attribute SVGAnimatedNumber exponent;
readonly attribute SVGAnimatedNumber offset;

};

Constants in group “Component Transfer Types”:

• SVG_FECOMPONENTTRANSFER_TYPE_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.

• SVG_FECOMPONENTTRANSFER_TYPE_IDENTITY (unsigned short)

Corresponds to value 'identity'.

• SVG_FECOMPONENTTRANSFER_TYPE_TABLE (unsigned short)

Corresponds to value 'table'.



• SVG_FECOMPONENTTRANSFER_TYPE_DISCRETE (unsigned short)

Corresponds to value 'discrete'.

• SVG_FECOMPONENTTRANSFER_TYPE_LINEAR (unsigned short)

Corresponds to value 'linear'.

• SVG_FECOMPONENTTRANSFER_TYPE_GAMMA (unsigned short)

Corresponds to value 'gamma'.

Attributes:

• type (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘type’ on the given element. Takes one of the
SVG_FECOMPONENTTRANSFER_TYPE_* constants defined on this interface.

• tableValues (readonly SVGAnimatedNumberList)

Corresponds to attribute ‘tableValues’ on the given element.

• slope (readonly SVGAnimatedNumber)

Corresponds to attribute ‘slope’ on the given element.

• intercept (readonly SVGAnimatedNumber)

Corresponds to attribute ‘intercept’ on the given element.

• amplitude (readonly SVGAnimatedNumber)

Corresponds to attribute ‘amplitude’ on the given element.

• exponent (readonly SVGAnimatedNumber)

Corresponds to attribute ‘exponent’ on the given element.

• offset (readonly SVGAnimatedNumber)

Corresponds to attribute ‘offset’ on the given element.



15.25.7 Interface SVGFEFuncRElement

The SVGFEFuncRElement interface corresponds to the ‘feFuncR’ element.

interface SVGFEFuncRElement : SVGComponentTransferFunctionElement {
};

15.25.8 Interface SVGFEFuncGElement

The SVGFEFuncRElement interface corresponds to the ‘feFuncG’ element.

interface SVGFEFuncGElement : SVGComponentTransferFunctionElement {
};

15.25.9 Interface SVGFEFuncBElement

The SVGFEFuncBElement interface corresponds to the ‘feFuncB’ element.

interface SVGFEFuncBElement : SVGComponentTransferFunctionElement {
};

15.25.10 Interface SVGFEFuncAElement

The SVGFEFuncAElement interface corresponds to the ‘feFuncA’ element.

interface SVGFEFuncAElement : SVGComponentTransferFunctionElement {
};

15.25.11 Interface SVGFECompositeElement

The SVGFECompositeElement interface corresponds to the ‘feComposite’ element.

interface SVGFECompositeElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

// Composite Operators
const unsigned short SVG_FECOMPOSITE_OPERATOR_UNKNOWN = 0;
const unsigned short SVG_FECOMPOSITE_OPERATOR_OVER = 1;
const unsigned short SVG_FECOMPOSITE_OPERATOR_IN = 2;
const unsigned short SVG_FECOMPOSITE_OPERATOR_OUT = 3;
const unsigned short SVG_FECOMPOSITE_OPERATOR_ATOP = 4;
const unsigned short SVG_FECOMPOSITE_OPERATOR_XOR = 5;
const unsigned short SVG_FECOMPOSITE_OPERATOR_ARITHMETIC = 6;

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedString in2;
readonly attribute SVGAnimatedEnumeration operator;
readonly attribute SVGAnimatedNumber k1;
readonly attribute SVGAnimatedNumber k2;
readonly attribute SVGAnimatedNumber k3;
readonly attribute SVGAnimatedNumber k4;

};



Constants in group “Composite Operators”:

• SVG_FECOMPOSITE_OPERATOR_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.

• SVG_FECOMPOSITE_OPERATOR_OVER (unsigned short)

Corresponds to value 'over'.

• SVG_FECOMPOSITE_OPERATOR_IN (unsigned short)

Corresponds to value 'in'.

• SVG_FECOMPOSITE_OPERATOR_OUT (unsigned short)

Corresponds to value 'out'.

• SVG_FECOMPOSITE_OPERATOR_ATOP (unsigned short)

Corresponds to value 'atop'.

• SVG_FECOMPOSITE_OPERATOR_XOR (unsigned short)

Corresponds to value 'xor'.

• SVG_FECOMPOSITE_OPERATOR_ARITHMETIC (unsigned short)

Corresponds to value 'arithmetic'.

Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feComposite’ element.

• in2 (readonly SVGAnimatedString)

Corresponds to attribute ‘in2’ on the given ‘feComposite’ element.



• operator (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘operator’ on the given ‘feComposite’ element. Takes one of the
SVG_FECOMPOSITE_OPERATOR_* constants defined on this interface.

• k1 (readonly SVGAnimatedNumber)

Corresponds to attribute ‘k1’ on the given ‘feComposite’ element.

• k2 (readonly SVGAnimatedNumber)

Corresponds to attribute ‘k2’ on the given ‘feComposite’ element.

• k3 (readonly SVGAnimatedNumber)

Corresponds to attribute ‘k3’ on the given ‘feComposite’ element.

• k4 (readonly SVGAnimatedNumber)

Corresponds to attribute ‘k4’ on the given ‘feComposite’ element.

15.25.12 Interface SVGFEConvolveMatrixElement

The SVGFEConvolveMatrixElement interface corresponds to the ‘feConvolveMatrix’ element.

interface SVGFEConvolveMatrixElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

// Edge Mode Values
const unsigned short SVG_EDGEMODE_UNKNOWN = 0;
const unsigned short SVG_EDGEMODE_DUPLICATE = 1;
const unsigned short SVG_EDGEMODE_WRAP = 2;
const unsigned short SVG_EDGEMODE_NONE = 3;

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedInteger orderX;
readonly attribute SVGAnimatedInteger orderY;
readonly attribute SVGAnimatedNumberList kernelMatrix;
readonly attribute SVGAnimatedNumber divisor;
readonly attribute SVGAnimatedNumber bias;
readonly attribute SVGAnimatedInteger targetX;
readonly attribute SVGAnimatedInteger targetY;
readonly attribute SVGAnimatedEnumeration edgeMode;
readonly attribute SVGAnimatedNumber kernelUnitLengthX;
readonly attribute SVGAnimatedNumber kernelUnitLengthY;
readonly attribute SVGAnimatedBoolean preserveAlpha;

};



Constants in group “Edge Mode Values”:

• SVG_EDGEMODE_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.

• SVG_EDGEMODE_DUPLICATE (unsigned short)

Corresponds to value 'duplicate'.

• SVG_EDGEMODE_WRAP (unsigned short)

Corresponds to value 'wrap'.

• SVG_EDGEMODE_NONE (unsigned short)

Corresponds to value 'none'.

Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feConvolveMatrix’ element.

• orderX (readonly SVGAnimatedInteger)

Corresponds to attribute ‘order’ on the given ‘feConvolveMatrix’ element.

• orderY (readonly SVGAnimatedInteger)

Corresponds to attribute ‘order’ on the given ‘feConvolveMatrix’ element.

• kernelMatrix (readonly SVGAnimatedNumberList)

Corresponds to attribute ‘kernelMatrix’ on the given ‘feConvolveMatrix’ element.

• divisor (readonly SVGAnimatedNumber)

Corresponds to attribute ‘divisor’ on the given ‘feConvolveMatrix’ element.

• bias (readonly SVGAnimatedNumber)

Corresponds to attribute ‘bias’ on the given ‘feConvolveMatrix’ element.



• targetX (readonly SVGAnimatedInteger)

Corresponds to attribute ‘targetX’ on the given ‘feConvolveMatrix’ element.

• targetY (readonly SVGAnimatedInteger)

Corresponds to attribute ‘targetY’ on the given ‘feConvolveMatrix’ element.

• edgeMode (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘edgeMode’ on the given ‘feConvolveMatrix’ element. Takes one of the
SVG_EDGEMODE_* constants defined on this interface.

• kernelUnitLengthX (readonly SVGAnimatedNumber)

Corresponds to attribute ‘kernelUnitLength’ on the given ‘feConvolveMatrix’ element.

• kernelUnitLengthY (readonly SVGAnimatedNumber)

Corresponds to attribute ‘kernelUnitLength’ on the given ‘feConvolveMatrix’ element.

• preserveAlpha (readonly SVGAnimatedBoolean)

Corresponds to attribute ‘preserveAlpha’ on the given ‘feConvolveMatrix’ element.

15.25.13 Interface SVGFEDiffuseLightingElement

The SVGFEDiffuseLightingElement interface corresponds to the ‘feDiffuseLighting’ element.

interface SVGFEDiffuseLightingElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedNumber surfaceScale;
readonly attribute SVGAnimatedNumber diffuseConstant;
readonly attribute SVGAnimatedNumber kernelUnitLengthX;
readonly attribute SVGAnimatedNumber kernelUnitLengthY;

};

Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feDiffuseLighting’ element.

• surfaceScale (readonly SVGAnimatedNumber)

Corresponds to attribute ‘surfaceScale’ on the given ‘feDiffuseLighting’ element.



• diffuseConstant (readonly SVGAnimatedNumber)

Corresponds to attribute ‘diffuseConstant’ on the given ‘feDiffuseLighting’ element.

• kernelUnitLengthX (readonly SVGAnimatedNumber)

Corresponds to attribute ‘kernelUnitLength’ on the given ‘feDiffuseLighting’ element.

• kernelUnitLengthY (readonly SVGAnimatedNumber)

Corresponds to attribute ‘kernelUnitLength’ on the given ‘feDiffuseLighting’ element.

15.25.14 Interface SVGFEDistantLightElement

The SVGFEDistantLightElement interface corresponds to the ‘feDistantLight’ element.

interface SVGFEDistantLightElement : SVGElement {
readonly attribute SVGAnimatedNumber azimuth;
readonly attribute SVGAnimatedNumber elevation;

};

Attributes:

• azimuth (readonly SVGAnimatedNumber)

Corresponds to attribute ‘azimuth’ on the given ‘feDistantLight’ element.

• elevation (readonly SVGAnimatedNumber)

Corresponds to attribute ‘elevation’ on the given ‘feDistantLight’ element.

15.25.15 Interface SVGFEPointLightElement

The SVGFEPointLightElement interface corresponds to the ‘fePointLight’ element.

interface SVGFEPointLightElement : SVGElement {
readonly attribute SVGAnimatedNumber x;
readonly attribute SVGAnimatedNumber y;
readonly attribute SVGAnimatedNumber z;

};

Attributes:

• x (readonly SVGAnimatedNumber)

Corresponds to attribute ‘x’ on the given ‘fePointLight’ element.



• y (readonly SVGAnimatedNumber)

Corresponds to attribute ‘y’ on the given ‘fePointLight’ element.

• z (readonly SVGAnimatedNumber)

Corresponds to attribute ‘z’ on the given ‘fePointLight’ element.

15.25.16 Interface SVGFESpotLightElement

The SVGFESpotLightElement interface corresponds to the ‘feSpotLight’ element.

interface SVGFESpotLightElement : SVGElement {
readonly attribute SVGAnimatedNumber x;
readonly attribute SVGAnimatedNumber y;
readonly attribute SVGAnimatedNumber z;
readonly attribute SVGAnimatedNumber pointsAtX;
readonly attribute SVGAnimatedNumber pointsAtY;
readonly attribute SVGAnimatedNumber pointsAtZ;
readonly attribute SVGAnimatedNumber specularExponent;
readonly attribute SVGAnimatedNumber limitingConeAngle;

};

Attributes:

• x (readonly SVGAnimatedNumber)

Corresponds to attribute ‘x’ on the given ‘feSpotLight’ element.

• y (readonly SVGAnimatedNumber)

Corresponds to attribute ‘y’ on the given ‘feSpotLight’ element.

• z (readonly SVGAnimatedNumber)

Corresponds to attribute ‘z’ on the given ‘feSpotLight’ element.

• pointsAtX (readonly SVGAnimatedNumber)

Corresponds to attribute ‘pointsAtX’ on the given ‘feSpotLight’ element.

• pointsAtY (readonly SVGAnimatedNumber)

Corresponds to attribute ‘pointsAtY’ on the given ‘feSpotLight’ element.

• pointsAtZ (readonly SVGAnimatedNumber)

Corresponds to attribute ‘pointsAtZ’ on the given ‘feSpotLight’ element.



• specularExponent (readonly SVGAnimatedNumber)

Corresponds to attribute ‘specularExponent’ on the given ‘feSpotLight’ element.

• limitingConeAngle (readonly SVGAnimatedNumber)

Corresponds to attribute ‘limitingConeAngle’ on the given ‘feSpotLight’ element.

15.25.17 Interface SVGFEDisplacementMapElement

The SVGFEDisplacementMapElement interface corresponds to the ‘feDisplacementMap’ element.

interface SVGFEDisplacementMapElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

// Channel Selectors
const unsigned short SVG_CHANNEL_UNKNOWN = 0;
const unsigned short SVG_CHANNEL_R = 1;
const unsigned short SVG_CHANNEL_G = 2;
const unsigned short SVG_CHANNEL_B = 3;
const unsigned short SVG_CHANNEL_A = 4;

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedString in2;
readonly attribute SVGAnimatedNumber scale;
readonly attribute SVGAnimatedEnumeration xChannelSelector;
readonly attribute SVGAnimatedEnumeration yChannelSelector;

};

Constants in group “Channel Selectors”:

• SVG_CHANNEL_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.

• SVG_CHANNEL_R (unsigned short)

Corresponds to value 'R'.

• SVG_CHANNEL_G (unsigned short)

Corresponds to value 'G'.

• SVG_CHANNEL_B (unsigned short)

Corresponds to value 'B'.



• SVG_CHANNEL_A (unsigned short)

Corresponds to value 'A'.

Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feDisplacementMap’ element.

• in2 (readonly SVGAnimatedString)

Corresponds to attribute ‘in2’ on the given ‘feDisplacementMap’ element.

• scale (readonly SVGAnimatedNumber)

Corresponds to attribute ‘scale’ on the given ‘feDisplacementMap’ element.

• xChannelSelector (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘xChannelSelector’ on the given ‘feDisplacementMap’ element. Takes one of the
SVG_CHANNEL_* constants defined on this interface.

• yChannelSelector (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘yChannelSelector’ on the given ‘feDisplacementMap’ element. Takes one of the
SVG_CHANNEL_* constants defined on this interface.

15.25.18 Interface SVGFEFloodElement

The SVGFEFloodElement interface corresponds to the ‘feFlood’ element.

interface SVGFEFloodElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

};

15.25.19 Interface SVGFEGaussianBlurElement

The SVGFEGaussianBlurElement interface corresponds to the ‘feGaussianBlur’ element.

interface SVGFEGaussianBlurElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedNumber stdDeviationX;
readonly attribute SVGAnimatedNumber stdDeviationY;



void setStdDeviation(in float stdDeviationX, in float stdDeviationY) raises(DOMException);
};

Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feGaussianBlur’ element.

• stdDeviationX (readonly SVGAnimatedNumber)

Corresponds to attribute ‘stdDeviation’ on the given ‘feGaussianBlur’ element. Contains the X component of
attribute ‘stdDeviation’.

• stdDeviationY (readonly SVGAnimatedNumber)

Corresponds to attribute ‘stdDeviation’ on the given ‘feGaussianBlur’ element. Contains the Y component
(possibly computed automatically) of attribute ‘stdDeviation’.

Operations:

• void setStdDeviation(in float stdDeviationX, in float stdDeviationY)

Sets the values for attribute ‘stdDeviation’.

Parameters

• float stdDeviationX
The X component of attribute ‘stdDeviation’.

• float stdDeviationY
The Y component of attribute ‘stdDeviation’.

Exceptions

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

15.25.20 Interface SVGFEImageElement

The SVGFEImageElement interface corresponds to the ‘feImage’ element.

interface SVGFEImageElement : SVGElement,
SVGURIReference,

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


SVGLangSpace,
SVGExternalResourcesRequired,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;
};

Attributes:

• preserveAspectRatio (readonly SVGAnimatedPreserveAspectRatio)

Corresponds to attribute ‘preserveAspectRatio’ on the given ‘feImage’ element.

15.25.21 Interface SVGFEMergeElement

The SVGFEMergeElement interface corresponds to the ‘feMerge’ element.

interface SVGFEMergeElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

};

15.25.22 Interface SVGFEMergeNodeElement

The SVGFEMergeNodeElement interface corresponds to the ‘feMergeNode’ element.

interface SVGFEMergeNodeElement : SVGElement {
readonly attribute SVGAnimatedString in1;

};

Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feMergeNode’ element.

15.25.23 Interface SVGFEMorphologyElement

The SVGFEMorphologyElement interface corresponds to the ‘feMorphology’ element.

interface SVGFEMorphologyElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

// Morphology Operators
const unsigned short SVG_MORPHOLOGY_OPERATOR_UNKNOWN = 0;
const unsigned short SVG_MORPHOLOGY_OPERATOR_ERODE = 1;
const unsigned short SVG_MORPHOLOGY_OPERATOR_DILATE = 2;

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedEnumeration operator;
readonly attribute SVGAnimatedNumber radiusX;
readonly attribute SVGAnimatedNumber radiusY;

};



Constants in group “Morphology Operators”:

• SVG_MORPHOLOGY_OPERATOR_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.

• SVG_MORPHOLOGY_OPERATOR_ERODE (unsigned short)

Corresponds to value 'erode'.

• SVG_MORPHOLOGY_OPERATOR_DILATE (unsigned short)

Corresponds to value 'dilate'.

Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feMorphology’ element.

• operator (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘operator’ on the given ‘feMorphology’ element. Takes one of the
SVG_MORPHOLOGY_OPERATOR_* constants defined on this interface.

• radiusX (readonly SVGAnimatedNumber)

Corresponds to attribute ‘radius’ on the given ‘feMorphology’ element.

• radiusY (readonly SVGAnimatedNumber)

Corresponds to attribute ‘radius’ on the given ‘feMorphology’ element.

15.25.24 Interface SVGFEOffsetElement

The SVGFEOffsetElement interface corresponds to the ‘feOffset’ element.

interface SVGFEOffsetElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedNumber dx;
readonly attribute SVGAnimatedNumber dy;

};



Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feOffset’ element.

• dx (readonly SVGAnimatedNumber)

Corresponds to attribute ‘dx’ on the given ‘feOffset’ element.

• dy (readonly SVGAnimatedNumber)

Corresponds to attribute ‘dy’ on the given ‘feOffset’ element.

15.25.25 Interface SVGFESpecularLightingElement

The SVGFESpecularLightingElement interface corresponds to the ‘feSpecularLighting’ element.

interface SVGFESpecularLightingElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedNumber surfaceScale;
readonly attribute SVGAnimatedNumber specularConstant;
readonly attribute SVGAnimatedNumber specularExponent;
readonly attribute SVGAnimatedNumber kernelUnitLengthX;
readonly attribute SVGAnimatedNumber kernelUnitLengthY;

};

Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feSpecularLighting’ element.

• surfaceScale (readonly SVGAnimatedNumber)

Corresponds to attribute ‘surfaceScale’ on the given ‘feSpecularLighting’ element.

• specularConstant (readonly SVGAnimatedNumber)

Corresponds to attribute ‘specularConstant’ on the given ‘feSpecularLighting’ element.

• specularExponent (readonly SVGAnimatedNumber)

Corresponds to attribute ‘specularExponent’ on the given ‘feSpecularLighting’ element.



• kernelUnitLengthX (readonly SVGAnimatedNumber)

Corresponds to attribute ‘kernelUnitLength’ on the given ‘feSpecularLighting’ element.

• kernelUnitLengthY (readonly SVGAnimatedNumber)

Corresponds to attribute ‘kernelUnitLength’ on the given ‘feSpecularLighting’ element.

15.25.26 Interface SVGFETileElement

The SVGFETileElement interface corresponds to the ‘feTile’ element.

interface SVGFETileElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedString in1;
};

Attributes:

• in1 (readonly SVGAnimatedString)

Corresponds to attribute ‘in’ on the given ‘feTile’ element.

15.25.27 Interface SVGFETurbulenceElement

The SVGFETurbulenceElement interface corresponds to the ‘feTurbulence’ element.

interface SVGFETurbulenceElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

// Turbulence Types
const unsigned short SVG_TURBULENCE_TYPE_UNKNOWN = 0;
const unsigned short SVG_TURBULENCE_TYPE_FRACTALNOISE = 1;
const unsigned short SVG_TURBULENCE_TYPE_TURBULENCE = 2;

// Stitch Options
const unsigned short SVG_STITCHTYPE_UNKNOWN = 0;
const unsigned short SVG_STITCHTYPE_STITCH = 1;
const unsigned short SVG_STITCHTYPE_NOSTITCH = 2;

readonly attribute SVGAnimatedNumber baseFrequencyX;
readonly attribute SVGAnimatedNumber baseFrequencyY;
readonly attribute SVGAnimatedInteger numOctaves;
readonly attribute SVGAnimatedNumber seed;
readonly attribute SVGAnimatedEnumeration stitchTiles;
readonly attribute SVGAnimatedEnumeration type;

};

Constants in group “Turbulence Types”:

• SVG_TURBULENCE_TYPE_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.



• SVG_TURBULENCE_TYPE_FRACTALNOISE (unsigned short)

Corresponds to value 'fractalNoise'.

• SVG_TURBULENCE_TYPE_TURBULENCE (unsigned short)

Corresponds to value 'turbulence'.

Constants in group “Stitch Options”:

• SVG_STITCHTYPE_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.

• SVG_STITCHTYPE_STITCH (unsigned short)

Corresponds to value 'stitch'.

• SVG_STITCHTYPE_NOSTITCH (unsigned short)

Corresponds to value 'noStitch'.

Attributes:

• baseFrequencyX (readonly SVGAnimatedNumber)

Corresponds to attribute ‘baseFrequency’ on the given ‘feTurbulence’ element. Contains the X component of
the ‘baseFrequency’ attribute.

• baseFrequencyY (readonly SVGAnimatedNumber)

Corresponds to attribute ‘baseFrequency’ on the given ‘feTurbulence’ element. Contains the Y component of
the (possibly computed automatically) ‘baseFrequency’ attribute.

• numOctaves (readonly SVGAnimatedInteger)

Corresponds to attribute ‘numOctaves’ on the given ‘feTurbulence’ element.

• seed (readonly SVGAnimatedNumber)

Corresponds to attribute ‘seed’ on the given ‘feTurbulence’ element.



• stitchTiles (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘stitchTiles’ on the given ‘feTurbulence’ element. Takes one of the
SVG_STITCHTYPE_* constants defined on this interface.

• type (readonly SVGAnimatedEnumeration)

Corresponds to attribute ‘type’ on the given ‘feTurbulence’ element. Takes one of the
SVG_TURBULENCE_TYPE_* constants defined on this interface.



16 Interactivity

Contents

16.1 Introduction
16.2 Complete list of supported events
16.3 User interface events
16.4 Pointer events
16.5 Hit-testing and processing order for user interface events

16.5.1 Hit-testing
16.5.2 Event processing

16.6 The ‘pointer-events’ property
16.7 Magnification and panning
16.8 Cursors

16.8.1 Introduction to cursors
16.8.2 The ‘cursor’ property
16.8.3 The ‘cursor’ element

16.9 DOM interfaces
16.9.1 Interface SVGCursorElement

16.1 Introduction

SVG content can be interactive (i.e., responsive to user-initiated events) by utilizing the following features in the
SVG language:

• User-initiated actions such as button presses on the pointing device (e.g., a mouse) can cause animations or
scripts to execute.

• The user can initiate hyperlinks to new Web pages (see Links out of SVG content: the ‘a’ element) by actions
such as mouse clicks when the pointing device is positioned over particular graphics elements.

• In many cases, depending on the value of the ‘zoomAndPan’ attribute on the ‘svg’ element and on the charac-
teristics of the user agent, users are able to zoom into and pan around SVG content.

• User movements of the pointing device can cause changes to the cursor that shows the current position of the
pointing device.

This chapter describes:

• information about events, including under which circumstances events are triggered
• how to indicate whether a given document can be zoomed and panned
• how to specify which cursors to use



Related information can be found in other chapters:

• hyperlinks are discussed in Links
• scripting and event attributes are discussed in Scripting
• SVG's relationship to DOM2 events is discussed in Relationship with DOM2 event model
• animation is discussed in Animation

16.2 Complete list of supported events

The following aspects of SVG are affected by events:

• Using SVG Document Object Model (DOM), a script can register DOM 2 event listeners ([DOM2EVENTS],
section 1.3) so that script can be invoked when a given event occurs.

• SVG includes event attributes on selected elements which define script that can be executed when a given
event occurs in association with the given element.

• SVG's animation elements can be defined to begin or end based on events.

The following table lists all of the events which are recognized and supported in SVG. The Event name in the
first column is the name to use within SVG's animation elements to define the events which can start or end
animations. The DOM2 name in the second column is the name to use when defining DOM 2 event listeners
([DOM2EVENTS], section 1.3). The Event attribute name in the fourth column contains the corresponding name
of the event attributes that can be attached to elements in the SVG language.

Requirements in the table on whether an event of a given type bubbles or is cancelable apply only to events
that are created and dispatched by the user agent. Events of those types created from script using the createEvent
method on the DocumentEvent interface can be made to bubble or be cancelable with the initEvent method.

Event name and description DOM2 name DOM2 category Event attribute name

focusin

Occurs when an element receives focus, such as

when a ‘text’ becomes selected.

DOMFocusIn UIEvent onfocusin

focusout

Occurs when an element loses focus, such as when

a ‘text’ becomes unselected.

DOMFocusOut UIEvent onfocusout

activate

Occurs when an element is activated, for instance,

through a mouse click or a keypress. A numerical

argument is provided to give an indication of the

type of activation that occurs: 1 for a simple

activation (e.g. a simple click or Enter), 2 for

DOMActivate UIEvent onactivate

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-registration
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-registration
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-DocumentEvent-createEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-DocumentEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-Event-initEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-UIEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-UIEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-UIEvent


hyperactivation (for instance a double click or Shift

Enter).

click

Occurs when the pointing device button is clicked

over an element. A click is defined as a mousedown

and mouseup over the same screen location. The

sequence of these events is: mousedown, mouseup,

click. If multiple clicks occur at the same screen

location, the sequence repeats with the detail

attribute incrementing with each repetition.

(same) MouseEvent onclick

mousedown

Occurs when the pointing device button is pressed

over an element.

(same) MouseEvent onmousedown

mouseup

Occurs when the pointing device button is released

over an element.

(same) MouseEvent onmouseup

mouseover

Occurs when the pointing device is moved onto an

element.

(same) MouseEvent onmouseover

mousemove

Occurs when the pointing device is moved while it

is over an element.

(same) MouseEvent onmousemove

mouseout

Occurs when the pointing device is moved away

from an element.

(same) MouseEvent onmouseout

DOMSubtreeModified

This is a general event for notification of all changes

to the document. It can be used instead of the more

specific events listed below. (The normative

definition of this event is the description in the

DOM2 specification.)

(same) MutationEvent none

DOMNodeInserted

Fired when a node has been added as a child of

another node. (The normative definition of this

event is the description in the DOM2 specification.)

(same) MutationEvent none

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent


DOMNodeRemoved

Fired when a node is being removed from another

node. (The normative definition of this event is the

description in the DOM2 specification.)

(same) MutationEvent none

DOMNodeRemovedFromDocument

Fired when a node is being removed from a

document, either through direct removal of the

Node or removal of a subtree in which it is

contained. (The normative definition of this event is

the description in the DOM2 specification.)

(same) MutationEvent none

DOMNodeInsertedIntoDocument

Fired when a node is being inserted into a

document, either through direct insertion of the

Node or insertion of a subtree in which it is

contained. (The normative definition of this event is

the description in the DOM2 specification.)

(same) MutationEvent none

DOMAttrModified

Fired after an attribute has been modified on a

node. (The normative definition of this event is the

description in the DOM2 specification.)

(same) MutationEvent none

DOMCharacterDataModified

Fired after CharacterData within a node has been

modified but the node itself has not been inserted or

deleted. (The normative definition of this event is

the description in the DOM2 specification.)

(same) MutationEvent none

SVGLoad

The event is triggered at the point at which the user

agent has fully parsed the element and its

descendants and is ready to act appropriately upon

that element, such as being ready to render the

element to the target device. Referenced external

resources that are required must be loaded, parsed

and ready to render before the event is triggered.

Optional external resources are not required to be

ready for the event to be triggered.

SVGLoad events do not bubble and are not

cancelable.

(same) none onload

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MutationEvent


SVGUnload

Only applicable to outermost svg elements. The

unload event occurs when the DOM implementation

removes a document from a window or frame.

SVGUnload events do not bubble and are not

cancelable.

(same) none onunload

SVGAbort

The abort event occurs when page loading is

stopped before an element has been allowed to

load completely.

SVGAbort events bubble but are not

cancelable.

(same) none onabort

SVGError

The error event occurs when an element does not

load properly or when an error occurs during script

execution.

SVGError events bubble but are not

cancelable.

(same) none onerror

SVGResize

Occurs when a document view is being resized.

This event is only applicable to outermost svg

elements and is dispatched after the resize

operation has taken place. The target of the event

is the ‘svg’ element.

SVGResize events bubble but are not

cancelable.

(same) none onresize

SVGScroll

Occurs when a document view is being shifted

along the X or Y or both axis, either through a direct

user interaction or any change on the

currentTranslate property available on

SVGSVGElement interface. This event is only

applicable to outermost svg elements and is

dispatched after the shift modification has taken

place. The target of the event is the ‘svg’ element.

SVGScroll events bubble but are not

cancelable.

(same) none onscroll

SVGZoom none none onzoom



Occurs when the zoom level of a document view is

being changed, either through a direct user

interaction or any change to the currentScale

property available on SVGSVGElement interface.

This event is only applicable to outermost svg

elements and is dispatched after the zoom level

modification has taken place. The target of the

event is the ‘svg’ element.

SVGZoom events bubble but are not

cancelable.

beginEvent

Occurs when an animation element begins. For

details, see the description of Interface TimeEvent

in the SMIL Animation specification.

none none onbegin

endEvent

Occurs when an animation element ends. For

details, see the description of Interface TimeEvent

in the SMIL Animation specification.

none none onend

repeatEvent

Occurs when an animation element repeats. It is

raised each time the element repeats, after the first

iteration. For details, see the description of Interface

TimeEvent in the SMIL Animation specification.

none none onrepeat

As in DOM 2 Key events ([DOM2EVENTS], section 1.6.3), the SVG specification does not provide a key event set.
An event set designed for use with keyboard input devices will be included in a later version of the DOM and SVG
specifications.

Details on the parameters passed to event listeners for the event types from DOM2 can be found in the DOM2
specification. For other event types, the parameters passed to event listeners are described elsewhere in this spe-
cification.

Event listener attributes can be specified on some elements to listen to a given event. The script in such at-
tributes is run only in response to "bubbling" and "at target" phase events dispatched to the element.

Likewise, event-value timing specifiers used in animation element ‘begin’ and ‘end’ attributes are resolved to
concrete times only in response to "bubbling" and "at target" phase events dispatched to the relevant element.

16.3 User interface events

On user agents which support interactivity, it is common for authors to define SVG documents such that they are

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-eventgroupings-keyevents


responsive to user interface events. Among the set of possible user events are pointer events, keyboard events, and
document events.

In response to user interface (UI) events, the author might start an animation, perform a hyperlink to another
Web page, highlight part of the document (e.g., change the color of the graphics elements which are under the
pointer), initiate a "roll-over" (e.g., cause some previously hidden graphics elements to appear near the pointer) or
launch a script which communicates with a remote database.

16.4 Pointer events

User interface events that occur because of user actions performed on a pointer device are called pointer events.
Many systems support pointer devices such as a mouse or trackball. On systems which use a mouse, pointer

events consist of actions such as mouse movements and mouse clicks. On systems with a different pointer device,
the pointing device often emulates the behavior of the mouse by providing a mechanism for equivalent user ac-
tions, such as a button to press which is equivalent to a mouse click.

For each pointer event, the SVG user agent determines the target element of a given pointer event. The target
element is the topmost graphics element whose relevant graphical content is under the pointer at the time of the
event. (See property ‘pointer-events’ for a description of how to determine whether an element's relevant graphical
content is under the pointer, and thus in which circumstances that graphic element can be the target element for
a pointer event.) When an element is not displayed (i.e., when the ‘display’ property on that element or one of its
ancestors has a value of none), that element cannot be the target of pointer events.

If a target element for the pointer event exists, then the event is dispatched to that element according to the
normal event flow ([DOM2EVENTS], section 1.2). Note, however, that if the target element is in a ‘use’ element
shadow tree, that the event flow will include SVGElementInstance objects. See The ‘use’ element for details.

If a target element for the pointer event does not exist, then the event is ignored.

16.5 Hit-testing and processing order for user interface events

There are two distinct aspects of pointer-device interaction with an element or area:

1. hit-testing, to determine if a pointer event (such as a mouse movement or mouse click) occurred within the
interaction area of an element, and the subsequent DOM event flow;

2. functional processing of actions associated with any relevant element.

16.5.1 Hit-testing

Determining whether a pointer event results in a positive hit-test depends upon the position of the pointer, the
size and shape of the graphics element, and the computed value of the ‘pointer-events’ property on the element.
The definition of the ‘pointer-events’ property below describes the exact region that is sensitive to pointer events
for a given type of graphics element.

Note that the ‘svg’ element is not a graphics element, and in a Conforming SVG Stand-Alone File a rootmost
‘svg’ element will never be the target of pointer events, though events can bubble to this element. If a pointer event

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-flow


does not result in a positive hit-test on a graphics element, then it should evoke any user-agent-specific window
behavior, such as a presenting a context menu or controls to allow zooming and panning of an SVG document
fragment.

This specification does not define the behavior of pointer events on the rootmost ‘svg’ element for SVG images
which are embedded by reference or inclusion within another document, e.g., whether the rootmost ‘svg’ element
embedded in an HTML document intercepts mouse click events; future specifications may define this behavior,
but for the purpose of this specification, the behavior is implementation-specific.

16.5.2 Event processing

An element which is the target of a user interface event may have particular interaction behaviors, depending
upon the type of element and whether it has explicit associated interactions, such as scripted event listeners, CSS
pseudo-classes matches, or declarative animations with event-based timing. The algorithm and order for process-
ing user interface events for a given target element, after dispatching the DOM event, is as follows:

1. If an event handler registered on this element invokes the preventDefault() DOM method, then no further
processing for this element is performed, and the event follows the event flow processing as described in
DOM Level 2 Events [DOM2EVENTS] (or its successor);

2. If the element has an associated title or description, such as a ‘title’ element or an ‘xlink:title’ attribute, and
the user agent supports the display of such information (e.g. via a tooltip or status-bar message), that inform-
ation should be displayed, as appropriate to the type of pointer event;

3. If the element matches any relevant dynamic pseudo-class selectors appropriate to the type of pointer event,
such as :hover, :active, or :focus as described in [CSS2], section 5.11, then the relevant class properties
are applied;

4. If the element and the event type are associated with the activation or cancelation of declarative animation
though the use of event-value timing specifiers, any corresponding instance times must be resolved, and any
conseqential actions of this instance time resolution (such as immediately starting or stopping the animation)
must be performed;

5. If the element is a hyperlink (e.g., it is a descendant element of an ‘a’ element), and the pointer event is of a
type that activates that hyperlink (e.g. via a mouse click), and if the hyperlink traversal changes the context
of the content (e.g. opens a different document, or moves the pointer away from this element by moving to
another part of the same document), then no further processing for this element is performed;

6. If the element is a text content element, and the event type is one which the user agent recognizes as part of
a text-selection operation (e.g., a mouse click and drag, or a double-click), then the text selection algorithm is
performed;

7. If the event type is one which the user agent associates with the evocation of special user-interface controls
(e.g., a right-click or command-click evoking a context menu), the user agent should evoke such user-agent-
specific behavior, such as presenting a context menu or controls to allow zooming and panning of an SVG
document fragment.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-flow
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html#q15


16.6 The ‘pointer-events’ property

In different circumstances, authors may want to control under what conditions particular graphic elements can
become the target of pointer events. For example, the author might want a given element to receive pointer events
only when the pointer is over the stroked perimeter of a given shape. In other cases, the author might want a given
element to ignore pointer events under all circumstances so that graphical elements underneath the given element
will become the target of pointer events.

The effects of masking and clipping differ with respect to pointer-events. A clip path is a geometric boundary,
and a given point is clearly either inside or outside that boundary; thus, pointer events must be captured normally
over the rendered areas of a clipped element, but must not be captured over the clipped areas, as described in the
definition of clipping paths. By contrast, a mask is not a binary transition, but a pixel operation, and different be-
havior for fully transparent and almost-but-not-fully-transparent may be confusingly arbitrary; as a consequence,
for elements with a mask applied, pointer-events must still be captured even in areas where the mask goes to zero
opacity. If an author wishes to achieve an effect where the transparent parts of a mask allow pointer-events to pass
to an element below, a combination of masking and clipping may be used.

The ‘filter’ property has no effect on pointer-events processing, and must in this context be treated as if the
‘filter’ wasn't specified.

For example, suppose a circle with a ‘stroke’ of red (i.e., the outline is solid red) and a ‘fill’ of none (i.e., the
interior is not painted) is rendered directly on top of a rectangle with a ‘fill’ of blue. The author might want the
circle to be the target of pointer events only when the pointer is over the perimeter of the circle. When the pointer
is over the interior of the circle, the author might want the underlying rectangle to be the target element of pointer
events.

The ‘pointer-events’ property specifies under what circumstances a given graphics element can be the target
element for a pointer event. It affects the circumstances under which the following are processed:

• user interface events such as mouse clicks
• dynamic pseudo-classes (i.e., :hover, :active and :focus; [CSS2], section 5.11)
• hyperlinks (see Links out of SVG content: the ‘a’ element)

‘pointer-events’

Value:
visiblePainted | visibleFill | visibleStroke | visible |

painted | fill | stroke | all | none | inherit

Initial: visiblePainted

Applies to: graphics elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

visiblePainted
The given element can be the target element for pointer events when the ‘visibility’ property is set to visible
and when the pointer is over a "painted" area. The pointer is over a painted area if it is over the interior (i.e.,

http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html#q15
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


fill) of the element and the ‘fill’ property has an actual value other than none or it is over the perimeter (i.e.,
stroke) of the element and the ‘stroke’ property is set to a value other than none.

visibleFill
The given element can be the target element for pointer events when the ‘visibility’ property is set to visible
and when the pointer is over the interior (i.e., fill) of the element. The value of the ‘fill’ property does not
affect event processing.

visibleStroke
The given element can be the target element for pointer events when the ‘visibility’ property is set to visible
and when the pointer is over the perimeter (i.e., stroke) of the element. The value of the ‘stroke’ property
does not affect event processing.

visible
The given element can be the target element for pointer events when the ‘visibility’ property is set to visible
and the pointer is over either the interior (i.e., fill) or the perimeter (i.e., stroke) of the element. The values of
the ‘fill’ and ‘stroke’ do not affect event processing.

painted
The given element can be the target element for pointer events when the pointer is over a "painted" area. The
pointer is over a painted area if it is over the interior (i.e., fill) of the element and the ‘fill’ property has an
actual value other than none or it is over the perimeter (i.e., stroke) of the element and the ‘stroke’ property
has an actual value other than none. The value of the ‘visibility’ property does not effect event processing.

fill
The given element can be the target element for pointer events when the pointer is over the interior (i.e., fill)
of the element. The values of the ‘fill’ and ‘visibility’ properties do not affect event processing.

stroke
The given element can be the target element for pointer events when the pointer is over the perimeter (i.e.,
stroke) of the element. The values of the ‘stroke’ and ‘visibility’ properties do not affect event processing.

all
The given element can be the target element for pointer events whenever the pointer is over either the in-
terior (i.e., fill) or the perimeter (i.e., stroke) of the element. The values of the ‘fill’, ‘stroke’ and ‘visibility’
properties do not affect event processing.

none
The given element does not receive pointer events.

For text elements, hit-testing is performed on a character cell basis:

• The value visiblePainted means that the text string can receive events anywhere within the character cell if
either the ‘fill’ property is set to a value other than none or the ‘stroke’ property is set to a value other than
none, with the additional requirement that the ‘visibility’ property is set to visible.

• The values visibleFill, visibleStroke and visible are equivalent and indicate that the text string can receive
events anywhere within the character cell if the ‘visibility’ property is set to visible. The values of the ‘fill’ and
‘stroke’ properties do not affect event processing.

• The value painted means that the text string can receive events anywhere within the character cell if either



the ‘fill’ property is set to a value other than none or the ‘stroke’ property is set to a value other than none.
The value of the ‘visibility’ property does not affect event processing.

• The values fill, stroke and all are equivalent and indicate that the text string can receive events anywhere
within the character cell. The values of the ‘fill’, ‘stroke’ and ‘visibility’ properties do not affect event process-
ing.

• The value none indicates that the given text does not receive pointer events.

For raster images, hit-testing is either performed on a whole-image basis (i.e., the rectangular area for the image
is one of the determinants for whether the image receives the event) or on a per-pixel basis (i.e., the alpha values
for pixels under the pointer help determine whether the image receives the event):

• The value visiblePainted means that the raster image can receive events anywhere within the bounds of the
image if any pixel from the raster image which is under the pointer is not fully transparent, with the addi-
tional requirement that the ‘visibility’ property is set to visible.

• The values visibleFill, visibleStroke and visible are equivalent and indicate that the image can receive events
anywhere within the rectangular area for the image if the ‘visibility’ property is set to visible.

• The value painted means that the raster image can receive events anywhere within the bounds of the image if
any pixel from the raster image which is under the pointer is not fully transparent. The value of the ‘visibility’
property does not affect event processing.

• The values fill, stroke and all are equivalent and indicate that the image can receive events anywhere within
the rectangular area for the image. The value of the ‘visibility’ property does not affect event processing.

• The value none indicates that the image does not receive pointer events.

Note that for raster images, the values of properties ‘opacity’, ‘fill-opacity’, ‘stroke-opacity’, ‘fill’ and ‘stroke’ do not
affect event processing.

16.7 Magnification and panning

Magnification represents a complete, uniform transformation on an SVG document fragment, where the magnify
operation scales all graphical elements by the same amount. A magnify operation has the effect of a supplemental
scale and translate transformation placed at the outermost level on the SVG document fragment (i.e., outside the
outermost svg element).

Panning represents a translation (i.e., a shift) transformation on an SVG document fragment in response to a
user interface action.

SVG user agents that operate in interaction-capable user environments are required to support the ability to
magnify and pan.

The outermost svg element in an SVG document fragment has attribute ‘zoomAndPan’, which takes the pos-
sible values of disable and magnify, with the default being magnify.

If disable, the user agent shall disable any magnification and panning controls and not allow the user to mag-
nify or pan on the given document fragment.



If magnify, in environments that support user interactivity, the user agent shall provide controls to allow the
user to perform a "magnify" operation on the document fragment.

If a ‘zoomAndPan’ attribute is assigned to an inner ‘svg’ element, the ‘zoomAndPan’ setting on the inner ‘svg’
element will have no effect on the SVG user agent.

Animatable: no.

16.8 Cursors

16.8.1 Introduction to cursors

Some interactive display environments provide the ability to modify the appearance of the pointer, which is also
known as the cursor. Three types of cursors are available:

• Standard built-in cursors
• Platform-specific custom cursors
• Platform-independent custom cursors

The ‘cursor’ property is used to specify which cursor to use. The ‘cursor’ property can be used to reference standard
built-in cursors by specifying a keyword such as crosshair or a custom cursor. Custom cursors are referenced via
a <funciri> and can point to either an external resource such as a platform-specific cursor file or to a ‘cursor’ ele-
ment, which can be used to define a platform-independent cursor.

16.8.2 The ‘cursor’ property

‘cursor’

Value:
[ [<funciri> ,]* [ auto | crosshair | default | pointer | move | e-resize | ne-resize | nw-resize | n-resize |

se-resize | sw-resize | s-resize | w-resize| text | wait | help ] ] | inherit

Initial: auto

Applies to: container elements and graphics elements

Inherited: yes

Percentages: N/A

Media: visual, interactive

Animatable: yes

This property specifies the type of cursor to be displayed for the pointing device. Values have the following mean-
ings:

auto
The UA determines the cursor to display based on the current context.

crosshair
A simple crosshair (e.g., short line segments resembling a "+" sign).

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit


‘cursor’

default
The platform-dependent default cursor. Often rendered as an arrow.

pointer
The cursor is a pointer that indicates a link.

move
Indicates something is to be moved.

e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize, w-resize
Indicate that some edge is to be moved. For example, the 'se-resize' cursor is used when the movement starts
from the south-east corner of the box.

text
Indicates text that can be selected. Often rendered as an I-bar.

wait
Indicates that the program is busy. Often rendered as a watch or hourglass.

help
Help is available for the object under the cursor. Often rendered as a question mark or a balloon.

<funciri>
The user agent retrieves the cursor from the resource designated by the URI. If the user agent cannot handle
the first cursor of a list of cursors, it shall attempt to handle the second, etc. If the user agent cannot handle
any user-defined cursor, it must use the generic cursor at the end of the list.

P { cursor : url("mything.cur"), url("second.svg#curs"), text; }

The ‘cursor’ property for SVG is identical to the ‘cursor’ property defined in CSS2 ([CSS2], section 18.1), with the
additional requirement that SVG user agents must support cursors defined by the SVG ‘cursor’ element. This gives
a single, cross-platform, interoperable cursor format, with PNG as the raster component.

16.8.3 The ‘cursor’ element

The ‘cursor’ element can be used to define a platform-independent custom cursor. A recommended approach for
defining a platform-independent custom cursor is to create a PNG image [PNG] and define a ‘cursor’ element that
references the PNG image and identifies the exact position within the image which is the pointer position (i.e., the
hot spot).

The PNG format is recommended because it supports the ability to define a transparency mask via an alpha
channel. If a different image format is used, this format should support the definition of a transparency mask (two
options: provide an explicit alpha channel or use a particular pixel color to indicate transparency). If the trans-
parency mask can be determined, the mask defines the shape of the cursor; otherwise, the cursor is an opaque
rectangle. Typically, the other pixel information (e.g., the R, G and B channels) defines the colors for those parts of
the cursor which are not masked out. Note that cursors usually contain at least two colors so that the cursor can
be visible over most backgrounds.

http://www.w3.org/TR/2008/REC-CSS2-20080411/ui.html#propdef-cursor


Categories:
None

Content model:
Any number of the following elements, in any order:

descriptive elements

Attributes:
core attributes
conditional processing attributes
xlink attributes
‘externalResourcesRequired’
‘x’
‘y’
‘xlink:href’

DOM Interfaces:
SVGCursorElement

Attribute definitions:

x = "<coordinate>"
The x-coordinate of the position in the cursor's coordinate system which represents the precise position that
is being pointed to.
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: yes.

y = "<coordinate>"
The y-coordinate of the position in the cursor's coordinate system which represents the precise position that
is being pointed to.
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: yes.

xlink:href = "<funciri>"
A Functional IRI reference to the file or element which provides the image of the cursor.
Animatable: yes.

SVG user agents are required to support PNG format images as targets of the ‘xlink:href’ attribute.



16.9 DOM interfaces

16.9.1 Interface SVGCursorElement

The SVGCursorElement interface corresponds to the ‘cursor’ element.

interface SVGCursorElement : SVGElement,
SVGURIReference,
SVGTests,
SVGExternalResourcesRequired {

readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;

};

Attributes:

• x (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given ‘cursor’ element.

• y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given ‘cursor’ element.



17 Linking

Contents

17.1 References
17.1.1 Overview
17.1.2 IRIs and URIs
17.1.3 Syntactic forms: IRI and FuncIRI
17.1.4 Processing of IRI references
17.1.5 IRI reference attributes

17.2 Links out of SVG content: the ‘a’ element
17.3 Linking into SVG content: IRI fragments and SVG views

17.3.1 Introduction: IRI fragments and SVG views
17.3.2 SVG fragment identifiers
17.3.3 Predefined views: the ‘view’ element
17.3.4 Highlighting views

17.4 DOM interfaces
17.4.1 Interface SVGAElement
17.4.2 Interface SVGViewElement

17.1 References

17.1.1 Overview

On the Internet, resources are identified using IRIs (Internationalized Resource Identifiers). For example, an SVG
file called someDrawing.svg located at http://example.com might have the following IRI:

http://example.com/someDrawing.svg

An IRI can also address a particular element within an XML document by including an IRI fragment identifier
as part of the IRI. An IRI which includes an IRI fragment identifier consists of an optional base IRI, followed by
a "#" character, followed by the IRI fragment identifier. For example, the following IRI can be used to specify the
element whose ID is "Lamppost" within file someDrawing.svg:

http://example.com/someDrawing.svg#Lamppost

17.1.2 IRIs and URIs

Internationalized Resource Identifiers (IRIs) are a more generalized complement to Uniform Resource Identifiers
(URIs). An IRI is a sequence of characters from the Universal Character Set [UNICODE]. A URI is constructed
from a much more restricted set of characters. All URIs are already conformant IRIs. A mapping from IRIs to



URIs is defined by the IRI specification, which means that IRIs can be used instead of URIs in XML documents, to
identify resources. IRIs can be converted to URIs for resolution on a network, if the protocol does not support IRIs
directly.

Previous versions of SVG, following XLink, defined an IRI reference type as a URI or as a sequence of char-
acters which must result in an IRI after a particular escaping procedure was applied. The escaping procedure was
repeated in the XLink 1.0 specification [XLINK], and in the W3C XML Schema Part 2: Datatypes specification
[SCHEMA2]. This copying introduced the possibility of error and divergence, but was done because the IRI spe-
cification was not yet standardized.

In this specification, the correct term IRI is used for this "URI or sequence of characters plus an algorithm"
and the escaping method, which turns IRIs into URIs, is defined by reference to the IRI specification [RFC3987],
which has since become an IETF Proposed Standard. Other W3C specifications are expected to be revised over
time to remove these duplicate descriptions of the escaping procedure and to refer to IRI directly.

17.1.3 Syntactic forms: IRI and FuncIRI

IRIs are used in the ‘xlink:href’ attribute. Some attributes allow both IRIs and text strings as content. To disam-
biguate a text string from a relative IRI, the functional notation <FuncIRI> is used. This is simply an IRI delimited
with a functional notation. Note: For historical reasons, the delimiters are "url(" and ")", for compatibility with the
CSS specifications. The FuncIRI form is used in presentation attributes .

SVG makes extensive use of IRI references, both absolute and relative, to other objects. For example, to fill a
rectangle with a linear gradient, you first define a ‘linearGradient’ element and give it an ID, as in:

<linearGradient xml:id="MyGradient">...</linearGradient>

You then reference the linear gradient as the value of the ‘fill’ property for the rectangle, as in the following ex-
ample:

<rect fill="url(#MyGradient)"/>

SVG supports two types of IRI references:

• local IRI references, where the IRI reference does not contain an <absoluteIRI> or <relativeIRI> and thus only
contains a fragment identifier (i.e., #<elementID> or #xpointer(id<elementID>))

• non-local IRI references, where the IRI reference does contain an <absoluteIRI> or <relativeIRI>

17.1.4 Processing of IRI references

The following rules apply to the processing of IRI references:

• IRI references to nodes that do not exist shall be treated as invalid references.
• IRI references to elements which are inappropriate targets for the given reference shall be treated as invalid

references (see list below for appropriate targets). For example, the ‘clip-path’ property can only refer to
‘clipPath’ elements. The property setting clip-path:url(#MyElement) is an invalid reference if the referenced
element is not a ‘clipPath’.

http://www.ietf.org/rfc/rfc3987.txt


• IRI references that directly or indirectly reference themselves are treated as invalid circular references.

The following list describes the elements and properties that allow IRI references and the valid target types for
those references:

• the ‘a’ element can reference any local or non-local resource
• the ‘altGlyph’ element must reference either an ‘altGlyphDef’ element or a ‘glyph’ element
• the ‘animate’ element (see Identifying the target element for an animation for reference rules)
• the ‘animateColor’ element (see Identifying the target element for an animation for reference rules)
• the ‘animateMotion’ element (see Identifying the target element for an animation for reference rules)
• the ‘animateTransform’ element (see Identifying the target element for an animation for reference rules)
• the ‘clip-path’ property must reference a ‘clipPath’ element
• the ‘color-profile’ element must reference an ICC profile resource
• the ‘color-profile’ property must reference an ICC profile resource or a ‘color-profile’ element
• the 'src' descriptor on an @color-profile definition must reference an ICC profile resource or a ‘color-profile’

element
• the ‘cursor’ element must reference a resource that can provide an image for the cursor graphic
• the ‘cursor’ property must reference a resource that can provide an image for the cursor graphic
• the ‘feImage’ element must reference any local or non-local resource
• the ‘fill’ property (see Specifying paint for reference rules)
• the ‘filter’ element must reference a ‘filter’ element
• the ‘filter’ property must reference a ‘filter’ element
• the ‘image’ element must reference any local or non-local resource
• the ‘linearGradient’ element must reference a ‘linearGradient’ or ‘radialGradient’ element
• the ‘marker’, ‘marker-start’, ‘marker-mid’ and ‘marker-end’ properties must reference a ‘marker’ element.
• the ‘mask’ property must reference a ‘mask’ element
• the ‘pattern’ element must reference a ‘pattern’ element
• the ‘radialGradient’ element must reference a ‘linearGradient’ or ‘radialGradient’ element
• the ‘script’ element must reference an external resource that provides the script content
• the ‘stroke’ property (see Specifying paint for reference rules)
• the ‘textPath’ element must reference a ‘path’ element
• the ‘tref’ element can reference any SVG element
• the ‘set’ element (see Identifying the target element for an animation for reference rules)
• the ‘use’ element can reference any local or non-local resource

The following rules apply to the processing of invalid IRI references:

• An invalid local IRI reference (i.e., an invalid references to a node within the current document) represents
an error (see Error processing), apart from the ‘xlink:href’ attribute on the ‘a’ element and the properties that
allow for backup values in the case where the IRI reference is invalid (see ‘fill’ and ‘stroke’).

• An invalid circular IRI reference represents an error (see Error processing).
• When attribute ‘externalResourcesRequired’ has been set to 'true' on the referencing element or one of its an-



cestors, then an unresolved external IRI reference (i.e., a resource that cannot be located) represents an error
(see Error processing).

17.1.5 IRI reference attributes

IRI references are normally specified with an ‘href’ attribute in the XLink [XLink] namespace. For example, if
the prefix of 'xlink' is used for attributes in the XLink namespace, then the attribute is be specified as ‘xlink:href’.
The value of this attribute forms a reference for the desired resource (or secondary resource, if there is a fragment
identifier).

The value of the ‘href’ attribute must be an Internationalized Resource Identifier.
If the protocol, such as HTTP, does not support IRIs directly, the IRI is converted to a URI by the SVG imple-

mentation, as described in section 3.1 of the IRI specification [RFC3987.
Because it is impractical for any application to check that a value is an IRI reference, this specification follows

the lead of the IRI Specification in this matter and imposes no such conformance testing requirement on SVG ap-
plications.

If the IRI reference is relative, its absolute version must be computed by the method described in XML Base
before use [XML-BASE].

xlink:type = "simple"
Identifies the type of XLink being used. In SVG 1.1, only simple links are available. Links are simple links
by default, so the attribute xlink:type="simple" is optional and may be omitted on simple links. Refer to the
XML Linking Language (XLink) [XLINK].

Animatable: no.

xlink:role = "<IRI>"
An optional IRI reference that identifies some resource that describes the intended property. The value must
be an IRI reference as defined in [RFC3987], except that if the IRI scheme used is allowed to have absolute
and relative forms, the IRI portion must be absolute. When no value is supplied, no particular role value shall
be inferred. Refer to the XML Linking Language (XLink) [XLINK].

Animatable: no.

xlink:arcrole = "<IRI>"
An optional IRI reference that identifies some resource that describes the intended property. The value must
be an IRI reference as defined in [RFC3987], except that if the IRI scheme used is allowed to have absolute
and relative forms, the IRI portion must be absolute. When no value is supplied, no particular role value
shall be inferred. The arcrole attribute corresponds to the [RDF-PRIMER] notion of a property, where the
role can be interpreted as stating that "starting-resource HAS arc-role ending-resource." This contextual role
can differ from the meaning of an ending resource when taken outside the context of this particular arc. For
example, a resource might generically represent a "person," but in the context of a particular arc it might
have the role of "mother" and in the context of a different arc it might have the role of "daughter." Refer to
the XML Linking Language (XLink) [XLINK].

Animatable: no.

http://www.w3.org/TR/xlink/
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xlink/
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/xlink/
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/xlink/


xlink:title = "<anything>"
The title attribute shall be used to describe the meaning of a link or resource in a human-readable fashion,
along the same lines as the role or arcrole attribute. A value is optional; if a value is supplied, it shall contain
a string that describes the resource. In general it is preferable to use a ‘title’ child element rather than a ‘title’
attribute. The use of this information is highly dependent on the type of processing being done. It may be
used, for example, to make titles available to applications used by visually impaired users, or to create a table
of links, or to present help text that appears when a user lets a mouse pointer hover over a starting resource.
Refer to the XML Linking Language (XLink) [XLINK].

Animatable: no.

xlink:show = "new' | 'replace' | 'embed' | 'other' | 'none'
This attribute is provided for backwards compatibility with SVG 1.1. It provides documentation to XLink-
aware processors. In case of a conflict, the target attribute has priority, since it can express a wider range of
values. Refer to the XML Linking Language (XLink) [XLINK].

Animatable: no.

xlink:actuate = "onLoad'
This attribute is provided for backwards compatibility with SVG 1.1. It provides documentation to XLink-
aware processors. Refer to the XML Linking Language (XLink) [XLINK].

Animatable: no.

In all cases, for compliance with either the "Namespaces in XML 1.0" or the "Namespaces in XML 1.1" Recom-
mendation [XML-NS10][XML-NS], an explicit XLink namespace declaration must be provided whenever one of
the above XLink attributes is used within SVG content. One simple way to provide such an XLink namespace
declaration is to include an ‘xmlns’ attribute for the XLink namespace on the ‘svg’ element for content that uses
XLink attributes. For example:

<svg xmlns:xlink="http://www.w3.org/1999/xlink" ...>
<image xlink:href="foo.png" .../>

</svg>

17.2 Links out of SVG content: the ‘a’ element

SVG provides an ‘a’ element, to indicate links (also known as hyperlinks or Web links). The ‘a’ element may contain
any element that its parent may contain, except itself.

SVG uses XLink ([XLink]) for all link definitions. SVG 1.1 only requires that user agents support XLink's no-
tion of simple links. Each simple link associates exactly two resources, one local and one remote, with an arc going
from the former to the latter.

A simple link is defined for each separate rendered element contained within the ‘a’ element; thus, if the ‘a’
element contains three ‘circle’ elements, a link is created for each circle. For each rendered element within an ‘a’
element, the given rendered element is the local resource (the source anchor for the link).

The remote resource (the destination for the link) is defined by a IRI specified by the XLink ‘xlink:href’ attrib-
ute on the ‘a’ element. The remote resource may be any Web resource (e.g., an image, a video clip, a sound bite,
a program, another SVG document, an HTML document, an element within the current document, an element

http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2001/REC-xlink-20010627/#simple-links


‘a’

within a different document, etc.). By activating these links (by clicking with the mouse, through keyboard input,
voice commands, etc.), users may visit these resources.

Example link01 assigns a link to an ellipse.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="3cm" viewBox="0 0 5 3" version="1.1"

xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<desc>Example link01 - a link on an ellipse
</desc>
<rect x=".01" y=".01" width="4.98" height="2.98"

fill="none" stroke="blue"  stroke-width=".03"/>
<a xlink:href="http://www.w3.org">

<ellipse cx="2.5" cy="1.5" rx="2" ry="1"
fill="red" />

</a>
</svg>

Example link01

If the above SVG file is viewed by a user agent that supports both SVG and HTML, then clicking on the ellipse will
cause the current window or frame to be replaced by the W3C home page.

Categories:
Container element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements
shape elements
structural elements
gradient elements
‘a’
‘altGlyphDef’
‘clipPath’
‘color-profile’
‘cursor’
‘filter’
‘font’
‘font-face’



‘foreignObject’
‘image’
‘marker’
‘mask’
‘pattern’
‘script’
‘style’
‘switch’
‘text’
‘view’

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
xlink attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’
‘xlink:href’
‘xlink:show’
‘xlink:actuate’
‘target’

DOM Interfaces:
SVGAElement

Attribute definitions:

xlink:show = "new" | "replace"
This attribute provides documentation to XLink-aware processors. If target="_blank" then use
xlink:show="new" else use 'replace'. In case of a conflict, the target attribute has priority, since it can express
a wider range of values. Refer to the XML Linking Language (XLink) [XLINK].

Animatable: no.

xlink:actuate = "onRequest"
This attribute provides documentation to XLink-aware processors that an application should traverse from
the starting resource to the ending resource only on a post-loading event triggered for the purpose of tra-
versal. Refer to the XML Linking Language (XLink) [XLINK].

Animatable: no.

http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/


xlink:href = "<IRI>"
The location of the referenced object, expressed as an IRI reference.

Animatable: yes.

target = "_replace" | "_self" | "_parent" | "_top" | "_blank" | "<XML-Name>"
This attribute should be used when there are multiple possible targets for the ending resource, such as when
the parent document is a multi-frame HTML or XHTML document. This attribute specifies the name or por-
tion of the target window, frame, pane, tab, or other relevant presentation context (e.g., an HTML or XHTML
frame, iframe, or object element) into which a document is to be opened when the link is activated:

_replace · The current SVG image is replaced by the linked content in the same rectangular area in the same
frame as the current SVG image.

_self · The current SVG image is replaced by the linked content in the same frame as the current SVG image.
If the attribute is not specified, '_self' is assumed.

_parent · The immediate frameset parent of the SVG image is replaced by the linked content.

_top · The content of the full window or tab, including any frames, is replaced by the linked content

_blank · A new un-named window or tab is requested for the display of the linked content. If this fails, the
result is the same as _top

<XML-Name> · Specifies the name of the frame, pane, or other relevant presentation context for display of
the linked content. If this already exists, it is re-used, replacing the existing content. If it does not exist, it is
created (the same as '_blank', except that it now has a name).

Note: The value '_new' is not a legal value for target (use '_blank').
Animatable: yes.

17.3 Linking into SVG content: IRI fragments and SVG views

17.3.1 Introduction: IRI fragments and SVG views

Because SVG content often represents a picture or drawing of something, a common need is to link into a par-
ticular view of the document, where a view indicates the initial transformations so as to present a closeup of a
particular section of the document.

17.3.2 SVG fragment identifiers

To link into a particular view of an SVG document, the IRI fragment identifier needs to be a correctly formed SVG



fragment identifier. An SVG fragment identifier defines the meaning of the "selector" or "fragment identifier"
portion of IRIs that locate resources of MIME media type "image/svg+xml".

An SVG fragment identifier can come in two forms:

• Shorthand bare name form of addressing (e.g., MyDrawing.svg#MyView). This form of addressing, which al-
lows addressing an SVG element by its ID, is compatible with the fragment addressing mechanism for older
versions of HTML.

• SVG view specification (e.g., MyDrawing.svg#svgView(viewBox(0,200,1000,1000))). This form of addressing
specifies the desired view of the document (e.g., the region of the document to view, the initial zoom level)
completely within the SVG fragment specification. The contents of the SVG view specification are the five
parameter specifications, viewBox(...), preserveAspectRatio(...), transform(...), zoomAndPan(...) and viewTar-
get(...), whose parameters have the same meaning as the corresponding attributes on a ‘view’ element, or, in
the case of transform(...), the same meaning as the corresponding attribute has on a ‘g’ element).

An SVG fragment identifier is defined as follows:

SVGFragmentIdentifier ::= BareName |
SVGViewSpec

BareName ::= XML_Name
SVGViewSpec ::= 'svgView(' SVGViewAttributes ')'
SVGViewAttributes ::= SVGViewAttribute |

SVGViewAttribute ';' SVGViewAttributes

SVGViewAttribute ::= viewBoxSpec |
preserveAspectRatioSpec |
transformSpec |
zoomAndPanSpec |
viewTargetSpec

viewBoxSpec ::= 'viewBox(' ViewBoxParams ')'
preserveAspectRatioSpec = 'preserveAspectRatio(' AspectParams ')'
transformSpec ::= 'transform(' TransformParams ')'
zoomAndPanSpec ::= 'zoomAndPan(' ZoomAndPanParams ')'
viewTargetSpec ::= 'viewTarget(' ViewTargetParams ')'

where:

• ViewBoxParams corresponds to the parameter values for the ‘viewBox’ attribute on the ‘view’ element. For
example, viewBox(0,0,200,200).

• AspectParams corresponds to the parameter values for the ‘preserveAspectRatio’ attribute on the ‘view’ ele-
ment. For example, preserveAspectRatio(xMidYMid).

• TransformParams corresponds to the parameter values for the ‘transform’ attribute that is available on many
elements. For example, transform(scale(5)).

• ZoomAndPanParams corresponds to the parameter values for the ‘zoomAndPan’ attribute on the ‘view’ ele-
ment. For example, zoomAndPan(magnify).

• ViewTargetParams corresponds to the parameter values for the ‘viewTarget’ attribute on the ‘view’ element.
For example, viewTarget(MyElementID).



‘view’

Spaces are not allowed in fragment specifications; thus, commas are used to separate numeric values within an
SVG view specification (e.g., #svgView(viewBox(0,0,200,200))) and semicolons are used to separate attributes (e.g.,
#svgView(viewBox(0,0,200,200);preserveAspectRatio(none))).

Semicolons used to separate 'SVGViewAttribute' in SVG fragments may be url-escaped (as %3B); this is useful
when animating a (semi-colon separated) list of IRIs because otherwise the semicolon would be interpreted as a
list separator.

The five types of SVGViewAttribute may occur in any order, but each type may only occur at most one time
in a correctly formed SVGViewSpec.

When a source document performs a link into an SVG document, for example via an HTML anchor element
([HTML4], section 12.2; i.e., <a href=...> element in HTML) or an XLink specification [XLINK], then the SVG frag-
ment identifier specifies the initial view into the SVG document, as follows:

• If no SVG fragment identifier is provided (e.g, the specified IRI did not contain a "#" character, such as
MyDrawing.svg), then the initial view into the SVG document is established using the view specification at-
tributes (i.e., ‘viewBox’, etc.) on the outermost svg element.

• If the SVG fragment identifier addresses a ‘view’ element within an SVG document (e.g., MyDraw-
ing.svg#MyView or MyDrawing.svg#xpointer(id('MyView'))) then the closest ancestor ‘svg’ element is dis-
played in the viewport. Any view specification attributes included on the given ‘view’ element override the
corresponding view specification attributes on the closest ancestor ‘svg’ element.

• If the SVG fragment identifier addresses specific SVG view (e.g., MyDraw-
ing.svg#svgView(viewBox(0,200,1000,1000))), then the document fragment defined by the closest ancestor ‘svg’
element is displayed in the viewport using the SVG view specification provided by the SVG fragment identi-
fier.

• If the SVG fragment identifier addresses any element other than a ‘view’ element, then the document defined
by the closest ancestor ‘svg’ element is displayed in the viewport using the view specification attributes on
that ‘svg’ element.

17.3.3 Predefined views: the ‘view’ element

The ‘view’ element is defined as follows:

Categories:
None

Content model:
Any number of the following elements, in any order:

descriptive elements

Attributes:
core attributes
‘externalResourcesRequired’
‘viewBox’

http://www.w3.org/TR/1999/REC-html401-19991224/struct/links.html#h-12.2


‘preserveAspectRatio’
‘zoomAndPan’
‘viewTarget’

DOM Interfaces:
SVGViewElement

Attribute definitions:

viewTarget = "XML_Name [XML_NAME]*"
Indicates the target object associated with the view.
Animatable: no.

17.3.4 Highlighting views

It is helpful to users if the target element(s) are highlighted. The visual styling of this highlight should be decided
by the document author, because the SVG User Agent has no way to determine what changes would make the
elements more visible.

The CSS :target selector ([SELECTORS], section 6.2.2) may be used in a stylesheet to provide alternate styling
for elements which are the target of links. For example:

<style type="text/css">
#foo:target {filter: url(#glow)}
/* when the element with id foo is linked to, use a glow filter */

.bar :target {stroke: green; fill-opacity: 0.5}
/* when any descendants of elements with class bar are linked

to, make the fill partly transparent and use a green stroke */

:target {stroke: red }
/* for everything else, just use a red stroke */
</style>

17.4 DOM interfaces

17.4.1 Interface SVGAElement

The SVGAElement interface corresponds to the ‘a’ element.

interface SVGAElement : SVGElement,
SVGURIReference,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedString target;
};



Attributes:

• target (readonly SVGAnimatedString)

Corresponds to attribute ‘target’ on the given ‘a’ element.

17.4.2 Interface SVGViewElement

The SVGViewElement interface corresponds to the ‘view’ element.

interface SVGViewElement : SVGElement,
SVGExternalResourcesRequired,
SVGFitToViewBox,
SVGZoomAndPan {

readonly attribute SVGStringList viewTarget;
};

Attributes:

• viewTarget (readonly SVGStringList)

Corresponds to attribute ‘viewTarget’ on the given ‘view’ element. A list of DOMString values which contain
the names listed in the ‘viewTarget’ attribute. Each of the DOMString values can be associated with the cor-
responding element using the getElementById() method call.



18 Scripting

Contents

18.1 Specifying the scripting language
18.1.1 Specifying the default scripting language
18.1.2 Local declaration of a scripting language

18.2 The ‘script’ element
18.3 Event handling
18.4 Event attributes

18.4.1 Event attribute for the SVGLoad event
18.4.2 Event attributes on graphics and container elements
18.4.3 Document-level event attributes
18.4.4 Animation event attributes

18.5 DOM interfaces
18.5.1 Interface SVGScriptElement
18.5.2 Interface SVGZoomEvent

18.1 Specifying the scripting language

18.1.1 Specifying the default scripting language

The ‘contentScriptType’ attribute on the ‘svg’ element specifies the default scripting language for the given docu-
ment fragment.

contentScriptType = "content-type"
Identifies the default scripting language for the given SVG document fragment. This attribute sets the default
scripting language used to process the value strings in event attributes. This language must be used for all
instances of script that do not specify their own scripting language. The value content-type specifies a media
type, per MIME Part Two: Media Types [RFC2046]. The default value is 'application/ecmascript' [RFC4329].
Animatable: no.

18.1.2 Local declaration of a scripting language

It is also possible to specify the scripting language for each individual ‘script’ element by specifying a ‘type’ on the
‘script’ element.

http://www.ietf.org/rfc/rfc2046.txt


18.2 The ‘script’ element

A ‘script’ element is equivalent to the ‘script’ element in HTML and thus is the place for scripts (e.g., ECMAScript).
Any functions defined within any ‘script’ element have a "global" scope across the entire current document.

Example script01 defines a function circle_click which is called by the ‘onclick’ event attribute on the
‘circle’ element. The drawing below on the left is the initial image. The drawing below on the right shows the res-
ult after clicking on the circle.

Note that this example demonstrates the use of the ‘onclick’ event attribute for explanatory purposes. The
example presupposes the presence of an input device with the same behavioral characteristics as a mouse, which
will not always be the case. To support the widest range of users, the ‘onactivate’ event attribute should be used
instead of the ‘onclick’ event attribute.

Before attempting to execute the ‘script’ element the resolved media type value for ‘type’ must be inspected.
If the SVG user agent does not support the scripting language then the ‘script’ element must not be executed.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="6cm" height="5cm" viewBox="0 0 600 500"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>Example script01 - invoke an ECMAScript function from an onclick event
</desc>
<!-- ECMAScript to change the radius with each click -->
<script type="application/ecmascript"> <![CDATA[

function circle_click(evt) {
var circle = evt.target;
var currentRadius = circle.getAttribute("r");
if (currentRadius == 100)

circle.setAttribute("r", currentRadius*2);
else

circle.setAttribute("r", currentRadius*0.5);
}

]]> </script>

<!-- Outline the drawing area with a blue line -->
<rect x="1" y="1" width="598" height="498" fill="none" stroke="blue"/>

<!-- Act on each click event -->
<circle onclick="circle_click(evt)" cx="300" cy="225" r="100"

fill="red"/>

<text x="300" y="480"
font-family="Verdana" font-size="35" text-anchor="middle">

Click on circle to change its size
</text>

</svg>



‘script’

Example script01

Categories:
None

Content model:
Any elements or character data.

Attributes:
core attributes
xlink attributes
‘externalResourcesRequired’
‘type’
‘xlink:href’

DOM Interfaces:
SVGScriptElement

Attribute definitions:

type = "content-type"
Identifies the scripting language for the given ‘script’ element. The value content-type specifies a media type,
per Multipurpose Internet Mail Extensions (MIME) Part Two [RFC2046]. If a ‘type’ is not provided, the value
of ‘contentScriptType’ on the ‘svg’ element shall be used, which in turn defaults to "application/ecmascript"
[RFC4329]. If a ‘script’ element falls outside of the outermost svg element and the ‘type’ is not provided, the
‘type’ must default to "application/ecmascript" [RFC4329].
Animatable: no.

xlink:href = "<iri>"
An IRI reference to an external resource containing the script code.
Animatable: no.

http://www.ietf.org/rfc/rfc2046.txt


18.3 Event handling

Events can cause scripts to execute when either of the following has occurred:

• Event attributes such as ‘onclick’ or ‘onload’ are assigned to particular elements, where the values of the event
attributes are script which is executed when the given event occurs.

• Event listeners as described in DOM Level 2 Events [DOM2EVENTS] are defined which are invoked when a
given event happens on a given object.

Related sections of the spec:

• User interface events describes how an SVG user agent handles events such as pointer movements events
(e.g., mouse movement) and activation events (e.g., mouse click).

• Relationship with DOM2 events describes what parts of DOM are supported by SVG and how to register
event listeners.

18.4 Event attributes

The following event attributes are available on many SVG elements.
The complete list of events that are part of the SVG language and SVG DOM and descriptions of those events

is provided in Complete list of supported events.

18.4.1 Event attribute for the SVGLoad event

Below is the definition for the ‘onload’ event attribute. It can be specified on all of the animation elements and
most of the graphics elements and container elements. The ‘onload’ event attribute is classified as both a graphical
event attribute and an animation event attribute. (See the definition for each element to determine whether it can
have a graphical event attribute specified on it.)

Attribute definitions:

onload = "<anything>"
Specifies some script to execute when "bubbling" or "at target" phase listeners for the SVGLoad event are
fired on the element the attribute is specified on.
Animatable: no.

18.4.2 Event attributes on graphics and container elements

Below are the definitions for the graphical event attributes. These can be specified on most graphics elements and
container elements. (See the definition for each element to determine whether it can have a graphical event attrib-
ute specified on it.)

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/


Note that ‘onload’, defined above, is also classified as a graphical event attribute.

Attribute definitions:

onfocusin = "<anything>"
onfocusout = "<anything>"
onactivate = "<anything>"
onclick = "<anything>"
onmousedown = "<anything>"
onmouseup = "<anything>"
onmouseover = "<anything>"
onmousemove = "<anything>"
onmouseout = "<anything>"

Specifies some script to execute when "bubbling" or "at target" phase listeners for the corresponding event
are fired on the element the attribute is specified on. See the Complete list of support events to determine
which event each of these event attributes corresponds to.
Animatable: no.

18.4.3 Document-level event attributes

Below are the definitions for the document event attributes. These can be specified only on ‘svg’ elements.

Attribute definitions:

onunload = "<anything>"
onabort = "<anything>"
onerror = "<anything>"
onresize = "<anything>"
onscroll = "<anything>"
onzoom = "<anything>"

Specifies some script to execute when "bubbling" or "at target" phase listeners for the corresponding event
are fired on the element the attribute is specified on. See the Complete list of support events to determine
which event each of these event attributes corresponds to.
Animatable: no.

18.4.4 Animation event attributes

Below are the definitions for the animation event attributes. These can be specified on the animation elements.
Note that ‘onload’, defined above, is also classified as an animation event attribute.



Attribute definitions:

onbegin = "<anything>"
onend = "<anything>"
onrepeat = "<anything>"

Specifies some script to execute when "bubbling" or "at target" phase listeners for the corresponding event
are fired on the element the attribute is specified on. See the Complete list of support events to determine
which event each of these event attributes corresponds to.
Animatable: no.

18.5 DOM interfaces

18.5.1 Interface SVGScriptElement

The SVGScriptElement interface corresponds to the ‘script’ element.

interface SVGScriptElement : SVGElement,
SVGURIReference,
SVGExternalResourcesRequired {

attribute DOMString type setraises(DOMException);
};

Attributes:

• type (DOMString)

Corresponds to attribute ‘type’ on the given ‘script’ element.

Exceptions on setting

• DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

18.5.2 Interface SVGZoomEvent

A DOM consumer can use the hasFeature of the DOMImplementation interface to determine whether the SVG
zoom event set has been implemented by a DOM implementation. The feature string for this event set is
"SVGZoomEvents". This string is also used with the createEvent method.

The zoom event handler occurs before the zoom event is processed. The remainder of the DOM represents
the previous state of the document. The document will be updated upon normal return from the event handler.

The UI event type for a zoom event is:

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


SVGZoom
The zoom event occurs when the user initiates an action which causes the current view of the SVG document
fragment to be rescaled. Event handlers are only recognized on ‘svg’ elements. See SVGZoom event.

• Bubbles: Yes
• Cancelable: No
• Context Info: zoomRectScreen, previousScale, previousTranslate, newScale, newTranslate, screenX,

screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey, relatedNode.
(screenX, screenY, clientX and clientY indicate the center of the zoom area, with clientX and clientY in
viewport coordinates for the corresponding ‘svg’ element. relatedNode is the corresponding ‘svg’ ele-
ment.)

interface SVGZoomEvent : UIEvent {
readonly attribute SVGRect zoomRectScreen;
readonly attribute float previousScale;
readonly attribute SVGPoint previousTranslate;
readonly attribute float newScale;
readonly attribute SVGPoint newTranslate;

};

Attributes:

• zoomRectScreen (readonly SVGRect)

The specified zoom rectangle in screen units.
The SVGRect object is read only.

• previousScale (readonly float)

The scale factor from previous zoom operations that was in place before the zoom operation occurred.

• previousTranslate (readonly SVGPoint)

The translation values from previous zoom operations that were in place before the zoom operation occurred.
The SVGPoint object is read only.

• newScale (readonly float)

The scale factor that will be in place after the zoom operation has been processed.

• newTranslate (readonly SVGPoint)

The translation values that will be in place after the zoom operation has been processed.
The SVGPoint object is read only.



19 Animation

Contents

19.1 Introduction
19.2 Animation elements

19.2.1 Overview
19.2.2 Relationship to SMIL Animation
19.2.3 Animation elements example
19.2.4 Attributes to identify the target element for an animation
19.2.5 Attributes to identify the target attribute or property for an animation
19.2.6 Animation with namespaces
19.2.7 Paced animation and complex types
19.2.8 Attributes to control the timing of the animation

19.2.8.1 Clock values
19.2.9 Attributes that define animation values over time
19.2.10 Attributes that control whether animations are additive
19.2.11 Inheritance
19.2.12 The ‘animate’ element
19.2.13 The ‘set’ element
19.2.14 The ‘animateMotion’ element
19.2.15 The ‘animateColor’ element
19.2.16 The ‘animateTransform’ element
19.2.17 Elements, attributes and properties that can be animated

19.3 Animation using the SVG DOM
19.4 DOM interfaces

19.4.1 Interface ElementTimeControl
19.4.2 Interface TimeEvent
19.4.3 Interface SVGAnimationElement
19.4.4 Interface SVGAnimateElement
19.4.5 Interface SVGSetElement
19.4.6 Interface SVGAnimateMotionElement
19.4.7 Interface SVGMPathElement
19.4.8 Interface SVGAnimateColorElement
19.4.9 Interface SVGAnimateTransformElement

19.1 Introduction

Because the Web is a dynamic medium, SVG supports the ability to change vector graphics over time. SVG content
can be animated in the following ways:



• Using SVG's animation elements. SVG document fragments can describe time-based modifications to the doc-
ument's elements. Using the various animation elements, you can define motion paths, fade-in or fade-out
effects, and objects that grow, shrink, spin or change color.

• Using the SVG DOM. The SVG DOM conforms to key aspects of the Document Object Model (DOM) Level 1
[DOM1] and Document Object Model (DOM) Level 2 [DOM2] specifications. Every attribute and style sheet
setting is accessible to scripting, and SVG offers a set of additional DOM interfaces to support efficient anima-
tion via scripting. As a result, virtually any kind of animation can be achieved. The timer facilities in scripting
languages such as ECMAScript can be used to start up and control the animations [ECMA-262]. (See example
below.)

• SVG has been designed to allow SMIL [SMIL] to use animated or static SVG content as media components.

19.2 Animation elements

19.2.1 Overview

SVG's animation elements were developed in collaboration with the W3C Synchronized Multimedia (SYMM)
Working Group, developers of the Synchronized Multimedia Integration Language (SMIL) 3.0 Specification
[SMIL].

The SYMM Working Group, in collaboration with the SVG Working Group, has authored the SMIL Anima-
tion specification [SMILANIM], which represents a general-purpose XML animation feature set. SVG incorporates
the animation features defined in the SMIL Animation specification and provides some SVG-specific extensions.

For an introduction to the approach and features available in any language that supports SMIL Animation,
see SMIL Animation overview and SMIL Animation animation model ([SMILANIM], sections 2 and 3). For the
list of animation features which go beyond SMIL Animation, see SVG extensions to SMIL Animation.

19.2.2 Relationship to SMIL Animation

SVG is a host language in terms of SMIL Animation and therefore introduces additional constraints and features
as permitted by that specification. Except for any SVG-specific rules explicitly mentioned in this specification,
the normative definition for SVG's animation elements and attributes is the SMIL Animation specification
[SMILANIM].

SVG supports the following four animation elements which are defined in the SMIL Animation specification:

‘animate’ allows scalar attributes and properties to be assigned different values over time

‘set’ a convenient shorthand for ‘animate’, which is useful for assigning animation values to

non-numeric attributes and properties, such as the ‘visibility’ property

‘animateMotion’ moves an element along a motion path

‘animateColor’ modifies the color value of particular attributes or properties over time

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AnimationFramework
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AnimationModel
http://www.w3.org/TR/2001/REC-smil-animation-20010904/


Although SVG defines ‘animateColor’, its use is deprecated in favor of simply using the ‘animate’ element to target
properties that can take color values.

Additionally, SVG includes the following compatible extensions to SMIL Animation:

‘animateTransform’ modifies one of SVG's transformation attributes over time, such as the ‘transform’

attribute

‘path’ attribute SVG allows any feature from SVG's path data syntax to be specified in a ‘path’

attribute to the ‘animateMotion’ element (SMIL Animation only allows a subset of

SVG's path data syntax within a ‘path’ attribute)

‘mpath’ element SVG allows an ‘animateMotion’ element to contain a child ‘mpath’ element which

references an SVG ‘path’ element as the definition of the motion path

‘keyPoints’

attribute

SVG adds a ‘keyPoints’ attribute to the ‘animateMotion’ to provide precise control of

the velocity of motion path animations

‘rotate’ attribute SVG adds a ‘rotate’ attribute to the ‘animateMotion’ to control whether an object is

automatically rotated so that its x-axis points in the same direction (or opposite

direction) as the directional tangent vector of the motion path

For compatibility with other aspects of the language, SVG uses IRI references via an ‘xlink:href’ attribute to identi-
fy the elements which are to be targets of the animations, as allowed in SMIL 3.0.

SMIL Animation requires that the host language define the meaning for document begin and the document
end. Since an ‘svg’ is sometimes the root of the XML document tree and other times can be a component of a
parent XML grammar, the document begin for a given SVG document fragment is defined to be the exact time
at which the ‘svg’ element's SVGLoad event is triggered. The document end of an SVG document fragment is the
point at which the document fragment has been released and is no longer being processed by the user agent.
However, nested ‘svg’ elements within an SVG document do not constitute document fragments in this sense, and
do not define a separate document begin; all times within the nested SVG fragment are relative to the document
time defined for the root ‘svg’ element.

For SVG, the term presentation time indicates the position in the timeline relative to the document begin of
a given document fragment.

SVG defines more constrained error processing than is defined in the SMIL Animation specification
[SMILANIM]. SMIL Animation defines error processing behavior where the document continues to run in certain
error situations, whereas all animations within an SVG document fragment will stop in the event of any error
within the document (see Error processing).

19.2.3 Animation elements example

Example anim01 below demonstrates each of SVG's five animation elements.

<?xml version="1.0" standalone="no"?>

http://www.w3.org/TR/2001/REC-smil-animation-20010904/


<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="8cm" height="3cm"  viewBox="0 0 800 300"
xmlns="http://www.w3.org/2000/svg" version="1.1">

<desc>Example anim01 - demonstrate animation elements</desc>
<rect x="1" y="1" width="798" height="298"

fill="none" stroke="blue" stroke-width="2" />
<!-- The following illustrates the use of the 'animate' element

to animate a rectangles x, y, and width attributes so that
the rectangle grows to ultimately fill the viewport. -->

<rect id="RectElement" x="300" y="100" width="300" height="100"
fill="rgb(255,255,0)"  >

<animate attributeName="x" attributeType="XML"
begin="0s" dur="9s" fill="freeze" from="300" to="0" />

<animate attributeName="y" attributeType="XML"
begin="0s" dur="9s" fill="freeze" from="100" to="0" />

<animate attributeName="width" attributeType="XML"
begin="0s" dur="9s" fill="freeze" from="300" to="800" />

<animate attributeName="height" attributeType="XML"
begin="0s" dur="9s" fill="freeze" from="100" to="300" />

</rect>
<!-- Set up a new user coordinate system so that

the text string's origin is at (0,0), allowing
rotation and scale relative to the new origin -->

<g transform="translate(100,100)" >
<!-- The following illustrates the use of the 'set', 'animateMotion',

'animate' and 'animateTransform' elements. The 'text' element
below starts off hidden (i.e., invisible). At 3 seconds, it:

* becomes visible
* continuously moves diagonally across the viewport
* changes color from blue to dark red
* rotates from -30 to zero degrees
* scales by a factor of three. -->

<text id="TextElement" x="0" y="0"
font-family="Verdana" font-size="35.27" visibility="hidden"  >

It's alive!
<set attributeName="visibility" attributeType="CSS" to="visible"

begin="3s" dur="6s" fill="freeze" />
<animateMotion path="M 0 0 L 100 100"

begin="3s" dur="6s" fill="freeze" />
<animate attributeName="fill" attributeType="CSS"

from="rgb(0,0,255)" to="rgb(128,0,0)"
begin="3s" dur="6s" fill="freeze" />

<animateTransform attributeName="transform" attributeType="XML"
type="rotate" from="-30" to="0"
begin="3s" dur="6s" fill="freeze" />

<animateTransform attributeName="transform" attributeType="XML"
type="scale" from="1" to="3" additive="sum"
begin="3s" dur="6s" fill="freeze" />

</text>
</g>

</svg>



Example anim01

At zero seconds At three seconds

At six seconds At nine seconds

The sections below describe the various animation attributes and elements.

19.2.4 Attributes to identify the target element for an animation

The following attribute is common to all animation elements and identifies the target element for the animation.

Attribute definitions:

xlink:href = "<iri>"
An IRI reference to the element which is the target of this animation and which therefore will be modified
over time.

The target element must be part of the current SVG document fragment.
<iri> must point to exactly one target element which is capable of being the target of the given anima-

tion. If <iri> points to multiple target elements, if the given target element is not capable of being a target of
the given animation, or if the given target element is not part of the current SVG document fragment, then
the document is in error (see Error processing).

If the ‘xlink:href’ attribute is not provided, then the target element will be the immediate parent element
of the current animation element.

Refer to the descriptions of the individual animation elements for any restrictions on what types of ele-
ments can be targets of particular types of animations.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation specification. In particular, see SMIL Animation: Specifying the anima-
tion target ([SMILANIM], section 3.1).

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget


19.2.5 Attributes to identify the target attribute or property for an animation

The following attributes are the animation attribute target attributes, which identify the target attribute or prop-
erty for the given target element whose value changes over time.

Attribute definitions:

attributeName = "<attributeName>"
Specifies the name of the target attribute. An XMLNS prefix may be used to indicate the XML namespace
for the attribute. The prefix will be interpreted in the scope of the current (i.e., the referencing) animation
element.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation specification. In particular, see SMIL Animation: Specifying the anima-
tion target ([SMILANIM], section 3.1).

attributeType = "CSS | XML | auto"
Specifies the namespace in which the target attribute and its associated values are defined. The attribute
value is one of the following (values are case-sensitive):

CSS
This specifies that the value of ‘attributeName’ is the name of a CSS property defined as animatable in
this specification.

XML
This specifies that the value of ‘attributeName’ is the name of an XML attribute defined in the default
XML namespace for the target element. If the value for ‘attributeName’ has an XMLNS prefix, the im-
plementation must use the associated namespace as defined in the scope of the target element. The
attribute must be defined as animatable in this specification.

auto
The implementation should match the ‘attributeName’ to an attribute for the target element. The im-
plementation must first search through the list of CSS properties for a matching property name, and if
none is found, search the default XML namespace for the element.

The default value is 'auto'.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for

this attribute is the SMIL Animation specification. In particular, see SMIL Animation: Specifying the anima-
tion target ([SMILANIM], section 3.1).

19.2.6 Animation with namespaces

Example animns01 below shows a namespace prefix being resolved to a namespace name in the scope of the ref-

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget


erencing element, and that namespace name being used (regardless of the prefix which happens to be used in the
target scope) to identify the attribute being animated.

<?xml version="1.0" encoding="UTF-8"?>
<svg version="1.1" xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink">
<title>Demonstration of the resolution of namespaces for animation</title>
<!-- at the point of definition, the QName a:href resolves to the namespace

name "http://www.w3.org/1999/xlink" and the local name "href" -->
<g xmlns:a="http://www.w3.org/1999/xlink">

<animate attributeName="a:href" xlink:href="#foo" dur="2s" to="two.png" fill="freeze"/>
</g>
<!-- at the point of use, the namespace name "http://www.w3.org/1999/xlink"

happens to be bound to the namespace prefix 'b' while the prefix
'xlink' is bound to a different namespace name -->

<g xmlns:b="http://www.w3.org/1999/xlink" xmlns:xlink="http://example.net/bar">
<image xml:id="foo" b:href="one.png" x="35" y="50" width="410" height="160"/>

</g>
</svg>

19.2.7 Paced animation and complex types

Paced animations assume a notion of distance between the various animation values defined by the ‘to’, ‘from’,
‘by’ and ‘values’ attributes. Distance is defined only for scalar types (such as <length>), colors and the subset of
transformation types that are supported by ‘animateTransform’. In the list of distance functions below, Va and Vb

represent the two values the distance between which is being calculated.
Since paced animation is intended to produce an animation with an even pace of change, it does not make

sense to define distance functions for all data types. Distance can be usefully defined for types whose values are n-
dimensional vectors (including scalars, which are 1-dimensional vectors). For example, a <length> value is a scalar
value, and a <color> value is a 3-dimensional vector. Thus attributes of these types can have paced animation ap-
plied to them. On the other hand, a <list-of-length> (as used by ‘stroke-dasharray’) is a list of scalars (1-dimensional
vectors), and <list-of-points> (as used by the ‘points’ attribute on a ‘polygon’) is a list of 2-dimensional vectors.
Therefore, these types do not have a distance function defined and cannot have paced animation applied to them.

The distance functions for types that support paced animation are as follows:

<coordinate>, <integer>, <length> and <number>
distance(Va, Vb) = |Va − Vb|

Examples: animating the ‘x’ attribute on a ‘rect’, or the ‘stroke-width’ property on a ‘circle’.
<color>

distance(Va, Vb) = sqrt((Va.red − Vb.red)2 + (Va.green − Vb.green)2 + (Va.blue − Vb.blue)2), where:
Vi.red is the red component of the Vi color value,
Vi.green is the green component of the Vi color value, and
Vi.blue is the blue component of the Vi color value.

Each of the color component values is usually in the range [0, 1], where 0 represents none of that
color component, and 1 represents the maximum amount of that color component, in the sRGB gamut
[SRGB]. Since <color> values may specify colors outside of the sRGB gamut, these component values
may lie outside the range [0, 1].

Example: animating the ‘fill’ property on an ‘ellipse’.
Transform definitions of type 'translate'

distance(Va, Vb) = sqrt((Va.tx − Vb.tx)2 + (Va.ty − Vb.ty)2), where:



Vi.tx is the x component of the Vi translation transform value, and
Vi.ty is the y component of the Vi translation transform value.

Example (for all transform definition types): animating the ‘transform’ attribute on a ‘g’ using ‘anim-
ateTransform’.

Transform definitions of type 'scale'
distance(Va, Vb) = sqrt((Va.sx − Vb.sx)2 + (Va.sy − Vb.sy)2), where:

Vi.sx is the x component of the Vi scale transform value, and
Vi.sy is the y component of the Vi scale transform value.

Note that, as when specifying scale transformations in a <transform-list>, if the y component of the
scale is omitted it is implicitly equal to the x component.

Transform definitions of type 'rotate', 'skewX' and 'skewY'
distance(Va, Vb) = sqrt((Va.angle − Vb.angle)2), where:

Vi.angle is the angle component of the Vi rotation or skew transform value.
Since the distance function for rotations is not in terms of the rotation center point components, a paced
animation that changes the rotation center point may not appear to have a paced movement when the
animation is applied.

Distance functions for all other data types are not defined. If calcMode="paced" is used on an animation of an at-
tribute or property whose type is not one of those listed above, the animation effect is undefined. SVG user agents
may choose to perform the animation as if calcMode="linear", but this is not required. Authors are recommended
not to specify paced animation on types not listed above.

19.2.8 Attributes to control the timing of the animation

The following attributes are the animation timing attributes. They are common to all animation elements and
control the timing of the animation, including what causes the animation to start and end, whether the animation
runs repeatedly, and whether to retain the end state the animation once the animation ends.

In the syntax specifications that follow, optional white space is indicated as "S", defined as follows:

S ::= (#x20 | #x9 | #xD | #xA)*

Attribute definitions:

begin = "begin-value-list"
Defines when the element should begin (i.e. become active).

The attribute value is a semicolon separated list of values.

begin-value-list ::= begin-value (S? ";" S? begin-value-list )?
A semicolon separated list of begin values. The interpretation of a list of begin times is detailed in SMIL
Animation's section on "Evaluation of begin and end time lists".

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Timing-EvaluationOfBeginEndTimeLists


begin-value ::= ( offset-value | syncbase-value | event-value | repeat-value | accessKey-value |
wallclock-sync-value | "indefinite" )

Describes the element begin.

offset-value ::= ( S? "+" | "-" S? )? ( Clock-value )
For SMIL Animation, this describes the element begin as an offset from an implicit syncbase. For SVG,
the implicit syncbase begin is defined to be relative to the document begin. Negative begin times are
entirely valid and easy to compute, as long as there is a resolved document begin time.

syncbase-value ::= ( Id-value "." ( "begin" | "end" ) ) ( S? ("+"|"-") S? Clock-value )?
Describes a syncbase and an optional offset from that syncbase. The element begin is defined relative
to the begin or active end of another animation. A syncbase consists of an ID reference to another
animation element followed by either begin or end to identify whether to synchronize with the begin-
ning or active end of the referenced animation element.

event-value ::= ( Id-value "." )? ( event-ref ) ( S? ("+"|"-") S? Clock-value )?
Describes an event and an optional offset that determine the element begin. The animation begin is
defined relative to the time that the event is raised. The list of event-symbols available for a given
event-base element is the list of event attributes available for the given element as defined by the SVG
DTD, with the one difference that the leading 'on' is removed from the event name (i.e., the animation
event name is 'click', not 'onclick'). A list of all events supported by SVG can be found in Complete list
of supported events. Details of event-based timing are described in SMIL Animation: Unifying Event-
based and Scheduled Timing.

repeat-value ::= ( Id-value "." )? "repeat(" integer ")" ( S? ("+"|"-") S? Clock-value )?
Describes a qualified repeat event. The element begin is defined relative to the time that the repeat
event is raised with the specified iteration value.

accessKey-value ::= "accessKey(" character ")" ( S? ("+"|"-") S? Clock-value )?
Describes an accessKey that determines the element begin. The element begin is defined relative to the
time that the accessKey character is input by the user.

wallclock-sync-value ::= "wallclock(" wallclock-value ")"
Describes the element begin as a real-world clock time. The wallclock time syntax is based upon syntax
defined in Representation of dates and times [ISO8601].

"indefinite"
The begin of the animation will be determined by a "beginElement()" method call or a hyperlink tar-
geted to the element.

The animation DOM methods are described in DOM interfaces.
Hyperlink-based timing is described in SMIL Animation: Hyperlinks and timing.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Unifying
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Unifying
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#HyperlinkSemantics


this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'begin' attribute
([SMILANIM], section 3.2.1).

dur = Clock-value | "media" | "indefinite"
Specifies the simple duration.

The attribute value can be one of the following:

Clock-value
Specifies the length of the simple duration in presentation time. Value must be greater than 0.

"media"
Specifies the simple duration as the intrinsic media duration. This is only valid for elements that define
media.
(For SVG's animation elements, if 'media' is specified, the attribute will be ignored.)

"indefinite"
Specifies the simple duration as indefinite.

If the animation does not have a ‘dur’ attribute, the simple duration is indefinite. Note that interpolation will
not work if the simple duration is indefinite (although this may still be useful for ‘set’ elements). Except for
any SVG-specific rules explicitly mentioned in this specification, the normative definition for this attribute is
the SMIL Animation specification. In particular, see SMIL Animation: 'dur' attribute ([SMILANIM], section
3.2.1).

end = "end-value-list"
Defines an end value for the animation that can constrain the active duration. The attribute value is a semi-
colon separated list of values.

end-value-list ::= end-value (S? ";" S? end-value-list )?
A semicolon separated list of end values. The interpretation of a list of end times is detailed below.

end-value ::= ( offset-value | syncbase-value | event-value | repeat-value | accessKey-value | wallclock-
sync-value | "indefinite" )

Describes the active end of the animation.

A value of 'indefinite' specifies that the end of the animation will be determined by an endElement method
call (the animation DOM methods are described in DOM interfaces).

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition
for this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'end' attribute
([SMILANIM], section 3.3.2).

min = Clock-value | "media"
Specifies the minimum value of the active duration.

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#DurAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#EndActiveAttribute


The attribute value can be either of the following:

Clock-value
Specifies the length of the minimum value of the active duration, measured in local time.

Value must be greater than 0.

"media"
Specifies the minimum value of the active duration as the intrinsic media duration. This is only valid
for elements that define media. (For SVG's animation elements, if 'media' is specified, the attribute will
be ignored.)

The default value for ‘min’ is '0'. This does not constrain the active duration at all.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition

for this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'min' attribute
([SMILANIM], section 3.3.3).

max = Clock-value | "media"
Specifies the maximum value of the active duration.

The attribute value can be either of the following:

Clock-value
Specifies the length of the maximum value of the active duration, measured in local time.

Value must be greater than 0.

"media"
Specifies the maximum value of the active duration as the intrinsic media duration. This is only valid
for elements that define media. (For SVG's animation elements, if 'media' is specified, the attribute will
be ignored.)

There is no default value for ‘max’. This does not constrain the active duration at all.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition

for this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'max' attribute
([SMILANIM], section 3.3.3).

restart = "always" | "whenNotActive" | "never"

always
The animation can be restarted at any time.
This is the default value.

whenNotActive
The animation can only be restarted when it is not active (i.e. after the active end). Attempts to restart
the animation during its active duration are ignored.

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#MinMax
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#MinMax


never
The element cannot be restarted for the remainder of the current simple duration of the parent time
container. (In the case of SVG, since the parent time container is the SVG document fragment, then the
animation cannot be restarted for the remainder of the document duration.)

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'restart' attribute
([SMILANIM], section 3.3.7).

repeatCount = numeric value | "indefinite"
Specifies the number of iterations of the animation function. It can have the following attribute values:

numeric value
This is a (base 10) "floating point" numeric value that specifies the number of iterations. It can include
partial iterations expressed as fraction values. A fractional value describes a portion of the simple dur-
ation. Values must be greater than 0.

"indefinite"
The animation is defined to repeat indefinitely (i.e. until the document ends).

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for this
attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'repeatCount' attribute
([SMILANIM], section 3.3.1).

repeatDur = Clock-value | "indefinite"
Specifies the total duration for repeat. It can have the following attribute values:

Clock-value
Specifies the duration in presentation time to repeat the animation function f(t).

"indefinite"
The animation is defined to repeat indefinitely (i.e. until the document ends).

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'repeatDur' attribute
([SMILANIM], section 3.3.1).

fill = "freeze" | "remove"
This attribute can have the following values:

freeze
The animation effect F(t) is defined to freeze the effect value at the last value of the active duration.

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#RestartAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationFunction
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationFunction
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#RepeatCountAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#RepeatDurAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AnimationModel


The animation effect is "frozen" for the remainder of the document duration (or until the animation is
restarted - see SMIL Animation: Restarting animation).

remove
The animation effect is removed (no longer applied) when the active duration of the animation is over.
After the active end of the animation, the animation no longer affects the target (unless the animation
is restarted - see SMIL Animation: Restarting animation).

This is the default value.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'fill' attribute
([SMILANIM], section 3.3.5).

The SMIL Animation specification [SMILANIM] defines the detailed processing rules associated with the above
attributes. Except for any SVG-specific rules explicitly mentioned in this specification, the SMIL Animation spe-
cification is the normative definition of the processing rules for the above attributes.

19.2.8.1 Clock values

Clock values have the same syntax as in SMIL Animation specification [SMILANIM]. The grammar for clock val-
ues is repeated here:

Clock-val         ::= Full-clock-val | Partial-clock-val
| Timecount-val

Full-clock-val    ::= Hours ":" Minutes ":" Seconds ("." Fraction)?
Partial-clock-val ::= Minutes ":" Seconds ("." Fraction)?
Timecount-val     ::= Timecount ("." Fraction)? (Metric)?
Metric            ::= "h" | "min" | "s" | "ms"
Hours             ::= DIGIT+; any positive number
Minutes           ::= 2DIGIT; range from 00 to 59
Seconds           ::= 2DIGIT; range from 00 to 59
Fraction          ::= DIGIT+
Timecount         ::= DIGIT+
2DIGIT            ::= DIGIT DIGIT
DIGIT             ::= [0-9]

For Timecount values, the default metric suffix is "s" (for seconds). No embedded white space is allowed in clock
values, although leading and trailing white space characters will be ignored.

Clock values describe presentation time.
The following are examples of legal clock values:

• Full clock values:
02:30:03 = 2 hours, 30 minutes and 3 seconds
50:00:10.25 = 50 hours, 10 seconds and 250 milliseconds

• Partial clock value:

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Restart
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Restart
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#FillAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/


02:33 = 2 minutes and 33 seconds
00:10.5 = 10.5 seconds = 10 seconds and 500 milliseconds

• Timecount values:
3.2h = 3.2 hours = 3 hours and 12 minutes
45min = 45 minutes
30s = 30 seconds
5ms = 5 milliseconds
12.467 = 12 seconds and 467 milliseconds

Fractional values are just (base 10) floating point definitions of seconds. Thus:
00.5s = 500 milliseconds

00:00.005 = 5 milliseconds

19.2.9 Attributes that define animation values over time

The following attributes are the animation value attributes. They are common to elements ‘animate’, ‘animateCo-
lor’, ‘animateMotion’ and ‘animateTransform’. These attributes define the values that are assigned to the target at-
tribute or property over time. The attributes below provide control over the relative timing of keyframes and the
interpolation method between discrete values.

Attribute definitions:

calcMode = "discrete | linear | paced | spline"
Specifies the interpolation mode for the animation. This can take any of the following values. The default
mode is 'linear', however if the attribute does not support linear interpolation (e.g. for strings), the ‘calcMode’
attribute is ignored and discrete interpolation is used.

discrete
This specifies that the animation function will jump from one value to the next without any interpola-
tion.

linear
Simple linear interpolation between values is used to calculate the animation function. Except for ‘an-
imateMotion’, this is the default ‘calcMode’.

paced
Defines interpolation to produce an even pace of change across the animation. This is only supported
for the data types for which there is an appropriate distance function defined, which includes only scal-
ar numeric types plus the types listed in Paced animation and complex types. If 'paced' is specified, any
‘keyTimes’ or ‘keySplines’ will be ignored. For ‘animateMotion’, this is the default ‘calcMode’. Authors
are discouraged from using paced animation on types that do not have a distance function defined, due
to its unpredictable behavior in some user agents.



spline
Interpolates from one value in the ‘values’ list to the next according to a time function defined by a cu-
bic Bézier spline. The points of the spline are defined in the ‘keyTimes’ attribute, and the control points
for each interval are defined in the ‘keySplines’ attribute.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'calcMode' attribute
([SMILANIM], section 3.2.3).

values = "<list>"
A semicolon-separated list of one or more values. Vector-valued attributes are supported using the vector
syntax of the ‘attributeType’ domain. Per the SMIL specification, leading and trailing white space, and white
space before and after semicolon separators, is allowed and will be ignored. Except for any SVG-specific
rules explicitly mentioned in this specification, the normative definition for this attribute is the SMIL Anim-
ation specification. In particular, see SMIL Animation: 'values' attribute ([SMILANIM], section 3.2.2).

keyTimes = "<list>"
A semicolon-separated list of time values used to control the pacing of the animation. Each time in the list
corresponds to a value in the ‘values’ attribute list, and defines when the value is used in the animation func-
tion. Each time value in the ‘keyTimes’ list is specified as a floating point value between 0 and 1 (inclusive),
representing a proportional offset into the simple duration of the animation element.

For animations specified with a ‘values’ list, the ‘keyTimes’ attribute if specified must have exactly as
many values as there are in the ‘values’ attribute. For from/to/by animations, the ‘keyTimes’ attribute if spe-
cified must have two values.

Each successive time value must be greater than or equal to the preceding time value.
The ‘keyTimes’ list semantics depends upon the interpolation mode:

• For linear and spline animation, the first time value in the list must be 0, and the last time value in the
list must be 1. The key time associated with each value defines when the value is set; values are inter-
polated between the key times.

• For discrete animation, the first time value in the list must be 0. The time associated with each value
defines when the value is set; the animation function uses that value until the next time defined in
‘keyTimes’.

If the interpolation mode is 'paced', the ‘keyTimes’ attribute is ignored.
If there are any errors in the ‘keyTimes’ specification (bad values, too many or too few values), the doc-

ument fragment is in error (see error processing).
If the simple duration is indefinite, any ‘keyTimes’ specification will be ignored.
Because paced animation interpolation is unspecified for some value types, authors are encouraged to

use 'linear' animation interpolation with calculated ‘keyTimes’ to achieve particular interpolation behavior
for these types.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#CalcModeAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#ValuesAttribute


this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'keyTimes' attribute
([SMILANIM], section 3.2.3).

keySplines = "<list>"
A set of Bézier control points associated with the ‘keyTimes’ list, defining a cubic Bézier function that con-
trols interval pacing. The attribute value is a semicolon-separated list of control point descriptions. Each con-
trol point description is a set of four values: x1 y1 x2 y2, describing the Bézier control points for one time
segment. Note: SMIL allows these values to be separated either by commas with optional whitespace, or by
whitespace alone. The ‘keyTimes’ values that define the associated segment are the Bézier "anchor points",
and the ‘keySplines’ values are the control points. Thus, there must be one fewer sets of control points than
there are ‘keyTimes’.

The values must all be in the range 0 to 1.
This attribute is ignored unless the ‘calcMode’ is set to 'spline'.
If there are any errors in the ‘keySplines’ specification (bad values, too many or too few values), the

document fragment is in error (see error processing).
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for

this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'keySplines' attribute
([SMILANIM], section 3.2.3).

from = "<value>"
Specifies the starting value of the animation.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'from' attribute
([SMILANIM], section 3.2.2).

to = "<value>"
Specifies the ending value of the animation.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'to' attribute
([SMILANIM], section 3.2.2).

by = "<value>"
Specifies a relative offset value for the animation.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'by' attribute
([SMILANIM], section 3.2.2).

The SMIL Animation specification [SMILANIM] defines the detailed processing rules associated with the above
attributes. Except for any SVG-specific rules explicitly mentioned in this specification, the SMIL Animation spe-
cification is the normative definition of the processing rules for the above attributes.

The animation values specified in the animation element must be legal values for the specified attribute.
Leading and trailing white space, and white space before and after semicolon separators, will be ignored.

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#KeyTimesAttribute
http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-animation.html#adef-keySplines
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#KeySplinesAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#FromAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#ToAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#ByAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/


All values specified must be legal values for the specified attribute (as defined in the associated namespace).
If any values are not legal, the document fragment is in error (see error processing).

If a list of values is used, the animation will apply the values in order over the course of the animation. If a
list of ‘values’ is specified, any ‘from’, ‘to’ and ‘by’ attribute values are ignored.

The processing rules for the variants of from/by/to animations are described in Animation function values
with the following exception.

In order to provide behavior that is intuitive and consistent between discrete animations with an explicitly
specified ‘from’ attribute (e.g. "from-to animation") and those where the underlying value is used (e.g. "to anim-
ation"), the behavior of discrete to-animation in SVG deviates from the definition in SMIL Animation. As with a
discrete from-to animation, a discrete to animation will set the underlying value for the first half of the simple dur-
ation (or, if a ‘keyTimes’ list is provided, until the simple duration specified by the second value in the ‘keyTimes’
list) and the ‘to’ value for the remainder of the simple duration.

The following figure illustrates the interpretation of the ‘keySplines’ attribute. Each diagram illustrates the
effect of ‘keySplines’ settings for a single interval (i.e. between the associated pairs of values in the ‘keyTimes’ and
‘values’ lists.). The horizontal axis can be thought of as the input value for the unit progress of interpolation within
the interval - i.e. the pace with which interpolation proceeds along the given interval. The vertical axis is the res-
ulting value for the unit progress, yielded by the function that the ‘keySplines’ attribute defines. Another way of
describing this is that the horizontal axis is the input unit time for the interval, and the vertical axis is the output
unit time. See also the section Timing and real-world clock times.

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AnimFuncValues
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#TimingAndRealWorldClockTime


Examples of keySplines

keySplines="0 0 1 1" (the default)
keySplines=".5 0 .5 1"

keySplines="0 .75 .25 1" keySplines="1 0 .25 .25"

To illustrate the calculations, consider the simple example:

<animate dur="4s" values="10; 20" keyTimes="0; 1"
calcMode="spline" keySplines={as in table} />

Using the ‘keySplines’ values for each of the four cases above, the approximate interpolated values as the animation
proceeds are:

Value of ‘keySplines’ Initial value After 1s After 2s After 3s Final value

0 0 1 1 10.0 12.5 15.0 17.5 20.0

.5 0 .5 1 10.0 11.0 15.0 19.0 20.0

0 .75 .25 1 10.0 18.0 19.3 19.8 20.0

1 0 .25 .25 10.0 10.1 10.6 16.9 20.0



For a formal definition of Bézier spline calculation, see [FOLEY-VANDAM], pp. 488-491.

19.2.10 Attributes that control whether animations are additive

It is frequently useful to define animation as an offset or delta to an attribute's value, rather than as absolute
values. A simple "grow" animation can increase the width of an object by 10 pixels:

<rect width="20px" ...>
<animate attributeName="width" from="0px" to="10px" dur="10s"

additive="sum"/>
</rect>

It is frequently useful for repeated animations to build upon the previous results, accumulating with each intera-
tion. The following example causes the rectangle to continue to grow with each repeat of the animation:

<rect width="20px" ...>
<animate attributeName="width" from="0px" to="10px" dur="10s"

additive="sum" accumulate="sum" repeatCount="5"/>
</rect>

At the end of the first repetition, the rectangle has a width of 30 pixels. At the end of the second repetition, the
rectangle has a width of 40 pixels. At the end of the fifth repetition, the rectangle has a width of 70 pixels.

For more information about additive animations, see SMIL Animation: Additive animation. For more inform-
ation on cumulative animations, see SMIL Animation: Controlling behavior of repeating animation - Cumulative
animation.

The following attributes are the animation addition attributes, which are common to elements ‘animate’,
‘animateColor’, ‘animateMotion’ and ‘animateTransform’.

Attribute definitions:

additive = "replace | sum"
Controls whether or not the animation is additive.

sum
Specifies that the animation will add to the underlying value of the attribute and other lower priority
animations.

replace
Specifies that the animation will override the underlying value of the attribute and other lower priority
animations. This is the default, however the behavior is also affected by the animation value attributes
‘by’ and ‘to’, as described in SMIL Animation: How from, to and by attributes affect additive behavior.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'additive' attribute
([SMILANIM], section 3.3.6).

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AdditiveAnim
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Accumulate
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Accumulate
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#FromToByAndAdditive
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AdditiveAttribute


‘animate’

accumulate = "none | sum"
Controls whether or not the animation is cumulative.

sum
Specifies that each repeat iteration after the first builds upon the last value of the previous iteration.

none
Specifies that repeat iterations are not cumulative. This is the default.

This attribute is ignored if the target attribute value does not support addition, or if the animation element
does not repeat.

Cumulative animation is not defined for "to animation".
This attribute will be ignored if the animation function is specified with only the ‘to’ attribute.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for

this attribute is the SMIL Animation specification. In particular, see SMIL Animation: 'accumulate' attribute
([SMILANIM], section 3.3.1).

19.2.11 Inheritance

SVG allows both attributes and properties to be animated. If a given attribute or property is inheritable by des-
cendants, then animations on a parent element such as a ‘g’ element has the effect of propagating the attribute
or property animation values to descendant elements as the animation proceeds; thus, descendant elements can
inherit animated attributes and properties from their ancestors.

19.2.12 The ‘animate’ element

The ‘animate’ element is used to animate a single attribute or property over time. For example, to make a rectangle
repeatedly fade away over 5 seconds, you can specify:

<rect>
<animate attributeType="CSS" attributeName="opacity"

from="1" to="0" dur="5s" repeatCount="indefinite" />
</rect>

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for this ele-
ment is the SMIL Animation specification. In particular, see SMIL Animation: 'animate' element ([SMILANIM],
section 4.1).

Categories:
Animation element

Content model:
Any number of the following elements, in any order:

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AccumulateAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#animateElement


‘set’

descriptive elements

Attributes:
conditional processing attributes
core attributes
animation event attributes
xlink attributes
animation attribute target attributes
animation timing attributes
animation value attributes
animation addition attributes
presentation attributes
‘externalResourcesRequired’

DOM Interfaces:
SVGAnimateElement

The ‘color-interpolation’ property applies to color interpolations that result from animations using the ‘animate’
element.

For a list of attributes and properties that can be animated using the ‘animate’ element, see Elements, attrib-
utes and properties that can be animated.

19.2.13 The ‘set’ element

The ‘set’ element provides a simple means of just setting the value of an attribute for a specified duration. It sup-
ports all attribute types, including those that cannot reasonably be interpolated, such as string and boolean values.
The ‘set’ element is non-additive. The additive and accumulate attributes are not allowed, and will be ignored if
specified.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for this
element is the SMIL Animation specification. In particular, see SMIL Animation: 'set' element ([SMILANIM], sec-
tion 4.2).

Categories:
Animation element

Content model:
Any number of the following elements, in any order:

descriptive elements

Attributes:
conditional processing attributes
core attributes

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#setElement


‘animateMotion’

animation event attributes
xlink attributes
animation attribute target attributes
animation timing attributes
‘externalResourcesRequired’
‘to’

DOM Interfaces:
SVGSetElement

Attribute definitions:

to = "<value>"
Specifies the value for the attribute during the duration of the ‘set’ element. The argument value must match
the attribute type.

For a list of attributes and properties that can be animated using the ‘set’ element, see Elements, attributes and
properties that can be animated.

19.2.14 The ‘animateMotion’ element

The ‘animateMotion’ element causes a referenced element to move along a motion path.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for

this element is the SMIL Animation specification. In particular, see SMIL Animation: 'animateMotion' element
([SMILANIM], section 4.3).

Categories:
Animation element

Content model:
Any number of descriptive elements and at most one ‘mpath’ element, in any order.

Attributes:
conditional processing attributes
core attributes
animation event attributes
xlink attributes
animation timing attributes
animation value attributes
animation addition attributes
‘externalResourcesRequired’

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#animateMotionElement


‘path’
‘keyPoints’
‘rotate’
‘origin’

DOM Interfaces:
SVGAnimateMotionElement

Attribute definitions:

calcMode = "discrete | linear | paced | spline"
Specifies the interpolation mode for the animation. Refer to general description of the ‘calcMode’ attribute
above. The only difference is that the default value for the ‘calcMode’ for ‘animateMotion’ is 'paced'. See SMIL
Animation: 'calcMode' attribute for 'animateMotion'.

path = "<path-data>"
The motion path, expressed in the same format and interpreted the same way as the ‘d’ attribute on the
‘path’ element. The effect of a motion path animation is to add a supplemental transformation matrix onto
the CTM for the referenced object which causes a translation along the x- and y-axes of the current user
coordinate system by the computed X and Y values computed over time.

keyPoints = "<list-of-numbers>"
‘keyPoints’ takes a semicolon-separated list of floating point values between 0 and 1 and indicates how far
along the motion path the object shall move at the moment in time specified by corresponding ‘keyTimes’
value. Distance calculations use the user agent's distance along the path algorithm. Each progress value in
the list corresponds to a value in the ‘keyTimes’ attribute list.

If a list of ‘keyPoints’ is specified, there must be exactly as many values in the ‘keyPoints’ list as in the
‘keyTimes’ list.

If there are any errors in the ‘keyPoints’ specification (bad values, too many or too few values), then the
document is in error (see Error processing).

rotate = "<number> | auto | auto-reverse"
The ‘rotate’ attribute post-multiplies a supplemental transformation matrix onto the CTM of the target ele-
ment to apply a rotation transformation about the origin of the current user coordinate system. The rota-
tion transformation is applied after the supplemental translation transformation that is computed due to the
‘path’ attribute.

auto
Indicates that the object is rotated over time by the angle of the direction (i.e., directional tangent vec-
tor) of the motion path.

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#MotionCalcModeAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#MotionCalcModeAttribute


‘mpath’

auto-reverse
Indicates that the object is rotated over time by the angle of the direction (i.e., directional tangent vec-
tor) of the motion path plus 180 degrees.

<number>
Indicates that the target element has a constant rotation transformation applied to it, where the rota-
tion angle is the specified number of degrees.

The default value is '0'.

origin = "default"
The ‘origin’ attribute is defined in the SMIL Animation specification ([SMILANIM], section 4.3). It has no
effect in SVG.

Categories:
None

Content model:
Any number of the following elements, in any order:

descriptive elements

Attributes:
core attributes
xlink attributes
‘externalResourcesRequired’
‘xlink:href’

DOM Interfaces:
SVGMPathElement

Attribute definitions:

xlink:href = "<iri>"
An IRI reference to the ‘path’ element which defines the motion path.
Animatable: no.

For ‘animateMotion’, the specified values for ‘from’, ‘by’, ‘to’ and ‘values’ consists of x, y coordinate pairs, with a
single comma and/or white space separating the x coordinate from the y coordinate. For example, from="33,15"
specifies an x coordinate value of 33 and a y coordinate value of 15.

If provided, the ‘values’ attribute must consists of a list of x, y coordinate pairs. Coordinate values are separ-
ated by at least one white space character or a comma. Additional white space around the separator is allowed. For
example, values="10,20;30,20;30,40" or values="10mm,20mm;30mm,20mm;30mm,40mm". Each coordinate represents a

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#MotionOriginAttribute


length. Attributes ‘from’, ‘by’, ‘to’ and ‘values’ specify a shape on the current canvas which represents the motion
path.

Two options are available which allow definition of a motion path using any of SVG's path data commands:

• the ‘path’ attribute defines a motion path directly on ‘animateMotion’ element using any of SVG's path data
commands.

• the ‘mpath’ sub-element provides the ability to reference an external ‘path’ element as the definition of the
motion path.

Note that SVG's path data commands can only contain values in user space, whereas ‘from’, ‘by’, ‘to’ and ‘values’
can specify coordinates in user space or using unit identifiers. See Units.

The various (x,y) points of the shape provide a supplemental transformation matrix onto the CTM for the
referenced object which causes a translation along the x- and y-axes of the current user coordinate system by the
(x,y) values of the shape computed over time. Thus, the referenced object is translated over time by the offset of
the motion path relative to the origin of the current user coordinate system. The supplemental transformation is
applied on top of any transformations due to the target element's ‘transform’ attribute or any animations on that
attribute due to ‘animateTransform’ elements on the target element.

The ‘additive’ and ‘accumulate’ attributes apply to ‘animateMotion’ elements. Multiple ‘animateMotion’ ele-
ments all simultaneously referencing the same target element can be additive with respect to each other; however,
the transformations which result from the ‘animateMotion’ elements are always supplemental to any transforma-
tions due to the target element's ‘transform’ attribute or any ‘animateTransform’ elements.

The default calculation mode (‘calcMode’) for ‘animateMotion’ is "paced". This will produce constant velocity
motion along the specified path. Note that while animateMotion elements can be additive, it is important to ob-
serve that the addition of two or more "paced" (constant velocity) animations might not result in a combined mo-
tion animation with constant velocity.

When a path is combined with "discrete", "linear" or "spline" ‘calcMode’ settings, and if attribute ‘keyPoints’
is not provided, the number of values is defined to be the number of points defined by the path, unless there are
"move to" commands within the path. A "move to" command within the path (i.e. other than at the beginning of
the path description) A "move to" command does not count as an additional point when dividing up the duration,
or when associating ‘keyTimes’, ‘keySplines’ and ‘keyPoints’ values. When a path is combined with a "paced" ‘cal-
cMode’ setting, all "move to" commands are considered to have 0 length (i.e. they always happen instantaneously),
and is not considered in computing the pacing.

For more flexibility in controlling the velocity along the motion path, the ‘keyPoints’ attribute provides the
ability to specify the progress along the motion path for each of the ‘keyTimes’ specified values. If specified,
‘keyPoints’ causes ‘keyTimes’ to apply to the values in ‘keyPoints’ rather than the points specified in the ‘values’
attribute array or the points on the ‘path’ attribute.

The override rules for ‘animateMotion’ are as follows. Regarding the definition of the motion path, the ‘mpath’
element overrides the the ‘path’ attribute, which overrides ‘values’, which overrides ‘from’, ‘by’ and ‘to’. Regard-
ing determining the points which correspond to the ‘keyTimes’ attributes, the ‘keyPoints’ attribute overrides ‘path’,
which overrides ‘values’, which overrides ‘from’, ‘by’ and ‘to’.

At any time t within a motion path animation of duration dur, the computed coordinate (x,y) along the mo-



tion path is determined by finding the point (x,y) which is t/dur distance along the motion path using the user
agent's distance along the path algorithm.

The following example demonstrates the supplemental transformation matrices that are computed during a
motion path animation.
Example animMotion01 shows a triangle moving along a motion path.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="3cm"  viewBox="0 0 500 300"

xmlns="http://www.w3.org/2000/svg" version="1.1"
xmlns:xlink="http://www.w3.org/1999/xlink" >

<desc>Example animMotion01 - demonstrate motion animation computations</desc>
<rect x="1" y="1" width="498" height="298"

fill="none" stroke="blue" stroke-width="2" />
<!-- Draw the outline of the motion path in blue, along

with three small circles at the start, middle and end. -->
<path id="path1" d="M100,250 C 100,50 400,50 400,250"

fill="none" stroke="blue" stroke-width="7.06"  />
<circle cx="100" cy="250" r="17.64" fill="blue"  />
<circle cx="250" cy="100" r="17.64" fill="blue"  />
<circle cx="400" cy="250" r="17.64" fill="blue"  />
<!-- Here is a triangle which will be moved about the motion path.

It is defined with an upright orientation with the base of
the triangle centered horizontally just above the origin. -->

<path d="M-25,-12.5 L25,-12.5 L 0,-87.5 z"
fill="yellow" stroke="red" stroke-width="7.06"  >

<!-- Define the motion path animation -->
<animateMotion dur="6s" repeatCount="indefinite" rotate="auto" >

<mpath xlink:href="#path1"/>
</animateMotion>

</path>
</svg>

Example animMotion01

At zero seconds At three seconds At six seconds

The following table shows the supplemental transformation matrices that are applied to achieve the effect of the
motion path animation.



‘animateColor’

After 0s After 3s After 6s

Supplemental transform due to movement along

motion path

translate(100,250) translate(250,100) translate(400,250)

Supplemental transform due to rotate="auto" rotate(-90) rotate(0) rotate(90)

For a list of elements that can be animated using the ‘animateMotion’ element, see Elements, attributes and prop-
erties that can be animated.

19.2.15 The ‘animateColor’ element

The ‘animateColor’ element specifies a color transformation over time.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for

this element is the SMIL Animation specification. In particular, see SMIL Animation: 'animateColor' element
([SMILANIM], section 4.4).

Categories:
Animation element

Content model:
Any number of the following elements, in any order:

descriptive elements

Attributes:
conditional processing attributes
core attributes
animation event attributes
xlink attributes
animation attribute target attributes
animation timing attributes
animation value attributes
animation addition attributes
presentation attributes
‘externalResourcesRequired’

DOM Interfaces:
SVGAnimateColorElement

The ‘from’, ‘by’ and ‘to’ attributes take color values, where each color value is expressed using the following syntax
(the same syntax as used in SVG's properties that can take color values):

<color> <icccolor>?

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#animateColorElement


‘animateTransform’

The ‘values’ attribute for the ‘animateColor’ element consists of a semicolon-separated list of color values, with
each color value expressed in the above syntax.

Out of range color values can be provided, but user agent processing will be implementation dependent. User
agents should clamp color values to allow color range values as late as possible, but note that system differences
might preclude consistent behavior across different systems.

The ‘color-interpolation’ property applies to color interpolations that result from ‘animateColor’ animations.
The use of ‘animateColor’ is deprecated, since all of its functionality can be achieved simply by using ‘animate’

to target properties that can take color values. The ‘animateColor’ element may be dropped from a future version
of the SVG specification.

For a list of attributes and properties that can be animated using the ‘animateColor’ element, see Elements,
attributes and properties that can be animated.

19.2.16 The ‘animateTransform’ element

The ‘animateTransform’ element animates a transformation attribute on a target element, thereby allowing anima-
tions to control translation, scaling, rotation and/or skewing.

Categories:
Animation element

Content model:
Any number of the following elements, in any order:

descriptive elements

Attributes:
conditional processing attributes
core attributes
animation event attributes
xlink attributes
animation attribute target attributes
animation timing attributes
animation value attributes
animation addition attributes
‘externalResourcesRequired’
‘type’

DOM Interfaces:
SVGAnimateTransformElement



Attribute definitions:

type = "translate | scale | rotate | skewX | skewY"
Indicates the type of transformation which is to have its values change over time. If the attribute is not spe-
cified, then the effect is as if a value of 'translate' were specified.

The ‘from’, ‘by’ and ‘to’ attributes take a value expressed using the same syntax that is available for the given
transformation type:

• For a type="translate", each individual value is expressed as <tx> [,<ty>].
• For a type="scale", each individual value is expressed as <sx> [,<sy>].
• For a type="rotate", each individual value is expressed as <rotate-angle> [<cx> <cy>].
• For a type="skewX" and type="skewY", each individual value is expressed as <skew-angle>.

(See The ‘transform’ attribute.)
The ‘values’ attribute for the ‘animateTransform’ element consists of a semicolon-separated list of values,

where each individual value is expressed as described above for ‘from’, ‘by’ and ‘to’.
The animation effect for ‘animateTransform’ is post-multiplied to the underlying value for additive ‘anim-

ateTransform’ animations (see below) instead of added to the underlying value, due to the specific behavior of
‘animateTransform’.

From-to, from-by and by animations are defined in SMIL to be equivalent to a corresponding values anima-
tion. See the Animation function values section of SMIL Animation ([SMILANIM], section 3.2.2). However, to an-
imations are a mixture of additive and non-additive behavior, as described in the How from, to and by attributes
affect additive behavior section of SMIL Animation ([SMILANIM], section 3.3.6). To animations provide specific
functionality to get a smooth change from the underlying value to the ‘to’ attribute value, which conflicts math-
ematically with the requirement for additive transform animations to be post-multiplied. As a consequence, in
SVG 1.1 the behavior of to animations for ‘animateTransform’ is undefined. Authors are suggested to use from-to,
from-by, by or values animations to achieve any desired transform animation.

If ‘calcMode’ has the value 'paced', then the "distance" for the transformation is calculated as further described
in Paced animations and complex types.

When an animation is active, the effect of non-additive ‘animateTransform’ (i.e., additive="replace") is to re-
place the given attribute's value with the transformation defined by the ‘animateTransform’. The effect of additive
(i.e., additive="sum") is to post-multiply the transformation matrix corresponding to the transformation defined by
this ‘animateTransform’. To illustrate:

<rect transform="skewX(30)"...>
<animateTransform attributeName="transform" attributeType="XML"

type="rotate" from="0" to="90" dur="5s"
additive="replace" fill="freeze"/>

<animateTransform attributeName="transform" attributeType="XML"
type="scale" from="1" to="2" dur="5s"
additive="replace" fill="freeze"/>

</rect>

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AnimFuncValues
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#FromToByAndAdditive
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#FromToByAndAdditive


In the code snippet above, because the both animations have additive="replace", the first animation overrides the
transformation on the rectangle itself and the second animation overrides the transformation from the first an-
imation; therefore, at time 5 seconds, the visual result of the above two animations would be equivalent to the
following static rectangle:

<rect transform="scale(2)" ... />

whereas in the following example:

<rect transform="skewX(30)"...>
<animateTransform attributeName="transform" attributeType="XML"

type="rotate" from="0" to="90" dur="5s"
additive="sum" fill="freeze"/>

<animateTransform attributeName="transform" attributeType="XML"
type="scale" from="1" to="2" dur="5s"
additive="sum" fill="freeze"/>

</rect>

In this code snippet, because the both animations have additive="sum", the first animation post-multiplies its trans-
formation to any transformations on the rectangle itself and the second animation post-multiplies its transforma-
tion to any transformation from the first animation; therefore, at time 5 seconds, the visual result of the above two
animations would be equivalent to the following static rectangle:

<rect transform="skewX(30) rotate(90) scale(2)" ... />

Note that the zero value used when performing a by animation with type="scale" is indeed 0. Thus, performing
the following animation causes the rectangle to be invisible at time 0s (since the animated transform list value is
'scale(0)'), and be scaled back to its original size at time 5s (since the animated transform list value is 'scale(1)'):

<rect width="100" height="100">
<animateTransform attributeName="transform" attributeType="XML"

type="scale" by="1" dur="5s" fill="freeze"/>
</rect>

When a transform animation has accumulate='sum', the accumulation that occurs for each completed repetition of
the animation is computed on the values specified in the ‘animateTransform’ element's animation value attributes
(i.e., ‘values’, ‘from’, ‘to’ and ‘by’) and not on the transformation matrix that these values represent. For example,
in the following code snippet, 3 is added to the scale value at the start of each repetition:

<rect width="100" height="100">
<animateTransform attributeName="transform" attributeType="XML"

type="scale" from="2" to="3" repeatCount="3" dur="4s"
fill="freeze"/>

</rect>

The following graph and table shows the animated ‘transform’ value on the ‘rect’ over the course of the animation:



Time Value

0s scale(2)

1s scale(2.25)

2s scale(2.5)

3s scale(2.75)

4s scale(5)

5s scale(5.25)

6s scale(5.5)

7s scale(5.75)

8s scale(8)

9s scale(8.25)

10s scale(8.5)

11s scale(8.75)

12s scale(9)

Transform item types that can have multiple values – 'translate', 'scale' and 'rotate' – are treated as vectors and
accumulation is performed with vector addition. Optional values that are omitted are taken to have their usual
implied value: 1 for the <sy> component of a 'scale' and 0 for the <tx> component of a 'translate' and the <cx cy>
components of a 'rotate'.

For example, consider the following code snippet, which has a cumulative transform animation of type 'ro-
tate':

<rect width="100" height="100">
<animateTransform attributeName="transform" attributeType="XML"

type="rotate" from="0 30 40" to="10 30 40"
repeatCount="2" dur="1s" fill="freeze"/>

</rect>

At time 1 second, the animated value of ‘transform’ on the ‘rect’ will jump from 'rotate(10 30 40)' to 'rotate(10 60
80)', because the effect of the accumulation is to take the value at the end of the first repetition, '10 30 40', and add
to it the value at simple duration t = 0s, which is '0 30 40'.

For a list of attributes and properties that can be animated using the ‘animateTransform’ element, see Ele-
ments, attributes and properties that can be animated.

19.2.17 Elements, attributes and properties that can be animated

The following lists all of the elements which can be animated by an ‘animateMotion’ element:



• ‘svg’
• ‘g’
• ‘defs’
• ‘use’
• ‘image’
• ‘switch’
• ‘path’
• ‘rect’
• ‘circle’
• ‘ellipse’
• ‘line’
• ‘polyline’
• ‘polygon’
• ‘text’
• ‘clipPath’
• ‘mask’
• ‘a’
• ‘foreignObject’

Each attribute or property within this specification indicates whether or not it can be animated by SVG's animation
elements. Animatable attributes and properties are designated as follows:

Animatable: yes.
whereas attributes and properties that cannot be animated are designated:

Animatable: no.
Some properties are defined as being animatable but only for non-additive animations:

Animatable: yes (non-additive).
SVG has a defined set of basic data types for its various supported attributes and properties. For those attrib-

utes and properties that can be animated, the following table indicates which animation elements can be used to
animate each of the basic data types. If a given attribute or property can take values of keywords (which are not
additive) or numeric values (which are additive), then additive animations are possible if the subsequent anima-
tion uses a numeric value even if the base animation uses a keyword value; however, if the subsequent animation
uses a keyword value, additive animation is not possible.



Data type Additive? ‘animate’ ‘set’ ‘animateColor’ ‘animateTransform’ Notes

<angle> yes yes yes no no

<color> yes yes yes yes no Only additive if each

value can be converted

to an RGB color.

<coordinate> yes yes yes no no

<frequency> no no no no no

<integer> yes yes yes no no

<length> yes yes yes no no

<list-of-Ts> no yes yes no no

<number> yes yes yes no no

<paint> yes yes yes yes no Only additive if each

value can be converted

to an RGB color.

<percentage> yes yes yes no no

<time> no no no no no

<transform-list> yes no no no yes Additive means that a

transformation is

post-multiplied to the

base set of

transformations.

<iri> no yes yes no no

All other data

types used in

animatable

attributes and

properties

no yes yes no no

Any deviation from the above table or other special note about the animation capabilities of a particular attribute
or property is included in the section of the specification where the given attribute or property is defined.



19.3 Animation using the SVG DOM

Example dom01 shows a simple animation using the DOM.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4cm" height="2cm" viewBox="0 0 400 200"

xmlns="http://www.w3.org/2000/svg"
onload="StartAnimation(evt)" version="1.1">

<script type="application/ecmascript"><![CDATA[
var timevalue = 0;
var timer_increment = 50;
var max_time = 5000;
var text_element;
function StartAnimation(evt) {

text_element = evt.target.ownerDocument.getElementById("TextElement");
ShowAndGrowElement();

}
function ShowAndGrowElement() {

timevalue = timevalue + timer_increment;
if (timevalue > max_time)

return;
// Scale the text string gradually until it is 20 times larger
scalefactor = (timevalue * 20.) / max_time;
text_element.setAttribute("transform", "scale(" + scalefactor + ")");
// Make the string more opaque
opacityfactor = timevalue / max_time;
text_element.setAttribute("opacity", opacityfactor);
// Call ShowAndGrowElement again <timer_increment> milliseconds later.
setTimeout("ShowAndGrowElement()", timer_increment)

}
window.ShowAndGrowElement = ShowAndGrowElement

]]></script>
<rect x="1" y="1" width="398" height="198"

fill="none" stroke="blue" stroke-width="2"/>
<g transform="translate(50,150)" fill="red" font-size="7">

<text id="TextElement">SVG</text>
</g>

</svg>

Example dom01

At zero seconds At 2.5 seconds At five seconds

The above SVG file contains a single graphics element, a text string that says "SVG". The animation loops for 5
seconds. The text string starts out small and transparent and grows to be large and opaque. Here is an explanation
of how this example works:



• The onload="StartAnimation(evt)" attribute indicates that, once the document has been fully loaded and pro-
cessed, invoke ECMAScript function StartAnimation.

• The ‘script’ element defines the ECMAScript which makes the animation happen. The StartAnimation()

function is only called once to give a value to global variable text_element and to make the initial call to
ShowAndGrowElement(). ShowAndGrowElement() is called every 50 milliseconds and resets the ‘transform’
and ‘style’ attributes on the text element to new values each time it is called. At the end of ShowAndGrowEle-
ment, the function tells the ECMAScript engine to call itself again after 50 more milliseconds.

• The ‘g’ element shifts the coordinate system so that the origin is shifted toward the lower-left of the viewing
area. It also defines the fill color and font-size to use when drawing the text string.

• The ‘text’ element contains the text string and is the element whose attributes get changed during the anim-
ation.

If scripts are modifying the same attributes or properties that are being animated by SVG's animation elements,
the scripts modify the base value for the animation. If a base value is modified while an animation element is
animating the corresponding attribute or property, the animations are required to adjust dynamically to the new
base value.

If a script is modifying a property on the override style sheet at the same time that an animation element is
animating that property, the result is implementation-dependent; thus, it is recommended that this be avoided.

19.4 DOM interfaces

Below are the DOM interfaces for the elements defined in this chapter. In addition, ElementTimeControl and
TimeEvent, which are from SMIL Animation, are included here for easy reference.

19.4.1 Interface ElementTimeControl

SMIL Animation supports several methods for controlling the behavior of animation: beginElement(), be-

ginElementAt(), endElement() and endElementAt(). These methods are used to begin and end the active dur-
ation of an element. Authors can (but are not required to) declare the timing to respond to the DOM using the
following syntax:

<animate begin="indefinite" end="indefinite" .../>

If a DOM method call is made to begin or end the element (using beginElement(), beginElementAt(), endEle-
ment() or endElementAt()), each method call creates a single instance time (in the appropriate instance times
list). These times are then interpreted as part of the semantics of lists of times, as described in Evaluation of begin
and end time lists.

• The instance time associated with a beginElement() or endElement() call is the current presentation time
at the time of the DOM method call.

• The instance time associated with a beginElementAt() or endElementAt() call is the current presentation
time at the time of the DOM method call, plus or minus the specified offset.

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Timing-EvaluationOfBeginEndTimeLists
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Timing-EvaluationOfBeginEndTimeLists


• Note that beginElement() is subject to the ‘restart’ attribute in the same manner that event-based begin tim-
ing is. Refer also to SMIL Animation: Restarting animation ([SMILANIM], section 3.3.7).

The expectation of the following interface is that an instance of the ElementTimeControl interface can be obtained
by using binding-specific casting methods on an instance of an animation element. A DOM application can use
the hasFeature method of the DOMImplementation interface to determine whether the ElementTimeControl in-
terface is supported or not. The feature string for this interface is "TimeControl".

interface ElementTimeControl {
void beginElement();
void beginElementAt(in float offset);
void endElement();
void endElementAt(in float offset);

};

Operations:

• void beginElement()

Creates a begin instance time for the current time. The new instance time is added to the begin instance
times list. The behavior of this method is equivalent to beginElementAt(0).

• void beginElementAt(in float offset)

Creates a begin instance time for the current time plus the specified offset. The new instance time is added
to the begin instance times list.

Parameters

• float offset
The offset from the current document time, in seconds, at which to begin the element.

• void endElement()

Creates an end instance time for the current time. The new instance time is added to the end instance times
list. The behavior of this method is equivalent to endElementAt(0).

• void endElementAt(in float offset)

Creates a end instance time for the current time plus the specified offset. The new instance time is added to
the end instance times list.

Parameters

• float offset
offset from the current document time, in seconds, at which to end the element.

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Restart
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html#ID-5CED94D7
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-102161490
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Timing-BeginEnd-InstanceTimesLists
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Timing-BeginEnd-InstanceTimesLists
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Timing-BeginEnd-InstanceTimesLists
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Timing-BeginEnd-InstanceTimesLists
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Timing-BeginEnd-InstanceTimesLists
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Timing-BeginEnd-InstanceTimesLists


For the corresponding Java binding, see section 6.4 of SMIL Animation [SMILANIM].

19.4.2 Interface TimeEvent

The TimeEvent interface, defined in SMIL Animation: Supported interfaces, provides specific contextual informa-
tion associated with Time events.

The different types of events that can occur are:

beginEvent
This event is raised when the element local timeline begins to play. It will be raised each time the element
begins the active duration (i.e. when it restarts, but not when it repeats). It may be raised both in the course
of normal (i.e. scheduled or interactive) timeline play, as well as in the case that the element was begun with
the beginElement or beginElementAt methods. Note that if an element is restarted while it is currently play-
ing, the element will raise an end event and another begin event, as the element restarts.

• Bubbles: No
• Cancelable: No
• Context Info: None

endEvent
This event is raised at the active end of the element. Note that this event is not raised at the simple end of
each repeat. This event may be raised both in the course of normal (i.e. scheduled or interactive) timeline
play, as well as in the case that the element was ended with the endElement or endElementAt methods. Note
that if an element is restarted while it is currently playing, the element will raise an end event and another
begin event, as the element restarts.

• Bubbles: No
• Cancelable: No
• Context Info: None

repeatEvent
This event is raised when an element local timeline repeats. It will be raised each time the element repeats,
after the first iteration.
The event provides a numerical indication of which repeat iteration is beginning. The value is a 0-based in-
teger, but the repeat event is not raised for the first iteration and so the observed values of the detail attribute
will be >= 1.

• Bubbles: No
• Cancelable: No
• Context Info: detail (current iteration)

interface TimeEvent : Event {

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SMIL-Java-ElementTimeControl
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#DOMSupport
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-Event


readonly attribute AbstractView view;
readonly attribute long detail;

void initTimeEvent(in DOMString typeArg, in AbstractView viewArg, in long detailArg);
};

Attributes:

• view (readonly AbstractView)

The view attribute identifies the AbstractView [DOM2VIEWS] from which the event was generated.

• detail (readonly long)

Specifies some detail information about the Event, depending on the type of the event. For this event type,
indicates the repeat number for the animation.

Operations:

• void initTimeEvent(in DOMString typeArg, in AbstractView viewArg, in long detailArg)

The initTimeEvent method is used to initialize the value of a TimeEvent created through the DocumentEvent
interface. This method may only be called before the TimeEvent has been dispatched via the dispatchEvent
method, though it may be called multiple times during that phase if necessary. If called multiple times, the
final invocation takes precedence.

Parameters

• DOMString typeArg
Specifies the event type.

• AbstractView viewArg
Specifies the Event's AbstractView.

• long detailArg
Specifies the Event's detail.

For the corresponding Java binding, see section 6.4 of SMIL Animation [SMILANIM].

19.4.3 Interface SVGAnimationElement

The SVGAnimationElement interface is the base interface for all of the animation element interfaces: SVGAn-
imateElement, SVGSetElement, SVGAnimateColorElement, SVGAnimateMotionElement and SVGAnimateTrans-
formElement.

Unlike other SVG DOM interfaces, the SVG DOM does not specify convenience DOM properties correspond-

http://www.w3.org/TR/DOM-Level-2-Views/views.html#Views-AbstractView
http://www.w3.org/TR/DOM-Level-2-Views/views.html#Views-AbstractView
http://www.w3.org/TR/DOM-Level-2-Views/views.html#Views-AbstractView
http://www.w3.org/TR/DOM-Level-2-Views/views.html#Views-AbstractView
http://www.w3.org/TR/DOM-Level-2-Views/views.html#Views-AbstractView
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-DocumentEvent
http://www.w3.org/TR/DOM-Level-2-Views/views.html#Views-AbstractView
http://www.w3.org/TR/DOM-Level-2-Views/views.html#Views-AbstractView
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SMIL-Java-TimeEvent


ing to the various language attributes on SVG's animation elements. Specification of these convenience properties
in a way that will be compatible with future versions of SMIL Animation is expected in a future version of SVG.
The current method for accessing and modifying the attributes on the animation elements is to use the standard
getAttribute, setAttribute, getAttributeNS and setAttributeNS defined in DOM Level 2 Core [DOM2].

interface SVGAnimationElement : SVGElement,
SVGTests,
SVGExternalResourcesRequired,
ElementTimeControl {

readonly attribute SVGElement targetElement;

float getStartTime() raises(DOMException);
float getCurrentTime();
float getSimpleDuration() raises(DOMException);

};

Attributes:

• targetElement (readonly SVGElement)

The element which is being animated.

Operations:

• float getStartTime()

Returns the begin time, in seconds, for this animation element's current interval, if it exists, regardless
of whether the interval has begun yet. If there is no current interval, then a DOMException with code
INVALID_STATE_ERR is thrown.

Returns
The start time, in seconds, of this animation element's current interval.

Exceptions

• DOMException, code INVALID_STATE_ERR
The animation element does not have a current interval.

• float getCurrentTime()

Returns the current time in seconds relative to time zero for the given time container.

Returns
The current time in seconds relative to time zero for the given time container.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


• float getSimpleDuration()

Returns the number of seconds for the simple duration for this animation. If the simple duration is undefined
(e.g., the end time is indefinite), then an exception is raised.

Returns
number of seconds for the simple duration for this animation.

Exceptions

• DOMException, code NOT_SUPPORTED_ERR
The simple duration is not determined on the given element.

19.4.4 Interface SVGAnimateElement

The SVGAnimateElement interface corresponds to the ‘animate’ element.
Object-oriented access to the attributes of the ‘animate’ element via the SVG DOM is not available.

interface SVGAnimateElement : SVGAnimationElement,
SVGStylable {

};

19.4.5 Interface SVGSetElement

The SVGSetElement interface corresponds to the ‘set’ element.
Object-oriented access to the attributes of the ‘set’ element via the SVG DOM is not available.

interface SVGSetElement : SVGAnimationElement {
};

19.4.6 Interface SVGAnimateMotionElement

The SVGAnimateMotionElement interface corresponds to the ‘animateMotion’ element.
Object-oriented access to the attributes of the ‘animateMotion’ element via the SVG DOM is not available.

interface SVGAnimateMotionElement : SVGAnimationElement {
};

19.4.7 Interface SVGMPathElement

The SVGMPathElement interface corresponds to the ‘mpath’ element.

interface SVGMPathElement : SVGElement,
SVGURIReference,

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


SVGExternalResourcesRequired {
};

19.4.8 Interface SVGAnimateColorElement

The SVGAnimateColorElement interface corresponds to the ‘animateColor’ element.
Object-oriented access to the attributes of the ‘animateColor’ element via the SVG DOM is not available.

interface SVGAnimateColorElement : SVGAnimationElement,
SVGStylable {

};

19.4.9 Interface SVGAnimateTransformElement

The SVGAnimateTransformElement interface corresponds to the ‘animateTransform’ element.
Object-oriented access to the attributes of the ‘animateTransform’ element via the SVG DOM is not available.

interface SVGAnimateTransformElement : SVGAnimationElement {
};



20 Fonts

Contents

20.1 Introduction
20.2 Overview of SVG fonts
20.3 The ‘font’ element
20.4 The ‘glyph’ element
20.5 The ‘missing-glyph’ element
20.6 Glyph selection rules
20.7 The ‘hkern’ and ‘vkern’ elements
20.8 Describing a font

20.8.1 Overview of font descriptions
20.8.2 Alternative ways for providing a font description
20.8.3 The ‘font-face’ element
20.8.4 The ‘font-face-src’ element
20.8.5 The ‘font-face-uri’ and ‘font-face-format’ elements
20.8.6 The ‘font-face-name’ element

20.9 DOM interfaces
20.9.1 Interface SVGFontElement
20.9.2 Interface SVGGlyphElement
20.9.3 Interface SVGMissingGlyphElement
20.9.4 Interface SVGHKernElement
20.9.5 Interface SVGVKernElement
20.9.6 Interface SVGFontFaceElement
20.9.7 Interface SVGFontFaceSrcElement
20.9.8 Interface SVGFontFaceUriElement
20.9.9 Interface SVGFontFaceFormatElement
20.9.10 Interface SVGFontFaceNameElement

20.1 Introduction

Reliable delivery of fonts is a requirement for SVG. Designers need to create SVG content with arbitrary fonts and
know that the same graphical result will appear when the content is viewed by all end users, even when end users
do not have the necessary fonts installed on their computers. This parallels the print world, where the designer
uses a given font when authoring a drawing for print, and the graphical content appears exactly the same in the
printed version as it appeared on the designer's authoring system.

SVG utilizes the WebFonts facility defined in CSS2 ([CSS2], section 15.1) as a key mechanism for reliable de-
livery of font data to end users. In a common scenario, SVG authoring applications generate compressed, subsetted

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#q1


WebFonts for all text elements used by a given SVG document fragment. Typically, the WebFonts are saved in a
location relative to the referencing document.

One disadvantage to the WebFont facility to date is that specifications such as CSS2 do not require support
of particular font formats. The result is that different implementations support different Web font formats, thereby
making it difficult for Web site creators to post a single Web site using WebFonts that work across all user agents.

To provide a common font format for SVG that is guaranteed to be supported by all conforming SVG viewers,
SVG provides a facility to define fonts in SVG. This facility is called SVG fonts.

SVG fonts can improve the semantic richness of graphics that represent text. For example, many company
logos consist of the company name drawn artistically. In some cases, accessibility may be enhanced by expressing
the logo as a series of glyphs in an SVG font and then rendering the logo as a ‘text’ element which references this
font.

20.2 Overview of SVG fonts

An SVG font is a font defined using SVG's ‘font’ element.
The purpose of SVG fonts is to allow for delivery of glyph outlines in display-only environments. SVG fonts

that accompany Web pages must be supported only in browsing and viewing situations. Graphics editing applica-
tions or file translation tools must not attempt to convert SVG fonts into system fonts. The intent is that SVG files
be interchangeable between two content creators, but not the SVG fonts that might accompany these SVG files.
Instead, each content creator will need to license the given font before being able to successfully edit the SVG file.
The ‘font-face-name’ element indicates the name of licensed font to use for editing.

SVG fonts contain unhinted font outlines. Because of this, on many implementations there will be limitations
regarding the quality and legibility of text in small font sizes. For increased quality and legibility in small font
sizes, content creators may want to use an alternate font technology, such as fonts that ship with operating sys-
tems or an alternate WebFont format.

Because SVG fonts are expressed using SVG elements and attributes, in some cases the SVG font will take up
more space than if the font were expressed in a different WebFont format which was especially designed for com-
pact expression of font data. For the fastest delivery of Web pages, content creators may want to use an alternate
font technology.

A key value of SVG fonts is guaranteed availability in SVG user agents. In some situations, it might be appro-
priate for an SVG font to be the first choice for rendering some text. In other situations, the SVG font might be an
alternate, back-up font in case the first choice font (perhaps a hinted system font) is not available to a given user.

The characteristics and attributes of SVG fonts correspond closely to the font characteristics and parameters
described in the Fonts chapter of the Cascading Style Sheets (CSS) level 2 specification ([CSS2], chapter 15). In this
model, various font metrics, such as advance values and baseline locations, and the glyph outlines themselves, are
expressed in units that are relative to an abstract square whose height is the intended distance between lines of
type in the same type size. This square is called the em square and it is the design grid on which the glyph out-
lines are defined. The value of the ‘units-per-em’ attribute on the ‘font-face’ element specifies how many units the
em square is divided into. Common values for other font types are, for example, 250 (Intellifont), 1000 (Type 1)
and 2048 (TrueType, TrueType GX and Open-Type). Unlike standard graphics in SVG, where the initial coordinate
system has the y-axis pointing downward (see The initial coordinate system), the design grid for SVG fonts, along

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/
http://www.w3.org/TR/2008/REC-CSS2-20080411/


with the initial coordinate system for the glyphs, has the y-axis pointing upward for consistency with accepted
industry practice for many popular font formats.

SVG fonts and their associated glyphs do not specify bounding box information. Because the glyph outlines
are expressed as SVG graphics elements, the implementation has the option to render the glyphs either using
standard graphics calls or by using special-purpose font rendering technology, in which case any necessary max-
imum bounding box and overhang calculations can be performed from analysis of the graphics elements contained
within the glyph outlines.

An SVG font can be either embedded within the same document that uses the font or saved as part of an
external resource.

Here is an example of how you might embed an SVG font inside of an SVG document.

<?xml version="1.0" standalone="yes"?>
<svg width="400px" height="300px" version="1.1"

xmlns = 'http://www.w3.org/2000/svg'>
<defs>

<font id="Font1" horiz-adv-x="1000">
<font-face font-family="Super Sans" font-weight="bold" font-style="normal"

units-per-em="1000" cap-height="600" x-height="400"
ascent="700" descent="300"
alphabetic="0" mathematical="350" ideographic="400" hanging="500">

<font-face-src>
<font-face-name name="Super Sans Bold"/>

</font-face-src>
</font-face>
<missing-glyph><path d="M0,0h200v200h-200z"/></missing-glyph>
<glyph unicode="!" horiz-adv-x="300"><!-- Outline of exclam. pt. glyph --></glyph>
<glyph unicode="@"><!-- Outline of @ glyph --></glyph>
<!-- more glyphs -->

</font>
</defs>
<text x="100" y="100"

style="font-family: 'Super Sans', Helvetica, sans-serif;
font-weight: bold; font-style: normal">Text

using embedded font</text>
</svg>

Here is an example of how you might use the CSS @font-face facility ([CSS2], section 15.3.1) to reference an SVG
font which is saved in an external file. First referenced SVG font file:

<?xml version="1.0" standalone="yes"?>
<svg width="100%" height="100%" version="1.1"
xmlns = 'http://www.w3.org/2000/svg'>
<defs>

<font id="Font2" horiz-adv-x="1000">
<font-face font-family="Super Sans" font-weight="normal" font-style="italic"

units-per-em="1000" cap-height="600" x-height="400"
ascent="700" descent="300"
alphabetic="0" mathematical="350" ideographic="400" hanging="500">

<font-face-src>
<font-face-name name="Super Sans Italic"/>

</font-face-src>
</font-face>
<missing-glyph><path d="M0,0h200v200h-200z"/></missing-glyph>

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions


‘font’

<glyph unicode="!" horiz-adv-x="300"><!-- Outline of exclam. pt. glyph --></glyph>
<glyph unicode="@"><!-- Outline of @ glyph --></glyph>
<!-- more glyphs -->

</font>
</defs>

</svg>

The SVG file which uses/references the above SVG font

<?xml version="1.0" standalone="yes"?>
<svg width="400px" height="300px" version="1.1"
xmlns = 'http://www.w3.org/2000/svg'>
<defs>

<style type="text/css">
<![CDATA[

@font-face {
font-family: 'Super Sans';
font-weight: normal;
font-style: italic;
src: url("myfont.svg#Font2") format("svg")

}
]]>

</style>
</defs>
<text x="100" y="100"

style="font-family: 'Super Sans'; font-weight:normal;
font-style: italic">Text using referenced font</text>

</svg>

20.3 The ‘font’ element

The ‘font’ element defines an SVG font.

Categories:
None

Content model:
Any number of the following elements, in any order:

descriptive elements
‘font-face’
‘glyph’
‘hkern’
‘missing-glyph’
‘vkern’

Attributes:
core attributes
presentation attributes



‘class’
‘style’
‘externalResourcesRequired’
‘horiz-origin-x’
‘horiz-origin-y’
‘horiz-adv-x’
‘vert-origin-x’
‘vert-origin-y’
‘vert-adv-y’

DOM Interfaces:
SVGFontElement

Attribute definitions:

horiz-origin-x = "<number>"
The X-coordinate in the font coordinate system of the origin of a glyph to be used when drawing horizont-
ally oriented text. (Note that the origin applies to all glyphs in the font.)
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: no.

horiz-origin-y = "<number>"
The Y-coordinate in the font coordinate system of the origin of a glyph to be used when drawing horizontally
oriented text. (Note that the origin applies to all glyphs in the font.)
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: no.

horiz-adv-x = "<number>"
The default horizontal advance after rendering a glyph in horizontal orientation. Glyph widths are required
to be non-negative, even if the glyph is typically rendered right-to-left, as in Hebrew and Arabic scripts.
Animatable: no.

vert-origin-x = "<number>"
The default X-coordinate in the font coordinate system of the origin of a glyph to be used when drawing
vertically oriented text.
If the attribute is not specified, the effect is as if the attribute were set to half of the effective value of attribute
‘horiz-adv-x’.
Animatable: no.

vert-origin-y = "<number>"
The default Y-coordinate in the font coordinate system of the origin of a glyph to be used when drawing
vertically oriented text.



‘glyph’

If the attribute is not specified, the effect is as if the attribute were set to the position specified by the font's
‘ascent’ attribute.
Animatable: no.

vert-adv-y = "<number>"
The default vertical advance after rendering a glyph in vertical orientation.
If the attribute is not specified, the effect is as if a value equivalent of one em were specified (see ‘units-per-
em’).
Animatable: no.

Each ‘font’ element must have a ‘font-face’ child element which describes various characteristics of the font.

20.4 The ‘glyph’ element

The ‘glyph’ element defines the graphics for a given glyph. The coordinate system for the glyph is defined by the
various attributes in the ‘font’ element.

The graphics that make up the ‘glyph’ can be a single path data specification within the ‘d’ attribute, arbitrary
SVG as content within the ‘glyph’, or both. These two alternatives are processed differently (see below).

Categories:
Container element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements
shape elements
structural elements
gradient elements
‘a’
‘altGlyphDef’
‘clipPath’
‘color-profile’
‘cursor’
‘filter’
‘font’
‘font-face’
‘foreignObject’
‘image’
‘marker’
‘mask’



‘pattern’
‘script’
‘style’
‘switch’
‘text’
‘view’

Attributes:
core attributes
presentation attributes
‘class’
‘style’
‘d’
‘horiz-adv-x’
‘vert-origin-x’
‘vert-origin-y’
‘vert-adv-y’
‘unicode’
‘glyph-name’
‘orientation’
‘arabic-form’
‘lang’

DOM Interfaces:
SVGGlyphElement

Attribute definitions:

unicode = "<string>"
One or more Unicode characters indicating the sequence of Unicode characters which corresponds to this
glyph. If a character is provided, then this glyph corresponds to the given Unicode character. If multiple char-
acters are provided, then this glyph corresponds to the given sequence of Unicode characters. One use of a
sequence of characters is ligatures. For example, if unicode="ffl", then the given glyph will be used to render
the sequence of characters "f", "f", and "l".

It is often useful to refer to characters using XML character references expressed in hexadecimal notation or
decimal notation. For example, unicode="ffl" could be expressed as XML character references in hexadecimal
notation as unicode="&#x66;&#x66;&#x6c;" or in decimal notation as unicode="&#102;&#102;&#108;".

The ‘unicode’ attribute contributes to the process for deciding which glyph(s) are used to represent which
character(s). See glyph selection rules. If the ‘unicode’ attribute is not provided for a given ‘glyph’, then the



only way to use this glyph is via an ‘altGlyph’ reference.
Animatable: no.

glyph-name = "<name> [, <name> ]* "
A name for the glyph. It is recommended that glyph names be unique within a font. The glyph names can
be used in situations where Unicode character numbers do not provide sufficient information to access the
correct glyph, such as when there are multiple glyphs per Unicode character. The glyph names can be refer-
enced in kerning definitions.
Animatable: no.

d = "path data"
The definition of the outline of a glyph, using the same syntax as for the ‘d’ attribute on a ‘path’ element. See
Path data.
See below for a discussion of this attribute.
Animatable: no.

orientation = "h | v"
Indicates that the given glyph is only to be used for a particular inline-progression-direction (i.e., horizontal
or vertical). If the attribute is not specified, then the glyph can be used in all cases (i.e., both horizontal and
vertical inline-progression-direction).
Animatable: no.

arabic-form = "initial | medial | terminal | isolated"
For Arabic glyphs, indicates which of the four possible forms this glyph represents.
Animatable: no.

lang = "%LanguageCodes;"
The attribute value is a comma-separated list of language names as defined in BCP 47 [BCP47]. The glyph
can be used if the ‘xml:lang’ attribute exactly matches one of the languages given in the value of this para-
meter, or if the ‘xml:lang’ attribute exactly equals a prefix of one of the languages given in the value of this
parameter such that the first tag character following the prefix is "-".
Animatable: no.

horiz-adv-x = "<number>"
The horizontal advance after rendering the glyph in horizontal orientation. If the attribute is not specified,
the effect is as if the attribute were set to the value of the font's ‘horiz-adv-x’ attribute.
Glyph widths are required to be non-negative, even if the glyph is typically rendered right-to-left, as in
Hebrew and Arabic scripts.
Animatable: no.

vert-origin-x = "<number>"
The X-coordinate in the font coordinate system of the origin of the glyph to be used when drawing vertically
oriented text.
If the attribute is not specified, the effect is as if the attribute were set to the value of the font's ‘vert-origin-x’

http://www.ietf.org/rfc/bcp/bcp47.txt


attribute.
Animatable: no.

vert-origin-y = "<number>"
The Y-coordinate in the font coordinate system of the origin of a glyph to be used when drawing vertically
oriented text.
If the attribute is not specified, the effect is as if the attribute were set to the value of the font's ‘vert-origin-y’
attribute.
Animatable: no.

vert-adv-y = "<number>"
The vertical advance after rendering a glyph in vertical orientation.
If the attribute is not specified, the effect is as if the attribute were set to the value of the font's ‘vert-adv-y’
attribute.
Animatable: no.

The graphics for the ‘glyph’ can be specified using either the ‘d’ attribute or arbitrary SVG as content within the
‘glyph’.

If the ‘d’ attribute is specified, then the path data within this attribute is processed as follows:

• Any relative coordinates within the path data specification are converted into equivalent absolute coordin-
ates

• Each of these absolute coordinates is transformed from the font coordinate system into the ‘text’ element's
current coordinate system such that the origin of the font coordinate system is properly positioned and ro-
tated to align with the current text position and orientation for the glyph, and scaled so that the correct ‘font-
size’ is achieved.

• The resulting, transformed path specification is rendered as if it were a ‘path’ element, using the styling prop-
erties that apply to the characters which correspond to the given glyph, and ignoring any styling properties
specified on the ‘font’ element or the ‘glyph’ element.

If the ‘glyph’ has child elements, then those child elements are rendered in a manner similar to how the ‘use’ ele-
ment renders a referenced symbol. The rendering effect is as if the contents of the referenced ‘glyph’ element were
deeply cloned into a separate non-exposed DOM tree. Because the cloned DOM tree is non-exposed, the SVG
DOM does not show the cloned instance.

For user agents that support Styling with CSS, the conceptual deep cloning of the referenced ‘glyph’ element
into a non-exposed DOM tree also copies any property values resulting from the CSS cascade ([CSS2], chapter
6) on the referenced ‘glyph’ and its contents, and also applies any property values on the ‘font’ element. CSS2
selectors can be applied to the original (i.e., referenced) elements because they are part of the formal document
structure. CSS2 selectors cannot be applied to the (conceptually) cloned DOM tree because its contents are not part
of the formal document structure.

Property inheritance, however, works as if the referenced ‘glyph’ had been textually included as a deeply
cloned child within the document tree. The referenced ‘glyph’ inherits properties from the element that contains

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html


‘missing-glyph’

the characters that correspond to the ‘glyph’. The ‘glyph’ does not inherit properties from the ‘font’ element's ori-
ginal parents.

In the generated content, for each instance of a given ‘glyph’, a ‘g’ is created which carries with it all property
values resulting from the CSS cascade on the ‘font’ element for the referenced ‘glyph’. Within this ‘g’ is another
‘g’ which carries with it all property values resulting from the CSS cascade on the ‘glyph’ element. The original
contents of the ‘glyph’ element are deep-cloned within the inner ‘g’ element.

If the ‘glyph’ has both a ‘d’ attribute and child elements, the ‘d’ attribute is rendered first, and then the child
elements.

In general, the ‘d’ attribute renders in the same manner as system fonts. For example, a dashed pattern will
usually look the same if applied to a system font or to an SVG font which defines its glyphs using the ‘d’ attribute.
Many implementations will be able to render glyphs defined with the ‘d’ attribute quickly and will be able to use
a font cache for further performance gains.

Defining a glyph by including child elements within the ‘glyph’ gives greater flexibility but more complexity.
Different fill and stroke techniques can be used on different parts of the glyphs. For example, the base of an "i"
could be red, and the dot could be blue. This approach has an inherent complexity with units. Any properties spe-
cified on a text elements which represents a length, such as the ‘stroke-width’ property, might produce surprising
results since the length value will be processed in the coordinate system of the glyph.

20.5 The ‘missing-glyph’ element

The ‘missing-glyph’ element defines the graphics to use if there is an attempt to draw a glyph from a given font
and the given glyph has not been defined. The attributes on the ‘missing-glyph’ element have the same meaning as
the corresponding attributes on the ‘glyph’ element.

Categories:
Container element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements
shape elements
structural elements
gradient elements
‘a’
‘altGlyphDef’
‘clipPath’
‘color-profile’
‘cursor’
‘filter’
‘font’



‘font-face’
‘foreignObject’
‘image’
‘marker’
‘mask’
‘pattern’
‘script’
‘style’
‘switch’
‘text’
‘view’

Attributes:
core attributes
presentation attributes
‘class’
‘style’
‘d’
‘horiz-adv-x’
‘vert-origin-x’
‘vert-origin-y’
‘vert-adv-y’

DOM Interfaces:
SVGMissingGlyphElement

20.6 Glyph selection rules

When determining the glyph(s) to draw a given character sequence, the ‘font’ element is searched from its first
‘glyph’ element to its last in logical order to see if the upcoming sequence of Unicode characters to be rendered
matches the sequence of Unicode characters specified in the ‘unicode’ attribute for the given ‘glyph’ element. The
first successful match is used. Thus, the "ffl" ligature needs to be defined in the font before the "f" glyph; otherwise,
the "ffl" will never be selected.

Note that any occurrences of ‘altGlyph’ take precedence over the above glyph selection rules within an SVG
font.

20.7 The ‘hkern’ and ‘vkern’ elements

The ‘hkern’ and ‘vkern’ elements define kerning pairs for horizontally-oriented and vertically-oriented pairs of
glyphs, respectively.



‘hkern’

‘vkern’

Kern pairs identify pairs of glyphs within a single font whose inter-glyph spacing is adjusted when the pair
of glyphs are rendered next to each other. In addition to the requirement that the pair of glyphs are from the same
font, SVG font kerning happens only when the two glyphs correspond to characters which have the same values
for properties ‘font-family’, ‘font-size’, ‘font-style’, ‘font-weight’, ‘font-variant’, ‘font-stretch’, ‘font-size-adjust’ and
‘font’.

An example of a kerning pair are the letters "Va", where the typographic result might look better if the letters
"V" and the "a" were rendered slightly closer together.

Right-to-left and bidirectional text in SVG is laid out in a two-step process, which is described in Relationship
with bidirectionality. If SVG fonts are used, before kerning is applied, characters are re-ordered into left-to-right
(or top-to-bottom, for vertical text) visual rendering order. Kerning from SVG fonts is then applied on pairs of
glyphs which are rendered contiguously. The first glyph in the kerning pair is the left (or top) glyph in visual ren-
dering order. The second glyph in the kerning pair is the right (or bottom) glyph in the pair.

For convenience to font designers and to minimize file sizes, a single ‘hkern’ and ‘vkern’ can define a single
kerning adjustment value between one set of glyphs (e.g., a range of Unicode characters) and another set of glyphs
(e.g., another range of Unicode characters).

The ‘hkern’ element defines kerning pairs and adjustment values in the horizontal advance value when draw-
ing pairs of glyphs which the two glyphs are contiguous and are both rendered horizontally (i.e., side-by-side).
The spacing between characters is reduced by the kerning adjustment. (Negative kerning adjustments increase the
spacing between characters.)

The ‘vkern’ element defines kerning pairs and adjustment values in the vertical advance value when drawing
pairs of glyphs together when stacked vertically. The spacing between characters is reduced by the kerning adjust-
ment.

Categories:
None

Content model:
Empty.

Attributes:
core attributes
‘u1’
‘g1’
‘u2’
‘g2’
‘k’

DOM Interfaces:
SVGHKernElement



Categories:
None

Content model:
Empty.

Attributes:
core attributes
‘u1’
‘g1’
‘u2’
‘g2’
‘k’

DOM Interfaces:
SVGVKernElement

Attribute definitions:

u1 = "[<character> | <urange> ] [, [<character> | <urange>] ]* "
A sequence (comma-separated) of Unicode characters (refer to the description of the ‘unicode’ attribute to the
‘glyph’ element for a description of how to express individual Unicode characters) and/or ranges of Unicode
characters (see description of ranges of Unicode characters in CSS2; [CSS2], section 15.3.3) which identify a
set of possible first glyphs in the kerning pair. If a given Unicode character within the set has multiple corres-
ponding ‘glyph’ elements (i.e., there are multiple ‘glyph’ elements with the same ‘unicode’ attribute value, but
different ‘glyph-name’ values), then all such glyphs are included in the set. Comma is the separator character;
thus, to kern a comma, specify the comma as part of a range of Unicode characters or as a glyph name using
the ‘g1’ attribute. The total set of possible first glyphs in the kerning pair is the union of glyphs specified by
the ‘u1’ and ‘g1’ attributes.
Animatable: no.

g1 = "<name> [, <name> ]* "
A sequence (comma-separated) of glyph names (i.e., values that match ‘glyph-name’ attributes on ‘glyph’ ele-
ments) which identify a set of possible first glyphs in the kerning pair. All glyphs with the given glyph name
are included in the set. The total set of possible first glyphs in the kerning pair is the union of glyphs specified
by the ‘u1’ and ‘g1’ attributes.
Animatable: no.

u2 = "[<character> | <urange>] [, [<character> | <urange>] ]* "
Same as the ‘u1’ attribute, except that ‘u2’ specifies possible second glyphs in the kerning pair.
Animatable: no.

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#dataqual


g2 = "<name> [, <name> ]* "
Same as the ‘g1’ attribute, except that ‘g2’ specifies possible second glyphs in the kerning pair.
Animatable: no.

k = "<number>"
The amount to decrease the spacing between the two glyphs in the kerning pair. The value is in the font
coordinate system. This attribute is required.
Animatable: no.

At least one each of ‘u1’ or ‘g1’ and at least one of ‘u2’ or ‘g2’ must be provided.

20.8 Describing a font

20.8.1 Overview of font descriptions

A font description provides the bridge between an author's font specification and the font data, which is the data
needed to format text and to render the abstract glyphs to which the characters map — the actual scalable outlines
or bitmaps. Fonts are referenced by properties, such as the ‘font-family’ property.

Each specified font description is added to the font database and so that it can be used to select the relevant
font data. The font description contains descriptors such as the location of the font data on the Web, and charac-
terizations of that font data. The font descriptors are also needed to match the font properties to particular font
data. The level of detail of a font description can vary from just the name of the font up to a list of glyph widths.

For more about font descriptions, refer to the Fonts chapter in the CSS2 specification ([CSS2], chapter 15).

20.8.2 Alternative ways for providing a font description

Font descriptions can be specified in either of the following ways:

• a ‘font-face’ element
• an @font-face rule ([CSS2], section 15.3.1) within a CSS style sheet (only applicable for user agents which

support using CSS to style the SVG content)

20.8.3 The ‘font-face’ element

The ‘font-face’ element corresponds directly to the @font-face facility in CSS2 ([CSS2], section 15.3.1). It can be
used to describe the characteristics of any font, SVG font or otherwise.

When used to describe the characteristics of an SVG font contained within the same document, it is recom-
mended that the ‘font-face’ element be a child of the ‘font’ element it is describing so that the ‘font’ element can
be self-contained and fully-described. In this case, any ‘font-face-src’ elements within the ‘font-face’ element are
ignored as it is assumed that the ‘font-face’ element is describing the characteristics of its parent ‘font’ element.

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions


‘font-face’Categories:
None

Content model:
Any number of descriptive elements and at most one ‘font-face-src’ element, in any order.

Attributes:
core attributes
‘font-family’
‘font-style’
‘font-variant’
‘font-weight’
‘font-stretch’
‘font-size’
‘unicode-range’
‘units-per-em’
‘panose-1’
‘stemv’
‘stemh’
‘slope’
‘cap-height’
‘x-height’
‘accent-height’
‘ascent’
‘descent’
‘widths’
‘bbox’
‘ideographic’
‘alphabetic’
‘mathematical’
‘hanging’
‘v-ideographic’
‘v-alphabetic’
‘v-mathematical’
‘v-hanging’
‘underline-position’
‘underline-thickness’
‘strikethrough-position’
‘strikethrough-thickness’
‘overline-position’
‘overline-thickness’



DOM Interfaces:
SVGFontFaceElement

Attribute definitions:

font-family = "<string>"
Same syntax and semantics as the ‘font-family’ descriptor within an @font-face rule.
Animatable: no.

font-style = "all | [ normal | italic | oblique] [, [normal | italic | oblique]]*"
Same syntax and semantics as the ‘font-style’ descriptor within an @font-face rule. The style of a font. Takes
on the same values as the ‘font-style’ property, except that a comma-separated list is permitted.
If the attribute is not specified, the effect is as if a value of 'all' were specified.
Animatable: no.

font-variant = "[normal | small-caps] [,[normal | small-caps]]*"
Same syntax and semantics as the ‘font-variant’ descriptor within an @font-face rule. Indication of whether
this face is the small-caps variant of a font. Takes on the same values as the ‘font-variant’ property, except
that a comma-separated list is permitted.
If the attribute is not specified, the effect is as if a value of 'normal' were specified.
Animatable: no.

font-weight = "all | [normal | bold | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900] [, [normal | bold | 100 | 200 | 300 | 400
| 500 | 600 | 700 | 800 | 900]]*"

Same syntax and semantics as the ‘font-weight’ descriptor within an @font-face rule.
The weight of a face relative to others in the same font family. Takes on the same values as the ‘font-weight’
property with three exceptions:

• relative keywords (bolder, lighter) are not permitted
• a comma-separated list of values is permitted, for fonts that contain multiple weights
• an additional keyword, 'all', is permitted, which means that the font will match for all possible weights;

either because it contains multiple weights, or because that face only has a single weight.

If the attribute is not specified, the effect is as if a value of 'all' were specified.
Animatable: no.

font-stretch = "all | [ normal | ultra-condensed | extra-condensed | condensed | semi-condensed | semi-expanded |
expanded | extra-expanded | ultra-expanded] [, [ normal | ultra-condensed | extra-condensed | condensed | semi-con-
densed | semi-expanded | expanded | extra-expanded | ultra-expanded] ]*"

Same syntax and semantics as the ‘font-stretch’ descriptor within an @font-face rule. Indication of the con-

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-font-family
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-font-style
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-font-variant
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-font-weight
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-font-stretch
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions


densed or expanded nature of the face relative to others in the same font family. Takes on the same values
as the ‘font-stretch’ property except that:

• relative keywords (wider, narrower) are not permitted
• a comma-separated list is permitted
• the keyword 'all' is permitted

If the attribute is not specified, the effect is as if a value of 'normal' were specified.
Animatable: no.

font-size = "<string>"
Same syntax and semantics as the ‘font-size’ descriptor within an @font-face rule.
Animatable: no.

unicode-range = "<urange> [, <urange>]*"
Same syntax and semantics as the ‘unicode-range’ descriptor within an @font-face rule. The range of ISO
10646 characters [UNICODE] possibly covered by the glyphs in the font. Except for any additional informa-
tion provided in this specification, the normative definition of the attribute is in CSS2 ([CSS2], section 15.3.3).
If the attribute is not specified, the effect is as if a value of 'U+0-10FFFF' were specified.
Animatable: no.

units-per-em = "<number>"
Same syntax and semantics as the ‘units-per-em’ descriptor within an @font-face rule. The number of co-
ordinate units on the em square, the size of the design grid on which glyphs are laid out.
This value is almost always necessary as nearly every other attribute requires the definition of a design grid.
If the attribute is not specified, the effect is as if a value of '1000' were specified.
Animatable: no.

panose-1 = "[<integer>]{10}"
Same syntax and semantics as the ‘panose-1’ descriptor within an @font-face rule. The Panose-1 number,
consisting of ten decimal integers, separated by whitespace. Except for any additional information provided
in this specification, the normative definition of the attribute is in CSS2 ([CSS2], section 15.3.6).
If the attribute is not specified, the effect is as if a value of '0 0 0 0 0 0 0 0 0 0' were specified.
Animatable: no.

stemv = "<number>"
Same syntax and semantics as the ‘stemv’ descriptor within an @font-face rule.
Animatable: no.

stemh = "<number>"
Same syntax and semantics as the ‘stemh’ descriptor within an @font-face rule.
Animatable: no.

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-font-size
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-unicode-range
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#dataqual
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-units-per-em
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-panose-1
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#matching
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-stemv
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-stemh
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions


slope = "<number>"
Same syntax and semantics as the ‘slope’ descriptor within an @font-face rule. The vertical stroke angle of
the font. Except for any additional information provided in this specification, the normative definition of the
attribute is in CSS2 ([CSS2], section 15.3.6).
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: no.

cap-height = "<number>"
Same syntax and semantics as the ‘cap-height’ descriptor within an @font-face rule. The height of uppercase
glyphs in the font within the font coordinate system.
Animatable: no.

x-height = "<number>"
Same syntax and semantics as the ‘x-height’ descriptor within an @font-face rule. The height of lowercase
glyphs in the font within the font coordinate system.
Animatable: no.

accent-height = "<number>"
The distance from the origin to the top of accent characters, measured by a distance within the font coordin-
ate system.
If the attribute is not specified, the effect is as if the attribute were set to the value of the ‘ascent’ attribute.
Animatable: no.

ascent = "<number>"
Same syntax and semantics as the ‘ascent’ descriptor within an @font-face rule. The maximum unaccented
height of the font within the font coordinate system.
If the attribute is not specified, the effect is as if the attribute were set to the difference between the ‘units-
per-em’ value and the ‘vert-origin-y’ value for the corresponding font.
Animatable: no.

descent = "<number>"
Same syntax and semantics as the ‘descent’ descriptor within an @font-face rule. The maximum unaccented
depth of the font within the font coordinate system.
If the attribute is not specified, the effect is as if the attribute were set to the ‘vert-origin-y’ value for the
corresponding font.
Animatable: no.

widths = "<string>"
Same syntax and semantics as the ‘widths’ descriptor within an @font-face rule.
Animatable: no.

bbox = "<string>"
Same syntax and semantics as the ‘bbox’ descriptor within an @font-face rule.
Animatable: no.

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-slope
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#matching
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#matching
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-cap-height
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-x-height
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-ascent
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-descent
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-widths
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-bbox
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions


ideographic = "<number>"
For horizontally oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve ideographic
baseline alignment. The value is an offset in the font coordinate system.
Animatable: no.

alphabetic = "<number>"
Same syntax and semantics as the ‘baseline’ descriptor within an @font-face rule. For horizontally oriented
glyph layouts, indicates the alignment coordinate for glyphs to achieve alphabetic baseline alignment. The
value is an offset in the font coordinate system.
Animatable: no.

mathematical = "<number>"
Same syntax and semantics as the ‘mathline’ descriptor within an @font-face rule. For horizontally oriented
glyph layouts, indicates the alignment coordinate for glyphs to achieve mathematical baseline alignment.
The value is an offset in the font coordinate system.
Animatable: no.

hanging = "<number>"
For horizontally oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve hanging
baseline alignment. The value is an offset in the font coordinate system.
Animatable: no.

v-ideographic = "<number>"
For vertically oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve ideographic
baseline alignment. The value is an offset in the font coordinate system relative to the glyph-specific ‘vert-
origin-x’ attribute.
Animatable: no.

v-alphabetic = "<number>"
For vertically oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve alphabetic
baseline alignment. The value is an offset in the font coordinate system relative to the glyph-specific ‘vert-
origin-x’ attribute.
Animatable: no.

v-mathematical = "<number>"
For vertically oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve mathematical
baseline alignment. The value is an offset in the font coordinate system relative to the glyph-specific ‘vert-
origin-x’ attribute.
Animatable: no.

v-hanging = "<number>"
For vertically oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve hanging
baseline alignment. The value is an offset in the font coordinate system relative to the glyph-specific ‘vert-

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-baseline
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-mathline
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions


‘font-face-src’

origin-x’ attribute.
Animatable: no.

underline-position = "<number>"
The ideal position of an underline within the font coordinate system.
Animatable: no.

underline-thickness = "<number>"
The ideal thickness of an underline, expressed as a length within the font coordinate system.
Animatable: no.

strikethrough-position = "<number>"
The ideal position of a strike-through within the font coordinate system.
Animatable: no.

strikethrough-thickness = "<number>"
The ideal thickness of a strike-through, expressed as a length within the font coordinate system.
Animatable: no.

overline-position = "<number>"
The ideal position of an overline within the font coordinate system.
Animatable: no.

overline-thickness = "<number>"
The ideal thickness of an overline, expressed as a length within the font coordinate system.
Animatable: no.

The following elements and attributes correspond to the ‘src’ descriptor within an @font-face rule. (Refer to the
descriptions of the @font-face rule and 'src' descriptor in the CSS2 specification ([CSS2], sections 15.3.1 and 15.3.5.)

20.8.4 The ‘font-face-src’ element

The ‘font-face-src’ element, together with the ‘font-face-uri’ and ‘font-face-format’ elements described in the fol-
lowing sections, correspond to the ‘src’ descriptor within an @font-face rule. (Refer to the descriptions of the
@font-face rule and 'src' descriptor in the CSS2 specification ([CSS2], sections 15.3.1 and 15.3.5).

A ‘font-face-src’ element contains ‘font-face-uri’ and ‘font-face-name’ elements, which are used for referencing
external and local fonts, respectively.

Categories:
None

Content model:
One or more of the following elements, in any order:

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-src
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#descdef-src


‘font-face-uri’

‘font-face-name’
‘font-face-uri’

Attributes:
core attributes

DOM Interfaces:
SVGFontFaceSrcElement

20.8.5 The ‘font-face-uri’ and ‘font-face-format’ elements

The ‘font-face-uri’ element is used within a ‘font-face-src’ element to reference a font defined inside or outside of
the current SVG document.

When a ‘font-face-uri’ is referencing an SVG font, then that reference must be to an SVG ‘font’ element, there-
fore requiring the use of a fragment identifier [RFC3986]. The referenced ‘font’ element can be local (i.e., within
the same document as the ‘font-face-uri’ element) or remote (i.e., within a different document).

Categories:
None

Content model:
Any number of the following elements, in any order:

‘font-face-format’

Attributes:
core attributes
xlink attributes
‘xlink:href’

DOM Interfaces:
SVGFontFaceUriElement

Attribute definitions:

xlink:href = "<IRI>"
The ‘xlink:href’ attribute specifies the location of the referenced font.
Animatable: no.

Child ‘font-face-format’ elements of a ‘font-face-uri’ element are used to specify the supported formats of the font
referenced by that ‘font-face-uri’ element. They correspond to entries in a format(...) clause of the ‘src’ descriptor
in an @font-face rule.



‘font-face-format’

‘font-face-name’

Categories:
None

Content model:
Empty.

Attributes:
core attributes
‘string’

DOM Interfaces:
SVGFontFaceFormatElement

Attribute definitions:

string = "<anything>"
The ‘string’ attribute is a hint to the user agent, and specifies a list of formats that the font referenced by
the parent ‘font-face-uri’ element supports. The syntax of the attribute value is a format string as defined in
CSS2, such as 'truetype'. Refer to the description of the 'src' descriptor in CSS2 for details on how the format
hint is interpreted ([CSS2], section 15.3.5).
Animatable: no.

20.8.6 The ‘font-face-name’ element

The ‘font-face-name’ element is used within a ‘font-face-src’ element to reference a local font by name. It corres-
ponds to a local(...) clause in an @font-face rule ‘src’ descriptor.

Categories:
None

Content model:
Empty.

Attributes:
core attributes
‘name’

DOM Interfaces:
SVGFontFaceNameElement

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#referencing
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#referencing
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#referencing


Attribute definitions:

name = "<anything>"
The ‘name’ attribute specifies the name of a local font. Unlike the syntax allowed between the parentheses
of the local(...) clause in an @font-face rule ‘src’ descriptor, the font name specified in this attribute is not
surrounded in single or double quotes. Refer to the description of the 'src' descriptor in CSS2 for details on
how the font name is interpreted ([CSS2], section 15.3.5).
Animatable: no.

20.9 DOM interfaces

20.9.1 Interface SVGFontElement

The SVGFontElement interface corresponds to the ‘font’ element.
Object-oriented access to the attributes of the ‘font’ element via the SVG DOM is not available.

interface SVGFontElement : SVGElement,
SVGExternalResourcesRequired,
SVGStylable {

};

20.9.2 Interface SVGGlyphElement

The SVGGlyphElement interface corresponds to the ‘glyph’ element.
Object-oriented access to the attributes of the ‘glyph’ element via the SVG DOM is not available.

interface SVGGlyphElement : SVGElement,
SVGStylable {

};

20.9.3 Interface SVGMissingGlyphElement

The SVGMissingGlyphElement interface corresponds to the ‘missing-glyph’ element.
Object-oriented access to the attributes of the ‘missing-glyph’ element via the SVG DOM is not available.

interface SVGMissingGlyphElement : SVGElement,
SVGStylable {

};

20.9.4 Interface SVGHKernElement

The SVGHKernElement interface corresponds to the ‘hkern’ element.
Object-oriented access to the attributes of the ‘hkern’ element via the SVG DOM is not available.

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#referencing


interface SVGHKernElement : SVGElement {
};

20.9.5 Interface SVGVKernElement

The SVGVKernElement interface corresponds to the ‘vkern’ element.
Object-oriented access to the attributes of the ‘vkern’ element via the SVG DOM is not available.

interface SVGVKernElement : SVGElement {
};

20.9.6 Interface SVGFontFaceElement

The SVGFontFaceElement interface corresponds to the ‘font-face’ element.
Object-oriented access to the attributes of the ‘font-face’ element via the SVG DOM is not available.

interface SVGFontFaceElement : SVGElement {
};

20.9.7 Interface SVGFontFaceSrcElement

The SVGFontFaceSrcElement interface corresponds to the ‘font-face-src’ element.
Object-oriented access to the attributes of the ‘font-face-src’ element via the SVG DOM is not available.

interface SVGFontFaceSrcElement : SVGElement {
};

20.9.8 Interface SVGFontFaceUriElement

The SVGFontFaceUriElement interface corresponds to the ‘font-face-uri’ element.
Object-oriented access to the attributes of the ‘font-face-uri’ element via the SVG DOM is not available.

interface SVGFontFaceUriElement : SVGElement {
};

20.9.9 Interface SVGFontFaceFormatElement

The SVGFontFaceFormatElement interface corresponds to the ‘font-face-format’ element.
Object-oriented access to the attributes of the ‘font-face-format’ element via the SVG DOM is not available.

interface SVGFontFaceFormatElement : SVGElement {
};



20.9.10 Interface SVGFontFaceNameElement

The SVGFontFaceNameElement interface corresponds to the ‘font-face-name’ element.
Object-oriented access to the attributes of the ‘font-face-name’ element via the SVG DOM is not available.

interface SVGFontFaceNameElement : SVGElement {
};



21 Metadata

Contents

21.1 Introduction
21.2 The ‘metadata’ element
21.3 An example
21.4 DOM interfaces

21.4.1 Interface SVGMetadataElement

21.1 Introduction

Metadata is structured data about data.
In the computing industry, there are ongoing standardization efforts towards metadata with the goal of pro-

moting industry interoperability and efficiency. Content creators should track these developments and include ap-
propriate metadata in their SVG content which conforms to these various metadata standards as they emerge.

The W3C has a Semantic Web Activity which has been established to serve a leadership role, in both the
design of enabling specifications and the open, collaborative development of technologies that support the automa-
tion, integration and reuse of data across various applications. The Semantic Web Activity builds upon the earlier
W3C Metadata Activity, including the definition of Resource Description Framework (RDF). The RDF Primer is
the first in a set of six documents that define the Resource Description Framework [RDF-PRIMER].

Another activity relevant to most applications of metadata is the Dublin Core [DCORE], which is a set of
generally applicable core metadata properties (e.g., Title, Creator/Author, Subject, Description, etc.).

Individual industries or individual content creators are free to define their own metadata schema but are en-
couraged to follow existing metadata standards and use standard metadata schema wherever possible to promote
interchange and interoperability. If a particular standard metadata schema does not meet your needs, then it is
usually better to define an additional metadata schema in an existing framework such as RDF and to use custom
metadata schema in combination with standard metadata schema, rather than totally ignore the standard schema.

21.2 The ‘metadata’ element

Metadata which is included with SVG content should be specified within ‘metadata’ elements. The contents of the
‘metadata’ should be elements from other XML namespaces, with these elements from these namespaces expressed
in a manner conforming with the Namespaces in XML Recommendation [XML-NS].

Authors should provide a ‘metadata’ child element to the outermost svg element within a stand-alone SVG
document. The ‘metadata’ child element to an ‘svg’ element serves the purposes of identifying document-level
metadata.

The DTD definitions of many of SVG's elements (particularly, container and text elements) place no restric-
tion on the placement or number of the ‘metadata’ sub-elements. This flexibility is only present so that there will be

http://www.w3.org/2001/sw/Activity
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://dublincore.org/
http://www.w3.org/TR/2006/REC-xml-names-20060816/


‘metadata’

a consistent content model for container elements, because some container elements in SVG allow for mixed con-
tent, and because the mixed content rules for XML ([XML10], section 3.2.2) do not permit the desired restrictions.
Representations of future versions of the SVG language might use more expressive representations than DTDs
which allow for more restrictive mixed content rules. It is strongly recommended that at most one ‘metadata’ ele-
ment appear as a child of any particular element, and that this element appear before any other child elements
(except possibly ‘desc’ or ‘title’ elements) or character data content. If metadata-processing user agents need to
choose among multiple ‘metadata’ elements for processing it should choose the first one.

Categories:
Descriptive element

Content model:
Any elements or character data.

Attributes:
core attributes

DOM Interfaces:
SVGMetadataElement

21.3 An example

Here is an example of how metadata can be included in an SVG document. The example uses the Dublin Core
version 1.1 schema. (Other XML-compatible metadata languages, including ones not based on RDF, can be used
also.)

<?xml version="1.0" standalone="yes"?>
<svg width="4in" height="3in" version="1.1"

xmlns = 'http://www.w3.org/2000/svg'>
<desc xmlns:myfoo="http://example.org/myfoo">

<myfoo:title>This is a financial report</myfoo:title>
<myfoo:descr>The global description uses markup from the

<myfoo:emph>myfoo</myfoo:emph> namespace.</myfoo:descr>
<myfoo:scene><myfoo:what>widget $growth</myfoo:what>
<myfoo:contains>$three $graph-bar</myfoo:contains>

<myfoo:when>1998 $through 2000</myfoo:when> </myfoo:scene>
</desc>
<metadata>

<rdf:RDF
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"
xmlns:dc = "http://purl.org/dc/elements/1.1/" >

<rdf:Description about="http://example.org/myfoo"
dc:title="MyFoo Financial Report"
dc:description="$three $bar $thousands $dollars $from 1998 $through 2000"
dc:publisher="Example Organization"
dc:date="2000-04-11"
dc:format="image/svg+xml"
dc:language="en" >

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-mixed-content


<dc:creator>
<rdf:Bag>

<rdf:li>Irving Bird</rdf:li>
<rdf:li>Mary Lambert</rdf:li>

</rdf:Bag>
</dc:creator>

</rdf:Description>
</rdf:RDF>

</metadata>
</svg>

21.4 DOM interfaces

21.4.1 Interface SVGMetadataElement

The SVGMetadataElement interface corresponds to the ‘metadata’ element.

interface SVGMetadataElement : SVGElement {
};



22 Backwards Compatibility

A user agent (UA) might not have the ability to process and view SVG content. The following list outlines two of
the backwards compatibility scenarios associated with SVG content:

• For XML grammars with the ability to embed SVG content, it is assumed that some sort of alternate rep-
resentation capability such as the ‘switch’ element and some sort of feature-availability test facility (such as
what is described in the SMIL 3.0 specification [SMIL]) will be available.

This ‘switch’ element and feature-availability test facility (or their equivalents) are the recommended
way for XML authors to provide an alternate representation to SVG content, such as an image or a text string.
The following example shows how to embed an SVG drawing within a SMIL 1.0 document such that an al-
ternate image will display in the event the user agent doesn't support SVG. Note that the MIME type in the
‘type’ attribute is an important means for the user agent to decide if it can decode the referenced media.

In this example, the SVG content is included via a URL reference. With some parent XML grammars it
will also be possible to include an SVG document fragment inline within the same file as its parent grammar.

<?xml version="1.0" standalone="yes"?>
<smil>

<body>
<!-- With SMIL 1.0, the first child element of 'switch'

which the SMIL 1.0 user agent is able to process
and which tests true will get processed and all other
child elements will have no visual effect. In this case,
if the SMIL 1.0 user agent can process "image/svg+xml",
then the SVG will appear; otherwise, the alternate image
(the second child element) will appear. -->

<switch>
<!-- Render the SVG if possible. -->
<ref type="image/svg+xml" src="drawing.svg" />
<!-- Else, render the alternate image. -->
<img src="alternate_image.jpg" />

</switch>
</body>

</smil>

• For HTML 4, SVG drawings can be embedded using the ‘object’ element. An alternate representation such
as an image can be included as the content of the ‘object’ element. In this case, the SVG content usually will
be included via a URL reference. The following example shows how to use the ‘object’ element to include an
SVG drawing via a URL reference with an image serving as the alternate representation in the absence of an
SVG user agent:

<html>
<body>

<object type="image/svg+xml" data="drawing.svg">
<!-- The contents of the 'object' element (i.e., an alternate

image) are drawn in the event the user agent cannot process
the SVG drawing. -->

<img src="alternate_image.jpg" alt="alternate description">
</object>

http://www.w3.org/TR/2008/REC-SMIL3-20081201/


</body>
</html>



23 Extensibility

Contents

23.1 Foreign namespaces and private data
23.2 Embedding foreign object types
23.3 The ‘foreignObject’ element
23.4 An example
23.5 Adding private elements and attributes to the DTD
23.6 DOM interfaces

23.6.1 Interface SVGForeignObjectElement

23.1 Foreign namespaces and private data

SVG allows inclusion of elements from foreign namespaces anywhere with the SVG content. In general, the SVG
user agent will include the unknown elements in the DOM but will otherwise ignore unknown elements. (The
notable exception is described under Embedding Foreign Object Types.)

Additionally, SVG allows inclusion of attributes from foreign namespaces on any SVG element. The SVG user
agent will include unknown attributes in the DOM but with otherwise ignore unknown attributes.

SVG's ability to include foreign namespaces can be used for the following purposes:

• Application-specific information so that authoring applications can include model-level data in the SVG con-
tent to serve their "roundtripping" purposes (i.e., the ability to write, then read a file without loss of higher-
level information).

• Supplemental data for extensibility. For example, suppose you have an extrusion extension which takes any
2D graphics and extrudes it in three dimensions. When applying the extrusion extension, you probably will
need to set some parameters. The parameters can be included in the SVG content by inserting elements from
an extrusion extension namespace.

To illustrate, a business graphics authoring application might want to include some private data within an SVG
document so that it could properly reassemble the chart (a pie chart in this case) upon reading it back in:

<?xml version="1.0" standalone="yes"?>
<svg width="4in" height="3in" version="1.1"

xmlns = 'http://www.w3.org/2000/svg'>
<defs>

<myapp:piechart xmlns:myapp="http://example.org/myapp"
title="Sales by Region">

<myapp:pieslice label="Northern Region" value="1.23"/>
<myapp:pieslice label="Eastern Region" value="2.53"/>
<myapp:pieslice label="Southern Region" value="3.89"/>
<myapp:pieslice label="Western Region" value="2.04"/>
<!-- Other private data goes here -->

</myapp:piechart>



‘foreignObject’

</defs>
<desc>This chart includes private data in another namespace
</desc>
<!-- In here would be the actual SVG graphics elements which

draw the pie chart -->
</svg>

23.2 Embedding foreign object types

One goal for SVG is to provide a mechanism by which other XML language processors can render into an area
within an SVG drawing, with those renderings subject to the various transformations and compositing parameters
that are currently active at a given point within the SVG content tree. One particular example of this is to provide
a frame for XML content styled with CSS or XSL so that dynamically reflowing text (subject to SVG transform-
ations and compositing) could be inserted into the middle of some SVG content. Another example is inserting a
MathML expression into an SVG drawing [MATHML].

The ‘foreignObject’ element allows for inclusion of a foreign namespace which has its graphical content
drawn by a different user agent. The included foreign graphical content is subject to SVG transformations and
compositing.

The contents of ‘foreignObject’ are assumed to be from a different namespace. Any SVG elements within
a ‘foreignObject’ will not be drawn, except in the situation where a properly defined SVG subdocument with a
proper ‘xmlns’ (see Namespaces in XML [XML-NS]) attribute specification is embedded recursively. One situation
where this can occur is when an SVG document fragment is embedded within another non-SVG document frag-
ment, which in turn is embedded within an SVG document fragment (e.g., an SVG document fragment contains
an XHTML document fragment which in turn contains yet another SVG document fragment).

Usually, a ‘foreignObject’ will be used in conjunction with the ‘switch’ element and the ‘requiredExtensions’
attribute to provide proper checking for user agent support and provide an alternate rendering in case user agent
support is not available.

23.3 The ‘foreignObject’ element

Categories:
None

Content model:
Any elements or character data.

Attributes:
core attributes
conditional processing attributes
graphical event attributes
presentation attributes
‘class’

http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2006/REC-xml-names-20060816/


‘style’
‘externalResourcesRequired’
‘transform’
‘x’
‘y’
‘width’
‘height’

DOM Interfaces:
SVGForeignObjectElement

Attribute definitions:

x = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the graphics associated with the
contents of the ‘foreignObject’ will be rendered.
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: yes.

y = "<coordinate>"
The y-axis coordinate of one corner of the rectangular region into which the referenced document is placed.
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: yes.

width = "<length>"
The width of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

height = "<length>"
The height of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

23.4 An example

Here is an example:

<?xml version="1.0" standalone="yes"?>
<svg width="4in" height="3in" version="1.1"
xmlns = 'http://www.w3.org/2000/svg'>
<desc>This example uses the 'switch' element to provide a

fallback graphical representation of an paragraph, if



XMHTML is not supported.</desc>
<!-- The 'switch' element will process the first child element

whose testing attributes evaluate to true.-->
<switch>

<!-- Process the embedded XHTML if the requiredExtensions attribute
evaluates to true (i.e., the user agent supports XHTML
embedded within SVG). -->

<foreignObject width="100" height="50"
requiredExtensions="http://example.com/SVGExtensions/EmbeddedXHTML">

<!-- XHTML content goes here -->
<body xmlns="http://www.w3.org/1999/xhtml">

<p>Here is a paragraph that requires word wrap</p>
</body>

</foreignObject>
<!-- Else, process the following alternate SVG.

Note that there are no testing attributes on the 'text' element.
If no testing attributes are provided, it is as if there
were testing attributes and they evaluated to true.-->

<text font-size="10" font-family="Verdana">
<tspan x="10" y="10">Here is a paragraph that</tspan>
<tspan x="10" y="20">requires word wrap.</tspan>

</text>
</switch>

</svg>

It is not required that SVG user agent support the ability to invoke other arbitrary user agents to handle embedded
foreign object types; however, all conforming SVG user agents would need to support the ‘switch’ element and
must be able to render valid SVG elements when they appear as one of the alternatives within a ‘switch’ element.

Ultimately, it is expected that commercial Web browsers will support the ability for SVG to embed content
from other XML grammars which use CSS or XSL to format their content, with the resulting CSS- or XSL-format-
ted content subject to SVG transformations and compositing. At this time, such a capability is not a requirement.

23.5 Adding private elements and attributes to the DTD

Using foreign namespaces as an extension mechanism adds flexibility, is readily handled by validation technolo-
gies like NVDL and RelaxNG, but typically breaks DTD validation unless the DTD has explicit extensibility hooks.

The SVG DTD allows for extending the SVG language within the internal DTD subset. Within the internal
DTD subset, you have the ability to add custom elements and attributes to most SVG elements. This facility may
be used if DTD validation is desired.

The DTD defines an extension entity for most of SVG elements. For example, the ‘view’ element is defined in
the DTD as follows:

<!ENTITY % SVG.view.extra.content "" >

<!ENTITY % SVG.view.element "INCLUDE" >
<![%SVG.view.element;[
<!ENTITY % SVG.view.content

"( %SVG.Description.class; %SVG.view.extra.content; )*"
>
<!ELEMENT %SVG.view.qname; %SVG.view.content; >
<!-- end of SVG.view.element -->]]>

<!ENTITY % SVG.view.attlist "INCLUDE" >



<![%SVG.view.attlist;[
<!ATTLIST %SVG.view.qname;

%SVG.Core.attrib;
%SVG.External.attrib;
viewBox %ViewBoxSpec.datatype; #IMPLIED
preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'
zoomAndPan ( disable | magnify ) 'magnify'
viewTarget CDATA #IMPLIED

>
<!-- end of SVG.view.attlist -->]]>

The entity SVG.view.extra.content can be defined in the internal DTD subset to add custom sub-elements at-
tributes to the ‘view’ element within a given document, and an <!ATTLIST> can be used to add custom attributes.
For example, the following extends the ‘view’ element with an additional child element ‘customNS:customElement’
and an additional attribute ‘customNS:customAttr’:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd" [
<!ENTITY % SVG.view.extra.content  "| customNS:customElement" >
<!ATTLIST %SVG.view.qname;

xmlns:customNS CDATA #FIXED "http://www.example.org/customNS"
customNS:customAttr CDATA #IMPLIED>

<!ELEMENT customNS:customElement EMPTY>
<!ATTLIST customNS:customElement

xmlns:customNS CDATA #FIXED "http://www.example.org/customNS"
info CDATA #IMPLIED>

]>
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"

width="8cm" height="4cm">
<desc>Extend the 'view' element via the internal DTD subset</desc>
<!-- Presumably, some great graphics would go here. -->
<view viewBox="100 110 20 30" customNS:customAttr="123">

<customNS:customElement info="abc"/>
</view>

</svg>

23.6 DOM interfaces

23.6.1 Interface SVGForeignObjectElement

The SVGForeignObjectElement interface corresponds to the ‘foreignObject’ element.

interface SVGForeignObjectElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;

};



Attributes:

• x (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given ‘foreignObject’ element.

• y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given ‘foreignObject’ element.

• width (readonly SVGAnimatedLength)

Corresponds to attribute ‘width’ on the given ‘foreignObject’ element.

• height (readonly SVGAnimatedLength)

Corresponds to attribute ‘height’ on the given ‘foreignObject’ element.



Appendix A: Document Type Definition

Contents

A.1 Introduction
A.2 Modularization

A.2.1 Element and attribute collections
A.2.2 Profiling the SVG specification
A.2.3 Practical considerations

A.3 SVG 1.1 module definitions and DTD implementations
A.3.1 Modular Framework Module
A.3.2 Datatypes Module
A.3.3 Qualified Name Module
A.3.4 Core Attribute Module
A.3.5 Container Attribute Module
A.3.6 Viewport Attribute Module
A.3.7 Paint Attribute Module
A.3.8 Basic Paint Attribute Module
A.3.9 Paint Opacity Attribute Module
A.3.10 Graphics Attribute Module
A.3.11 Basic Graphics Attribute Module
A.3.12 Document Events Attribute Module
A.3.13 Graphical Element Events Attribute Module
A.3.14 Animation Events Attribute Module
A.3.15 XLink Attribute Module
A.3.16 External Resources Attribute Module
A.3.17 Structure Module
A.3.18 Basic Structure Module
A.3.19 Conditional Processing Module
A.3.20 Image Module
A.3.21 Style Module
A.3.22 Shape Module
A.3.23 Text Module
A.3.24 Basic Text Module
A.3.25 Marker Module
A.3.26 Color Profile Module
A.3.27 Gradient Module
A.3.28 Pattern Module
A.3.29 Clip Module
A.3.30 Basic Clip Module
A.3.31 Mask Module



A.3.32 Filter Module
A.3.33 Basic Filter Module
A.3.34 Cursor Module
A.3.35 Hyperlinking Module
A.3.36 View Module
A.3.37 Scripting Module
A.3.38 Animation Module
A.3.39 Font Module
A.3.40 Basic Font Module
A.3.41 Extensibility Module

A.4 SVG 1.1 Document Type Definition
A.4.1 SVG 1.1 DTD Driver
A.4.2 SVG 1.1 Document Model
A.4.3 SVG 1.1 Attribute Collection

This appendix is normative.

A.1 Introduction

This appendix defines a DTD for SVG 1.1, which is used as part of determining whether a given document or doc-
ument fragment is conforming. See Conformance Criteria for details on how the DTD is to be used in this regard.
Note in particular that simply validating a given XML document against this DTD cannot definitively, by itself,
determine conformance to this specification.

If errors are found in this DTD, then they will be listed in the SVG 1.1 Second Edition errata. A dated
version of the flattened DTD will always be available from http://www.w3.org/Graphics/SVG/1.1/DTD/
svg11-flat-20110816.dtd.

A.2 Modularization

The modularization of SVG included here is a decomposition of SVG 1.0 [SVG10] and errata into a collection of
abstract modules that provide specific units of functionality. These modules may be combined with each other and
with modules defined in other specifications (such as XHTML) to create SVG subset and extension document types
that qualify as members of the SVG family of document types. See Conformance for a description of SVG family
documents, and An XHTML + MathML + SVG Profile [XHTMLplusMathMLplusSVG] for a profile that combines
XHTML, MathML and SVG.

Each major section of the SVG specification corresponds to a module named after that section, e.g. "Text
Module" or "Basic Structure Module". A module without the "Basic" prefix implies that the module includes the
complete set of elements and attributes, with no restrictions, from the corresponding section of the specification. If
there is a need to provide a subset of the functionality of the complete module, then a Basic module is created with
the "Basic" prefix added to the name of the complete module. For example, the "Basic Text Module" is a subset of
the "Text Module".

http://www.w3.org/2011/08/REC-SVG11-20110816-errata
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat-20110816.dtd
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat-20110816.dtd
http://www.w3.org/TR/2001/REC-SVG-20010904/
http://www.w3.org/TR/2002/WD-XHTMLplusMathMLplusSVG-20020809/


It is an error for a profile of SVG 1.1 to include both the complete module and its basic subset (e.g. the "Text
Module" and the "Basic Text Module").

A.2.1 Element and attribute collections

Most modules define a named collection of elements or attributes. These collections are used as a shorthand when
describing the set of attributes allowed on a particular element (e.g. the "Style" attribute collection) or the set of
elements allowed as children of a particular element (e.g. the "Shape" element collection). All collections have
names that begin with an uppercase character.

When defining a profile, it is assumed that all the element and attribute collections are defined to be empty.
That way, a module can redefine the collection as it is included in the profile, adding elements or attributes to
make them available within the profile. Therefore, it is not a mistake to refer to an element or attribute collection
from a module that is not included in the profile, it simply means that collection is empty.

The exception to this is the collection Presentation.attrib, which is the union of all the presentation attribute
collections (i.e. all the attribute collections with the string "Presentation" in their name). Presentation.attrib is not
defined in any module, but it exists in every profile.

A subset module (i.e. a Basic module) may define a different named collection from a superset module. Since
it is an error to include a subset and superset module of the same group in a profile, all attribute and element
collections will either be defined once by the module that includes them, or will have their default empty value
(again, with the exception of Presentation.attrib which is not defined by any module).

A.2.2 Profiling the SVG specification

The modularization of SVG 1.1 allows profiles to be described by listing the SVG modules they allow and possibly
a small number of restrictions or extensions on the elements provided by those modules.

The "Full" profile of SVG 1.1 is the collection of all the complete modules listed in this specification (i.e., every
module that is not a subset module).

When applied to conformance, the unqualified term "SVG" implies the "Full" profile of SVG 1.1 defined by
this specification. If an implementation does not implement the Full profile, it must state either the profile to which
it conforms, or that it implements a subset of SVG.

A.2.3 Practical considerations

DTD-based modularization has proven to be an unwieldy method of defining composable XML languages, due
to the inherent inability to describe certain complex content models in DTDs as well as their being agnostic with
respect to XML namespaces. While the SVG 1.1 DTD is provided in a modularized form, it is recommended that
alternate technologies such as Namespace-based Validation Dispatch Language [NVDL] be used to accomplish
XML language composition instead.



A.3 SVG 1.1 module definitions and DTD implementations

This section contains the formal definition of each of the SVG abstract modules as a DTD module. Any element
and attribute collections defined by the module are also listed.

A.3.1 Modular Framework Module

<!-- ....................................................................... -->
<!-- SVG 1.1 Modular Framework Module ...................................... -->
<!-- file: svg-framework.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-framework.mod,v 1.3 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Modular Framework//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-framework.mod"

....................................................................... -->

<!-- Modular Framework

This module instantiates the modules needed to support the SVG
modularization model, including:

+ Datatypes
+ Qualified Name
+ Document Model
+ Attribute Collection

-->

<!ENTITY % svg-datatypes.module "INCLUDE" >
<![%svg-datatypes.module;[
<!ENTITY % svg-datatypes.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Datatypes//EN"
"svg-datatypes.mod" >

%svg-datatypes.mod;]]>

<!ENTITY % svg-qname.module "INCLUDE" >
<![%svg-qname.module;[
<!ENTITY % svg-qname.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Qualified Name//EN"
"svg-qname.mod" >

%svg-qname.mod;]]>

<!ENTITY % svg-model.module "INCLUDE" >
<![%svg-model.module;[
<!-- instantiate the Document Model declared in the DTD driver -->
%svg-model.mod;]]>

<!ENTITY % svg-attribs.module "INCLUDE" >
<![%svg-attribs.module;[
<!-- instantiate the Attribute Collection declared in the DTD driver -->
%svg-attribs.mod;]]>

<!-- end of svg-framework.mod -->

A.3.2 Datatypes Module

<!-- ....................................................................... -->
<!-- SVG 1.1 Datatypes Module .............................................. -->
<!-- file: svg-datatypes.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.



Revision: $Id: svg-datatypes.mod,v 1.3 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Datatypes//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-datatypes.mod"

....................................................................... -->

<!-- Datatypes

This module declares common data types for properties and attributes.
-->

<!-- feature specification -->
<!ENTITY % Boolean.datatype "( false | true )" >

<!-- 'clip-rule' or 'fill-rule' property/attribute value -->
<!ENTITY % ClipFillRule.datatype "( nonzero | evenodd | inherit )" >

<!-- media type, as per [RFC2045] -->
<!ENTITY % ContentType.datatype "CDATA" >

<!-- a <coordinate> -->
<!ENTITY % Coordinate.datatype "CDATA" >

<!-- a list of <coordinate>s -->
<!ENTITY % Coordinates.datatype "CDATA" >

<!-- a <color> value -->
<!ENTITY % Color.datatype "CDATA" >

<!-- a <integer> -->
<!ENTITY % Integer.datatype "CDATA" >

<!-- a language code, as per [BCP47] -->
<!ENTITY % LanguageCode.datatype "NMTOKEN" >

<!-- comma-separated list of language codes, as per [BCP47] -->
<!ENTITY % LanguageCodes.datatype "CDATA" >

<!-- a <length> -->
<!ENTITY % Length.datatype "CDATA" >

<!-- a list of <length>s -->
<!ENTITY % Lengths.datatype "CDATA" >

<!-- a <number> -->
<!ENTITY % Number.datatype "CDATA" >

<!-- a list of <number>s -->
<!ENTITY % Numbers.datatype "CDATA" >

<!-- opacity value (e.g., <number>) -->
<!ENTITY % OpacityValue.datatype "CDATA" >

<!-- a path data specification -->
<!ENTITY % PathData.datatype "CDATA" >

<!-- 'preserveAspectRatio' attribute specification -->
<!ENTITY % PreserveAspectRatioSpec.datatype "CDATA" >

<!-- script expression -->
<!ENTITY % Script.datatype "CDATA" >

<!-- An SVG color value (RGB plus optional ICC) -->
<!ENTITY % SVGColor.datatype "CDATA" >

<!-- arbitrary text string -->
<!ENTITY % Text.datatype "CDATA" >

<!-- list of transforms -->
<!ENTITY % TransformList.datatype "CDATA" >

<!-- a Uniform Resource Identifier, see [URI] -->
<!ENTITY % URI.datatype "CDATA" >



<!-- 'viewBox' attribute specification -->
<!ENTITY % ViewBoxSpec.datatype "CDATA" >

<!-- end of svg-datatypes.mod -->

A.3.3 Qualified Name Module

<!-- ....................................................................... -->
<!-- SVG 1.1 Qualified Name Module ......................................... -->
<!-- file: svg-qname.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-qname.mod,v 1.3 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Qualified Name//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-qname.mod"

....................................................................... -->

<!-- Qualified Name

This module is contained in two parts, labeled Section 'A' and 'B':

Section A declares parameter entities to support namespace-
qualified names, namespace declarations, and name prefixing
for SVG and extensions.

Section B declares parameter entities used to provide
namespace-qualified names for all SVG element types:

-->

<!-- Section A: SVG XML Namespace Framework :::::::::::::::::::::: -->

<!-- 1. Declare a %SVG.prefixed; conditional section keyword, used
to activate namespace prefixing. The default value should
inherit '%NS.prefixed;' from the DTD driver, so that unless
overridden, the default behaviour follows the overall DTD
prefixing scheme.

-->
<!ENTITY % NS.prefixed "IGNORE" >
<!ENTITY % SVG.prefixed "%NS.prefixed;" >

<!-- 2. Declare a parameter entity (eg., %SVG.xmlns;) containing
the URI reference used to identify the SVG namespace:

-->
<!ENTITY % SVG.xmlns "http://www.w3.org/2000/svg" >
<!ENTITY % XLINK.xmlns "http://www.w3.org/1999/xlink" >

<!-- 3. Declare parameter entities (eg., %SVG.prefix;) containing
the default namespace prefix string(s) to use when prefixing
is enabled. This may be overridden in the DTD driver or the
internal subset of an document instance. If no default prefix
is desired, this may be declared as an empty string.

-->
<!ENTITY % SVG.prefix "" >
<!ENTITY % XLINK.prefix "xlink" >

<!-- 4. Declare parameter entities (eg., %SVG.pfx;) containing the
colonized prefix(es) (eg., '%SVG.prefix;:') used when
prefixing is active, an empty string when it is not.

-->
<![%SVG.prefixed;[
<!ENTITY % SVG.pfx "%SVG.prefix;:" >
]]>
<!ENTITY % SVG.pfx "" >
<!ENTITY % XLINK.pfx "%XLINK.prefix;:" >

<!-- 5. The parameter entity %SVG.xmlns.extra.attrib; may be
redeclared to contain any non-SVG namespace declaration
attributes for namespaces embedded in SVG. The default
is an empty string.



-->
<!ENTITY % SVG.xmlns.extra.attrib "" >

<!-- Declare a parameter entity XLINK.xmlns.attrib containing
the XML Namespace declarations for XLink.

-->
<!ENTITY % XLINK.xmlns.attrib

"xmlns:%XLINK.prefix; %URI.datatype; #FIXED '%XLINK.xmlns;'"
>

<!-- Declare a parameter entity %NS.decl.attrib; containing
all XML Namespace declarations used in the DTD, plus the
xmlns declaration for SVG, its form dependent on whether
prefixing is active.

-->
<![%SVG.prefixed;[
<!ENTITY % NS.decl.attrib

"xmlns:%SVG.prefix; %URI.datatype; #FIXED '%SVG.xmlns;'
%XLINK.xmlns.attrib;
%SVG.xmlns.extra.attrib;"

>
]]>
<!ENTITY % NS.decl.attrib

"%XLINK.xmlns.attrib;
%SVG.xmlns.extra.attrib;"

>

<!-- Declare a parameter entity %SVG.xmlns.attrib; containing
all XML namespace declaration attributes used by SVG,
including a default xmlns attribute when prefixing is
inactive.

-->
<![%SVG.prefixed;[
<!ENTITY % SVG.xmlns.attrib

"%NS.decl.attrib;"
>
]]>
<!ENTITY % SVG.xmlns.attrib

"xmlns %URI.datatype; #FIXED '%SVG.xmlns;'
%XLINK.xmlns.attrib;"

>

<!-- Section B: SVG Qualified Names :::::::::::::::::::::::::::::: -->

<!-- 6. This section declares parameter entities used to provide
namespace-qualified names for all SVG element types.

-->

<!-- module: svg-structure.mod ......................... -->

<!ENTITY % SVG.svg.qname "%SVG.pfx;svg" >
<!ENTITY % SVG.g.qname "%SVG.pfx;g" >
<!ENTITY % SVG.defs.qname "%SVG.pfx;defs" >
<!ENTITY % SVG.desc.qname "%SVG.pfx;desc" >
<!ENTITY % SVG.title.qname "%SVG.pfx;title" >
<!ENTITY % SVG.metadata.qname "%SVG.pfx;metadata" >
<!ENTITY % SVG.symbol.qname "%SVG.pfx;symbol" >
<!ENTITY % SVG.use.qname "%SVG.pfx;use" >

<!-- module: svg-conditional.mod ....................... -->

<!ENTITY % SVG.switch.qname "%SVG.pfx;switch" >

<!-- module: svg-image.mod ............................. -->

<!ENTITY % SVG.image.qname "%SVG.pfx;image" >

<!-- module: svg-style.mod ............................. -->

<!ENTITY % SVG.style.qname "%SVG.pfx;style" >

<!-- module: svg-shape.mod ............................. -->

<!ENTITY % SVG.path.qname "%SVG.pfx;path" >
<!ENTITY % SVG.rect.qname "%SVG.pfx;rect" >
<!ENTITY % SVG.circle.qname "%SVG.pfx;circle" >
<!ENTITY % SVG.line.qname "%SVG.pfx;line" >



<!ENTITY % SVG.ellipse.qname "%SVG.pfx;ellipse" >
<!ENTITY % SVG.polyline.qname "%SVG.pfx;polyline" >
<!ENTITY % SVG.polygon.qname "%SVG.pfx;polygon" >

<!-- module: svg-text.mod .............................. -->

<!ENTITY % SVG.text.qname "%SVG.pfx;text" >
<!ENTITY % SVG.tspan.qname "%SVG.pfx;tspan" >
<!ENTITY % SVG.tref.qname "%SVG.pfx;tref" >
<!ENTITY % SVG.textPath.qname "%SVG.pfx;textPath" >
<!ENTITY % SVG.altGlyph.qname "%SVG.pfx;altGlyph" >
<!ENTITY % SVG.altGlyphDef.qname "%SVG.pfx;altGlyphDef" >
<!ENTITY % SVG.altGlyphItem.qname "%SVG.pfx;altGlyphItem" >
<!ENTITY % SVG.glyphRef.qname "%SVG.pfx;glyphRef" >

<!-- module: svg-marker.mod ............................ -->

<!ENTITY % SVG.marker.qname "%SVG.pfx;marker" >

<!-- module: svg-profile.mod ........................... -->

<!ENTITY % SVG.color-profile.qname "%SVG.pfx;color-profile" >

<!-- module: svg-gradient.mod .......................... -->

<!ENTITY % SVG.linearGradient.qname "%SVG.pfx;linearGradient" >
<!ENTITY % SVG.radialGradient.qname "%SVG.pfx;radialGradient" >
<!ENTITY % SVG.stop.qname "%SVG.pfx;stop" >

<!-- module: svg-pattern.mod ........................... -->

<!ENTITY % SVG.pattern.qname "%SVG.pfx;pattern" >

<!-- module: svg-clip.mod .............................. -->

<!ENTITY % SVG.clipPath.qname "%SVG.pfx;clipPath" >

<!-- module: svg-mask.mod .............................. -->

<!ENTITY % SVG.mask.qname "%SVG.pfx;mask" >

<!-- module: svg-filter.mod ............................ -->

<!ENTITY % SVG.filter.qname "%SVG.pfx;filter" >
<!ENTITY % SVG.feBlend.qname "%SVG.pfx;feBlend" >
<!ENTITY % SVG.feColorMatrix.qname "%SVG.pfx;feColorMatrix" >
<!ENTITY % SVG.feComponentTransfer.qname "%SVG.pfx;feComponentTransfer" >
<!ENTITY % SVG.feComposite.qname "%SVG.pfx;feComposite" >
<!ENTITY % SVG.feConvolveMatrix.qname "%SVG.pfx;feConvolveMatrix" >
<!ENTITY % SVG.feDiffuseLighting.qname "%SVG.pfx;feDiffuseLighting" >
<!ENTITY % SVG.feDisplacementMap.qname "%SVG.pfx;feDisplacementMap" >
<!ENTITY % SVG.feFlood.qname "%SVG.pfx;feFlood" >
<!ENTITY % SVG.feGaussianBlur.qname "%SVG.pfx;feGaussianBlur" >
<!ENTITY % SVG.feImage.qname "%SVG.pfx;feImage" >
<!ENTITY % SVG.feMerge.qname "%SVG.pfx;feMerge" >
<!ENTITY % SVG.feMergeNode.qname "%SVG.pfx;feMergeNode" >
<!ENTITY % SVG.feMorphology.qname "%SVG.pfx;feMorphology" >
<!ENTITY % SVG.feOffset.qname "%SVG.pfx;feOffset" >
<!ENTITY % SVG.feSpecularLighting.qname "%SVG.pfx;feSpecularLighting" >
<!ENTITY % SVG.feTile.qname "%SVG.pfx;feTile" >
<!ENTITY % SVG.feTurbulence.qname "%SVG.pfx;feTurbulence" >
<!ENTITY % SVG.feDistantLight.qname "%SVG.pfx;feDistantLight" >
<!ENTITY % SVG.fePointLight.qname "%SVG.pfx;fePointLight" >
<!ENTITY % SVG.feSpotLight.qname "%SVG.pfx;feSpotLight" >
<!ENTITY % SVG.feFuncR.qname "%SVG.pfx;feFuncR" >
<!ENTITY % SVG.feFuncG.qname "%SVG.pfx;feFuncG" >
<!ENTITY % SVG.feFuncB.qname "%SVG.pfx;feFuncB" >
<!ENTITY % SVG.feFuncA.qname "%SVG.pfx;feFuncA" >

<!-- module: svg-cursor.mod ............................ -->

<!ENTITY % SVG.cursor.qname "%SVG.pfx;cursor" >

<!-- module: svg-hyperlink.mod ......................... -->

<!ENTITY % SVG.a.qname "%SVG.pfx;a" >



<!-- module: svg-view.mod .............................. -->

<!ENTITY % SVG.view.qname "%SVG.pfx;view" >

<!-- module: svg-script.mod ............................ -->

<!ENTITY % SVG.script.qname "%SVG.pfx;script" >

<!-- module: svg-animation.mod ......................... -->

<!ENTITY % SVG.animate.qname "%SVG.pfx;animate" >
<!ENTITY % SVG.set.qname "%SVG.pfx;set" >
<!ENTITY % SVG.animateMotion.qname "%SVG.pfx;animateMotion" >
<!ENTITY % SVG.animateColor.qname "%SVG.pfx;animateColor" >
<!ENTITY % SVG.animateTransform.qname "%SVG.pfx;animateTransform" >
<!ENTITY % SVG.mpath.qname "%SVG.pfx;mpath" >

<!-- module: svg-font.mod .............................. -->

<!ENTITY % SVG.font.qname "%SVG.pfx;font" >
<!ENTITY % SVG.font-face.qname "%SVG.pfx;font-face" >
<!ENTITY % SVG.glyph.qname "%SVG.pfx;glyph" >
<!ENTITY % SVG.missing-glyph.qname "%SVG.pfx;missing-glyph" >
<!ENTITY % SVG.hkern.qname "%SVG.pfx;hkern" >
<!ENTITY % SVG.vkern.qname "%SVG.pfx;vkern" >
<!ENTITY % SVG.font-face-src.qname "%SVG.pfx;font-face-src" >
<!ENTITY % SVG.font-face-uri.qname "%SVG.pfx;font-face-uri" >
<!ENTITY % SVG.font-face-format.qname "%SVG.pfx;font-face-format" >
<!ENTITY % SVG.font-face-name.qname "%SVG.pfx;font-face-name" >

<!-- module: svg-extensibility.mod ..................... -->

<!ENTITY % SVG.foreignObject.qname "%SVG.pfx;foreignObject" >

<!-- end of svg-qname.mod -->

A.3.4 Core Attribute Module

The Core Attribute Module defines the attribute collection Core.attrib that is the core set of attributes that can be
present on any element.

Collection name Attributes in collection

Core.attrib id, xml:base, xml:lang, xml:space

<!-- ....................................................................... -->
<!-- SVG 1.1 Core Attribute Module ......................................... -->
<!-- file: svg-core-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-core-attrib.mod,v 1.2 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Core Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-core-attrib.mod"

....................................................................... -->

<!-- Core Attribute

id, xml:base, xml:lang, xml:space

This module defines the core set of attributes that can be present on
any element.

-->

<!ENTITY % SVG.id.attrib



"id ID #IMPLIED"
>

<!ENTITY % SVG.base.attrib
"xml:base %URI.datatype; #IMPLIED"

>

<!ENTITY % SVG.lang.attrib
"xml:lang %LanguageCode.datatype; #IMPLIED"

>

<!ENTITY % SVG.space.attrib
"xml:space ( default | preserve ) #IMPLIED"

>

<!ENTITY % SVG.Core.extra.attrib "" >

<!ENTITY % SVG.Core.attrib
"%SVG.id.attrib;
%SVG.base.attrib;
%SVG.lang.attrib;
%SVG.space.attrib;
%SVG.Core.extra.attrib;"

>

<!-- end of svg-core-attrib.mod -->

A.3.5 Container Attribute Module

The Container Attribute Module defines the Container.attrib attribute collection.

Collection name Attributes in collection

Container.attrib enable-background

<!-- ....................................................................... -->
<!-- SVG 1.1 Container Attribute Module .................................... -->
<!-- file: svg-container-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-container-attrib.mod,v 1.2 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Container Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-container-attrib.mod"

....................................................................... -->

<!-- Container Attribute

enable-background

This module defines the Container attribute set.
-->

<!-- 'enable-background' property/attribute value (e.g., 'new', 'accumulate') -->
<!ENTITY % EnableBackgroundValue.datatype "CDATA" >

<!ENTITY % SVG.enable-background.attrib
"enable-background %EnableBackgroundValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.Container.extra.attrib "" >

<!ENTITY % SVG.Container.attrib
"%SVG.enable-background.attrib;
%SVG.Container.extra.attrib;"

>



<!-- end of svg-container-attrib.mod -->

A.3.6 Viewport Attribute Module

The Container Attribute Module defines the Container.attrib attribute collection.

Collection name Attributes in collection

Viewport.attrib clip, overflow

<!-- ....................................................................... -->
<!-- SVG 1.1 Viewport Attribute Module ..................................... -->
<!-- file: svg-viewport-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-viewport-attrib.mod,v 1.2 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Viewport Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-viewport-attrib.mod"

....................................................................... -->

<!-- Viewport Attribute

clip, overflow

This module defines the Viewport attribute set.
-->

<!-- 'clip' property/attribute value (e.g., 'auto', rect(...)) -->
<!ENTITY % ClipValue.datatype "CDATA" >

<!ENTITY % SVG.clip.attrib
"clip %ClipValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.overflow.attrib
"overflow ( visible | hidden | scroll | auto | inherit ) #IMPLIED"

>

<!ENTITY % SVG.Viewport.extra.attrib "" >

<!ENTITY % SVG.Viewport.attrib
"%SVG.clip.attrib;
%SVG.overflow.attrib;
%SVG.Viewport.extra.attrib;"

>

<!-- end of svg-viewport-attrib.mod -->

A.3.7 Paint Attribute Module

The Paint Attribute Module defines the Paint.attrib attribute collection.



Collection

name

Attributes in collection

Paint.attrib color, fill, fill-rule, stroke, stroke-dasharray, stroke-dashoffset, stroke-linecap, stroke-linejoin,

stroke-miterlimit, stroke-width, color-interpolation, color-rendering

<!-- ....................................................................... -->
<!-- SVG 1.1 Paint Attribute Module ........................................ -->
<!-- file: svg-paint-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-paint-attrib.mod,v 1.2 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Paint Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-paint-attrib.mod"

....................................................................... -->

<!-- Paint Attribute

fill, fill-rule, stroke, stroke-dasharray, stroke-dashoffset,
stroke-linecap, stroke-linejoin, stroke-miterlimit, stroke-width, color,
color-interpolation, color-rendering

This module defines the Paint and Color attribute sets.
-->

<!-- a 'fill' or 'stroke' property/attribute value: <paint> -->
<!ENTITY % Paint.datatype "CDATA" >

<!-- 'stroke-dasharray' property/attribute value (e.g., 'none', list of <number>s) -->
<!ENTITY % StrokeDashArrayValue.datatype "CDATA" >

<!-- 'stroke-dashoffset' property/attribute value (e.g., 'none', <legnth>) -->
<!ENTITY % StrokeDashOffsetValue.datatype "CDATA" >

<!-- 'stroke-miterlimit' property/attribute value (e.g., <number>) -->
<!ENTITY % StrokeMiterLimitValue.datatype "CDATA" >

<!-- 'stroke-width' property/attribute value (e.g., <length>) -->
<!ENTITY % StrokeWidthValue.datatype "CDATA" >

<!ENTITY % SVG.fill.attrib
"fill %Paint.datatype; #IMPLIED"

>

<!ENTITY % SVG.fill-rule.attrib
"fill-rule %ClipFillRule.datatype; #IMPLIED"

>

<!ENTITY % SVG.stroke.attrib
"stroke %Paint.datatype; #IMPLIED"

>

<!ENTITY % SVG.stroke-dasharray.attrib
"stroke-dasharray %StrokeDashArrayValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.stroke-dashoffset.attrib
"stroke-dashoffset %StrokeDashOffsetValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.stroke-linecap.attrib
"stroke-linecap ( butt | round | square | inherit ) #IMPLIED"

>

<!ENTITY % SVG.stroke-linejoin.attrib
"stroke-linejoin ( miter | round | bevel | inherit ) #IMPLIED"

>



<!ENTITY % SVG.stroke-miterlimit.attrib
"stroke-miterlimit %StrokeMiterLimitValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.stroke-width.attrib
"stroke-width %StrokeWidthValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.Paint.extra.attrib "" >

<!ENTITY % SVG.Paint.attrib
"%SVG.fill.attrib;
%SVG.fill-rule.attrib;
%SVG.stroke.attrib;
%SVG.stroke-dasharray.attrib;
%SVG.stroke-dashoffset.attrib;
%SVG.stroke-linecap.attrib;
%SVG.stroke-linejoin.attrib;
%SVG.stroke-miterlimit.attrib;
%SVG.stroke-width.attrib;
%SVG.Paint.extra.attrib;"

>

<!ENTITY % SVG.color.attrib
"color %Color.datatype; #IMPLIED"

>

<!ENTITY % SVG.color-interpolation.attrib
"color-interpolation ( auto | sRGB | linearRGB | inherit ) #IMPLIED"

>

<!ENTITY % SVG.color-rendering.attrib
"color-rendering ( auto | optimizeSpeed | optimizeQuality | inherit )

#IMPLIED"
>

<!ENTITY % SVG.Color.extra.attrib "" >

<!ENTITY % SVG.Color.attrib
"%SVG.color.attrib;
%SVG.color-interpolation.attrib;
%SVG.color-rendering.attrib;
%SVG.Color.extra.attrib;"

>

<!-- end of svg-paint-attrib.mod -->

A.3.8 Basic Paint Attribute Module

The Basic Paint Attribute Module defines the Paint.attrib attribute collection.

Collection

name

Attributes in collection

Paint.attrib color, fill, fill-rule, stroke, stroke-dasharray, stroke-dashoffset, stroke-linecap, stroke-linejoin,

stroke-miterlimit, stroke-width, color-rendering

<!-- ....................................................................... -->
<!-- SVG 1.1 Basic Paint Attribute Module .................................. -->
<!-- file: svg-basic-paint-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-basic-paint-attrib.mod,v 1.2 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Basic Paint Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-basic-paint-attrib.mod"



....................................................................... -->

<!-- Basic Paint Attribute

fill, fill-rule, stroke, stroke-dasharray, stroke-dashoffset,
stroke-linecap, stroke-linejoin, stroke-miterlimit, stroke-width, color,
color-rendering

This module defines the Paint and Color attribute sets.
-->

<!-- a 'fill' or 'stroke' property/attribute value: <paint> -->
<!ENTITY % Paint.datatype "CDATA" >

<!-- 'stroke-dasharray' property/attribute value (e.g., 'none', list of <number>s) -->
<!ENTITY % StrokeDashArrayValue.datatype "CDATA" >

<!-- 'stroke-dashoffset' property/attribute value (e.g., 'none', <legnth>) -->
<!ENTITY % StrokeDashOffsetValue.datatype "CDATA" >

<!-- 'stroke-miterlimit' property/attribute value (e.g., <number>) -->
<!ENTITY % StrokeMiterLimitValue.datatype "CDATA" >

<!-- 'stroke-width' property/attribute value (e.g., <length>) -->
<!ENTITY % StrokeWidthValue.datatype "CDATA" >

<!ENTITY % SVG.fill.attrib
"fill %Paint.datatype; #IMPLIED"

>

<!ENTITY % SVG.fill-rule.attrib
"fill-rule %ClipFillRule.datatype; #IMPLIED"

>

<!ENTITY % SVG.stroke.attrib
"stroke %Paint.datatype; #IMPLIED"

>

<!ENTITY % SVG.stroke-dasharray.attrib
"stroke-dasharray %StrokeDashArrayValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.stroke-dashoffset.attrib
"stroke-dashoffset %StrokeDashOffsetValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.stroke-linecap.attrib
"stroke-linecap ( butt | round | square | inherit ) #IMPLIED"

>

<!ENTITY % SVG.stroke-linejoin.attrib
"stroke-linejoin ( miter | round | bevel | inherit ) #IMPLIED"

>

<!ENTITY % SVG.stroke-miterlimit.attrib
"stroke-miterlimit %StrokeMiterLimitValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.stroke-width.attrib
"stroke-width %StrokeWidthValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.Paint.extra.attrib "" >

<!ENTITY % SVG.Paint.attrib
"%SVG.fill.attrib;
%SVG.fill-rule.attrib;
%SVG.stroke.attrib;
%SVG.stroke-dasharray.attrib;
%SVG.stroke-dashoffset.attrib;
%SVG.stroke-linecap.attrib;
%SVG.stroke-linejoin.attrib;
%SVG.stroke-miterlimit.attrib;
%SVG.stroke-width.attrib;
%SVG.Paint.extra.attrib;"

>



<!ENTITY % SVG.color.attrib
"color %Color.datatype; #IMPLIED"

>

<!ENTITY % SVG.color-rendering.attrib
"color-rendering ( auto | optimizeSpeed | optimizeQuality | inherit )

#IMPLIED"
>

<!ENTITY % SVG.Color.extra.attrib "" >

<!ENTITY % SVG.Color.attrib
"%SVG.color.attrib;
%SVG.color-rendering.attrib;
%SVG.Color.extra.attrib;"

>

<!-- end of svg-basic-paint-attrib.mod -->

A.3.9 Paint Opacity Attribute Module

The Paint Opacity Attribute Module defines the Opacity.attrib attribute collection.

Collection name Attributes in collection

Opacity.attrib opacity, stroke-opacity, fill-opacity

<!-- ....................................................................... -->
<!-- SVG 1.1 Paint Opacity Attribute Module ................................ -->
<!-- file: svg-opacity-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-opacity-attrib.mod,v 1.2 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Paint Opacity Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-opacity-attrib.mod"

....................................................................... -->

<!-- Paint Opacity Attribute

opacity, fill-opacity, stroke-opacity

This module defines the Opacity attribute set.
-->

<!ENTITY % SVG.opacity.attrib
"opacity %OpacityValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.fill-opacity.attrib
"fill-opacity %OpacityValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.stroke-opacity.attrib
"stroke-opacity %OpacityValue.datatype; #IMPLIED"

>

<!ENTITY % SVG.Opacity.extra.attrib "" >

<!ENTITY % SVG.Opacity.attrib
"%SVG.opacity.attrib;
%SVG.fill-opacity.attrib;
%SVG.stroke-opacity.attrib;
%SVG.Opacity.extra.attrib;"

>



<!-- end of svg-opacity-attrib.mod -->

A.3.10 Graphics Attribute Module

The Graphics Attribute Module defines the Graphics.attrib attribute collection.

Collection name Attributes in collection

Graphics.attrib display, image-rendering, pointer-events, shape-rendering, text-rendering, visibility

<!-- ....................................................................... -->
<!-- SVG 1.1 Graphics Attribute Module ..................................... -->
<!-- file: svg-graphics-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-graphics-attrib.mod,v 1.2 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Graphics Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-graphics-attrib.mod"

....................................................................... -->

<!-- Graphics Attribute

display, image-rendering, pointer-events, shape-rendering,
text-rendering, visibility

This module defines the Graphics attribute set.
-->

<!ENTITY % SVG.display.attrib
"display ( inline | block | list-item | run-in | compact | marker |

table | inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group |
table-column | table-cell | table-caption | none | inherit )
#IMPLIED"

>

<!ENTITY % SVG.image-rendering.attrib
"image-rendering ( auto | optimizeSpeed | optimizeQuality | inherit )

#IMPLIED"
>

<!ENTITY % SVG.pointer-events.attrib
"pointer-events ( visiblePainted | visibleFill | visibleStroke | visible |

painted | fill | stroke | all | none | inherit )
#IMPLIED"

>

<!ENTITY % SVG.shape-rendering.attrib
"shape-rendering ( auto | optimizeSpeed | crispEdges | geometricPrecision |

inherit ) #IMPLIED"
>

<!ENTITY % SVG.text-rendering.attrib
"text-rendering ( auto | optimizeSpeed | optimizeLegibility |

geometricPrecision | inherit ) #IMPLIED"
>

<!ENTITY % SVG.visibility.attrib
"visibility ( visible | hidden | inherit ) #IMPLIED"

>

<!ENTITY % SVG.Graphics.extra.attrib "" >

<!ENTITY % SVG.Graphics.attrib



"%SVG.display.attrib;
%SVG.image-rendering.attrib;
%SVG.pointer-events.attrib;
%SVG.shape-rendering.attrib;
%SVG.text-rendering.attrib;
%SVG.visibility.attrib;
%SVG.Graphics.extra.attrib;"

>

<!-- end of svg-graphics-attrib.mod -->

A.3.11 Basic Graphics Attribute Module

The Basic Graphics Attribute Module defines the Graphics.attrib attribute collection.

Collection name Attributes in collection

Graphics.attrib display, visibility

<!-- ....................................................................... -->
<!-- SVG 1.1 Basic Graphics Attribute Module ............................... -->
<!-- file: svg-basic-graphics-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-basic-graphics-attrib.mod,v 1.2 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Basic Graphics Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-basic-graphics-attrib.mod"

....................................................................... -->

<!-- Basic Graphics Attribute

display, visibility

This module defines the Graphics attribute set.
-->

<!ENTITY % SVG.display.attrib
"display ( inline | block | list-item | run-in | compact | marker |

table | inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group |
table-column | table-cell | table-caption | none | inherit )
#IMPLIED"

>

<!ENTITY % SVG.visibility.attrib
"visibility ( visible | hidden | inherit ) #IMPLIED"

>

<!ENTITY % SVG.Graphics.extra.attrib "" >

<!ENTITY % SVG.Graphics.attrib
"%SVG.display.attrib;
%SVG.visibility.attrib;
%SVG.Graphics.extra.attrib;"

>

<!-- end of svg-basic-graphics-attrib.mod -->

A.3.12 Document Events Attribute Module

The Document Events Attribute Module defines the DocumentEvents.attrib attribute collection.



Collection name Attributes in collection

DocumentEvents.attrib onunload, onabort, onerror, onresize, onscroll, onzoom

<!-- ....................................................................... -->
<!-- SVG 1.1 Document Events Attribute Module .............................. -->
<!-- file: svg-docevents-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-docevents-attrib.mod,v 1.2 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Document Events Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-docevents-attrib.mod"

....................................................................... -->

<!-- Document Events Attribute

onunload, onabort, onerror, onresize, onscroll, onzoom

This module defines the DocumentEvents attribute set.
-->

<!ENTITY % SVG.onunload.attrib
"onunload %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onabort.attrib
"onabort %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onerror.attrib
"onerror %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onresize.attrib
"onresize %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onscroll.attrib
"onscroll %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onzoom.attrib
"onzoom %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.DocumentEvents.extra.attrib "" >

<!ENTITY % SVG.DocumentEvents.attrib
"%SVG.onunload.attrib;
%SVG.onabort.attrib;
%SVG.onerror.attrib;
%SVG.onresize.attrib;
%SVG.onscroll.attrib;
%SVG.onzoom.attrib;
%SVG.DocumentEvents.extra.attrib;"

>

<!-- end of svg-docevents-attrib.mod -->

A.3.13 Graphical Element Events Attribute Module

The Graphical Events Attribute Module defines the GraphicalEvents.attrib attribute collection.



Collection name Attributes in collection

GraphicalEvents.attrib onfocusin, onfocusout, onactivate, onclick, onmousedown, onmouseup, onmouseover,

onmousemove, onmouseout, onload

<!-- ....................................................................... -->
<!-- SVG 1.1 Graphical Element Events Attribute Module ..................... -->
<!-- file: svg-graphevents-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-graphevents-attrib.mod,v 1.2 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Graphical Element Events Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-graphevents-attrib.mod"

....................................................................... -->

<!-- Graphical Element Events Attribute

onfocusin, onfocusout, onactivate, onclick, onmousedown, onmouseup,
onmouseover, onmousemove, onmouseout, onload

This module defines the GraphicalEvents attribute set.
-->

<!ENTITY % SVG.onfocusin.attrib
"onfocusin %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onfocusout.attrib
"onfocusout %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onactivate.attrib
"onactivate %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onclick.attrib
"onclick %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onmousedown.attrib
"onmousedown %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onmouseup.attrib
"onmouseup %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onmouseover.attrib
"onmouseover %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onmousemove.attrib
"onmousemove %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onmouseout.attrib
"onmouseout %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onload.attrib
"onload %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.GraphicalEvents.extra.attrib "" >

<!ENTITY % SVG.GraphicalEvents.attrib
"%SVG.onfocusin.attrib;
%SVG.onfocusout.attrib;
%SVG.onactivate.attrib;



%SVG.onclick.attrib;
%SVG.onmousedown.attrib;
%SVG.onmouseup.attrib;
%SVG.onmouseover.attrib;
%SVG.onmousemove.attrib;
%SVG.onmouseout.attrib;
%SVG.onload.attrib;
%SVG.GraphicalEvents.extra.attrib;"

>

<!-- end of svg-graphevents-attrib.mod -->

A.3.14 Animation Events Attribute Module

The Animation Events Attribute Module defines the AnimationEvents.attrib attribute collection.

Collection name Attributes in collection

AnimationEvents.attrib onbegin, onend, onrepeat, onload

<!-- ....................................................................... -->
<!-- SVG 1.1 Animation Events Attribute Module ............................. -->
<!-- file: svg-animevents-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-animevents-attrib.mod,v 1.2 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Animation Events Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-animevents-attrib.mod"

....................................................................... -->

<!-- Animation Events Attribute

onbegin, onend, onrepeat, onload

This module defines the AnimationEvents attribute set.
-->

<!ENTITY % SVG.onbegin.attrib
"onbegin %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onend.attrib
"onend %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onrepeat.attrib
"onrepeat %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.onload.attrib
"onload %Script.datatype; #IMPLIED"

>

<!ENTITY % SVG.AnimationEvents.extra.attrib "" >

<!ENTITY % SVG.AnimationEvents.attrib
"%SVG.onbegin.attrib;
%SVG.onend.attrib;
%SVG.onrepeat.attrib;
%SVG.onload.attrib;
%SVG.AnimationEvents.extra.attrib;"

>

<!-- end of svg-animevents-attrib.mod -->



A.3.15 XLink Attribute Module

The XLink Attribute Module defines the XLink.attrib, XLinkRequired.attrib, XLinkEmbed.attrib and XLinkRe-
place.attrib attribute collections. These collections differ only in whether the ‘xlink:href’ attribute is required or
what the default value for the ‘xlink:show’ attribute is.

Collection name Attributes in collection

XLink.attrib xlink:type, xlink:href, xlink:role, xlink:arcrole, xlink:title, xlink:show, xlink:actuate

XLinkRequired.attrib xlink:type, xlink:href, xlink:role, xlink:arcrole, xlink:title, xlink:show, xlink:actuate

XLinkEmbed.attrib xlink:type, xlink:href, xlink:role, xlink:arcrole, xlink:title, xlink:show, xlink:actuate

XLinkReplace.attrib xlink:type, xlink:href, xlink:role, xlink:arcrole, xlink:title, xlink:show, xlink:actuate

<!-- ....................................................................... -->
<!-- SVG 1.1 XLink Attribute Module ........................................ -->
<!-- file: svg-xlink-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-xlink-attrib.mod,v 1.2 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 XLink Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-xlink-attrib.mod"

....................................................................... -->

<!-- XLink Attribute

type, href, role, arcrole, title, show, actuate

This module defines the XLink, XLinkRequired, XLinkEmbed, and
XLinkReplace attribute set.

-->

<!ENTITY % SVG.XLink.extra.attrib "" >

<!ENTITY % SVG.XLink.attrib
"%XLINK.xmlns.attrib;
%XLINK.pfx;type ( simple ) #FIXED 'simple'
%XLINK.pfx;href %URI.datatype; #IMPLIED
%XLINK.pfx;role %URI.datatype; #IMPLIED
%XLINK.pfx;arcrole %URI.datatype; #IMPLIED
%XLINK.pfx;title CDATA #IMPLIED
%XLINK.pfx;show ( other ) 'other'
%XLINK.pfx;actuate ( onLoad ) #FIXED 'onLoad'
%SVG.XLink.extra.attrib;"

>

<!ENTITY % SVG.XLinkRequired.extra.attrib "" >

<!ENTITY % SVG.XLinkRequired.attrib
"%XLINK.xmlns.attrib;
%XLINK.pfx;type ( simple ) #FIXED 'simple'
%XLINK.pfx;href %URI.datatype; #REQUIRED
%XLINK.pfx;role %URI.datatype; #IMPLIED
%XLINK.pfx;arcrole %URI.datatype; #IMPLIED
%XLINK.pfx;title CDATA #IMPLIED
%XLINK.pfx;show ( other ) 'other'
%XLINK.pfx;actuate ( onLoad ) #FIXED 'onLoad'
%SVG.XLinkRequired.extra.attrib;"

>

<!ENTITY % SVG.XLinkEmbed.extra.attrib "" >



<!ENTITY % SVG.XLinkEmbed.attrib
"%XLINK.xmlns.attrib;
%XLINK.pfx;type ( simple ) #FIXED 'simple'
%XLINK.pfx;href %URI.datatype; #REQUIRED
%XLINK.pfx;role %URI.datatype; #IMPLIED
%XLINK.pfx;arcrole %URI.datatype; #IMPLIED
%XLINK.pfx;title CDATA #IMPLIED
%XLINK.pfx;show ( embed ) 'embed'
%XLINK.pfx;actuate ( onLoad ) #FIXED 'onLoad'
%SVG.XLinkEmbed.extra.attrib;"

>

<!ENTITY % SVG.XLinkReplace.extra.attrib "" >

<!ENTITY % SVG.XLinkReplace.attrib
"%XLINK.xmlns.attrib;
%XLINK.pfx;type ( simple ) #FIXED 'simple'
%XLINK.pfx;href %URI.datatype; #REQUIRED
%XLINK.pfx;role %URI.datatype; #IMPLIED
%XLINK.pfx;arcrole %URI.datatype; #IMPLIED
%XLINK.pfx;title CDATA #IMPLIED
%XLINK.pfx;show ( new | replace ) 'replace'
%XLINK.pfx;actuate ( onRequest ) #FIXED 'onRequest'
%SVG.XLinkReplace.extra.attrib;"

>

<!-- end of svg-xlink-attrib.mod -->

A.3.16 External Resources Attribute Module

The External Resources Attribute Module defines the External.attrib attribute collection.

Collection name Attributes in collection

External.attrib externalResourcesRequired

<!-- ....................................................................... -->
<!-- SVG 1.1 External Resources Attribute Module ........................... -->
<!-- file: svg-extresources-attrib.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-extresources-attrib.mod,v 1.2 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 External Resources Attribute//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-extresources-attrib.mod"

....................................................................... -->

<!-- External Resources Attribute

externalResourcesRequired

This module defines the External attribute set.
-->

<!ENTITY % SVG.externalResourcesRequired.attrib
"externalResourcesRequired %Boolean.datatype; #IMPLIED"

>

<!ENTITY % SVG.External.extra.attrib "" >

<!ENTITY % SVG.External.attrib
"%SVG.externalResourcesRequired.attrib;
%SVG.External.extra.attrib;"

>



<!-- end of svg-extresources-attrib.mod -->

A.3.17 Structure Module

The Structure Module defines the Description.class, Structure.class and Use.class element collections.

Collection name Elements in collection

Description.class desc, title, metadata

Use.class use

Structure.class svg, g, defs, symbol, Use.class

<!-- ....................................................................... -->
<!-- SVG 1.1 Structure Module .............................................. -->
<!-- file: svg-structure.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-structure.mod,v 1.5 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Structure//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-structure.mod"

....................................................................... -->

<!-- Structure

svg, g, defs, desc, title, metadata, symbol, use

This module declares the major structural elements and their attributes.
-->

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.svg.qname "svg" >
<!ENTITY % SVG.g.qname "g" >
<!ENTITY % SVG.defs.qname "defs" >
<!ENTITY % SVG.desc.qname "desc" >
<!ENTITY % SVG.title.qname "title" >
<!ENTITY % SVG.metadata.qname "metadata" >
<!ENTITY % SVG.symbol.qname "symbol" >
<!ENTITY % SVG.use.qname "use" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Container.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Marker.attrib "" >
<!ENTITY % SVG.ColorProfile.attrib "" >
<!ENTITY % SVG.Gradient.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.FilterColor.attrib "" >



<!ENTITY % SVG.DocumentEvents.attrib "" >
<!ENTITY % SVG.GraphicalEvents.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.XLinkEmbed.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Description.class ............................. -->

<!ENTITY % SVG.Description.extra.class "" >

<!ENTITY % SVG.Description.class
"%SVG.desc.qname; | %SVG.title.qname; | %SVG.metadata.qname;
%SVG.Description.extra.class;"

>

<!-- SVG.Use.class ..................................... -->

<!ENTITY % SVG.Use.extra.class "" >

<!ENTITY % SVG.Use.class
"| %SVG.use.qname; %SVG.Use.extra.class;"

>

<!-- SVG.Structure.class ............................... -->

<!ENTITY % SVG.Structure.extra.class "" >

<!ENTITY % SVG.Structure.class
"| %SVG.svg.qname; | %SVG.g.qname; | %SVG.defs.qname; | %SVG.symbol.qname;

%SVG.Use.class; %SVG.Structure.extra.class;"
>

<!-- SVG.Presentation.attrib ........................... -->

<!ENTITY % SVG.Presentation.extra.attrib "" >

<!ENTITY % SVG.Presentation.attrib
"%SVG.Container.attrib;
%SVG.Viewport.attrib;
%SVG.Text.attrib;
%SVG.TextContent.attrib;
%SVG.Font.attrib;
%SVG.Paint.attrib;
%SVG.Color.attrib;
%SVG.Opacity.attrib;
%SVG.Graphics.attrib;
%SVG.Marker.attrib;
%SVG.ColorProfile.attrib;
%SVG.Gradient.attrib;
%SVG.Clip.attrib;
%SVG.Mask.attrib;
%SVG.Filter.attrib;
%SVG.FilterColor.attrib;
%SVG.Cursor.attrib;
flood-color %SVGColor.datatype; #IMPLIED
flood-opacity %OpacityValue.datatype; #IMPLIED
lighting-color %SVGColor.datatype; #IMPLIED
%SVG.Presentation.extra.attrib;"

>

<!-- svg: SVG Document Element ......................... -->

<!ENTITY % SVG.svg.extra.content "" >

<!ENTITY % SVG.svg.element "INCLUDE" >
<![%SVG.svg.element;[
<!ENTITY % SVG.svg.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;
%SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;
%SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.svg.extra.content; )*"

>
<!ELEMENT %SVG.svg.qname; %SVG.svg.content; >
<!-- end of SVG.svg.element -->]]>



<!ENTITY % SVG.svg.attlist "INCLUDE" >
<![%SVG.svg.attlist;[
<!ATTLIST %SVG.svg.qname;

%SVG.xmlns.attrib;
%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.DocumentEvents.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #IMPLIED
height %Length.datatype; #IMPLIED
viewBox %ViewBoxSpec.datatype; #IMPLIED
preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'
zoomAndPan ( disable | magnify ) 'magnify'
version %Number.datatype; #FIXED '1.1'
baseProfile %Text.datatype; #IMPLIED
contentScriptType %ContentType.datatype; 'application/ecmascript'
contentStyleType %ContentType.datatype; 'text/css'

>
<!-- end of SVG.svg.attlist -->]]>

<!-- g: Group Element .................................. -->

<!ENTITY % SVG.g.extra.content "" >

<!ENTITY % SVG.g.element "INCLUDE" >
<![%SVG.g.element;[
<!ENTITY % SVG.g.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;
%SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;
%SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.g.extra.content; )*"

>
<!ELEMENT %SVG.g.qname; %SVG.g.content; >
<!-- end of SVG.g.element -->]]>

<!ENTITY % SVG.g.attlist "INCLUDE" >
<![%SVG.g.attlist;[
<!ATTLIST %SVG.g.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.g.attlist -->]]>

<!-- defs: Definisions Element ......................... -->

<!ENTITY % SVG.defs.extra.content "" >

<!ENTITY % SVG.defs.element "INCLUDE" >
<![%SVG.defs.element;[
<!ENTITY % SVG.defs.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;
%SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;
%SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.defs.extra.content; )*"

>
<!ELEMENT %SVG.defs.qname; %SVG.defs.content; >
<!-- end of SVG.defs.element -->]]>

<!ENTITY % SVG.defs.attlist "INCLUDE" >
<![%SVG.defs.attlist;[



<!ATTLIST %SVG.defs.qname;
%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.defs.attlist -->]]>

<!-- desc: Description Element ......................... -->

<!ENTITY % SVG.desc.extra.content "" >

<!ENTITY % SVG.desc.element "INCLUDE" >
<![%SVG.desc.element;[
<!ENTITY % SVG.desc.content

"( #PCDATA %SVG.desc.extra.content; )*"
>
<!ELEMENT %SVG.desc.qname; %SVG.desc.content; >
<!-- end of SVG.desc.element -->]]>

<!ENTITY % SVG.desc.attlist "INCLUDE" >
<![%SVG.desc.attlist;[
<!ATTLIST %SVG.desc.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;

>
<!-- end of SVG.desc.attlist -->]]>

<!-- title: Title Element .............................. -->

<!ENTITY % SVG.title.extra.content "" >

<!ENTITY % SVG.title.element "INCLUDE" >
<![%SVG.title.element;[
<!ENTITY % SVG.title.content

"( #PCDATA %SVG.title.extra.content; )*"
>
<!ELEMENT %SVG.title.qname; %SVG.title.content; >
<!-- end of SVG.title.element -->]]>

<!ENTITY % SVG.title.attlist "INCLUDE" >
<![%SVG.title.attlist;[
<!ATTLIST %SVG.title.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;

>
<!-- end of SVG.title.attlist -->]]>

<!-- metadata: Metadata Element ........................ -->

<!ENTITY % SVG.metadata.extra.content "" >

<!ENTITY % SVG.metadata.element "INCLUDE" >
<![%SVG.metadata.element;[
<!ENTITY % SVG.metadata.content

"( #PCDATA %SVG.metadata.extra.content; )*"
>
<!ELEMENT %SVG.metadata.qname; %SVG.metadata.content; >
<!-- end of SVG.metadata.element -->]]>

<!ENTITY % SVG.metadata.attlist "INCLUDE" >
<![%SVG.metadata.attlist;[
<!ATTLIST %SVG.metadata.qname;

%SVG.Core.attrib;
>
<!-- end of SVG.metadata.attlist -->]]>

<!-- symbol: Symbol Element ............................ -->

<!ENTITY % SVG.symbol.extra.content "" >

<!ENTITY % SVG.symbol.element "INCLUDE" >
<![%SVG.symbol.element;[
<!ENTITY % SVG.symbol.content



"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;
%SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;
%SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.symbol.extra.content; )*"

>
<!ELEMENT %SVG.symbol.qname; %SVG.symbol.content; >
<!-- end of SVG.symbol.element -->]]>

<!ENTITY % SVG.symbol.attlist "INCLUDE" >
<![%SVG.symbol.attlist;[
<!ATTLIST %SVG.symbol.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
viewBox %ViewBoxSpec.datatype; #IMPLIED
preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'

>
<!-- end of SVG.symbol.attlist -->]]>

<!-- use: Use Element .................................. -->

<!ENTITY % SVG.use.extra.content "" >

<!ENTITY % SVG.use.element "INCLUDE" >
<![%SVG.use.element;[
<!ENTITY % SVG.use.content

"( %SVG.Description.class; | %SVG.Animation.class;
%SVG.use.extra.content; )*"

>
<!ELEMENT %SVG.use.qname; %SVG.use.content; >
<!-- end of SVG.use.element -->]]>

<!ENTITY % SVG.use.attlist "INCLUDE" >
<![%SVG.use.attlist;[
<!ATTLIST %SVG.use.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.XLinkEmbed.attrib;
%SVG.External.attrib;
x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #IMPLIED
height %Length.datatype; #IMPLIED
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.use.attlist -->]]>

<!-- end of svg-structure.mod -->

A.3.18 Basic Structure Module

The Basic Structure Module defines the Description.class, Structure.class and Use.class element collections.

Collection name Elements in collection

Description.class desc, title, metadata

Use.class use

Structure.class svg, g, defs, Use.class



<!-- ....................................................................... -->
<!-- SVG 1.1 Basic Structure Module ........................................ -->
<!-- file: svg-basic-structure.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-basic-structure.mod,v 1.4 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Basic Structure//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-basic-structure.mod"

....................................................................... -->

<!-- Basic Structure

svg, g, defs, desc, title, metadata, use

This module declares the major structural elements and their attributes.
-->

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.svg.qname "svg" >
<!ENTITY % SVG.g.qname "g" >
<!ENTITY % SVG.defs.qname "defs" >
<!ENTITY % SVG.desc.qname "desc" >
<!ENTITY % SVG.title.qname "title" >
<!ENTITY % SVG.metadata.qname "metadata" >
<!ENTITY % SVG.use.qname "use" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Container.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Marker.attrib "" >
<!ENTITY % SVG.ColorProfile.attrib "" >
<!ENTITY % SVG.Gradient.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.FilterColor.attrib "" >
<!ENTITY % SVG.DocumentEvents.attrib "" >
<!ENTITY % SVG.GraphicalEvents.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.XLinkEmbed.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Description.class ............................. -->

<!ENTITY % SVG.Description.extra.class "" >

<!ENTITY % SVG.Description.class
"%SVG.desc.qname; | %SVG.title.qname; | %SVG.metadata.qname;
%SVG.Description.extra.class;"

>

<!-- SVG.Use.class ..................................... -->

<!ENTITY % SVG.Use.extra.class "" >

<!ENTITY % SVG.Use.class
"| %SVG.use.qname; %SVG.Use.extra.class;"

>

<!-- SVG.Structure.class ............................... -->



<!ENTITY % SVG.Structure.extra.class "" >

<!ENTITY % SVG.Structure.class
"| %SVG.g.qname; | %SVG.defs.qname; %SVG.Use.class;

%SVG.Structure.extra.class;"
>

<!-- SVG.Presentation.attrib ........................... -->

<!ENTITY % SVG.Presentation.extra.attrib "" >

<!ENTITY % SVG.Presentation.attrib
"%SVG.Container.attrib;
%SVG.Viewport.attrib;
%SVG.Text.attrib;
%SVG.TextContent.attrib;
%SVG.Font.attrib;
%SVG.Paint.attrib;
%SVG.Color.attrib;
%SVG.Opacity.attrib;
%SVG.Graphics.attrib;
%SVG.Marker.attrib;
%SVG.ColorProfile.attrib;
%SVG.Gradient.attrib;
%SVG.Clip.attrib;
%SVG.Mask.attrib;
%SVG.Filter.attrib;
%SVG.FilterColor.attrib;
%SVG.Cursor.attrib;
flood-color %SVGColor.datatype; #IMPLIED
flood-opacity %OpacityValue.datatype; #IMPLIED
lighting-color %SVGColor.datatype; #IMPLIED
%SVG.Presentation.extra.attrib;"

>

<!-- svg: SVG Document Element ......................... -->

<!ENTITY % SVG.svg.extra.content "" >

<!ENTITY % SVG.svg.element "INCLUDE" >
<![%SVG.svg.element;[
<!ENTITY % SVG.svg.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;
%SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;
%SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.svg.extra.content; )*"

>
<!ELEMENT %SVG.svg.qname; %SVG.svg.content; >
<!-- end of SVG.svg.element -->]]>

<!ENTITY % SVG.svg.attlist "INCLUDE" >
<![%SVG.svg.attlist;[
<!ATTLIST %SVG.svg.qname;

%SVG.xmlns.attrib;
%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.DocumentEvents.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #IMPLIED
height %Length.datatype; #IMPLIED
viewBox %ViewBoxSpec.datatype; #IMPLIED
preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'
zoomAndPan ( disable | magnify ) 'magnify'
version %Number.datatype; #FIXED '1.1'
baseProfile %Text.datatype; #IMPLIED

>
<!-- end of SVG.svg.attlist -->]]>



<!-- g: Group Element .................................. -->

<!ENTITY % SVG.g.extra.content "" >

<!ENTITY % SVG.g.element "INCLUDE" >
<![%SVG.g.element;[
<!ENTITY % SVG.g.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;
%SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;
%SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.g.extra.content; )*"

>
<!ELEMENT %SVG.g.qname; %SVG.g.content; >
<!-- end of SVG.g.element -->]]>

<!ENTITY % SVG.g.attlist "INCLUDE" >
<![%SVG.g.attlist;[
<!ATTLIST %SVG.g.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.g.attlist -->]]>

<!-- defs: Definisions Element ......................... -->

<!ENTITY % SVG.defs.extra.content "" >

<!ENTITY % SVG.defs.element "INCLUDE" >
<![%SVG.defs.element;[
<!ENTITY % SVG.defs.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;
%SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;
%SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.defs.extra.content; )*"

>
<!ELEMENT %SVG.defs.qname; %SVG.defs.content; >
<!-- end of SVG.defs.element -->]]>

<!ENTITY % SVG.defs.attlist "INCLUDE" >
<![%SVG.defs.attlist;[
<!ATTLIST %SVG.defs.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.defs.attlist -->]]>

<!-- desc: Description Element ......................... -->

<!ENTITY % SVG.desc.extra.content "" >

<!ENTITY % SVG.desc.element "INCLUDE" >
<![%SVG.desc.element;[
<!ENTITY % SVG.desc.content

"( #PCDATA %SVG.desc.extra.content; )*"
>
<!ELEMENT %SVG.desc.qname; %SVG.desc.content; >
<!-- end of SVG.desc.element -->]]>

<!ENTITY % SVG.desc.attlist "INCLUDE" >
<![%SVG.desc.attlist;[
<!ATTLIST %SVG.desc.qname;



%SVG.Core.attrib;
%SVG.Style.attrib;

>
<!-- end of SVG.desc.attlist -->]]>

<!-- title: Title Element .............................. -->

<!ENTITY % SVG.title.extra.content "" >

<!ENTITY % SVG.title.element "INCLUDE" >
<![%SVG.title.element;[
<!ENTITY % SVG.title.content

"( #PCDATA %SVG.title.extra.content; )*"
>
<!ELEMENT %SVG.title.qname; %SVG.title.content; >
<!-- end of SVG.title.element -->]]>

<!ENTITY % SVG.title.attlist "INCLUDE" >
<![%SVG.title.attlist;[
<!ATTLIST %SVG.title.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;

>
<!-- end of SVG.title.attlist -->]]>

<!-- metadata: Metadata Element ........................ -->

<!ENTITY % SVG.metadata.extra.content "" >

<!ENTITY % SVG.metadata.element "INCLUDE" >
<![%SVG.metadata.element;[
<!ENTITY % SVG.metadata.content

"( #PCDATA %SVG.metadata.extra.content; )*"
>
<!ELEMENT %SVG.metadata.qname; %SVG.metadata.content; >
<!-- end of SVG.metadata.element -->]]>

<!ENTITY % SVG.metadata.attlist "INCLUDE" >
<![%SVG.metadata.attlist;[
<!ATTLIST %SVG.metadata.qname;

%SVG.Core.attrib;
>
<!-- end of SVG.metadata.attlist -->]]>

<!-- use: Use Element .................................. -->

<!ENTITY % SVG.use.extra.content "" >

<!ENTITY % SVG.use.element "INCLUDE" >
<![%SVG.use.element;[
<!ENTITY % SVG.use.content

"( %SVG.Description.class; | %SVG.Animation.class;
%SVG.use.extra.content; )*"

>
<!ELEMENT %SVG.use.qname; %SVG.use.content; >
<!-- end of SVG.use.element -->]]>

<!ENTITY % SVG.use.attlist "INCLUDE" >
<![%SVG.use.attlist;[
<!ATTLIST %SVG.use.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.XLinkEmbed.attrib;
%SVG.External.attrib;
x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #IMPLIED
height %Length.datatype; #IMPLIED
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.use.attlist -->]]>

<!-- end of svg-basic-structure.mod -->



A.3.19 Conditional Processing Module

The Conditional Processing Module defines the Conditional.class element collection and the Conditional.attrib at-
tribute collection.

Collection name Elements in collection

Conditional.class switch

Collection name Attributes in collection

Conditional.attrib requiredFeatures, requiredExtensions, systemLanguage

<!-- ....................................................................... -->
<!-- SVG 1.1 Conditional Processing Module ................................. -->
<!-- file: svg-conditional.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-conditional.mod,v 1.3 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Conditional Processing//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-conditional.mod"

....................................................................... -->

<!-- Conditional Processing

switch

This module declares markup to provide support for conditional processing.
-->

<!-- extension list specification -->
<!ENTITY % ExtensionList.datatype "CDATA" >

<!-- feature list specification -->
<!ENTITY % FeatureList.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.switch.qname "switch" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Container.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Marker.attrib "" >
<!ENTITY % SVG.ColorProfile.attrib "" >
<!ENTITY % SVG.Gradient.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.FilterColor.attrib "" >
<!ENTITY % SVG.GraphicalEvents.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >



<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Conditional.class ............................. -->

<!ENTITY % SVG.Conditional.extra.class "" >

<!ENTITY % SVG.Conditional.class
"| %SVG.switch.qname; %SVG.Conditional.extra.class;"

>

<!-- SVG.Conditional.attrib ............................ -->

<!ENTITY % SVG.Conditional.extra.attrib "" >

<!ENTITY % SVG.Conditional.attrib
"requiredFeatures %FeatureList.datatype; #IMPLIED
requiredExtensions %ExtensionList.datatype; #IMPLIED
systemLanguage %LanguageCodes.datatype; #IMPLIED
%SVG.Conditional.extra.attrib;"

>

<!-- SVG.Presentation.attrib ........................... -->

<!ENTITY % SVG.Presentation.extra.attrib "" >

<!ENTITY % SVG.Presentation.attrib
"%SVG.Container.attrib;
%SVG.Viewport.attrib;
%SVG.Text.attrib;
%SVG.TextContent.attrib;
%SVG.Font.attrib;
%SVG.Paint.attrib;
%SVG.Color.attrib;
%SVG.Opacity.attrib;
%SVG.Graphics.attrib;
%SVG.Marker.attrib;
%SVG.ColorProfile.attrib;
%SVG.Gradient.attrib;
%SVG.Clip.attrib;
%SVG.Mask.attrib;
%SVG.Filter.attrib;
%SVG.FilterColor.attrib;
%SVG.Cursor.attrib;
flood-color %SVGColor.datatype; #IMPLIED
flood-opacity %OpacityValue.datatype; #IMPLIED
lighting-color %SVGColor.datatype; #IMPLIED
%SVG.Presentation.extra.attrib;"

>

<!-- switch: Switch Element ............................ -->

<!ENTITY % SVG.switch.extra.content "" >

<!ENTITY % SVG.switch.element "INCLUDE" >
<![%SVG.switch.element;[
<!ENTITY % SVG.switch.content

"( %SVG.Description.class; | %SVG.svg.qname; | %SVG.g.qname;
| %SVG.use.qname; | %SVG.text.qname; | %SVG.Animation.class;

%SVG.Conditional.class; %SVG.Image.class; %SVG.Shape.class;
%SVG.Hyperlink.class; %SVG.Extensibility.class;
%SVG.switch.extra.content; )*"

>
<!ELEMENT %SVG.switch.qname; %SVG.switch.content; >
<!-- end of SVG.switch.element -->]]>

<!ENTITY % SVG.switch.attlist "INCLUDE" >
<![%SVG.switch.attlist;[
<!ATTLIST %SVG.switch.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.switch.attlist -->]]>



<!-- end of svg-conditional.mod -->

A.3.20 Image Module

The Image Module defines the Image.class element collection.

Collection name Elements in collection

Image.class image

<!-- ....................................................................... -->
<!-- SVG 1.1 Image Module .................................................. -->
<!-- file: svg-image.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-image.mod,v 1.4 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Image//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-image.mod"

....................................................................... -->

<!-- Image

image

This module declares markup to provide support for image.
-->

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.image.qname "image" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.ColorProfile.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.GraphicalEvents.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.XLinkEmbed.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Image.class ................................... -->

<!ENTITY % SVG.Image.extra.class "" >

<!ENTITY % SVG.Image.class
"| %SVG.image.qname; %SVG.Image.extra.class;"

>

<!-- image: Image Element .............................. -->

<!ENTITY % SVG.image.extra.content "" >

<!ENTITY % SVG.image.element "INCLUDE" >
<![%SVG.image.element;[
<!ENTITY % SVG.image.content



"( %SVG.Description.class; | %SVG.Animation.class;
%SVG.image.extra.content; )*"

>
<!ELEMENT %SVG.image.qname; %SVG.image.content; >
<!-- end of SVG.image.element -->]]>

<!ENTITY % SVG.image.attlist "INCLUDE" >
<![%SVG.image.attlist;[
<!ATTLIST %SVG.image.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.XLinkEmbed.attrib;
%SVG.External.attrib;
x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #REQUIRED
height %Length.datatype; #REQUIRED
preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.image.attlist -->]]>

<!-- end of svg-image.mod -->

A.3.21 Style Module

The Style Module defines the Style.class element collection and the Style.attrib attribute collection.

Collection name Elements in collection

Style.class style

Collection name Attributes in collection

Style.attrib style, class

<!-- ....................................................................... -->
<!-- SVG 1.1 Style Module .................................................. -->
<!-- file: svg-style.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-style.mod,v 1.3 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Style//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-style.mod"

....................................................................... -->

<!-- Style

style

This module declares markup to provide support for stylesheet.
-->

<!-- list of classes -->
<!ENTITY % ClassList.datatype "CDATA" >

<!-- comma-separated list of media descriptors. -->
<!ENTITY % MediaDesc.datatype "CDATA" >



<!-- style sheet data -->
<!ENTITY % StyleSheet.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.style.qname "style" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >

<!-- SVG.Style.class ................................... -->

<!ENTITY % SVG.Style.extra.class "" >

<!ENTITY % SVG.Style.class
"| %SVG.style.qname; %SVG.Style.extra.class;"

>

<!-- SVG.Style.attrib .................................. -->

<!ENTITY % SVG.Style.extra.attrib "" >

<!ENTITY % SVG.Style.attrib
"style %StyleSheet.datatype; #IMPLIED
class %ClassList.datatype; #IMPLIED
%SVG.Style.extra.attrib;"

>

<!-- style: Style Element .............................. -->

<!ENTITY % SVG.style.extra.content "" >

<!ENTITY % SVG.style.element "INCLUDE" >
<![%SVG.style.element;[
<!ENTITY % SVG.style.content

"( #PCDATA %SVG.style.extra.content; )*"
>
<!ELEMENT %SVG.style.qname; %SVG.style.content; >
<!-- end of SVG.style.element -->]]>

<!ENTITY % SVG.style.attlist "INCLUDE" >
<![%SVG.style.attlist;[
<!ATTLIST %SVG.style.qname;

xml:space ( preserve ) #FIXED 'preserve'
%SVG.id.attrib;
%SVG.base.attrib;
%SVG.lang.attrib;
%SVG.Core.extra.attrib;
type %ContentType.datatype; #REQUIRED
media %MediaDesc.datatype; #IMPLIED
title %Text.datatype; #IMPLIED

>
<!-- end of SVG.style.attlist -->]]>

<!-- end of svg-style.mod -->

A.3.22 Shape Module

The Shape Module defines the Shape.class element collection.

Collection name Elements in collection

Shape.class rect, circle, line, polyline, polygon, ellipse, path

<!-- ....................................................................... -->
<!-- SVG 1.1 Shape Module .................................................. -->
<!-- file: svg-shape.mod

This is SVG, a language for describing two-dimensional graphics in XML.



Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-shape.mod,v 1.4 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Shape//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-shape.mod"

....................................................................... -->

<!-- Shape

path, rect, circle, line, ellipse, polyline, polygon

This module declares markup to provide support for graphical shapes.
-->

<!-- a list of points -->
<!ENTITY % Points.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.path.qname "path" >
<!ENTITY % SVG.rect.qname "rect" >
<!ENTITY % SVG.circle.qname "circle" >
<!ENTITY % SVG.line.qname "line" >
<!ENTITY % SVG.ellipse.qname "ellipse" >
<!ENTITY % SVG.polyline.qname "polyline" >
<!ENTITY % SVG.polygon.qname "polygon" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Marker.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.GraphicalEvents.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Shape.class ................................... -->

<!ENTITY % SVG.Shape.extra.class "" >

<!ENTITY % SVG.Shape.class
"| %SVG.path.qname; | %SVG.rect.qname; | %SVG.circle.qname;
| %SVG.line.qname; | %SVG.ellipse.qname; | %SVG.polyline.qname;
| %SVG.polygon.qname; %SVG.Shape.extra.class;"

>

<!-- path: Path Element ................................ -->

<!ENTITY % SVG.path.extra.content "" >

<!ENTITY % SVG.path.element "INCLUDE" >
<![%SVG.path.element;[
<!ENTITY % SVG.path.content

"( %SVG.Description.class; | %SVG.Animation.class;
%SVG.path.extra.content; )*"

>
<!ELEMENT %SVG.path.qname; %SVG.path.content; >
<!-- end of SVG.path.element -->]]>

<!ENTITY % SVG.path.attlist "INCLUDE" >
<![%SVG.path.attlist;[
<!ATTLIST %SVG.path.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;



%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
d %PathData.datatype; #REQUIRED
pathLength %Number.datatype; #IMPLIED
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.path.attlist -->]]>

<!-- rect: Rectangle Element ........................... -->

<!ENTITY % SVG.rect.extra.content "" >

<!ENTITY % SVG.rect.element "INCLUDE" >
<![%SVG.rect.element;[
<!ENTITY % SVG.rect.content

"( %SVG.Description.class; | %SVG.Animation.class;
%SVG.rect.extra.content; )*"

>
<!ELEMENT %SVG.rect.qname; %SVG.rect.content; >
<!-- end of SVG.rect.element -->]]>

<!ENTITY % SVG.rect.attlist "INCLUDE" >
<![%SVG.rect.attlist;[
<!ATTLIST %SVG.rect.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #REQUIRED
height %Length.datatype; #REQUIRED
rx %Length.datatype; #IMPLIED
ry %Length.datatype; #IMPLIED
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.rect.attlist -->]]>

<!-- circle: Circle Element ............................ -->

<!ENTITY % SVG.circle.extra.content "" >

<!ENTITY % SVG.circle.element "INCLUDE" >
<![%SVG.circle.element;[
<!ENTITY % SVG.circle.content

"( %SVG.Description.class; | %SVG.Animation.class;
%SVG.circle.extra.content; )*"

>
<!ELEMENT %SVG.circle.qname; %SVG.circle.content; >
<!-- end of SVG.circle.element -->]]>

<!ENTITY % SVG.circle.attlist "INCLUDE" >
<![%SVG.circle.attlist;[
<!ATTLIST %SVG.circle.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
cx %Coordinate.datatype; #IMPLIED
cy %Coordinate.datatype; #IMPLIED
r %Length.datatype; #REQUIRED
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.circle.attlist -->]]>

<!-- line: Line Element ................................ -->

<!ENTITY % SVG.line.extra.content "" >

<!ENTITY % SVG.line.element "INCLUDE" >
<![%SVG.line.element;[
<!ENTITY % SVG.line.content

"( %SVG.Description.class; | %SVG.Animation.class;



%SVG.line.extra.content; )*"
>
<!ELEMENT %SVG.line.qname; %SVG.line.content; >
<!-- end of SVG.line.element -->]]>

<!ENTITY % SVG.line.attlist "INCLUDE" >
<![%SVG.line.attlist;[
<!ATTLIST %SVG.line.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
x1 %Coordinate.datatype; #IMPLIED
y1 %Coordinate.datatype; #IMPLIED
x2 %Coordinate.datatype; #IMPLIED
y2 %Coordinate.datatype; #IMPLIED
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.line.attlist -->]]>

<!-- ellipse: Ellipse Element .......................... -->

<!ENTITY % SVG.ellipse.extra.content "" >

<!ENTITY % SVG.ellipse.element "INCLUDE" >
<![%SVG.ellipse.element;[
<!ENTITY % SVG.ellipse.content

"( %SVG.Description.class; | %SVG.Animation.class;
%SVG.ellipse.extra.content; )*"

>
<!ELEMENT %SVG.ellipse.qname; %SVG.ellipse.content; >
<!-- end of SVG.ellipse.element -->]]>

<!ENTITY % SVG.ellipse.attlist "INCLUDE" >
<![%SVG.ellipse.attlist;[
<!ATTLIST %SVG.ellipse.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
cx %Coordinate.datatype; #IMPLIED
cy %Coordinate.datatype; #IMPLIED
rx %Length.datatype; #REQUIRED
ry %Length.datatype; #REQUIRED
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.ellipse.attlist -->]]>

<!-- polyline: Polyline Element ........................ -->

<!ENTITY % SVG.polyline.extra.content "" >

<!ENTITY % SVG.polyline.element "INCLUDE" >
<![%SVG.polyline.element;[
<!ENTITY % SVG.polyline.content

"( %SVG.Description.class; | %SVG.Animation.class;
%SVG.polyline.extra.content; )*"

>
<!ELEMENT %SVG.polyline.qname; %SVG.polyline.content; >
<!-- end of SVG.polyline.element -->]]>

<!ENTITY % SVG.polyline.attlist "INCLUDE" >
<![%SVG.polyline.attlist;[
<!ATTLIST %SVG.polyline.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
points %Points.datatype; #REQUIRED
transform %TransformList.datatype; #IMPLIED

>



<!-- end of SVG.polyline.attlist -->]]>

<!-- polygon: Polygon Element .......................... -->

<!ENTITY % SVG.polygon.extra.content "" >

<!ENTITY % SVG.polygon.element "INCLUDE" >
<![%SVG.polygon.element;[
<!ENTITY % SVG.polygon.content

"( %SVG.Description.class; | %SVG.Animation.class;
%SVG.polygon.extra.content; )*"

>
<!ELEMENT %SVG.polygon.qname; %SVG.polygon.content; >
<!-- end of SVG.polygon.element -->]]>

<!ENTITY % SVG.polygon.attlist "INCLUDE" >
<![%SVG.polygon.attlist;[
<!ATTLIST %SVG.polygon.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
points %Points.datatype; #REQUIRED
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.polygon.attlist -->]]>

<!-- end of svg-shape.mod -->

A.3.23 Text Module

The Text Module defines the Text.class and TextContent.class element collections and the Text.attrib, TextCon-
tent.attrib and Font.attrib attribute sets.

Collection name Elements in collection

Text.class text, altGlyphDef

TextContent.class tspan, tref, textPath, altGlyph

Collection name Attributes in collection

Text.attrib writing-mode

TextContent.attrib alignment-baseline, baseline-shift, direction, dominant-baseline, glyph-orientation-horizontal,

glyph-orientation-vertical, kerning, letter-spacing, text-anchor, text-decoration, unicode-bidi,

word-spacing

Font.attrib font-family, font-size, font-size-adjust, font-stretch, font-style, font-variant, font-weight

<!-- ....................................................................... -->
<!-- SVG 1.1 Text Module ................................................... -->
<!-- file: svg-text.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-text.mod,v 1.3 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Text//EN"



SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-text.mod"

....................................................................... -->

<!-- Text

text, tspan, tref, textPath, altGlyph, altGlyphDef, altGlyphItem,
glyphRef

This module declares markup to provide support for alternate glyph.
-->

<!-- 'baseline-shift' property/attribute value (e.g., 'baseline', 'sub', etc.) -->
<!ENTITY % BaselineShiftValue.datatype "CDATA" >

<!-- 'font-family' property/attribute value (i.e., list of fonts) -->
<!ENTITY % FontFamilyValue.datatype "CDATA" >

<!-- 'font-size' property/attribute value -->
<!ENTITY % FontSizeValue.datatype "CDATA" >

<!-- 'font-size-adjust' property/attribute value -->
<!ENTITY % FontSizeAdjustValue.datatype "CDATA" >

<!-- 'glyph-orientation-horizontal' property/attribute value (e.g., <angle>) -->
<!ENTITY % GlyphOrientationHorizontalValue.datatype "CDATA" >

<!-- 'glyph-orientation-vertical' property/attribute value (e.g., 'auto', <angle>) -->
<!ENTITY % GlyphOrientationVerticalValue.datatype "CDATA" >

<!-- 'kerning' property/attribute value (e.g., 'auto', <length>) -->
<!ENTITY % KerningValue.datatype "CDATA" >

<!-- 'letter-spacing' or 'word-spacing' property/attribute value (e.g., 'normal', <length>) -->
<!ENTITY % SpacingValue.datatype "CDATA" >

<!-- 'text-decoration' property/attribute value (e.g., 'none', 'underline') -->
<!ENTITY % TextDecorationValue.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.text.qname "text" >
<!ENTITY % SVG.tspan.qname "tspan" >
<!ENTITY % SVG.tref.qname "tref" >
<!ENTITY % SVG.textPath.qname "textPath" >
<!ENTITY % SVG.altGlyph.qname "altGlyph" >
<!ENTITY % SVG.altGlyphDef.qname "altGlyphDef" >
<!ENTITY % SVG.altGlyphItem.qname "altGlyphItem" >
<!ENTITY % SVG.glyphRef.qname "glyphRef" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.GraphicalEvents.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.XLink.attrib "" >
<!ENTITY % SVG.XLinkRequired.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Text.class .................................... -->

<!ENTITY % SVG.Text.extra.class "" >

<!ENTITY % SVG.Text.class
"| %SVG.text.qname; | %SVG.altGlyphDef.qname; %SVG.Text.extra.class;"

>

<!-- SVG.TextContent.class ............................. -->



<!ENTITY % SVG.TextContent.extra.class "" >

<!ENTITY % SVG.TextContent.class
"| %SVG.tspan.qname; | %SVG.tref.qname; | %SVG.textPath.qname;
| %SVG.altGlyph.qname; %SVG.TextContent.extra.class;"

>

<!-- SVG.Text.attrib ................................... -->

<!ENTITY % SVG.Text.extra.attrib "" >

<!ENTITY % SVG.Text.attrib
"writing-mode ( lr-tb | rl-tb | tb-rl | lr | rl | tb | inherit ) #IMPLIED
%SVG.Text.extra.attrib;"

>

<!-- SVG.TextContent.attrib ............................ -->

<!ENTITY % SVG.TextContent.extra.attrib "" >

<!ENTITY % SVG.TextContent.attrib
"alignment-baseline ( auto | baseline | before-edge | text-before-edge |

middle | central | after-edge | text-after-edge |
ideographic | alphabetic | hanging | mathematical |
inherit ) #IMPLIED

baseline-shift %BaselineShiftValue.datatype; #IMPLIED
direction ( ltr | rtl | inherit ) #IMPLIED
dominant-baseline ( auto | use-script | no-change | reset-size |

ideographic | alphabetic | hanging | mathematical |
central | middle | text-after-edge | text-before-edge |
inherit ) #IMPLIED

glyph-orientation-horizontal %GlyphOrientationHorizontalValue.datatype;
#IMPLIED

glyph-orientation-vertical %GlyphOrientationVerticalValue.datatype;
#IMPLIED

kerning %KerningValue.datatype; #IMPLIED
letter-spacing %SpacingValue.datatype; #IMPLIED
text-anchor ( start | middle | end | inherit ) #IMPLIED
text-decoration %TextDecorationValue.datatype; #IMPLIED
unicode-bidi ( normal | embed | bidi-override | inherit ) #IMPLIED
word-spacing %SpacingValue.datatype; #IMPLIED
%SVG.TextContent.extra.attrib;"

>

<!-- SVG.Font.attrib ................................... -->

<!ENTITY % SVG.Font.extra.attrib "" >

<!ENTITY % SVG.Font.attrib
"font-family %FontFamilyValue.datatype; #IMPLIED
font-size %FontSizeValue.datatype; #IMPLIED
font-size-adjust %FontSizeAdjustValue.datatype; #IMPLIED
font-stretch ( normal | wider | narrower | ultra-condensed |

extra-condensed | condensed | semi-condensed |
semi-expanded | expanded | extra-expanded |
ultra-expanded | inherit ) #IMPLIED

font-style ( normal | italic | oblique | inherit ) #IMPLIED
font-variant ( normal | small-caps | inherit ) #IMPLIED
font-weight ( normal | bold | bolder | lighter | 100 | 200 | 300 | 400 |

500 | 600 | 700 | 800 | 900 | inherit ) #IMPLIED
%SVG.Font.extra.attrib;"

>

<!-- text: Text Element ................................ -->

<!ENTITY % SVG.text.extra.content "" >

<!ENTITY % SVG.text.element "INCLUDE" >
<![%SVG.text.element;[
<!ENTITY % SVG.text.content

"( #PCDATA | %SVG.Description.class; | %SVG.Animation.class;
%SVG.TextContent.class; %SVG.Hyperlink.class;
%SVG.text.extra.content; )*"

>
<!ELEMENT %SVG.text.qname; %SVG.text.content; >
<!-- end of SVG.text.element -->]]>



<!ENTITY % SVG.text.attlist "INCLUDE" >
<![%SVG.text.attlist;[
<!ATTLIST %SVG.text.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
x %Coordinates.datatype; #IMPLIED
y %Coordinates.datatype; #IMPLIED
dx %Lengths.datatype; #IMPLIED
dy %Lengths.datatype; #IMPLIED
rotate %Numbers.datatype; #IMPLIED
textLength %Length.datatype; #IMPLIED
lengthAdjust ( spacing | spacingAndGlyphs ) #IMPLIED
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.text.attlist -->]]>

<!-- tspan: Text Span Element .......................... -->

<!ENTITY % SVG.tspan.extra.content "" >

<!ENTITY % SVG.tspan.element "INCLUDE" >
<![%SVG.tspan.element;[
<!ENTITY % SVG.tspan.content

"( #PCDATA | %SVG.tspan.qname; | %SVG.tref.qname; | %SVG.altGlyph.qname;
| %SVG.animate.qname; | %SVG.set.qname; | %SVG.animateColor.qname;
| %SVG.Description.class; %SVG.Hyperlink.class;

%SVG.tspan.extra.content; )*"
>
<!ELEMENT %SVG.tspan.qname; %SVG.tspan.content; >
<!-- end of SVG.tspan.element -->]]>

<!ENTITY % SVG.tspan.attlist "INCLUDE" >
<![%SVG.tspan.attlist;[
<!ATTLIST %SVG.tspan.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
x %Coordinates.datatype; #IMPLIED
y %Coordinates.datatype; #IMPLIED
dx %Lengths.datatype; #IMPLIED
dy %Lengths.datatype; #IMPLIED
rotate %Numbers.datatype; #IMPLIED
textLength %Length.datatype; #IMPLIED
lengthAdjust ( spacing | spacingAndGlyphs ) #IMPLIED

>
<!-- end of SVG.tspan.attlist -->]]>

<!-- tref: Text Reference Element ...................... -->

<!ENTITY % SVG.tref.extra.content "" >

<!ENTITY % SVG.tref.element "INCLUDE" >
<![%SVG.tref.element;[
<!ENTITY % SVG.tref.content

"( %SVG.animate.qname; | %SVG.set.qname; | %SVG.animateColor.qname;
| %SVG.Description.class; %SVG.tref.extra.content; )*"

>
<!ELEMENT %SVG.tref.qname; %SVG.tref.content; >
<!-- end of SVG.tref.element -->]]>

<!ENTITY % SVG.tref.attlist "INCLUDE" >
<![%SVG.tref.attlist;[
<!ATTLIST %SVG.tref.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.XLinkRequired.attrib;



%SVG.External.attrib;
x %Coordinates.datatype; #IMPLIED
y %Coordinates.datatype; #IMPLIED
dx %Lengths.datatype; #IMPLIED
dy %Lengths.datatype; #IMPLIED
rotate %Numbers.datatype; #IMPLIED
textLength %Length.datatype; #IMPLIED
lengthAdjust ( spacing | spacingAndGlyphs ) #IMPLIED

>
<!-- end of SVG.tref.attlist -->]]>

<!-- textPath: Text Path Element ....................... -->

<!ENTITY % SVG.textPath.extra.content "" >

<!ENTITY % SVG.textPath.element "INCLUDE" >
<![%SVG.textPath.element;[
<!ENTITY % SVG.textPath.content

"( #PCDATA | %SVG.tspan.qname; | %SVG.tref.qname; | %SVG.altGlyph.qname;
| %SVG.animate.qname; | %SVG.set.qname; | %SVG.animateColor.qname;
| %SVG.Description.class; %SVG.Hyperlink.class;

%SVG.textPath.extra.content; )*"
>
<!ELEMENT %SVG.textPath.qname; %SVG.textPath.content; >
<!-- end of SVG.textPath.element -->]]>

<!ENTITY % SVG.textPath.attlist "INCLUDE" >
<![%SVG.textPath.attlist;[
<!ATTLIST %SVG.textPath.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.XLinkRequired.attrib;
%SVG.External.attrib;
startOffset %Length.datatype; #IMPLIED
textLength %Length.datatype; #IMPLIED
lengthAdjust ( spacing | spacingAndGlyphs ) #IMPLIED
method ( align | stretch ) #IMPLIED
spacing ( auto | exact ) #IMPLIED

>
<!-- end of SVG.textPath.attlist -->]]>

<!-- altGlyph: Alternate Glyph Element ................. -->

<!ENTITY % SVG.altGlyph.extra.content "" >

<!ENTITY % SVG.altGlyph.element "INCLUDE" >
<![%SVG.altGlyph.element;[
<!ENTITY % SVG.altGlyph.content

"( #PCDATA %SVG.altGlyph.extra.content; )*"
>
<!ELEMENT %SVG.altGlyph.qname; %SVG.altGlyph.content; >
<!-- end of SVG.altGlyph.element -->]]>

<!ENTITY % SVG.altGlyph.attlist "INCLUDE" >
<![%SVG.altGlyph.attlist;[
<!ATTLIST %SVG.altGlyph.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.XLink.attrib;
%SVG.External.attrib;
x %Coordinates.datatype; #IMPLIED
y %Coordinates.datatype; #IMPLIED
dx %Lengths.datatype; #IMPLIED
dy %Lengths.datatype; #IMPLIED
glyphRef CDATA #IMPLIED
format CDATA #IMPLIED
rotate %Numbers.datatype; #IMPLIED

>
<!-- end of SVG.altGlyph.attlist -->]]>

<!-- altGlyphDef: Alternate Glyph Definition Element ... -->



<!ENTITY % SVG.altGlyphDef.extra.content "" >

<!ENTITY % SVG.altGlyphDef.element "INCLUDE" >
<![%SVG.altGlyphDef.element;[
<!ENTITY % SVG.altGlyphDef.content

"(( %SVG.glyphRef.qname;+ | %SVG.altGlyphItem.qname;+ )
%SVG.altGlyphDef.extra.content; )"

>
<!ELEMENT %SVG.altGlyphDef.qname; %SVG.altGlyphDef.content; >
<!-- end of SVG.altGlyphDef.element -->]]>

<!ENTITY % SVG.altGlyphDef.attlist "INCLUDE" >
<![%SVG.altGlyphDef.attlist;[
<!ATTLIST %SVG.altGlyphDef.qname;

%SVG.Core.attrib;
>
<!-- end of SVG.altGlyphDef.attlist -->]]>

<!-- altGlyphItem: Alternate Glyph Item Element ........ -->

<!ENTITY % SVG.altGlyphItem.extra.content "" >

<!ENTITY % SVG.altGlyphItem.element "INCLUDE" >
<![%SVG.altGlyphItem.element;[
<!ENTITY % SVG.altGlyphItem.content

"( %SVG.glyphRef.qname;+ %SVG.altGlyphItem.extra.content; )"
>
<!ELEMENT %SVG.altGlyphItem.qname; %SVG.altGlyphItem.content; >
<!-- end of SVG.altGlyphItem.element -->]]>

<!ENTITY % SVG.altGlyphItem.attlist "INCLUDE" >
<![%SVG.altGlyphItem.attlist;[
<!ATTLIST %SVG.altGlyphItem.qname;

%SVG.Core.attrib;
>
<!-- end of SVG.altGlyphItem.attlist -->]]>

<!-- glyphRef: Glyph Reference Element ................. -->

<!ENTITY % SVG.glyphRef.element "INCLUDE" >
<![%SVG.glyphRef.element;[
<!ENTITY % SVG.glyphRef.content "EMPTY" >
<!ELEMENT %SVG.glyphRef.qname; %SVG.glyphRef.content; >
<!-- end of SVG.glyphRef.element -->]]>

<!ENTITY % SVG.glyphRef.attlist "INCLUDE" >
<![%SVG.glyphRef.attlist;[
<!ATTLIST %SVG.glyphRef.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.XLink.attrib;
x %Number.datatype; #IMPLIED
y %Number.datatype; #IMPLIED
dx %Number.datatype; #IMPLIED
dy %Number.datatype; #IMPLIED
glyphRef CDATA #IMPLIED
format CDATA #IMPLIED

>
<!-- end of SVG.glyphRef.attlist -->]]>

<!-- end of svg-text.mod -->

A.3.24 Basic Text Module

The Basic Text Module defines the Text.class and TextContent.class element collections and the TextContent.attrib
and Font.attrib attribute sets.



Collection name Elements in collection

Text.class text

TextContent.class (empty)

Collection name Attributes in collection

TextContent.attrib text-anchor

Font.attrib font-family, font-size, font-style, font-weight

<!-- ....................................................................... -->
<!-- SVG 1.1 Basic Text Module ............................................. -->
<!-- file: svg-basic-text.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-basic-text.mod,v 1.3 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Basic Text//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-basic-text.mod"

....................................................................... -->

<!-- Basic Text

text

This module declares markup to provide support for text.
-->

<!-- 'font-family' property/attribute value (i.e., list of fonts) -->
<!ENTITY % FontFamilyValue.datatype "CDATA" >

<!-- 'font-size' property/attribute value -->
<!ENTITY % FontSizeValue.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.text.qname "text" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.GraphicalEvents.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Text.class .................................... -->

<!ENTITY % SVG.Text.extra.class "" >

<!ENTITY % SVG.Text.class
"| %SVG.text.qname; %SVG.Text.extra.class;"

>

<!-- SVG.TextContent.attrib ............................ -->

<!ENTITY % SVG.TextContent.extra.attrib "" >



<!ENTITY % SVG.TextContent.attrib
"text-anchor ( start | middle | end | inherit ) #IMPLIED
%SVG.TextContent.extra.attrib;"

>

<!-- SVG.Font.attrib ................................... -->

<!ENTITY % SVG.Font.extra.attrib "" >

<!ENTITY % SVG.Font.attrib
"font-family %FontFamilyValue.datatype; #IMPLIED
font-size %FontSizeValue.datatype; #IMPLIED
font-style ( normal | italic | oblique | inherit ) #IMPLIED
font-weight ( normal | bold | bolder | lighter | 100 | 200 | 300 | 400 |

500 | 600 | 700 | 800 | 900 | inherit ) #IMPLIED
%SVG.Font.extra.attrib;"

>

<!-- text: Text Element ................................ -->

<!ENTITY % SVG.text.extra.content "" >

<!ENTITY % SVG.text.element "INCLUDE" >
<![%SVG.text.element;[
<!ENTITY % SVG.text.content

"( #PCDATA | %SVG.Description.class; | %SVG.Animation.class;
%SVG.Hyperlink.class; %SVG.text.extra.content; )*"

>
<!ELEMENT %SVG.text.qname; %SVG.text.content; >
<!-- end of SVG.text.element -->]]>

<!ENTITY % SVG.text.attlist "INCLUDE" >
<![%SVG.text.attlist;[
<!ATTLIST %SVG.text.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.External.attrib;
x %Coordinates.datatype; #IMPLIED
y %Coordinates.datatype; #IMPLIED
rotate %Numbers.datatype; #IMPLIED
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.text.attlist -->]]>

<!-- end of svg-basic-text.mod -->

A.3.25 Marker Module

The Marker Module defines the Marker.class element collection and the Marker.attrib attribute set.

Collection name Elements in collection

Marker.class marker

Collection name Attributes in collection

Marker.attrib marker-start, marker-mid, marker-end

<!-- ....................................................................... -->
<!-- SVG 1.1 Marker Module ................................................. -->
<!-- file: svg-marker.mod

This is SVG, a language for describing two-dimensional graphics in XML.



Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-marker.mod,v 1.3 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Marker//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-marker.mod"

....................................................................... -->

<!-- Marker

marker

This module declares markup to provide support for marker.
-->

<!-- 'marker' property/attribute value (e.g., 'none', <uri>) -->
<!ENTITY % MarkerValue.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.marker.qname "marker" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Container.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.ColorProfile.attrib "" >
<!ENTITY % SVG.Gradient.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.FilterColor.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Marker.class .................................. -->

<!ENTITY % SVG.Marker.extra.class "" >

<!ENTITY % SVG.Marker.class
"| %SVG.marker.qname; %SVG.Marker.extra.class;"

>

<!-- SVG.Marker.attrib ................................. -->

<!ENTITY % SVG.Marker.extra.attrib "" >

<!ENTITY % SVG.Marker.attrib
"marker-start %MarkerValue.datatype; #IMPLIED
marker-mid %MarkerValue.datatype; #IMPLIED
marker-end %MarkerValue.datatype; #IMPLIED
%SVG.Marker.extra.attrib;"

>

<!-- SVG.Presentation.attrib ........................... -->

<!ENTITY % SVG.Presentation.extra.attrib "" >

<!ENTITY % SVG.Presentation.attrib
"%SVG.Container.attrib;
%SVG.Viewport.attrib;
%SVG.Text.attrib;
%SVG.TextContent.attrib;
%SVG.Font.attrib;
%SVG.Paint.attrib;
%SVG.Color.attrib;



%SVG.Opacity.attrib;
%SVG.Graphics.attrib;
%SVG.Marker.attrib;
%SVG.ColorProfile.attrib;
%SVG.Gradient.attrib;
%SVG.Clip.attrib;
%SVG.Mask.attrib;
%SVG.Filter.attrib;
%SVG.FilterColor.attrib;
%SVG.Cursor.attrib;
flood-color %SVGColor.datatype; #IMPLIED
flood-opacity %OpacityValue.datatype; #IMPLIED
lighting-color %SVGColor.datatype; #IMPLIED
%SVG.Presentation.extra.attrib;"

>

<!-- marker: Marker Element ............................ -->

<!ENTITY % SVG.marker.extra.content "" >

<!ENTITY % SVG.marker.element "INCLUDE" >
<![%SVG.marker.element;[
<!ENTITY % SVG.marker.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;
%SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;
%SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.marker.extra.content; )*"

>
<!ELEMENT %SVG.marker.qname; %SVG.marker.content; >
<!-- end of SVG.marker.element -->]]>

<!ENTITY % SVG.marker.attlist "INCLUDE" >
<![%SVG.marker.attlist;[
<!ATTLIST %SVG.marker.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.External.attrib;
refX %Coordinate.datatype; #IMPLIED
refY %Coordinate.datatype; #IMPLIED
markerUnits ( strokeWidth | userSpaceOnUse ) #IMPLIED
markerWidth  %Length.datatype; #IMPLIED
markerHeight %Length.datatype; #IMPLIED
orient CDATA #IMPLIED
viewBox %ViewBoxSpec.datatype; #IMPLIED
preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'

>
<!-- end of SVG.marker.attlist -->]]>

<!-- end of svg-marker.mod -->

A.3.26 Color Profile Module

The Color Profile Module defines the ColorProfile.class element collection.

Collection name Elements in collection

ColorProfile.class color-profile

<!-- ....................................................................... -->
<!-- SVG 1.1 Color Profile Module .......................................... -->
<!-- file: svg-profile.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-profile.mod,v 1.2 2011/07/08 03:18:59 cmccorma Exp $



This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Color Profile//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-profile.mod"

....................................................................... -->

<!-- Color Profile

color-profile

This module declares markup to provide support for color profile.
-->

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.color-profile.qname "color-profile" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.XLink.attrib "" >

<!-- SVG.ColorProfile.class ............................ -->

<!ENTITY % SVG.ColorProfile.extra.class "" >

<!ENTITY % SVG.ColorProfile.class
"| %SVG.color-profile.qname; %SVG.ColorProfile.extra.class;"

>

<!-- SVG.ColorProfile.attrib ........................... -->

<!ENTITY % SVG.ColorProfile.extra.attrib "" >

<!ENTITY % SVG.ColorProfile.attrib
"color-profile CDATA #IMPLIED
%SVG.ColorProfile.extra.attrib;"

>

<!-- color-profile: Color Profile Element .............. -->

<!ENTITY % SVG.color-profile.extra.content "" >

<!ENTITY % SVG.color-profile.element "INCLUDE" >
<![%SVG.color-profile.element;[
<!ENTITY % SVG.color-profile.content

"( %SVG.Description.class; %SVG.color-profile.extra.content; )*"
>
<!ELEMENT %SVG.color-profile.qname; %SVG.color-profile.content; >
<!-- end of SVG.color-profile.element -->]]>

<!ENTITY % SVG.color-profile.attlist "INCLUDE" >
<![%SVG.color-profile.attlist;[
<!ATTLIST %SVG.color-profile.qname;

%SVG.Core.attrib;
%SVG.XLink.attrib;
local CDATA #IMPLIED
name CDATA #REQUIRED
rendering-intent ( auto | perceptual | relative-colorimetric | saturation |

absolute-colorimetric ) 'auto'
>
<!-- end of SVG.color-profile.attlist -->]]>

<!-- end of svg-profile.mod -->

A.3.27 Gradient Module

The Gradient Module defines the Gradient.class element collection and the Gradient.attrib attribute set.



Collection name Elements in collection

Gradient.class linearGradient, radialGradient

Collection name Attributes in collection

Gradient.attrib stop-color, stop-opacity

<!-- ....................................................................... -->
<!-- SVG 1.1 Gradient Module ............................................... -->
<!-- file: svg-gradient.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-gradient.mod,v 1.5 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Gradient//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-gradient.mod"

....................................................................... -->

<!-- Gradient

linearGradient, radialGradient, stop

This module declares markup to provide support for gradient fill.
-->

<!-- a <number> or a <percentage> -->
<!ENTITY % NumberOrPercentage.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.linearGradient.qname "linearGradient" >
<!ENTITY % SVG.radialGradient.qname "radialGradient" >
<!ENTITY % SVG.stop.qname "stop" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.XLink.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Gradient.class ................................ -->

<!ENTITY % SVG.Gradient.extra.class "" >

<!ENTITY % SVG.Gradient.class
"| %SVG.linearGradient.qname; | %SVG.radialGradient.qname;

%SVG.Gradient.extra.class;"
>

<!-- SVG.Gradient.attrib ............................... -->

<!ENTITY % SVG.Gradient.extra.attrib "" >

<!ENTITY % SVG.Gradient.attrib
"stop-color %SVGColor.datatype; #IMPLIED
stop-opacity %OpacityValue.datatype; #IMPLIED
%SVG.Gradient.extra.attrib;"

>

<!-- linearGradient: Linear Gradient Element ........... -->

<!ENTITY % SVG.linearGradient.extra.content "" >

<!ENTITY % SVG.linearGradient.element "INCLUDE" >
<![%SVG.linearGradient.element;[



<!ENTITY % SVG.linearGradient.content
"( %SVG.Description.class; | %SVG.stop.qname; | %SVG.animate.qname;
| %SVG.set.qname; | %SVG.animateTransform.qname;

%SVG.linearGradient.extra.content; )*"
>
<!ELEMENT %SVG.linearGradient.qname; %SVG.linearGradient.content; >
<!-- end of SVG.linearGradient.element -->]]>

<!ENTITY % SVG.linearGradient.attlist "INCLUDE" >
<![%SVG.linearGradient.attlist;[
<!ATTLIST %SVG.linearGradient.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.XLink.attrib;
%SVG.External.attrib;
x1 %Coordinate.datatype; #IMPLIED
y1 %Coordinate.datatype; #IMPLIED
x2 %Coordinate.datatype; #IMPLIED
y2 %Coordinate.datatype; #IMPLIED
gradientUnits ( userSpaceOnUse | objectBoundingBox ) #IMPLIED
gradientTransform %TransformList.datatype; #IMPLIED
spreadMethod ( pad | reflect | repeat ) #IMPLIED

>
<!-- end of SVG.linearGradient.attlist -->]]>

<!-- radialGradient: Radial Gradient Element ........... -->

<!ENTITY % SVG.radialGradient.extra.content "" >

<!ENTITY % SVG.radialGradient.element "INCLUDE" >
<![%SVG.radialGradient.element;[
<!ENTITY % SVG.radialGradient.content

"( %SVG.Description.class; | %SVG.stop.qname; | %SVG.animate.qname;
| %SVG.set.qname; | %SVG.animateTransform.qname;

%SVG.radialGradient.extra.content; )*"
>
<!ELEMENT %SVG.radialGradient.qname; %SVG.radialGradient.content; >
<!-- end of SVG.radialGradient.element -->]]>

<!ENTITY % SVG.radialGradient.attlist "INCLUDE" >
<![%SVG.radialGradient.attlist;[
<!ATTLIST %SVG.radialGradient.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.XLink.attrib;
%SVG.External.attrib;
cx %Coordinate.datatype; #IMPLIED
cy %Coordinate.datatype; #IMPLIED
r %Length.datatype; #IMPLIED
fx %Coordinate.datatype; #IMPLIED
fy %Coordinate.datatype; #IMPLIED
gradientUnits ( userSpaceOnUse | objectBoundingBox ) #IMPLIED
gradientTransform %TransformList.datatype; #IMPLIED
spreadMethod ( pad | reflect | repeat ) #IMPLIED

>
<!-- end of SVG.radialGradient.attlist -->]]>

<!-- stop: Stop Element ................................ -->

<!ENTITY % SVG.stop.extra.content "" >

<!ENTITY % SVG.stop.element "INCLUDE" >
<![%SVG.stop.element;[
<!ENTITY % SVG.stop.content

"( %SVG.animate.qname; | %SVG.set.qname; | %SVG.animateColor.qname;
%SVG.stop.extra.content; )*"

>
<!ELEMENT %SVG.stop.qname; %SVG.stop.content; >
<!-- end of SVG.stop.element -->]]>

<!ENTITY % SVG.stop.attlist "INCLUDE" >
<![%SVG.stop.attlist;[
<!ATTLIST %SVG.stop.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;



%SVG.Presentation.attrib;
offset %NumberOrPercentage.datatype; #REQUIRED

>
<!-- end of SVG.stop.attlist -->]]>

<!-- end of svg-gradient.mod -->

A.3.28 Pattern Module

The Pattern Module defines the Pattern.class element collection.

Collection name Elements in collection

Pattern.class pattern

<!-- ....................................................................... -->
<!-- SVG 1.1 Pattern Module ................................................ -->
<!-- file: svg-pattern.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-pattern.mod,v 1.3 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Pattern//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-pattern.mod"

....................................................................... -->

<!-- Pattern

pattern

This module declares markup to provide support for pattern fill.
-->

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.pattern.qname "pattern" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Container.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Marker.attrib "" >
<!ENTITY % SVG.ColorProfile.attrib "" >
<!ENTITY % SVG.Gradient.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.FilterColor.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.XLink.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Pattern.class ................................. -->

<!ENTITY % SVG.Pattern.extra.class "" >



<!ENTITY % SVG.Pattern.class
"| %SVG.pattern.qname; %SVG.Pattern.extra.class;"

>

<!-- SVG.Presentation.attrib ........................... -->

<!ENTITY % SVG.Presentation.extra.attrib "" >

<!ENTITY % SVG.Presentation.attrib
"%SVG.Container.attrib;
%SVG.Viewport.attrib;
%SVG.Text.attrib;
%SVG.TextContent.attrib;
%SVG.Font.attrib;
%SVG.Paint.attrib;
%SVG.Color.attrib;
%SVG.Opacity.attrib;
%SVG.Graphics.attrib;
%SVG.Marker.attrib;
%SVG.ColorProfile.attrib;
%SVG.Gradient.attrib;
%SVG.Clip.attrib;
%SVG.Mask.attrib;
%SVG.Filter.attrib;
%SVG.FilterColor.attrib;
%SVG.Cursor.attrib;
flood-color %SVGColor.datatype; #IMPLIED
flood-opacity %OpacityValue.datatype; #IMPLIED
lighting-color %SVGColor.datatype; #IMPLIED
%SVG.Presentation.extra.attrib;"

>

<!-- pattern: Pattern Element .......................... -->

<!ENTITY % SVG.pattern.extra.content "" >

<!ENTITY % SVG.pattern.element "INCLUDE" >
<![%SVG.pattern.element;[
<!ENTITY % SVG.pattern.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;
%SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;
%SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.pattern.extra.content; )*"

>
<!ELEMENT %SVG.pattern.qname; %SVG.pattern.content; >
<!-- end of SVG.pattern.element -->]]>

<!ENTITY % SVG.pattern.attlist "INCLUDE" >
<![%SVG.pattern.attlist;[
<!ATTLIST %SVG.pattern.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.XLink.attrib;
%SVG.External.attrib;
x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #IMPLIED
height %Length.datatype; #IMPLIED
patternUnits ( userSpaceOnUse | objectBoundingBox ) #IMPLIED
patternContentUnits ( userSpaceOnUse | objectBoundingBox ) #IMPLIED
patternTransform %TransformList.datatype; #IMPLIED
viewBox %ViewBoxSpec.datatype; #IMPLIED
preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'

>
<!-- end of SVG.pattern.attlist -->]]>

<!-- end of svg-pattern.mod -->



A.3.29 Clip Module

The Clip Module defines the Clip.class element collection and the Clip.attrib attribute collection.

Collection name Elements in collection

Clip.class clipPath

Collection name Attributes in collection

Clip.attrib clip-path, clip-rule

<!-- ....................................................................... -->
<!-- SVG 1.1 Clip Module ................................................... -->
<!-- file: svg-clip.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-clip.mod,v 1.4 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Clip//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-clip.mod"

....................................................................... -->

<!-- Clip

clipPath

This module declares markup to provide support for clipping.
-->

<!-- 'clip-path' property/attribute value (e.g., 'none', <uri>) -->
<!ENTITY % ClipPathValue.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.clipPath.qname "clipPath" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Clip.class .................................... -->

<!ENTITY % SVG.Clip.extra.class "" >

<!ENTITY % SVG.Clip.class
"| %SVG.clipPath.qname; %SVG.Clip.extra.class;"

>

<!-- SVG.Clip.attrib ................................... -->



<!ENTITY % SVG.Clip.extra.attrib "" >

<!ENTITY % SVG.Clip.attrib
"clip-path %ClipPathValue.datatype; #IMPLIED
clip-rule %ClipFillRule.datatype; #IMPLIED
%SVG.Clip.extra.attrib;"

>

<!-- clipPath: Clip Path Element ....................... -->

<!ENTITY % SVG.clipPath.extra.content "" >

<!ENTITY % SVG.clipPath.element "INCLUDE" >
<![%SVG.clipPath.element;[
<!ENTITY % SVG.clipPath.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Use.class;
%SVG.Shape.class; | %SVG.text.qname; %SVG.clipPath.extra.content; )*"

>
<!ELEMENT %SVG.clipPath.qname; %SVG.clipPath.content; >
<!-- end of SVG.clipPath.element -->]]>

<!ENTITY % SVG.clipPath.attlist "INCLUDE" >
<![%SVG.clipPath.attlist;[
<!ATTLIST %SVG.clipPath.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.External.attrib;
transform %TransformList.datatype; #IMPLIED
clipPathUnits ( userSpaceOnUse | objectBoundingBox ) #IMPLIED

>
<!-- end of SVG.clipPath.attlist -->]]>

<!-- end of svg-clip.mod -->

A.3.30 Basic Clip Module

The Basic Clip Module defines the Clip.class element collection and the Clip.attrib attribute collection.

Collection name Elements in collection

Clip.class clipPath

Collection name Attributes in collection

Clip.attrib clip-path, clip-rule

<!-- ....................................................................... -->
<!-- SVG 1.1 Basic Clip Module ............................................. -->
<!-- file: svg-basic-clip.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-basic-clip.mod,v 1.4 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Basic Clip//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-basic-clip.mod"

....................................................................... -->

<!-- Basic Clip

clipPath



This module declares markup to provide support for clipping.
-->

<!-- 'clip-path' property/attribute value (e.g., 'none', <uri>) -->
<!ENTITY % ClipPathValue.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.clipPath.qname "clipPath" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Clip.class .................................... -->

<!ENTITY % SVG.Clip.extra.class "" >

<!ENTITY % SVG.Clip.class
"| %SVG.clipPath.qname; %SVG.Clip.extra.class;"

>

<!-- SVG.Clip.attrib ................................... -->

<!ENTITY % SVG.Clip.extra.attrib "" >

<!ENTITY % SVG.Clip.attrib
"clip-path %ClipPathValue.datatype; #IMPLIED
clip-rule %ClipFillRule.datatype; #IMPLIED
%SVG.Clip.extra.attrib;"

>

<!-- clipPath: Clip Path Element ....................... -->

<!ENTITY % SVG.clipPath.extra.content "" >

<!ENTITY % SVG.clipPath.element "INCLUDE" >
<![%SVG.clipPath.element;[
<!ENTITY % SVG.clipPath.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Use.class;
%SVG.Shape.class; | %SVG.text.qname; %SVG.clipPath.extra.content; )*"

>
<!ELEMENT %SVG.clipPath.qname; %SVG.clipPath.content; >
<!-- end of SVG.clipPath.element -->]]>

<!ENTITY % SVG.clipPath.attlist "INCLUDE" >
<![%SVG.clipPath.attlist;[
<!ATTLIST %SVG.clipPath.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.External.attrib;
transform %TransformList.datatype; #IMPLIED
clipPathUnits ( userSpaceOnUse | objectBoundingBox ) #IMPLIED

>
<!-- end of SVG.clipPath.attlist -->]]>

<!-- end of svg-basic-clip.mod -->



A.3.31 Mask Module

The Mask Module defines the Mask.class element collection and the Mask.attrib attribute collection.

Collection name Elements in collection

Mask.class mask

Collection name Attributes in collection

Mask.attrib mask

<!-- ....................................................................... -->
<!-- SVG 1.1 Mask Module ................................................... -->
<!-- file: svg-mask.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-mask.mod,v 1.3 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Mask//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-mask.mod"

....................................................................... -->

<!-- Mask

mask

This module declares markup to provide support for masking.
-->

<!-- 'mask' property/attribute value (e.g., 'none', <uri>) -->
<!ENTITY % MaskValue.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.mask.qname "mask" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Container.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Marker.attrib "" >
<!ENTITY % SVG.ColorProfile.attrib "" >
<!ENTITY % SVG.Gradient.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.FilterColor.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Mask.class .................................... -->

<!ENTITY % SVG.Mask.extra.class "" >



<!ENTITY % SVG.Mask.class
"| %SVG.mask.qname; %SVG.Mask.extra.class;"

>

<!-- SVG.Mask.attrib ................................... -->

<!ENTITY % SVG.Mask.extra.attrib "" >

<!ENTITY % SVG.Mask.attrib
"mask %MaskValue.datatype; #IMPLIED
%SVG.Mask.extra.attrib;"

>

<!-- SVG.Presentation.attrib ........................... -->

<!ENTITY % SVG.Presentation.extra.attrib "" >

<!ENTITY % SVG.Presentation.attrib
"%SVG.Container.attrib;
%SVG.Viewport.attrib;
%SVG.Text.attrib;
%SVG.TextContent.attrib;
%SVG.Font.attrib;
%SVG.Paint.attrib;
%SVG.Color.attrib;
%SVG.Opacity.attrib;
%SVG.Graphics.attrib;
%SVG.Marker.attrib;
%SVG.ColorProfile.attrib;
%SVG.Gradient.attrib;
%SVG.Clip.attrib;
%SVG.Mask.attrib;
%SVG.Filter.attrib;
%SVG.FilterColor.attrib;
%SVG.Cursor.attrib;
flood-color %SVGColor.datatype; #IMPLIED
flood-opacity %OpacityValue.datatype; #IMPLIED
lighting-color %SVGColor.datatype; #IMPLIED
%SVG.Presentation.extra.attrib;"

>

<!-- mask: Mask Element ................................ -->

<!ENTITY % SVG.mask.extra.content "" >

<!ENTITY % SVG.mask.element "INCLUDE" >
<![%SVG.mask.element;[
<!ENTITY % SVG.mask.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;
%SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;
%SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.mask.extra.content; )*"

>
<!ELEMENT %SVG.mask.qname; %SVG.mask.content; >
<!-- end of SVG.mask.element -->]]>

<!ENTITY % SVG.mask.attlist "INCLUDE" >
<![%SVG.mask.attlist;[
<!ATTLIST %SVG.mask.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.External.attrib;
x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #IMPLIED
height %Length.datatype; #IMPLIED
maskUnits ( userSpaceOnUse | objectBoundingBox ) #IMPLIED
maskContentUnits ( userSpaceOnUse | objectBoundingBox ) #IMPLIED

>
<!-- end of SVG.mask.attlist -->]]>

<!-- end of svg-mask.mod -->



A.3.32 Filter Module

The Filter Module defines the Filter.class and FilterPrimitive.class element collections and the Filter.attrib, Filter-
Color.attrib, FilterPrimitive.attrib and FilterPrimitiveWithIn.attrib attribute collections.

Collection name Elements in collection

Filter.class filter

FilterPrimitive.class feBlend, feFlood, feColorMatrix, feComponentTransfer, feComposite, feConvolveMatrix,

feDiffuseLighting, feDisplacementMap, feGaussianBlur, feImage, feMerge, feMorphology,

feOffset, feSpecularLighting, feTile, feTurbulence

Collection name Attributes in collection

Filter.attrib filter

FilterColor.attrib color-interpolation-filters

FilterPrimitive.attrib x, y, width, height, result

FilterPrimitiveWithIn.attrib FilterPrimitive.attrib, in

<!-- ....................................................................... -->
<!-- SVG 1.1 Filter Module ................................................. -->
<!-- file: svg-filter.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-filter.mod,v 1.6 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Filter//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-filter.mod"

....................................................................... -->

<!-- Filter

filter, feBlend, feColorMatrix, feComponentTransfer, feComposite,
feConvolveMatrix, feDiffuseLighting, feDisplacementMap, feFlood,
feGaussianBlur, feImage, feMerge, feMergeNode, feMorphology, feOffset,
feSpecularLighting, feTile, feTurbulence, feDistantLight, fePointLight,
feSpotLight, feFuncR, feFuncG, feFuncB, feFuncA

This module declares markup to provide support for filter effect.
-->

<!-- 'filter' property/attribute value (e.g., 'none', <uri>) -->
<!ENTITY % FilterValue.datatype "CDATA" >

<!-- list of <number>s, but at least one and at most two -->
<!ENTITY % NumberOptionalNumber.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.filter.qname "filter" >
<!ENTITY % SVG.feBlend.qname "feBlend" >
<!ENTITY % SVG.feColorMatrix.qname "feColorMatrix" >
<!ENTITY % SVG.feComponentTransfer.qname "feComponentTransfer" >
<!ENTITY % SVG.feComposite.qname "feComposite" >
<!ENTITY % SVG.feConvolveMatrix.qname "feConvolveMatrix" >
<!ENTITY % SVG.feDiffuseLighting.qname "feDiffuseLighting" >



<!ENTITY % SVG.feDisplacementMap.qname "feDisplacementMap" >
<!ENTITY % SVG.feFlood.qname "feFlood" >
<!ENTITY % SVG.feGaussianBlur.qname "feGaussianBlur" >
<!ENTITY % SVG.feImage.qname "feImage" >
<!ENTITY % SVG.feMerge.qname "feMerge" >
<!ENTITY % SVG.feMergeNode.qname "feMergeNode" >
<!ENTITY % SVG.feMorphology.qname "feMorphology" >
<!ENTITY % SVG.feOffset.qname "feOffset" >
<!ENTITY % SVG.feSpecularLighting.qname "feSpecularLighting" >
<!ENTITY % SVG.feTile.qname "feTile" >
<!ENTITY % SVG.feTurbulence.qname "feTurbulence" >
<!ENTITY % SVG.feDistantLight.qname "feDistantLight" >
<!ENTITY % SVG.fePointLight.qname "fePointLight" >
<!ENTITY % SVG.feSpotLight.qname "feSpotLight" >
<!ENTITY % SVG.feFuncR.qname "feFuncR" >
<!ENTITY % SVG.feFuncG.qname "feFuncG" >
<!ENTITY % SVG.feFuncB.qname "feFuncB" >
<!ENTITY % SVG.feFuncA.qname "feFuncA" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Container.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Marker.attrib "" >
<!ENTITY % SVG.ColorProfile.attrib "" >
<!ENTITY % SVG.Gradient.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.XLink.attrib "" >
<!ENTITY % SVG.XLinkEmbed.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Filter.class .................................. -->

<!ENTITY % SVG.Filter.extra.class "" >

<!ENTITY % SVG.Filter.class
"| %SVG.filter.qname; %SVG.Filter.extra.class;"

>

<!-- SVG.FilterPrimitive.class ......................... -->

<!ENTITY % SVG.FilterPrimitive.extra.class "" >

<!ENTITY % SVG.FilterPrimitive.class
"| %SVG.feBlend.qname; | %SVG.feColorMatrix.qname;
| %SVG.feComponentTransfer.qname; | %SVG.feComposite.qname;
| %SVG.feConvolveMatrix.qname; | %SVG.feDiffuseLighting.qname;
| %SVG.feDisplacementMap.qname; | %SVG.feFlood.qname;
| %SVG.feGaussianBlur.qname; | %SVG.feImage.qname; | %SVG.feMerge.qname;
| %SVG.feMorphology.qname; | %SVG.feOffset.qname;
| %SVG.feSpecularLighting.qname; | %SVG.feTile.qname;
| %SVG.feTurbulence.qname; %SVG.FilterPrimitive.extra.class;"

>

<!-- SVG.Filter.attrib ................................. -->

<!ENTITY % SVG.Filter.extra.attrib "" >

<!ENTITY % SVG.Filter.attrib
"filter %FilterValue.datatype; #IMPLIED
%SVG.Filter.extra.attrib;"

>

<!-- SVG.FilterColor.attrib ............................ -->

<!ENTITY % SVG.FilterColor.extra.attrib "" >



<!ENTITY % SVG.FilterColor.attrib
"color-interpolation-filters ( auto | sRGB | linearRGB | inherit )

#IMPLIED
%SVG.FilterColor.extra.attrib;"

>

<!-- SVG.FilterPrimitive.attrib ........................ -->

<!ENTITY % SVG.FilterPrimitive.extra.attrib "" >

<!ENTITY % SVG.FilterPrimitive.attrib
"x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #IMPLIED
height %Length.datatype; #IMPLIED
result CDATA #IMPLIED
%SVG.FilterPrimitive.extra.attrib;"

>

<!-- SVG.FilterPrimitiveWithIn.attrib .................. -->

<!ENTITY % SVG.FilterPrimitiveWithIn.extra.attrib "" >

<!ENTITY % SVG.FilterPrimitiveWithIn.attrib
"%SVG.FilterPrimitive.attrib;
in CDATA #IMPLIED
%SVG.FilterPrimitiveWithIn.extra.attrib;"

>

<!-- SVG.Presentation.attrib ........................... -->

<!ENTITY % SVG.Presentation.extra.attrib "" >

<!ENTITY % SVG.Presentation.attrib
"%SVG.Container.attrib;
%SVG.Viewport.attrib;
%SVG.Text.attrib;
%SVG.TextContent.attrib;
%SVG.Font.attrib;
%SVG.Paint.attrib;
%SVG.Color.attrib;
%SVG.Opacity.attrib;
%SVG.Graphics.attrib;
%SVG.Marker.attrib;
%SVG.ColorProfile.attrib;
%SVG.Gradient.attrib;
%SVG.Clip.attrib;
%SVG.Mask.attrib;
%SVG.Filter.attrib;
%SVG.FilterColor.attrib;
%SVG.Cursor.attrib;
flood-color %SVGColor.datatype; #IMPLIED
flood-opacity %OpacityValue.datatype; #IMPLIED
lighting-color %SVGColor.datatype; #IMPLIED
%SVG.Presentation.extra.attrib;"

>

<!-- filter: Filter Element ............................ -->

<!ENTITY % SVG.filter.extra.content "" >

<!ENTITY % SVG.filter.element "INCLUDE" >
<![%SVG.filter.element;[
<!ENTITY % SVG.filter.content

"( %SVG.Description.class; | %SVG.animate.qname; | %SVG.set.qname;
%SVG.FilterPrimitive.class; %SVG.filter.extra.content; )*"

>
<!ELEMENT %SVG.filter.qname; %SVG.filter.content; >
<!-- end of SVG.filter.element -->]]>

<!ENTITY % SVG.filter.attlist "INCLUDE" >
<![%SVG.filter.attlist;[
<!ATTLIST %SVG.filter.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;



%SVG.XLink.attrib;
%SVG.External.attrib;
x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #IMPLIED
height %Length.datatype; #IMPLIED
filterRes %NumberOptionalNumber.datatype; #IMPLIED
filterUnits ( userSpaceOnUse | objectBoundingBox ) #IMPLIED
primitiveUnits ( userSpaceOnUse | objectBoundingBox ) #IMPLIED

>
<!-- end of SVG.filter.attlist -->]]>

<!-- feBlend: Filter Effect Blend Element .............. -->

<!ENTITY % SVG.feBlend.extra.content "" >

<!ENTITY % SVG.feBlend.element "INCLUDE" >
<![%SVG.feBlend.element;[
<!ENTITY % SVG.feBlend.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feBlend.extra.content; )*"
>
<!ELEMENT %SVG.feBlend.qname; %SVG.feBlend.content; >
<!-- end of SVG.feBlend.element -->]]>

<!ENTITY % SVG.feBlend.attlist "INCLUDE" >
<![%SVG.feBlend.attlist;[
<!ATTLIST %SVG.feBlend.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
in2 CDATA #REQUIRED
mode ( normal | multiply | screen | darken | lighten ) 'normal'

>
<!-- end of SVG.feBlend.attlist -->]]>

<!-- feColorMatrix: Filter Effect Color Matrix Element . -->

<!ENTITY % SVG.feColorMatrix.extra.content "" >

<!ENTITY % SVG.feColorMatrix.element "INCLUDE" >
<![%SVG.feColorMatrix.element;[
<!ENTITY % SVG.feColorMatrix.content

"( %SVG.animate.qname; | %SVG.set.qname;
%SVG.feColorMatrix.extra.content; )*"

>
<!ELEMENT %SVG.feColorMatrix.qname; %SVG.feColorMatrix.content; >
<!-- end of SVG.feColorMatrix.element -->]]>

<!ENTITY % SVG.feColorMatrix.attlist "INCLUDE" >
<![%SVG.feColorMatrix.attlist;[
<!ATTLIST %SVG.feColorMatrix.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
type ( matrix | saturate | hueRotate | luminanceToAlpha ) 'matrix'
values CDATA #IMPLIED

>
<!-- end of SVG.feColorMatrix.attlist -->]]>

<!-- feComponentTransfer: Filter Effect Component Transfer Element -->

<!ENTITY % SVG.feComponentTransfer.extra.content "" >

<!ENTITY % SVG.feComponentTransfer.element "INCLUDE" >
<![%SVG.feComponentTransfer.element;[
<!ENTITY % SVG.feComponentTransfer.content

"( %SVG.feFuncR.qname;?, %SVG.feFuncG.qname;?, %SVG.feFuncB.qname;?,
%SVG.feFuncA.qname;? %SVG.feComponentTransfer.extra.content; )"

>
<!ELEMENT %SVG.feComponentTransfer.qname; %SVG.feComponentTransfer.content; >
<!-- end of SVG.feComponentTransfer.element -->]]>

<!ENTITY % SVG.feComponentTransfer.attlist "INCLUDE" >
<![%SVG.feComponentTransfer.attlist;[
<!ATTLIST %SVG.feComponentTransfer.qname;



%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;

>
<!-- end of SVG.feComponentTransfer.attlist -->]]>

<!-- feComposite: Filter Effect Composite Element ...... -->

<!ENTITY % SVG.feComposite.extra.content "" >

<!ENTITY % SVG.feComposite.element "INCLUDE" >
<![%SVG.feComposite.element;[
<!ENTITY % SVG.feComposite.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feComposite.extra.content; )*"
>
<!ELEMENT %SVG.feComposite.qname; %SVG.feComposite.content; >
<!-- end of SVG.feComposite.element -->]]>

<!ENTITY % SVG.feComposite.attlist "INCLUDE" >
<![%SVG.feComposite.attlist;[
<!ATTLIST %SVG.feComposite.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
in2 CDATA #REQUIRED
operator ( over | in | out | atop | xor | arithmetic ) 'over'
k1 %Number.datatype; #IMPLIED
k2 %Number.datatype; #IMPLIED
k3 %Number.datatype; #IMPLIED
k4 %Number.datatype; #IMPLIED

>
<!-- end of SVG.feComposite.attlist -->]]>

<!-- feConvolveMatrix: Filter Effect Convolve Matrix Element -->

<!ENTITY % SVG.feConvolveMatrix.extra.content "" >

<!ENTITY % SVG.feConvolveMatrix.element "INCLUDE" >
<![%SVG.feConvolveMatrix.element;[
<!ENTITY % SVG.feConvolveMatrix.content

"( %SVG.animate.qname; | %SVG.set.qname;
%SVG.feConvolveMatrix.extra.content; )*"

>
<!ELEMENT %SVG.feConvolveMatrix.qname; %SVG.feConvolveMatrix.content; >
<!-- end of SVG.feConvolveMatrix.element -->]]>

<!ENTITY % SVG.feConvolveMatrix.attlist "INCLUDE" >
<![%SVG.feConvolveMatrix.attlist;[
<!ATTLIST %SVG.feConvolveMatrix.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
order %NumberOptionalNumber.datatype; #IMPLIED
kernelMatrix CDATA #REQUIRED
divisor %Number.datatype; #IMPLIED
bias %Number.datatype; #IMPLIED
targetX %Integer.datatype; #IMPLIED
targetY %Integer.datatype; #IMPLIED
edgeMode ( duplicate | wrap | none ) 'duplicate'
kernelUnitLength %NumberOptionalNumber.datatype; #IMPLIED
preserveAlpha %Boolean.datatype; #IMPLIED

>
<!-- end of SVG.feConvolveMatrix.attlist -->]]>

<!-- feDiffuseLighting: Filter Effect Diffuse Lighting Element -->

<!ENTITY % SVG.feDiffuseLighting.extra.content "" >

<!ENTITY % SVG.feDiffuseLighting.element "INCLUDE" >
<![%SVG.feDiffuseLighting.element;[
<!ENTITY % SVG.feDiffuseLighting.content

"(( %SVG.feDistantLight.qname; | %SVG.fePointLight.qname;
| %SVG.feSpotLight.qname; ), ( %SVG.animate.qname; | %SVG.set.qname;
| %SVG.animateColor.qname; %SVG.feDiffuseLighting.extra.content; )*)"



>
<!ELEMENT %SVG.feDiffuseLighting.qname; %SVG.feDiffuseLighting.content; >
<!-- end of SVG.feDiffuseLighting.element -->]]>

<!ENTITY % SVG.feDiffuseLighting.attlist "INCLUDE" >
<![%SVG.feDiffuseLighting.attlist;[
<!ATTLIST %SVG.feDiffuseLighting.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
surfaceScale %Number.datatype; #IMPLIED
diffuseConstant %Number.datatype; #IMPLIED
kernelUnitLength %NumberOptionalNumber.datatype; #IMPLIED

>
<!-- end of SVG.feDiffuseLighting.attlist -->]]>

<!-- feDisplacementMap: Filter Effect Displacement Map Element -->

<!ENTITY % SVG.feDisplacementMap.extra.content "" >

<!ENTITY % SVG.feDisplacementMap.element "INCLUDE" >
<![%SVG.feDisplacementMap.element;[
<!ENTITY % SVG.feDisplacementMap.content

"( %SVG.animate.qname; | %SVG.set.qname;
%SVG.feDisplacementMap.extra.content; )*"

>
<!ELEMENT %SVG.feDisplacementMap.qname; %SVG.feDisplacementMap.content; >
<!-- end of SVG.feDisplacementMap.element -->]]>

<!ENTITY % SVG.feDisplacementMap.attlist "INCLUDE" >
<![%SVG.feDisplacementMap.attlist;[
<!ATTLIST %SVG.feDisplacementMap.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
in2 CDATA #REQUIRED
scale %Number.datatype; #IMPLIED
xChannelSelector ( R | G | B | A ) 'A'
yChannelSelector ( R | G | B | A ) 'A'

>
<!-- end of SVG.feDisplacementMap.attlist -->]]>

<!-- feFlood: Filter Effect Flood Element .............. -->

<!ENTITY % SVG.feFlood.extra.content "" >

<!ENTITY % SVG.feFlood.element "INCLUDE" >
<![%SVG.feFlood.element;[
<!ENTITY % SVG.feFlood.content

"( %SVG.animate.qname; | %SVG.set.qname; | %SVG.animateColor.qname;
%SVG.feFlood.extra.content; )*"

>
<!ELEMENT %SVG.feFlood.qname; %SVG.feFlood.content; >
<!-- end of SVG.feFlood.element -->]]>

<!ENTITY % SVG.feFlood.attlist "INCLUDE" >
<![%SVG.feFlood.attlist;[
<!ATTLIST %SVG.feFlood.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitive.attrib;

>
<!-- end of SVG.feFlood.attlist -->]]>

<!-- feGaussianBlur: Filter Effect Gaussian Blur Element -->

<!ENTITY % SVG.feGaussianBlur.extra.content "" >

<!ENTITY % SVG.feGaussianBlur.element "INCLUDE" >
<![%SVG.feGaussianBlur.element;[
<!ENTITY % SVG.feGaussianBlur.content

"( %SVG.animate.qname; | %SVG.set.qname;
%SVG.feGaussianBlur.extra.content; )*"

>



<!ELEMENT %SVG.feGaussianBlur.qname; %SVG.feGaussianBlur.content; >
<!-- end of SVG.feGaussianBlur.element -->]]>

<!ENTITY % SVG.feGaussianBlur.attlist "INCLUDE" >
<![%SVG.feGaussianBlur.attlist;[
<!ATTLIST %SVG.feGaussianBlur.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
stdDeviation %NumberOptionalNumber.datatype; #IMPLIED

>
<!-- end of SVG.feGaussianBlur.attlist -->]]>

<!-- feImage: Filter Effect Image Element .............. -->

<!ENTITY % SVG.feImage.extra.content "" >

<!ENTITY % SVG.feImage.element "INCLUDE" >
<![%SVG.feImage.element;[
<!ENTITY % SVG.feImage.content

"( %SVG.animate.qname; | %SVG.set.qname; | %SVG.animateTransform.qname;
%SVG.feImage.extra.content; )*"

>
<!ELEMENT %SVG.feImage.qname; %SVG.feImage.content; >
<!-- end of SVG.feImage.element -->]]>

<!ENTITY % SVG.feImage.attlist "INCLUDE" >
<![%SVG.feImage.attlist;[
<!ATTLIST %SVG.feImage.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitive.attrib;
%SVG.XLinkEmbed.attrib;
%SVG.External.attrib;
preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'

>
<!-- end of SVG.feImage.attlist -->]]>

<!-- feMerge: Filter Effect Merge Element .............. -->

<!ENTITY % SVG.feMerge.extra.content "" >

<!ENTITY % SVG.feMerge.element "INCLUDE" >
<![%SVG.feMerge.element;[
<!ENTITY % SVG.feMerge.content

"( %SVG.feMergeNode.qname; %SVG.feMerge.extra.content; )*"
>
<!ELEMENT %SVG.feMerge.qname; %SVG.feMerge.content; >
<!-- end of SVG.feMerge.element -->]]>

<!ENTITY % SVG.feMerge.attlist "INCLUDE" >
<![%SVG.feMerge.attlist;[
<!ATTLIST %SVG.feMerge.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitive.attrib;

>
<!-- end of SVG.feMerge.attlist -->]]>

<!-- feMergeNode: Filter Effect Merge Node Element ..... -->

<!ENTITY % SVG.feMergeNode.extra.content "" >

<!ENTITY % SVG.feMergeNode.element "INCLUDE" >
<![%SVG.feMergeNode.element;[
<!ENTITY % SVG.feMergeNode.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feMergeNode.extra.content; )*"
>
<!ELEMENT %SVG.feMergeNode.qname; %SVG.feMergeNode.content; >
<!-- end of SVG.feMergeNode.element -->]]>

<!ENTITY % SVG.feMergeNode.attlist "INCLUDE" >
<![%SVG.feMergeNode.attlist;[
<!ATTLIST %SVG.feMergeNode.qname;



%SVG.Core.attrib;
in CDATA #IMPLIED

>
<!-- end of SVG.feMergeNode.attlist -->]]>

<!-- feMorphology: Filter Effect Morphology Element .... -->

<!ENTITY % SVG.feMorphology.extra.content "" >

<!ENTITY % SVG.feMorphology.element "INCLUDE" >
<![%SVG.feMorphology.element;[
<!ENTITY % SVG.feMorphology.content

"( %SVG.animate.qname; | %SVG.set.qname;
%SVG.feMorphology.extra.content; )*"

>
<!ELEMENT %SVG.feMorphology.qname; %SVG.feMorphology.content; >
<!-- end of SVG.feMorphology.element -->]]>

<!ENTITY % SVG.feMorphology.attlist "INCLUDE" >
<![%SVG.feMorphology.attlist;[
<!ATTLIST %SVG.feMorphology.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
operator ( erode | dilate ) 'erode'
radius %NumberOptionalNumber.datatype; #IMPLIED

>
<!-- end of SVG.feMorphology.attlist -->]]>

<!-- feOffset: Filter Effect Offset Element ............ -->

<!ENTITY % SVG.feOffset.extra.content "" >

<!ENTITY % SVG.feOffset.element "INCLUDE" >
<![%SVG.feOffset.element;[
<!ENTITY % SVG.feOffset.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feOffset.extra.content; )*"
>
<!ELEMENT %SVG.feOffset.qname; %SVG.feOffset.content; >
<!-- end of SVG.feOffset.element -->]]>

<!ENTITY % SVG.feOffset.attlist "INCLUDE" >
<![%SVG.feOffset.attlist;[
<!ATTLIST %SVG.feOffset.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
dx %Number.datatype; #IMPLIED
dy %Number.datatype; #IMPLIED

>
<!-- end of SVG.feOffset.attlist -->]]>

<!-- feSpecularLighting: Filter Effect Specular Lighting Element -->

<!ENTITY % SVG.feSpecularLighting.extra.content "" >

<!ENTITY % SVG.feSpecularLighting.element "INCLUDE" >
<![%SVG.feSpecularLighting.element;[
<!ENTITY % SVG.feSpecularLighting.content

"(( %SVG.feDistantLight.qname; | %SVG.fePointLight.qname;
| %SVG.feSpotLight.qname; ), ( %SVG.animate.qname; | %SVG.set.qname;
| %SVG.animateColor.qname; %SVG.feSpecularLighting.extra.content; )*)"

>
<!ELEMENT %SVG.feSpecularLighting.qname; %SVG.feSpecularLighting.content; >
<!-- end of SVG.feSpecularLighting.element -->]]>

<!ENTITY % SVG.feSpecularLighting.attlist "INCLUDE" >
<![%SVG.feSpecularLighting.attlist;[
<!ATTLIST %SVG.feSpecularLighting.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
surfaceScale %Number.datatype; #IMPLIED
specularConstant %Number.datatype; #IMPLIED



specularExponent %Number.datatype; #IMPLIED
kernelUnitLength %NumberOptionalNumber.datatype; #IMPLIED

>
<!-- end of SVG.feSpecularLighting.attlist -->]]>

<!-- feTile: Filter Effect Tile Element ................ -->

<!ENTITY % SVG.feTile.extra.content "" >

<!ENTITY % SVG.feTile.element "INCLUDE" >
<![%SVG.feTile.element;[
<!ENTITY % SVG.feTile.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feTile.extra.content; )*"
>
<!ELEMENT %SVG.feTile.qname; %SVG.feTile.content; >
<!-- end of SVG.feTile.element -->]]>

<!ENTITY % SVG.feTile.attlist "INCLUDE" >
<![%SVG.feTile.attlist;[
<!ATTLIST %SVG.feTile.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;

>
<!-- end of SVG.feTile.attlist -->]]>

<!-- feTurbulence: Filter Effect Turbulence Element .... -->

<!ENTITY % SVG.feTurbulence.extra.content "" >

<!ENTITY % SVG.feTurbulence.element "INCLUDE" >
<![%SVG.feTurbulence.element;[
<!ENTITY % SVG.feTurbulence.content

"( %SVG.animate.qname; | %SVG.set.qname;
%SVG.feTurbulence.extra.content; )*"

>
<!ELEMENT %SVG.feTurbulence.qname; %SVG.feTurbulence.content; >
<!-- end of SVG.feTurbulence.element -->]]>

<!ENTITY % SVG.feTurbulence.attlist "INCLUDE" >
<![%SVG.feTurbulence.attlist;[
<!ATTLIST %SVG.feTurbulence.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitive.attrib;
baseFrequency %NumberOptionalNumber.datatype; #IMPLIED
numOctaves %Integer.datatype; #IMPLIED
seed %Number.datatype; #IMPLIED
stitchTiles ( stitch | noStitch ) 'noStitch'
type ( fractalNoise | turbulence ) 'turbulence'

>
<!-- end of SVG.feTurbulence.attlist -->]]>

<!-- feDistantLight: Filter Effect Distant Light Element -->

<!ENTITY % SVG.feDistantLight.extra.content "" >

<!ENTITY % SVG.feDistantLight.element "INCLUDE" >
<![%SVG.feDistantLight.element;[
<!ENTITY % SVG.feDistantLight.content

"( %SVG.animate.qname; | %SVG.set.qname;
%SVG.feDistantLight.extra.content; )*"

>
<!ELEMENT %SVG.feDistantLight.qname; %SVG.feDistantLight.content; >
<!-- end of SVG.feDistantLight.element -->]]>

<!ENTITY % SVG.feDistantLight.attlist "INCLUDE" >
<![%SVG.feDistantLight.attlist;[
<!ATTLIST %SVG.feDistantLight.qname;

%SVG.Core.attrib;
azimuth %Number.datatype; #IMPLIED
elevation %Number.datatype; #IMPLIED

>
<!-- end of SVG.feDistantLight.attlist -->]]>



<!-- fePointLight: Filter Effect Point Light Element ... -->

<!ENTITY % SVG.fePointLight.extra.content "" >

<!ENTITY % SVG.fePointLight.element "INCLUDE" >
<![%SVG.fePointLight.element;[
<!ENTITY % SVG.fePointLight.content

"( %SVG.animate.qname; | %SVG.set.qname;
%SVG.fePointLight.extra.content; )*"

>
<!ELEMENT %SVG.fePointLight.qname; %SVG.fePointLight.content; >
<!-- end of SVG.fePointLight.element -->]]>

<!ENTITY % SVG.fePointLight.attlist "INCLUDE" >
<![%SVG.fePointLight.attlist;[
<!ATTLIST %SVG.fePointLight.qname;

%SVG.Core.attrib;
x %Number.datatype; #IMPLIED
y %Number.datatype; #IMPLIED
z %Number.datatype; #IMPLIED

>
<!-- end of SVG.fePointLight.attlist -->]]>

<!-- feSpotLight: Filter Effect Spot Light Element ..... -->

<!ENTITY % SVG.feSpotLight.extra.content "" >

<!ENTITY % SVG.feSpotLight.element "INCLUDE" >
<![%SVG.feSpotLight.element;[
<!ENTITY % SVG.feSpotLight.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feSpotLight.extra.content; )*"
>
<!ELEMENT %SVG.feSpotLight.qname; %SVG.feSpotLight.content; >
<!-- end of SVG.feSpotLight.element -->]]>

<!ENTITY % SVG.feSpotLight.attlist "INCLUDE" >
<![%SVG.feSpotLight.attlist;[
<!ATTLIST %SVG.feSpotLight.qname;

%SVG.Core.attrib;
x %Number.datatype; #IMPLIED
y %Number.datatype; #IMPLIED
z %Number.datatype; #IMPLIED
pointsAtX %Number.datatype; #IMPLIED
pointsAtY %Number.datatype; #IMPLIED
pointsAtZ %Number.datatype; #IMPLIED
specularExponent %Number.datatype; #IMPLIED
limitingConeAngle %Number.datatype; #IMPLIED

>
<!-- end of SVG.feSpotLight.attlist -->]]>

<!-- feFuncR: Filter Effect Function Red Element ....... -->

<!ENTITY % SVG.feFuncR.extra.content "" >

<!ENTITY % SVG.feFuncR.element "INCLUDE" >
<![%SVG.feFuncR.element;[
<!ENTITY % SVG.feFuncR.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feFuncR.extra.content; )*"
>
<!ELEMENT %SVG.feFuncR.qname; %SVG.feFuncR.content; >
<!-- end of SVG.feFuncR.element -->]]>

<!ENTITY % SVG.feFuncR.attlist "INCLUDE" >
<![%SVG.feFuncR.attlist;[
<!ATTLIST %SVG.feFuncR.qname;

%SVG.Core.attrib;
type ( identity | table | discrete | linear | gamma ) #REQUIRED
tableValues CDATA #IMPLIED
slope %Number.datatype; #IMPLIED
intercept %Number.datatype; #IMPLIED
amplitude %Number.datatype; #IMPLIED
exponent %Number.datatype; #IMPLIED
offset %Number.datatype; #IMPLIED

>
<!-- end of SVG.feFuncR.attlist -->]]>

<!-- feFuncG: Filter Effect Function Green Element ..... -->



<!ENTITY % SVG.feFuncG.extra.content "" >

<!ENTITY % SVG.feFuncG.element "INCLUDE" >
<![%SVG.feFuncG.element;[
<!ENTITY % SVG.feFuncG.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feFuncG.extra.content; )*"
>
<!ELEMENT %SVG.feFuncG.qname; %SVG.feFuncG.content; >
<!-- end of SVG.feFuncG.element -->]]>

<!ENTITY % SVG.feFuncG.attlist "INCLUDE" >
<![%SVG.feFuncG.attlist;[
<!ATTLIST %SVG.feFuncG.qname;

%SVG.Core.attrib;
type ( identity | table | discrete | linear | gamma ) #REQUIRED
tableValues CDATA #IMPLIED
slope %Number.datatype; #IMPLIED
intercept %Number.datatype; #IMPLIED
amplitude %Number.datatype; #IMPLIED
exponent %Number.datatype; #IMPLIED
offset %Number.datatype; #IMPLIED

>
<!-- end of SVG.feFuncG.attlist -->]]>

<!-- feFuncB: Filter Effect Function Blue Element ...... -->

<!ENTITY % SVG.feFuncB.extra.content "" >

<!ENTITY % SVG.feFuncB.element "INCLUDE" >
<![%SVG.feFuncB.element;[
<!ENTITY % SVG.feFuncB.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feFuncB.extra.content; )*"
>
<!ELEMENT %SVG.feFuncB.qname; %SVG.feFuncB.content; >
<!-- end of SVG.feFuncB.element -->]]>

<!ENTITY % SVG.feFuncB.attlist "INCLUDE" >
<![%SVG.feFuncB.attlist;[
<!ATTLIST %SVG.feFuncB.qname;

%SVG.Core.attrib;
type ( identity | table | discrete | linear | gamma ) #REQUIRED
tableValues CDATA #IMPLIED
slope %Number.datatype; #IMPLIED
intercept %Number.datatype; #IMPLIED
amplitude %Number.datatype; #IMPLIED
exponent %Number.datatype; #IMPLIED
offset %Number.datatype; #IMPLIED

>
<!-- end of SVG.feFuncB.attlist -->]]>

<!-- feFuncA: Filter Effect Function Alpha Element ..... -->

<!ENTITY % SVG.feFuncA.extra.content "" >

<!ENTITY % SVG.feFuncA.element "INCLUDE" >
<![%SVG.feFuncA.element;[
<!ENTITY % SVG.feFuncA.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feFuncA.extra.content; )*"
>
<!ELEMENT %SVG.feFuncA.qname; %SVG.feFuncA.content; >
<!-- end of SVG.feFuncA.element -->]]>

<!ENTITY % SVG.feFuncA.attlist "INCLUDE" >
<![%SVG.feFuncA.attlist;[
<!ATTLIST %SVG.feFuncA.qname;

%SVG.Core.attrib;
type ( identity | table | discrete | linear | gamma ) #REQUIRED
tableValues CDATA #IMPLIED
slope %Number.datatype; #IMPLIED
intercept %Number.datatype; #IMPLIED
amplitude %Number.datatype; #IMPLIED
exponent %Number.datatype; #IMPLIED
offset %Number.datatype; #IMPLIED

>
<!-- end of SVG.feFuncA.attlist -->]]>



<!-- end of svg-filter.mod -->

A.3.33 Basic Filter Module

The Basic Filter Module defines the Filter.class and FilterPrimitive.class element collections and the Filter.attrib,
FilterColor.attrib, FilterPrimitive.attrib and FilterPrimitiveWithIn.attrib attribute collections.

Collection name Elements in collection

Filter.class filter

FilterPrimitive.class feBlend, feFlood, feColorMatrix, feComponentTransfer, feComposite, feGaussianBlur,

feImage, feMerge, feOffset, feTile

Collection name Attributes in collection

Filter.attrib filter

FilterColor.attrib color-interpolation-filters

FilterPrimitive.attrib x, y, width, height, result

FilterPrimitiveWithIn.attrib FilterPrimitive.attrib, in

<!-- ....................................................................... -->
<!-- SVG 1.1 Basic Filter Module ........................................... -->
<!-- file: svg-basic-filter.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-basic-filter.mod,v 1.5 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Basic Filter//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-basic-filter.mod"

....................................................................... -->

<!-- Basic Filter

filter, feBlend, feColorMatrix, feComponentTransfer, feComposite,
feFlood, feGaussianBlur, feImage, feMerge, feMergeNode, feOffset,
feTile, feFuncR, feFuncG, feFuncB, feFuncA

This module declares markup to provide support for filter effect.
-->

<!-- 'filter' property/attribute value (e.g., 'none', <uri>) -->
<!ENTITY % FilterValue.datatype "CDATA" >

<!-- list of <number>s, but at least one and at most two -->
<!ENTITY % NumberOptionalNumber.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.filter.qname "filter" >
<!ENTITY % SVG.feBlend.qname "feBlend" >
<!ENTITY % SVG.feColorMatrix.qname "feColorMatrix" >
<!ENTITY % SVG.feComponentTransfer.qname "feComponentTransfer" >
<!ENTITY % SVG.feComposite.qname "feComposite" >
<!ENTITY % SVG.feFlood.qname "feFlood" >
<!ENTITY % SVG.feGaussianBlur.qname "feGaussianBlur" >



<!ENTITY % SVG.feImage.qname "feImage" >
<!ENTITY % SVG.feMerge.qname "feMerge" >
<!ENTITY % SVG.feMergeNode.qname "feMergeNode" >
<!ENTITY % SVG.feOffset.qname "feOffset" >
<!ENTITY % SVG.feTile.qname "feTile" >
<!ENTITY % SVG.feFuncR.qname "feFuncR" >
<!ENTITY % SVG.feFuncG.qname "feFuncG" >
<!ENTITY % SVG.feFuncB.qname "feFuncB" >
<!ENTITY % SVG.feFuncA.qname "feFuncA" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Container.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Marker.attrib "" >
<!ENTITY % SVG.ColorProfile.attrib "" >
<!ENTITY % SVG.Gradient.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.XLink.attrib "" >
<!ENTITY % SVG.XLinkEmbed.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Filter.class .................................. -->

<!ENTITY % SVG.Filter.extra.class "" >

<!ENTITY % SVG.Filter.class
"| %SVG.filter.qname; %SVG.Filter.extra.class;"

>

<!-- SVG.FilterPrimitive.class ......................... -->

<!ENTITY % SVG.FilterPrimitive.extra.class "" >

<!ENTITY % SVG.FilterPrimitive.class
"| %SVG.feBlend.qname; | %SVG.feColorMatrix.qname;
| %SVG.feComponentTransfer.qname; | %SVG.feComposite.qname;
| %SVG.feFlood.qname; | %SVG.feGaussianBlur.qname; | %SVG.feImage.qname;
| %SVG.feMerge.qname; | %SVG.feOffset.qname; | %SVG.feTile.qname;

%SVG.FilterPrimitive.extra.class;"
>

<!-- SVG.Filter.attrib ................................. -->

<!ENTITY % SVG.Filter.extra.attrib "" >

<!ENTITY % SVG.Filter.attrib
"filter %FilterValue.datatype; #IMPLIED
%SVG.Filter.extra.attrib;"

>

<!-- SVG.FilterColor.attrib ............................ -->

<!ENTITY % SVG.FilterColor.extra.attrib "" >

<!ENTITY % SVG.FilterColor.attrib
"color-interpolation-filters ( auto | sRGB | linearRGB | inherit )

#IMPLIED
%SVG.FilterColor.extra.attrib;"

>

<!-- SVG.FilterPrimitive.attrib ........................ -->

<!ENTITY % SVG.FilterPrimitive.extra.attrib "" >

<!ENTITY % SVG.FilterPrimitive.attrib



"x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #IMPLIED
height %Length.datatype; #IMPLIED
result CDATA #IMPLIED
%SVG.FilterPrimitive.extra.attrib;"

>

<!-- SVG.FilterPrimitiveWithIn.attrib .................. -->

<!ENTITY % SVG.FilterPrimitiveWithIn.extra.attrib "" >

<!ENTITY % SVG.FilterPrimitiveWithIn.attrib
"%SVG.FilterPrimitive.attrib;
in CDATA #IMPLIED
%SVG.FilterPrimitiveWithIn.extra.attrib;"

>

<!-- SVG.Presentation.attrib ........................... -->

<!ENTITY % SVG.Presentation.extra.attrib "" >

<!ENTITY % SVG.Presentation.attrib
"%SVG.Container.attrib;
%SVG.Viewport.attrib;
%SVG.Text.attrib;
%SVG.TextContent.attrib;
%SVG.Font.attrib;
%SVG.Paint.attrib;
%SVG.Color.attrib;
%SVG.Opacity.attrib;
%SVG.Graphics.attrib;
%SVG.Marker.attrib;
%SVG.ColorProfile.attrib;
%SVG.Gradient.attrib;
%SVG.Clip.attrib;
%SVG.Mask.attrib;
%SVG.Filter.attrib;
%SVG.FilterColor.attrib;
%SVG.Cursor.attrib;
flood-color %SVGColor.datatype; #IMPLIED
flood-opacity %OpacityValue.datatype; #IMPLIED
lighting-color %SVGColor.datatype; #IMPLIED
%SVG.Presentation.extra.attrib;"

>

<!-- filter: Filter Element ............................ -->

<!ENTITY % SVG.filter.extra.content "" >

<!ENTITY % SVG.filter.element "INCLUDE" >
<![%SVG.filter.element;[
<!ENTITY % SVG.filter.content

"( %SVG.Description.class; | %SVG.animate.qname; | %SVG.set.qname;
%SVG.FilterPrimitive.class; %SVG.filter.extra.content; )*"

>
<!ELEMENT %SVG.filter.qname; %SVG.filter.content; >
<!-- end of SVG.filter.element -->]]>

<!ENTITY % SVG.filter.attlist "INCLUDE" >
<![%SVG.filter.attlist;[
<!ATTLIST %SVG.filter.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.XLink.attrib;
%SVG.External.attrib;
x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #IMPLIED
height %Length.datatype; #IMPLIED
filterRes %NumberOptionalNumber.datatype; #IMPLIED
filterUnits ( userSpaceOnUse | objectBoundingBox ) #IMPLIED
primitiveUnits ( userSpaceOnUse | objectBoundingBox ) #IMPLIED

>
<!-- end of SVG.filter.attlist -->]]>



<!-- feBlend: Filter Effect Blend Element .............. -->

<!ENTITY % SVG.feBlend.extra.content "" >

<!ENTITY % SVG.feBlend.element "INCLUDE" >
<![%SVG.feBlend.element;[
<!ENTITY % SVG.feBlend.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feBlend.extra.content; )*"
>
<!ELEMENT %SVG.feBlend.qname; %SVG.feBlend.content; >
<!-- end of SVG.feBlend.element -->]]>

<!ENTITY % SVG.feBlend.attlist "INCLUDE" >
<![%SVG.feBlend.attlist;[
<!ATTLIST %SVG.feBlend.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
in2 CDATA #REQUIRED
mode ( normal | multiply | screen | darken | lighten ) 'normal'

>
<!-- end of SVG.feBlend.attlist -->]]>

<!-- feColorMatrix: Filter Effect Color Matrix Element . -->

<!ENTITY % SVG.feColorMatrix.extra.content "" >

<!ENTITY % SVG.feColorMatrix.element "INCLUDE" >
<![%SVG.feColorMatrix.element;[
<!ENTITY % SVG.feColorMatrix.content

"( %SVG.animate.qname; | %SVG.set.qname;
%SVG.feColorMatrix.extra.content; )*"

>
<!ELEMENT %SVG.feColorMatrix.qname; %SVG.feColorMatrix.content; >
<!-- end of SVG.feColorMatrix.element -->]]>

<!ENTITY % SVG.feColorMatrix.attlist "INCLUDE" >
<![%SVG.feColorMatrix.attlist;[
<!ATTLIST %SVG.feColorMatrix.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
type ( matrix | saturate | hueRotate | luminanceToAlpha ) 'matrix'
values CDATA #IMPLIED

>
<!-- end of SVG.feColorMatrix.attlist -->]]>

<!-- feComponentTransfer: Filter Effect Component Transfer Element -->

<!ENTITY % SVG.feComponentTransfer.extra.content "" >

<!ENTITY % SVG.feComponentTransfer.element "INCLUDE" >
<![%SVG.feComponentTransfer.element;[
<!ENTITY % SVG.feComponentTransfer.content

"( %SVG.feFuncR.qname;?, %SVG.feFuncG.qname;?, %SVG.feFuncB.qname;?,
%SVG.feFuncA.qname;? %SVG.feComponentTransfer.extra.content; )"

>
<!ELEMENT %SVG.feComponentTransfer.qname; %SVG.feComponentTransfer.content; >
<!-- end of SVG.feComponentTransfer.element -->]]>

<!ENTITY % SVG.feComponentTransfer.attlist "INCLUDE" >
<![%SVG.feComponentTransfer.attlist;[
<!ATTLIST %SVG.feComponentTransfer.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;

>
<!-- end of SVG.feComponentTransfer.attlist -->]]>

<!-- feComposite: Filter Effect Composite Element ...... -->

<!ENTITY % SVG.feComposite.extra.content "" >

<!ENTITY % SVG.feComposite.element "INCLUDE" >



<![%SVG.feComposite.element;[
<!ENTITY % SVG.feComposite.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feComposite.extra.content; )*"
>
<!ELEMENT %SVG.feComposite.qname; %SVG.feComposite.content; >
<!-- end of SVG.feComposite.element -->]]>

<!ENTITY % SVG.feComposite.attlist "INCLUDE" >
<![%SVG.feComposite.attlist;[
<!ATTLIST %SVG.feComposite.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
in2 CDATA #REQUIRED
operator ( over | in | out | atop | xor | arithmetic ) 'over'
k1 %Number.datatype; #IMPLIED
k2 %Number.datatype; #IMPLIED
k3 %Number.datatype; #IMPLIED
k4 %Number.datatype; #IMPLIED

>
<!-- end of SVG.feComposite.attlist -->]]>

<!-- feFlood: Filter Effect Flood Element .............. -->

<!ENTITY % SVG.feFlood.extra.content "" >

<!ENTITY % SVG.feFlood.element "INCLUDE" >
<![%SVG.feFlood.element;[
<!ENTITY % SVG.feFlood.content

"( %SVG.animate.qname; | %SVG.set.qname; | %SVG.animateColor.qname;
%SVG.feFlood.extra.content; )*"

>
<!ELEMENT %SVG.feFlood.qname; %SVG.feFlood.content; >
<!-- end of SVG.feFlood.element -->]]>

<!ENTITY % SVG.feFlood.attlist "INCLUDE" >
<![%SVG.feFlood.attlist;[
<!ATTLIST %SVG.feFlood.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Color.attrib;
%SVG.FilterColor.attrib;
%SVG.FilterPrimitive.attrib;
flood-color %SVGColor.datatype; #IMPLIED
flood-opacity %OpacityValue.datatype; #IMPLIED

>
<!-- end of SVG.feFlood.attlist -->]]>

<!-- feGaussianBlur: Filter Effect Gaussian Blur Element -->

<!ENTITY % SVG.feGaussianBlur.extra.content "" >

<!ENTITY % SVG.feGaussianBlur.element "INCLUDE" >
<![%SVG.feGaussianBlur.element;[
<!ENTITY % SVG.feGaussianBlur.content

"( %SVG.animate.qname; | %SVG.set.qname;
%SVG.feGaussianBlur.extra.content; )*"

>
<!ELEMENT %SVG.feGaussianBlur.qname; %SVG.feGaussianBlur.content; >
<!-- end of SVG.feGaussianBlur.element -->]]>

<!ENTITY % SVG.feGaussianBlur.attlist "INCLUDE" >
<![%SVG.feGaussianBlur.attlist;[
<!ATTLIST %SVG.feGaussianBlur.qname;

%SVG.Core.attrib;
%SVG.FilterColor.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
stdDeviation %NumberOptionalNumber.datatype; #IMPLIED

>
<!-- end of SVG.feGaussianBlur.attlist -->]]>

<!-- feImage: Filter Effect Image Element .............. -->

<!ENTITY % SVG.feImage.extra.content "" >

<!ENTITY % SVG.feImage.element "INCLUDE" >



<![%SVG.feImage.element;[
<!ENTITY % SVG.feImage.content

"( %SVG.animate.qname; | %SVG.set.qname; | %SVG.animateTransform.qname;
%SVG.feImage.extra.content; )*"

>
<!ELEMENT %SVG.feImage.qname; %SVG.feImage.content; >
<!-- end of SVG.feImage.element -->]]>

<!ENTITY % SVG.feImage.attlist "INCLUDE" >
<![%SVG.feImage.attlist;[
<!ATTLIST %SVG.feImage.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.FilterPrimitive.attrib;
%SVG.XLinkEmbed.attrib;
%SVG.External.attrib;
preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'

>
<!-- end of SVG.feImage.attlist -->]]>

<!-- feMerge: Filter Effect Merge Element .............. -->

<!ENTITY % SVG.feMerge.extra.content "" >

<!ENTITY % SVG.feMerge.element "INCLUDE" >
<![%SVG.feMerge.element;[
<!ENTITY % SVG.feMerge.content

"( %SVG.feMergeNode.qname; %SVG.feMerge.extra.content; )*"
>
<!ELEMENT %SVG.feMerge.qname; %SVG.feMerge.content; >
<!-- end of SVG.feMerge.element -->]]>

<!ENTITY % SVG.feMerge.attlist "INCLUDE" >
<![%SVG.feMerge.attlist;[
<!ATTLIST %SVG.feMerge.qname;

%SVG.Core.attrib;
%SVG.FilterColor.attrib;
%SVG.FilterPrimitive.attrib;

>
<!-- end of SVG.feMerge.attlist -->]]>

<!-- feMergeNode: Filter Effect Merge Node Element ..... -->

<!ENTITY % SVG.feMergeNode.extra.content "" >

<!ENTITY % SVG.feMergeNode.element "INCLUDE" >
<![%SVG.feMergeNode.element;[
<!ENTITY % SVG.feMergeNode.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feMergeNode.extra.content; )*"
>
<!ELEMENT %SVG.feMergeNode.qname; %SVG.feMergeNode.content; >
<!-- end of SVG.feMergeNode.element -->]]>

<!ENTITY % SVG.feMergeNode.attlist "INCLUDE" >
<![%SVG.feMergeNode.attlist;[
<!ATTLIST %SVG.feMergeNode.qname;

%SVG.Core.attrib;
in CDATA #IMPLIED

>
<!-- end of SVG.feMergeNode.attlist -->]]>

<!-- feOffset: Filter Effect Offset Element ............ -->

<!ENTITY % SVG.feOffset.extra.content "" >

<!ENTITY % SVG.feOffset.element "INCLUDE" >
<![%SVG.feOffset.element;[
<!ENTITY % SVG.feOffset.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feOffset.extra.content; )*"
>
<!ELEMENT %SVG.feOffset.qname; %SVG.feOffset.content; >
<!-- end of SVG.feOffset.element -->]]>

<!ENTITY % SVG.feOffset.attlist "INCLUDE" >
<![%SVG.feOffset.attlist;[
<!ATTLIST %SVG.feOffset.qname;



%SVG.Core.attrib;
%SVG.FilterColor.attrib;
%SVG.FilterPrimitiveWithIn.attrib;
dx %Number.datatype; #IMPLIED
dy %Number.datatype; #IMPLIED

>
<!-- end of SVG.feOffset.attlist -->]]>

<!-- feTile: Filter Effect Tile Element ................ -->

<!ENTITY % SVG.feTile.extra.content "" >

<!ENTITY % SVG.feTile.element "INCLUDE" >
<![%SVG.feTile.element;[
<!ENTITY % SVG.feTile.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feTile.extra.content; )*"
>
<!ELEMENT %SVG.feTile.qname; %SVG.feTile.content; >
<!-- end of SVG.feTile.element -->]]>

<!ENTITY % SVG.feTile.attlist "INCLUDE" >
<![%SVG.feTile.attlist;[
<!ATTLIST %SVG.feTile.qname;

%SVG.Core.attrib;
%SVG.FilterColor.attrib;
%SVG.FilterPrimitiveWithIn.attrib;

>
<!-- end of SVG.feTile.attlist -->]]>

<!-- feFuncR: Filter Effect Function Red Element ....... -->

<!ENTITY % SVG.feFuncR.extra.content "" >

<!ENTITY % SVG.feFuncR.element "INCLUDE" >
<![%SVG.feFuncR.element;[
<!ENTITY % SVG.feFuncR.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feFuncR.extra.content; )*"
>
<!ELEMENT %SVG.feFuncR.qname; %SVG.feFuncR.content; >
<!-- end of SVG.feFuncR.element -->]]>

<!ENTITY % SVG.feFuncR.attlist "INCLUDE" >
<![%SVG.feFuncR.attlist;[
<!ATTLIST %SVG.feFuncR.qname;

%SVG.Core.attrib;
type ( identity | table | discrete | linear | gamma ) #REQUIRED
tableValues CDATA #IMPLIED
slope %Number.datatype; #IMPLIED
intercept %Number.datatype; #IMPLIED
amplitude %Number.datatype; #IMPLIED
exponent %Number.datatype; #IMPLIED
offset %Number.datatype; #IMPLIED

>
<!-- end of SVG.feFuncR.attlist -->]]>

<!-- feFuncG: Filter Effect Function Green Element ..... -->

<!ENTITY % SVG.feFuncG.extra.content "" >

<!ENTITY % SVG.feFuncG.element "INCLUDE" >
<![%SVG.feFuncG.element;[
<!ENTITY % SVG.feFuncG.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feFuncG.extra.content; )*"
>
<!ELEMENT %SVG.feFuncG.qname; %SVG.feFuncG.content; >
<!-- end of SVG.feFuncG.element -->]]>

<!ENTITY % SVG.feFuncG.attlist "INCLUDE" >
<![%SVG.feFuncG.attlist;[
<!ATTLIST %SVG.feFuncG.qname;

%SVG.Core.attrib;
type ( identity | table | discrete | linear | gamma ) #REQUIRED
tableValues CDATA #IMPLIED
slope %Number.datatype; #IMPLIED
intercept %Number.datatype; #IMPLIED
amplitude %Number.datatype; #IMPLIED
exponent %Number.datatype; #IMPLIED



offset %Number.datatype; #IMPLIED
>
<!-- end of SVG.feFuncG.attlist -->]]>

<!-- feFuncB: Filter Effect Function Blue Element ...... -->

<!ENTITY % SVG.feFuncB.extra.content "" >

<!ENTITY % SVG.feFuncB.element "INCLUDE" >
<![%SVG.feFuncB.element;[
<!ENTITY % SVG.feFuncB.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feFuncB.extra.content; )*"
>
<!ELEMENT %SVG.feFuncB.qname; %SVG.feFuncB.content; >
<!-- end of SVG.feFuncB.element -->]]>

<!ENTITY % SVG.feFuncB.attlist "INCLUDE" >
<![%SVG.feFuncB.attlist;[
<!ATTLIST %SVG.feFuncB.qname;

%SVG.Core.attrib;
type ( identity | table | discrete | linear | gamma ) #REQUIRED
tableValues CDATA #IMPLIED
slope %Number.datatype; #IMPLIED
intercept %Number.datatype; #IMPLIED
amplitude %Number.datatype; #IMPLIED
exponent %Number.datatype; #IMPLIED
offset %Number.datatype; #IMPLIED

>
<!-- end of SVG.feFuncB.attlist -->]]>

<!-- feFuncA: Filter Effect Function Alpha Element ..... -->

<!ENTITY % SVG.feFuncA.extra.content "" >

<!ENTITY % SVG.feFuncA.element "INCLUDE" >
<![%SVG.feFuncA.element;[
<!ENTITY % SVG.feFuncA.content

"( %SVG.animate.qname; | %SVG.set.qname; %SVG.feFuncA.extra.content; )*"
>
<!ELEMENT %SVG.feFuncA.qname; %SVG.feFuncA.content; >
<!-- end of SVG.feFuncA.element -->]]>

<!ENTITY % SVG.feFuncA.attlist "INCLUDE" >
<![%SVG.feFuncA.attlist;[
<!ATTLIST %SVG.feFuncA.qname;

%SVG.Core.attrib;
type ( identity | table | discrete | linear | gamma ) #REQUIRED
tableValues CDATA #IMPLIED
slope %Number.datatype; #IMPLIED
intercept %Number.datatype; #IMPLIED
amplitude %Number.datatype; #IMPLIED
exponent %Number.datatype; #IMPLIED
offset %Number.datatype; #IMPLIED

>
<!-- end of SVG.feFuncA.attlist -->]]>

<!-- end of svg-basic-filter.mod -->

A.3.34 Cursor Module

The Cursor Module defines the Cursor.class element collection and the Cursor.attrib attribute collection.

Collection name Elements in collection

Cursor.class cursor



Collection name Elements in collection

Cursor.attrib cursor

<!-- ....................................................................... -->
<!-- SVG 1.1 Cursor Module ................................................. -->
<!-- file: svg-cursor.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-cursor.mod,v 1.2 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Cursor//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-cursor.mod"

....................................................................... -->

<!-- Cursor

cursor

This module declares markup to provide support for cursor.
-->

<!-- 'cursor' property/attribute value (e.g., 'crosshair', <uri>) -->
<!ENTITY % CursorValue.datatype "CDATA" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.cursor.qname "cursor" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.XLinkRequired.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Cursor.class .................................. -->

<!ENTITY % SVG.Cursor.extra.class "" >

<!ENTITY % SVG.Cursor.class
"| %SVG.cursor.qname; %SVG.Cursor.extra.class;"

>

<!-- SVG.Cursor.attrib ................................. -->

<!ENTITY % SVG.Cursor.extra.attrib "" >

<!ENTITY % SVG.Cursor.attrib
"cursor %CursorValue.datatype; #IMPLIED
%SVG.Cursor.extra.attrib;"

>

<!-- cursor: Cursor Element ............................ -->

<!ENTITY % SVG.cursor.extra.content "" >

<!ENTITY % SVG.cursor.element "INCLUDE" >
<![%SVG.cursor.element;[
<!ENTITY % SVG.cursor.content

"( %SVG.Description.class; %SVG.cursor.extra.content; )*"
>
<!ELEMENT %SVG.cursor.qname; %SVG.cursor.content; >
<!-- end of SVG.cursor.element -->]]>

<!ENTITY % SVG.cursor.attlist "INCLUDE" >
<![%SVG.cursor.attlist;[
<!ATTLIST %SVG.cursor.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.XLinkRequired.attrib;



%SVG.External.attrib;
x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED

>
<!-- end of SVG.cursor.attlist -->]]>

<!-- end of svg-cursor.mod -->

A.3.35 Hyperlinking Module

The Hyperlinking Module defines the Hyperlink.class element collection.

Collection name Elements in collection

Hyperlink.class a

<!-- ....................................................................... -->
<!-- SVG 1.1 Hyperlinking Module ........................................... -->
<!-- file: svg-hyperlink.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-hyperlink.mod,v 1.3 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Hyperlinking//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-hyperlink.mod"

....................................................................... -->

<!-- Hyperlinking

a

This module declares markup to provide support for hyper linking.
-->

<!-- link to this target -->
<!ENTITY % LinkTarget.datatype "NMTOKEN" >

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.a.qname "a" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Marker.attrib "" >
<!ENTITY % SVG.Gradient.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.FilterColor.attrib "" >
<!ENTITY % SVG.GraphicalEvents.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.XLinkReplace.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Hyperlink.class ............................... -->



<!ENTITY % SVG.Hyperlink.extra.class "" >

<!ENTITY % SVG.Hyperlink.class
"| %SVG.a.qname; %SVG.Hyperlink.extra.class;"

>

<!-- SVG.Presentation.attrib ........................... -->

<!ENTITY % SVG.Presentation.extra.attrib "" >

<!ENTITY % SVG.Presentation.attrib
"%SVG.Container.attrib;
%SVG.Viewport.attrib;
%SVG.Text.attrib;
%SVG.TextContent.attrib;
%SVG.Font.attrib;
%SVG.Paint.attrib;
%SVG.Color.attrib;
%SVG.Opacity.attrib;
%SVG.Graphics.attrib;
%SVG.Marker.attrib;
%SVG.ColorProfile.attrib;
%SVG.Gradient.attrib;
%SVG.Clip.attrib;
%SVG.Mask.attrib;
%SVG.Filter.attrib;
%SVG.FilterColor.attrib;
%SVG.Cursor.attrib;
flood-color %SVGColor.datatype; #IMPLIED
flood-opacity %OpacityValue.datatype; #IMPLIED
lighting-color %SVGColor.datatype; #IMPLIED
%SVG.Presentation.extra.attrib;"

>

<!-- a: Anchor Element ................................. -->

<!ENTITY % SVG.a.extra.content "" >

<!ENTITY % SVG.a.element "INCLUDE" >
<![%SVG.a.element;[
<!ENTITY % SVG.a.content

"( #PCDATA | %SVG.Description.class; | %SVG.Animation.class;
%SVG.Structure.class; %SVG.Conditional.class; %SVG.Image.class;
%SVG.Style.class; %SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.a.extra.content; )*"

>
<!ELEMENT %SVG.a.qname; %SVG.a.content; >
<!-- end of SVG.a.element -->]]>

<!ENTITY % SVG.a.attlist "INCLUDE" >
<![%SVG.a.attlist;[
<!ATTLIST %SVG.a.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;
%SVG.XLinkReplace.attrib;
%SVG.External.attrib;
transform %TransformList.datatype; #IMPLIED
target %LinkTarget.datatype; #IMPLIED

>
<!-- end of SVG.a.attlist -->]]>

<!-- end of svg-hyperlink.mod -->

A.3.36 View Module

The View Module defines the View.class element collection.



Collection name Elements in collection

View.class view

<!-- ....................................................................... -->
<!-- SVG 1.1 View Module ................................................... -->
<!-- file: svg-view.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-view.mod,v 1.2 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 View//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-view.mod"

....................................................................... -->

<!-- View

view

This module declares markup to provide support for view.
-->

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.view.qname "view" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.View.class .................................... -->

<!ENTITY % SVG.View.extra.class "" >

<!ENTITY % SVG.View.class
"| %SVG.view.qname; %SVG.View.extra.class;"

>

<!-- view: View Element ................................ -->

<!ENTITY % SVG.view.extra.content "" >

<!ENTITY % SVG.view.element "INCLUDE" >
<![%SVG.view.element;[
<!ENTITY % SVG.view.content

"( %SVG.Description.class; %SVG.view.extra.content; )*"
>
<!ELEMENT %SVG.view.qname; %SVG.view.content; >
<!-- end of SVG.view.element -->]]>

<!ENTITY % SVG.view.attlist "INCLUDE" >
<![%SVG.view.attlist;[
<!ATTLIST %SVG.view.qname;

%SVG.Core.attrib;
%SVG.External.attrib;
viewBox %ViewBoxSpec.datatype; #IMPLIED
preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'
zoomAndPan ( disable | magnify ) 'magnify'
viewTarget CDATA #IMPLIED

>
<!-- end of SVG.view.attlist -->]]>

<!-- end of svg-view.mod -->



A.3.37 Scripting Module

The Script Module defines the Script.class element collection.

Collection name Elements in collection

Script.class script

<!-- ....................................................................... -->
<!-- SVG 1.1 Scripting Module .............................................. -->
<!-- file: svg-script.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-script.mod,v 1.2 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Scripting//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-script.mod"

....................................................................... -->

<!-- Scripting

script

This module declares markup to provide support for scripting.
-->

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.script.qname "script" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.XLink.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Script.class .................................. -->

<!ENTITY % SVG.Script.extra.class "" >

<!ENTITY % SVG.Script.class
"| %SVG.script.qname; %SVG.Script.extra.class;"

>

<!-- script: Script Element ............................ -->

<!ENTITY % SVG.script.extra.content "" >

<!ENTITY % SVG.script.element "INCLUDE" >
<![%SVG.script.element;[
<!ENTITY % SVG.script.content

"( #PCDATA %SVG.script.extra.content; )*"
>
<!ELEMENT %SVG.script.qname; %SVG.script.content; >
<!-- end of SVG.script.element -->]]>

<!ENTITY % SVG.script.attlist "INCLUDE" >
<![%SVG.script.attlist;[
<!ATTLIST %SVG.script.qname;

%SVG.Core.attrib;
%SVG.XLink.attrib;
%SVG.External.attrib;
type %ContentType.datatype; #REQUIRED

>
<!-- end of SVG.script.attlist -->]]>

<!-- end of svg-script.mod -->



A.3.38 Animation Module

The Animation Module defines the Animation.class element collection and the Animation.attrib, AnimationAt-
tribute.attrib, AnimationTiming.attrib, AnimationValue.attrib and AnimationAddtion.attrib attribute collections.

Collection name Elements in collection

Animation.class animate, animateColor, animateTransform, animateMotion, set

Collection name Attributes in collection

Animation.attrib XLink.attrib

AnimationAttribute.attrib attributeName, attributeType

AnimationTiming.attrib begin, dur, end, min, max, restart, repeatCount, repeatDur, fill

AnimationValue.attrib calcMode, values, keyTimes, keySplines, from, to, by

AnimationAddition.attrib additive, accumulate

<!-- ....................................................................... -->
<!-- SVG 1.1 Animation Module .............................................. -->
<!-- file: svg-animation.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-animation.mod,v 1.4 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Animation//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-animation.mod"

....................................................................... -->

<!-- Animation

animate, set, animateMotion, animateColor, animateTransform, mpath

This module declares markup to provide support for animation.
-->

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.animate.qname "animate" >
<!ENTITY % SVG.set.qname "set" >
<!ENTITY % SVG.animateMotion.qname "animateMotion" >
<!ENTITY % SVG.animateColor.qname "animateColor" >
<!ENTITY % SVG.animateTransform.qname "animateTransform" >
<!ENTITY % SVG.mpath.qname "mpath" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.AnimationEvents.attrib "" >
<!ENTITY % SVG.XLink.attrib "" >
<!ENTITY % SVG.XLinkRequired.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Animation.class ............................... -->

<!ENTITY % SVG.Animation.extra.class "" >



<!ENTITY % SVG.Animation.class
"%SVG.animate.qname; | %SVG.set.qname; | %SVG.animateMotion.qname; |
%SVG.animateColor.qname; | %SVG.animateTransform.qname;
%SVG.Animation.extra.class;"

>

<!-- SVG.Animation.attrib .............................. -->

<!ENTITY % SVG.Animation.extra.attrib "" >

<!ENTITY % SVG.Animation.attrib
"%SVG.XLink.attrib;
%SVG.Animation.extra.attrib;"

>

<!-- SVG.AnimationAttribute.attrib ..................... -->

<!ENTITY % SVG.AnimationAttribute.extra.attrib "" >

<!ENTITY % SVG.AnimationAttribute.attrib
"attributeName  CDATA  #REQUIRED
attributeType  CDATA  #IMPLIED
%SVG.AnimationAttribute.extra.attrib;"

>

<!-- SVG.AnimationTiming.attrib ........................ -->

<!ENTITY % SVG.AnimationTiming.extra.attrib "" >

<!ENTITY % SVG.AnimationTiming.attrib
"begin CDATA #IMPLIED
dur CDATA #IMPLIED
end CDATA #IMPLIED
min CDATA #IMPLIED
max CDATA #IMPLIED
restart ( always | never | whenNotActive ) 'always'
repeatCount CDATA #IMPLIED
repeatDur CDATA #IMPLIED
fill ( remove | freeze ) 'remove'
%SVG.AnimationTiming.extra.attrib;"

>

<!-- SVG.AnimationValue.attrib ......................... -->

<!ENTITY % SVG.AnimationValue.extra.attrib "" >

<!ENTITY % SVG.AnimationValue.attrib
"calcMode ( discrete | linear | paced | spline ) 'linear'
values CDATA #IMPLIED
keyTimes CDATA #IMPLIED
keySplines CDATA #IMPLIED
from CDATA #IMPLIED
to CDATA #IMPLIED
by CDATA #IMPLIED
%SVG.AnimationValue.extra.attrib;"

>

<!-- SVG.AnimationAddtion.attrib ....................... -->

<!ENTITY % SVG.AnimationAddtion.extra.attrib "" >

<!ENTITY % SVG.AnimationAddtion.attrib
"additive ( replace | sum ) 'replace'
accumulate ( none | sum ) 'none'
%SVG.AnimationAddtion.extra.attrib;"

>

<!-- animate: Animate Element .......................... -->

<!ENTITY % SVG.animate.extra.content "" >

<!ENTITY % SVG.animate.element "INCLUDE" >
<![%SVG.animate.element;[
<!ENTITY % SVG.animate.content

"( %SVG.Description.class; %SVG.animate.extra.content; )*"
>
<!ELEMENT %SVG.animate.qname; %SVG.animate.content; >



<!-- end of SVG.animate.element -->]]>

<!ENTITY % SVG.animate.attlist "INCLUDE" >
<![%SVG.animate.attlist;[
<!ATTLIST %SVG.animate.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.AnimationEvents.attrib;
%SVG.External.attrib;
%SVG.Animation.attrib;
%SVG.AnimationAttribute.attrib;
%SVG.AnimationTiming.attrib;
%SVG.AnimationValue.attrib;
%SVG.AnimationAddtion.attrib;

>
<!-- end of SVG.animate.attlist -->]]>

<!-- set: Set Element .................................. -->

<!ENTITY % SVG.set.extra.content "" >

<!ENTITY % SVG.set.element "INCLUDE" >
<![%SVG.set.element;[
<!ENTITY % SVG.set.content

"( %SVG.Description.class; %SVG.set.extra.content; )*"
>
<!ELEMENT %SVG.set.qname; %SVG.set.content; >
<!-- end of SVG.set.element -->]]>

<!ENTITY % SVG.set.attlist "INCLUDE" >
<![%SVG.set.attlist;[
<!ATTLIST %SVG.set.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.AnimationEvents.attrib;
%SVG.External.attrib;
%SVG.Animation.attrib;
%SVG.AnimationAttribute.attrib;
%SVG.AnimationTiming.attrib;
to CDATA #IMPLIED

>
<!-- end of SVG.set.attlist -->]]>

<!-- animateMotion: Animate Motion Element ............. -->

<!ENTITY % SVG.animateMotion.extra.content "" >

<!ENTITY % SVG.animateMotion.element "INCLUDE" >
<![%SVG.animateMotion.element;[
<!ENTITY % SVG.animateMotion.content

"( ( %SVG.mpath.qname;,
( %SVG.Description.class; %SVG.animateMotion.extra.content; )* )

| ( ( %SVG.Description.class; %SVG.animateMotion.extra.content; )+,
%SVG.mpath.qname;,
( ( %SVG.Description.class; %SVG.animateMotion.extra.content; )* )? ) )"

>
<!ELEMENT %SVG.animateMotion.qname; %SVG.animateMotion.content; >
<!-- end of SVG.animateMotion.element -->]]>

<!ENTITY % SVG.animateMotion.attlist "INCLUDE" >
<![%SVG.animateMotion.attlist;[
<!ATTLIST %SVG.animateMotion.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.AnimationEvents.attrib;
%SVG.External.attrib;
%SVG.Animation.attrib;
%SVG.AnimationTiming.attrib;
%SVG.AnimationAddtion.attrib;
calcMode ( discrete | linear | paced | spline ) 'paced'
values CDATA #IMPLIED
keyTimes CDATA #IMPLIED
keySplines CDATA #IMPLIED
from CDATA #IMPLIED
to CDATA #IMPLIED
by CDATA #IMPLIED
path CDATA #IMPLIED



keyPoints CDATA #IMPLIED
rotate CDATA #IMPLIED
origin CDATA #IMPLIED

>
<!-- end of SVG.animateMotion.attlist -->]]>

<!-- animateColor: Animate Color Element ............... -->

<!ENTITY % SVG.animateColor.extra.content "" >

<!ENTITY % SVG.animateColor.element "INCLUDE" >
<![%SVG.animateColor.element;[
<!ENTITY % SVG.animateColor.content

"( %SVG.Description.class; %SVG.animateColor.extra.content; )*"
>
<!ELEMENT %SVG.animateColor.qname; %SVG.animateColor.content; >
<!-- end of SVG.animateColor.element -->]]>

<!ENTITY % SVG.animateColor.attlist "INCLUDE" >
<![%SVG.animateColor.attlist;[
<!ATTLIST %SVG.animateColor.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.AnimationEvents.attrib;
%SVG.External.attrib;
%SVG.Animation.attrib;
%SVG.AnimationAttribute.attrib;
%SVG.AnimationTiming.attrib;
%SVG.AnimationValue.attrib;
%SVG.AnimationAddtion.attrib;

>
<!-- end of SVG.animateColor.attlist -->]]>

<!-- animateTransform: Animate Transform Element ....... -->

<!ENTITY % SVG.animateTransform.extra.content "" >

<!ENTITY % SVG.animateTransform.element "INCLUDE" >
<![%SVG.animateTransform.element;[
<!ENTITY % SVG.animateTransform.content

"( %SVG.Description.class; %SVG.animateTransform.extra.content; )*"
>
<!ELEMENT %SVG.animateTransform.qname; %SVG.animateTransform.content; >
<!-- end of SVG.animateTransform.element -->]]>

<!ENTITY % SVG.animateTransform.attlist "INCLUDE" >
<![%SVG.animateTransform.attlist;[
<!ATTLIST %SVG.animateTransform.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.AnimationEvents.attrib;
%SVG.External.attrib;
%SVG.Animation.attrib;
%SVG.AnimationAttribute.attrib;
%SVG.AnimationTiming.attrib;
%SVG.AnimationValue.attrib;
%SVG.AnimationAddtion.attrib;
type ( translate | scale | rotate | skewX | skewY ) 'translate'

>
<!-- end of SVG.animateTransform.attlist -->]]>

<!-- mpath: Motion Path Element ........................ -->

<!ENTITY % SVG.mpath.extra.content "" >

<!ENTITY % SVG.mpath.element "INCLUDE" >
<![%SVG.mpath.element;[
<!ENTITY % SVG.mpath.content

"( %SVG.Description.class; %SVG.mpath.extra.content; )*"
>
<!ELEMENT %SVG.mpath.qname; %SVG.mpath.content; >
<!-- end of SVG.mpath.element -->]]>

<!ENTITY % SVG.mpath.attlist "INCLUDE" >
<![%SVG.mpath.attlist;[
<!ATTLIST %SVG.mpath.qname;

%SVG.Core.attrib;



%SVG.XLinkRequired.attrib;
%SVG.External.attrib;

>
<!-- end of SVG.mpath.attlist -->]]>

<!-- end of svg-animation.mod -->

A.3.39 Font Module

The Font Module defines the Font.class element collection.

Collection name Elements in collection

Font.class font, font-face

<!-- ....................................................................... -->
<!-- SVG 1.1 Font Module ................................................... -->
<!-- file: svg-font.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-font.mod,v 1.6 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Font//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-font.mod"

....................................................................... -->

<!-- Font

font, font-face, glyph, missing-glyph, hkern, vkern, font-face-src,
font-face-uri, font-face-format, font-face-name

This module declares markup to provide support for template.
-->

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.font.qname "font" >
<!ENTITY % SVG.font-face.qname "font-face" >
<!ENTITY % SVG.glyph.qname "glyph" >
<!ENTITY % SVG.missing-glyph.qname "missing-glyph" >
<!ENTITY % SVG.hkern.qname "hkern" >
<!ENTITY % SVG.vkern.qname "vkern" >
<!ENTITY % SVG.font-face-src.qname "font-face-src" >
<!ENTITY % SVG.font-face-uri.qname "font-face-uri" >
<!ENTITY % SVG.font-face-format.qname "font-face-format" >
<!ENTITY % SVG.font-face-name.qname "font-face-name" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Container.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Marker.attrib "" >
<!ENTITY % SVG.ColorProfile.attrib "" >
<!ENTITY % SVG.Gradient.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >



<!ENTITY % SVG.FilterColor.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.XLinkRequired.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Font.class .................................... -->

<!ENTITY % SVG.Font.extra.class "" >

<!ENTITY % SVG.Font.class
"| %SVG.font.qname; | %SVG.font-face.qname; %SVG.Font.extra.class;"

>

<!-- SVG.Presentation.attrib ........................... -->

<!ENTITY % SVG.Presentation.extra.attrib "" >

<!ENTITY % SVG.Presentation.attrib
"%SVG.Container.attrib;
%SVG.Viewport.attrib;
%SVG.Text.attrib;
%SVG.TextContent.attrib;
%SVG.Font.attrib;
%SVG.Paint.attrib;
%SVG.Color.attrib;
%SVG.Opacity.attrib;
%SVG.Graphics.attrib;
%SVG.Marker.attrib;
%SVG.ColorProfile.attrib;
%SVG.Gradient.attrib;
%SVG.Clip.attrib;
%SVG.Mask.attrib;
%SVG.Filter.attrib;
%SVG.FilterColor.attrib;
%SVG.Cursor.attrib;
flood-color %SVGColor.datatype; #IMPLIED
flood-opacity %OpacityValue.datatype; #IMPLIED
lighting-color %SVGColor.datatype; #IMPLIED
%SVG.Presentation.extra.attrib;"

>

<!-- font: Font Element ................................ -->

<!ENTITY % SVG.font.extra.content "" >

<!ENTITY % SVG.font.element "INCLUDE" >
<![%SVG.font.element;[
<!ENTITY % SVG.font.content

"( %SVG.Description.class; | %SVG.font-face.qname;
| %SVG.missing-glyph.qname; | %SVG.glyph.qname; | %SVG.hkern.qname;
| %SVG.vkern.qname; %SVG.font.extra.content; )*"

>
<!ELEMENT %SVG.font.qname; %SVG.font.content; >
<!-- end of SVG.font.element -->]]>

<!ENTITY % SVG.font.attlist "INCLUDE" >
<![%SVG.font.attlist;[
<!ATTLIST %SVG.font.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.External.attrib;
horiz-origin-x %Number.datatype; #IMPLIED
horiz-origin-y %Number.datatype; #IMPLIED
horiz-adv-x %Number.datatype; #REQUIRED
vert-origin-x %Number.datatype; #IMPLIED
vert-origin-y %Number.datatype; #IMPLIED
vert-adv-y %Number.datatype; #IMPLIED

>
<!-- end of SVG.font.attlist -->]]>

<!-- font-face: Font Face Element ...................... -->

<!ENTITY % SVG.font-face.extra.content "" >

<!ENTITY % SVG.font-face.element "INCLUDE" >
<![%SVG.font-face.element;[



<!ENTITY % SVG.font-face.content
"( ( %SVG.font-face-src.qname;,

( %SVG.Description.class; %SVG.font-face.extra.content; )* )
| ( ( %SVG.Description.class; %SVG.font-face.extra.content; )+,

%SVG.font-face-src.qname;,
( ( %SVG.Description.class; %SVG.font-face.extra.content; )* )? ) )"

>
<!ELEMENT %SVG.font-face.qname; %SVG.font-face.content; >
<!-- end of SVG.font-face.element -->]]>

<!ENTITY % SVG.font-face.attlist "INCLUDE" >
<![%SVG.font-face.attlist;[
<!ATTLIST %SVG.font-face.qname;

%SVG.Core.attrib;
font-family CDATA #IMPLIED
font-style CDATA #IMPLIED
font-variant CDATA #IMPLIED
font-weight CDATA #IMPLIED
font-stretch CDATA #IMPLIED
font-size CDATA #IMPLIED
unicode-range CDATA #IMPLIED
units-per-em %Number.datatype; #IMPLIED
panose-1 CDATA #IMPLIED
stemv %Number.datatype; #IMPLIED
stemh %Number.datatype; #IMPLIED
slope %Number.datatype; #IMPLIED
cap-height %Number.datatype; #IMPLIED
x-height %Number.datatype; #IMPLIED
accent-height %Number.datatype; #IMPLIED
ascent %Number.datatype; #IMPLIED
descent %Number.datatype; #IMPLIED
widths CDATA #IMPLIED
bbox CDATA #IMPLIED
ideographic %Number.datatype; #IMPLIED
alphabetic %Number.datatype; #IMPLIED
mathematical %Number.datatype; #IMPLIED
hanging %Number.datatype; #IMPLIED
v-ideographic %Number.datatype; #IMPLIED
v-alphabetic %Number.datatype; #IMPLIED
v-mathematical %Number.datatype; #IMPLIED
v-hanging %Number.datatype; #IMPLIED
underline-position %Number.datatype; #IMPLIED
underline-thickness %Number.datatype; #IMPLIED
strikethrough-position %Number.datatype; #IMPLIED
strikethrough-thickness %Number.datatype; #IMPLIED
overline-position %Number.datatype; #IMPLIED
overline-thickness %Number.datatype; #IMPLIED

>
<!-- end of SVG.font-face.attlist -->]]>

<!-- glyph: Glyph Element .............................. -->

<!ENTITY % SVG.glyph.extra.content "" >

<!ENTITY % SVG.glyph.element "INCLUDE" >
<![%SVG.glyph.element;[
<!ENTITY % SVG.glyph.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;
%SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;
%SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.glyph.extra.content; )*"

>
<!ELEMENT %SVG.glyph.qname; %SVG.glyph.content; >
<!-- end of SVG.glyph.element -->]]>

<!ENTITY % SVG.glyph.attlist "INCLUDE" >
<![%SVG.glyph.attlist;[
<!ATTLIST %SVG.glyph.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
unicode CDATA #IMPLIED
glyph-name CDATA #IMPLIED
d %PathData.datatype; #IMPLIED



orientation CDATA #IMPLIED
arabic-form CDATA #IMPLIED
lang %LanguageCodes.datatype; #IMPLIED
horiz-adv-x %Number.datatype; #IMPLIED
vert-origin-x %Number.datatype; #IMPLIED
vert-origin-y %Number.datatype; #IMPLIED
vert-adv-y %Number.datatype; #IMPLIED

>
<!-- end of SVG.glyph.attlist -->]]>

<!-- missing-glyph: Missing Glyph Element .............. -->

<!ENTITY % SVG.missing-glyph.extra.content "" >

<!ENTITY % SVG.missing-glyph.element "INCLUDE" >
<![%SVG.missing-glyph.element;[
<!ENTITY % SVG.missing-glyph.content

"( %SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;
%SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;
%SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;
%SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;
%SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;
%SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;
%SVG.Font.class; %SVG.Extensibility.class; %SVG.missing-glyph.extra.content; )*"

>
<!ELEMENT %SVG.missing-glyph.qname; %SVG.missing-glyph.content; >
<!-- end of SVG.missing-glyph.element -->]]>

<!ENTITY % SVG.missing-glyph.attlist "INCLUDE" >
<![%SVG.missing-glyph.attlist;[
<!ATTLIST %SVG.missing-glyph.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
d %PathData.datatype; #IMPLIED
horiz-adv-x %Number.datatype; #IMPLIED
vert-origin-x %Number.datatype; #IMPLIED
vert-origin-y %Number.datatype; #IMPLIED
vert-adv-y %Number.datatype; #IMPLIED

>
<!-- end of SVG.missing-glyph.attlist -->]]>

<!-- hkern: Horizontal Kerning Element ................. -->

<!ENTITY % SVG.hkern.element "INCLUDE" >
<![%SVG.hkern.element;[
<!ENTITY % SVG.hkern.content "EMPTY" >
<!ELEMENT %SVG.hkern.qname; %SVG.hkern.content; >
<!-- end of SVG.hkern.element -->]]>

<!ENTITY % SVG.hkern.attlist "INCLUDE" >
<![%SVG.hkern.attlist;[
<!ATTLIST %SVG.hkern.qname;

%SVG.Core.attrib;
u1 CDATA #IMPLIED
g1 CDATA #IMPLIED
u2 CDATA #IMPLIED
g2 CDATA #IMPLIED
k %Number.datatype; #REQUIRED

>
<!-- end of SVG.hkern.attlist -->]]>

<!-- vkern: Vertical Kerning Element ................... -->

<!ENTITY % SVG.vkern.element "INCLUDE" >
<![%SVG.vkern.element;[
<!ENTITY % SVG.vkern.content "EMPTY" >
<!ELEMENT %SVG.vkern.qname; %SVG.vkern.content; >
<!-- end of SVG.vkern.element -->]]>

<!ENTITY % SVG.vkern.attlist "INCLUDE" >
<![%SVG.vkern.attlist;[
<!ATTLIST %SVG.vkern.qname;

%SVG.Core.attrib;
u1 CDATA #IMPLIED
g1 CDATA #IMPLIED
u2 CDATA #IMPLIED



g2 CDATA #IMPLIED
k %Number.datatype; #REQUIRED

>
<!-- end of SVG.vkern.attlist -->]]>

<!-- font-face-src: Font Face Source Element ........... -->

<!ENTITY % SVG.font-face-src.extra.content "" >

<!ENTITY % SVG.font-face-src.element "INCLUDE" >
<![%SVG.font-face-src.element;[
<!ENTITY % SVG.font-face-src.content

"( %SVG.font-face-uri.qname; | %SVG.font-face-name.qname;
%SVG.font-face-src.extra.content; )+"

>
<!ELEMENT %SVG.font-face-src.qname; %SVG.font-face-src.content; >
<!-- end of SVG.font-face-src.element -->]]>

<!ENTITY % SVG.font-face-src.attlist "INCLUDE" >
<![%SVG.font-face-src.attlist;[
<!ATTLIST %SVG.font-face-src.qname;

%SVG.Core.attrib;
>
<!-- end of SVG.font-face-src.attlist -->]]>

<!-- font-face-uri: Font Face URI Element .............. -->

<!ENTITY % SVG.font-face-uri.extra.content "" >

<!ENTITY % SVG.font-face-uri.element "INCLUDE" >
<![%SVG.font-face-uri.element;[
<!ENTITY % SVG.font-face-uri.content

"( %SVG.font-face-format.qname; %SVG.font-face-uri.extra.content; )*"
>
<!ELEMENT %SVG.font-face-uri.qname; %SVG.font-face-uri.content; >
<!-- end of SVG.font-face-uri.element -->]]>

<!ENTITY % SVG.font-face-uri.attlist "INCLUDE" >
<![%SVG.font-face-uri.attlist;[
<!ATTLIST %SVG.font-face-uri.qname;

%SVG.Core.attrib;
%SVG.XLinkRequired.attrib;

>
<!-- end of SVG.font-face-uri.attlist -->]]>

<!-- font-face-format: Font Face Format Element ........ -->

<!ENTITY % SVG.font-face-format.element "INCLUDE" >
<![%SVG.font-face-format.element;[
<!ENTITY % SVG.font-face-format.content "EMPTY" >
<!ELEMENT %SVG.font-face-format.qname; %SVG.font-face-format.content; >
<!-- end of SVG.font-face-format.element -->]]>

<!ENTITY % SVG.font-face-format.attlist "INCLUDE" >
<![%SVG.font-face-format.attlist;[
<!ATTLIST %SVG.font-face-format.qname;

%SVG.Core.attrib;
string CDATA #IMPLIED

>
<!-- end of SVG.font-face-format.attlist -->]]>

<!-- font-face-name: Font Face Name Element ............ -->

<!ENTITY % SVG.font-face-name.element "INCLUDE" >
<![%SVG.font-face-name.element;[
<!ENTITY % SVG.font-face-name.content "EMPTY" >
<!ELEMENT %SVG.font-face-name.qname; %SVG.font-face-name.content; >
<!-- end of SVG.font-face-name.element -->]]>

<!ENTITY % SVG.font-face-name.attlist "INCLUDE" >
<![%SVG.font-face-name.attlist;[
<!ATTLIST %SVG.font-face-name.qname;

%SVG.Core.attrib;
name CDATA #IMPLIED

>
<!-- end of SVG.font-face-name.attlist -->]]>



<!-- end of svg-font.mod -->

A.3.40 Basic Font Module

The Basic Font Module defines the Font.class element collection.

Collection name Elements in collection

Font.class font, font-face

<!-- ....................................................................... -->
<!-- SVG 1.1 Basic Font Module ............................................. -->
<!-- file: svg-basic-font.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-basic-font.mod,v 1.4 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Basic Font//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-basic-font.mod"

....................................................................... -->

<!-- Basic Font

font, font-face, glyph, missing-glyph, hkern, font-face-src,
font-face-name

This module declares markup to provide support for template.
-->

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.font.qname "font" >
<!ENTITY % SVG.font-face.qname "font-face" >
<!ENTITY % SVG.glyph.qname "glyph" >
<!ENTITY % SVG.missing-glyph.qname "missing-glyph" >
<!ENTITY % SVG.hkern.qname "hkern" >
<!ENTITY % SVG.font-face-src.qname "font-face-src" >
<!ENTITY % SVG.font-face-name.qname "font-face-name" >

<!-- Attribute Collections (Default) ................... -->

<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Container.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Marker.attrib "" >
<!ENTITY % SVG.ColorProfile.attrib "" >
<!ENTITY % SVG.Gradient.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.FilterColor.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.XLinkRequired.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Font.class .................................... -->



<!ENTITY % SVG.Font.extra.class "" >

<!ENTITY % SVG.Font.class
"| %SVG.font.qname; | %SVG.font-face.qname; %SVG.Font.extra.class;"

>

<!-- font: Font Element ................................ -->

<!ENTITY % SVG.font.extra.content "" >

<!ENTITY % SVG.font.element "INCLUDE" >
<![%SVG.font.element;[
<!ENTITY % SVG.font.content

"( %SVG.Description.class; | %SVG.font-face.qname;
| %SVG.missing-glyph.qname; | %SVG.glyph.qname; | %SVG.hkern.qname;

%SVG.font.extra.content; )*"
>
<!ELEMENT %SVG.font.qname; %SVG.font.content; >
<!-- end of SVG.font.element -->]]>

<!ENTITY % SVG.font.attlist "INCLUDE" >
<![%SVG.font.attlist;[
<!ATTLIST %SVG.font.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
%SVG.External.attrib;
horiz-origin-x %Number.datatype; #IMPLIED
horiz-adv-x %Number.datatype; #REQUIRED

>
<!-- end of SVG.font.attlist -->]]>

<!-- font-face: Font Face Element ...................... -->

<!ENTITY % SVG.font-face.extra.content "" >

<!ENTITY % SVG.font-face.element "INCLUDE" >
<![%SVG.font-face.element;[
<!ENTITY % SVG.font-face.content

"( ( %SVG.font-face-src.qname;,
( %SVG.Description.class; %SVG.font-face.extra.content; )* )

| ( ( %SVG.Description.class; %SVG.font-face.extra.content; )+,
%SVG.font-face-src.qname;,
( ( %SVG.Description.class; %SVG.font-face.extra.content; )* )? ) )"

>
<!ELEMENT %SVG.font-face.qname; %SVG.font-face.content; >
<!-- end of SVG.font-face.element -->]]>

<!ENTITY % SVG.font-face.attlist "INCLUDE" >
<![%SVG.font-face.attlist;[
<!ATTLIST %SVG.font-face.qname;

%SVG.Core.attrib;
font-family CDATA #IMPLIED
font-style CDATA #IMPLIED
font-variant CDATA #IMPLIED
font-weight CDATA #IMPLIED
font-stretch CDATA #IMPLIED
font-size CDATA #IMPLIED
unicode-range CDATA #IMPLIED
units-per-em %Number.datatype; #IMPLIED
panose-1 CDATA #IMPLIED
stemv %Number.datatype; #IMPLIED
stemh %Number.datatype; #IMPLIED
slope %Number.datatype; #IMPLIED
cap-height %Number.datatype; #IMPLIED
x-height %Number.datatype; #IMPLIED
accent-height %Number.datatype; #IMPLIED
ascent %Number.datatype; #IMPLIED
descent %Number.datatype; #IMPLIED
widths CDATA #IMPLIED
bbox CDATA #IMPLIED
ideographic %Number.datatype; #IMPLIED
alphabetic %Number.datatype; #IMPLIED
mathematical %Number.datatype; #IMPLIED
hanging %Number.datatype; #IMPLIED
underline-position %Number.datatype; #IMPLIED
underline-thickness %Number.datatype; #IMPLIED
strikethrough-position %Number.datatype; #IMPLIED



strikethrough-thickness %Number.datatype; #IMPLIED
overline-position %Number.datatype; #IMPLIED
overline-thickness %Number.datatype; #IMPLIED

>
<!-- end of SVG.font-face.attlist -->]]>

<!-- glyph: Glyph Element .............................. -->

<!ENTITY % SVG.glyph.extra.content "" >

<!ENTITY % SVG.glyph.element "INCLUDE" >
<![%SVG.glyph.element;[
<!ENTITY % SVG.glyph.content

"( %SVG.Description.class; %SVG.glyph.extra.content; )*"
>
<!ELEMENT %SVG.glyph.qname; %SVG.glyph.content; >
<!-- end of SVG.glyph.element -->]]>

<!ENTITY % SVG.glyph.attlist "INCLUDE" >
<![%SVG.glyph.attlist;[
<!ATTLIST %SVG.glyph.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
unicode CDATA #IMPLIED
glyph-name CDATA #IMPLIED
d %PathData.datatype; #IMPLIED
arabic-form CDATA #IMPLIED
lang %LanguageCodes.datatype; #IMPLIED
horiz-adv-x %Number.datatype; #IMPLIED

>
<!-- end of SVG.glyph.attlist -->]]>

<!-- missing-glyph: Missing Glyph Element .............. -->

<!ENTITY % SVG.missing-glyph.extra.content "" >

<!ENTITY % SVG.missing-glyph.element "INCLUDE" >
<![%SVG.missing-glyph.element;[
<!ENTITY % SVG.missing-glyph.content

"( %SVG.Description.class; %SVG.missing-glyph.extra.content; )*"
>
<!ELEMENT %SVG.missing-glyph.qname; %SVG.missing-glyph.content; >
<!-- end of SVG.missing-glyph.element -->]]>

<!ENTITY % SVG.missing-glyph.attlist "INCLUDE" >
<![%SVG.missing-glyph.attlist;[
<!ATTLIST %SVG.missing-glyph.qname;

%SVG.Core.attrib;
%SVG.Style.attrib;
d %PathData.datatype; #IMPLIED
horiz-adv-x %Number.datatype; #IMPLIED

>
<!-- end of SVG.missing-glyph.attlist -->]]>

<!-- hkern: Horizontal Kerning Element ................. -->

<!ENTITY % SVG.hkern.element "INCLUDE" >
<![%SVG.hkern.element;[
<!ENTITY % SVG.hkern.content "EMPTY" >
<!ELEMENT %SVG.hkern.qname; %SVG.hkern.content; >
<!-- end of SVG.hkern.element -->]]>

<!ENTITY % SVG.hkern.attlist "INCLUDE" >
<![%SVG.hkern.attlist;[
<!ATTLIST %SVG.hkern.qname;

%SVG.Core.attrib;
u1 CDATA #IMPLIED
g1 CDATA #IMPLIED
u2 CDATA #IMPLIED
g2 CDATA #IMPLIED
k %Number.datatype; #REQUIRED

>
<!-- end of SVG.hkern.attlist -->]]>

<!-- font-face-src: Font Face Source Element ........... -->

<!ENTITY % SVG.font-face-src.extra.content "" >



<!ENTITY % SVG.font-face-src.element "INCLUDE" >
<![%SVG.font-face-src.element;[
<!ENTITY % SVG.font-face-src.content

"( %SVG.font-face-name.qname; %SVG.font-face-src.extra.content; )+"
>
<!ELEMENT %SVG.font-face-src.qname; %SVG.font-face-src.content; >
<!-- end of SVG.font-face-src.element -->]]>

<!ENTITY % SVG.font-face-src.attlist "INCLUDE" >
<![%SVG.font-face-src.attlist;[
<!ATTLIST %SVG.font-face-src.qname;

%SVG.Core.attrib;
>
<!-- end of SVG.font-face-src.attlist -->]]>

<!-- font-face-name: Font Face Name Element ............ -->

<!ENTITY % SVG.font-face-name.element "INCLUDE" >
<![%SVG.font-face-name.element;[
<!ENTITY % SVG.font-face-name.content "EMPTY" >
<!ELEMENT %SVG.font-face-name.qname; %SVG.font-face-name.content; >
<!-- end of SVG.font-face-name.element -->]]>

<!ENTITY % SVG.font-face-name.attlist "INCLUDE" >
<![%SVG.font-face-name.attlist;[
<!ATTLIST %SVG.font-face-name.qname;

%SVG.Core.attrib;
name CDATA #IMPLIED

>
<!-- end of SVG.font-face-name.attlist -->]]>

<!-- end of svg-basic-font.mod -->

A.3.41 Extensibility Module

The Extensibility Module defines the Extensibility.class element collection.

Collection name Elements in collection

Extensibility.class foreignObject

<!-- ....................................................................... -->
<!-- SVG 1.1 Extensibility Module .......................................... -->
<!-- file: svg-extensibility.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg-extensibility.mod,v 1.2 2011/07/08 03:18:58 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Extensibility//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg-extensibility.mod"

....................................................................... -->

<!-- Extensibility

foreignObject

This module declares markup to provide support for extensibility.
-->

<!-- Qualified Names (Default) ......................... -->

<!ENTITY % SVG.foreignObject.qname "foreignObject" >

<!-- Attribute Collections (Default) ................... -->



<!ENTITY % SVG.Core.attrib "" >
<!ENTITY % SVG.Conditional.attrib "" >
<!ENTITY % SVG.Style.attrib "" >
<!ENTITY % SVG.Viewport.attrib "" >
<!ENTITY % SVG.Text.attrib "" >
<!ENTITY % SVG.TextContent.attrib "" >
<!ENTITY % SVG.Font.attrib "" >
<!ENTITY % SVG.Paint.attrib "" >
<!ENTITY % SVG.Color.attrib "" >
<!ENTITY % SVG.Opacity.attrib "" >
<!ENTITY % SVG.Graphics.attrib "" >
<!ENTITY % SVG.Marker.attrib "" >
<!ENTITY % SVG.Gradient.attrib "" >
<!ENTITY % SVG.Clip.attrib "" >
<!ENTITY % SVG.Mask.attrib "" >
<!ENTITY % SVG.Filter.attrib "" >
<!ENTITY % SVG.FilterColor.attrib "" >
<!ENTITY % SVG.GraphicalEvents.attrib "" >
<!ENTITY % SVG.Cursor.attrib "" >
<!ENTITY % SVG.External.attrib "" >

<!-- SVG.Extensibility.class ........................... -->

<!ENTITY % SVG.Extensibility.extra.class "" >

<!ENTITY % SVG.Extensibility.class
"| %SVG.foreignObject.qname; %SVG.Extensibility.extra.class;"

>

<!-- SVG.Presentation.attrib ........................... -->

<!ENTITY % SVG.Presentation.extra.attrib "" >

<!ENTITY % SVG.Presentation.attrib
"%SVG.Container.attrib;
%SVG.Viewport.attrib;
%SVG.Text.attrib;
%SVG.TextContent.attrib;
%SVG.Font.attrib;
%SVG.Paint.attrib;
%SVG.Color.attrib;
%SVG.Opacity.attrib;
%SVG.Graphics.attrib;
%SVG.Marker.attrib;
%SVG.ColorProfile.attrib;
%SVG.Gradient.attrib;
%SVG.Clip.attrib;
%SVG.Mask.attrib;
%SVG.Filter.attrib;
%SVG.FilterColor.attrib;
%SVG.Cursor.attrib;
flood-color %SVGColor.datatype; #IMPLIED
flood-opacity %OpacityValue.datatype; #IMPLIED
lighting-color %SVGColor.datatype; #IMPLIED
%SVG.Presentation.extra.attrib;"

>

<!-- foreignObject: Foreign Object Element ............. -->

<!ENTITY % SVG.foreignObject.extra.content "" >

<!ENTITY % SVG.foreignObject.element "INCLUDE" >
<![%SVG.foreignObject.element;[
<!ENTITY % SVG.foreignObject.content

"( #PCDATA %SVG.foreignObject.extra.content; )*"
>
<!ELEMENT %SVG.foreignObject.qname; %SVG.foreignObject.content; >
<!-- end of SVG.foreignObject.element -->]]>

<!ENTITY % SVG.foreignObject.attlist "INCLUDE" >
<![%SVG.foreignObject.attlist;[
<!ATTLIST %SVG.foreignObject.qname;

%SVG.Core.attrib;
%SVG.Conditional.attrib;
%SVG.Style.attrib;
%SVG.Presentation.attrib;
%SVG.GraphicalEvents.attrib;



%SVG.External.attrib;
x %Coordinate.datatype; #IMPLIED
y %Coordinate.datatype; #IMPLIED
width %Length.datatype; #REQUIRED
height %Length.datatype; #REQUIRED
transform %TransformList.datatype; #IMPLIED

>
<!-- end of SVG.foreignObject.attlist -->]]>

<!-- end of svg-extensibility.mod -->

A.4 SVG 1.1 Document Type Definition

A.4.1 SVG 1.1 DTD Driver

This section contains the DTD driver for the SVG 1.1 document type implementation as an XML DTD. It relies
upon SVG 1.1 module implementations defined in Section A.3.

<!-- ....................................................................... -->
<!-- SVG 1.1 DTD ........................................................... -->
<!-- file: svg11.dtd
-->

<!-- SVG 1.1 DTD

This is SVG, a language for describing two-dimensional graphics in XML.

The Scalable Vector Graphics (SVG)
Copyright 2001, 2002, 2011 World Wide Web Consortium

(Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved.

Permission to use, copy, modify and distribute the SVG DTD and its
accompanying documentation for any purpose and without fee is hereby
granted in perpetuity, provided that the above copyright notice and
this paragraph appear in all copies.  The copyright holders make no
representation about the suitability of the DTD for any purpose.

It is provided "as is" without expressed or implied warranty.

Author:   Jun Fujisawa <fujisawa.jun@canon.co.jp>
Revision: $Id: svg11.dtd,v 1.2 2011/07/08 03:19:00 cmccorma Exp $

-->
<!-- This is the driver file for version 1.1 of the SVG DTD.

This DTD is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//DTD SVG 1.1//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"

-->
<!ENTITY % SVG.version "-//W3C//DTD SVG 1.1//EN" >

<!-- Use this URI to identify the default namespace:

"http://www.w3.org/2000/svg"

See the Qualified Names module for information
on the use of namespace prefixes in the DTD.

-->
<!ENTITY % NS.prefixed "IGNORE" >
<!ENTITY % SVG.prefix "" >

<!-- reserved for future use with document profiles -->
<!ENTITY % SVG.profile "" >

<!-- ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: -->

<!-- Pre-Framework Redeclaration Placeholder ..................... -->



<!ENTITY % svg-prefw-redecl.module "IGNORE" >
<![%svg-prefw-redecl.module;[
%svg-prefw-redecl.mod;]]>

<!-- Document Model Module ....................................... -->
<!ENTITY % svg-model.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Document Model//EN"
"svg11-model.mod" >

<!-- Attribute Collection Module ................................. -->
<!ENTITY % svg-attribs.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Attribute Collection//EN"
"svg11-attribs.mod" >

<!-- Modular Framework Module .................................... -->
<!ENTITY % svg-framework.module "INCLUDE" >
<![%svg-framework.module;[
<!ENTITY % svg-framework.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Modular Framework//EN"
"svg-framework.mod" >

%svg-framework.mod;]]>

<!-- Post-Framework Redeclaration Placeholder .................... -->
<!ENTITY % svg-postfw-redecl.module "IGNORE" >
<![%svg-postfw-redecl.module;[
%svg-postfw-redecl.mod;]]>

<!-- ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: -->

<!-- Core Attribute Module ....................................... -->
<!ENTITY % svg-core-attrib.module "INCLUDE" >
<![%svg-core-attrib.module;[
<!ENTITY % svg-core-attrib.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Core Attribute//EN"
"svg-core-attrib.mod" >

%svg-core-attrib.mod;]]>

<!-- Container Attribute Module .................................. -->
<!ENTITY % svg-container-attrib.module "INCLUDE" >
<![%svg-container-attrib.module;[
<!ENTITY % svg-container-attrib.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Container Attribute//EN"
"svg-container-attrib.mod" >

%svg-container-attrib.mod;]]>

<!-- Viewport Attribute Module ................................... -->
<!ENTITY % svg-viewport-attrib.module "INCLUDE" >
<![%svg-viewport-attrib.module;[
<!ENTITY % svg-viewport-attrib.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Viewport Attribute//EN"
"svg-viewport-attrib.mod" >

%svg-viewport-attrib.mod;]]>

<!-- Paint Attribute Module ...................................... -->
<!ENTITY % svg-paint-attrib.module "INCLUDE" >
<![%svg-paint-attrib.module;[
<!ENTITY % svg-paint-attrib.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Paint Attribute//EN"
"svg-paint-attrib.mod" >

%svg-paint-attrib.mod;]]>

<!-- Paint Opacity Attribute Module .............................. -->
<!ENTITY % svg-opacity-attrib.module "INCLUDE" >
<![%svg-opacity-attrib.module;[
<!ENTITY % svg-opacity-attrib.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Paint Opacity Attribute//EN"
"svg-opacity-attrib.mod" >

%svg-opacity-attrib.mod;]]>

<!-- Graphics Attribute Module ................................... -->
<!ENTITY % svg-graphics-attrib.module "INCLUDE" >
<![%svg-graphics-attrib.module;[
<!ENTITY % svg-graphics-attrib.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Graphics Attribute//EN"
"svg-graphics-attrib.mod" >

%svg-graphics-attrib.mod;]]>



<!-- Document Events Attribute Module ............................ -->
<!ENTITY % svg-docevents-attrib.module "INCLUDE" >
<![%svg-docevents-attrib.module;[
<!ENTITY % svg-docevents-attrib.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Document Events Attribute//EN"
"svg-docevents-attrib.mod" >

%svg-docevents-attrib.mod;]]>

<!-- Graphical Element Events Attribute Module ................... -->
<!ENTITY % svg-graphevents-attrib.module "INCLUDE" >
<![%svg-graphevents-attrib.module;[
<!ENTITY % svg-graphevents-attrib.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Graphical Element Events Attribute//EN"
"svg-graphevents-attrib.mod" >

%svg-graphevents-attrib.mod;]]>

<!-- Animation Events Attribute Module ........................... -->
<!ENTITY % svg-animevents-attrib.module "INCLUDE" >
<![%svg-animevents-attrib.module;[
<!ENTITY % svg-animevents-attrib.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 Animation Events Attribute//EN"
"svg-animevents-attrib.mod" >

%svg-animevents-attrib.mod;]]>

<!-- XLink Attribute Module ...................................... -->
<!ENTITY % svg-xlink-attrib.module "INCLUDE" >
<![%svg-xlink-attrib.module;[
<!ENTITY % svg-xlink-attrib.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 XLink Attribute//EN"
"svg-xlink-attrib.mod" >

%svg-xlink-attrib.mod;]]>

<!-- External Resources Attribute Module ......................... -->
<!ENTITY % svg-extresources-attrib.module "INCLUDE" >
<![%svg-extresources-attrib.module;[
<!ENTITY % svg-extresources-attrib.mod

PUBLIC "-//W3C//ENTITIES SVG 1.1 External Resources Attribute//EN"
"svg-extresources-attrib.mod" >

%svg-extresources-attrib.mod;]]>

<!-- ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: -->

<!-- Structure Module ............................................ -->
<!ENTITY % svg-structure.module "INCLUDE" >
<![%svg-structure.module;[
<!ENTITY % svg-structure.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Structure//EN"
"svg-structure.mod" >

%svg-structure.mod;]]>

<!-- Conditional Processing Module ............................... -->
<!ENTITY % svg-conditional.module "INCLUDE" >
<![%svg-conditional.module;[
<!ENTITY % svg-conditional.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Conditional Processing//EN"
"svg-conditional.mod" >

%svg-conditional.mod;]]>

<!-- Image Module ................................................ -->
<!ENTITY % svg-image.module "INCLUDE" >
<![%svg-image.module;[
<!ENTITY % svg-image.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Image//EN"
"svg-image.mod" >

%svg-image.mod;]]>

<!-- Style Module ................................................ -->
<!ENTITY % svg-style.module "INCLUDE" >
<![%svg-style.module;[
<!ENTITY % svg-style.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Style//EN"
"svg-style.mod" >

%svg-style.mod;]]>

<!-- Shape Module ................................................ -->
<!ENTITY % svg-shape.module "INCLUDE" >
<![%svg-shape.module;[



<!ENTITY % svg-shape.mod
PUBLIC "-//W3C//ELEMENTS SVG 1.1 Shape//EN"

"svg-shape.mod" >
%svg-shape.mod;]]>

<!-- Text Module ................................................. -->
<!ENTITY % svg-text.module "INCLUDE" >
<![%svg-text.module;[
<!ENTITY % svg-text.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Text//EN"
"svg-text.mod" >

%svg-text.mod;]]>

<!-- Marker Module ............................................... -->
<!ENTITY % svg-marker.module "INCLUDE" >
<![%svg-marker.module;[
<!ENTITY % svg-marker.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Marker//EN"
"svg-marker.mod" >

%svg-marker.mod;]]>

<!-- Color Profile Module ........................................ -->
<!ENTITY % svg-profile.module "INCLUDE" >
<![%svg-profile.module;[
<!ENTITY % svg-profile.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Color Profile//EN"
"svg-profile.mod" >

%svg-profile.mod;]]>

<!-- Gradient Module ............................................. -->
<!ENTITY % svg-gradient.module "INCLUDE" >
<![%svg-gradient.module;[
<!ENTITY % svg-gradient.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Gradient//EN"
"svg-gradient.mod" >

%svg-gradient.mod;]]>

<!-- Pattern Module .............................................. -->
<!ENTITY % svg-pattern.module "INCLUDE" >
<![%svg-pattern.module;[
<!ENTITY % svg-pattern.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Pattern//EN"
"svg-pattern.mod" >

%svg-pattern.mod;]]>

<!-- Clip Module ................................................. -->
<!ENTITY % svg-clip.module "INCLUDE" >
<![%svg-clip.module;[
<!ENTITY % svg-clip.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Clip//EN"
"svg-clip.mod" >

%svg-clip.mod;]]>

<!-- Mask Module ................................................. -->
<!ENTITY % svg-mask.module "INCLUDE" >
<![%svg-mask.module;[
<!ENTITY % svg-mask.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Mask//EN"
"svg-mask.mod" >

%svg-mask.mod;]]>

<!-- Filter Module ............................................... -->
<!ENTITY % svg-filter.module "INCLUDE" >
<![%svg-filter.module;[
<!ENTITY % svg-filter.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Filter//EN"
"svg-filter.mod" >

%svg-filter.mod;]]>

<!-- Cursor Module ............................................... -->
<!ENTITY % svg-cursor.module "INCLUDE" >
<![%svg-cursor.module;[
<!ENTITY % svg-cursor.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Cursor//EN"
"svg-cursor.mod" >

%svg-cursor.mod;]]>



<!-- Hyperlinking Module ......................................... -->
<!ENTITY % svg-hyperlink.module "INCLUDE" >
<![%svg-hyperlink.module;[
<!ENTITY % svg-hyperlink.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Hyperlinking//EN"
"svg-hyperlink.mod" >

%svg-hyperlink.mod;]]>

<!-- View Module ................................................. -->
<!ENTITY % svg-view.module "INCLUDE" >
<![%svg-view.module;[
<!ENTITY % svg-view.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 View//EN"
"svg-view.mod" >

%svg-view.mod;]]>

<!-- Scripting Module ............................................ -->
<!ENTITY % svg-script.module "INCLUDE" >
<![%svg-script.module;[
<!ENTITY % svg-script.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Scripting//EN"
"svg-script.mod" >

%svg-script.mod;]]>

<!-- Animation Module ............................................ -->
<!ENTITY % svg-animation.module "INCLUDE" >
<![%svg-animation.module;[
<!ENTITY % svg-animation.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Animation//EN"
"svg-animation.mod" >

%svg-animation.mod;]]>

<!-- Font Module ................................................. -->
<!ENTITY % svg-font.module "INCLUDE" >
<![%svg-font.module;[
<!ENTITY % svg-font.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Font//EN"
"svg-font.mod" >

%svg-font.mod;]]>

<!-- Extensibility Module ........................................ -->
<!ENTITY % svg-extensibility.module "INCLUDE" >
<![%svg-extensibility.module;[
<!ENTITY % svg-extensibility.mod

PUBLIC "-//W3C//ELEMENTS SVG 1.1 Extensibility//EN"
"svg-extensibility.mod" >

%svg-extensibility.mod;]]>

<!-- end of SVG 1.1 DTD .................................................... -->
<!-- ....................................................................... -->

A.4.2 SVG 1.1 Document Model

A SVG Family Document Type (such as SVG 1.1) must define the content model that it uses. This is done through
a separate content model module that is instantiated by the SVG Modular Framework. The content model module
and the SVG 1.1 DTD Driver (above) work together to customize the module implementations to the document
type's specific requirements. The content model module for SVG 1.1 is defined below:

<!-- ....................................................................... -->
<!-- SVG 1.1 Document Model Module ......................................... -->
<!-- file: svg11-model.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg11-model.mod,v 1.2 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Document Model//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-model.mod"



....................................................................... -->

<!-- SVG 1.1 Document Model

This module describes the groupings of elements that make up
common content models for SVG elements.

-->

<!-- module: svg-structure.mod ......................... -->

<!ENTITY % SVG.Description.extra.class "" >
<!ENTITY % SVG.Description.class

"%SVG.desc.qname; | %SVG.title.qname; | %SVG.metadata.qname;
%SVG.Description.extra.class;"

>

<!ENTITY % SVG.Use.extra.class "" >
<!ENTITY % SVG.Use.class

"| %SVG.use.qname; %SVG.Use.extra.class;"
>

<!ENTITY % SVG.Structure.extra.class "" >
<!ENTITY % SVG.Structure.class

"| %SVG.svg.qname; | %SVG.g.qname; | %SVG.defs.qname; | %SVG.symbol.qname;
%SVG.Use.class; %SVG.Structure.extra.class;"

>

<!-- module: svg-conditional.mod ....................... -->

<!ENTITY % SVG.Conditional.extra.class "" >
<!ENTITY % SVG.Conditional.class

"| %SVG.switch.qname; %SVG.Conditional.extra.class;"
>

<!-- module: svg-image.mod ............................. -->

<!ENTITY % SVG.Image.extra.class "" >
<!ENTITY % SVG.Image.class

"| %SVG.image.qname; %SVG.Image.extra.class;"
>

<!-- module: svg-style.mod ............................. -->

<!ENTITY % SVG.Style.extra.class "" >
<!ENTITY % SVG.Style.class

"| %SVG.style.qname; %SVG.Style.extra.class;"
>

<!-- module: svg-shape.mod ............................. -->

<!ENTITY % SVG.Shape.extra.class "" >
<!ENTITY % SVG.Shape.class

"| %SVG.path.qname; | %SVG.rect.qname; | %SVG.circle.qname;
| %SVG.line.qname; | %SVG.ellipse.qname; | %SVG.polyline.qname;
| %SVG.polygon.qname; %SVG.Shape.extra.class;"

>

<!-- module: svg-text.mod .............................. -->

<!ENTITY % SVG.Text.extra.class "" >
<!ENTITY % SVG.Text.class

"| %SVG.text.qname; | %SVG.altGlyphDef.qname; %SVG.Text.extra.class;"
>

<!ENTITY % SVG.TextContent.extra.class "" >
<!ENTITY % SVG.TextContent.class

"| %SVG.tspan.qname; | %SVG.tref.qname; | %SVG.textPath.qname;
| %SVG.altGlyph.qname; %SVG.TextContent.extra.class;"

>

<!-- module: svg-marker.mod ............................ -->

<!ENTITY % SVG.Marker.extra.class "" >
<!ENTITY % SVG.Marker.class

"| %SVG.marker.qname; %SVG.Marker.extra.class;"
>



<!-- module: svg-profile.mod ........................... -->

<!ENTITY % SVG.ColorProfile.extra.class "" >
<!ENTITY % SVG.ColorProfile.class

"| %SVG.color-profile.qname; %SVG.ColorProfile.extra.class;"
>

<!-- module: svg-gradient.mod .......................... -->

<!ENTITY % SVG.Gradient.extra.class "" >
<!ENTITY % SVG.Gradient.class

"| %SVG.linearGradient.qname; | %SVG.radialGradient.qname;
%SVG.Gradient.extra.class;"

>

<!-- module: svg-pattern.mod ........................... -->

<!ENTITY % SVG.Pattern.extra.class "" >
<!ENTITY % SVG.Pattern.class

"| %SVG.pattern.qname; %SVG.Pattern.extra.class;"
>

<!-- module: svg-clip.mod .............................. -->

<!ENTITY % SVG.Clip.extra.class "" >
<!ENTITY % SVG.Clip.class

"| %SVG.clipPath.qname; %SVG.Clip.extra.class;"
>

<!-- module: svg-mask.mod .............................. -->

<!ENTITY % SVG.Mask.extra.class "" >
<!ENTITY % SVG.Mask.class

"| %SVG.mask.qname; %SVG.Mask.extra.class;"
>

<!-- module: svg-filter.mod ............................ -->

<!ENTITY % SVG.Filter.extra.class "" >
<!ENTITY % SVG.Filter.class

"| %SVG.filter.qname; %SVG.Filter.extra.class;"
>

<!ENTITY % SVG.FilterPrimitive.extra.class "" >
<!ENTITY % SVG.FilterPrimitive.class

"| %SVG.feBlend.qname; | %SVG.feColorMatrix.qname;
| %SVG.feComponentTransfer.qname; | %SVG.feComposite.qname;
| %SVG.feConvolveMatrix.qname; | %SVG.feDiffuseLighting.qname;
| %SVG.feDisplacementMap.qname; | %SVG.feFlood.qname;
| %SVG.feGaussianBlur.qname; | %SVG.feImage.qname; | %SVG.feMerge.qname;
| %SVG.feMorphology.qname; | %SVG.feOffset.qname;
| %SVG.feSpecularLighting.qname; | %SVG.feTile.qname;
| %SVG.feTurbulence.qname; %SVG.FilterPrimitive.extra.class;"

>

<!-- module: svg-cursor.mod ............................ -->

<!ENTITY % SVG.Cursor.extra.class "" >
<!ENTITY % SVG.Cursor.class

"| %SVG.cursor.qname; %SVG.Cursor.extra.class;"
>

<!-- module: svg-hyperlink.mod ......................... -->

<!ENTITY % SVG.Hyperlink.extra.class "" >
<!ENTITY % SVG.Hyperlink.class

"| %SVG.a.qname; %SVG.Hyperlink.extra.class;"
>

<!-- module: svg-view.mod .............................. -->

<!ENTITY % SVG.View.extra.class "" >
<!ENTITY % SVG.View.class

"| %SVG.view.qname; %SVG.View.extra.class;"
>

<!-- module: svg-script.mod ............................ -->



<!ENTITY % SVG.Script.extra.class "" >
<!ENTITY % SVG.Script.class

"| %SVG.script.qname; %SVG.Script.extra.class;"
>

<!-- module: svg-animation.mod ......................... -->

<!ENTITY % SVG.Animation.extra.class "" >
<!ENTITY % SVG.Animation.class

"%SVG.animate.qname; | %SVG.set.qname; | %SVG.animateMotion.qname; |
%SVG.animateColor.qname; | %SVG.animateTransform.qname;
%SVG.Animation.extra.class;"

>

<!-- module: svg-font.mod .............................. -->

<!ENTITY % SVG.Font.extra.class "" >
<!ENTITY % SVG.Font.class

"| %SVG.font.qname; | %SVG.font-face.qname; %SVG.Font.extra.class;"
>

<!-- module: svg-extensibility.mod ..................... -->

<!ENTITY % SVG.Extensibility.extra.class "" >
<!ENTITY % SVG.Extensibility.class

"| %SVG.foreignObject.qname; %SVG.Extensibility.extra.class;"
>

<!-- end of svg11-model.mod -->

A.4.3 SVG 1.1 Attribute Collection

This section contains the attribute collection for SVG 1.1. The attribute collection module and the SVG 1.1 DTD
Driver work together to customize the module implementations to the document type's specific requirements.

<!-- ....................................................................... -->
<!-- SVG 1.1 Attribute Collection Module ................................... -->
<!-- file: svg11-attribs.mod

This is SVG, a language for describing two-dimensional graphics in XML.
Copyright 2001, 2002, 2011 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: svg11-attribs.mod,v 1.2 2011/07/08 03:18:59 cmccorma Exp $

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//ENTITIES SVG 1.1 Attribute Collection//EN"
SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-attribs.mod"

....................................................................... -->

<!-- SVG 1.1 Attribute Collection

This module defines the set of common attributes that can be present
on many SVG elements.

-->

<!-- module: svg-conditional.mod ....................... -->

<!ENTITY % ExtensionList.datatype "CDATA" >
<!ENTITY % FeatureList.datatype "CDATA" >

<!ENTITY % SVG.Conditional.extra.attrib "" >
<!ENTITY % SVG.Conditional.attrib

"requiredFeatures %FeatureList.datatype; #IMPLIED
requiredExtensions %ExtensionList.datatype; #IMPLIED
systemLanguage %LanguageCodes.datatype; #IMPLIED
%SVG.Conditional.extra.attrib;"

>

<!-- module: svg-style.mod ............................. -->

<!ENTITY % ClassList.datatype "CDATA" >



<!ENTITY % StyleSheet.datatype "CDATA" >

<!ENTITY % SVG.Style.extra.attrib "" >
<!ENTITY % SVG.Style.attrib

"style %StyleSheet.datatype; #IMPLIED
class %ClassList.datatype; #IMPLIED
%SVG.Style.extra.attrib;"

>

<!-- module: svg-text.mod .............................. -->

<!ENTITY % BaselineShiftValue.datatype "CDATA" >
<!ENTITY % FontFamilyValue.datatype "CDATA" >
<!ENTITY % FontSizeValue.datatype "CDATA" >
<!ENTITY % FontSizeAdjustValue.datatype "CDATA" >
<!ENTITY % GlyphOrientationHorizontalValue.datatype "CDATA" >
<!ENTITY % GlyphOrientationVerticalValue.datatype "CDATA" >
<!ENTITY % KerningValue.datatype "CDATA" >
<!ENTITY % SpacingValue.datatype "CDATA" >
<!ENTITY % TextDecorationValue.datatype "CDATA" >

<!ENTITY % SVG.Text.extra.attrib "" >
<!ENTITY % SVG.Text.attrib

"writing-mode ( lr-tb | rl-tb | tb-rl | lr | rl | tb | inherit ) #IMPLIED
%SVG.Text.extra.attrib;"

>

<!ENTITY % SVG.TextContent.extra.attrib "" >
<!ENTITY % SVG.TextContent.attrib

"alignment-baseline ( auto | baseline | before-edge | text-before-edge |
middle | central | after-edge | text-after-edge |
ideographic | alphabetic | hanging | mathematical |
inherit ) #IMPLIED

baseline-shift %BaselineShiftValue.datatype; #IMPLIED
direction ( ltr | rtl | inherit ) #IMPLIED
dominant-baseline ( auto | use-script | no-change | reset-size |

ideographic | alphabetic | hanging | mathematical |
central | middle | text-after-edge | text-before-edge |
inherit ) #IMPLIED

glyph-orientation-horizontal %GlyphOrientationHorizontalValue.datatype;
#IMPLIED

glyph-orientation-vertical %GlyphOrientationVerticalValue.datatype;
#IMPLIED

kerning %KerningValue.datatype; #IMPLIED
letter-spacing %SpacingValue.datatype; #IMPLIED
text-anchor ( start | middle | end | inherit ) #IMPLIED
text-decoration %TextDecorationValue.datatype; #IMPLIED
unicode-bidi ( normal | embed | bidi-override | inherit ) #IMPLIED
word-spacing %SpacingValue.datatype; #IMPLIED
%SVG.TextContent.extra.attrib;"

>

<!ENTITY % SVG.Font.extra.attrib "" >
<!ENTITY % SVG.Font.attrib

"font-family %FontFamilyValue.datatype; #IMPLIED
font-size %FontSizeValue.datatype; #IMPLIED
font-size-adjust %FontSizeAdjustValue.datatype; #IMPLIED
font-stretch ( normal | wider | narrower | ultra-condensed |

extra-condensed | condensed | semi-condensed |
semi-expanded | expanded | extra-expanded |
ultra-expanded | inherit ) #IMPLIED

font-style ( normal | italic | oblique | inherit ) #IMPLIED
font-variant ( normal | small-caps | inherit ) #IMPLIED
font-weight ( normal | bold | bolder | lighter | 100 | 200 | 300 | 400 |

500 | 600 | 700 | 800 | 900 | inherit ) #IMPLIED
%SVG.Font.extra.attrib;"

>

<!-- module: svg-marker.mod ............................ -->

<!ENTITY % MarkerValue.datatype "CDATA" >

<!ENTITY % SVG.Marker.extra.attrib "" >
<!ENTITY % SVG.Marker.attrib

"marker-start %MarkerValue.datatype; #IMPLIED
marker-mid %MarkerValue.datatype; #IMPLIED
marker-end %MarkerValue.datatype; #IMPLIED



%SVG.Marker.extra.attrib;"
>

<!-- module: svg-profile.mod ........................... -->

<!ENTITY % SVG.ColorProfile.extra.attrib "" >
<!ENTITY % SVG.ColorProfile.attrib

"color-profile CDATA #IMPLIED
%SVG.ColorProfile.extra.attrib;"

>

<!-- module: svg-gradient.mod .......................... -->

<!ENTITY % NumberOrPercentage.datatype "CDATA" >

<!ENTITY % SVG.Gradient.extra.attrib "" >
<!ENTITY % SVG.Gradient.attrib

"stop-color %SVGColor.datatype; #IMPLIED
stop-opacity %OpacityValue.datatype; #IMPLIED
%SVG.Gradient.extra.attrib;"

>

<!-- module: svg-clip.mod .............................. -->

<!ENTITY % ClipPathValue.datatype "CDATA" >

<!ENTITY % SVG.Clip.extra.attrib "" >
<!ENTITY % SVG.Clip.attrib

"clip-path %ClipPathValue.datatype; #IMPLIED
clip-rule %ClipFillRule.datatype; #IMPLIED
%SVG.Clip.extra.attrib;"

>

<!-- module: svg-mask.mod .............................. -->

<!ENTITY % MaskValue.datatype "CDATA" >

<!ENTITY % SVG.Mask.extra.attrib "" >
<!ENTITY % SVG.Mask.attrib

"mask %MaskValue.datatype; #IMPLIED
%SVG.Mask.extra.attrib;"

>

<!-- module: svg-filter.mod ............................ -->

<!ENTITY % FilterValue.datatype "CDATA" >
<!ENTITY % NumberOptionalNumber.datatype "CDATA" >

<!ENTITY % SVG.Filter.extra.attrib "" >
<!ENTITY % SVG.Filter.attrib

"filter %FilterValue.datatype; #IMPLIED
%SVG.Filter.extra.attrib;"

>

<!ENTITY % SVG.FilterColor.extra.attrib "" >
<!ENTITY % SVG.FilterColor.attrib

"color-interpolation-filters ( auto | sRGB | linearRGB | inherit )
#IMPLIED

%SVG.FilterColor.extra.attrib;"
>

<!-- module: svg-cursor.mod ............................ -->

<!ENTITY % CursorValue.datatype "CDATA" >

<!ENTITY % SVG.Cursor.extra.attrib "" >
<!ENTITY % SVG.Cursor.attrib

"cursor %CursorValue.datatype; #IMPLIED
%SVG.Cursor.extra.attrib;"

>

<!-- end of svg11-attribs.mod -->



Appendix B: SVG Document Object Model (DOM)

Contents

B.1 SVG DOM overview
B.1.1 SVG DOM object initialization

B.2 Elements in the SVG DOM
B.3 Naming conventions
B.4 Exception SVGException
B.5 Feature strings for the hasFeature method call
B.6 Relationship with DOM Level 2 Events
B.7 Relationship with DOM Level 2 CSS

B.7.1 Introduction
B.7.2 User agents that do not support styling with CSS
B.7.3 User agents that support styling with CSS
B.7.4 Extended interfaces

B.8 Read only nodes in the DOM
B.9 Invalid values

This appendix is normative.

B.1 SVG DOM overview

This appendix provides an introduction to the SVG DOM and discusses the relationship of the SVG DOM with
the Document Object Model (DOM) Level 2 Core Specification [DOM2]. The specific SVG DOM interfaces that
correspond to particular sections of the SVG specification are defined at the end of corresponding chapters in this
specification, as follows:

• Basic DOM interfaces
• Styling interfaces
• Document Structure interfaces
• Coordinate Systems, Transformations and Units interfaces
• Paths interfaces
• Basic Shapes interfaces
• Text interfaces
• Painting: Filling, Stroking and Marker Symbols interfaces
• Color interfaces
• Gradients and Patterns interfaces
• Clipping, Masking and Compositing interfaces
• Filter Effects interfaces

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/


• Interactivity interfaces
• Linking interfaces
• Scripting interfaces
• Animation interfaces
• Fonts interfaces
• Metadata interfaces
• Extensibility interfaces

The SVG DOM builds upon and is compatible with DOM Level 2. In particular:

• The SVG DOM requires complete support for DOM Level 2 Core [DOM2]
• Wherever appropriate, the SVG DOM is modeled after and maintains consistency with the Document Object

Model HTML ([DOM1], chapter 2).
• The SVG DOM requires complete support for DOM Level 2 Views [DOM2VIEWS].
• The SVG DOM requires support for relevant aspects of DOM Level 2 Events [DOM2EVENTS]. (For the spe-

cific features from DOM 2 Events that are required, see see Relationship with DOM Level 2 Events.)
• For implementations that support CSS, the SVG DOM requires complete support for DOM Level 2 Style

Sheets ([DOM2STYLE], chapter 1) and relevant aspects of DOM Level 2 CSS ([DOM2STYLE], chapter 2). (For
the specific features from DOM 2 CSS that are required, see Relationship with DOM Level 2 CSS.)

A DOM application can use the hasFeature method of the DOMImplementation interface to verify that the inter-
faces listed in this section are supported. The list of available interfaces is provided in section Feature strings for
the hasFeature method call.

All SVG DOM objects that directly correspond to an attribute, e.g. the SVGAnimatedLength ry in an
SVGRectElement, are live. This means that any changes made to the attribute are immediately reflected in the cor-
responding SVG DOM object.

B.1.1 SVG DOM object initialization

The SVG DOM allows attributes to be accessed even though they haven't been specified explicitly in the document
markup. When this happens an appropriate object is created, initialized and returned. This newly constructed ob-
ject does not affect rendering until it is modified for the first time. After the first modification the object becomes
live, such that any modifications made to the corresponding attribute are immediately reflected in the object.

For example, if rectElement.x.baseVal is accessed and the ‘x’ attribute was not specified in the document,
the returned SVG DOM object would represent the value 0 user units.

For cases where an attribute has a default value the returned SVG DOM object that must reflect that value,
and for all other cases the object is initialized as described below. If a particular SVG DOM interface is not listed
below that means that the object initialization shall be done using the values for the objects that the interface
contains, e.g DOMString in the case of SVGAnimatedString, or four floats in the case of SVGRect.

SVGTextContentElement.textLength
Initialized with the return-value of getComputedTextLength on the same element.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/level-one-html.html
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/level-one-html.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/stylesheets.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/stylesheets.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-102161490


DOMString
Initialized as the empty string ("").

float
long
short

Initialized as 0.
boolean

Initialized as false.
SVGLength

Initialized as 0 user units (SVG_LENGTHTYPE_NUMBER).
SVGLengthList
SVGNumberList
SVGPointList
SVGStringList
SVGTransformList

Initialized as the empty list.
SVGAngle

Initialized as 0 in unspecified units (SVG_ANGLETYPE_UNSPECIFIED).
SVGZoomAndPan

Initialized as 0 (SVG_ZOOMANDPAN_UNKNOWN).
SVGPreserveAspectRatio

Initialized as 'xMidYMid meet'.

B.2 Elements in the SVG DOM

Every Element object that corresponds to an SVG element (that is, an element with namespace URI "ht-
tp://www.w3.org/2000/svg" and a local name that is one of the elements defined in this specification) must also
implement the DOM interface identified in element definition. For example, in The ‘rect’ element, the SVGRectEle-
ment interface is identified. This means that every Element object whose namespace URI is "http://www.w3.org/
2000/svg" and whose local name is "rect" must also implement SVGRectElement.

B.3 Naming conventions

The SVG DOM follows similar naming conventions to the Document Object Model HTML ([DOM1], chapter 2).
All names are defined as one or more English words concatenated together to form a single string. Property

or method names start with the initial keyword in lowercase, and each subsequent word starts with a capital letter.
For example, a property that returns document meta information such as the date the file was created might be
named "fileDateCreated". In the ECMAScript binding, properties are exposed as properties of a given object. In
Java, properties are exposed with get and set methods.

For attributes with the CDATA data type, the case of the return value is that given in the source document.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-745549614
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-745549614
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/level-one-html.html


B.4 Exception SVGException

This exception is raised when a specific SVG operation is impossible to perform.

exception SVGException {
unsigned short code;

};

// SVGException code
const unsigned short SVG_WRONG_TYPE_ERR = 0;
const unsigned short SVG_INVALID_VALUE_ERR = 1;
const unsigned short SVG_MATRIX_NOT_INVERTABLE = 2;

Constants in group “SVGException code”:

• SVG_WRONG_TYPE_ERR (unsigned short)

Raised when an object of the wrong type is passed to an operation.
Note that no operation is defined to raise an SVGException with this code in SVG 1.1 Second Edition.

The constant remains defined here for consistency with SVG 1.1 First Edition.

• SVG_INVALID_VALUE_ERR (unsigned short)

Raised when an invalid value is passed to an operation or assigned to an attribute.

• SVG_MATRIX_NOT_INVERTABLE (unsigned short)

Raised when an attempt is made to invert a matrix that is not invertible.
Note the unusual spelling of this constant, which is necessary for compatibility with existing content.

Exception members:

code (unsigned short)
A code identifying the reason why the requested operation could not be performed. The value of this
member will be one of the constants in the SVGException code group.

B.5 Feature strings for the hasFeature method call

The feature strings that are available for the hasFeature method call that is part of the SVG DOM's support for
the DOMImplementation interface defined in DOM Level 2 Core [DOM2] are the same features strings available
for the ‘requiredFeatures’ attribute that is available for many SVG elements.

For all features that correspond to the SVG language and are documented in this specification (see appendix
Feature Strings for a list of features in the SVG language), the version number for the hasFeature method call is
"1.1". For features that correspond to other languages, refer to the relevant other specifications to determine the
appropriate version number for the given feature.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-102161490
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/


B.6 Relationship with DOM Level 2 Events

The SVG DOM supports all of the interfaces defined in, and the following event types from, DOM Level 2 Events
[DOM2EVENTS]:

• These User Interface events ([DOM2EVENTS], section 1.6.1):
◦ DOMFocusIn
◦ DOMFocusOut
◦ DOMActivate

• These mouse events ([DOM2EVENTS], section 1.6.2):
◦ click
◦ mousedown
◦ mouseup
◦ mouseover
◦ mousemove
◦ mouseout

clientX and clientY parameters for mouse events represent the mouse coordinates at which the event occurred
relative to the DOM Implementation's client area. relatedTarget is used to identify a secondary EventTarget
related to a UI event. Currently this attribute is used with the mouseover event to indicate the EventTarget
which the pointing device exited and with the mouseout event to indicate the EventTarget which the pointing
device entered.

• These mutation events ([DOM2EVENTS], section 1.6.4):
◦ DOMSubtreeModified
◦ DOMNodeInserted
◦ DOMNodeRemoved
◦ DOMNodeRemovedFromDocument
◦ DOMNodeInsertedIntoDocument
◦ DOMAttrModified
◦ DOMCharacterDataModified

• The SVG DOM defines the following SVG-specific custom event interfaces. These event interfaces are man-
datory for SVG user agents:

◦ SVGLoad
◦ SVGUnload
◦ SVGAbort
◦ SVGError
◦ SVGResize
◦ SVGScroll (triggered by either scroll or pan user actions)

Note that the SVGLoad event does not fire until the document is fully loaded and is therefore subject to the
processing of any ‘externalResourcesRequired’ attributes.

• The SVG DOM defines an additional custom event interface:
◦ SVGZoom (definition can be found in the description of the SVGZoomEvent interface)

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-eventgroupings-uievents
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-eventgroupings-mouseevents
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-eventgroupings-mutationevents


• The following event types are triggered due to state changes in animations. (The definitions for these events
can be found in the description of the TimeEvent interface.)

◦ beginEvent
◦ endEvent
◦ repeatEvent

While event listeners can be registered using an addEventListener call on any element in the DOM, the use of
event attributes on elements where those attributes are disallowed will not result in their being invoked if the rel-
evant event is dispatched to the element. For example, if the ‘onclick’ attribute were specified on a ‘title’ element,
its contents would never be run in response to a click event:

<svg xmlns="http://www.w3.org/2000/svg">
<title onclick="alert('Hello')">Invalid event attribute</title>
<script>

// Find the 'title' element.
var title = document.getElementsByTagNameNS("http://www.w3.org/2000/svg", "title")[0];

// Create and initialize a 'click' event.
var event = document.createEvent("MouseEvent");
event.initMouseEvent("click", true, false, this, 1, 0, 0, 0, 0, false,

false, false, false, 0, null);

// Dispatch the event to the 'title' element.  Since onclick="" is not
// allowed on 'title', the alert will not show.
title.dispatchEvent(event);

</script>
</svg>

See the Attribute Index for details on which elements a given event attribute is allowed to be specified on.
Implementors may view the setting of event attributes as the creation and registration of an EventListener

on the EventTarget. Such event listeners are invoked only for the "bubbling" and "at target" phases, as if false were
specified for the useCapture argument to addEventListener. This EventListener behaves in the same manner as
any other which may be registered on the EventTarget.

If the attribute representing the event listener is changed, this may be viewed as the removal of the previously
registered EventListener and the registration of a new one. Futhermore, no specification is made as to the order in
which event attributes will receive the event with regards to the other EventListeners on the EventTarget.

In Java, one way that event listeners can be established is to define a class which implements the EventListen-
er interface, such as:

class MyAction1 implements EventListener {
public void handleEvent(Event evt) {

// process the event
}

}
// ... later ...
MyAction1 mc1 = new MyAction1();
myElement.addEventListener("DOMActivate", mc1, false);

http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-EventListener
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-EventTarget
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-EventListener
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-EventTarget
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-EventListener
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-EventTarget
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-EventListener
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-EventListener


In ECMAScript, one way to establish an event listener is to define a function and pass that function to the ad-

dEventListener method:

function myAction1(evt) {
// process the event

}
// ... later ...
myElement.addEventListener("DOMActivate", myAction1, false)

In ECMAScript, the character data content of an event attribute becomes the definition of the ECMAScript func-
tion which gets invoked in response to the event. As with all registered ECMAScript event listener functions, this
function receives an Event object as a parameter, and the name of the Event object is evt. For example, it is pos-
sible to write:

<rect onactivate="MyActivateHandler(evt)" .../>

which will pass the Event object evt into function MyActivateHandler.

B.7 Relationship with DOM Level 2 CSS

B.7.1 Introduction

The section describes the facilities from DOM Level 2 CSS ([DOM2STYLE], chapter 2) that are part of the SVG
DOM.

B.7.2 User agents that do not support styling with CSS

User agents that do not support styling with CSS are only required to support the following interfaces from DOM
Level 2 CSS ([DOM2STYLE], chapter 2), along with any interfaces necessary to implement the interfaces, such as
CSSPrimitiveValue and CSSValueList. These interfaces are used in conjunction with the getPresentationAttribute
method call on interface SVGStylable, which must be supported on all implementations of the SVG DOM.

• Interface RGBColor
• Interface CSSValue

B.7.3 User agents that support styling with CSS

User agents that support Styling with CSS, the SVG DOM, and aural styling ([CSS2], chapter 19) must support all
of the interfaces defined in DOM Level 2 CSS ([DOM2STYLE], chapter 2) which apply to aural properties.

For visual media ([CSS2], section 7.3.1), user agents must support all of the required interfaces defined in
DOM Level 2 CSS. All of the interfaces that are optional for DOM Level 2 CSS are also optional for user agents
implementing the SVG DOM.

http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-Event
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-Event
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSPrimitiveValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValueList
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group


B.7.4 Extended interfaces

Note: the getPresentationAttribute method and the interfaces that extend CSSValue are deprecated, and may be
dropped from future versions of the SVG specification.

Whether or not a user agent supports styling with CSS, a user agent still must support interface CSSValue, as
this is the type that is returned from the getPresentationAttribute method call on interface SVGStylable.

DOM Level 2 CSS defines a set of extended interfaces ([DOM2STYLE], section 2.3) for use in conjunction
with interface CSSValue. The table below specifies the type of CSSValue used to represent each SVG property
that applies to visual media ([CSS2], section 7.3.1). The expectation is that the CSSValue returned from the
getPropertyCSSValue method on the CSSStyleDeclaration interface or the getPresentationAttribute method on the
SVGStylable interface can be cast down, using binding-specific casting methods, to the specific derived interface.

For properties that are represented by a custom interface (the cssValueType of the CSSValue is
CSS_CUSTOM), the name of the derived interface is specified in the table. For these properties, the table below
indicates which extended interfaces are mandatory and which are not.

For properties that consist of lists of values (the cssValueType of the CSSValue is CSS_VALUE_LIST),
the derived interface is CSSValueList. For all other properties (the cssValueType of the CSSValue is
CSS_PRIMITIVE_VALUE), the derived interface is CSSPrimitiveValue.

For shorthand properties, a CSSValue always will have a value of null. Shorthand property values can only
be accessed and modified as strings.

The SVG DOM defines the following SVG-specific custom property interfaces, all of which are mandatory for
SVG user agents:

• SVGColor
• SVGICCColor
• SVGPaint

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-extended
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSStyleDeclaration
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValueList
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSPrimitiveValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue


Property Name Representation

Mandatory?

(Extended interfaces only)

‘alignment-baseline’ ident

‘baseline-shift’ ident, length, percentage

‘clip’ rect, ident

‘clip-path’ uri, ident

‘clip-rule’ ident

‘color’ rgbcolor, ident

‘color-interpolation’ ident

‘color-profile’ list of strings, uri's and idents

‘color-rendering’ ident

‘cursor’ uri, ident no

‘direction’ ident

‘display’ ident

‘dominant-baseline’ ident

‘enable-background’ list of idents and numbers

‘fill’ SVGPaint yes

‘fill-opacity’ number

‘fill-rule’ ident

‘filter’ uri, ident

‘flood-color’ SVGColor yes

‘flood-opacity’ number

‘font’ null

‘font-family’ list of strings and idents

‘font-size’ ident, length, percentage

‘font-size-adjust’ number, ident

‘font-stretch’ ident



‘font-style’ ident

‘font-variant’ ident

‘font-weight’ ident

‘glyph-orientation-horizontal’ ident

‘glyph-orientation-vertical’ ident

‘image-rendering’ ident

‘kerning’ ident, length

‘letter-spacing’ ident, length

‘lighting-color’ SVGColor yes

‘marker’ null

‘marker-end’ uri, ident

‘marker-mid’ uri, ident

‘marker-start’ uri, ident

‘mask’ uri, ident

‘opacity’ number

‘overflow’ ident

‘pointer-events’ ident

‘shape-rendering’ ident

‘stop-color’ SVGColor yes

‘stop-opacity’ number

‘stroke’ SVGPaint yes

‘stroke-dasharray’ ident or list of lengths

‘stroke-dashoffset’ length

‘stroke-linecap’ ident

‘stroke-linejoin’ ident

‘stroke-miterlimit’ length

‘stroke-opacity’ number



‘stroke-width’ length

‘text-anchor’ ident

‘text-decoration’ list of ident

‘text-rendering’ ident

‘unicode-bidi’ ident

‘visibility’ ident

‘word-spacing’ length, ident

‘writing-mode’ ident

B.8 Read only nodes in the DOM

Some operations and attributes in the SVG DOM are defined to raise an exception when an attempt is made to
modify a node in the DOM that is read only. Such read only nodes are not related to attributes declared in IDL
with the readonly keyword. Rather, they are nodes that cannot be modified by virtue of being defined as readonly
nodes by DOM Level 2 Core ([DOM2], Glossary appendix). Specifically, Entity and EntityReference nodes and
their descendants are read only ([DOM2], section 1.3).

B.9 Invalid values

If a script sets a DOM attribute to an invalid value (e.g., a negative number for an attribute that requires a non-
negative number or an out-of-range value for an enumeration), unless this specification indicates otherwise, no
exception shall be raised on setting, but the given document fragment shall become technically in error as de-
scribed in Error processing.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/glossary.html#dt-readonly-node
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/glossary.html#dt-readonly-node
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html#ID-527DCFF2
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html#ID-11C98490


Appendix C: IDL Definitions

This appendix is normative.

This appendix contains the complete OMG IDL for the SVG Document Object Model definitions. The IDL is also
available at:

http://www.w3.org/TR/2011/REC-SVG11-20110816/svg.idl

The SVG IDL defines the model for the SVG DOM. Note that the SVG IDL is defined such that some interfaces
have more than one base class. The different standard language bindings for the SVG DOM are responsible for
defining how to map all aspects of the SVG DOM into the given language, including how the language should
implement interfaces with more than one base class.

module smil {

interface ElementTimeControl {
void beginElement();
void beginElementAt(in float offset);
void endElement();
void endElementAt(in float offset);

};

interface TimeEvent : Event {

readonly attribute AbstractView view;
readonly attribute long detail;

void initTimeEvent(in DOMString typeArg, in AbstractView viewArg, in long detailArg);
};

};

module svg {

exception SVGException {
unsigned short code;

};

// SVGException code
const unsigned short SVG_WRONG_TYPE_ERR = 0;
const unsigned short SVG_INVALID_VALUE_ERR = 1;
const unsigned short SVG_MATRIX_NOT_INVERTABLE = 2;

interface SVGElement : Element {
attribute DOMString id setraises(DOMException);
attribute DOMString xmlbase setraises(DOMException);

readonly attribute SVGSVGElement ownerSVGElement;
readonly attribute SVGElement viewportElement;

};

interface SVGAnimatedBoolean {
attribute boolean baseVal setraises(DOMException);

readonly attribute boolean animVal;
};

interface SVGAnimatedString {
attribute DOMString baseVal setraises(DOMException);

readonly attribute DOMString animVal;
};

interface SVGStringList {

readonly attribute unsigned long numberOfItems;

http://www.w3.org/TR/2011/REC-SVG11-20110816/svg.idl
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-Event
http://www.w3.org/TR/DOM-Level-2-Views/views.html#Views-AbstractView
http://www.w3.org/TR/DOM-Level-2-Views/views.html#Views-AbstractView
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-745549614
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


void clear() raises(DOMException);
DOMString initialize(in DOMString newItem) raises(DOMException);
DOMString getItem(in unsigned long index) raises(DOMException);
DOMString insertItemBefore(in DOMString newItem, in unsigned long index) raises(DOMException);
DOMString replaceItem(in DOMString newItem, in unsigned long index) raises(DOMException);
DOMString removeItem(in unsigned long index) raises(DOMException);
DOMString appendItem(in DOMString newItem) raises(DOMException);

};

interface SVGAnimatedEnumeration {
attribute unsigned short baseVal setraises(DOMException);

readonly attribute unsigned short animVal;
};

interface SVGAnimatedInteger {
attribute long baseVal setraises(DOMException);

readonly attribute long animVal;
};

interface SVGNumber {
attribute float value setraises(DOMException);

};

interface SVGAnimatedNumber {
attribute float baseVal setraises(DOMException);

readonly attribute float animVal;
};

interface SVGNumberList {

readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);
SVGNumber initialize(in SVGNumber newItem) raises(DOMException);
SVGNumber getItem(in unsigned long index) raises(DOMException);
SVGNumber insertItemBefore(in SVGNumber newItem, in unsigned long index) raises(DOMException);
SVGNumber replaceItem(in SVGNumber newItem, in unsigned long index) raises(DOMException);
SVGNumber removeItem(in unsigned long index) raises(DOMException);
SVGNumber appendItem(in SVGNumber newItem) raises(DOMException);

};

interface SVGAnimatedNumberList {
readonly attribute SVGNumberList baseVal;
readonly attribute SVGNumberList animVal;

};

interface SVGLength {

// Length Unit Types
const unsigned short SVG_LENGTHTYPE_UNKNOWN = 0;
const unsigned short SVG_LENGTHTYPE_NUMBER = 1;
const unsigned short SVG_LENGTHTYPE_PERCENTAGE = 2;
const unsigned short SVG_LENGTHTYPE_EMS = 3;
const unsigned short SVG_LENGTHTYPE_EXS = 4;
const unsigned short SVG_LENGTHTYPE_PX = 5;
const unsigned short SVG_LENGTHTYPE_CM = 6;
const unsigned short SVG_LENGTHTYPE_MM = 7;
const unsigned short SVG_LENGTHTYPE_IN = 8;
const unsigned short SVG_LENGTHTYPE_PT = 9;
const unsigned short SVG_LENGTHTYPE_PC = 10;

readonly attribute unsigned short unitType;
attribute float value setraises(DOMException);
attribute float valueInSpecifiedUnits setraises(DOMException);
attribute DOMString valueAsString setraises(DOMException);

void newValueSpecifiedUnits(in unsigned short unitType, in float valueInSpecifiedUnits) raises(DOMException);
void convertToSpecifiedUnits(in unsigned short unitType) raises(DOMException);

};

interface SVGAnimatedLength {
readonly attribute SVGLength baseVal;
readonly attribute SVGLength animVal;

};

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


interface SVGLengthList {

readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);
SVGLength initialize(in SVGLength newItem) raises(DOMException);
SVGLength getItem(in unsigned long index) raises(DOMException);
SVGLength insertItemBefore(in SVGLength newItem, in unsigned long index) raises(DOMException);
SVGLength replaceItem(in SVGLength newItem, in unsigned long index) raises(DOMException);
SVGLength removeItem(in unsigned long index) raises(DOMException);
SVGLength appendItem(in SVGLength newItem) raises(DOMException);

};

interface SVGAnimatedLengthList {
readonly attribute SVGLengthList baseVal;
readonly attribute SVGLengthList animVal;

};

interface SVGAngle {

// Angle Unit Types
const unsigned short SVG_ANGLETYPE_UNKNOWN = 0;
const unsigned short SVG_ANGLETYPE_UNSPECIFIED = 1;
const unsigned short SVG_ANGLETYPE_DEG = 2;
const unsigned short SVG_ANGLETYPE_RAD = 3;
const unsigned short SVG_ANGLETYPE_GRAD = 4;

readonly attribute unsigned short unitType;
attribute float value setraises(DOMException);
attribute float valueInSpecifiedUnits setraises(DOMException);
attribute DOMString valueAsString setraises(DOMException);

void newValueSpecifiedUnits(in unsigned short unitType, in float valueInSpecifiedUnits) raises(DOMException);
void convertToSpecifiedUnits(in unsigned short unitType) raises(DOMException);

};

interface SVGAnimatedAngle {
readonly attribute SVGAngle baseVal;
readonly attribute SVGAngle animVal;

};

interface SVGColor : CSSValue {

// Color Types
const unsigned short SVG_COLORTYPE_UNKNOWN = 0;
const unsigned short SVG_COLORTYPE_RGBCOLOR = 1;
const unsigned short SVG_COLORTYPE_RGBCOLOR_ICCCOLOR = 2;
const unsigned short SVG_COLORTYPE_CURRENTCOLOR = 3;

readonly attribute unsigned short colorType;
readonly attribute RGBColor rgbColor;
readonly attribute SVGICCColor iccColor;

void setRGBColor(in DOMString rgbColor) raises(SVGException);
void setRGBColorICCColor(in DOMString rgbColor, in DOMString iccColor) raises(SVGException);
void setColor(in unsigned short colorType, in DOMString rgbColor, in DOMString iccColor) raises(SVGException);

};

interface SVGICCColor {
attribute DOMString colorProfile setraises(DOMException);

readonly attribute SVGNumberList colors;
};

interface SVGRect {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float width setraises(DOMException);
attribute float height setraises(DOMException);

};

interface SVGAnimatedRect {
readonly attribute SVGRect baseVal;
readonly attribute SVGRect animVal;

};

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


interface SVGUnitTypes {
// Unit Types
const unsigned short SVG_UNIT_TYPE_UNKNOWN = 0;
const unsigned short SVG_UNIT_TYPE_USERSPACEONUSE = 1;
const unsigned short SVG_UNIT_TYPE_OBJECTBOUNDINGBOX = 2;

};

interface SVGStylable {

readonly attribute SVGAnimatedString className;
readonly attribute CSSStyleDeclaration style;

CSSValue getPresentationAttribute(in DOMString name);
};

interface SVGLocatable {

readonly attribute SVGElement nearestViewportElement;
readonly attribute SVGElement farthestViewportElement;

SVGRect getBBox();
SVGMatrix getCTM();
SVGMatrix getScreenCTM();
SVGMatrix getTransformToElement(in SVGElement element) raises(SVGException);

};

interface SVGTransformable : SVGLocatable {
readonly attribute SVGAnimatedTransformList transform;

};

interface SVGTests {

readonly attribute SVGStringList requiredFeatures;
readonly attribute SVGStringList requiredExtensions;
readonly attribute SVGStringList systemLanguage;

boolean hasExtension(in DOMString extension);
};

interface SVGLangSpace {
attribute DOMString xmllang setraises(DOMException);
attribute DOMString xmlspace setraises(DOMException);

};

interface SVGExternalResourcesRequired {
readonly attribute SVGAnimatedBoolean externalResourcesRequired;

};

interface SVGFitToViewBox {
readonly attribute SVGAnimatedRect viewBox;
readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;

};

interface SVGZoomAndPan {

// Zoom and Pan Types
const unsigned short SVG_ZOOMANDPAN_UNKNOWN = 0;
const unsigned short SVG_ZOOMANDPAN_DISABLE = 1;
const unsigned short SVG_ZOOMANDPAN_MAGNIFY = 2;

attribute unsigned short zoomAndPan setraises(DOMException);
};

interface SVGViewSpec : SVGZoomAndPan,
SVGFitToViewBox {

readonly attribute SVGTransformList transform;
readonly attribute SVGElement viewTarget;
readonly attribute DOMString viewBoxString;
readonly attribute DOMString preserveAspectRatioString;
readonly attribute DOMString transformString;
readonly attribute DOMString viewTargetString;

};

interface SVGURIReference {

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSStyleDeclaration
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


readonly attribute SVGAnimatedString href;
};

interface SVGCSSRule : CSSRule {
const unsigned short COLOR_PROFILE_RULE = 7;

};

interface SVGRenderingIntent {
// Rendering Intent Types
const unsigned short RENDERING_INTENT_UNKNOWN = 0;
const unsigned short RENDERING_INTENT_AUTO = 1;
const unsigned short RENDERING_INTENT_PERCEPTUAL = 2;
const unsigned short RENDERING_INTENT_RELATIVE_COLORIMETRIC = 3;
const unsigned short RENDERING_INTENT_SATURATION = 4;
const unsigned short RENDERING_INTENT_ABSOLUTE_COLORIMETRIC = 5;

};

interface SVGDocument : Document,
DocumentEvent {

readonly attribute DOMString title;
readonly attribute DOMString referrer;
readonly attribute DOMString domain;
readonly attribute DOMString URL;
readonly attribute SVGSVGElement rootElement;

};

interface SVGSVGElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGLocatable,
SVGFitToViewBox,
SVGZoomAndPan,
DocumentEvent,
ViewCSS,
DocumentCSS {

readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;

attribute DOMString contentScriptType setraises(DOMException);
attribute DOMString contentStyleType setraises(DOMException);

readonly attribute SVGRect viewport;
readonly attribute float pixelUnitToMillimeterX;
readonly attribute float pixelUnitToMillimeterY;
readonly attribute float screenPixelToMillimeterX;
readonly attribute float screenPixelToMillimeterY;
readonly attribute boolean useCurrentView;
readonly attribute SVGViewSpec currentView;

attribute float currentScale;
readonly attribute SVGPoint currentTranslate;

unsigned long suspendRedraw(in unsigned long maxWaitMilliseconds);
void unsuspendRedraw(in unsigned long suspendHandleID);
void unsuspendRedrawAll();
void forceRedraw();
void pauseAnimations();
void unpauseAnimations();
boolean animationsPaused();
float getCurrentTime();
void setCurrentTime(in float seconds);
NodeList getIntersectionList(in SVGRect rect, in SVGElement referenceElement);
NodeList getEnclosureList(in SVGRect rect, in SVGElement referenceElement);
boolean checkIntersection(in SVGElement element, in SVGRect rect);
boolean checkEnclosure(in SVGElement element, in SVGRect rect);
void deselectAll();
SVGNumber createSVGNumber();
SVGLength createSVGLength();
SVGAngle createSVGAngle();
SVGPoint createSVGPoint();
SVGMatrix createSVGMatrix();
SVGRect createSVGRect();
SVGTransform createSVGTransform();

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSRule
http://www.w3.org/TR/DOM-Level-2-Core/core.html#i-Document
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-DocumentEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-DocumentEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-ViewCSS
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-DocumentCSS
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177


SVGTransform createSVGTransformFromMatrix(in SVGMatrix matrix);
Element getElementById(in DOMString elementId);

};

interface SVGGElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

};

interface SVGDefsElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

};

interface SVGDescElement : SVGElement,
SVGLangSpace,
SVGStylable {

};

interface SVGTitleElement : SVGElement,
SVGLangSpace,
SVGStylable {

};

interface SVGSymbolElement : SVGElement,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGFitToViewBox {

};

interface SVGUseElement : SVGElement,
SVGURIReference,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;
readonly attribute SVGElementInstance instanceRoot;
readonly attribute SVGElementInstance animatedInstanceRoot;

};

interface SVGElementInstance : EventTarget {
readonly attribute SVGElement correspondingElement;
readonly attribute SVGUseElement correspondingUseElement;
readonly attribute SVGElementInstance parentNode;
readonly attribute SVGElementInstanceList childNodes;
readonly attribute SVGElementInstance firstChild;
readonly attribute SVGElementInstance lastChild;
readonly attribute SVGElementInstance previousSibling;
readonly attribute SVGElementInstance nextSibling;

};

interface SVGElementInstanceList {

readonly attribute unsigned long length;

SVGElementInstance item(in unsigned long index);
};

interface SVGImageElement : SVGElement,
SVGURIReference,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-745549614
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-EventTarget


SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;
readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;

};

interface SVGSwitchElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

};

interface GetSVGDocument {
SVGDocument getSVGDocument();

};

interface SVGStyleElement : SVGElement,
SVGLangSpace {

attribute DOMString type setraises(DOMException);
attribute DOMString media setraises(DOMException);
attribute DOMString title setraises(DOMException);

};

interface SVGPoint {

attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

SVGPoint matrixTransform(in SVGMatrix matrix);
};

interface SVGPointList {

readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);
SVGPoint initialize(in SVGPoint newItem) raises(DOMException);
SVGPoint getItem(in unsigned long index) raises(DOMException);
SVGPoint insertItemBefore(in SVGPoint newItem, in unsigned long index) raises(DOMException);
SVGPoint replaceItem(in SVGPoint newItem, in unsigned long index) raises(DOMException);
SVGPoint removeItem(in unsigned long index) raises(DOMException);
SVGPoint appendItem(in SVGPoint newItem) raises(DOMException);

};

interface SVGMatrix {

attribute float a setraises(DOMException);
attribute float b setraises(DOMException);
attribute float c setraises(DOMException);
attribute float d setraises(DOMException);
attribute float e setraises(DOMException);
attribute float f setraises(DOMException);

SVGMatrix multiply(in SVGMatrix secondMatrix);
SVGMatrix inverse() raises(SVGException);
SVGMatrix translate(in float x, in float y);
SVGMatrix scale(in float scaleFactor);
SVGMatrix scaleNonUniform(in float scaleFactorX, in float scaleFactorY);
SVGMatrix rotate(in float angle);
SVGMatrix rotateFromVector(in float x, in float y) raises(SVGException);
SVGMatrix flipX();
SVGMatrix flipY();
SVGMatrix skewX(in float angle);
SVGMatrix skewY(in float angle);

};

interface SVGTransform {

// Transform Types
const unsigned short SVG_TRANSFORM_UNKNOWN = 0;

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


const unsigned short SVG_TRANSFORM_MATRIX = 1;
const unsigned short SVG_TRANSFORM_TRANSLATE = 2;
const unsigned short SVG_TRANSFORM_SCALE = 3;
const unsigned short SVG_TRANSFORM_ROTATE = 4;
const unsigned short SVG_TRANSFORM_SKEWX = 5;
const unsigned short SVG_TRANSFORM_SKEWY = 6;

readonly attribute unsigned short type;
readonly attribute SVGMatrix matrix;
readonly attribute float angle;

void setMatrix(in SVGMatrix matrix) raises(DOMException);
void setTranslate(in float tx, in float ty) raises(DOMException);
void setScale(in float sx, in float sy) raises(DOMException);
void setRotate(in float angle, in float cx, in float cy) raises(DOMException);
void setSkewX(in float angle) raises(DOMException);
void setSkewY(in float angle) raises(DOMException);

};

interface SVGTransformList {

readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);
SVGTransform initialize(in SVGTransform newItem) raises(DOMException);
SVGTransform getItem(in unsigned long index) raises(DOMException);
SVGTransform insertItemBefore(in SVGTransform newItem, in unsigned long index) raises(DOMException);
SVGTransform replaceItem(in SVGTransform newItem, in unsigned long index) raises(DOMException);
SVGTransform removeItem(in unsigned long index) raises(DOMException);
SVGTransform appendItem(in SVGTransform newItem) raises(DOMException);
SVGTransform createSVGTransformFromMatrix(in SVGMatrix matrix);
SVGTransform consolidate() raises(DOMException);

};

interface SVGAnimatedTransformList {
readonly attribute SVGTransformList baseVal;
readonly attribute SVGTransformList animVal;

};

interface SVGPreserveAspectRatio {

// Alignment Types
const unsigned short SVG_PRESERVEASPECTRATIO_UNKNOWN = 0;
const unsigned short SVG_PRESERVEASPECTRATIO_NONE = 1;
const unsigned short SVG_PRESERVEASPECTRATIO_XMINYMIN = 2;
const unsigned short SVG_PRESERVEASPECTRATIO_XMIDYMIN = 3;
const unsigned short SVG_PRESERVEASPECTRATIO_XMAXYMIN = 4;
const unsigned short SVG_PRESERVEASPECTRATIO_XMINYMID = 5;
const unsigned short SVG_PRESERVEASPECTRATIO_XMIDYMID = 6;
const unsigned short SVG_PRESERVEASPECTRATIO_XMAXYMID = 7;
const unsigned short SVG_PRESERVEASPECTRATIO_XMINYMAX = 8;
const unsigned short SVG_PRESERVEASPECTRATIO_XMIDYMAX = 9;
const unsigned short SVG_PRESERVEASPECTRATIO_XMAXYMAX = 10;

// Meet-or-slice Types
const unsigned short SVG_MEETORSLICE_UNKNOWN = 0;
const unsigned short SVG_MEETORSLICE_MEET = 1;
const unsigned short SVG_MEETORSLICE_SLICE = 2;

attribute unsigned short align setraises(DOMException);
attribute unsigned short meetOrSlice setraises(DOMException);

};

interface SVGAnimatedPreserveAspectRatio {
readonly attribute SVGPreserveAspectRatio baseVal;
readonly attribute SVGPreserveAspectRatio animVal;

};

interface SVGPathSeg {

// Path Segment Types
const unsigned short PATHSEG_UNKNOWN = 0;
const unsigned short PATHSEG_CLOSEPATH = 1;
const unsigned short PATHSEG_MOVETO_ABS = 2;
const unsigned short PATHSEG_MOVETO_REL = 3;

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


const unsigned short PATHSEG_LINETO_ABS = 4;
const unsigned short PATHSEG_LINETO_REL = 5;
const unsigned short PATHSEG_CURVETO_CUBIC_ABS = 6;
const unsigned short PATHSEG_CURVETO_CUBIC_REL = 7;
const unsigned short PATHSEG_CURVETO_QUADRATIC_ABS = 8;
const unsigned short PATHSEG_CURVETO_QUADRATIC_REL = 9;
const unsigned short PATHSEG_ARC_ABS = 10;
const unsigned short PATHSEG_ARC_REL = 11;
const unsigned short PATHSEG_LINETO_HORIZONTAL_ABS = 12;
const unsigned short PATHSEG_LINETO_HORIZONTAL_REL = 13;
const unsigned short PATHSEG_LINETO_VERTICAL_ABS = 14;
const unsigned short PATHSEG_LINETO_VERTICAL_REL = 15;
const unsigned short PATHSEG_CURVETO_CUBIC_SMOOTH_ABS = 16;
const unsigned short PATHSEG_CURVETO_CUBIC_SMOOTH_REL = 17;
const unsigned short PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS = 18;
const unsigned short PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL = 19;

readonly attribute unsigned short pathSegType;
readonly attribute DOMString pathSegTypeAsLetter;

};

interface SVGPathSegClosePath : SVGPathSeg {
};

interface SVGPathSegMovetoAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

};

interface SVGPathSegMovetoRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

};

interface SVGPathSegLinetoAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

};

interface SVGPathSegLinetoRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

};

interface SVGPathSegCurvetoCubicAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x1 setraises(DOMException);
attribute float y1 setraises(DOMException);
attribute float x2 setraises(DOMException);
attribute float y2 setraises(DOMException);

};

interface SVGPathSegCurvetoCubicRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x1 setraises(DOMException);
attribute float y1 setraises(DOMException);
attribute float x2 setraises(DOMException);
attribute float y2 setraises(DOMException);

};

interface SVGPathSegCurvetoQuadraticAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x1 setraises(DOMException);
attribute float y1 setraises(DOMException);

};

interface SVGPathSegCurvetoQuadraticRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x1 setraises(DOMException);
attribute float y1 setraises(DOMException);

};

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


interface SVGPathSegArcAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float r1 setraises(DOMException);
attribute float r2 setraises(DOMException);
attribute float angle setraises(DOMException);
attribute boolean largeArcFlag setraises(DOMException);
attribute boolean sweepFlag setraises(DOMException);

};

interface SVGPathSegArcRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float r1 setraises(DOMException);
attribute float r2 setraises(DOMException);
attribute float angle setraises(DOMException);
attribute boolean largeArcFlag setraises(DOMException);
attribute boolean sweepFlag setraises(DOMException);

};

interface SVGPathSegLinetoHorizontalAbs : SVGPathSeg {
attribute float x setraises(DOMException);

};

interface SVGPathSegLinetoHorizontalRel : SVGPathSeg {
attribute float x setraises(DOMException);

};

interface SVGPathSegLinetoVerticalAbs : SVGPathSeg {
attribute float y setraises(DOMException);

};

interface SVGPathSegLinetoVerticalRel : SVGPathSeg {
attribute float y setraises(DOMException);

};

interface SVGPathSegCurvetoCubicSmoothAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x2 setraises(DOMException);
attribute float y2 setraises(DOMException);

};

interface SVGPathSegCurvetoCubicSmoothRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x2 setraises(DOMException);
attribute float y2 setraises(DOMException);

};

interface SVGPathSegCurvetoQuadraticSmoothAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

};

interface SVGPathSegCurvetoQuadraticSmoothRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

};

interface SVGPathSegList {

readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);
SVGPathSeg initialize(in SVGPathSeg newItem) raises(DOMException);
SVGPathSeg getItem(in unsigned long index) raises(DOMException);
SVGPathSeg insertItemBefore(in SVGPathSeg newItem, in unsigned long index) raises(DOMException);
SVGPathSeg replaceItem(in SVGPathSeg newItem, in unsigned long index) raises(DOMException);
SVGPathSeg removeItem(in unsigned long index) raises(DOMException);
SVGPathSeg appendItem(in SVGPathSeg newItem) raises(DOMException);

};

interface SVGAnimatedPathData {

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


readonly attribute SVGPathSegList pathSegList;
readonly attribute SVGPathSegList normalizedPathSegList;
readonly attribute SVGPathSegList animatedPathSegList;
readonly attribute SVGPathSegList animatedNormalizedPathSegList;

};

interface SVGPathElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable,
SVGAnimatedPathData {

readonly attribute SVGAnimatedNumber pathLength;

float getTotalLength();
SVGPoint getPointAtLength(in float distance);
unsigned long getPathSegAtLength(in float distance);
SVGPathSegClosePath createSVGPathSegClosePath();
SVGPathSegMovetoAbs createSVGPathSegMovetoAbs(in float x, in float y);
SVGPathSegMovetoRel createSVGPathSegMovetoRel(in float x, in float y);
SVGPathSegLinetoAbs createSVGPathSegLinetoAbs(in float x, in float y);
SVGPathSegLinetoRel createSVGPathSegLinetoRel(in float x, in float y);
SVGPathSegCurvetoCubicAbs createSVGPathSegCurvetoCubicAbs(in float x, in float y, in float x1, in float y1, in float

x2, in float y2);
SVGPathSegCurvetoCubicRel createSVGPathSegCurvetoCubicRel(in float x, in float y, in float x1, in float y1, in float

x2, in float y2);
SVGPathSegCurvetoQuadraticAbs createSVGPathSegCurvetoQuadraticAbs(in float x, in float y, in float x1, in float y1);
SVGPathSegCurvetoQuadraticRel createSVGPathSegCurvetoQuadraticRel(in float x, in float y, in float x1, in float y1);
SVGPathSegArcAbs createSVGPathSegArcAbs(in float x, in float y, in float r1, in float r2, in float angle, in boolean

largeArcFlag, in boolean sweepFlag);
SVGPathSegArcRel createSVGPathSegArcRel(in float x, in float y, in float r1, in float r2, in float angle, in boolean

largeArcFlag, in boolean sweepFlag);
SVGPathSegLinetoHorizontalAbs createSVGPathSegLinetoHorizontalAbs(in float x);
SVGPathSegLinetoHorizontalRel createSVGPathSegLinetoHorizontalRel(in float x);
SVGPathSegLinetoVerticalAbs createSVGPathSegLinetoVerticalAbs(in float y);
SVGPathSegLinetoVerticalRel createSVGPathSegLinetoVerticalRel(in float y);
SVGPathSegCurvetoCubicSmoothAbs createSVGPathSegCurvetoCubicSmoothAbs(in float x, in float y, in float x2, in float

y2);
SVGPathSegCurvetoCubicSmoothRel createSVGPathSegCurvetoCubicSmoothRel(in float x, in float y, in float x2, in float

y2);
SVGPathSegCurvetoQuadraticSmoothAbs createSVGPathSegCurvetoQuadraticSmoothAbs(in float x, in float y);
SVGPathSegCurvetoQuadraticSmoothRel createSVGPathSegCurvetoQuadraticSmoothRel(in float x, in float y);

};

interface SVGRectElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;
readonly attribute SVGAnimatedLength rx;
readonly attribute SVGAnimatedLength ry;

};

interface SVGCircleElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength cx;
readonly attribute SVGAnimatedLength cy;
readonly attribute SVGAnimatedLength r;

};

interface SVGEllipseElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,



SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength cx;
readonly attribute SVGAnimatedLength cy;
readonly attribute SVGAnimatedLength rx;
readonly attribute SVGAnimatedLength ry;

};

interface SVGLineElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength x1;
readonly attribute SVGAnimatedLength y1;
readonly attribute SVGAnimatedLength x2;
readonly attribute SVGAnimatedLength y2;

};

interface SVGAnimatedPoints {
readonly attribute SVGPointList points;
readonly attribute SVGPointList animatedPoints;

};

interface SVGPolylineElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable,
SVGAnimatedPoints {

};

interface SVGPolygonElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable,
SVGAnimatedPoints {

};

interface SVGTextContentElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable {

// lengthAdjust Types
const unsigned short LENGTHADJUST_UNKNOWN = 0;
const unsigned short LENGTHADJUST_SPACING = 1;
const unsigned short LENGTHADJUST_SPACINGANDGLYPHS = 2;

readonly attribute SVGAnimatedLength textLength;
readonly attribute SVGAnimatedEnumeration lengthAdjust;

long getNumberOfChars();
float getComputedTextLength();
float getSubStringLength(in unsigned long charnum, in unsigned long nchars) raises(DOMException);
SVGPoint getStartPositionOfChar(in unsigned long charnum) raises(DOMException);
SVGPoint getEndPositionOfChar(in unsigned long charnum) raises(DOMException);
SVGRect getExtentOfChar(in unsigned long charnum) raises(DOMException);
float getRotationOfChar(in unsigned long charnum) raises(DOMException);
long getCharNumAtPosition(in SVGPoint point);
void selectSubString(in unsigned long charnum, in unsigned long nchars) raises(DOMException);

};

interface SVGTextPositioningElement : SVGTextContentElement {
readonly attribute SVGAnimatedLengthList x;
readonly attribute SVGAnimatedLengthList y;
readonly attribute SVGAnimatedLengthList dx;
readonly attribute SVGAnimatedLengthList dy;
readonly attribute SVGAnimatedNumberList rotate;

};

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


interface SVGTextElement : SVGTextPositioningElement,
SVGTransformable {

};

interface SVGTSpanElement : SVGTextPositioningElement {
};

interface SVGTRefElement : SVGTextPositioningElement,
SVGURIReference {

};

interface SVGTextPathElement : SVGTextContentElement,
SVGURIReference {

// textPath Method Types
const unsigned short TEXTPATH_METHODTYPE_UNKNOWN = 0;
const unsigned short TEXTPATH_METHODTYPE_ALIGN = 1;
const unsigned short TEXTPATH_METHODTYPE_STRETCH = 2;

// textPath Spacing Types
const unsigned short TEXTPATH_SPACINGTYPE_UNKNOWN = 0;
const unsigned short TEXTPATH_SPACINGTYPE_AUTO = 1;
const unsigned short TEXTPATH_SPACINGTYPE_EXACT = 2;

readonly attribute SVGAnimatedLength startOffset;
readonly attribute SVGAnimatedEnumeration method;
readonly attribute SVGAnimatedEnumeration spacing;

};

interface SVGAltGlyphElement : SVGTextPositioningElement,
SVGURIReference {

attribute DOMString glyphRef setraises(DOMException);
attribute DOMString format setraises(DOMException);

};

interface SVGAltGlyphDefElement : SVGElement {
};

interface SVGAltGlyphItemElement : SVGElement {
};

interface SVGGlyphRefElement : SVGElement,
SVGURIReference,
SVGStylable {

attribute DOMString glyphRef setraises(DOMException);
attribute DOMString format setraises(DOMException);
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float dx setraises(DOMException);
attribute float dy setraises(DOMException);

};

interface SVGPaint : SVGColor {

// Paint Types
const unsigned short SVG_PAINTTYPE_UNKNOWN = 0;
const unsigned short SVG_PAINTTYPE_RGBCOLOR = 1;
const unsigned short SVG_PAINTTYPE_RGBCOLOR_ICCCOLOR = 2;
const unsigned short SVG_PAINTTYPE_NONE = 101;
const unsigned short SVG_PAINTTYPE_CURRENTCOLOR = 102;
const unsigned short SVG_PAINTTYPE_URI_NONE = 103;
const unsigned short SVG_PAINTTYPE_URI_CURRENTCOLOR = 104;
const unsigned short SVG_PAINTTYPE_URI_RGBCOLOR = 105;
const unsigned short SVG_PAINTTYPE_URI_RGBCOLOR_ICCCOLOR = 106;
const unsigned short SVG_PAINTTYPE_URI = 107;

readonly attribute unsigned short paintType;
readonly attribute DOMString uri;

void setUri(in DOMString uri);
void setPaint(in unsigned short paintType, in DOMString uri, in DOMString rgbColor, in DOMString iccColor)

raises(SVGException);
};

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


interface SVGMarkerElement : SVGElement,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGFitToViewBox {

// Marker Unit Types
const unsigned short SVG_MARKERUNITS_UNKNOWN = 0;
const unsigned short SVG_MARKERUNITS_USERSPACEONUSE = 1;
const unsigned short SVG_MARKERUNITS_STROKEWIDTH = 2;

// Marker Orientation Types
const unsigned short SVG_MARKER_ORIENT_UNKNOWN = 0;
const unsigned short SVG_MARKER_ORIENT_AUTO = 1;
const unsigned short SVG_MARKER_ORIENT_ANGLE = 2;

readonly attribute SVGAnimatedLength refX;
readonly attribute SVGAnimatedLength refY;
readonly attribute SVGAnimatedEnumeration markerUnits;
readonly attribute SVGAnimatedLength markerWidth;
readonly attribute SVGAnimatedLength markerHeight;
readonly attribute SVGAnimatedEnumeration orientType;
readonly attribute SVGAnimatedAngle orientAngle;

void setOrientToAuto() raises(DOMException);
void setOrientToAngle(in SVGAngle angle) raises(DOMException);

};

interface SVGColorProfileElement : SVGElement,
SVGURIReference,
SVGRenderingIntent {

attribute DOMString local;
attribute DOMString name;
attribute unsigned short renderingIntent;

};

interface SVGColorProfileRule : SVGCSSRule,
SVGRenderingIntent {

attribute DOMString src setraises(DOMException);
attribute DOMString name setraises(DOMException);
attribute unsigned short renderingIntent setraises(DOMException);

};

interface SVGGradientElement : SVGElement,
SVGURIReference,
SVGExternalResourcesRequired,
SVGStylable,
SVGUnitTypes {

// Spread Method Types
const unsigned short SVG_SPREADMETHOD_UNKNOWN = 0;
const unsigned short SVG_SPREADMETHOD_PAD = 1;
const unsigned short SVG_SPREADMETHOD_REFLECT = 2;
const unsigned short SVG_SPREADMETHOD_REPEAT = 3;

readonly attribute SVGAnimatedEnumeration gradientUnits;
readonly attribute SVGAnimatedTransformList gradientTransform;
readonly attribute SVGAnimatedEnumeration spreadMethod;

};

interface SVGLinearGradientElement : SVGGradientElement {
readonly attribute SVGAnimatedLength x1;
readonly attribute SVGAnimatedLength y1;
readonly attribute SVGAnimatedLength x2;
readonly attribute SVGAnimatedLength y2;

};

interface SVGRadialGradientElement : SVGGradientElement {
readonly attribute SVGAnimatedLength cx;
readonly attribute SVGAnimatedLength cy;
readonly attribute SVGAnimatedLength r;
readonly attribute SVGAnimatedLength fx;
readonly attribute SVGAnimatedLength fy;

};

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


interface SVGStopElement : SVGElement,
SVGStylable {

readonly attribute SVGAnimatedNumber offset;
};

interface SVGPatternElement : SVGElement,
SVGURIReference,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGFitToViewBox,
SVGUnitTypes {

readonly attribute SVGAnimatedEnumeration patternUnits;
readonly attribute SVGAnimatedEnumeration patternContentUnits;
readonly attribute SVGAnimatedTransformList patternTransform;
readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;

};

interface SVGClipPathElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable,
SVGUnitTypes {

readonly attribute SVGAnimatedEnumeration clipPathUnits;
};

interface SVGMaskElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGUnitTypes {

readonly attribute SVGAnimatedEnumeration maskUnits;
readonly attribute SVGAnimatedEnumeration maskContentUnits;
readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;

};

interface SVGFilterElement : SVGElement,
SVGURIReference,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGUnitTypes {

readonly attribute SVGAnimatedEnumeration filterUnits;
readonly attribute SVGAnimatedEnumeration primitiveUnits;
readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;
readonly attribute SVGAnimatedInteger filterResX;
readonly attribute SVGAnimatedInteger filterResY;

void setFilterRes(in unsigned long filterResX, in unsigned long filterResY) raises(DOMException);
};

interface SVGFilterPrimitiveStandardAttributes : SVGStylable {
readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;
readonly attribute SVGAnimatedString result;

};

interface SVGFEBlendElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


// Blend Mode Types
const unsigned short SVG_FEBLEND_MODE_UNKNOWN = 0;
const unsigned short SVG_FEBLEND_MODE_NORMAL = 1;
const unsigned short SVG_FEBLEND_MODE_MULTIPLY = 2;
const unsigned short SVG_FEBLEND_MODE_SCREEN = 3;
const unsigned short SVG_FEBLEND_MODE_DARKEN = 4;
const unsigned short SVG_FEBLEND_MODE_LIGHTEN = 5;

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedString in2;
readonly attribute SVGAnimatedEnumeration mode;

};

interface SVGFEColorMatrixElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

// Color Matrix Types
const unsigned short SVG_FECOLORMATRIX_TYPE_UNKNOWN = 0;
const unsigned short SVG_FECOLORMATRIX_TYPE_MATRIX = 1;
const unsigned short SVG_FECOLORMATRIX_TYPE_SATURATE = 2;
const unsigned short SVG_FECOLORMATRIX_TYPE_HUEROTATE = 3;
const unsigned short SVG_FECOLORMATRIX_TYPE_LUMINANCETOALPHA = 4;

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedEnumeration type;
readonly attribute SVGAnimatedNumberList values;

};

interface SVGFEComponentTransferElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedString in1;
};

interface SVGComponentTransferFunctionElement : SVGElement {

// Component Transfer Types
const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_UNKNOWN = 0;
const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_IDENTITY = 1;
const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_TABLE = 2;
const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_DISCRETE = 3;
const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_LINEAR = 4;
const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_GAMMA = 5;

readonly attribute SVGAnimatedEnumeration type;
readonly attribute SVGAnimatedNumberList tableValues;
readonly attribute SVGAnimatedNumber slope;
readonly attribute SVGAnimatedNumber intercept;
readonly attribute SVGAnimatedNumber amplitude;
readonly attribute SVGAnimatedNumber exponent;
readonly attribute SVGAnimatedNumber offset;

};

interface SVGFEFuncRElement : SVGComponentTransferFunctionElement {
};

interface SVGFEFuncGElement : SVGComponentTransferFunctionElement {
};

interface SVGFEFuncBElement : SVGComponentTransferFunctionElement {
};

interface SVGFEFuncAElement : SVGComponentTransferFunctionElement {
};

interface SVGFECompositeElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

// Composite Operators
const unsigned short SVG_FECOMPOSITE_OPERATOR_UNKNOWN = 0;
const unsigned short SVG_FECOMPOSITE_OPERATOR_OVER = 1;
const unsigned short SVG_FECOMPOSITE_OPERATOR_IN = 2;
const unsigned short SVG_FECOMPOSITE_OPERATOR_OUT = 3;
const unsigned short SVG_FECOMPOSITE_OPERATOR_ATOP = 4;
const unsigned short SVG_FECOMPOSITE_OPERATOR_XOR = 5;



const unsigned short SVG_FECOMPOSITE_OPERATOR_ARITHMETIC = 6;

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedString in2;
readonly attribute SVGAnimatedEnumeration operator;
readonly attribute SVGAnimatedNumber k1;
readonly attribute SVGAnimatedNumber k2;
readonly attribute SVGAnimatedNumber k3;
readonly attribute SVGAnimatedNumber k4;

};

interface SVGFEConvolveMatrixElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

// Edge Mode Values
const unsigned short SVG_EDGEMODE_UNKNOWN = 0;
const unsigned short SVG_EDGEMODE_DUPLICATE = 1;
const unsigned short SVG_EDGEMODE_WRAP = 2;
const unsigned short SVG_EDGEMODE_NONE = 3;

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedInteger orderX;
readonly attribute SVGAnimatedInteger orderY;
readonly attribute SVGAnimatedNumberList kernelMatrix;
readonly attribute SVGAnimatedNumber divisor;
readonly attribute SVGAnimatedNumber bias;
readonly attribute SVGAnimatedInteger targetX;
readonly attribute SVGAnimatedInteger targetY;
readonly attribute SVGAnimatedEnumeration edgeMode;
readonly attribute SVGAnimatedNumber kernelUnitLengthX;
readonly attribute SVGAnimatedNumber kernelUnitLengthY;
readonly attribute SVGAnimatedBoolean preserveAlpha;

};

interface SVGFEDiffuseLightingElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedNumber surfaceScale;
readonly attribute SVGAnimatedNumber diffuseConstant;
readonly attribute SVGAnimatedNumber kernelUnitLengthX;
readonly attribute SVGAnimatedNumber kernelUnitLengthY;

};

interface SVGFEDistantLightElement : SVGElement {
readonly attribute SVGAnimatedNumber azimuth;
readonly attribute SVGAnimatedNumber elevation;

};

interface SVGFEPointLightElement : SVGElement {
readonly attribute SVGAnimatedNumber x;
readonly attribute SVGAnimatedNumber y;
readonly attribute SVGAnimatedNumber z;

};

interface SVGFESpotLightElement : SVGElement {
readonly attribute SVGAnimatedNumber x;
readonly attribute SVGAnimatedNumber y;
readonly attribute SVGAnimatedNumber z;
readonly attribute SVGAnimatedNumber pointsAtX;
readonly attribute SVGAnimatedNumber pointsAtY;
readonly attribute SVGAnimatedNumber pointsAtZ;
readonly attribute SVGAnimatedNumber specularExponent;
readonly attribute SVGAnimatedNumber limitingConeAngle;

};

interface SVGFEDisplacementMapElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

// Channel Selectors
const unsigned short SVG_CHANNEL_UNKNOWN = 0;
const unsigned short SVG_CHANNEL_R = 1;
const unsigned short SVG_CHANNEL_G = 2;
const unsigned short SVG_CHANNEL_B = 3;
const unsigned short SVG_CHANNEL_A = 4;



readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedString in2;
readonly attribute SVGAnimatedNumber scale;
readonly attribute SVGAnimatedEnumeration xChannelSelector;
readonly attribute SVGAnimatedEnumeration yChannelSelector;

};

interface SVGFEFloodElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

};

interface SVGFEGaussianBlurElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedNumber stdDeviationX;
readonly attribute SVGAnimatedNumber stdDeviationY;

void setStdDeviation(in float stdDeviationX, in float stdDeviationY) raises(DOMException);
};

interface SVGFEImageElement : SVGElement,
SVGURIReference,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;
};

interface SVGFEMergeElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

};

interface SVGFEMergeNodeElement : SVGElement {
readonly attribute SVGAnimatedString in1;

};

interface SVGFEMorphologyElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

// Morphology Operators
const unsigned short SVG_MORPHOLOGY_OPERATOR_UNKNOWN = 0;
const unsigned short SVG_MORPHOLOGY_OPERATOR_ERODE = 1;
const unsigned short SVG_MORPHOLOGY_OPERATOR_DILATE = 2;

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedEnumeration operator;
readonly attribute SVGAnimatedNumber radiusX;
readonly attribute SVGAnimatedNumber radiusY;

};

interface SVGFEOffsetElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedNumber dx;
readonly attribute SVGAnimatedNumber dy;

};

interface SVGFESpecularLightingElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedString in1;
readonly attribute SVGAnimatedNumber surfaceScale;
readonly attribute SVGAnimatedNumber specularConstant;
readonly attribute SVGAnimatedNumber specularExponent;
readonly attribute SVGAnimatedNumber kernelUnitLengthX;
readonly attribute SVGAnimatedNumber kernelUnitLengthY;

};

interface SVGFETileElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

readonly attribute SVGAnimatedString in1;
};

interface SVGFETurbulenceElement : SVGElement,
SVGFilterPrimitiveStandardAttributes {

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


// Turbulence Types
const unsigned short SVG_TURBULENCE_TYPE_UNKNOWN = 0;
const unsigned short SVG_TURBULENCE_TYPE_FRACTALNOISE = 1;
const unsigned short SVG_TURBULENCE_TYPE_TURBULENCE = 2;

// Stitch Options
const unsigned short SVG_STITCHTYPE_UNKNOWN = 0;
const unsigned short SVG_STITCHTYPE_STITCH = 1;
const unsigned short SVG_STITCHTYPE_NOSTITCH = 2;

readonly attribute SVGAnimatedNumber baseFrequencyX;
readonly attribute SVGAnimatedNumber baseFrequencyY;
readonly attribute SVGAnimatedInteger numOctaves;
readonly attribute SVGAnimatedNumber seed;
readonly attribute SVGAnimatedEnumeration stitchTiles;
readonly attribute SVGAnimatedEnumeration type;

};

interface SVGCursorElement : SVGElement,
SVGURIReference,
SVGTests,
SVGExternalResourcesRequired {

readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;

};

interface SVGAElement : SVGElement,
SVGURIReference,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedString target;
};

interface SVGViewElement : SVGElement,
SVGExternalResourcesRequired,
SVGFitToViewBox,
SVGZoomAndPan {

readonly attribute SVGStringList viewTarget;
};

interface SVGScriptElement : SVGElement,
SVGURIReference,
SVGExternalResourcesRequired {

attribute DOMString type setraises(DOMException);
};

interface SVGZoomEvent : UIEvent {
readonly attribute SVGRect zoomRectScreen;
readonly attribute float previousScale;
readonly attribute SVGPoint previousTranslate;
readonly attribute float newScale;
readonly attribute SVGPoint newTranslate;

};

interface SVGAnimationElement : SVGElement,
SVGTests,
SVGExternalResourcesRequired,
ElementTimeControl {

readonly attribute SVGElement targetElement;

float getStartTime() raises(DOMException);
float getCurrentTime();
float getSimpleDuration() raises(DOMException);

};

interface SVGAnimateElement : SVGAnimationElement,
SVGStylable {

};

interface SVGSetElement : SVGAnimationElement {

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187


};

interface SVGAnimateMotionElement : SVGAnimationElement {
};

interface SVGMPathElement : SVGElement,
SVGURIReference,
SVGExternalResourcesRequired {

};

interface SVGAnimateColorElement : SVGAnimationElement,
SVGStylable {

};

interface SVGAnimateTransformElement : SVGAnimationElement {
};

interface SVGFontElement : SVGElement,
SVGExternalResourcesRequired,
SVGStylable {

};

interface SVGGlyphElement : SVGElement,
SVGStylable {

};

interface SVGMissingGlyphElement : SVGElement,
SVGStylable {

};

interface SVGHKernElement : SVGElement {
};

interface SVGVKernElement : SVGElement {
};

interface SVGFontFaceElement : SVGElement {
};

interface SVGFontFaceSrcElement : SVGElement {
};

interface SVGFontFaceUriElement : SVGElement {
};

interface SVGFontFaceFormatElement : SVGElement {
};

interface SVGFontFaceNameElement : SVGElement {
};

interface SVGMetadataElement : SVGElement {
};

interface SVGForeignObjectElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;

};

};



Appendix D: Java Language Binding

Contents

D.1 The Java language binding
D.2 Using SVG with the Java language

This appendix is informative, not normative.

D.1 The Java language binding

The Java language binding for the SVG Document Object Model definitions is available at:

http://www.w3.org/TR/2011/REC-SVG11-20110816/java-binding.zip

Note that this language binding is not normative. The IDL Definitions are the normative parts of the SVG DOM.

D.2 Using SVG with the Java language

When scripting SVG with a language such as ECMAScript, it is possible to embed script code directly in the SVG
content using the ‘script’ element and the event attributes (e.g., ‘onload’ or ‘onclick’). For programming languages
with a binary delivery format, such as the Java language, it is not possible to embed the code into the ‘script’
element or within the event attributes. Therefore there is a need to specify how such languages can bind to and
handle events in the SVG document. The following technique describes how this should be done when using the
Java language and what is expected of the User Agent that supports dynamic SVG content through the Java lan-
guage.

• The ‘script’ element should reference a jar file containing the compiled code to handle the events fired by the
document. For example:

<script type="application/java-archive" xlink:href="myJavaHandlers.jar"/>

• The manifest in the referenced jar file contains an entry, SVG-Handler-Class, defining the class responsible
for initializing the event listeners on the SVG document. The entry should be a fully qualified class name. For
example:

Manifest-Version: 1.1
SVG-Handler-Class: org.example.svg.SVGHandler

• The class referenced by SVG-Handler-Class implements the EventListenerInitializer interface defined as:

public interface EventListenerInitializer {

http://www.w3.org/TR/2011/REC-SVG11-20110816/java-binding.zip


void initializeEventListeners(SVGDocument doc);
}

• The method initializeEventListeners() will be called by the User Agent before the onload event is triggered.

The event binding of other binary programming languages is not specified.



Appendix E: ECMAScript Language Binding

Contents

E.1 Exceptions
E.2 Constants
E.3 Types
E.4 Objects

This appendix is normative.

This appendix describes how to expose the SVG DOM to an ECMAScript language environment [ECMA-262].
For descriptions of how interfaces and exceptions defined in other specifications are to be exposed to an

ECMAScript language environment, consult the relevant specification:

• For DOM Level 2 Core interfaces and exceptions, see the DOM Level 2 Core ECMAScript Language Binding
appendix ([DOM2], appendix E).

• For DOM Level 2 Events interfaces, see the DOM Level 2 Events ECMAScript Language Binding appendix
([DOM2EVENTS], appendix C).

• For DOM Level 2 Views interfaces, see the DOM Level 2 Views ECMAScript Language Binding appendix
([DOM2VIEWS], appendix C).

• For DOM Level 2 Style interfaces, see the DOM Level 2 Style ECMAScript Language Binding appendix
([DOM2STYLE], appendix C).

E.1 Exceptions

The SVG DOM defines a single exception, SVGException, which is exposed to an ECMAScript language environ-
ment as follows.

The ECMAScript global object has a property named "SVGException" whose value is an object with the fol-
lowing properties:

• A read only property named "SVG_WRONG_TYPE_ERR", whose value is the Number value 1.
• A read only property named "SVG_INVALID_VALUE_ERR", whose value is the Number value 2.
• A read only property named "SVG_MATRIX_NOT_INVERTABLE", whose value is the Number value 3.

A host object that is an SVGException also has these three properties on itself, or somewhere in its prototype chain.
Every such host object also has a read only property named "code" whose value is a Number, corresponding to
the code exception member on SVGException.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/ecma-script-binding.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/ecma-script-binding.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/ecma-script-binding.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113/ecma-script-binding.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/ecma-script-binding.html


E.2 Constants

For every interface defined in the SVG DOM that has one or more constants defined on it, there exists a property
on the ECMAScript global object whose name is the name of the interface, and whose value is an object with a
read only property for each of the constants. The name of each of these read only properties is the name of the
corresponding constant, and the value is a Number with the same value as that of the constant.

A host object that implements an interface with constants defined on it has, on itself or somewhere in its
prototype chain, these properties that correspond to the constants.

E.3 Types

The following table gives the corresponding ECMAScript type for the IDL primitive types used in the SVG DOM.

IDL type ECMAScript type

boolean Boolean

float Number

long Number

unsigned short Number

unsigned long Number

DOMString String

When an ECMAScript Number is assigned to a property that corresponds to an attribute of an IDL integer type
(long, unsigned short or unsigned long), or it is passed as an argument passed to an operation for which the ar-
gument type is an IDL integer type, then behavior is undefined if the Number value is not an integer within the
range of that type.

For an interface type, a host object that implements the given interface is used.

E.4 Objects

A host object that implements a given interface has properties on itself, or in its prototype chain, that correspond
to the operations and attributes defined on that interface and all its superinterfaces.

A property that corresponds to an attribute is read only if the attribute is read only, and has a name that is
the same as the name of the attribute. When getting the property, a value of a type according to the Types section
above is returned. When setting the property, if it is not read only, then behavior is defined only if a value of a
type according to the Types section is assigned to it.

For example, if a is a host object that implements the SVGLength interface, then evaluating the statement:



a.valueAsString = "10";

has defined behavior, but evaluating the statement:

a.valueAsString = 10;

does not.
A property that corresponds to an operation has a name that is the same as the name of the operation, and

has a value that is a Function object. The value returned from the Function is of a type according to the table in
the Types section above. When calling the Function, behavior is only defined if the correct number of arguments
is passed, and the type of each argument is the type according to the Types table. Also, behavior is only defined
for invoking the Function with a this value that is equal to the object from which the Function was obtained.

For example, if L1 and L2 are two distinct host objects that implement the SVGPointList interface and p is a
host object that implements the SVGPoint interface, then evaluating the following statement has defined behavior:

L1.insertItemBefore(p, 0);

Evaluating any of the following statements, however, does not:

L1.insertItemBefore(p, '0');
L1.insertItemBefore(p, -1);
L1.insertItemBefore(p, 0.5);
L1.insertItemBefore(p);
L1.insertItemBefore(p, 0, 0);
L1.insertItemBefore({ x: 10, y: 20 }, 0);
L1.insertItemBefore.call([], p, 0);
L1.insertItemBefore.call(L2, p, 0);



Appendix F: Implementation Requirements

Contents

F.1 Introduction
F.2 Error processing
F.3 Version control
F.4 Clamping values which are restricted to a particular range
F.5 ‘path’ element implementation notes
F.6 Elliptical arc implementation notes

F.6.1 Elliptical arc syntax
F.6.2 Out-of-range parameters
F.6.3 Parameterization alternatives
F.6.4 Conversion from center to endpoint parameterization
F.6.5 Conversion from endpoint to center parameterization
F.6.6 Correction of out-of-range radii

F.7 Text selection implementation notes
F.8 Printing implementation notes

This appendix is normative.

F.1 Introduction

The following are notes about implementation requirements corresponding to various features in the SVG lan-
guage.

F.2 Error processing

There are various scenarios where an SVG document fragment is technically in error:

• When the content does not conform to the XML 1.0 specification [XML10], such as the use of incorrect XML
syntax

• When an element or attribute is encountered in the document which is not part of the SVG DTD and which
is not properly identified as being part of another namespace (see Namespaces in XML [XML-NS])

• When an element has an attribute or property value which is not permissible according to this specification
• Other situations that are described as being in error in this specification

A document can go in and out of error over time. For example, document changes from the SVG DOM or from
animation can cause a document to become in error and a further change can cause the document to become cor-
rect again.

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2006/REC-xml-names-20060816/


The following error processing shall occur when a document is in error:

• The document shall be rendered up to, but not including, the first element which has an error. Exceptions:
◦ If a ‘path’ element is the first element which has an error and the only errors are in the path data spe-

cification, then render the ‘path’ up to the point of the path data error. For related information, see ‘path’
element implementation notes.

◦ If a ‘polyline’ or ‘polygon’ element is the first element which has an error and the only errors are within
the ‘points’ attribute, then render the ‘polyline’ or ‘polygon’ up to the segment with the error.

This approach will provide a visual clue to the user or developer about where the error might be in the docu-
ment.

• If the document has animations, the animations shall stop at the point at which an error is encountered and
the visual presentation of the document shall reflect the animated status of the document at the point the
error was encountered.

• A highly perceivable indication of error shall occur. For visual rendering situations, an example of an indica-
tion of error would be to render a translucent colored pattern such as a checkerboard on top of the area where
the SVG content is rendered.

• If the user agent has access to an error reporting capability such as status bar, it is recommended that the user
agent provide whatever additional detail it can to enable the user or developer to quickly find the source of
the error. For example, the user agent might provide an error message along with a line number and character
number at which the error was encountered.

Because of situations where a block of scripting changes might cause a given SVG document fragment to go into
and out of error, error processing shall occur only at times when document presentation (e.g., rendering to the
display device) is updated. In particular, error processing shall be disabled whenever redraw has been suspended
via DOM calls to suspendRedraw.

F.3 Version control

The SVG user agent must verify the reference to the PUBLIC identifier in the <!DOCTYPE> statement or the
namespace reference in the ‘xmlns’ attribute on the ‘svg’ element to ensure that the given document (or document
fragment) identifies a version of the SVG language which the SVG user agent supports. If the version information
is missing or the version information indicates a version of the SVG language which the SVG user agent does
not support, then the SVG user agent is not required to render that document or fragment. In particular, it is not
required that an SVG user agent attempt to render future versions of the SVG language. If the user environment
provides such an option, the user agent should alert or otherwise notify the user that the version of the file is not
supported and suggest an alternate processing option (e.g., installing an updated version of the user agent) if such
an option exists.

An SVG user agent which supports the SVG Recommendation should alert or otherwise notify the user
whenever it encounters an SVG document (or document fragment) whose <!DOCTYPE> statement or corresponding
‘xmlns’ attribute corresponds to a working draft version of the SVG specification. All content based on working
drafts of this specification should be updated to the SVG Recommendation.



F.4 Clamping values which are restricted to a particular range

Some numeric attribute and property values have restricted ranges, such as color component values. When out-of-
range values are provided, the user agent shall defer any error checking until after presentation time, as compos-
ited actions might produce intermediate values which are out-of-range but final values which are within range.

Color values are not in error if they are out-of-range, even if final computations produce an out-of-range
color value at presentation time. It is recommended that user agents clamp color values to the nearest color value
(possibly determined by simple clipping) which the system can process as late as possible (e.g., presentation time),
although it is acceptable for user agents to clamp color values as early as parse time. Thus, implementation de-
pendencies might preclude consistent behavior across different systems when out-of-range color values are used.

Opacity values out-of-range are not in error and should be clamped to the range 0 to 1 at the time which opa-
city values have to be processed (e.g., at presentation time or when it is necessary to perform intermediate filter
effect calculations).

F.5 ‘path’ element implementation notes

A conforming SVG user agent must implement path rendering as follows:

• Error handling:
◦ The general rule for error handling in path data is that the SVG user agent shall render a ‘path’ element

up to (but not including) the path command containing the first error in the path data specification. This
will provide a visual clue to the user or developer about where the error might be in the path data spe-
cification. This rule will greatly discourage generation of invalid SVG path data.

◦ If a path data command contains an incorrect set of parameters, then the given path data command
is rendered up to and including the last correctly defined path segment, even if that path segment is a
sub-component of a compound path data command, such as a "lineto" with several pairs of coordinates.
For example, for the path data string 'M 10,10 L 20,20,30', there is an odd number of parameters for the
"L" command, which requires an even number of parameters. The user agent is required to draw the
line from (10,10) to (20,20) and then perform error reporting since 'L 20 20' is the last correctly defined
segment of the path data specification.

◦ Wherever possible, all SVG user agents shall report all errors to the user.
• Markers, directionality and zero-length path segments:

◦ If markers are specified, then a marker is drawn on every applicable vertex, even if the given vertex is
the end point of a zero-length path segment and even if "moveto" commands follow each other.

◦ Certain line-capping and line-joining situations and markers require that a path segment have direc-
tionality at its start and end points. Zero-length path segments have no directionality. In these cases, the
following algorithm is used to establish directionality: to determine the directionality of the start point
of a zero-length path segment, go backwards in the path data specification within the current subpath
until you find a segment which has directionality at its end point (e.g., a path segment with non-zero
length) and use its ending direction; otherwise, temporarily consider the start point to lack directional-
ity. Similarly, to determine the directionality of the end point of a zero-length path segment, go forwards



in the path data specification within the current subpath until you find a segment which has directional-
ity at its start point (e.g., a path segment with non-zero length) and use its starting direction; otherwise,
temporarily consider the end point to lack directionality. If the start point has directionality but the end
point doesn't, then the end point uses the start point's directionality. If the end point has directionality
but the start point doesn't, then the start point uses the end point's directionality. Otherwise, set the dir-
ectionality for the path segment's start and end points to align with the positive x-axis in user space.

◦ As mentioned in Stroke Properties, linecaps must be painted for zero length subpaths when ‘stroke-line-
cap’ has a value of round or square.

• The S/s commands indicate that the first control point of the given cubic Bézier segment is calculated by re-
flecting the previous path segments second control point relative to the current point. The exact math is as
follows. If the current point is (curx, cury) and the second control point of the previous path segment is (oldx2,
oldy2), then the reflected point (i.e., (newx1, newy1), the first control point of the current path segment) is:

(newx1, newy1) = (curx - (oldx2 - curx), cury - (oldy2 - cury))
= (2*curx - oldx2, 2*cury - oldy2)

• A non-positive radius value is an error.
• Unrecognized contents within a path data stream (i.e., contents that are not part of the path data grammar)

is an error.

F.6 Elliptical arc implementation notes

F.6.1 Elliptical arc syntax

An elliptical arc is a particular path command. As such, it is described by the following parameters in order:
(x1, y1) are the absolute coordinates of the current point on the path, obtained from the last two parameters

of the previous path command.
rx and ry are the radii of the ellipse (also known as its semi-major and semi-minor axes).
φ is the angle from the x-axis of the current coordinate system to the x-axis of the ellipse.
fA is the large arc flag, and is 0 if an arc spanning less than or equal to 180 degrees is chosen, or 1 if an arc

spanning greater than 180 degrees is chosen.
fS is the sweep flag, and is 0 if the line joining center to arc sweeps through decreasing angles, or 1 if it sweeps

through increasing angles.
(x2, y2) are the absolute coordinates of the final point of the arc.
This parameterization of elliptical arcs will be referred to as endpoint parameterization. One of the advant-

ages of endpoint parameterization is that it permits a consistent path syntax in which all path commands end in
the coordinates of the new "current point". The following notes give rules and formulas to help implementers deal
with endpoint parameterization.



F.6.2 Out-of-range parameters

Arbitrary numerical values are permitted for all elliptical arc parameters, but where these values are invalid or
out-of-range, an implementation must make sense of them as follows:

If the endpoints (x1, y1) and (x2, y2) are identical, then this is equivalent to omitting the elliptical arc segment
entirely.

If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a "lineto") joining the endpoints.
If rx or ry have negative signs, these are dropped; the absolute value is used instead.
If rx, ry and φ are such that there is no solution (basically, the ellipse is not big enough to reach from (x1, y1)

to (x2, y2)) then the ellipse is scaled up uniformly until there is exactly one solution (until the ellipse is just big
enough).

φ is taken mod 360 degrees.
Any nonzero value for either of the flags fA or fS is taken to mean the value 1.
This forgiving yet consistent treatment of out-of-range values ensures that:

• The inevitable approximations arising from computer arithmetic cannot cause a valid set of values written
by one SVG implementation to be treated as invalid when read by another SVG implementation. This would
otherwise be a problem for common boundary cases such as a semicircular arc.

• Continuous animations that cause parameters to pass through invalid values are not a problem. The motion
remains continuous.

F.6.3 Parameterization alternatives

An arbitrary point (x, y) on the elliptical arc can be described by the 2-dimensional matrix equation

(F.6.3.1)

(cx, cy) are the coordinates of the center of the ellipse.
rx and ry are the radii of the ellipse (also known as its semi-major and semi-minor axes).
θ is the angle from the x-axis of the current coordinate system to the x-axis of the ellipse.
θ ranges from:

• θ1 which is the start angle of the elliptical arc prior to the stretch and rotate operations.
• θ2 which is the end angle of the elliptical arc prior to the stretch and rotate operations.
• Δθ which is the difference between these two angles.

If one thinks of an ellipse as a circle that has been stretched and then rotated, then θ1, θ2 and Δθ are the start
angle, end angle and sweep angle, respectively of the arc prior to the stretch and rotate operations. This leads to an
alternate parameterization which is common among graphics APIs, which will be referred to as center parameter-



ization. In the next sections, formulas are given for mapping in both directions between center parameterization
and endpoint parameterization.

F.6.4 Conversion from center to endpoint parameterization

Given the following variables:
cx cy rx ry φ θ1 Δθ

the task is to find:
x1 y1 x2 y2 fA fS

This can be achieved using the following formulas:

(F.6.4.1)

(F.6.4.2)

(F.6.4.3)

(F.6.4.4)

F.6.5 Conversion from endpoint to center parameterization

Given the following variables:
x1 y1 x2 y2 fA fS rx ry φ

the task is to find:
cx cy θ1 Δθ

The equations simplify after a translation which places the origin at the midpoint of the line joining (x1, y1)
to (x2, y2), followed by a rotation to line up the coordinate axes with the axes of the ellipse. All transformed co-
ordinates will be written with primes. They are computed as intermediate values on the way toward finding the
required center parameterization variables. This procedure consists of the following steps:

• Step 1: Compute (x1′, y1′)



(F.6.5.1)

• Step 2: Compute (cx′, cy′)

(F.6.5.2)

where the + sign is chosen if fA ≠ fS, and the − sign is chosen if fA = fS.
• Step 3: Compute (cx, cy) from (cx′, cy′)

(F.6.5.3)

• Step 4: Compute θ1 and Δθ
In general, the angle between two vectors (ux, uy) and (vx, vy) can be computed as

(F.6.5.4)

where the ± sign appearing here is the sign of ux vy − uy vx.
This angle function can be used to express θ1 and Δθ as follows:

(F.6.5.5)

(F.6.5.6)



where θ1 is fixed in the range −360° < Δθ < 360° such that:
if fS = 0, then Δθ < 0,
else if fS = 1, then Δθ > 0.

In other words, if fS = 0 and the right side of (F.6.5.6) is greater than 0, then subtract 360°, whereas if
fS = 1 and the right side of (F.6.5.6) is less than 0, then add 360°. In all other cases leave it as is.

F.6.6 Correction of out-of-range radii

This section formalizes the adjustments to out-of-range rx and ry mentioned in F.6.2. Algorithmically these adjust-
ments consist of the following steps:

• Step 1: Ensure radii are non-zero
If rx = 0 or ry = 0, then treat this as a straight line from (x1, y1) to (x2, y2) and stop. Otherwise,

• Step 2: Ensure radii are positive
Take the absolute value of rx and ry:

(F.6.6.1)

• Step 3: Ensure radii are large enough
Using the primed coordinate values of equation (F.6.5.1), compute

(F.6.6.2)

If the result of the above equation is less than or equal to 1, then no further change need be made to rx and
ry. If the result of the above equation is greater than 1, then make the replacements

(F.6.6.3)

• Step 4: Proceed with computations
Proceed with the remaining elliptical arc computations, such as those in section F.6.5. Note: As a con-

sequence of the radii corrections in this section, equation (F.6.5.2) for the center of the ellipse always has at
least one solution (i.e. the radicand is never negative). In the case that the radii are scaled up using equation
(F.6.6.3), the radicand of (F.6.5.2) is zero and there is exactly one solution for the center of the ellipse.

F.7 Text selection implementation notes

The following implementation notes describe the algorithm for deciding which characters are selected during a
text selection operation.



As the text selection operation occurs (e.g., while the user clicks and drags the mouse to identify the selec-
tion), the user agent determines a start selection position and an end selection position, each of which represents
a position in the text string between two characters. After determining start selection position and end selection
position, the user agent selects the appropriate characters, where the resulting text selection consists of either:

• no selection or
• a start character, an end character (possibly the same character), and all of the characters within the same

‘text’ element whose position in the DOM is logically between the start character and end character.

On systems with pointer devices, to determine the start selection position, the SVG user agent determines which
boundary between characters corresponding to rendered glyphs is the best target (e.g., closest) based on the cur-
rent pointer location at the time of the event that initiates the selection operation (e.g., the mouse down event).
The user agent then tracks the completion of the selection operation (e.g., the mouse drag, followed ultimately by
the mouse up). At the end of the selection operation, the user agent determines which boundary between charac-
ters is the best target (e.g., closest) for the end selection position.

If no character reordering has occurred due to bidirectionality, then the selection consists of all characters
between the start selection position and end selection position. For example, if a ‘text’ element contains the string
"abcdef" and the start selection position and end selection positions are 0 and 3 respectively (assuming the left side
of the "a" is position zero), then the selection will consist of "abc".

When the user agent is implementing selection of bidirectional text, and when the selection starts (or ends)
between characters which are not contiguous in logical order, then there might be multiple potential combinations
of characters that can be considered part of the selection. The algorithms to choose among the combinations of
potential selection options shall choose the selection option which most closely matches the text string's visual
rendering order.

When multiple characters map inseparably to a given set of one or more glyphs, the user agent can either
disallow the selection to start in the middle of the glyph set or can attempt to allocate portions of the area taken
up by the glyph set to the characters that correspond to the glyph.

For systems which support pointer devices such as a mouse, the user agent is required to provide a mechanism
for selecting text even when the given text has associated event handlers or links, which might block text selection
due to event processing precedence rules (see Pointer events). One implementation option: For platforms which
support a pointer device such as a mouse, the user agent may provide for a small additional region around charac-
ter cells which initiates text selection operations but does not initiate event handlers or links.

F.8 Printing implementation notes

For user agents which support both zooming on display devices and printing, it is recommended that the default
printing option produce printed output that reflects the display device's current view of the current SVG document
fragment (assuming there is no media-specific styling), taking into account any zooming and panning done by the
user, the current state of animation, and any document changes due to DOM and scripting. Thus, if the user zooms
into a particular area of a map on the display device and then requests a hardcopy, the hardcopy should show the
same view of the map as appears on the display device. If a user pauses an animation and prints, the hardcopy
should show the same graphics as the currently paused picture on the display device. If scripting has added or



removed elements from the document, then the hardcopy should reflect the same changes that would be reflected
on the display.

When an SVG document is rendered on a static-only device such as a printer which does not support SVG's
animation and scripting and facilities, then the user agent shall ignore any animation and scripting elements in
the document and render the remaining graphics elements according to the rules in this specification.



Appendix G: Conformance Criteria

Contents

G.1 Introduction
G.2 Conforming SVG Document Fragments
G.3 Conforming SVG Stand-Alone Files
G.4 Conforming SVG Generators
G.5 Conforming SVG Servers
G.6 Conforming SVG DOM Subtree
G.7 Conforming SVG Interpreters
G.8 Conforming SVG Viewers

This appendix is normative.

G.1 Introduction

In order to ensure that SVG-family documents are maximally portable among SVG-family user agents, this spe-
cification rigidly defines conformance requirements for both, as well as for SVG-family document types. While
the conformance definitions can be found in this appendix, they necessarily reference normative text within this
document and within other related specifications. It is only possible to fully comprehend the conformance require-
ments of SVG through a complete reading of all normative references.

G.2 Conforming SVG Document Fragments

An SVG document fragment is a Conforming SVG Document Fragment if it adheres to the specification described
in this document (Scalable Vector Graphics (SVG) Specification) and also:

• is XML well-formed ([XML10], section 2.1),
• conforms to the Namespaces in XML specification [XML-NS],
• any CSS stylesheets conform to the core grammar of Cascading Style Sheets, level 2 [CSS2],
• any <?xml-stylesheet?> processing instruction conforms to Associating stylesheets with XML documents

[XML-SS],
• and the document fragment is determined to be valid as follows:

1. Let E be the encoding of the XML document in which the SVG document fragment resides.
2. Let V be the XML version of the document in which the SVG document fragment resides.
3. Let D be an XML document constructed by concatenating:

▪ an XML declaration identifying version V and encoding E (that is, <?xml version="V" encodin-

g="E"?>),

../publish/Overview.html
http://www.w3.org/TR/2008/REC-xml-20081126/#sec-well-formed
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2008/REC-CSS2-20080411/
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/


▪ the DOCTYPE declaration <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" SYSTEM "ht-

tp://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">, and
▪ the SVG document fragment with any entities expanded.

4. Remove from D any subtree rooted by an element that is not in the SVG namespace.
5. Remove from D any attribute that is in a namespace that is not the XLink namespace or the Namespaces

in XML namespace.
6. Remove the prefix from the name of any element in D that uses one.
7. Let A be the set of all attributes in D that are in the XLink namespace.
8. Set the attributes xmlns="http://www.w3.org/2000/svg" and xmlns:xlink="http://www.w3.org/1999/xlink"

on D's document element and remove any other attributes in the Namespaces in XML namespace from
D.

9. Change the prefix of every attribute A to be xlink.
10. The document fragment is valid if D is a valid XML document ([XML10], section 2.8).

SVG document fragments can be included within parent XML documents using the XML namespace facilities
described in Namespaces in XML [XML-XS]. Note, however, that since a Conforming SVG Document Fragment
must have an ‘svg’ element as its root, the use of an individual non-‘svg’ element from the SVG namespace is dis-
allowed. Thus, the SVG part of the following document is not conforming:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE SomeParentXMLGrammar PUBLIC "-//SomeParent" "http://SomeParentXMLGrammar.dtd">
<ParentXML>

<!-- Elements from ParentXML go here -->
<!-- The following is not conforming -->
<z:rect xmlns:z="http://www.w3.org/2000/svg"

x="0" y="0" width="10" height="10" />
<!-- More elements from ParentXML go here -->

</ParentXML>

Instead, for the SVG part to become a Conforming SVG Document Fragment, the file could be modified as follows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE SomeParentXMLGrammar PUBLIC "-//SomeParent" "http://SomeParentXMLGrammar.dtd">
<ParentXML>

<!-- Elements from ParentXML go here -->
<!-- The following is conforming -->
<z:svg xmlns:z="http://www.w3.org/2000/svg"

width="100px" height="100px">
<z:rect x="0" y="0" width="10" height="10"/>

</z:svg>
<!-- More elements from ParentXML go here -->

</ParentXML>

The SVG language or these conformance criteria provide no designated size limits on any aspect of SVG content.
There are no maximum values on the number of elements, the amount of character data, or the number of charac-
ters in attribute values.

http://www.w3.org/TR/2008/REC-xml-20081126/#dt-valid
http://www.w3.org/TR/2006/REC-xml-names-20060816/


G.3 Conforming SVG Stand-Alone Files

A file is a Conforming SVG Stand-Alone File if:

• it is an XML document,
• its root element is an ‘svg’ element, and
• the SVG document fragment rooted at the document element is a Conforming SVG Document Fragment.

G.4 Conforming SVG Generators

A Conforming SVG Generator is a program which:

• always creates Conforming SVG Document Fragments and/or Conforming SVG Stand-Alone Files.
• does not create non-conforming SVG document fragments of the above types.

Additionally, an authoring tool which is a Conforming SVG Generator conforms to all of the Priority 1 accessibil-
ity guidelines from the document Authoring Tool Accessibility Guidelines 1.0 [ATAG] that are relevant to gener-
ators of SVG content. (Priorities 2 and 3 are encouraged but not required for conformance.)

SVG generators are encouraged to follow W3C developments in the area of internationalization. Of particular
interest is the W3C Character Model and the concept of Webwide Early Uniform Normalization, which promises
to enhance the interchangability of Unicode character data across users and applications. Future versions of the
SVG specification are likely to require support of the W3C Character Model in Conforming SVG Generators.

G.5 Conforming SVG Servers

Conforming SVG Servers must meet all the requirements of a Conforming SVG Generator. In addition, Conform-
ing SVG Servers using HTTP or other protocols that use Internet Media types must serve SVG stand-alone files
with the media type "image/svg+xml".

Also, if the SVG file is compressed with gzip or deflate, Conforming SVG Servers must indicate this with the
appropriate header, according to what the protocol supports. Specifically, for content compressed by the server
immediately prior to transfer, the server must use the "Transfer-Encoding: gzip" or "Transfer-Encoding: deflate"
headers as appropriate, and for content stored in a compressed format on the server (e.g. with the file extension
"svgz"), the server must use the "Content-Encoding: gzip" or "Content-Encoding: deflate" headers as appropriate.

Note: Compression of stored content (the "entity," in HTTP terms) is distinct from automatic compression of
the message body, as defined in HTTP/1.1 TE/ Transfer Encoding ([RFC2616], sections 14.39 and 14.41).

G.6 Conforming SVG DOM Subtree

A DOM subtree rooted at a given element is a Conforming SVG DOM Subtree if, once serialized to XML, is a Con-

http://www.w3.org/TR/2000/REC-ATAG10-20000203/
http://www.w3.org/International/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.39
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.41


forming SVG Document Fragment. If the DOM subtree cannot be serialized to XML, such as when a Comment
node's data contains the substring "--", then the subtree is not a Conforming SVG DOM Subtree.

G.7 Conforming SVG Interpreters

An SVG interpreter is a program which can parse and process SVG document fragments. Examples of SVG in-
terpreters are server-side transcoding tools (e.g., a tool which converts SVG content into modified SVG content)
or analysis tools (e.g., a tool which extracts the text content from SVG content). An SVG viewer also satisfies the
requirements of an SVG interpreter in that it can parse and process SVG document fragments, where processing
consists of rendering the SVG content to the target medium.

In a Conforming SVG Interpreter, the XML parser must be able to parse and process all XML constructs
defined within XML 1.0 [XML10] and Namespaces in XML [XML-NS].

There are two sub-categories of Conforming SVG Interpreters:

• Conforming Static SVG Interpreters must be able to parse and process the static language features of SVG that
correspond to the feature string "http://www.w3.org/TR/SVG11/feature#SVG-static" (see Feature strings).

• In addition to the requirements for the static category, Conforming Dynamic SVG Interpreters must be able
to parse and process the language features of SVG that correspond to the feature string "http://www.w3.org/
TR/SVG11/feature#SVG-dynamic" (see Feature strings) and which support all of the required features in the
SVG DOM described in this specification.

A Conforming SVG Interpreter must parse any SVG document correctly. It is not required to interpret the se-
mantics of all features correctly.

Note: A transcoder from SVG into another graphics representation, such as an SVG-to-raster transcoder, rep-
resents a viewer, and thus viewer conformance criteria apply. (See Conforming SVG Viewers.)

G.8 Conforming SVG Viewers

An SVG viewer is a program which can parse and process an SVG document fragment and render the contents of
the document onto some sort of output medium such as a display or printer; thus, an SVG Viewer is also an SVG
Interpreter.

There are two sub-categories of Conforming SVG Viewers:

• Conforming Static SVG Viewers support the static language features of SVG that correspond to the feature
string "http://www.w3.org/TR/SVG11/feature#SVG-static" (see Feature strings). This category often corres-
ponds to platforms and environments which only render static documents, such as printers.

• Conforming Dynamic SVG Viewers support the language features of SVG that correspond to the feature
string "http://www.w3.org/TR/SVG11/feature#SVG-dynamic" (see Feature strings). This category often ap-
plies to platforms and environments such as common Web browsers which support user interaction and dy-
namic document content (i.e., documents whose content can change over time). (User interaction includes
support for hyperlinking, events [e.g., mouse clicks], text selection, zooming and panning [see Interactivity].

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-1728279322
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2006/REC-xml-names-20060816/


Dynamic document content can be achieved via declarative animation or by scripts modifying the SVG
DOM.)

Specific criteria that apply to both Conforming Static SVG Viewers and Conforming Dynamic SVG Viewers:

• The program must also be a Conforming SVG Interpreter,
• For interactive user environments, facilities must exist for zooming and panning of stand-alone SVG docu-

ments or SVG document fragments embedded within parent XML documents.
• In environments that have appropriate user interaction facilities, the viewer must support the ability to ac-

tivate hyperlinks.
• If printing devices are supported, SVG content must be printable at printer resolutions with the same graphics

features available as required for display (e.g., the specified colors must be rendered on color printers).
• On systems where this information is available, the parent environment must provide the viewer with in-

formation about physical device resolution. In situations where this information is impossible to determine,
the parent environment shall pass a reasonable value for device resolution which tends to approximate most
common target devices.

• The viewer must support JPEG and PNG image formats [JPEG] [PNG].
• Resampling of image data must be consistent with the specification of property ‘image-rendering’.
• The viewer must support alpha channel blending of the image of the SVG content onto the target canvas.
• SVG implementations must correctly support gzip-encoded [RFC1952] and deflate-encoded [RFC1951] data

streams, for any content type (including SVG, script files, images). SVG implementations that support HTTP
must support these encodings according to the HTTP 1.1 specification [RFC2616]; in particular, the client
must specify with an "Accept-Encoding:" request header [HTTP-ACCEPT-ENCODING] those encodings that
it accepts, including at minimum gzip and deflate, and then decompress any gzip-encoded and deflate-en-
coded data streams that are downloaded from the server. When an SVG viewer retrieves compressed content
(e.g., an .svgz file) over HTTP, if the "Content-Encoding" and "Transfer-Encoding" response headers are miss-
ing or specify a value that does not match the compression method that has been applied to the content, then
the SVG viewer must not render the content and must treat the document as being in error.

• The viewer must support base64 encoded content using the "data:" URL scheme [RFC2397] wherever URI ref-
erencing of whole documents (such as raster images, SVG documents, fonts and color profiles) is permitted
within SVG content. (Note: fragments of SVG content which do not constitute an entire SVG document are
not available using the "data:" URL scheme.)

• The viewer must support the following W3C Recommendations with regard to SVG content:
◦ complete support for the XML 1.0 specification [XML10].
◦ complete support for inclusion of non-SVG namespaces within SVG content as defined in Namespaces

in XML [XML-NS]. (Note that data from non-SVG namespaces are included in the DOM but are other-
wise ignored.)

• All visual rendering must be accurate to within one device pixel (px unit) to the mathematically correct result
at the initial 1:1 zoom ratio. It is suggested that viewers attempt to keep a high degree of accuracy when
zooming.

• On systems which support accurate sRGB [SRGB] color, all sRGB color computations and all resulting color

http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc2397.txt
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/


values must be accurate to within one sRGB color component value, where sRGB color component values
range from 0 to 255.

Although anti-aliasing support is not a strict requirement for a Conforming SVG Viewer, it is highly recommended
for display devices. Lack of anti-aliasing support will generally result in poor results on display devices.

Specific criteria that apply to only Conforming Dynamic SVG Viewers:

• In Web browser environments, the viewer must have the ability to search and select text strings within SVG
content.

• If display devices are supported, the viewer must have the ability to select and copy text from SVG content
to the system clipboard.

• The viewer must have complete support for an ECMAScript binding of the SVG Document Object Model
[ECMA-262].

The Web Accessibility Initiative is defining User Agent Accessibility Guidelines 1.0 [UAAG]. Viewers are encour-
aged to conform to the Priority 1 accessibility guidelines defined in this document, and preferably also Priorities 2
and 3. Once the guidelines are completed, a future version of this specification is likely to require conformance to
the Priority 1 guidelines in Conforming SVG Viewers.

A higher order concept is that of a Conforming High-Quality SVG Viewer, with sub-categories Conforming
High-Quality Static SVG Viewer and Conforming High-Quality Dynamic SVG Viewer.

Both a Conforming High-Quality Static SVG Viewer and a Conforming High-Quality Dynamic SVG Viewer
must support the following additional features:

• Professional-quality results with good processing and rendering performance and smooth, flicker-free anim-
ations.

• On low-resolution devices such as display devices at 150dpi or less, support for smooth edges on lines, curves
and text. (Smoothing is often accomplished using anti-aliasing techniques.)

• Color management via ICC profile support (i.e., the ability to support colors defined using ICC profiles).
• Resampling of image data must conform to the requirements for Conforming High-Quality SVG Viewers as

specified in the description of property ‘image-rendering’.
• At least double-precision floating point computation on coordinate system transformation numerical calcu-

lations.

A Conforming High-Quality Dynamic SVG Viewer must support the following additional features:

• Progressive rendering and animation effects (i.e., the start of the document will start appearing and anima-
tions will start running in parallel with downloading the rest of the document).

• Restricted screen updates (i.e., only required areas of the display are updated in response to redraw events).
• Background downloading of images and fonts retrieved from a Web server, with updating of the display once

the downloads are complete.

A Conforming SVG Viewer must be able to apply styling properties to SVG content using presentation attributes.

http://www.w3.org/WAI/
http://www.w3.org/TR/2002/REC-UAAG10-20021217/


If the user agent supports Cascading Style Sheets, level 2 [CSS2], a Conforming SVG Viewer must support
CSS styling of SVG content and must support all features from CSS2 that are described in this specification as
applying to SVG (see properties shared with CSS and XSL, Styling with CSS and Facilities from CSS and XSL used
by SVG). The supported features from CSS2 must be implemented in accordance with the conformance definitions
from the CSS2 specification ([CSS2], section 3.2).

If the user agent includes an HTML or XHTML viewing capability or can apply CSS/XSL styling properties
to XML documents, then a Conforming SVG Viewer must support resources of MIME type "image/svg+xml"
wherever raster image external resources can be used, such as in the HTML or XHTML ‘img’ element and in CSS/
XSL properties that can refer to raster image resources (e.g., ‘background-image’).

http://www.w3.org/TR/2008/REC-CSS2-20080411/
http://www.w3.org/TR/2008/REC-CSS2-20080411/conform.html#conformance
http://www.w3.org/TR/2008/REC-CSS2-20080411/conform.html#conformance


Appendix H: Accessibility Support

Contents

H.1 WAI Accessibility Guidelines
H.2 SVG Content Accessibility Guidelines

This appendix is informative, not normative.

H.1 WAI Accessibility Guidelines

This appendix explains how accessibility guidelines published by W3C's Web Accessibility Initiative (WAI) apply
to SVG.

1. The Web Content Accessibility Guidelines (WCAG) 2.0 [WCAG2] explains how authors can create Web con-
tent that is accessible to people with disabilities.

2. The Authoring Tool Accessibility Guidelines 1.0 [ATAG] explains how developers can design accessible au-
thoring tools such as SVG authoring tools. To conform to the SVG specification, an SVG authoring tool must
conform to ATAG (priority 1). SVG support for element grouping and reuse is relevant to designing accessible
SVG authoring tools.

3. The User Agent Accessibility Guidelines 1.0 [UAAG] explains how developers can design accessible user
agents such as SVG-enabled browsers. To conform to the SVG specification, an SVG user agent should con-
form to UAAG. SVG support for scaling, style sheets, the DOM, and metadata are all relevant to designing
accessible SVG user agents.

The W3C Note Accessibility Features of SVG [SVG-ACCESS] explains in detail how the requirements of the three
guidelines apply to SVG.

H.2 SVG Content Accessibility Guidelines

This section explains briefly how authors can create accessible SVG documents; it summarizes Accessibility
Features of SVG [SVG-ACCESS].

Provide text equivalents for graphics.

• When the text content of a graphic (e.g., in a ‘text’ element) explains its function, no text equivalent is
required. Use the ‘title’ child element to explain the function of ‘text’ elements whose meaning is not
clear from their text content.

• When a graphic does not include explanatory text content, it requires a text equivalent. If the equivalent
is complex, use the ‘desc’ element, otherwise use the ‘title’ child element.

http://www.w3.org/TR/2008/REC-WCAG20-20081211/
http://www.w3.org/TR/2000/REC-ATAG10-20000203/
http://www.w3.org/TR/2002/REC-UAAG10-20021217/
http://www.w3.org/TR/2000/NOTE-SVG-access-20000807/
http://www.w3.org/TR/2000/NOTE-SVG-access-20000807/
http://www.w3.org/TR/2000/NOTE-SVG-access-20000807/


• If a graphic is built from meaningful parts, build the description from meaningful parts.

Do not rely on color alone.

• Do not use color alone to convey information.
• Ensure adequate color contrast. Use style sheets so that users who require certain color combinations

may apply them through user style sheets.

Use markup and style sheets and do so properly.

• Represent text as character data, not as images or curves. Style text with fonts. Authors may describe
their own fonts in SVG.

• Separate structure from presentation.
• Use the ‘g’ element and rich descriptions to structure SVG documents. Reuse named objects.
• Publish highly-structured documents, not just graphical representations. Documents that are rich in

structure may be rendered graphically, as speech, or as braille. For example, express mathematical rela-
tionships in MathML [MATHML] and use SVG for explanatory graphics.

• Author documents that validate to the SVG grammar.
• Use style sheets to specify graphical and aural presentation.
• Use relative units in style sheets.

Clarify natural language usage.

• Use ‘xml:lang’ to identify the natural language of content and changes in natural language.

Ensure that dynamic content is accessible.

• Ensure that text equivalents for dynamic content are updated when the dynamic content changes.
• Ensure that SVG documents are usable when scripts or other programmatic objects are turned off or

not supported.

http://www.w3.org/TR/2001/REC-MathML2-20010221/


Appendix I: Internationalization Support

Contents

I.1 Introduction
I.2 Internationalization and SVG
I.3 SVG Internationalization Guidelines

This appendix is informative, not normative.

I.1 Introduction

This appendix provides a brief summary of SVG's support for internationalization. The appendix is hyperlinked to
the sections of the specification which elaborate on particular topics.

I.2 Internationalization and SVG

SVG is an application of XML [XML10] and thus supports Unicode [UNICODE], which defines a standard univer-
sal character set.

Additionally, SVG provides a mechanism for precise control of the glyphs used to draw text strings, which is
described in Alternate glyphs. This facility provides:

• the ability to specify the rendering of particular glyphs which might not be accessible when defining charac-
ter data using Unicode

• the ability to override the user agent's character-to-glyph algorithms
• the ability to follow the guidelines for normalizing character data for the purposes of enhanced interoperabil-

ity (see Character Model for the World Wide Web 1.0: Fundamentals [CHARMOD]), while still having precise
control over the glyphs that are drawn.

SVG supports:

• Horizontal, left-to-right text found in Roman scripts (see the ‘writing-mode’ property)
• Vertical and vertical-ideographic text (see the ‘writing-mode’ property)
• Bidirectional text (for languages such as Arabic and Hebrew - see the ‘direction’ and ‘unicode-bidi’ properties)

SVG fonts support contextual glyph selection for Arabic and Han text.
Multi-language SVG documents are possible by utilizing the ‘systemLanguage’ attribute to have different text

strings appear based on the client machine's language setting.

http://www.w3.org/TR/2005/REC-charmod-20050215/


I.3 SVG Internationalization Guidelines

SVG generators should follow W3C guidelines for normalizing character data [CHARMOD]. When precise control
over glyph selection is required, use the facilities for Alternate glyphs to override the user agent's character-to-
glyph mapping algorithms.



Appendix J: Minimizing SVG File Sizes

This appendix is informative, not normative.

Considerable effort has been made to make SVG file sizes as small as possible while still retaining the benefits of
XML and achieving compatibility and leverage with other W3C specifications.

Here are some of the features in SVG that promote small file sizes:

• SVG's path data definition was defined to produce a compact data stream for vector graphics data: all com-
mands are one character in length; relative coordinates are available; separator characters do not have to be
supplied when tokens can be identified implicitly; smooth curve formulations are available (cubic Béziers,
quadratic Béziers and elliptical arcs) to prevent the need to tesselate into polylines; and shortcut formulations
exist for common forms of cubic Bézier segments, quadratic Bézier segments, and horizontal and vertical
straight line segments so that the minimum number of coordinates need to be specified.

• Text can be specified using XML character data — no need to convert to outlines.
• SVG contains a facility for defining symbols once and referencing them multiple times using different visual

attributes and different sizing, positioning, clipping and client-side filter effects
• User agents that support styling with CSS can use CSS selectors and property inheritance to define commonly

used sets of attributes once as named styles.
• Filter effects allow for compelling visual results and effects typically found only in image-authoring tools us-

ing small amounts of vector and/or raster data

Additionally, HTTP/1.1 allows for compressed data to be passed from server to client, which can result in signi-
ficant file size reduction. Here are some sample compression results using gzip compression on SVG documents
[RFC1952]:

Uncompressed SVG With gzip compression Compression ratio

12,912 2,463 81%

12,164 2,553 79%

11,613 2,617 77%

18,689 4,077 78%

13,024 2,041 84%

A related issue is progressive rendering. Some SVG viewers will support:

• the ability to display the first parts of an SVG document fragments as the remainder of the document is

http://www.ietf.org/rfc/rfc1952.txt


downloaded from the server; thus, the user will see part of the SVG drawing right away and interact with it,
even if the SVG file size is large.

• delayed downloading of images and fonts. Just like some HTML browsers, some SVG viewers will download
images and WebFonts ([CSS2], section 15.1) last, substituting a temporary image and system fonts, respect-
ively, until the given image and/or font is available.

Here are techniques for minimizing SVG file sizes and minimizing the time before the user is able to start interact-
ing with the SVG document fragments:

• Construct the SVG file such that any links which the user might want to click on are included at the beginning
of the SVG file

• Use default values whenever possible rather than defining all attributes and properties explicitly.
• Take advantage of the path data data compaction facilities: use relative coordinates; use h and v for horizontal

and vertical lines; use s or t for cubic and quadratic Bézier segments whenever possible; eliminate extraneous
white space and separators.

• Utilize symbols if the same graphic appears multiple times in the document
• For user agents that support styling with CSS, utilize CSS property inheritance and selectors to consolidate

commonly used properties into named styles or to assign the properties to a parent ‘g’ element.
• Utilize filter effects to help construct graphics via client-side graphics operations.

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#q1


Appendix K: References

Contents

K.1 Normative references
K.2 Informative references

K.1 Normative references

[ATAG]
Authoring Tool Accessibility Guidelines 1.0, J. Treviranus, J. Richards, I. Jacobs, C. McCathieNevile, eds.
World Wide Web Consortium, 03 February 2000.
This edition of ATAG 1.0 is http://www.w3.org/TR/2000/REC-ATAG10-20000203/.
The latest edition of ATAG 1.0 is available at http://www.w3.org/TR/ATAG10/.

[BCP47]
IETF BCP 47 Tags for Identifying Languages, A. Phillips and M. Davis, Editors, September 2009.
Available at http://www.rfc-editor.org/rfc/bcp/bcp47.txt.

[COLORIMETRY]
Colorimetry, Third Edition, Commission Internationale de l'Eclairage, CIE Publication 15:2004, ISBN
3-901-906-33-9.
Available at http://www.cie.co.at/publ/abst/15-2004.html.

[CSS2]
Cascading Style Sheets, level 2, B. Bos, H. W. Lie, C. Lilley, I. Jacobs, eds. World Wide Web Consortium, 11
April 2008.
This edition of CSS2 is http://www.w3.org/TR/2008/REC-CSS2-20080411/ and is no longer maintained.
The latest edition of CSS2 is available at http://www.w3.org/TR/CSS2/. The CSS Working Group
encourages authors and implementors to reference CSS 2.1 (or its successor) instead of this document and,
when features common to CSS2 and CSS 2.1 are defined differently to follow the definitions in CSS 2.1. A
list of changes between CSS2 and CSS 2.1 may be helpful. In particular, future editions of SVG are expected
to reference CSS 2.1 and CSS 3 Fonts.

[DOM1]
Document Object Model (DOM) Level 1 Specification, V. Apparao, S. Byrne, M. Champion, S. Isaacs, I.
Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, L. Wood, eds. World Wide Web Consortium, 01
October 1998.
This edition of DOM Level 1 is http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/.
The latest edition of DOM Level 1 is available at http://www.w3.org/TR/REC-DOM-Level-1/.

[DOM2]
Document Object Model (DOM) Level 2 Core Specification, A. Le Hors, P. Le Hégaret, L. Wood, G. Nicol, J.
Robie, M. Champion, S. Byrne, eds. World Wide Web Consortium, 13 November 2000.

http://www.w3.org/TR/2000/REC-ATAG10-20000203/
http://www.w3.org/TR/ATAG10/
http://www.ietf.org/rfc/bcp/bcp47.txt
http://www.cie.co.at/publ/abst/15-2004.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/
http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/CSS/
http://www.w3.org/TR/CSS21/changes.html
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/


This edition of DOM Level 2 Core is http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/.
The latest edition of DOM Level 2 Core is available at http://www.w3.org/TR/DOM-Level-2-Core/.

[DOM2EVENTS]
Document Object Model (DOM) Level 2 Events Specification, T. Pixley, ed. World Wide Web Consortium, 13
November 2000.
This edition of DOM 2 Events is http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/.
The latest edition of DOM 2 Events is available at http://www.w3.org/TR/DOM-Level-2-Events/.

[DOM2STYLE]
Document Object Model (DOM) Level 2 Style Specification, C. Wilson, P. Le Hégaret, V. Apparao, eds.
World Wide Web Consortium, 13 November 2000.
This edition of DOM Level 2 Style is http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/.
The latest edition of DOM Level 2 Style is available at http://www.w3.org/TR/DOM-Level-2-Style/.

[DOM2VIEWS]
Document Object Model (DOM) Level 2 Views Specification, A. Le Hors, L. Cable, eds. World Wide Web
Consortium, 13 November 2000.
This edition of DOM 2 Views is http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113/.
The latest edition of DOM 2 Views is available at http://www.w3.org/TR/DOM-Level-2-Views/.

[ECMA-262]
ECMAScript Language Specification, 5th Edition, M. Cowlishaw, ed. Ecma International, December 2009.
Available at http://www.ecma-international.org/publications/standards/Ecma-262.htm.

[ICC42]
Specification ICC.1:2004-10, File Format for Color Profiles, Profile Version 4.2.0.0 with errata incorporated,
5/22/20006, International Color Consortium, 2006.
Available at http://www.color.org/ICC1v42_2006-05.pdf.
This specification is substantially identical to ISO 15076-1:2005.
The ICC list some approved revisions to ICC.1:2004-10.

[ISO8601]
Data elements and interchange formats - Information interchange - Representation of dates and times,
International Organization for Standardization, 2004. Available at http://www.iso.org/iso/
catalogue_detail?csnumber=40874.

[JPEG]
ISO/IEC 10918-1:1994/Cor 1:2005: Information Technology — Digital Compression And Coding Of
Continuous-tone Still Images, International Organization for Standardization, September 2005.
Available at http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=18902.
An older version is available at http://www.w3.org/Graphics/JPEG/itu-t81.pdf.

[GML]
OpenGIS Geography Markup Language (GML) Encoding Standard, version 3.2.1, C. Portele, ed. Open GIS
Consortium, 27 August 2007.
Available at http://portal.opengeospatial.org/files/?artifact_id=20509.

[PNG]
Portable Network Graphics (PNG) Specification (Second Edition): Information technology — Computer
graphics and image processing — Portable Network Graphics (PNG): Functional specification, ISO/IEC

http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/
http://www.w3.org/TR/DOM-Level-2-Style/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113/
http://www.w3.org/TR/DOM-Level-2-Views/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.color.org/ICC1v42_2006-05.pdf
http://www.color.org/icc_specs2.xalter
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=18902
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=18902
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://portal.opengeospatial.org/files/?artifact_id=20509
http://www.w3.org/TR/2003/REC-PNG-20031110/


15948:2003 (E), D. Duce, ed. World Wide Web Consortium, 10 November 2003.
This edition of PNG is http://www.w3.org/TR/2003/REC-PNG-20031110/.
The latest edition of PNG is available at http://www.w3.org/TR/PNG/.

[PORTERDUFF]
Compositing Digital Images, T. Porter and T. Duff. SIGGRAPH '84 Conference Proceedings, Association for
Computing Machinery, Volume 18, Number 3, July 1984.

[RFC1951]
DEFLATE Compressed Data Format Specification version 1.3, P. Deutsch, May 1996.
Available at http://www.ietf.org/rfc/rfc1951.txt.

[RFC1952]
GZIP file format specification version 4.3, P. Deutsch, May 1996.
Available at http://www.ietf.org/rfc/rfc1952.txt.

[RFC2046]
Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, N. Freed and N. Borenstein,
November 1996. (Note that this RFC obsoletes RFC 1521, RFC 1522 and RFC 1590.)
Available at http://www.ietf.org/rfc/rfc2046.txt.

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, March 1997.
Available at http://www.ietf.org/rfc/rfc2119.txt.

[RFC2318]
The text/css Media Type, H. Lie, B. Bos, C. Lilley, March 1998.
Available at http://www.ietf.org/rfc/rfc2318.txt.

[RFC2397]
The "data" URL scheme, L. Masinter, August 1998.
Available at http://www.ietf.org/rfc/rfc2397.

[RFC2616]
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk Nielsen, L. Masinter, P.
Leach and T. Berners-Lee, June 1999. (Note that this RFC obsoletes RFC 2068.)
Available at http://www.ietf.org/rfc/rfc2616.

[RFC2732]
Format for Literal IPv6 Addresses in URL's, R. Hinden, B. Carpenter, L. Masinter, December 1999.
Available at http://www.ietf.org/rfc/rfc2732.txt.

[RFC3023]
XML Media Types, M. Murata, S. St. Laurent, D. Kohn, January 2001.
Available at http://www.ietf.org/rfc/rfc3023.

[RFC3629]
UTF-8, a transformation format of ISO 10646, F. Yergeau, November 2003. (Note that this RFC obsoletes
RFC 2044 and RFC 2279.)
Available at http://www.ietf.org/rfc/rfc3629.txt.

[RFC3986]
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, January 2005.

http://www.w3.org/TR/PNG/
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2318.txt
http://www.ietf.org/rfc/rfc2397
http://www.ietf.org/rfc/rfc2616
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3986


(Note that RFC 3986 updates RFC 1738 and obsoletes RFC 2732, RFC 2396 and RFC 1808.)
Available at http://tools.ietf.org/html/rfc3986.

[RFC3987]
Internationalized Resource Identifiers (IRIs), M. Dürst, M. Suignard, January 2005.
Available at http://tools.ietf.org/html/rfc3987.

[RFC4329]
Scripting Media Types, B. Höhrmann, April 2006.
Available at http://www.ietf.org/rfc/rfc4329.txt.

[SMILANIM]
SMIL Animation, P. Schmitz, A. Cohen. World Wide Web Consortium, 04 September 2001.
This edition of SMIL Animation is http://www.w3.org/TR/2001/REC-smil-animation-20010904/.
The latest edition of SMIL Animation is available at http://www.w3.org/TR/smil-animation/.

[SRGB]
IEC 61966-2-1/Amd 1:2003 : Multimedia systems and equipment — Colour measurement and management
— Part 2-1: Colour management — Default RGB colour space — sRGB, International Electrotechnical
Commission, 2003.
Available at http://webstore.iec.ch/webstore/webstore.nsf/artnum/025408 and at http://www.colour.org/
tc8-05/Docs/colorspace/61966-2-1.pdf.
See also http://www.color.org/chardata/rgb/srgb.xalter for technical data and color profiles.

[UAX9]
Unicode Bidirectional Algorithm, The Unicode Standard Annex #9. The Unicode Consortium, 2010.
Available at http://www.unicode.org/reports/tr9/.

[UNICODE]
The Unicode Standard, Version 6.0.0, The Unicode Consortium, Mountain View, CA, 2011. ISBN
978-1-936213-01-6.
Available at http://www.unicode.org/versions/Unicode6.0.0.

[XLINK]
XML Linking Language (XLink) Version 1.1, S. DeRose, E. Maler, D. Orchard, N. Walsh, eds. World Wide
Web Consortium, 06 May 2010.
This edition of XLink 1.1 is http://www.w3.org/TR/2010/REC-xlink11-20100506/.
The latest edition of XLink 1.1 is available at http://www.w3.org/TR/xlink11/.

[XML10]
Extensible Markup Language (XML) 1.0 (Fifth Edition), T. Bray, J. Paoli, C. M. Sperberg-McQueen, E.
Maler, F. Yergeau, eds. World Wide Web Consortium, 26 November 2008.
This edition of XML 1.0 is http://www.w3.org/TR/2008/REC-xml-20081126/.
The latest edition of XML 1.0 is available at http://www.w3.org/TR/xml/.

[XML-BASE]
XML Base (Second Edition), J. Marsh, R. Tobin, eds. World Wide Web Consortium, 28 January 2009.
This edition of XML Base is http://www.w3.org/TR/2009/REC-xmlbase-20090128/.
The latest edition of XML Base is available at http://www.w3.org/TR/xmlbase/.

[XML-NS]
Namespaces in XML 1.0 (Third Edition), T. Bray, D. Hollander, A. Layman, R. Tobin, H. Thompson, eds.

http://tools.ietf.org/html/rfc3987
http://www.ietf.org/rfc/rfc4329.txt
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/smil-animation/
http://www.colour.org/tc8-05/Docs/colorspace/61966-2-1.pdf
http://www.colour.org/tc8-05/Docs/colorspace/61966-2-1.pdf
http://webstore.iec.ch/webstore/webstore.nsf/artnum/025408
http://www.colour.org/tc8-05/Docs/colorspace/61966-2-1.pdf
http://www.colour.org/tc8-05/Docs/colorspace/61966-2-1.pdf
http://www.color.org/chardata/rgb/srgb.xalter
http://www.unicode.org/reports/tr9/
http://www.unicode.org/versions/Unicode6.0.0/
http://www.w3.org/TR/2010/REC-xlink11-20100506/
http://www.w3.org/TR/xlink11/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/2009/REC-xmlbase-20090128/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/2009/REC-xml-names-20091208/


World Wide Web Consortium, 8 December 2009.
This edition of Namespaces in XML is http://www.w3.org/TR/2009/REC-xml-names-20091208/.
The latest edition of Namespaces in XML is available at http://www.w3.org/TR/xml-names/.

[XML-SS]
Associating Style Sheets with XML documents, Version 1.0, J. Clark, ed. World Wide Web Consortium, 29
June 1999.
This edition of XML Stylsheet is http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/.
The latest edition of XML Stylesheet is available at http://www.w3.org/TR/xml-stylesheet/.

[XSL]
Extensible Stylesheet Language (XSL) Version 1.1, A. Berglund, ed. World Wide Web Consortium, 05
December 2006.
This edition of XSL is http://www.w3.org/TR/2006/REC-xsl11-20061205/.
The latest edition of XSL is available at http://www.w3.org/TR/xsl/.

K.2 Informative references

[CHARMOD]
Character Model for the World Wide Web 1.0: Fundametnals, M. Dürst, F. Yergeau, R. Ishida, M. Wolf, T.
Texin, eds. World Wide Web Consortium, 15 February 2005.
This edition of Charmod Fundamentals is http://www.w3.org/TR/2005/REC-charmod-20050215/.
The latest edition of Charmod Fundamentals is available at http://www.w3.org/TR/charmod/.

[DCORE]
Dublin Core Metadata Initiative.
Available at http://dublincore.org/.

[DOM3]
Document Object Model (DOM) Level 3 Core Specification, A. Le Hors, P. Le Hégaret, L. Wood, G. Nicol, J.
Robie, M. Champion, S. Byrne, eds. World Wide Web Consortium, 07 April 2004.
This edition of DOM 3 Core is http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/.
The latest edition of DOM 3 Core is available at http://www.w3.org/TR/DOM-Level-3-Core/.

[FOLEY-VANDAM]
Computer Graphics: Principles and Practice, Second Edition, J. D. Foley, A. van Dam, S. K. Feiner, J. F.
Hughes, R. L. Phillips. Addison-Wesley, 1995.

[HTML4]
HTML 4.01 Specification, D. Raggett, A. Le Hors, I. Jacobs. World Wide Web Consortium, 24 December
1999.
This edition of HTML 4 is http://www.w3.org/TR/1999/REC-html401-19991224/.
The latest edition of HTML 4 is available at http://www.w3.org/TR/html4/.

[MATHML]
Mathematical Markup Language (MathML) Version 3.0, D. Carlisle, P. Ion, R. Miner, eds. World Wide Web
Consortium, 21 October 2010.
This edition of MathML 3 is http://www.w3.org/TR/2010/REC-MathML3-20101021/.
The latest edition of MathML 3 is available at http://www.w3.org/TR/MathML3/.

http://www.w3.org/TR/xml-names/
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/2005/REC-charmod-20050215/
http://www.w3.org/TR/charmod/
http://dublincore.org/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/html4/
http://www.w3.org/TR/2010/REC-MathML3-20101021/
http://www.w3.org/TR/MathML3/


[MIMETYPES]
MIME Media Types, Internet Assigned Numbers Authority.
Available at http://www.iana.org/assignments/media-types/.

[NVDL]
Information Technology — Document Schema Definition Languages (DSDL) — Part 4: Namespace-based
Validation Dispatching Language: ISO/IEC 19757-4:2006/Cor 1:2008, International Organization for
Standardization, December 2005.
Available at http://standards.iso.org/ittf/PubliclyAvailableStandards/c038615_ISO_IEC_19757-4_2006(E).zip.
See also http://nvdl.org/.

[OPENTYPE]
OpenType Specification Version 1.6. July 2009.
Available at http://www.microsoft.com/typography/otspec160/.
(Note that this is technically equivalent to ISO/IEC 14496-22:2009 (Second Edition) "Open Font Format",
available at http://standards.iso.org/ittf/PubliclyAvailableStandards/
c052136_ISO_IEC_14496-22_2009(E).zip.)

[RDF-PRIMER]
RDF Primer, F. Manolas, E. Miller, eds. World Wide Web Consortium, 10 February 2004.
This edition of RDF Primer is http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.
The latest edition of RDF Primer is available at http://www.w3.org/TR/rdf-primer/.

[SCHEMA2]
XML Schema Part 2: Datatypes Second Edition. P. Biron, A. Malhotra, eds. World Wide Web Consortium,
28 October 2004. (See also Processing XML 1.1 documents with XML Schema 1.0 processors.)
This edition of XML Schema Part 2 is http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.
The latest edition of XML Schema Part 2 is available at http://www.w3.org/TR/xmlschema-2/.

[SELECTORS]
Selectors Level 3, T. Çelik, E. Etemad, D. Glazman, I. Hickson, P. Linss, J. Williams, eds. World Wide Web
Consortium, 15 December 2009.
This edition of Selectors Level 3 is http://www.w3.org/TR/2009/PR-css3-selectors-20091215/.
The latest edition of Selectors Level 3 is available at http://www.w3.org/TR/css3-selectors/.

[SVG-ACCESS]
Accessibility Features of SVG, C. McCathieNevile, M. Koivunen, eds. World Wide Web Consortium, 07
August 2000.
This edition of Accessibility Features of SVG is http://www.w3.org/TR/2000/NOTE-SVG-access-20000807/.
The latest edition of Accessibility Features of SVG is available at http://www.w3.org/TR/SVG-access/.

[SVG-COMPOSITING]
SVG Compositing Specification, A. Grasso, ed. World Wide Web Consortium, 30 April 2009.
This edition of SVG Compositing is http://www.w3.org/TR/2009/WD-SVGCompositing-20090430/.
The latest edition of SVG Compositing is available at http://www.w3.org/TR/SVGCompositing/.

[SMIL]
Synchronized Multimedia Integration Language (SMIL 3.0), D. Bulterman et al., eds. 01 December 2008.
This edition of SMIL is http://www.w3.org/TR/2008/REC-SMIL3-20081201/.
The latest edition of SMIL is available at http://www.w3.org/TR/smil/.

http://www.iana.org/assignments/media-types/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c038615_ISO_IEC_19757-4_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c038615_ISO_IEC_19757-4_2006(E).zip
http://nvdl.org/
http://www.microsoft.com/typography/otspec160/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052136_ISO_IEC_14496-22_2009(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052136_ISO_IEC_14496-22_2009(E).zip
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2005/NOTE-xml11schema10-20050511/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2009/PR-css3-selectors-20091215/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/2000/NOTE-SVG-access-20000807/
http://www.w3.org/TR/SVG-access/
http://www.w3.org/TR/2009/WD-SVGCompositing-20090430/
http://www.w3.org/TR/SVGCompositing/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/smil/


[SVG10]
Scalable Vector Graphics (SVG) 1.0, J. Ferraiolo, ed. 04 September 2001.
This edition of SVG 1.0 is http://www.w3.org/TR/2003/REC-SVG11-20030114/.
The latest edition of SVG 1.0 is available at http://www.w3.org/TR/SVG10/.

[UAAG]
User Agent Accessibility Guidelines 1.0, I. Jacobs, J. Gunderson, E. Hansen, eds. 17 December 2002.
This edition of UAAG is http://www.w3.org/TR/2002/REC-UAAG10-20021217/.
The latest edition of UAAG is available at http://www.w3.org/TR/UAAG10/.

[WCAG2]
Web Content Accessibility Guidelines (WCAG) 2.0, B. Caldwell, M. Cooper, L. Reid, G. Vanderheiden, eds.
World Wide Web Consortium, 11 December 2008.
This edition of WCAG 2.0 is http://www.w3.org/TR/2008/REC-WCAG20-20081211/.
The latest edition of WCAG 2.0 is available at http://www.w3.org/TR/WCAG20/.

[WINDOW]
Window Object 1.0, I. Davis, M. Stachowiak, eds. World Wide Web Consortium, work in progress, 07 April
2006.
This edition of Window Object 1.0 is http://www.w3.org/TR/2006/WD-Window-20060407/.
The latest edition of Window Object 1.0 is available at http://www.w3.org/TR/Window/.

[XHTML]
XHTML™ 1.0: The Extensible HyperText Markup Language (Second Edition), S. Pemberton, ed. World
Wide Web Consortium, 1 August 2002.
This edition of XHTML 1 is http://www.w3.org/TR/2002/REC-xhtml1-20020801/.
The latest edition of XHTML 1 is available at http://www.w3.org/TR/xhtml1/.

[XHTMLplusMathMLplusSVG]
An XHTML + MathML + SVG Profile,石川 雅康 (ISHIKAWA Masayasu), ed. World Wide Web
Consortium, work in progress, 09 August 2002.
This edition of XHTML + MathML + SVG is http://www.w3.org/TR/2002/
WD-XHTMLplusMathMLplusSVG-20020809/.
The latest edition of XHTML + MathML + SVG is available at http://www.w3.org/TR/
XHTMLplusMathMLplusSVG/.

[XSLT]
XSL Transformations (XSLT) Version 1.0, J. Clark, ed. World Wide Web Consortium, 16 November 1999.
This edition of XSLT 1.0 is http://www.w3.org/TR/1999/REC-xslt-19991116.
The latest edition of XSLT 1.0 is available at http://www.w3.org/TR/xslt.

[XSLT2]
XSL Transformations (XSLT) Version 2.0, M. Kay, ed. World Wide Web Consortium, 23 January 2007.
This edition of XSLT 2.0 is http://www.w3.org/TR/2007/REC-xslt20-20070123/.
The latest edition of XSLT 2.0 is available at http://www.w3.org/TR/xslt20/.

http://www.w3.org/TR/2001/REC-SVG-20010904/
http://www.w3.org/TR/SVG10/
http://www.w3.org/TR/2002/REC-UAAG10-20021217/
http://www.w3.org/TR/UAAG10/
http://www.w3.org/TR/2008/REC-WCAG20-20081211/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/2006/WD-Window-20060407/
http://www.w3.org/TR/Window/
http://www.w3.org/TR/2002/REC-xhtml1-20020801/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/2002/WD-XHTMLplusMathMLplusSVG-20020809/
http://www.w3.org/TR/XHTMLplusMathMLplusSVG/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/xslt
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xslt20/


Appendix L: Element Index

This appendix is informative, not normative.

The following are the elements in the SVG language:

• ‘a’
• ‘altGlyph’
• ‘altGlyphDef’
• ‘altGlyphItem’
• ‘animate’
• ‘animateColor’
• ‘animateMotion’
• ‘animateTransform’
• ‘circle’
• ‘clipPath’
• ‘color-profile’
• ‘cursor’
• ‘defs’
• ‘desc’
• ‘ellipse’
• ‘feBlend’
• ‘feColorMatrix’
• ‘feComponentTransfer’
• ‘feComposite’
• ‘feConvolveMatrix’
• ‘feDiffuseLighting’
• ‘feDisplacementMap’
• ‘feDistantLight’
• ‘feFlood’
• ‘feFuncA’
• ‘feFuncB’
• ‘feFuncG’
• ‘feFuncR’
• ‘feGaussianBlur’
• ‘feImage’
• ‘feMerge’
• ‘feMergeNode’
• ‘feMorphology’
• ‘feOffset’



• ‘fePointLight’
• ‘feSpecularLighting’
• ‘feSpotLight’
• ‘feTile’
• ‘feTurbulence’
• ‘filter’
• ‘font’
• ‘font-face’
• ‘font-face-format’
• ‘font-face-name’
• ‘font-face-src’
• ‘font-face-uri’
• ‘foreignObject’
• ‘g’
• ‘glyph’
• ‘glyphRef’
• ‘hkern’
• ‘image’
• ‘line’
• ‘linearGradient’
• ‘marker’
• ‘mask’
• ‘metadata’
• ‘missing-glyph’
• ‘mpath’
• ‘path’
• ‘pattern’
• ‘polygon’
• ‘polyline’
• ‘radialGradient’
• ‘rect’
• ‘script’
• ‘set’
• ‘stop’
• ‘style’
• ‘svg’
• ‘switch’
• ‘symbol’
• ‘text’
• ‘textPath’
• ‘title’



• ‘tref’
• ‘tspan’
• ‘use’
• ‘view’
• ‘vkern’



Appendix M: Attribute Index

Contents

M.1 Regular attributes
M.2 Presentation attributes

This appendix is informative, not normative.

M.1 Regular attributes

The following table lists all of the attributes defined in the SVG language, except for the presentation attributes,
which are treated in the Presentation attributes section below. For each attribute, the elements on which the attrib-
ute may be specified is also given.



Attribute Elements on which the attribute may be specified Anim.

‘accent-height’ ‘font-face’

‘accumulate’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’

‘additive’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’

‘alphabetic’ ‘font-face’

‘amplitude’ ‘feFuncA’, ‘feFuncB’, ‘feFuncG’, ‘feFuncR’ ✓

‘arabic-form’ ‘glyph’

‘ascent’ ‘font-face’

‘attributeName’ ‘animate’, ‘animateColor’, ‘animateTransform’, ‘set’

‘attributeType’ ‘animate’, ‘animateColor’, ‘animateTransform’, ‘set’

‘azimuth’ ‘feDistantLight’ ✓

‘baseFrequency’ ‘feTurbulence’ ✓

‘baseProfile’ ‘svg’

‘bbox’ ‘font-face’

‘begin’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘bias’ ‘feConvolveMatrix’ ✓

‘by’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’

‘calcMode’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’

‘cap-height’ ‘font-face’

‘class’ ‘a’, ‘altGlyph’, ‘circle’, ‘clipPath’, ‘defs’, ‘desc’, ‘ellipse’, ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’,

‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’, ‘feDisplacementMap’, ‘feFlood’, ‘feGaussianBlur’, ‘feImage’,

‘feMerge’, ‘feMorphology’, ‘feOffset’, ‘feSpecularLighting’, ‘feTile’, ‘feTurbulence’, ‘filter’, ‘font’, ‘foreignObject’, ‘g’,

‘glyph’, ‘glyphRef’, ‘image’, ‘line’, ‘linearGradient’, ‘marker’, ‘mask’, ‘missing-glyph’, ‘path’, ‘pattern’, ‘polygon’,

‘polyline’, ‘radialGradient’, ‘rect’, ‘stop’, ‘svg’, ‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘title’, ‘tref’, ‘tspan’, ‘use’

✓

‘clipPathUnits’ ‘clipPath’ ✓

‘contentScriptType’ ‘svg’

‘contentStyleType’ ‘svg’

‘cx’ ‘circle’ ✓



‘cx’ ‘ellipse’ ✓

‘cx’ ‘radialGradient’ ✓

‘cy’ ‘circle’ ✓

‘cy’ ‘ellipse’ ✓

‘cy’ ‘radialGradient’ ✓

‘d’ ‘path’ ✓

‘d’ ‘glyph’, ‘missing-glyph’

‘descent’ ‘font-face’

‘diffuseConstant’ ‘feDiffuseLighting’ ✓

‘divisor’ ‘feConvolveMatrix’ ✓

‘dur’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘dx’ ‘altGlyph’ ✓

‘dx’ ‘feOffset’ ✓

‘dx’ ‘glyphRef’

‘dx’ ‘text’ ✓

‘dx’ ‘tref’, ‘tspan’ ✓

‘dy’ ‘altGlyph’ ✓

‘dy’ ‘feOffset’ ✓

‘dy’ ‘glyphRef’

‘dy’ ‘text’ ✓

‘dy’ ‘tref’, ‘tspan’ ✓

‘edgeMode’ ‘feConvolveMatrix’ ✓

‘elevation’ ‘feDistantLight’ ✓

‘end’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘exponent’ ‘feFuncA’, ‘feFuncB’, ‘feFuncG’, ‘feFuncR’ ✓

‘externalResourcesRequired’ ‘a’, ‘altGlyph’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘circle’, ‘clipPath’, ‘cursor’, ‘defs’,

‘ellipse’, ‘feImage’, ‘filter’, ‘font’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘linearGradient’, ‘marker’, ‘mask’, ‘mpath’,



‘path’, ‘pattern’, ‘polygon’, ‘polyline’, ‘radialGradient’, ‘rect’, ‘script’, ‘set’, ‘svg’, ‘switch’, ‘symbol’, ‘text’, ‘textPath’,

‘tref’, ‘tspan’, ‘use’, ‘view’

‘fill’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘filterRes’ ‘filter’ ✓

‘filterUnits’ ‘filter’ ✓

‘font-family’ ‘font-face’

‘font-size’ ‘font-face’

‘font-stretch’ ‘font-face’

‘font-style’ ‘font-face’

‘font-variant’ ‘font-face’

‘font-weight’ ‘font-face’

‘format’ ‘altGlyph’

‘format’ ‘glyphRef’

‘from’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’

‘fx’ ‘radialGradient’ ✓

‘fy’ ‘radialGradient’ ✓

‘g1’ ‘hkern’, ‘vkern’

‘g2’ ‘hkern’, ‘vkern’

‘glyph-name’ ‘glyph’

‘glyphRef’ ‘altGlyph’

‘glyphRef’ ‘glyphRef’

‘gradientTransform’ ‘linearGradient’ ✓

‘gradientTransform’ ‘radialGradient’ ✓

‘gradientUnits’ ‘linearGradient’ ✓

‘gradientUnits’ ‘radialGradient’ ✓

‘hanging’ ‘font-face’

‘height’ ‘filter’ ✓



‘height’ ‘foreignObject’ ✓

‘height’ ‘image’ ✓

‘height’ ‘pattern’ ✓

‘height’ ‘rect’ ✓

‘height’ ‘svg’ ✓

‘height’ ‘use’ ✓

‘height’ ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’, ‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’,

‘feDisplacementMap’, ‘feFlood’, ‘feGaussianBlur’, ‘feImage’, ‘feMerge’, ‘feMorphology’, ‘feOffset’,

‘feSpecularLighting’, ‘feTile’, ‘feTurbulence’

✓

‘height’ ‘mask’ ✓

‘horiz-adv-x’ ‘font’

‘horiz-adv-x’ ‘glyph’, ‘missing-glyph’

‘horiz-origin-x’ ‘font’

‘horiz-origin-y’ ‘font’

‘id’ ‘a’, ‘altGlyph’, ‘altGlyphDef’, ‘altGlyphItem’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’,

‘circle’, ‘clipPath’, ‘color-profile’, ‘cursor’, ‘defs’, ‘desc’, ‘ellipse’, ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’,

‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’, ‘feDisplacementMap’, ‘feDistantLight’, ‘feFlood’, ‘feFuncA’,

‘feFuncB’, ‘feFuncG’, ‘feFuncR’, ‘feGaussianBlur’, ‘feImage’, ‘feMerge’, ‘feMergeNode’, ‘feMorphology’, ‘feOffset’,

‘fePointLight’, ‘feSpecularLighting’, ‘feSpotLight’, ‘feTile’, ‘feTurbulence’, ‘filter’, ‘font’, ‘font-face’,

‘font-face-format’, ‘font-face-name’, ‘font-face-src’, ‘font-face-uri’, ‘foreignObject’, ‘g’, ‘glyph’, ‘glyphRef’, ‘hkern’,

‘image’, ‘line’, ‘linearGradient’, ‘marker’, ‘mask’, ‘metadata’, ‘missing-glyph’, ‘mpath’, ‘path’, ‘pattern’, ‘polygon’,

‘polyline’, ‘radialGradient’, ‘rect’, ‘script’, ‘set’, ‘stop’, ‘style’, ‘svg’, ‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘title’, ‘tref’,

‘tspan’, ‘use’, ‘view’, ‘vkern’

‘ideographic’ ‘font-face’

‘in’ ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’, ‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’,

‘feDisplacementMap’, ‘feGaussianBlur’, ‘feMorphology’, ‘feOffset’, ‘feSpecularLighting’, ‘feTile’

✓

‘in2’ ‘feBlend’ ✓

‘in2’ ‘feComposite’ ✓

‘in2’ ‘feDisplacementMap’ ✓

‘intercept’ ‘feFuncA’, ‘feFuncB’, ‘feFuncG’, ‘feFuncR’ ✓

‘k’ ‘hkern’, ‘vkern’



‘k1’ ‘feComposite’ ✓

‘k2’ ‘feComposite’ ✓

‘k3’ ‘feComposite’ ✓

‘k4’ ‘feComposite’ ✓

‘kernelMatrix’ ‘feConvolveMatrix’ ✓

‘kernelUnitLength’ ‘feConvolveMatrix’ ✓

‘kernelUnitLength’ ‘feDiffuseLighting’ ✓

‘kernelUnitLength’ ‘feSpecularLighting’ ✓

‘keyPoints’ ‘animateMotion’

‘keySplines’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’

‘keyTimes’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’

‘lang’ ‘glyph’

‘lengthAdjust’ ‘text’, ‘textPath’, ‘tref’, ‘tspan’ ✓

‘limitingConeAngle’ ‘feSpotLight’ ✓

‘local’ ‘color-profile’

‘markerHeight’ ‘marker’ ✓

‘markerUnits’ ‘marker’ ✓

‘markerWidth’ ‘marker’ ✓

‘maskContentUnits’ ‘mask’ ✓

‘maskUnits’ ‘mask’ ✓

‘mathematical’ ‘font-face’

‘max’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘media’ ‘style’

‘method’ ‘textPath’ ✓

‘min’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘mode’ ‘feBlend’ ✓

‘name’ ‘color-profile’



‘name’ ‘font-face-name’

‘numOctaves’ ‘feTurbulence’ ✓

‘offset’ ‘stop’ ✓

‘offset’ ‘feFuncA’, ‘feFuncB’, ‘feFuncG’, ‘feFuncR’ ✓

‘onabort’ ‘svg’

‘onactivate’ ‘a’, ‘altGlyph’, ‘circle’, ‘defs’, ‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘svg’,

‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘onbegin’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘onclick’ ‘a’, ‘altGlyph’, ‘circle’, ‘defs’, ‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘svg’,

‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘onend’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘onerror’ ‘svg’

‘onfocusin’ ‘a’, ‘altGlyph’, ‘circle’, ‘defs’, ‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘svg’,

‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘onfocusout’ ‘a’, ‘altGlyph’, ‘circle’, ‘defs’, ‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘svg’,

‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘onload’ ‘a’, ‘altGlyph’, ‘circle’, ‘defs’, ‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘svg’,

‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘onload’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘onmousedown’ ‘a’, ‘altGlyph’, ‘circle’, ‘defs’, ‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘svg’,

‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘onmousemove’ ‘a’, ‘altGlyph’, ‘circle’, ‘defs’, ‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘svg’,

‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘onmouseout’ ‘a’, ‘altGlyph’, ‘circle’, ‘defs’, ‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘svg’,

‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘onmouseover’ ‘a’, ‘altGlyph’, ‘circle’, ‘defs’, ‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘svg’,

‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘onmouseup’ ‘a’, ‘altGlyph’, ‘circle’, ‘defs’, ‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘svg’,

‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘onrepeat’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’



‘onresize’ ‘svg’

‘onscroll’ ‘svg’

‘onunload’ ‘svg’

‘onzoom’ ‘svg’

‘operator’ ‘feComposite’ ✓

‘operator’ ‘feMorphology’ ✓

‘order’ ‘feConvolveMatrix’ ✓

‘orient’ ‘marker’ ✓

‘orientation’ ‘glyph’

‘origin’ ‘animateMotion’

‘overline-position’ ‘font-face’

‘overline-thickness’ ‘font-face’

‘panose-1’ ‘font-face’

‘path’ ‘animateMotion’

‘pathLength’ ‘path’ ✓

‘patternContentUnits’ ‘pattern’ ✓

‘patternTransform’ ‘pattern’ ✓

‘patternUnits’ ‘pattern’ ✓

‘points’ ‘polygon’ ✓

‘points’ ‘polyline’ ✓

‘pointsAtX’ ‘feSpotLight’ ✓

‘pointsAtY’ ‘feSpotLight’ ✓

‘pointsAtZ’ ‘feSpotLight’ ✓

‘preserveAlpha’ ‘feConvolveMatrix’ ✓

‘preserveAspectRatio’ ‘feImage’, ‘image’, ‘marker’, ‘pattern’, ‘svg’, ‘symbol’, ‘view’ ✓

‘primitiveUnits’ ‘filter’ ✓

‘r’ ‘circle’ ✓



‘r’ ‘radialGradient’ ✓

‘radius’ ‘feMorphology’ ✓

‘refX’ ‘marker’ ✓

‘refY’ ‘marker’ ✓

‘rendering-intent’ ‘color-profile’

‘repeatCount’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘repeatDur’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘requiredExtensions’ ‘a’, ‘altGlyph’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘circle’, ‘clipPath’, ‘cursor’, ‘defs’,

‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘mask’, ‘path’, ‘pattern’, ‘polygon’, ‘polyline’, ‘rect’, ‘set’, ‘svg’, ‘switch’,

‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘requiredFeatures’ ‘a’, ‘altGlyph’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘circle’, ‘clipPath’, ‘cursor’, ‘defs’,

‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘mask’, ‘path’, ‘pattern’, ‘polygon’, ‘polyline’, ‘rect’, ‘set’, ‘svg’, ‘switch’,

‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘restart’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘result’ ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’, ‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’,

‘feDisplacementMap’, ‘feFlood’, ‘feGaussianBlur’, ‘feImage’, ‘feMerge’, ‘feMorphology’, ‘feOffset’,

‘feSpecularLighting’, ‘feTile’, ‘feTurbulence’

✓

‘rotate’ ‘altGlyph’ ✓

‘rotate’ ‘animateMotion’

‘rotate’ ‘text’ ✓

‘rotate’ ‘tref’, ‘tspan’ ✓

‘rx’ ‘ellipse’ ✓

‘rx’ ‘rect’ ✓

‘ry’ ‘ellipse’ ✓

‘ry’ ‘rect’ ✓

‘scale’ ‘feDisplacementMap’ ✓

‘seed’ ‘feTurbulence’ ✓

‘slope’ ‘font-face’

‘slope’ ‘feFuncA’, ‘feFuncB’, ‘feFuncG’, ‘feFuncR’ ✓



‘spacing’ ‘textPath’ ✓

‘specularConstant’ ‘feSpecularLighting’ ✓

‘specularExponent’ ‘feSpecularLighting’ ✓

‘specularExponent’ ‘feSpotLight’ ✓

‘spreadMethod’ ‘linearGradient’ ✓

‘spreadMethod’ ‘radialGradient’ ✓

‘startOffset’ ‘textPath’ ✓

‘stdDeviation’ ‘feGaussianBlur’ ✓

‘stemh’ ‘font-face’

‘stemv’ ‘font-face’

‘stitchTiles’ ‘feTurbulence’ ✓

‘strikethrough-position’ ‘font-face’

‘strikethrough-thickness’ ‘font-face’

‘string’ ‘font-face-format’

‘style’ ‘a’, ‘altGlyph’, ‘circle’, ‘clipPath’, ‘defs’, ‘desc’, ‘ellipse’, ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’,

‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’, ‘feDisplacementMap’, ‘feFlood’, ‘feGaussianBlur’, ‘feImage’,

‘feMerge’, ‘feMorphology’, ‘feOffset’, ‘feSpecularLighting’, ‘feTile’, ‘feTurbulence’, ‘filter’, ‘font’, ‘foreignObject’, ‘g’,

‘glyph’, ‘glyphRef’, ‘image’, ‘line’, ‘linearGradient’, ‘marker’, ‘mask’, ‘missing-glyph’, ‘path’, ‘pattern’, ‘polygon’,

‘polyline’, ‘radialGradient’, ‘rect’, ‘stop’, ‘svg’, ‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘title’, ‘tref’, ‘tspan’, ‘use’

‘surfaceScale’ ‘feDiffuseLighting’ ✓

‘surfaceScale’ ‘feSpecularLighting’ ✓

‘systemLanguage’ ‘a’, ‘altGlyph’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘circle’, ‘clipPath’, ‘cursor’, ‘defs’,

‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘mask’, ‘path’, ‘pattern’, ‘polygon’, ‘polyline’, ‘rect’, ‘set’, ‘svg’, ‘switch’,

‘text’, ‘textPath’, ‘tref’, ‘tspan’, ‘use’

‘tableValues’ ‘feFuncA’, ‘feFuncB’, ‘feFuncG’, ‘feFuncR’ ✓

‘target’ ‘a’ ✓

‘targetX’ ‘feConvolveMatrix’ ✓

‘targetY’ ‘feConvolveMatrix’ ✓

‘textLength’ ‘text’ ✓



‘textLength’ ‘textPath’, ‘tref’, ‘tspan’ ✓

‘title’ ‘style’

‘to’ ‘set’

‘to’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’

‘transform’ ‘a’, ‘circle’, ‘clipPath’, ‘defs’, ‘ellipse’, ‘foreignObject’, ‘g’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘switch’,

‘text’, ‘use’

✓

‘type’ ‘animateTransform’

‘type’ ‘feColorMatrix’ ✓

‘type’ ‘feTurbulence’ ✓

‘type’ ‘script’

‘type’ ‘style’

‘type’ ‘feFuncA’, ‘feFuncB’, ‘feFuncG’, ‘feFuncR’ ✓

‘u1’ ‘hkern’, ‘vkern’

‘u2’ ‘hkern’, ‘vkern’

‘underline-position’ ‘font-face’

‘underline-thickness’ ‘font-face’

‘unicode’ ‘glyph’

‘unicode-range’ ‘font-face’

‘units-per-em’ ‘font-face’

‘v-alphabetic’ ‘font-face’

‘v-hanging’ ‘font-face’

‘v-ideographic’ ‘font-face’

‘v-mathematical’ ‘font-face’

‘values’ ‘feColorMatrix’ ✓

‘values’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’

‘version’ ‘svg’

‘vert-adv-y’ ‘font’



‘vert-adv-y’ ‘glyph’, ‘missing-glyph’

‘vert-origin-x’ ‘font’

‘vert-origin-x’ ‘glyph’, ‘missing-glyph’

‘vert-origin-y’ ‘font’

‘vert-origin-y’ ‘glyph’, ‘missing-glyph’

‘viewBox’ ‘marker’, ‘pattern’, ‘svg’, ‘symbol’, ‘view’ ✓

‘viewTarget’ ‘view’

‘width’ ‘filter’ ✓

‘width’ ‘foreignObject’ ✓

‘width’ ‘image’ ✓

‘width’ ‘pattern’ ✓

‘width’ ‘rect’ ✓

‘width’ ‘svg’ ✓

‘width’ ‘use’ ✓

‘width’ ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’, ‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’,

‘feDisplacementMap’, ‘feFlood’, ‘feGaussianBlur’, ‘feImage’, ‘feMerge’, ‘feMorphology’, ‘feOffset’,

‘feSpecularLighting’, ‘feTile’, ‘feTurbulence’

✓

‘width’ ‘mask’ ✓

‘widths’ ‘font-face’

‘x’ ‘altGlyph’ ✓

‘x’ ‘cursor’ ✓

‘x’ ‘fePointLight’ ✓

‘x’ ‘feSpotLight’ ✓

‘x’ ‘filter’ ✓

‘x’ ‘foreignObject’ ✓

‘x’ ‘glyphRef’

‘x’ ‘image’ ✓



‘x’ ‘pattern’ ✓

‘x’ ‘rect’ ✓

‘x’ ‘svg’ ✓

‘x’ ‘text’ ✓

‘x’ ‘use’ ✓

‘x’ ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’, ‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’,

‘feDisplacementMap’, ‘feFlood’, ‘feGaussianBlur’, ‘feImage’, ‘feMerge’, ‘feMorphology’, ‘feOffset’,

‘feSpecularLighting’, ‘feTile’, ‘feTurbulence’

✓

‘x’ ‘mask’ ✓

‘x’ ‘tref’, ‘tspan’ ✓

‘x-height’ ‘font-face’

‘x1’ ‘line’ ✓

‘x1’ ‘linearGradient’ ✓

‘x2’ ‘line’ ✓

‘x2’ ‘linearGradient’ ✓

‘xChannelSelector’ ‘feDisplacementMap’ ✓

‘xlink:actuate’ ‘a’

‘xlink:actuate’ ‘altGlyph’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘color-profile’, ‘cursor’, ‘feImage’,

‘filter’, ‘font-face-uri’, ‘glyphRef’, ‘image’, ‘mpath’, ‘pattern’, ‘script’, ‘set’, ‘use’

‘xlink:arcrole’ ‘a’, ‘altGlyph’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘color-profile’, ‘cursor’, ‘feImage’,

‘filter’, ‘font-face-uri’, ‘glyphRef’, ‘image’, ‘linearGradient’, ‘mpath’, ‘pattern’, ‘radialGradient’, ‘script’, ‘set’,

‘textPath’, ‘tref’, ‘use’

‘xlink:href’ ‘a’ ✓

‘xlink:href’ ‘altGlyph’

‘xlink:href’ ‘color-profile’

‘xlink:href’ ‘cursor’ ✓

‘xlink:href’ ‘feImage’ ✓

‘xlink:href’ ‘filter’ ✓



‘xlink:href’ ‘font-face-uri’

‘xlink:href’ ‘glyphRef’

‘xlink:href’ ‘image’ ✓

‘xlink:href’ ‘linearGradient’ ✓

‘xlink:href’ ‘mpath’

‘xlink:href’ ‘pattern’ ✓

‘xlink:href’ ‘radialGradient’ ✓

‘xlink:href’ ‘script’

‘xlink:href’ ‘textPath’ ✓

‘xlink:href’ ‘use’ ✓

‘xlink:href’ ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘set’

‘xlink:href’ ‘tref’ ✓

‘xlink:role’ ‘a’, ‘altGlyph’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘color-profile’, ‘cursor’, ‘feImage’,

‘filter’, ‘font-face-uri’, ‘glyphRef’, ‘image’, ‘linearGradient’, ‘mpath’, ‘pattern’, ‘radialGradient’, ‘script’, ‘set’,

‘textPath’, ‘tref’, ‘use’

‘xlink:show’ ‘a’

‘xlink:show’ ‘altGlyph’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘color-profile’, ‘cursor’, ‘feImage’,

‘filter’, ‘font-face-uri’, ‘glyphRef’, ‘image’, ‘mpath’, ‘pattern’, ‘script’, ‘set’, ‘use’

‘xlink:title’ ‘a’, ‘altGlyph’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘color-profile’, ‘cursor’, ‘feImage’,

‘filter’, ‘font-face-uri’, ‘glyphRef’, ‘image’, ‘linearGradient’, ‘mpath’, ‘pattern’, ‘radialGradient’, ‘script’, ‘set’,

‘textPath’, ‘tref’, ‘use’

‘xlink:type’ ‘a’, ‘altGlyph’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’, ‘color-profile’, ‘cursor’, ‘feImage’,

‘filter’, ‘font-face-uri’, ‘glyphRef’, ‘image’, ‘linearGradient’, ‘mpath’, ‘pattern’, ‘radialGradient’, ‘script’, ‘set’,

‘textPath’, ‘tref’, ‘use’

‘xml:base’ ‘a’, ‘altGlyph’, ‘altGlyphDef’, ‘altGlyphItem’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’,

‘circle’, ‘clipPath’, ‘color-profile’, ‘cursor’, ‘defs’, ‘desc’, ‘ellipse’, ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’,

‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’, ‘feDisplacementMap’, ‘feDistantLight’, ‘feFlood’, ‘feFuncA’,

‘feFuncB’, ‘feFuncG’, ‘feFuncR’, ‘feGaussianBlur’, ‘feImage’, ‘feMerge’, ‘feMergeNode’, ‘feMorphology’, ‘feOffset’,

‘fePointLight’, ‘feSpecularLighting’, ‘feSpotLight’, ‘feTile’, ‘feTurbulence’, ‘filter’, ‘font’, ‘font-face’,

‘font-face-format’, ‘font-face-name’, ‘font-face-src’, ‘font-face-uri’, ‘foreignObject’, ‘g’, ‘glyph’, ‘glyphRef’, ‘hkern’,

‘image’, ‘line’, ‘linearGradient’, ‘marker’, ‘mask’, ‘metadata’, ‘missing-glyph’, ‘mpath’, ‘path’, ‘pattern’, ‘polygon’,



‘polyline’, ‘radialGradient’, ‘rect’, ‘script’, ‘set’, ‘stop’, ‘style’, ‘svg’, ‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘title’, ‘tref’,

‘tspan’, ‘use’, ‘view’, ‘vkern’

‘xml:lang’ ‘a’, ‘altGlyph’, ‘altGlyphDef’, ‘altGlyphItem’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’,

‘circle’, ‘clipPath’, ‘color-profile’, ‘cursor’, ‘defs’, ‘desc’, ‘ellipse’, ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’,

‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’, ‘feDisplacementMap’, ‘feDistantLight’, ‘feFlood’, ‘feFuncA’,

‘feFuncB’, ‘feFuncG’, ‘feFuncR’, ‘feGaussianBlur’, ‘feImage’, ‘feMerge’, ‘feMergeNode’, ‘feMorphology’, ‘feOffset’,

‘fePointLight’, ‘feSpecularLighting’, ‘feSpotLight’, ‘feTile’, ‘feTurbulence’, ‘filter’, ‘font’, ‘font-face’,

‘font-face-format’, ‘font-face-name’, ‘font-face-src’, ‘font-face-uri’, ‘foreignObject’, ‘g’, ‘glyph’, ‘glyphRef’, ‘hkern’,

‘image’, ‘line’, ‘linearGradient’, ‘marker’, ‘mask’, ‘metadata’, ‘missing-glyph’, ‘mpath’, ‘path’, ‘pattern’, ‘polygon’,

‘polyline’, ‘radialGradient’, ‘rect’, ‘script’, ‘set’, ‘stop’, ‘style’, ‘svg’, ‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘title’, ‘tref’,

‘tspan’, ‘use’, ‘view’, ‘vkern’

‘xml:space’ ‘a’, ‘altGlyph’, ‘altGlyphDef’, ‘altGlyphItem’, ‘animate’, ‘animateColor’, ‘animateMotion’, ‘animateTransform’,

‘circle’, ‘clipPath’, ‘color-profile’, ‘cursor’, ‘defs’, ‘desc’, ‘ellipse’, ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’,

‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’, ‘feDisplacementMap’, ‘feDistantLight’, ‘feFlood’, ‘feFuncA’,

‘feFuncB’, ‘feFuncG’, ‘feFuncR’, ‘feGaussianBlur’, ‘feImage’, ‘feMerge’, ‘feMergeNode’, ‘feMorphology’, ‘feOffset’,

‘fePointLight’, ‘feSpecularLighting’, ‘feSpotLight’, ‘feTile’, ‘feTurbulence’, ‘filter’, ‘font’, ‘font-face’,

‘font-face-format’, ‘font-face-name’, ‘font-face-src’, ‘font-face-uri’, ‘foreignObject’, ‘g’, ‘glyph’, ‘glyphRef’, ‘hkern’,

‘image’, ‘line’, ‘linearGradient’, ‘marker’, ‘mask’, ‘metadata’, ‘missing-glyph’, ‘mpath’, ‘path’, ‘pattern’, ‘polygon’,

‘polyline’, ‘radialGradient’, ‘rect’, ‘script’, ‘set’, ‘stop’, ‘style’, ‘svg’, ‘switch’, ‘symbol’, ‘text’, ‘textPath’, ‘title’, ‘tref’,

‘tspan’, ‘use’, ‘view’, ‘vkern’

‘y’ ‘altGlyph’ ✓

‘y’ ‘cursor’ ✓

‘y’ ‘fePointLight’ ✓

‘y’ ‘feSpotLight’ ✓

‘y’ ‘filter’ ✓

‘y’ ‘foreignObject’ ✓

‘y’ ‘glyphRef’

‘y’ ‘image’ ✓

‘y’ ‘pattern’ ✓

‘y’ ‘rect’ ✓

‘y’ ‘svg’ ✓

‘y’ ‘text’ ✓

‘y’ ‘use’ ✓



‘y’ ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’, ‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’,

‘feDisplacementMap’, ‘feFlood’, ‘feGaussianBlur’, ‘feImage’, ‘feMerge’, ‘feMorphology’, ‘feOffset’,

‘feSpecularLighting’, ‘feTile’, ‘feTurbulence’

✓

‘y’ ‘mask’ ✓

‘y’ ‘tref’, ‘tspan’ ✓

‘y1’ ‘line’ ✓

‘y1’ ‘linearGradient’ ✓

‘y2’ ‘line’ ✓

‘y2’ ‘linearGradient’ ✓

‘yChannelSelector’ ‘feDisplacementMap’ ✓

‘z’ ‘fePointLight’ ✓

‘z’ ‘feSpotLight’ ✓

‘zoomAndPan’ ‘svg’, ‘view’

M.2 Presentation attributes

As described in the Styling chapter, for each property there exists a corresponding presentation attribute. The table
below lists the presentation attributes and the elements on which they may be specified.

Presentation attributes Elements on which the attributes may be specified

‘alignment-baseline’, ‘baseline-shift’, ‘clip-path’, ‘clip-rule’, ‘clip’, ‘color-interpolation-filters’,

‘color-interpolation’, ‘color-profile’, ‘color-rendering’, ‘color’, ‘cursor’, ‘direction’, ‘display’,

‘dominant-baseline’, ‘enable-background’, ‘fill-opacity’, ‘fill-rule’, ‘fill’, ‘filter’, ‘flood-color’,

‘flood-opacity’, ‘font-family’, ‘font-size-adjust’, ‘font-size’, ‘font-stretch’, ‘font-style’,

‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,

‘image-rendering’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker-end’, ‘marker-mid’,

‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’, ‘stop-color’,

‘stop-opacity’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’, ‘stroke-linejoin’,

‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘stroke’, ‘text-anchor’, ‘text-decoration’,

‘text-rendering’, ‘unicode-bidi’, ‘visibility’, ‘word-spacing’ and ‘writing-mode’

‘a’, ‘altGlyph’, ‘animate’, ‘animateColor’, ‘circle’, ‘clipPath’,

‘defs’, ‘ellipse’, ‘feBlend’, ‘feColorMatrix’,

‘feComponentTransfer’, ‘feComposite’, ‘feConvolveMatrix’,

‘feDiffuseLighting’, ‘feDisplacementMap’, ‘feFlood’,

‘feGaussianBlur’, ‘feImage’, ‘feMerge’, ‘feMorphology’,

‘feOffset’, ‘feSpecularLighting’, ‘feTile’, ‘feTurbulence’,

‘filter’, ‘font’, ‘foreignObject’, ‘g’, ‘glyph’, ‘glyphRef’,

‘image’, ‘line’, ‘linearGradient’, ‘marker’, ‘mask’,

‘missing-glyph’, ‘path’, ‘pattern’, ‘polygon’, ‘polyline’,

‘radialGradient’, ‘rect’, ‘stop’, ‘svg’, ‘switch’, ‘symbol’,

‘text’, ‘textPath’, ‘tref’, ‘tspan’ and ‘use’



Appendix N: Property Index

This appendix is informative, not normative.

Name Values Initial value Applies to Inh. Percentages Media Anim.

‘alignment-baseline’ auto | baseline |

before-edge |

text-before-edge | middle |

central | after-edge |

text-after-edge |

ideographic | alphabetic |

hanging | mathematical |

inherit

see property

description

‘tspan’, ‘tref’,

‘altGlyph’,

‘textPath’ elements

no N/A visual yes

‘baseline-shift’ baseline | sub | super |

<percentage> | <length> |

inherit

baseline ‘tspan’, ‘tref’,

‘altGlyph’,

‘textPath’ elements

no refer to the

"line height"

of the ‘text’

element,

which in the

case of SVG

is defined to

be equal to

the font size

visual yes

‘clip’ <shape> | auto | inherit auto elements which

establish a new

viewport, ‘pattern’

elements and

‘marker’ elements

no N/A visual yes

‘clip-path’ <funciri> | none | inherit none container elements

and graphics

elements

no N/A visual yes

‘clip-rule’ nonzero | evenodd | inherit nonzero graphics elements

within a ‘clipPath’

element

yes N/A visual yes

‘color’ <color> | inherit depends on

user agent

elements to which

properties ‘fill’,

‘stroke’,

‘stop-color’,

yes N/A visual yes

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/visufx.html#value-def-shape
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group


Name Values Initial value Applies to Inh. Percentages Media Anim.

‘flood-color’,

‘lighting-color’

apply

‘color-interpolation’ auto | sRGB | linearRGB |

inherit

sRGB container

elements, graphics

elements and

‘animateColor’

yes N/A visual yes

‘color-interpolation-filters’ auto | sRGB | linearRGB |

inherit

linearRGB filter primitives yes N/A visual yes

‘color-profile’ auto | sRGB | <name> |

<funciri> | inherit

auto ‘image’ elements

that refer to raster

images

yes N/A visual yes

‘color-rendering’ auto | optimizeSpeed |

optimizeQuality | inherit

auto container

elements, graphics

elements and

‘animateColor’

yes N/A visual yes

‘cursor’ [ [<funciri> ,]* [ auto |

crosshair | default | pointer |

move | e-resize | ne-resize |

nw-resize | n-resize |

se-resize | sw-resize |

s-resize | w-resize| text |

wait | help ] ] | inherit

auto container elements

and graphics

elements

yes N/A visual,

interactive

yes

‘direction’ ltr | rtl | inherit ltr text content

elements

yes N/A visual no

‘display’ inline | block | list-item |

run-in | compact | marker |

table | inline-table |

table-row-group |

table-header-group |

table-footer-group |

table-row |

table-column-group |

table-column | table-cell |

table-caption | none |

inherit

inline ‘svg’, ‘g’, ‘switch’,

‘a’, ‘foreignObject’,

graphics elements

(including the ‘text’

element) and text

sub-elements (i.e.,

‘tspan’, ‘tref’,

‘altGlyph’,

‘textPath’)

no N/A all yes

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#interactive-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#all-media-group


Name Values Initial value Applies to Inh. Percentages Media Anim.

‘dominant-baseline’ auto | use-script |

no-change | reset-size |

ideographic | alphabetic |

hanging | mathematical |

central | middle |

text-after-edge |

text-before-edge | inherit

auto text content

elements

no N/A visual yes

‘enable-background’ accumulate | new [ <x> <y>

<width> <height> ] | inherit

accumulate container elements no N/A visual no

‘fill’ <paint> (See Specifying

paint)

black shapes and text

content elements

yes N/A visual yes

‘fill-opacity’ <opacity-value> | inherit 1 shapes and text

content elements

yes N/A visual yes

‘fill-rule’ nonzero | evenodd | inherit nonzero shapes and text

content elements

yes N/A visual yes

‘filter’ <funciri> | none | inherit none container elements

and graphics

elements

no N/A visual yes

‘flood-color’ currentColor |

<color> [<icccolor>] |

inherit

black ‘feFlood’ elements no N/A visual yes

‘flood-opacity’ <opacity-value> | inherit 1 ‘feFlood’ elements no N/A visual yes

‘font’ [ [ ‘font-style’ || ‘font-variant’

|| ‘font-weight’ ]? ‘font-size’

[ / 'line-height' ]?

‘font-family’ ] | caption |

icon | menu | message-box

| small-caption | status-bar |

inherit

see individual

properties

text content

elements

yes see

individual

properties

visual yes [1]

‘font-family’ [[ <family-name> |

<generic-family> ],]* [

<family-name> |

<generic-family>] | inherit

depends on

user agent

text content

elements

yes N/A visual yes

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/visudet.html#propdef-line-height
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#value-def-family-name
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#value-def-generic-family
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#value-def-family-name
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#value-def-generic-family
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group


Name Values Initial value Applies to Inh. Percentages Media Anim.

‘font-size’ <absolute-size> |

<relative-size> | <length> |

<percentage> | inherit

medium text content

elements

yes, the

computed

value is

inherited

refer to

parent

element's

font size

visual yes

‘font-size-adjust’ <number> | none | inherit none text content

elements

yes N/A visual yes [1]

‘font-stretch’ normal | wider | narrower |

ultra-condensed |

extra-condensed |

condensed |

semi-condensed |

semi-expanded | expanded

| extra-expanded |

ultra-expanded | inherit

normal text content

elements

yes N/A visual yes

‘font-style’ normal | italic | oblique |

inherit

normal text content

elements

yes N/A visual yes

‘font-variant’ normal | small-caps | inherit normal text content

elements

yes N/A visual yes

‘font-weight’ normal | bold | bolder |

lighter | 100 | 200 | 300 |

400 | 500 | 600 | 700 | 800 |

900 | inherit

normal text content

elements

yes N/A visual yes

‘glyph-orientation-horizontal’ <angle> | inherit 0deg text content

elements

yes N/A visual no

‘glyph-orientation-vertical’ auto | <angle> | inherit auto text content

elements

yes N/A visual no

‘image-rendering’ auto | optimizeSpeed |

optimizeQuality | inherit

auto images yes N/A visual yes

‘kerning’ auto | <length> | inherit auto text content

elements

yes N/A visual yes

‘letter-spacing’ normal | <length> | inherit normal text content

elements

yes N/A visual yes

‘lighting-color’ currentColor | white ‘feDiffuseLighting’

and

no N/A visual yes

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#value-def-absolute-size
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#value-def-relative-size
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#value-def-percentage
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#value-def-number
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group


Name Values Initial value Applies to Inh. Percentages Media Anim.

<color> [<icccolor>] |

inherit

‘feSpecularLighting’

elements

‘marker’ see individual properties see individual

properties

‘path’, ‘line’,

‘polyline’ and

‘polygon’ elements

yes N/A visual yes

‘marker-end’

‘marker-mid’

‘marker-start’

none |

inherit |

<funciri>

none ‘path’, ‘line’,

‘polyline’ and

‘polygon’ elements

yes N/A visual yes

‘mask’ <funciri> | none | inherit none container elements

and graphics

elements

no N/A visual yes

‘opacity’ <opacity-value> | inherit 1 container elements

and graphics

elements

no N/A visual yes

‘overflow’ visible | hidden | scroll |

auto | inherit

see prose elements which

establish a new

viewport, ‘pattern’

elements and

‘marker’ elements

no N/A visual yes

‘pointer-events’ visiblePainted | visibleFill |

visibleStroke | visible |

painted | fill | stroke | all |

none | inherit

visiblePainted graphics elements yes N/A visual yes

‘shape-rendering’ auto | optimizeSpeed |

crispEdges |

geometricPrecision | inherit

auto shapes yes N/A visual yes

‘stop-color’ currentColor |

<color> [<icccolor>] |

inherit

black ‘stop’ elements no N/A visual yes

‘stop-opacity’ <opacity-value> | inherit 1 ‘stop’ elements no N/A visual yes

‘stroke’ <paint> (See Specifying

paint)

none shapes and text

content elements

yes N/A visual yes

‘stroke-dasharray’ none | <dasharray> | inherit none shapes and text

content elements

yes N/A visual yes [1]

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group


Name Values Initial value Applies to Inh. Percentages Media Anim.

‘stroke-dashoffset’ <percentage> | <length> |

inherit

0 shapes and text

content elements

yes see prose visual yes

‘stroke-linecap’ butt | round | square |

inherit

butt shapes and text

content elements

yes N/A visual yes

‘stroke-linejoin’ miter | round | bevel |

inherit

miter shapes and text

content elements

yes N/A visual yes

‘stroke-miterlimit’ <miterlimit> | inherit 4 shapes and text

content elements

yes N/A visual yes

‘stroke-opacity’ <opacity-value> | inherit 1 shapes and text

content elements

yes N/A visual yes

‘stroke-width’ <percentage> | <length> |

inherit

1 shapes and text

content elements

yes N/A visual yes

‘text-anchor’ start | middle | end | inherit start text content

elements

yes N/A visual yes

‘text-decoration’ none | [ underline ||

overline || line-through ||

blink ] | inherit

none text content

elements

no (see

prose)

N/A visual yes

‘text-rendering’ auto | optimizeSpeed |

optimizeLegibility |

geometricPrecision | inherit

auto ‘text’ elements yes N/A visual yes

‘unicode-bidi’ normal | embed |

bidi-override | inherit

normal text content

elements

no N/A visual no

‘visibility’ visible | hidden | collapse |

inherit

visible graphics elements

(including the ‘text’

element) and text

sub-elements (i.e.,

‘tspan’, ‘tref’,

‘altGlyph’,

‘textPath’ and ‘a’)

yes N/A visual yes

‘word-spacing’ normal | <length> | inherit normal text content

elements

yes N/A visual yes

‘writing-mode’ lr-tb | rl-tb | tb-rl | lr | rl | tb |

inherit

lr-tb ‘text’ elements yes N/A visual no

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#value-def-inherit
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group


[1] The ‘font’, ‘font-size-adjust’ and ‘stroke-dasharray’ properties are animatable but do not support additive
animation.



Appendix O: Feature Strings

Contents

O.1 Introduction
O.2 SVG 1.1 feature strings
O.3 SVG 1.0 feature strings

This appendix is normative.

O.1 Introduction

The following are the feature strings for the ‘requiredFeatures’ attribute. These same feature strings apply to the
hasFeature method call that is part of the SVG DOM's support for the DOMImplementation interface defined in
DOM Level 2 Core [DOM2] (see Feature strings for the hasFeature method call). In some cases the feature strings
map directly to a set of attributes, properties or elements, in others they represent some functionality of the user
agent (that it is a dynamic viewer for example). Note that the format and naming for feature strings changed from
SVG 1.0 [SVG10] to SVG 1.1. The SVG 1.0 feature strings are listed below after the SVG 1.1 feature strings and User
Agents should support all listed feature strings for compatibility reasons. However, the SVG 1.0 feature strings can
be considered deprecated.

O.2 SVG 1.1 feature strings

Feature String:
http://www.w3.org/TR/SVG11/feature#SVG

User Agent Supports:
At least one of the following (all of which are described subsequently): "http://www.w3.org/TR/SVG11/
feature#SVG-static", "http://www.w3.org/TR/SVG11/feature#SVG-animation", "http://www.w3.org/TR/
SVG11/feature#SVG-dynamic" or "http://www.w3.org/TR/SVG11/feature#SVGDOM". (Because the feature
string "http://www.w3.org/TR/SVG11/feature#SVG" can be ambiguous in some circumstances, it is
recommended that more specific feature strings be used.)

Feature String:
http://www.w3.org/TR/SVG11/feature#SVGDOM

User Agent Supports:
At least one of the following (all of which are described subsequently): "http://www.w3.org/TR/SVG11/
feature#SVGDOM-static", "http://www.w3.org/TR/SVG11/feature#SVGDOM-animation" or
"http://www.w3.org/TR/SVG11/feature#SVGDOM-dynamic". (Because the feature string
"http://www.w3.org/TR/SVG11/feature#SVGDOM" can be ambiguous in some circumstances, it is
recommended that more specific feature strings be used.)

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-102161490
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2001/REC-SVG-20010904/


Feature String:
http://www.w3.org/TR/SVG11/feature#SVG-static

User Agent Supports:
The following features (described below)

• http://www.w3.org/TR/SVG11/feature#CoreAttribute
• http://www.w3.org/TR/SVG11/feature#Structure
• http://www.w3.org/TR/SVG11/feature#ContainerAttribute
• http://www.w3.org/TR/SVG11/feature#ConditionalProcessing
• http://www.w3.org/TR/SVG11/feature#Image
• http://www.w3.org/TR/SVG11/feature#Style
• http://www.w3.org/TR/SVG11/feature#ViewportAttribute
• http://www.w3.org/TR/SVG11/feature#Shape
• http://www.w3.org/TR/SVG11/feature#Text
• http://www.w3.org/TR/SVG11/feature#PaintAttribute
• http://www.w3.org/TR/SVG11/feature#OpacityAttribute
• http://www.w3.org/TR/SVG11/feature#GraphicsAttribute
• http://www.w3.org/TR/SVG11/feature#Marker
• http://www.w3.org/TR/SVG11/feature#ColorProfile
• http://www.w3.org/TR/SVG11/feature#Gradient
• http://www.w3.org/TR/SVG11/feature#Pattern
• http://www.w3.org/TR/SVG11/feature#Clip
• http://www.w3.org/TR/SVG11/feature#Mask
• http://www.w3.org/TR/SVG11/feature#Filter
• http://www.w3.org/TR/SVG11/feature#XlinkAttribute
• http://www.w3.org/TR/SVG11/feature#Font
• http://www.w3.org/TR/SVG11/feature#Extensibility

For SVG viewers, "http://www.w3.org/TR/SVG11/feature#SVG-static" indicates that the viewer can process
and render successfully all of the language features corresponding to the feature strings listed above.

Feature String:
http://www.w3.org/TR/SVG11/feature#SVGDOM-static

User Agent Supports:
All of the DOM interfaces and methods that correspond to the language features for "http://www.w3.org/
TR/SVG11/feature#SVG-static".

Feature String:
http://www.w3.org/TR/SVG11/feature#SVG-animation

User Agent Supports:
All of the language features from "http://www.w3.org/TR/SVG11/feature#SVG-static" plus the feature
"http://www.w3.org/TR/SVG11/feature#Animation". For SVG viewers running on media capable of



rendering time-based material, such as displays, "http://www.w3.org/TR/SVG11/feature#SVG-animation"
indicates that the viewer can process and render successfully all of the corresponding language features.

Feature String:
http://www.w3.org/TR/SVG11/feature#SVGDOM-animation

User Agent Supports:
All of the DOM interfaces and methods that correspond to the language features for "http://www.w3.org/
TR/SVG11/feature#SVG-animation".

Feature String:
http://www.w3.org/TR/SVG11/feature#SVG-dynamic

User Agent Supports:
All of the language features from "http://www.w3.org/TR/SVG11/feature#SVG-animation" plus the
following features:

• http://www.w3.org/TR/SVG11/feature#Hyperlinking
• http://www.w3.org/TR/SVG11/feature#Scripting
• http://www.w3.org/TR/SVG11/feature#View
• http://www.w3.org/TR/SVG11/feature#Cursor
• http://www.w3.org/TR/SVG11/feature#GraphicalEventsAttribute
• http://www.w3.org/TR/SVG11/feature#DocumentEventsAttribute
• http://www.w3.org/TR/SVG11/feature#AnimationEventsAttribute

For SVG viewers running on media capable of rendering time-based material, such as displays,
"http://www.w3.org/TR/SVG11/feature#SVG-dynamic" indicates that the viewer can process and render
successfully all of the corresponding language features.

Feature String:
http://www.w3.org/TR/SVG11/feature#SVGDOM-dynamic

User Agent Supports:
All of the DOM interfaces and methods that correspond to the language features for "http://www.w3.org/
TR/SVG11/feature#SVG-dynamic".

Feature String:
http://www.w3.org/TR/SVG11/feature#CoreAttribute

User Agent Supports:
the ‘id’, ‘xml:base’, ‘xml:lang’ and ‘xml:space’ attributes

Feature String:
http://www.w3.org/TR/SVG11/feature#Structure

User Agent Supports:
‘svg’, ‘g’, ‘defs’, ‘desc’, ‘title’, ‘metadata’, ‘symbol’ and ‘use’ elements



Feature String:
http://www.w3.org/TR/SVG11/feature#BasicStructure

User Agent Supports:
‘svg’, ‘g’, ‘defs’, ‘desc’, ‘title’, ‘metadata’ and ‘use’ elements

Feature String:
http://www.w3.org/TR/SVG11/feature#ContainerAttribute

User Agent Supports:
the ‘enable-background’ property

Feature String:
http://www.w3.org/TR/SVG11/feature#ConditionalProcessing

User Agent Supports:
the ‘switch’ element, and the ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ attributes

Feature String:
http://www.w3.org/TR/SVG11/feature#Image

User Agent Supports:
the ‘image’ element

Feature String:
http://www.w3.org/TR/SVG11/feature#Style

User Agent Supports:
the ‘style’ element

Feature String:
http://www.w3.org/TR/SVG11/feature#ViewportAttribute

User Agent Supports:
the ‘clip’ and ‘overflow’ properties

Feature String:
http://www.w3.org/TR/SVG11/feature#Shape

User Agent Supports:
the ‘rect’, ‘circle’, ‘line’, ‘polyline’, ‘polygon’, ‘ellipse’ and ‘path’ elements

Feature String:
http://www.w3.org/TR/SVG11/feature#Text

User Agent Supports:
the ‘text’, ‘tspan’, ‘tref’, ‘textPath’, ‘altGlyph’, ‘altGlyphDef’, ‘altGlyphItem’ and ‘glyphRef’ elements

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicText



User Agent Supports:
the ‘text’ element

Feature String:
http://www.w3.org/TR/SVG11/feature#PaintAttribute

User Agent Supports:
the ‘color’, ‘fill’, ‘fill-rule’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’, ‘stroke-linejoin’,
‘stroke-miterlimit’, ‘stroke-width’, ‘color-interpolation’ and ‘color-rendering’ properties

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicPaintAttribute

User Agent Supports:
the ‘color’, ‘fill’, ‘fill-rule’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’, ‘stroke-linejoin’,
‘stroke-miterlimit’, ‘stroke-width’ and ‘color-rendering’ properties

Feature String:
http://www.w3.org/TR/SVG11/feature#OpacityAttribute

User Agent Supports:
the ‘opacity’, ‘stroke-opacity’ and ‘fill-opacity’ properties

Feature String:
http://www.w3.org/TR/SVG11/feature#GraphicsAttribute

User Agent Supports:
the ‘display’, ‘image-rendering’, ‘pointer-events’, ‘shape-rendering’, ‘text-rendering’ and ‘visibility’ properties

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicGraphicsAttribute

User Agent Supports:
the ‘display’ and ‘visibility’ properties

Feature String:
http://www.w3.org/TR/SVG11/feature#Marker

User Agent Supports:
the ‘marker’ element

Feature String:
http://www.w3.org/TR/SVG11/feature#ColorProfile

User Agent Supports:
the ‘color-profile’ element

Feature String:
http://www.w3.org/TR/SVG11/feature#Gradient



User Agent Supports:
the ‘linearGradient’, ‘radialGradient’ and ‘stop’ elements

Feature String:
http://www.w3.org/TR/SVG11/feature#Pattern

User Agent Supports:
the ‘pattern’ element

Feature String:
http://www.w3.org/TR/SVG11/feature#Clip

User Agent Supports:
the ‘clipPath’ element and the ‘clip-path’ and ‘clip-rule’ properties

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicClip

User Agent Supports:
the ‘clipPath’ element and the ‘clip-path’ property

Feature String:
http://www.w3.org/TR/SVG11/feature#Mask

User Agent Supports:
the ‘mask’ element

Feature String:
http://www.w3.org/TR/SVG11/feature#Filter

User Agent Supports:
the ‘filter’, ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’, ‘feComposite’, ‘feConvolveMatrix’,
‘feDiffuseLighting’, ‘feDisplacementMap’, ‘feFlood’, ‘feGaussianBlur’, ‘feImage’, ‘feMerge’, ‘feMergeNode’,
‘feMorphology’, ‘feOffset’, ‘feSpecularLighting’, ‘feTile’, ‘feDistantLight’, ‘fePointLight’, ‘feSpotLight’,
‘feFuncR’, ‘feFuncG’, ‘feFuncB’ and ‘feFuncA’ elements

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicFilter

User Agent Supports:
the ‘filter’, ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’, ‘feComposite’, ‘feFlood’, ‘feGaussianBlur’,
‘feImage’, ‘feMerge’, ‘feMergeNode’, ‘feOffset’, ‘feTile’, ‘feFuncR’, ‘feFuncG’, ‘feFuncB’ and ‘feFuncA’ elements

Feature String:
http://www.w3.org/TR/SVG11/feature#DocumentEventsAttribute

User Agent Supports:
the ‘onunload’, ‘onabort’, ‘onerror’, ‘onresize’, ‘onscroll’ and ‘onzoom’ attributes



Feature String:
http://www.w3.org/TR/SVG11/feature#GraphicalEventsAttribute

User Agent Supports:
the ‘onfocusin’, ‘onfocusout’, ‘onactivate’, ‘onclick’, ‘onmousedown’, ‘onmouseup’, ‘onmouseover’,
‘onmousemove’, ‘onmouseout’ and ‘onload’ attributes

Feature String:
http://www.w3.org/TR/SVG11/feature#AnimationEventsAttribute

User Agent Supports:
the ‘onbegin’, ‘onend’, ‘onrepeat’ and ‘onload’ attributes

Feature String:
http://www.w3.org/TR/SVG11/feature#Cursor

User Agent Supports:
the ‘cursor’ element

Feature String:
http://www.w3.org/TR/SVG11/feature#Hyperlinking

User Agent Supports:
the ‘a’ element

Feature String:
http://www.w3.org/TR/SVG11/feature#XlinkAttribute

User Agent Supports:
the ‘xlink:type’, ‘xlink:href’, ‘xlink:role’, ‘xlink:arcrole’, ‘xlink:title’, ‘xlink:show’ and ‘xlink:actuate’ attributes

Feature String:
http://www.w3.org/TR/SVG11/feature#ExternalResourcesRequired

User Agent Supports:
the ‘externalResourcesRequired’ attribute

Feature String:
http://www.w3.org/TR/SVG11/feature#View

User Agent Supports:
the ‘view’ element

Feature String:
http://www.w3.org/TR/SVG11/feature#Script

User Agent Supports:
the ‘script’ element



Feature String:
http://www.w3.org/TR/SVG11/feature#Animation

User Agent Supports:
the ‘animate’, ‘set’, ‘animateMotion’, ‘animateTransform’, ‘animateColor’ and ‘mpath’ elements

Feature String:
http://www.w3.org/TR/SVG11/feature#Font

User Agent Supports:
the ‘font’, ‘font-face’, ‘glyph’, ‘missing-glyph’, ‘hkern’, ‘vkern’, ‘font-face-src’, ‘font-face-uri’, ‘font-face-format’
and ‘font-face-name’ elements

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicFont

User Agent Supports:
the ‘font’, ‘font-face’, ‘glyph’, ‘missing-glyph’, ‘hkern’, ‘font-face-src’ and ‘font-face-name’ elements

Feature String:
http://www.w3.org/TR/SVG11/feature#Extensibility

User Agent Supports:
the ‘foreignObject’ element

O.3 SVG 1.0 feature strings

All SVG 1.0 [SVG10] feature strings referring to language capabilities begin with "org.w3c.svg". All SVG 1.0 fea-
ture strings referring to SVG DOM capabilities begin with "org.w3c.dom.svg".

• The feature string "org.w3c.svg" indicates that the user agent supports at least one of the following (all of
which are described subsequently): "org.w3c.svg.static", "org.w3c.svg.animation", "org.w3c.svg.dynamic"
or "org.w3c.dom.svg". (Because the feature string "org.w3c.svg" can be ambiguous in some circumstances,
it is recommended that more specific feature strings be used.)

• The feature string "org.w3c.dom.svg" indicates that the user agent supports at least one of the following
(all of which are described subsequently): "org.w3c.dom.svg.static", "org.w3c.dom.svg.animation" or
"org.w3c.dom.svg.dynamic". (Because the feature string "org.w3c.dom.svg" can be ambiguous in some cir-
cumstances, it is recommended that more specific feature strings be used.)

• The feature string "org.w3c.svg.static" indicates the availability of all of the language capabilities defined in:
◦ Basic Data Types and Interfaces
◦ Document Structure
◦ Styling
◦ Coordinate Systems, Transformations and Units
◦ Paths
◦ Basic Shapes
◦ Text

http://www.w3.org/TR/2001/REC-SVG-20010904/


◦ Painting: Filling, Stroking and Marker Symbols
◦ Color
◦ Gradients and Patterns
◦ Clipping, Masking and Compositing
◦ Filter Effects
◦ Fonts
◦ The ‘switch’ element
◦ The ‘requiredFeatures’ attribute
◦ The ‘requiredExtensions’ attribute
◦ The ‘systemLanguage’ attribute

For SVG viewers, "org.w3c.svg.static" indicates that the viewer can process and render successfully all of
the language features listed above.

• The feature string "org.w3c.dom.svg.static" indicates the availability of all of the DOM interfaces and meth-
ods that correspond to the language features for "org.w3c.svg.static".

• The feature string "org.w3c.svg.animation" includes all of the language capabilities defined for
"org.w3c.svg.static" plus the availability of all of the language capabilities defined in Animation. For
SVG viewers running on media capable of rendering time-based material, such as displays,
"org.w3c.svg.animation" indicates that the viewer can process and render successfully all of the correspond-
ing language features.

• The feature string "org.w3c.dom.svg.animation" corresponds to the availability of DOM interfaces and
methods that correspond to the language features for "org.w3c.svg.animation".

• The feature string "org.w3c.svg.dynamic" includes all of the language capabilities defined for
"org.w3c.svg.animation" plus the availability of all of the language capabilities defined in Relationship with
DOM2 events, Linking and Interactivity and Scripting. For SVG viewers running on media capable of render-
ing time-based material, such as displays, "org.w3c.svg.dynamic" indicates that the viewer can process and
render successfully all of the corresponding language features.

• The feature string "org.w3c.dom.svg.dynamic" corresponds to the availability of DOM interfaces and meth-
ods that correspond to the language features for "org.w3c.svg.dynamic".

• The feature string "org.w3c.svg.all" corresponds to the availability of all of the language capabilities defined
in this specification.

• The feature string "org.w3c.dom.svg.all" corresponds to the availability of all of the DOM interfaces defined
in this specification.



Appendix P: Media Type Registration for image/
svg+xml

Contents

P.1 Introduction
P.2 Registration of media type image/svg+xml

This appendix is normative.

P.1 Introduction

This appendix registers a new MIME media type, "image/svg+xml" in conformance with BCP 13 and W3CRegMe-
dia.

P.2 Registration of media type image/svg+xml

Type name:
image

Subtype name:
svg+xml

Required parameters:
None.

Optional parameters:
charset

Same as application/xml media type, as specified in [RFC3023] or its successors.
Encoding considerations:

Same as for application/xml. See [RFC3023], section 3.2 or its successors.
Security considerations:

As with other XML types and as noted in [RFC3023] section 10, repeated expansion of maliciously construc-
ted XML entities can be used to consume large amounts of memory, which may cause XML processors in
constrained environments to fail.

Several SVG elements may cause arbitrary URIs to be referenced. In this case, the security issues of
[RFC3986], section 7, should be considered.

In common with HTML, SVG documents may reference external media such as images, audio, video,
style sheets, and scripting languages. Scripting languages are executable content. In this case, the security
considerations in the Media Type registrations for those formats shall apply.

In addition, because of the extensibility features for SVG and of XML in general, it is possible that "im-
age/svg+xml" may describe content that has security implications beyond those described here. However, if

http://www.ietf.org/rfc/rfc4288.txt
http://www.w3.org/2002/06/registering-mediatype.html
http://www.w3.org/2002/06/registering-mediatype.html


the processor follows only the normative semantics of the published specification, this content will be out-
side the SVG namespace and shall be ignored. Only in the case where the processor recognizes and processes
the additional content, or where further processing of that content is dispatched to other processors, would
security issues potentially arise. And in that case, they would fall outside the domain of this registration
document.

Interoperability considerations:
The published specification describes processing semantics that dictate behavior that must be followed when
dealing with, among other things, unrecognized elements and attributes, both in the SVG namespace and in
other namespaces.

Because SVG is extensible, conformant "image/svg+xml" processors must expect that content received
is well-formed XML, but it cannot be guaranteed that the content is valid to a particular DTD or Schema or
that the processor will recognize all of the elements and attributes in the document.

SVG has a published Test Suite and associated implementation report showing which implementations
passed which tests at the time of the report. This information is periodically updated as new tests are added
or as implementations improve.

Published specification:
This media type registration is extracted from Appendix P of the SVG 1.1 specification.

Applications that use this media type:
SVG is used by Web browsers, often in conjunction with HTML; by mobile phones and digital cameras, as a
format for interchange of graphical assets in desk top publishing, for industrial process visualization, display
signage, and many other applications which require scalable static or interactive graphical capability.

Additional information:

Magic number(s):
File extension(s):

svg
Note that the extension 'svgz' is used as an alias for 'svg.gz' [RFC1952], i.e. octet streams of type image/
svg+xml, subsequently compressed with gzip.

Macintosh file type code(s):
"svg " (all lowercase, with a space character as the fourth letter).
Note that the Macintosh file type code 'svgz' (all lowercase) is used as an alias for GZIP [RFC1952]
compressed "svg ", i.e. octet streams of type image/svg+xml, subsequently compressed with gzip.

Macintosh Universal Type Identifier code:
org.w3c.svg conforms to public.image and to public.xml

Windows Clipboard Name:
"SVG Image"

Fragment Identifiers
For documents labeled as application/svg+xml, the fragment identifier notation is either Shorthand
Pointers (formerly called barenames) or the SVG-specific SVG Views syntax; both described in the frag-
ment identifiers section of the SVG specification.

http://www.w3.org/TR/SVG11


Person & email address to contact for further information:
Chris Lilley, Doug Schepers (member-svg-media-type@w3.org).

Intended usage:
COMMON

Restrictions on usage:
None

Author:
The SVG specification is a work product of the World Wide Web Consortium's SVG Working Group.

Change controller:
The W3C has change control over this specification.



Appendix Q: Changes

This appendix is informative, not normative.

The only changes made to the document since the SVG 1.1 Second Edition Proposed Recommendation were the
following:

• Some additional wording in the CSS 2.0 reference in the References Appendix to indicate that future versions
of the SVG specification will reference CSS 2.1 and CSS Fonts Module Level 3.

• An update to the informative MathML reference from MathML 2.0 to MathML 3.0.

http://www.w3.org/TR/2011/PR-SVG11-20110609/

	Scalable Vector Graphics (SVG) 1.1 (Second Edition)
	W3C Recommendation 16 August 2011
	Abstract
	Status of this document
	Available languages

	Acknowledgments

	Table of Contents
	1 Introduction
	Contents
	1.1 About SVG
	1.2 SVG MIME type, file name extension and Macintosh file type
	1.3 SVG Namespace, Public Identifier and System Identifier
	1.4 Compatibility with Other Standards Efforts
	1.5 Terminology
	1.6 Definitions

	2 Concepts
	Contents
	2.1 Explaining the name: SVG
	Scalable
	Vector
	Graphics
	XML
	Namespace
	Stylable

	2.2 Important SVG concepts
	Graphical Objects
	Symbols
	Raster Effects
	Fonts
	Animation

	2.3 Options for using SVG in Web pages

	3 Rendering Model
	Contents
	3.1 Introduction
	3.2 The painters model
	3.3 Rendering Order
	3.4 How groups are rendered
	3.5 How elements are rendered
	3.6 Types of graphics elements
	3.6.1 Painting shapes and text
	3.6.2 Painting raster images

	3.7 Filtering painted regions
	3.8 Clipping, masking and object opacity
	3.9 Parent Compositing

	5 Document Structure
	Contents
	5.1 Defining an SVG document fragment: the ‘svg’ element
	5.1.1 Overview
	5.1.2 The ‘svg’ element

	5.2 Grouping: the ‘g’ element
	5.2.1 Overview
	5.2.2 The ‘g’ element

	5.3 Defining content for reuse, and the ‘defs’ element
	5.3.1 Overview
	5.3.2 The ‘defs’ element

	5.4 The ‘desc’ and ‘title’ elements
	5.5 The ‘symbol’ element
	5.6 The ‘use’ element
	5.7 The ‘image’ element
	5.8 Conditional processing
	5.8.1 Conditional processing overview
	5.8.2 The ‘switch’ element
	5.8.3 The ‘requiredFeatures’ attribute
	5.8.4 The ‘requiredExtensions’ attribute
	5.8.5 The ‘systemLanguage’ attribute
	5.8.6 Applicability of test attributes

	5.9 Specifying whether external resources are required for proper rendering
	5.10 Common attributes
	5.10.1 Attributes common to all elements: ‘id’ and ‘xml:base’
	5.10.2 The ‘xml:lang’ and ‘xml:space’ attributes

	5.11 DOM interfaces
	5.11.1 Interface SVGDocument
	5.11.2 Interface SVGSVGElement
	5.11.3 Interface SVGGElement
	5.11.4 Interface SVGDefsElement
	5.11.5 Interface SVGDescElement
	5.11.6 Interface SVGTitleElement
	5.11.7 Interface SVGSymbolElement
	5.11.8 Interface SVGUseElement
	5.11.9 Interface SVGElementInstance
	5.11.10 Interface SVGElementInstanceList
	5.11.11 Interface SVGImageElement
	5.11.12 Interface SVGSwitchElement
	5.11.13 Interface GetSVGDocument


	4 Basic Data Types and Interfaces
	Contents
	4.1 Syntax
	4.2 Basic data types
	4.3 Real number precision
	4.4 Recognized color keyword names
	4.5 Basic DOM interfaces
	4.5.1 Interface SVGElement
	4.5.2 Interface SVGAnimatedBoolean
	4.5.3 Interface SVGAnimatedString
	4.5.4 Interface SVGStringList
	4.5.5 Interface SVGAnimatedEnumeration
	4.5.6 Interface SVGAnimatedInteger
	4.5.7 Interface SVGNumber
	4.5.8 Interface SVGAnimatedNumber
	4.5.9 Interface SVGNumberList
	4.5.10 Interface SVGAnimatedNumberList
	4.5.11 Interface SVGLength
	4.5.12 Interface SVGAnimatedLength
	4.5.13 Interface SVGLengthList
	4.5.14 Interface SVGAnimatedLengthList
	4.5.15 Interface SVGAngle
	4.5.16 Interface SVGAnimatedAngle
	4.5.17 Interface SVGColor
	4.5.18 Interface SVGICCColor
	4.5.19 Interface SVGRect
	4.5.20 Interface SVGAnimatedRect
	4.5.21 Interface SVGUnitTypes
	4.5.22 Interface SVGStylable
	4.5.23 Interface SVGLocatable
	4.5.24 Interface SVGTransformable
	4.5.25 Interface SVGTests
	4.5.26 Interface SVGLangSpace
	4.5.27 Interface SVGExternalResourcesRequired
	4.5.28 Interface SVGFitToViewBox
	4.5.29 Interface SVGZoomAndPan
	4.5.30 Interface SVGViewSpec
	4.5.31 Interface SVGURIReference
	4.5.32 Interface SVGCSSRule
	4.5.33 Interface SVGRenderingIntent


	6 Styling
	Contents
	6.1 SVG's styling properties
	6.2 Usage scenarios for styling
	6.3 Alternative ways to specify styling properties
	6.4 Specifying properties using the presentation attributes
	6.5 Styling with XSL
	6.6 Styling with CSS
	6.7 Case sensitivity of property names and values
	6.8 Facilities from CSS and XSL used by SVG
	6.9 Referencing external style sheets
	6.10 The ‘style’ element
	6.11 The ‘class’ attribute
	6.12 The ‘style’ attribute
	6.13 Specifying the default style sheet language
	6.14 Property inheritance
	6.15 The scope/range of styles
	6.16 User agent style sheet
	6.17 Aural style sheets
	6.18 DOM interfaces
	6.18.1 Interface SVGStyleElement


	7 Coordinate Systems, Transformations and Units
	Contents
	7.1 Introduction
	7.2 The initial viewport
	7.3 The initial coordinate system
	7.4 Coordinate system transformations
	7.5 Nested transformations
	7.6 The ‘transform’ attribute
	7.7 The ‘viewBox’ attribute
	7.8 The ‘preserveAspectRatio’ attribute
	7.9 Establishing a new viewport
	7.10 Units
	7.11 Object bounding box units
	7.12 Intrinsic sizing properties of the viewport of SVG content
	7.13 Geographic coordinate systems
	7.14 The ‘svg:transform’ attribute
	7.15 DOM interfaces
	7.15.1 Interface SVGPoint
	7.15.2 Interface SVGPointList
	7.15.3 Interface SVGMatrix
	7.15.4 Interface SVGTransform
	7.15.5 Interface SVGTransformList
	7.15.6 Interface SVGAnimatedTransformList
	7.15.7 Interface SVGPreserveAspectRatio
	7.15.8 Interface SVGAnimatedPreserveAspectRatio


	8 Paths
	Contents
	8.1 Introduction
	8.2 The ‘path’ element
	8.3 Path data
	8.3.1 General information about path data
	8.3.2 The "moveto" commands
	8.3.3 The "closepath" command
	8.3.4 The "lineto" commands
	8.3.5 The curve commands
	8.3.6 The cubic Bézier curve commands
	8.3.7 The quadratic Bézier curve commands
	8.3.8 The elliptical arc curve commands
	8.3.9 The grammar for path data

	8.4 Distance along a path
	8.5 DOM interfaces
	8.5.1 Interface SVGPathSeg
	8.5.2 Interface SVGPathSegClosePath
	8.5.3 Interface SVGPathSegMovetoAbs
	8.5.4 Interface SVGPathSegMovetoRel
	8.5.5 Interface SVGPathSegLinetoAbs
	8.5.6 Interface SVGPathSegLinetoRel
	8.5.7 Interface SVGPathSegCurvetoCubicAbs
	8.5.8 Interface SVGPathSegCurvetoCubicRel
	8.5.9 Interface SVGPathSegCurvetoQuadraticAbs
	8.5.10 Interface SVGPathSegCurvetoQuadraticRel
	8.5.11 Interface SVGPathSegArcAbs
	8.5.12 Interface SVGPathSegArcRel
	8.5.13 Interface SVGPathSegLinetoHorizontalAbs
	8.5.14 Interface SVGPathSegLinetoHorizontalRel
	8.5.15 Interface SVGPathSegLinetoVerticalAbs
	8.5.16 Interface SVGPathSegLinetoVerticalRel
	8.5.17 Interface SVGPathSegCurvetoCubicSmoothAbs
	8.5.18 Interface SVGPathSegCurvetoCubicSmoothRel
	8.5.19 Interface SVGPathSegCurvetoQuadraticSmoothAbs
	8.5.20 Interface SVGPathSegCurvetoQuadraticSmoothRel
	8.5.21 Interface SVGPathSegList
	8.5.22 Interface SVGAnimatedPathData
	8.5.23 Interface SVGPathElement


	9 Basic Shapes
	Contents
	9.1 Introduction
	9.2 The ‘rect’ element
	9.3 The ‘circle’ element
	9.4 The ‘ellipse’ element
	9.5 The ‘line’ element
	9.6 The ‘polyline’ element
	9.7 The ‘polygon’ element
	9.7.1 The grammar for points specifications in ‘polyline’ and ‘polygon’ elements

	9.8 DOM interfaces
	9.8.1 Interface SVGRectElement
	9.8.2 Interface SVGCircleElement
	9.8.3 Interface SVGEllipseElement
	9.8.4 Interface SVGLineElement
	9.8.5 Interface SVGAnimatedPoints
	9.8.6 Interface SVGPolylineElement
	9.8.7 Interface SVGPolygonElement


	10 Text
	Contents
	10.1 Introduction
	10.2 Characters and their corresponding glyphs
	10.3 Fonts, font tables and baselines
	10.4 The ‘text’ element
	10.5 The ‘tspan’ element
	10.6 The ‘tref’ element
	10.7 Text layout
	10.7.1 Text layout introduction
	10.7.2 Setting the inline-progression-direction
	10.7.3 Glyph orientation within a text run
	10.7.4 Relationship with bidirectionality

	10.8 Text rendering order
	10.9 Alignment properties
	10.9.1 Text alignment properties
	10.9.2 Baseline alignment properties

	10.10 Font selection properties
	10.11 Spacing properties
	10.12 Text decoration
	10.13 Text on a path
	10.13.1 Introduction to text on a path
	10.13.2 The ‘textPath’ element
	10.13.3 Text on a path layout rules

	10.14 Alternate glyphs
	10.14.1 The ‘altGlyph’ element
	10.14.2 The ‘altGlyphDef’, ‘altGlyphItem’ and ‘glyphRef’ elements

	10.15 White space handling
	10.16 Text selection and clipboard operations
	10.17 DOM interfaces
	10.17.1 Interface SVGTextContentElement
	10.17.2 Interface SVGTextPositioningElement
	10.17.3 Interface SVGTextElement
	10.17.4 Interface SVGTSpanElement
	10.17.5 Interface SVGTRefElement
	10.17.6 Interface SVGTextPathElement
	10.17.7 Interface SVGAltGlyphElement
	10.17.8 Interface SVGAltGlyphDefElement
	10.17.9 Interface SVGAltGlyphItemElement
	10.17.10 Interface SVGGlyphRefElement


	11 Painting: Filling, Stroking and Marker Symbols
	Contents
	11.1 Introduction
	11.2 Specifying paint
	11.3 Fill Properties
	11.4 Stroke Properties
	11.5 Controlling visibility
	11.6 Markers
	11.6.1 Introduction
	11.6.2 The ‘marker’ element
	11.6.3 Marker properties
	11.6.4 Details on how markers are rendered

	11.7 Rendering properties
	11.7.1 Color interpolation properties: ‘color-interpolation’ and ‘color-interpolation-filters’
	11.7.2 The ‘color-rendering’ property
	11.7.3 The ‘shape-rendering’ property
	11.7.4 The ‘text-rendering’ property
	11.7.5 The ‘image-rendering’ property

	11.8 Inheritance of painting properties
	11.9 DOM interfaces
	11.9.1 Interface SVGPaint
	11.9.2 Interface SVGMarkerElement


	12 Color
	Contents
	12.1 Introduction
	12.2 The ‘color’ property
	12.3 Color profile descriptions
	12.3.1 Overview of color profile descriptions
	12.3.2 Alternative ways of defining a color profile description
	12.3.3 The ‘color-profile’ element
	12.3.4 The CSS @color-profile rule
	12.3.5 The ‘color-profile’ property

	12.4 DOM interfaces
	12.4.1 Interface SVGColorProfileElement
	12.4.2 Interface SVGColorProfileRule


	13 Gradients and Patterns
	Contents
	13.1 Introduction
	13.2 Gradients
	13.2.1 Introduction
	13.2.2 Linear gradients
	13.2.3 Radial gradients
	13.2.4 Gradient stops

	13.3 Patterns
	13.4 DOM interfaces
	13.4.1 Interface SVGGradientElement
	13.4.2 Interface SVGLinearGradientElement
	13.4.3 Interface SVGRadialGradientElement
	13.4.4 Interface SVGStopElement
	13.4.5 Interface SVGPatternElement


	14 Clipping, Masking and Compositing
	Contents
	14.1 Introduction
	14.2 Simple alpha compositing
	14.3 Clipping paths
	14.3.1 Introduction
	14.3.2 The initial clipping path
	14.3.3 The ‘overflow’ and ‘clip’ properties
	14.3.4 Clip to viewport vs. clip to ‘viewBox’
	14.3.5 Establishing a new clipping path: the ‘clipPath’ element
	14.3.6 Clipping paths, geometry, and pointer events

	14.4 Masking
	14.5 Object and group opacity: the ‘opacity’ property
	14.6 DOM interfaces
	14.6.1 Interface SVGClipPathElement
	14.6.2 Interface SVGMaskElement


	15 Filter Effects
	Contents
	15.1 Introduction
	15.2 An example
	15.3 The ‘filter’ element
	15.4 The ‘filter’ property
	15.5 Filter effects region
	15.6 Accessing the background image
	15.7 Filter primitives overview
	15.7.1 Overview
	15.7.2 Common attributes
	15.7.3 Filter primitive subregion

	15.8 Light source elements and properties
	15.8.1 Introduction
	15.8.2 Light source ‘feDistantLight’
	15.8.3 Light source ‘fePointLight’
	15.8.4 Light source ‘feSpotLight’
	15.8.5 The ‘lighting-color’ property

	15.9 Filter primitive ‘feBlend’
	15.10 Filter primitive ‘feColorMatrix’
	15.11 Filter primitive ‘feComponentTransfer’
	15.12 Filter primitive ‘feComposite’
	15.13 Filter primitive ‘feConvolveMatrix’
	15.14 Filter primitive ‘feDiffuseLighting’
	15.15 Filter primitive ‘feDisplacementMap’
	15.16 Filter primitive ‘feFlood’
	15.17 Filter primitive ‘feGaussianBlur’
	15.18 Filter primitive ‘feImage’
	15.19 Filter primitive ‘feMerge’
	15.20 Filter primitive ‘feMorphology’
	15.21 Filter primitive ‘feOffset’
	15.22 Filter primitive ‘feSpecularLighting’
	15.23 Filter primitive ‘feTile’
	15.24 Filter primitive ‘feTurbulence’
	15.25 DOM interfaces
	15.25.1 Interface SVGFilterElement
	15.25.2 Interface SVGFilterPrimitiveStandardAttributes
	15.25.3 Interface SVGFEBlendElement
	15.25.4 Interface SVGFEColorMatrixElement
	15.25.5 Interface SVGFEComponentTransferElement
	15.25.6 Interface SVGComponentTransferFunctionElement
	15.25.7 Interface SVGFEFuncRElement
	15.25.8 Interface SVGFEFuncGElement
	15.25.9 Interface SVGFEFuncBElement
	15.25.10 Interface SVGFEFuncAElement
	15.25.11 Interface SVGFECompositeElement
	15.25.12 Interface SVGFEConvolveMatrixElement
	15.25.13 Interface SVGFEDiffuseLightingElement
	15.25.14 Interface SVGFEDistantLightElement
	15.25.15 Interface SVGFEPointLightElement
	15.25.16 Interface SVGFESpotLightElement
	15.25.17 Interface SVGFEDisplacementMapElement
	15.25.18 Interface SVGFEFloodElement
	15.25.19 Interface SVGFEGaussianBlurElement
	15.25.20 Interface SVGFEImageElement
	15.25.21 Interface SVGFEMergeElement
	15.25.22 Interface SVGFEMergeNodeElement
	15.25.23 Interface SVGFEMorphologyElement
	15.25.24 Interface SVGFEOffsetElement
	15.25.25 Interface SVGFESpecularLightingElement
	15.25.26 Interface SVGFETileElement
	15.25.27 Interface SVGFETurbulenceElement


	16 Interactivity
	Contents
	16.1 Introduction
	16.2 Complete list of supported events
	16.3 User interface events
	16.4 Pointer events
	16.5 Hit-testing and processing order for user interface events
	16.5.1 Hit-testing
	16.5.2 Event processing

	16.6 The ‘pointer-events’ property
	16.7 Magnification and panning
	16.8 Cursors
	16.8.1 Introduction to cursors
	16.8.2 The ‘cursor’ property
	16.8.3 The ‘cursor’ element

	16.9 DOM interfaces
	16.9.1 Interface SVGCursorElement


	17 Linking
	Contents
	17.1 References
	17.1.1 Overview
	17.1.2 IRIs and URIs
	17.1.3 Syntactic forms: IRI and FuncIRI
	17.1.4 Processing of IRI references
	17.1.5 IRI reference attributes

	17.2 Links out of SVG content: the ‘a’ element
	17.3 Linking into SVG content: IRI fragments and SVG views
	17.3.1 Introduction: IRI fragments and SVG views
	17.3.2 SVG fragment identifiers
	17.3.3 Predefined views: the ‘view’ element
	17.3.4 Highlighting views

	17.4 DOM interfaces
	17.4.1 Interface SVGAElement
	17.4.2 Interface SVGViewElement


	18 Scripting
	Contents
	18.1 Specifying the scripting language
	18.1.1 Specifying the default scripting language
	18.1.2 Local declaration of a scripting language

	18.2 The ‘script’ element
	18.3 Event handling
	18.4 Event attributes
	18.4.1 Event attribute for the SVGLoad event
	18.4.2 Event attributes on graphics and container elements
	18.4.3 Document-level event attributes
	18.4.4 Animation event attributes

	18.5 DOM interfaces
	18.5.1 Interface SVGScriptElement
	18.5.2 Interface SVGZoomEvent


	19 Animation
	Contents
	19.1 Introduction
	19.2 Animation elements
	19.2.1 Overview
	19.2.2 Relationship to SMIL Animation
	19.2.3 Animation elements example
	19.2.4 Attributes to identify the target element for an animation
	19.2.5 Attributes to identify the target attribute or property for an animation
	19.2.6 Animation with namespaces
	19.2.7 Paced animation and complex types
	19.2.8 Attributes to control the timing of the animation
	19.2.8.1 Clock values

	19.2.9 Attributes that define animation values over time
	19.2.10 Attributes that control whether animations are additive
	19.2.11 Inheritance
	19.2.12 The ‘animate’ element
	19.2.13 The ‘set’ element
	19.2.14 The ‘animateMotion’ element
	19.2.15 The ‘animateColor’ element
	19.2.16 The ‘animateTransform’ element
	19.2.17 Elements, attributes and properties that can be animated

	19.3 Animation using the SVG DOM
	19.4 DOM interfaces
	19.4.1 Interface ElementTimeControl
	19.4.2 Interface TimeEvent
	19.4.3 Interface SVGAnimationElement
	19.4.4 Interface SVGAnimateElement
	19.4.5 Interface SVGSetElement
	19.4.6 Interface SVGAnimateMotionElement
	19.4.7 Interface SVGMPathElement
	19.4.8 Interface SVGAnimateColorElement
	19.4.9 Interface SVGAnimateTransformElement


	20 Fonts
	Contents
	20.1 Introduction
	20.2 Overview of SVG fonts
	20.3 The ‘font’ element
	20.4 The ‘glyph’ element
	20.5 The ‘missing-glyph’ element
	20.6 Glyph selection rules
	20.7 The ‘hkern’ and ‘vkern’ elements
	20.8 Describing a font
	20.8.1 Overview of font descriptions
	20.8.2 Alternative ways for providing a font description
	20.8.3 The ‘font-face’ element
	20.8.4 The ‘font-face-src’ element
	20.8.5 The ‘font-face-uri’ and ‘font-face-format’ elements
	20.8.6 The ‘font-face-name’ element

	20.9 DOM interfaces
	20.9.1 Interface SVGFontElement
	20.9.2 Interface SVGGlyphElement
	20.9.3 Interface SVGMissingGlyphElement
	20.9.4 Interface SVGHKernElement
	20.9.5 Interface SVGVKernElement
	20.9.6 Interface SVGFontFaceElement
	20.9.7 Interface SVGFontFaceSrcElement
	20.9.8 Interface SVGFontFaceUriElement
	20.9.9 Interface SVGFontFaceFormatElement
	20.9.10 Interface SVGFontFaceNameElement


	21 Metadata
	Contents
	21.1 Introduction
	21.2 The ‘metadata’ element
	21.3 An example
	21.4 DOM interfaces
	21.4.1 Interface SVGMetadataElement


	22 Backwards Compatibility
	23 Extensibility
	Contents
	23.1 Foreign namespaces and private data
	23.2 Embedding foreign object types
	23.3 The ‘foreignObject’ element
	23.4 An example
	23.5 Adding private elements and attributes to the DTD
	23.6 DOM interfaces
	23.6.1 Interface SVGForeignObjectElement


	Appendix A: Document Type Definition
	Contents
	A.1 Introduction
	A.2 Modularization
	A.2.1 Element and attribute collections
	A.2.2 Profiling the SVG specification
	A.2.3 Practical considerations

	A.3 SVG 1.1 module definitions and DTD implementations
	A.3.1 Modular Framework Module
	A.3.2 Datatypes Module
	A.3.3 Qualified Name Module
	A.3.4 Core Attribute Module
	A.3.5 Container Attribute Module
	A.3.6 Viewport Attribute Module
	A.3.7 Paint Attribute Module
	A.3.8 Basic Paint Attribute Module
	A.3.9 Paint Opacity Attribute Module
	A.3.10 Graphics Attribute Module
	A.3.11 Basic Graphics Attribute Module
	A.3.12 Document Events Attribute Module
	A.3.13 Graphical Element Events Attribute Module
	A.3.14 Animation Events Attribute Module
	A.3.15 XLink Attribute Module
	A.3.16 External Resources Attribute Module
	A.3.17 Structure Module
	A.3.18 Basic Structure Module
	A.3.19 Conditional Processing Module
	A.3.20 Image Module
	A.3.21 Style Module
	A.3.22 Shape Module
	A.3.23 Text Module
	A.3.24 Basic Text Module
	A.3.25 Marker Module
	A.3.26 Color Profile Module
	A.3.27 Gradient Module
	A.3.28 Pattern Module
	A.3.29 Clip Module
	A.3.30 Basic Clip Module
	A.3.31 Mask Module
	A.3.32 Filter Module
	A.3.33 Basic Filter Module
	A.3.34 Cursor Module
	A.3.35 Hyperlinking Module
	A.3.36 View Module
	A.3.37 Scripting Module
	A.3.38 Animation Module
	A.3.39 Font Module
	A.3.40 Basic Font Module
	A.3.41 Extensibility Module

	A.4 SVG 1.1 Document Type Definition
	A.4.1 SVG 1.1 DTD Driver
	A.4.2 SVG 1.1 Document Model
	A.4.3 SVG 1.1 Attribute Collection


	Appendix B: SVG Document Object Model (DOM)
	Contents
	B.1 SVG DOM overview
	B.1.1 SVG DOM object initialization

	B.2 Elements in the SVG DOM
	B.3 Naming conventions
	B.4 Exception SVGException
	B.5 Feature strings for the hasFeature method call
	B.6 Relationship with DOM Level 2 Events
	B.7 Relationship with DOM Level 2 CSS
	B.7.1 Introduction
	B.7.2 User agents that do not support styling with CSS
	B.7.3 User agents that support styling with CSS
	B.7.4 Extended interfaces

	B.8 Read only nodes in the DOM
	B.9 Invalid values

	Appendix C: IDL Definitions
	Appendix D: Java Language Binding
	Contents
	D.1 The Java language binding
	D.2 Using SVG with the Java language

	Appendix E: ECMAScript Language Binding
	Contents
	E.1 Exceptions
	E.2 Constants
	E.3 Types
	E.4 Objects

	Appendix F: Implementation Requirements
	Contents
	F.1 Introduction
	F.2 Error processing
	F.3 Version control
	F.4 Clamping values which are restricted to a particular range
	F.5 ‘path’ element implementation notes
	F.6 Elliptical arc implementation notes
	F.6.1 Elliptical arc syntax
	F.6.2 Out-of-range parameters
	F.6.3 Parameterization alternatives
	F.6.4 Conversion from center to endpoint parameterization
	F.6.5 Conversion from endpoint to center parameterization
	F.6.6 Correction of out-of-range radii

	F.7 Text selection implementation notes
	F.8 Printing implementation notes

	Appendix G: Conformance Criteria
	Contents
	G.1 Introduction
	G.2 Conforming SVG Document Fragments
	G.3 Conforming SVG Stand-Alone Files
	G.4 Conforming SVG Generators
	G.5 Conforming SVG Servers
	G.6 Conforming SVG DOM Subtree
	G.7 Conforming SVG Interpreters
	G.8 Conforming SVG Viewers

	Appendix H: Accessibility Support
	Contents
	H.1 WAI Accessibility Guidelines
	H.2 SVG Content Accessibility Guidelines

	Appendix I: Internationalization Support
	Contents
	I.1 Introduction
	I.2 Internationalization and SVG
	I.3 SVG Internationalization Guidelines

	Appendix J: Minimizing SVG File Sizes
	Appendix K: References
	Contents
	K.1 Normative references
	K.2 Informative references

	Appendix L: Element Index
	Appendix M: Attribute Index
	Contents
	M.1 Regular attributes
	M.2 Presentation attributes

	Appendix N: Property Index
	Appendix O: Feature Strings
	Contents
	O.1 Introduction
	O.2 SVG 1.1 feature strings
	O.3 SVG 1.0 feature strings

	Appendix P: Media Type Registration for image/svg+xml
	Contents
	P.1 Introduction
	P.2 Registration of media type image/svg+xml

	Appendix Q: Changes

