
Document Object Model (DOM) Level 3 Load and Save
Specification

Version 1.0

W3C Working Draft 19 June 2003
This version:

http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030619
Latest version:

http://www.w3.org/TR/DOM-Level-3-LS
Previous version:

http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030226

Editors:
Johnny Stenback, Netscape
Andy Heninger, IBM (until March 2001)

This document is also available in these non-normative formats: XML file, plain text, PostScript file, PDF
file, single HTML file, and ZIP file.

Copyright ©2003 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Load and Save Level 3, a platform- and
language-neutral interface that allows programs and scripts to dynamically load the content of an XML
document into a DOM document and serialize a DOM document into an XML document; DOM
documents being defined in [DOM Level 2 Core] or newer, and XML documents being defined in [XML
1.0] or newer.

Status of this document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. The latest status of this document series is maintained at the W3C.

1

Document Object Model (DOM) Level 3 Load and Save Specification

http://www.w3.org/
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030619
http://www.w3.org/TR/DOM-Level-3-LS
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030226
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030619/xml-source.xml
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030619/DOM3-LS.txt
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030619/DOM3-LS.ps
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030619/DOM3-LS.pdf
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030619/DOM3-LS.pdf
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030619/DOM3-LS.html
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030619/DOM3-LS.zip
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software

This document contains the Document Object Model Level 3 Load and Save specification and is a Last
Call Working Draft for review by W3C members and other interested parties. The review period for this
document ends on 31 July 2003. Comments are to be sent to the public mailing list www-dom@w3.org.
An archive is available at http://lists.w3.org/Archives/Public/www-dom/.

It is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in
progress". This is work in progress and does not imply endorsement by W3C.

Comments on this document are invited and are to be sent to the public mailing list www-dom@w3.org.
An archive is available at http://lists.w3.org/Archives/Public/www-dom/.

This document has been produced as part of the W3C DOM Activity. The authors of this document are
the DOM WG members.

Patent disclosures relevant to this specification may be found on the Working Group’s patent disclosure
page.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 3Expanded Table of Contents
.............. 5W3C Copyright Notices and Licenses

............. 91. Document Object Model Load and Save

................ 39Appendix A: IDL Definitions

.............. 43Appendix B: Java Language Binding

............ 49Appendix C: ECMAScript Language Binding

............... 53Appendix D: Acknowledgements

.................... 55Glossary

.................... 57References

..................... 61Index

2

Table of contents

http://www.w3.org/Consortium/Process-20010719/tr.html#last-call
http://www.w3.org/Consortium/Process-20010719/tr.html#last-call
http://lists.w3.org/Archives/Public/www-dom/
http://lists.w3.org/Archives/Public/www-dom/
http://www.w3.org/DOM/Activity.html
http://www.w3.org/2002/07/08-IPR-statements.html
http://www.w3.org/2002/07/08-IPR-statements.html
http://www.w3.org/TR/

Expanded Table of Contents
................ 3Expanded Table of Contents
.............. 5W3C Copyright Notices and Licenses
.......... 5W3C® Document Copyright Notice and License
........... 6W3C® Software Copyright Notice and License
............... 7W3C® Short Software Notice

............. 91 Document Object Model Load and Save

............... 91.1 Overview of the Interfaces

.................. 91.2 Basic types

............. 91.2.1 The DOMInputStream type

............ 101.2.2 The DOMOutputStream type

.............. 101.2.3 The DOMReader type

.............. 101.2.4 The DOMWriter type

............... 111.3 Fundamental interfaces

............... 351.4 Convenience Interfaces

................ 39Appendix A: IDL Definitions

.............. 43Appendix B: Java Language Binding

............ 49Appendix C: ECMAScript Language Binding

............... 53Appendix D: Acknowledgements

................ 53D.1 Production Systems

.................... 55Glossary

.................... 57References

................ 571 Normative references

................ 592 Informative references

..................... 61Index

3

Expanded Table of Contents

4

Expanded Table of Contents

W3C Copyright Notices and Licenses
Copyright © 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

This document is published under the W3C® Document Copyright Notice and License [p.5] . The
bindings within this document are published under the W3C® Software Copyright Notice and License
[p.6] . The software license requires "Notice of any changes or modifications to the W3C files, including
the date changes were made." Consequently, modified versions of the DOM bindings must document that
they do not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no
longer be ’w3c.org’; in the case of the Java language binding, the package names can no longer be in the
’org.w3c’ package.

W3C ® Document Copyright Notice and License
Note: This section is a copy of the W3C® Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231.

Copyright © 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

Public documents on the W3C site are provided by the copyright holders under the following license. By
using and/or copying this document, or the W3C document from which this statement is linked, you (the
licensee) agree that you have read, understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the W3C document from which this
statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided
that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice (hypertext is

preferred, but a textual representation is permitted) of the form: "Copyright © [$date-of-document]
World Wide Web Consortium, (Massachusetts Institute of Technology, European Research
Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231"

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those

5

W3C Copyright Notices and Licenses

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/Consortium/Legal/IPR-FAQ

requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C ® Software Copyright Notice and License
Note: This section is a copy of the W3C® Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Copyright © 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

This work (and included software, documentation such as READMEs, or other related items) is being
provided by the copyright holders under the following license. By obtaining, using and/or copying this
work, you (the licensee) agree that you have read, understood, and will comply with the following terms
and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without
modification, for any purpose and without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the software and documentation or portions thereof, including modifications:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the

W3C® Short Software Notice [p.7] should be included (hypertext is preferred, text is permitted)
within the body of any redistributed or derivative code.

3. Notice of any changes or modifications to the files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

6

W3C® Software Copyright Notice and License

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

W3C ® Short Software Notice
Note: This section is a copy of the W3C® Short Software Notice and could be found at
http://www.w3.org/Consortium/Legal/2002/copyright-software-short-notice-20021231

Copyright © 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of Technology,
European Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.
This work is distributed under the W3C® Software License [1] in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.

[1] http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

7

W3C® Short Software Notice

http://www.w3.org/Consortium/Legal/2002/copyright-software-short-notice-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/

8

W3C® Short Software Notice

1. Document Object Model Load and Save
Editors:

Johnny Stenback, Netscape
Andy Heninger, IBM (until March 2001)

This section defines a set of interfaces for loading and saving document objects as defined in [DOM Level
2 Core] or newer. The functionality specified in this section (the Load and Save functionality) is sufficient
to allow software developers and web script authors to load and save XML content inside conforming
products. The DOM Load and Save API [p.55] also allows filtering of XML content using only DOM API
calls; access and manipulation of the Document is defined in [DOM Level 2 Core] or newer.

The proposal for loading is influenced by the Java APIs for XML Processing [JAXP] and by SAX2
[SAX].

1.1 Overview of the Interfaces
The list of interfaces involved with the Loading and Saving XML documents is:

DOMImplementationLS [p.11] -- A new DOMImplementation interface that provides the
factory methods for creating the objects required for loading and saving.
DOMParser [p.13] -- A parser interface.
DOMInput [p.20] -- Encapsulate information about the XML document to be loaded.
DOMResourceResolver [p.22] -- During loading, provides a way for applications to redirect
references to external entities.
DOMParserFilter [p.23] -- Provide the ability to examine and optionally remove Element nodes
as they are being processed during the parsing of a document.
DOMSerializer [p.27] -- An interface for writing out or serializing DOM documents.
DOMOutput [p.33] -- Encapsulate information about the XML document to be serialized.
DOMSerializerFilter [p.34] -- Provide the ability to examine and optionally remove nodes as
they are being processed during the serialization of a document.
DocumentLS [p.35] -- Provides a client or browser style interface for loading and saving.
ElementLS [p.38] -- Provides a user convenient mechanism by which the children of an element
can be serialized to a string, or replaced by the result of parsing a provided string.

1.2 Basic types
To ensure interoperability, this specification specifies the following basic types used in various DOM
modules. Even though the DOM uses the basic types in the interfaces, bindings may use different types
and normative bindings are only given for Java and ECMAScript in this specification.

9

1. Document Object Model Load and Save

1.2.1 The DOMInputStream type

This type is used to represent a sequence of input bytes.

Type Definition DOMInputStream

A DOMInputStream [p.10] represents a reference to a byte stream source of an XML input.
IDL Definition

typedef Object DOMInputStream;

Note: For Java, DOMInputStream [p.10] is bound to the java.io.InputStream type. For
ECMAScript, DOMInputStream is bound to Object.

1.2.2 The DOMOutputStream type

This type is used to represent a sequence of output bytes.

Type Definition DOMOutputStream

A DOMOutputStream [p.10] represents a byte stream destination for the XML output.
IDL Definition

typedef Object DOMOutputStream;

Note: For Java, DOMOutputStream [p.10] is bound to the java.io.OutputStream type. For
ECMAScript, DOMOutputStream is bound to Object.

1.2.3 The DOMReader type

This type is used to represent a sequence of input characters in 16-bit units [p.55] . The encoding used for
the characters is UTF-16, as defined in [Unicode] and Amendment 1 of [ISO/IEC 10646]).

Type Definition DOMReader

A DOMReader [p.10] represents a character stream for the XML input.
IDL Definition

typedef Object DOMReader;

Note: For Java, DOMReader [p.10] is bound to the java.io.Reader type. For ECMAScript,
DOMReader is NOT bound, and therefore as no recommended meaning in ECMAScript.

1.2.4 The DOMWriter type

This type is used to represent a sequence of output characters in 16-bit units [p.55] . The encoding used
for the characters is UTF-16, as defined in [Unicode] and Amendment 1 of [ISO/IEC 10646]).

10

1.2.1 The DOMInputStream type

Type Definition DOMWriter

A DOMWriter [p.11] represents a character stream for the XML input.
IDL Definition

typedef Object DOMWriter;

Note: For Java, DOMWriter [p.11] is bound to the java.io.Writer type. For ECMAScript,
DOMWriter is NOT bound, and therefore as no recommended meaning in ECMAScript.

1.3 Fundamental interfaces
The interface within this section is considered fundamental, and must be fully implemented by all
conforming implementations of the DOM Load and Save module.

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "LS" (or "LS-Async") and "3.0"
(respectively) to determine whether or not these interfaces are supported by the implementation. In order
to fully support them, an implementation must also support the "Core" feature defined in [DOM Level 2
Core].

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "LS-Async" and "3.0" (respectively) to
determine whether or not the asynchronous mode is supported by the implementation. In order to fully
support the asynchronous mode, an implementation must also support the "LS" feature defined in this
section.

For additional information about conformance, please see the DOM Level 3 Core specification [DOM
Level 3 Core].

Interface DOMImplementationLS

DOMImplementationLS contains the factory methods for creating Load and Save objects.

The expectation is that an instance of the DOMImplementationLS interface can be obtained by
using binding-specific casting methods on an instance of the DOMImplementation interface or, if
the Document supports the feature "Core" version "3.0" defined in [DOM Level 3 Core], by
using the method DOMImplementation.getFeature with parameter values "LS" (or
"LS-Async") and "3.0" (respectively).
IDL Definition

interface DOMImplementationLS {

 // DOMImplementationLSMode
 const unsigned short MODE_SYNCHRONOUS = 1;
 const unsigned short MODE_ASYNCHRONOUS = 2;

 DOMParser createDOMParser(in unsigned short mode,
 in DOMString schemaType)

11

1.3 Fundamental interfaces

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/introduction.html#ID-Conformance

 raises(DOMException);
 DOMSerializer createDOMSerializer();
 DOMInput createDOMInput();
};

Definition group DOMImplementationLSMode

Integer parser mode constants.
Defined Constants

MODE_ASYNCHRONOUS
Create an asynchronous DOMParser [p.13] .

MODE_SYNCHRONOUS
Create a synchronous DOMParser [p.13] .

Methods
createDOMInput

Create a new empty input source.
Return Value

DOMInput [p.20] The newly created input object.

No Parameters
No Exceptions

createDOMParser
Create a new DOMParser [p.13] . The newly constructed parser may then be configured
by means of its DOMConfiguration object, and used to parse documents by means of
its parse method.
Parameters
mode of type unsigned short

The mode argument is either MODE_SYNCHRONOUS or MODE_ASYNCHRONOUS, if
mode is MODE_SYNCHRONOUS then the DOMParser [p.13] that is created will
operate in synchronous mode, if it’s MODE_ASYNCHRONOUS then the DOMParser
that is created will operate in asynchronous mode.

schemaType of type DOMString
An absolute URI representing the type of the schema [p.55] language used during the
load of a Document using the newly created DOMParser [p.13] . Note that no
lexical checking is done on the absolute URI. In order to create a DOMParser for any
kind of schema types (i.e. the DOMParser will be free to use any schema found), use
the value null.

Note: For W3C XML Schema [XML Schema Part 1], applications must use the value
"http://www.w3.org/2001/XMLSchema". For XML DTD [XML 1.0],
applications must use the value "http://www.w3.org/TR/REC-xml". Other
Schema languages are outside the scope of the W3C and therefore should recommend
an absolute URI in order to use this method.

Return Value

12

1.3 Fundamental interfaces

DOMParser
[p.13]

The newly created DOMParser object. This DOMParser is either
synchronous or asynchronous depending on the value of the mode
argument.

Note: By default, the newly created DOMParser does not contain a
DOMErrorHandler, i.e. the value of the "error-handler"
configuration parameter is null. However, implementations may
provide a default error handler at creation time. In that case, the initial
value of the "error-handler" configuration parameter on the
new created DOMParser contains a reference to the default error
handler.

Exceptions

DOMException NOT_SUPPORTED_ERR: Raised if the requested mode or
schema type is not supported.

createDOMSerializer
Create a new DOMSerializer [p.27] object.
Return Value

DOMSerializer
[p.27]

The newly created DOMSerializer object.

Note: By default, the newly created DOMSerializer has no
DOMErrorHandler, i.e. the value of the
"error-handler" configuration parameter is null.
However, implementations may provide a default error handler
at creation time. In that case, the initial value of the
"error-handler" configuration parameter on the new
created DOMSerializer contains a reference to the default
error handler.

No Parameters
No Exceptions

Interface DOMParser

An interface to an object that is able to build, or augment, a DOM tree from various input sources.

DOMParser provides an API for parsing XML and building the corresponding DOM document
structure. A DOMParser instance can be obtained by invoking the
DOMImplementationLS.createDOMParser() [p.12] method.

As specified in [DOM Level 3 Core], when a document is first made available via the DOMParser:
there is only one Text node for each block of text. The Text nodes are in "normal" form: only
structure (e.g. elements, comments, processing instructions, CDATA sections, and entity
references) separates Text nodes, i.e., there are neither adjacent nor empty Text nodes.

13

1.3 Fundamental interfaces

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-error-handler

it is expected that the value and nodeValue attributes of an Attr node initially return the
XML 1.0 normalized value. However, if the parameters "validate-if-schema" and
"datatype-normalization" are set to true, depending on the attribute normalization used, the
attribute values may differ from the ones obtained by the XML 1.0 attribute normalization. If
the parameters data-type-normalization is set to false, the XML 1.0 attribute
normalization is guaranteed to occur, and if the attributes list does not contain namespace
declarations, the attributes attribute on Element node represents the property
[attributes] defined in [XML Information set].

Asynchronous DOMParser objects are expected to also implement the events::EventTarget
interface so that event listeners can be registered on asynchronous DOMParser objects.

Events supported by asynchronous DOMParser objects are:
load

The DOMParser finishes to load the document. See also the definition of the LSLoadEvent
[p.26] interface.

progress
The DOMParser signals a progress as a document is parsed. See also the definition of the
LSProgressEvent [p.26] interface.

Note: All events defined in this specification use the namespace URI
"http://www.w3.org/2002/DOMLS".

While parsing an input source, errors are reported to the application through the error handler
(DOMParser.config [p.16] ’s "error-handler" parameter). This specification does in no way try
to define all possible errors that can occur while parsing XML, or any other markup, but some
common error cases are defined. The types (DOMError.type) of errors and warnings defined by
this specification are:
"unsupported-media-type" [fatal]

Raised if the configuration parameter "supported-media-types-only [p.17] " is set to true and
an unsupported media type is encountered.

"unsupported-encoding" [fatal]
Raised if an unsupported encoding is encountered.

"doctype-not-allowed" [fatal]
Raised if the configuration parameter "disallow-doctype [p.16] " is set to true and a doctype is
encountered.

"unknown-character-denormalization" [fatal]
Raised if the configuration parameter "ignore-unknown-character-denormalizations [p.17] " is
set to false and a character is encountered for which the processor cannot determine the
normalization properties.

"unbound-namespace-in-entity" [warning]
Raised if the configuration parameter "entities" is set to true and an unbound namespace
prefix is encounterd in an entity declaration.

"pi-base-uri-not-preserved" [warning]
Raised if a processing instruction is encoutered in a location where the base URI of the
processing instruction can not be preserved.
One example of a case where this warning will be raised is if the configuration parameter

14

1.3 Fundamental interfaces

http://www.w3.org/TR/2000/REC-xml-20001006#AVNormalize
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-validate-if-schema
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-datatype-normalization
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-error-handler
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-entities

"entities" is set to false and the following XML file is parsed:

<!DOCTYPE root [
<!ENTITY e SYSTEM ’subdir/myentity.ent’
]>

<root>
&e;
</root>

And subdir/myentity.ent looks like this:

<one>
 <two/>
</one>
<?pi 3.14159?>
<more/>

In addition to raising the defined errors and warnings, implementations are expected to raise
implementation specific errors and warnings for any other error and warning cases such as IO errors
(file not found, permission denied,...), XML well-formedness errors, and so on.
IDL Definition

interface DOMParser {
 readonly attribute DOMConfiguration config;
 attribute DOMParserFilter filter;
 readonly attribute boolean async;
 readonly attribute boolean busy;
 Document parse(in DOMInput is)
 raises(DOMException);
 Document parseURI(in DOMString uri)
 raises(DOMException);

 // ACTION_TYPES
 const unsigned short ACTION_APPEND_AS_CHILDREN = 1;
 const unsigned short ACTION_REPLACE_CHILDREN = 2;
 const unsigned short ACTION_INSERT_BEFORE = 3;
 const unsigned short ACTION_INSERT_AFTER = 4;
 const unsigned short ACTION_REPLACE = 5;

 Node parseWithContext(in DOMInput input,
 in Node context,
 in unsigned short action)
 raises(DOMException);
 void abort();
};

Definition group ACTION_TYPES

A set of possible actions for the parseWithContext method.
Defined Constants

ACTION_APPEND_AS_CHILDREN
Append the result of the parse operation as children of the context node. For this
action to work, the context node must be an Element or a DocumentFragment.

15

1.3 Fundamental interfaces

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-entities

ACTION_INSERT_AFTER
Insert the result of the parse operation as the immediately following sibling of the
context node. For this action to work the context node’s parent must be an Element
or a DocumentFragment.

ACTION_INSERT_BEFORE
Insert the result of the parse operation as the immediately preceding sibling of the
context node. For this action to work the context node’s parent must be an Element
or a DocumentFragment.

ACTION_REPLACE
Replace the context node with the result of the parse operation. For this action to
work, the context node must have a parent, and the parent must be an Element or a
DocumentFragment.

ACTION_REPLACE_CHILDREN
Replace all the children of the context node with the result of the parse operation. For
this action to work, the context node must be an Element, a Document, or a
DocumentFragment.

Attributes
async of type boolean, readonly

true if the DOMParser is asynchronous, false if it is synchronous.
busy of type boolean, readonly

true if the DOMParser is currently busy loading a document, otherwise false.
config of type DOMConfiguration, readonly

The DOMConfiguration object used when parsing an input source. This
DOMConfiguration is specific to the parse operation and no parameter values from this
DOMConfiguration object are passed automatically to the DOMConfiguration
object on the Document that is created, or used, by the parse operation. The DOM
application is responsible for passing any needed parameter values from this
DOMConfiguration object to the DOMConfiguration object referenced by the
Document object.
In addition to the parameters recognized in [DOM Level 3 Core], the
DOMConfiguration objects for DOMParser adds or modifies the following
parameters:
"charset-overrides-xml-encoding"

true
[required] (default)
If a higher level protocol such as HTTP [IETF RFC 2616] provides an indication
of the character encoding of the input stream being processed, that will override
any encoding specified in the XML declaration or the Text declaration (see also
section 4.3.3, "Character Encoding in Entities", in [XML 1.0]). Explicitly setting
an encoding in the DOMInput [p.20] overrides any encoding from the protocol.

false
[required]
The parser ignores any character set encoding information from higher-level
protocols.

"disallow-doctype"

16

1.3 Fundamental interfaces

true
[optional]
Throw a fatal "doctype-not-allowed" error if a doctype node is found while
parsing the document. This is useful when dealing with things like SOAP
envelopes where doctype nodes are not allowed.

false
[required] (default)
Allow doctype nodes in the document.

"ignore-unknown-character-denormalizations"
true

[required] (default)
If, while verifying full normalization when [XML 1.1] is supported, a processor
encounters characters for which it cannot determine the normalization properties,
then the processor will ignore any possible denormalizations caused by these
characters.
This parameter is ignored for [XML 1.0].

false
[optional]
Report an fatal "unknown-character-denormalization" error if a character is
encountered for which the processor cannot determine the normalization
properties.

"infoset"
See the definition of DOMConfiguration for a description of this parameter.
Unlike in [DOM Level 3 Core], this parameter will default to true for DOMParser.

"namespaces"
true

[required] (default)
Perform the namespace processing as defined in [XML Namespaces].

false
[optional]
Do not perform the namespace processing.

"supported-media-types-only"
true

[optional]
Check that the media type of the parsed resource is a supported media type. If an
unsupported media type is encountered, a fatal error of type
"unsupported-media-type" will be raised. The media types defined in [IETF
RFC 3023] must always be accepted.

false
[required] (default)
Accept any media type.

The parameter "well-formed" cannot be set to false.
filter of type DOMParserFilter [p.23]

When a filter is provided, the implementation will call out to the filter as it is constructing
the DOM tree structure. The filter can choose to remove elements from the document being
constructed, or to terminate the parsing early.

17

1.3 Fundamental interfaces

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-well-formed

The filter is invoked after the operations requested by the DOMConfiguration
parameters have been applied. For example, if "validate" is set to true, the validation is
done before invoking the filter.

Methods
abort

Abort the loading of the document that is currently being loaded by the DOMParser. If
the DOMParser is currently not busy, a call to this method does nothing.
No Parameters
No Return Value
No Exceptions

parse
Parse an XML document from a resource identified by a DOMInput [p.20] .
Parameters
is of type DOMInput [p.20]

The DOMInput from which the source of the document is to be read.
Return Value

Document If the DOMParser is a synchronous DOMParser, the newly created
and populated Document is returned. If the DOMParser is
asynchronous, null is returned since the document object may not yet
be constructed when this method returns.

Exceptions

DOMException INVALID_STATE_ERR: Raised if the DOMParser’s
DOMParser.busy [p.16] attribute is true.

parseURI
Parse an XML document from a location identified by a URI reference [IETF RFC 2396].
If the URI contains a fragment identifier (see section 4.1 in [IETF RFC 2396]), the
behavior is not defined by this specification, future versions of this specification may
define the behavior.
Parameters
uri of type DOMString

The location of the XML document to be read.
Return Value

Document If the DOMParser is a synchronous DOMParser, the newly created
and populated Document is returned. If the DOMParser is
asynchronous, null is returned since the document object may not yet
be constructed when this method returns.

Exceptions

18

1.3 Fundamental interfaces

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-validate

DOMException INVALID_STATE_ERR: Raised if the DOMParser.busy
[p.16] attribute is true.

parseWithContext
Parse an XML fragment from a resource identified by a DOMInput [p.20] and insert the
content into an existing document at the position specified with the context and
action arguments. When parsing the input stream, the context node is used for resolving
unbound namespace prefixes. The context node’s ownerDocument node (or the node
itself if the node of type DOCUMENT_NODE) is used to resolve default attributes and entity
references.
As the new data is inserted into the document, at least one mutation event is fired per new
immediate child or sibling of the context node.
If the context node is a Document node and the action is
ACTION_REPLACE_CHILDREN, then the document that is passed as the context node
will be changed such that it’s xmlEncoding, documentURI, xmlVersion,
actualEncoding, xmlStandalone, and all other such attributes are set to what they
would be set to if the input source was parsed using DOMParser.parse() [p.18] .
If the DOMParser is asynchronous then the insertion of the resulting DOM structure is
atomic, e.g. the whole structure is inserted only once the whole input stream is completely
parsed without errors.
If an error occurs while parsing, the caller is notified through the ErrorHandler
instance associated with the "error-handler" parameter of the DOMConfiguration.
When calling parseWithContext, the values of the following configuration parameters
will be ignored and their default values will always be used instead: "validate",
"validate-if-schema", and "whitespace-in-element-content".
Parameters
input of type DOMInput [p.20]

The DOMInput from which the source document is to be read. The source document
must be an XML fragment, i.e. anything except a complete XML document (except in
the case where the context node of type DOCUMENT_NODE, and the action is
ACTION_REPLACE_CHILDREN), a DOCTYPE (internal subset), entity
declaration(s), notation declaration(s), or XML or text declaration(s).

context of type Node
The node that is used as the context for the data that is being parsed. This node must
be a Document node, a DocumentFragment node, or a node of a type that is
allowed as a child of an Element node, e.g. it cannot be an Attribute node.

action of type unsigned short
This parameter describes which action should be taken between the new set of nodes
being inserted and the existing children of the context node. The set of possible
actions is defined in ACTION_TYPES above.

Return Value

Node Return the node that is the result of the parse operation. If the result is more
than one top-level node, the first one is returned.

19

1.3 Fundamental interfaces

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-error-handler
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-validate
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-validate-if-schema
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-whitespace-in-element-content

Exceptions

DOMException NOT_SUPPORTED_ERR: Raised if the DOMParser doesn’t
support this method.

NO_MODIFICATION_ALLOWED_ERR: Raised if the context
node is a read only node [p.55] .

INVALID_STATE_ERR: Raised if the DOMParser.busy
[p.16] attribute is true.

Interface DOMInput

This interface represents an input source for data.

This interface allows an application to encapsulate information about an input source in a single
object, which may include a public identifier, a system identifier, a byte stream (possibly with a
specified encoding), a base URI, and/or a character stream.

The exact definitions of a byte stream and a character stream are binding dependent.

The application is expected to provide objects that implement this interface whenever such objects
are needed. The application can either provide its own objects that implement this interface, or it can
use the generic factory method DOMImplementationLS.createDOMInput() [p.12] to create
objects that implement this interface.

The DOMParser [p.13] will use the DOMInput object to determine how to read data. The
DOMParser will look at the different inputs specified in the DOMInput in the following order to
know which one to read from, the first one through which data is available will be used:

1. DOMInput.characterStream [p.21]
2. DOMInput.byteStream [p.21]
3. DOMInput.stringData [p.21]
4. DOMInput.systemId [p.21]
5. DOMInput.publicId [p.21]

DOMInput objects belong to the application. The DOM implementation will never modify them
(though it may make copies and modify the copies, if necessary).
IDL Definition

interface DOMInput {
 // Depending on the language binding in use,
 // this attribute may not be available.
 attribute DOMReader characterStream;
 attribute DOMInputStream byteStream;
 attribute DOMString stringData;
 attribute DOMString systemId;
 attribute DOMString encoding;

20

1.3 Fundamental interfaces

 attribute DOMString publicId;
 attribute DOMString baseURI;
 attribute boolean certified;
};

Attributes
baseURI of type DOMString

The base URI to be used (see section 5.1.4 in [IETF RFC 2396]) for resolving a relative
systemId to an absolute URI.
If, when used, the base URI is itself a relative URI, an empty string, or null, the behavior is
implementation dependent.

byteStream of type DOMInputStream [p.10]
An attribute of a language and binding dependent type that represents a stream of bytes.
If the application knows the character encoding of the byte stream, it should set the
encoding attribute. Setting the encoding in this way will override any encoding specified in
an XML declaration in the data.

certified of type boolean
If set to true, assume that the input is certified (see section 2.13 in [XML 1.1]) when
parsing [XML 1.1].

characterStream of type DOMReader [p.10]
Depending on the language binding in use, this attribute may not be available.

An attribute of a language and binding dependent type that represents a stream of 16-bit
units [p.55] . The application must encode the stream using UTF-16 (defined in [Unicode]
and Amendment 1 of [ISO/IEC 10646]).

encoding of type DOMString
The character encoding, if known. The encoding must be a string acceptable for an XML
encoding declaration ([XML 1.0] section 4.3.3 "Character Encoding in Entities").
This attribute has no effect when the application provides a character stream or string data.
For other sources of input, an encoding specified by means of this attribute will override
any encoding specified in the XML declaration or the Text declaration, or an encoding
obtained from a higher level protocol, such as HTTP [IETF RFC 2616].

publicId of type DOMString
The public identifier for this input source. This may be mapped to an input source using an
implementation dependent mechanism (such as catalogues or other mappings). The public
identifier, if specified, may also be reported as part of the location information when errors
are reported.

stringData of type DOMString
String data to parse. If provided, this will always be treated as a sequence of 16-bit units
[p.55] (UTF-16 encoded characters).

systemId of type DOMString
The system identifier, a URI reference [IETF RFC 2396], for this input source. The system
identifier is optional if there is a byte stream, a character stream, or string data, but it is still
useful to provide one, since the application will use it to resolve any relative URI’s and can
include it in error messages and warnings (the DOMParser [p.13] will only attempt to
fetch the resource identified by the URI reference only if there is no other input available in
the input source).
If the application knows the character encoding of the object pointed to by the system
identifier, it can set the encoding using the encoding attribute.

21

1.3 Fundamental interfaces

If the system ID is a relative URI reference (see section 5 in [IETF RFC 2396]), the DOM
implementation will attempt to resolve the relative URI with the baseURI as the base, if
that fails, the behavior is implementation dependent.

Interface DOMResourceResolver

DOMResourceResolver provides a way for applications to redirect references to external
resources.

Applications needing to implement custom handling for external resources can implement this
interface and register their implementation by setting the resourceResolver attribute of the
DOMParser [p.13] .

The DOMParser [p.13] will then allow the application to intercept any external entities (including
the external DTD subset and external parameter entities) before including them.

Many DOM applications will not need to implement this interface, but it will be especially useful for
applications that build XML documents from databases or other specialized input sources, or for
applications that use URN’s.

Note: DOMResourceResolver is based on the SAX2 [SAX] EntityResolver interface.

IDL Definition

interface DOMResourceResolver {
 DOMInput resolveResource(in DOMString publicId,
 in DOMString systemId,
 in DOMString baseURI);
};

Methods
resolveResource

Allow the application to resolve external resources.
The DOMParser [p.13] will call this method before opening any external resource except
the top-level document entity (including the external DTD subset, external entities
referenced within the DTD, and external entities referenced within the document element);
the application may request that the DOMParser resolve the resource itself, that it use an
alternative URI, or that it use an entirely different input source.
Application writers can use this method to redirect external system identifiers to secure
and/or local URI’s, to look up public identifiers in a catalogue, or to read an entity from a
database or other input source (including, for example, a dialog box).
If the system identifier is a URI, the DOMParser [p.13] must resolve it fully before
calling this method.
Parameters
publicId of type DOMString

The public identifier of the external entity being referenced, or null if no public
identifier was supplied or if the resource is not an entity.

systemId of type DOMString
The system identifier, a URI reference [IETF RFC 2396], of the external resource
being referenced.

22

1.3 Fundamental interfaces

baseURI of type DOMString
The absolute base URI of the resource being parsed, or null if there is no base URI.

Return Value

DOMInput
[p.20]

A DOMInput object describing the new input source, or null to
request that the parser open a regular URI connection to the system
identifier.

No Exceptions
Interface DOMParserFilter

DOMParserFilters provide applications the ability to examine nodes as they are being
constructed while parsing. As each node is examined, it may be modified or removed, or the entire
parse may be terminated early.

At the time any of the filter methods are called by the parser, the owner Document and
DOMImplementation objects exist and are accessible. The document element is never passed to the
DOMParserFilter methods, i.e. it is not possible to filter out the document element. The
Document, DocumentType, Notation, and Entity nodes are not passed to the
acceptNode method on the filter.

All validity checking while reading a document occurs on the source document as it appears on the
input stream, not on the DOM document as it is built in memory. With filters, the document in
memory may be a subset of the document on the stream, and its validity may have been affected by
the filtering.

All default content, including default attributes, must be passed to the filter methods.

The DOMParser [p.13] ignores any exception raised in the filter.
IDL Definition

interface DOMParserFilter {

 // Constants returned by startElement and acceptNode
 const short FILTER_ACCEPT = 1;
 const short FILTER_REJECT = 2;
 const short FILTER_SKIP = 3;
 const short FILTER_INTERRUPT = 4;

 unsigned short startElement(in Element element);
 unsigned short acceptNode(in Node node);
 readonly attribute unsigned long whatToShow;
};

Definition group Constants returned by startElement and acceptNode

Constants returned by startElement and acceptNode.
Defined Constants

23

1.3 Fundamental interfaces

FILTER_ACCEPT
Accept the node.

FILTER_INTERRUPT
Interrupt the normal processing of the document.

FILTER_REJECT
Reject the node and its children.

FILTER_SKIP
Skip this single node. The children of this node will still be considered.

Attributes
whatToShow of type unsigned long, readonly

Tells the DOMParser [p.13] what types of nodes to show to the filter. See NodeFilter
for definition of the constants. The constants SHOW_ATTRIBUTE, SHOW_DOCUMENT,
SHOW_DOCUMENT_TYPE, SHOW_NOTATION, SHOW_ENTITY, and
SHOW_DOCUMENT_FRAGMENT are meaningless here, those nodes will never be passed to
a DOMParserFilter.
The constants used here are defined in [DOM Level 2 Traversal and Range].

Methods
acceptNode

This method will be called by the parser at the completion of the parsing of each node. The
node and all of its descendants will exist and be complete. The parent node will also exist,
although it may be incomplete, i.e. it may have additional children that have not yet been
parsed. Attribute nodes are never passed to this function.
From within this method, the new node may be freely modified - children may be added or
removed, text nodes modified, etc. The state of the rest of the document outside this node is
not defined, and the affect of any attempt to navigate to, or to modify any other part of the
document is undefined.
For validating parsers, the checks are made on the original document, before any
modification by the filter. No validity checks are made on any document modifications
made by the filter.
If this new node is rejected, the parser might reuse the new node or any of its descendants.
Parameters
node of type Node

The newly constructed element. At the time this method is called, the element is
complete - it has all of its children (and their children, recursively) and attributes, and
is attached as a child to its parent.

Return Value

24

1.3 Fundamental interfaces

unsigned
short

FILTER_ACCEPT if this Node should be included in the DOM
document being built.
FILTER_REJECT if the Node and all of its children should be
rejected.
FILTER_SKIP if the Node should be skipped and the Node
should be replaced by all the children of the Node.
FILTER_INTERRUPT if the filter wants to stop the processing
of the document. Interrupting the processing of the document
does no longer guarantee that the entire is XML well-formed
[p.55] .

No Exceptions
startElement

The parser will call this method after each Element start tag has been scanned, but before
the remainder of the Element is processed. The intent is to allow the element, including
any children, to be efficiently skipped. Note that only element nodes are passed to the
startElement function.
The element node passed to startElement for filtering will include all of the Element’s
attributes, but none of the children nodes. The Element may not yet be in place in the
document being constructed (it may not have a parent node.)
A startElement filter function may access or change the attributes for the Element.
Changing Namespace declarations will have no effect on namespace resolution by the
parser.
For efficiency, the Element node passed to the filter may not be the same one as is actually
placed in the tree if the node is accepted. And the actual node (node object identity) may be
reused during the process of reading in and filtering a document.
Parameters
element of type Element

The newly encountered element. At the time this method is called, the element is
incomplete - it will have its attributes, but no children.

Return Value

25

1.3 Fundamental interfaces

unsigned
short

FILTER_ACCEPT if this Element should be included in the
DOM document being built.
FILTER_REJECT if the Element and all of its children should
be rejected. This return value will be ignored if element is the
documentElement, the documentElement cannot be rejected.
FILTER_SKIP if the Element should be rejected. All of its
children are inserted in place of the rejected Element node.
This return value will be ignored if element is the
documentElement, the documentElement cannot be rejected nor
skipped.
FILTER_INTERRUPT if the filter wants to stop the processing
of the document. Interrupting the processing of the document
does no longer guarantee that the entire is XML well-formed
[p.55] .

Returning any other values will result in unspecified behavior.

No Exceptions
Interface LSProgressEvent

This interface represents a progress event object that notifies the application about progress as a
document is parsed. It extends the Event interface defined in [DOM Level 3 Events].
IDL Definition

interface LSProgressEvent : events::Event {
 readonly attribute DOMInput input;
 readonly attribute unsigned long position;
 readonly attribute unsigned long totalSize;
};

Attributes
input of type DOMInput [p.20] , readonly

The input source that is being parsed.
position of type unsigned long, readonly

The current position in the input source, including all external entities and other resources
that have been read.

totalSize of type unsigned long, readonly
The total size of the document including all external resources, this number might change
as a document is being parsed if references to more external resources are seen.

Interface LSLoadEvent

This interface represents a load event object that signals the completion of a document load.
IDL Definition

interface LSLoadEvent : events::Event {
 readonly attribute Document newDocument;
 readonly attribute DOMInput input;
};

26

1.3 Fundamental interfaces

Attributes
input of type DOMInput [p.20] , readonly

The input source that was parsed.
newDocument of type Document, readonly

The document that finished loading.
Interface DOMSerializer

DOMSerializer provides an API for serializing (writing) a DOM document out into XML. The
XML data is written to a string or an output stream.

During serialization of XML data, namespace fixup is done as defined in [DOM Level 3 Core],
Appendix B. [DOM Level 2 Core] allows empty strings as a real namespace URI. If the
namespaceURI of a Node is empty string, the serialization will treat them as null, ignoring the
prefix if any.

DOMSerializer accepts any node type for serialization. For nodes of type Document or
Entity, well-formed XML will be created when possible (well-formedness is guaranteed if the
document or entity comes from a parse operation and is unchanged since it was created). The
serialized output for these node types is either as a XML document or an External XML Entity,
respectively, and is acceptable input for an XML parser. For all other types of nodes the serialized
form is not specified, but should be something useful to a human for debugging or diagnostic
purposes.

Within a Document, DocumentFragment, or Entity being serialized, Nodes are processed as
follows

Document nodes are written, including the XML declaration (unless the parameter
"xml-declaration [p.30] " is set to false) and a DTD subset, if one exists in the DOM. Writing
a Document node serializes the entire document.
Entity nodes, when written directly by DOMSerializer.write [p.31] , outputs the entity
expansion but no namespace fixup is done. The resulting output will be valid as an external
entity.
EntityReference nodes are serialized as an entity reference of the form
"&entityName;" in the output. Child nodes (the expansion) of the entity reference are
ignored.
CDATA sections containing content characters that cannot be represented in the specified
output encoding are handled according to the "split-cdata-sections" parameter.
If the parameter is set to true, CDATA sections are split, and the unrepresentable characters
are serialized as numeric character references in ordinary content. The exact position and
number of splits is not specified.
If the parameter is set to false, unrepresentable characters in a CDATA section are reported as
"invalid-data-in-cdata-section" errors. The error is not recoverable - there is no
mechanism for supplying alternative characters and continuing with the serialization.
DocumentFragment nodes are serialized by serializing the children of the document
fragment in the order they appear in the document fragment.
All other node types (Element, Text, etc.) are serialized to their corresponding XML source
form.

27

1.3 Fundamental interfaces

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-split-cdata-sections

Note: The serialization of a Node does not always generate a well-formed [p.55] XML document,
i.e. a DOMParser [p.13] might throw fatal errors when parsing the resulting serialization.

Within the character data of a document (outside of markup), any characters that cannot be
represented directly are replaced with character references. Occurrences of ’<’ and ’&’ are replaced
by the predefined entities < and &. The other predefined entities (>, ', and ")
might not be used, except where needed (e.g. using > in cases such as ’]]>’). Any characters that
cannot be represented directly in the output character encoding are serialized as numeric character
references.

To allow attribute values to contain both single and double quotes, the apostrophe or single-quote
character (’) may be represented as "'", and the double-quote character (") as """. New
line characters and other characters that cannot be represented directly in attribute values in the
output character encoding are serialized as a numeric character reference.

Within markup, but outside of attributes, any occurrence of a character that cannot be represented in
the output character encoding is reported as an error. An example would be serializing the element
<LaCañada/> with encoding="us-ascii".

When requested by setting the parameter "normalize-characters" on DOMSerializer to true,
character normalization is performed according to the rules defined in [CharModel] on all data to be
serialized, both markup and character data. The character normalization process affects only the data
as it is being written; it does not alter the DOM’s view of the document after serialization has
completed.

When outputting unicode data, whether or not a byte order mark is serialized, or if the output is
big-endian or little-endian, is implementation dependent.

Namespaces are fixed up during serialization, the serialization process will verify that namespace
declarations, namespace prefixes and the namespace URI’s associated with elements and attributes
are consistent. If inconsistencies are found, the serialized form of the document will be altered to
remove them. The method used for doing the namespace fixup while serializing a document is the
algorithm defined in Appendix B.1, "Namespace normalization", of [DOM Level 3 Core].

Any changes made affect only the namespace prefixes and declarations appearing in the serialized
data. The DOM’s view of the document is not altered by the serialization operation, and does not
reflect any changes made to namespace declarations or prefixes in the serialized output.
Issue DOMSerializer-change-DOM:

We may take back what we say in the above paragraph depending on feedback from
implementors, but for now the belief is that the DOM’s view of the document is not changed
during serialization.

While serializing a document, the parameter "discard-default-content [p.29] " controls whether or not
non-specified data is serialized.

While serializing, errors are reported to the application through the error handler
(DOMSerializer.config [p.29] ’s "error-handler" parameter). This specification does in no
way try to define all possible errors that can occur while serializing a DOM node, but some common

28

1.3 Fundamental interfaces

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-normalize-characters
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-error-handler

error cases are defined. The types (DOMError.type) of errors and warnings defined by this
specification are:
"invalid-data-in-cdata-section" [fatal]

Raised if the configuration parameter "split-cdata-sections" is set to false and invalid data is
encountered in a CDATA section.

"unsupported-encoding" [fatal]
Raised if an unsupported encoding is encountered.

"unbound-namespace-in-entity" [warning]
Raised if the configuration parameter "entities" is set to true and an unbound namespace
prefix is encounterd in a referenced entity.

"no-output-specified" [fatal]
Raised when writing to a DOMOutput [p.33] if no output is specified in the DOMOutput.

In addition to raising the defined errors and warnings, implementations are expected to raise
implementation specific errors and warnings for any other error and warning cases such as IO errors
(file not found, permission denied,...) and so on.
IDL Definition

interface DOMSerializer {
 readonly attribute DOMConfiguration config;
 attribute DOMString newLine;
 attribute DOMSerializerFilter filter;
 boolean write(in Node node,
 in DOMOutput destination);
 boolean writeURI(in Node node,
 in DOMString URI);
 DOMString writeToString(in Node node)
 raises(DOMException);
};

Attributes
config of type DOMConfiguration, readonly

The DOMConfiguration object used by the DOMSerializer when serializing a
DOM node.
In addition to the parameters recognized in the [DOM Level 3 Core], the
DOMConfiguration objects for DOMSerializer adds, or modifies, the following
parameters:
"canonical-form"

true
[optional]
This formatting writes the document according to the rules specified in
[Canonical XML]. Setting this parameter to true will set the parameter
"format-pretty-print [p.30] " to false.

false
[required] (default)
Do not canonicalize the output.

"discard-default-content"

29

1.3 Fundamental interfaces

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-split-cdata-sections
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-entities

true
[required] (default)
Use the Attr.specified attribute to decide what attributes should be
discarded. Note that some implementations might use whatever information
available to the implementation (i.e. XML schema, DTD, the
Attr.specified attribute, and so on) to determine what attributes and
content to discard if this parameter is set to true.

false
[required]
Keep all attributes and all content.

"format-pretty-print"
true

[optional]
Formatting the output by adding whitespace to produce a pretty-printed,
indented, human-readable form. The exact form of the transformations is not
specified by this specification. Pretty-printing changes the content of the
document and may affect the validity of the document, validating
implementations should preserve validity. Setting this parameter to true will set
the parameter "canonical-form" to false.

false
[required] (default)
Don’t pretty-print the result.

"ignore-unknown-character-denormalizations"
true

[required] (default)
If, while verifying full normalization when [XML 1.1] is supported, a character is
encountered for which the normalization properties cannot be determined, then
raise a "unknown-character-denormalization" warning (instead of
raising an error, if this parameter is not set) and ignore any possible
denormalizations caused by these characters.
Issue DOMSerializer-iucd-issue:

IMO it would make sense to move this parameter into the DOM Level 3
Core spec, and the error/warning should be defined there.

false
[optional]
Report an fatal error if a character is encountered for which the processor cannot
determine the normalization properties.

"normalize-characters"
This parameter is equivalent to the one defined by DOMConfiguration in [DOM
Level 3 Core]. Unlike in the Core, the default value for this parameter is true. While
DOM implementations are not required to support fully normalizing the characters in
the document according to the rules defined in [CharModel] supplemented by the
definitions of relevant constructs from Section 2.13 of [XML 1.1], this parameter must
be activated by default if supported.

"xml-declaration"

30

1.3 Fundamental interfaces

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-canonical-form

true
[required] (default)
If a Document, Element, or Entity node is serialized, the XML declaration,
or text declaration, should be included. The version (Document.xmlVersion
if the document is a Level 3 document, and the version is non-null, otherwise use
the value "1.0"), and possibly an encoding (DOMSerializer.encoding, or
Document.actualEncoding or Document.xmlEncoding if the
document is a Level 3 document) is specified in the serialized XML declaration.

false
[required]
Do not serialize the XML and text declarations. Report a
"xml-declaration-needed" warning if this will cause problems (i.e. the
serialized data is of an XML version other than [XML 1.0], or an encoding would
be needed to be able to re-parse the serialized data).

The parameters "well-formed", "namespaces", and "namespace-declarations" cannot be set
to false.

filter of type DOMSerializerFilter [p.34]
When the application provides a filter, the serializer will call out to the filter before
serializing each Node. The filter implementation can choose to remove the node from the
stream or to terminate the serialization early.
The filter is invoked before the operations requested by the DOMConfiguration
parameters have been applied. For example, CDATA sections are passed to the filter even
if "cdata-sections" is set to false.

newLine of type DOMString
The end-of-line sequence of characters to be used in the XML being written out. Any string
is supported, but these are the recommended end-of-line sequences (using other character
sequences than these recommended ones can result in a document that is either not
serializable or not well-formed):
null

Use a default end-of-line sequence. DOM implementations should choose the default
to match the usual convention for text files in the environment being used.
Implementations must choose a default sequence that matches one of those allowed by
section 2.11, "End-of-Line Handling" in [XML 1.0], if the serialized content is XML
1.0 or section 2.11, "End-of-Line Handling" in [XML 1.1], if the serialized content is
XML 1.1.

CR
The carriage-return character (#xD).

CR-LF
The carriage-return and line-feed characters (#xD #xA).

LF
The line-feed character (#xA).

The default value for this attribute is null.
Methods

write
Serialize the specified node as described above in the general description of the
DOMSerializer interface. The output is written to the supplied DOMOutput [p.33] .

31

1.3 Fundamental interfaces

http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-well-formed
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-namespaces
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-namespace-declarations
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/core.html#parameter-cdata-sections

When writing to a DOMOutput [p.33] , the encoding is found by looking at the encoding
information that is reachable through the DOMOutput and the item to be written (or its
owner document) in this order:

1. DOMOutput.encoding [p.34] ,
2. Document.actualEncoding,
3. Document.xmlEncoding.

If no encoding is reachable through the above properties, a default encoding of "UTF-8"
will be used.
If the specified encoding is not supported an "unsupported-encoding" error is raised.
If no output is specified in the DOMOutput [p.33] , a "no-output-specified" error is raised.
Parameters
node of type Node

The node to serialize.
destination of type DOMOutput [p.33]

The destination for the serialized DOM.
Return Value

boolean Returns true if node was successfully serialized and false in case
the node couldn’t be serialized.

No Exceptions
writeToString

Serialize the specified node as described above in the general description of the
DOMSerializer interface. The output is written to a DOMString that is returned to the
caller (this method completely ignores all the encoding information available).
Parameters
node of type Node

The node to serialize.
Return Value

DOMString Returns the serialized data, or null in case the node couldn’t be
serialized.

Exceptions

DOMException DOMSTRING_SIZE_ERR: Raised if the resulting string is too
long to fit in a DOMString.

writeURI
Serialize the specified node as described above in the general description of the
DOMSerializer interface. The output is written to the supplied URI.
When writing to a URI, the encoding is found by looking at the encoding information that
is reachable through the item to be written (or its owner document) in this order:

1. Document.actualEncoding,

32

1.3 Fundamental interfaces

2. Document.xmlEncoding.
If no encoding is reachable through the above properties, a default encoding of "UTF-8"
will be used.
If the specified encoding is not supported an "unsupported-encoding" error is raised.
Parameters
node of type Node

The node to serialize.
URI of type DOMString

The URI to write to.
Return Value

boolean Returns true if node was successfully serialized and false in case
the node couldn’t be serialized.

No Exceptions
Interface DOMOutput

This interface represents an output destination for data.

This interface allows an application to encapsulate information about an output destination in a single
object, which may include a URI, a byte stream (possibly with a specified encoding), a base URI,
and/or a character stream.

The exact definitions of a byte stream and a character stream are binding dependent.

The application is expected to provide objects that implement this interface whenever such objects
are needed. The application can either provide its own objects that implement this interface, or it can
use the generic factory method DOMImplementationLS.createDOMOutput() to create
objects that implement this interface.

The DOMSerializer [p.27] will use the DOMOutput object to determine where to serialize the
output to. The DOMSerializer will look at the different outputs specified in the DOMOutput in
the following order to know which one to output to, the first one that data can be output to will be
used:

1. DOMOutput.characterStream [p.34]
2. DOMOutput.byteStream [p.34]
3. DOMOutput.systemId [p.34]

DOMOutput objects belong to the application. The DOM implementation will never modify them
(though it may make copies and modify the copies, if necessary).
IDL Definition

33

1.3 Fundamental interfaces

interface DOMOutput {
 // Depending on the language binding in use,
 // this attribute may not be available.
 attribute DOMWriter characterStream;
 attribute DOMOutputStream byteStream;
 attribute DOMString systemId;
 attribute DOMString encoding;
};

Attributes
byteStream of type DOMOutputStream [p.10]

An attribute of a language and binding dependent type that represents a writable stream of
bytes.
If the application knows the character encoding of the byte stream, it should set the
encoding attribute. Setting the encoding in this way will override any encoding specified in
an XML declaration in the data.

characterStream of type DOMWriter [p.11]
Depending on the language binding in use, this attribute may not be available.

An attribute of a language and binding dependent type that represents a writable stream to
which 16-bit units [p.55] can be output. The application must encode the stream using
UTF-16 (defined in [Unicode] and Amendment 1 of [ISO/IEC 10646]).

encoding of type DOMString
The character encoding, if known. The encoding must be a string acceptable for an XML
encoding declaration ([XML 1.0] section 4.3.3 "Character Encoding in Entities").
This attribute has no effect when the application provides a character stream or string data.
For other sources of input, an encoding specified by means of this attribute will override
any encoding specified in the XML declaration or the Text declaration, or an encoding
obtained from a higher level protocol, such as HTTP [IETF RFC 2616].

systemId of type DOMString
The system identifier, a URI reference [IETF RFC 2396], for this output destination.
If the application knows the character encoding of the object pointed to by the system
identifier, it can set the encoding using the encoding attribute.
If the system ID is a relative URI reference (see section 5 in [IETF RFC 2396]), the
behavior is implementation dependent.

Interface DOMSerializerFilter

DOMSerializerFilters provide applications the ability to examine nodes as they are being
serialized and decide what nodes should be serialized or not. The DOMSerializerFilter
interface is based on the NodeFilter interface defined in [DOM Level 2 Traversal and Range].

The Document, DocumentType, DocumentFragment, Attr, Notation, and Entity
nodes are not passed to the filter.

The result of any attempt to modify a node passed to a DOMSerializerFilter is
implementation dependent.
IDL Definition

34

1.3 Fundamental interfaces

interface DOMSerializerFilter : traversal::NodeFilter {
 readonly attribute unsigned long whatToShow;
};

Attributes
whatToShow of type unsigned long, readonly

Tells the DOMSerializer [p.27] what types of nodes to show to the filter. See
NodeFilter for definition of the constants. The constants SHOW_ATTRIBUTE,
SHOW_DOCUMENT, SHOW_DOCUMENT_TYPE, SHOW_NOTATION, SHOW_ATTRIBUTE,
and SHOW_DOCUMENT_FRAGMENT are meaningless here, those nodes will never be
passed to a DOMSerializerFilter.
The constants used here are defined in [DOM Level 2 Traversal and Range].

1.4 Convenience Interfaces
The interfaces defined in this section provide no direct functionality that cannot be achieved with the load
and save interfaces defined in the earlier sections of this specification. These interfaces are defined for
developer convenience only, and supporting them is optional.

These interfaces are not nearly as flexible as the ones defined earlier in this specification, for example, no
configuration parameters are settable when calling these methods, and the values of all configuration
parameters are predefined.

Interface DocumentLS

The DocumentLS interface provides a mechanism by which the content of a document can be
serialized, or replaced with the DOM tree produced when loading a URI, or parsing a string.

If the DocumentLS interface is supported, the expectation is that an instance of the DocumentLS
interface can be obtained by using binding-specific casting methods on an instance of the
Document interface, or by using the method Node.getFeature with parameter values
"DocumentLS" and "3.0" (respectively) on an Document, if the Document supports the
feature "Core" version "3.0" defined in [DOM Level 3 Core]

This interface is optional. If supported, implementations must support version "3.0" of the feature
"DocumentLS".
IDL Definition

interface DocumentLS {
 attribute boolean async;
 // raises(DOMException) on setting

 void abort();
 boolean load(in DOMString uri);
 boolean loadXML(in DOMString source);
 DOMString saveXML(in Node node)
 raises(DOMException);
};

35

1.4 Convenience Interfaces

Attributes
async of type boolean

Indicates whether the method DocumentLS.load() [p.36] should be synchronous or
asynchronous. When the async attribute is set to true the load method returns control to
the caller before the document has completed loading. The default value of this attribute is
true.
Exceptions on setting

DOMException NOT_SUPPORTED_ERR: Raised if the implementation doesn’t
support the mode the attribute is being set to.

Methods
abort

If the document is currently being loaded as a result of the method load being invoked the
loading and parsing is immediately aborted. The possibly partial result of parsing the
document is discarded and the document is cleared.
No Parameters
No Return Value
No Exceptions

load
Replaces the content of the document with the result of parsing the given URI. Invoking
this method will either block the caller or return to the caller immediately depending on the
value of the async attribute. Once the document is fully loaded a "load" event (as defined in
[DOM Level 3 Events], except that the Event.targetNode will be the document, not
an element) will be dispatched on the document. If an error occurs, an implementation
dependent "error" event will be dispatched on the document. If this method is called on a
document that is currently loading, the current load is interrupted and the new URI load is
initiated.
When invoking this method the parameters used in the DOMParser [p.13] interface are
assumed to have their default values with the exception that the parameters "entities",
"normalize-characters", "check-character-normalization" are set to
"false".
The result of a call to this method is the same the result of a call to
DOMParser.parseWithContext [p.19] with an input stream referencing the URI that
was passed to this call, the document as the context node, and the action
ACTION_REPLACE_CHILDREN.
Parameters
uri of type DOMString

The URI reference for the XML file to be loaded. If this is a relative URI, the base
URI used by the implementation is implementation dependent.

Return Value

36

1.4 Convenience Interfaces

boolean If async is set to true load returns true if the document load was
successfully initiated. If an error occurred when initiating the document
load, load returns false.
If async is set to false load returns true if the document was
successfully loaded and parsed. If an error occurred when either loading
or parsing the URI, load returns false.

No Exceptions
loadXML

Replace the content of the document with the result of parsing the input string, this method
is always synchronous. This method always parses from a DOMString, which means the
data is always UTF-16. All other encoding information is ignored.
The parameters used in the DOMParser [p.13] interface are assumed to have their default
values when invoking this method.
The result of a call to this method is the same the result of a call to
DOMParser.parseWithContext [p.19] with an input stream containing the string
passed to this call, the document as the context node, and the action
ACTION_REPLACE_CHILDREN.
Parameters
source of type DOMString

A string containing an XML document.
Return Value

boolean true if parsing the input string succeeded without errors, otherwise
false.

No Exceptions
saveXML

Save the document or the given node and all its descendants to a string (i.e. serialize the
document or node).
The parameters used in the DOMSerializer [p.27] interface are assumed to have their
default values when invoking this method.
The result of a call to this method is the same the result of a call to
DOMSerializer.writeToString [p.32] with the document as the node to write.
Parameters
node of type Node

Specifies what to serialize, if this parameter is null the whole document is serialized,
if it’s non-null the given node is serialized.

Return Value

DOMString The serialized document or null in case an error occurred.

Exceptions

37

1.4 Convenience Interfaces

DOMException WRONG_DOCUMENT_ERR: Raised if the node passed in as
the node parameter is from an other document.

Interface ElementLS

The ElementLS interface provides a convenient mechanism by which the children of an element
can be serialized to a string, or replaced by the result of parsing a provided string.

If the ElementLS interface is supported, the expectation is that an instance of the ElementLS
interface can be obtained by using binding-specific casting methods on an instance of the Element
interface, or by using the method Node.getFeature with parameter values "ElementLS" and
"3.0" (respectively) on an Element, if the Element supports the feature "Core" version
"3.0" defined in [DOM Level 3 Core].

This interface is optional. If supported, implementations must support version "3.0" of the feature
"ElementLS".
IDL Definition

interface ElementLS {
 attribute DOMString markupContent;
};

Attributes
markupContent of type DOMString

The content of the element in serialized form.
When getting the value of this attribute, the children are serialized in document order and
the serialized result is returned. This is equivalent of calling
DOMSerializer.writeToString() [p.32] on all children in document order and
appending the result of the individual results to a single string that is then returned as the
value of this attribute.
When setting the value of this attribute, all children of the element are removed, the
provided string is parsed and the result of the parse operation is inserted into the element.
This is equivalent of calling DOMParser.parseWithContext() [p.19] passing in the
provided string (through the input source argument), the Element, and the action
ACTION_REPLACE_CHILDREN. If an error occurs while parsing the provided string, the
Element’s owner document’s error handler will be called, and the Element is left with
no children.
Both setting and getting the value of this attribute assumes that the parameters in the
DOMConfiguration object have their default values.

38

1.4 Convenience Interfaces

Appendix A: IDL Definitions
This appendix contains the complete OMG IDL [OMG IDL] for the Level 3 Document Object Model
Abstract Schemas and Load and Save definitions.

The IDL files are also available as: http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030619/idl.zip

ls.idl:
// File: ls.idl

#ifndef _LS_IDL_
#define _LS_IDL_

#include "dom.idl"
#include "events.idl"
#include "traversal.idl"

#pragma prefix "dom.w3c.org"
module ls
{

 typedef Object DOMInputStream;

 typedef Object DOMOutputStream;

 typedef Object DOMReader;

 typedef Object DOMWriter;

 typedef dom::DOMString DOMString;
 typedef dom::DOMConfiguration DOMConfiguration;
 typedef dom::Node Node;
 typedef dom::Document Document;
 typedef dom::Element Element;

 interface DOMParser;
 interface DOMSerializer;
 interface DOMInput;
 interface DOMParserFilter;
 interface DOMSerializerFilter;
 interface DOMOutput;

 interface DOMImplementationLS {

 // DOMImplementationLSMode
 const unsigned short MODE_SYNCHRONOUS = 1;
 const unsigned short MODE_ASYNCHRONOUS = 2;

 DOMParser createDOMParser(in unsigned short mode,
 in DOMString schemaType)
 raises(dom::DOMException);
 DOMSerializer createDOMSerializer();
 DOMInput createDOMInput();

39

Appendix A: IDL Definitions

 };

 interface DOMParser {
 readonly attribute DOMConfiguration config;
 attribute DOMParserFilter filter;
 readonly attribute boolean async;
 readonly attribute boolean busy;
 Document parse(in DOMInput is)
 raises(dom::DOMException);
 Document parseURI(in DOMString uri)
 raises(dom::DOMException);

 // ACTION_TYPES
 const unsigned short ACTION_APPEND_AS_CHILDREN = 1;
 const unsigned short ACTION_REPLACE_CHILDREN = 2;
 const unsigned short ACTION_INSERT_BEFORE = 3;
 const unsigned short ACTION_INSERT_AFTER = 4;
 const unsigned short ACTION_REPLACE = 5;

 Node parseWithContext(in DOMInput input,
 in Node context,
 in unsigned short action)
 raises(dom::DOMException);
 void abort();
 };

 interface DOMInput {
 // Depending on the language binding in use,
 // this attribute may not be available.
 attribute DOMReader characterStream;
 attribute DOMInputStream byteStream;
 attribute DOMString stringData;
 attribute DOMString systemId;
 attribute DOMString encoding;
 attribute DOMString publicId;
 attribute DOMString baseURI;
 attribute boolean certified;
 };

 interface DOMResourceResolver {
 DOMInput resolveResource(in DOMString publicId,
 in DOMString systemId,
 in DOMString baseURI);
 };

 interface DOMParserFilter {

 // Constants returned by startElement and acceptNode
 const short FILTER_ACCEPT = 1;
 const short FILTER_REJECT = 2;
 const short FILTER_SKIP = 3;
 const short FILTER_INTERRUPT = 4;

 unsigned short startElement(in Element element);
 unsigned short acceptNode(in Node node);
 readonly attribute unsigned long whatToShow;
 };

40

ls.idl:

 interface DOMSerializer {
 readonly attribute DOMConfiguration config;
 attribute DOMString newLine;
 attribute DOMSerializerFilter filter;
 boolean write(in Node node,
 in DOMOutput destination);
 boolean writeURI(in Node node,
 in DOMString URI);
 DOMString writeToString(in Node node)
 raises(dom::DOMException);
 };

 interface DOMOutput {
 // Depending on the language binding in use,
 // this attribute may not be available.
 attribute DOMWriter characterStream;
 attribute DOMOutputStream byteStream;
 attribute DOMString systemId;
 attribute DOMString encoding;
 };

 interface DocumentLS {
 attribute boolean async;
 // raises(dom::DOMException) on setting

 void abort();
 boolean load(in DOMString uri);
 boolean loadXML(in DOMString source);
 DOMString saveXML(in Node node)
 raises(dom::DOMException);
 };

 interface ElementLS {
 attribute DOMString markupContent;
 };

 interface LSProgressEvent : events::Event {
 readonly attribute DOMInput input;
 readonly attribute unsigned long position;
 readonly attribute unsigned long totalSize;
 };

 interface LSLoadEvent : events::Event {
 readonly attribute Document newDocument;
 readonly attribute DOMInput input;
 };

 interface DOMSerializerFilter : traversal::NodeFilter {
 readonly attribute unsigned long whatToShow;
 };
};

#endif // _LS_IDL_

41

ls.idl:

42

ls.idl:

Appendix B: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 3 Document Object Model Load
and Save.

The Java files are also available as
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030619/java-binding.zip

org/w3c/dom/ls/DOMImplementationLS.java:
package org.w3c.dom.ls;

import org.w3c.dom.DOMException;

public interface DOMImplementationLS {
 // DOMImplementationLSMode
 public static final short MODE_SYNCHRONOUS = 1;
 public static final short MODE_ASYNCHRONOUS = 2;

 public DOMParser createDOMParser(short mode,
 String schemaType)
 throws DOMException;

 public DOMSerializer createDOMSerializer();

 public DOMInput createDOMInput();

}

org/w3c/dom/ls/DOMParser.java:
package org.w3c.dom.ls;

import org.w3c.dom.Document;
import org.w3c.dom.DOMConfiguration;
import org.w3c.dom.Node;
import org.w3c.dom.DOMException;

public interface DOMParser {
 public DOMConfiguration getConfig();

 public DOMParserFilter getFilter();
 public void setFilter(DOMParserFilter filter);

 public boolean getAsync();

 public boolean getBusy();

 public Document parse(DOMInput is)
 throws DOMException;

 public Document parseURI(String uri)
 throws DOMException;

43

Appendix B: Java Language Binding

 // ACTION_TYPES
 public static final short ACTION_APPEND_AS_CHILDREN = 1;
 public static final short ACTION_REPLACE_CHILDREN = 2;
 public static final short ACTION_INSERT_BEFORE = 3;
 public static final short ACTION_INSERT_AFTER = 4;
 public static final short ACTION_REPLACE = 5;

 public Node parseWithContext(DOMInput input,
 Node context,
 short action)
 throws DOMException;

 public void abort();

}

org/w3c/dom/ls/DOMInput.java:
package org.w3c.dom.ls;

import org.w3c.dom.DOMInputStream;
import org.w3c.dom.DOMReader;

public interface DOMInput {
 public DOMReader getCharacterStream();
 public void setCharacterStream(DOMReader characterStream);

 public DOMInputStream getByteStream();
 public void setByteStream(DOMInputStream byteStream);

 public String getStringData();
 public void setStringData(String stringData);

 public String getSystemId();
 public void setSystemId(String systemId);

 public String getEncoding();
 public void setEncoding(String encoding);

 public String getPublicId();
 public void setPublicId(String publicId);

 public String getBaseURI();
 public void setBaseURI(String baseURI);

 public boolean getCertified();
 public void setCertified(boolean certified);

}

44

org/w3c/dom/ls/DOMInput.java:

org/w3c/dom/ls/DOMResourceResolver.java:
package org.w3c.dom.ls;

public interface DOMResourceResolver {
 public DOMInput resolveResource(String publicId,
 String systemId,
 String baseURI);

}

org/w3c/dom/ls/DOMParserFilter.java:
package org.w3c.dom.ls;

import org.w3c.dom.Element;
import org.w3c.dom.Node;

public interface DOMParserFilter {
 // Constants returned by startElement and acceptNode
 public static final short FILTER_ACCEPT = 1;
 public static final short FILTER_REJECT = 2;
 public static final short FILTER_SKIP = 3;
 public static final short FILTER_INTERRUPT = 4;

 public short startElement(Element element);

 public short acceptNode(Node node);

 public int getWhatToShow();

}

org/w3c/dom/ls/LSProgressEvent.java:
package org.w3c.dom.ls;

import org.w3c.dom.events.Event;

public interface LSProgressEvent extends Event {
 public DOMInput getInput();

 public int getPosition();

 public int getTotalSize();

}

org/w3c/dom/ls/LSLoadEvent.java:
package org.w3c.dom.ls;

import org.w3c.dom.Document;
import org.w3c.dom.events.Event;

45

org/w3c/dom/ls/DOMResourceResolver.java:

public interface LSLoadEvent extends Event {
 public Document getNewDocument();

 public DOMInput getInput();

}

org/w3c/dom/ls/DOMSerializer.java:
package org.w3c.dom.ls;

import org.w3c.dom.DOMConfiguration;
import org.w3c.dom.Node;
import org.w3c.dom.DOMException;

public interface DOMSerializer {
 public DOMConfiguration getConfig();

 public String getNewLine();
 public void setNewLine(String newLine);

 public DOMSerializerFilter getFilter();
 public void setFilter(DOMSerializerFilter filter);

 public boolean write(Node node,
 DOMOutput destination);

 public boolean writeURI(Node node,
 String URI);

 public String writeToString(Node node)
 throws DOMException;

}

org/w3c/dom/ls/DOMOutput.java:
package org.w3c.dom.ls;

import org.w3c.dom.DOMWriter;
import org.w3c.dom.DOMOutputStream;

public interface DOMOutput {
 public DOMWriter getCharacterStream();
 public void setCharacterStream(DOMWriter characterStream);

 public DOMOutputStream getByteStream();
 public void setByteStream(DOMOutputStream byteStream);

 public String getSystemId();
 public void setSystemId(String systemId);

 public String getEncoding();
 public void setEncoding(String encoding);

}

46

org/w3c/dom/ls/DOMSerializer.java:

org/w3c/dom/ls/DOMSerializerFilter.java:
package org.w3c.dom.ls;

import org.w3c.dom.traversal.NodeFilter;

public interface DOMSerializerFilter extends NodeFilter {
 public int getWhatToShow();

}

org/w3c/dom/ls/DocumentLS.java:
package org.w3c.dom.ls;

import org.w3c.dom.Node;
import org.w3c.dom.DOMException;

public interface DocumentLS {
 public boolean getAsync();
 public void setAsync(boolean async)
 throws DOMException;

 public void abort();

 public boolean load(String uri);

 public boolean loadXML(String source);

 public String saveXML(Node node)
 throws DOMException;

}

org/w3c/dom/ls/ElementLS.java:
package org.w3c.dom.ls;

public interface ElementLS {
 public String getMarkupContent();
 public void setMarkupContent(String markupContent);

}

47

org/w3c/dom/ls/DOMSerializerFilter.java:

48

org/w3c/dom/ls/ElementLS.java:

Appendix C: ECMAScript Language Binding
This appendix contains the complete ECMAScript [ECMAScript] binding for the Level 3 Document
Object Model Load and Save definitions.

Properties of the DOMImplementationLS Constructor function:
DOMImplementationLS.MODE_SYNCHRONOUS

The value of the constant DOMImplementationLS.MODE_SYNCHRONOUS is 1.
DOMImplementationLS.MODE_ASYNCHRONOUS

The value of the constant DOMImplementationLS.MODE_ASYNCHRONOUS is 2.
Objects that implement the DOMImplementationLS interface:

Functions of objects that implement the DOMImplementationLS interface:
createDOMParser(mode, schemaType)

This function returns an object that implements the DOMParser interface.
The mode parameter is a Number.
The schemaType parameter is a String.
This function can raise an object that implements the DOMException interface.

createDOMSerializer()
This function returns an object that implements the DOMSerializer interface.

createDOMInput()
This function returns an object that implements the DOMInput interface.

Properties of the DOMParser Constructor function:
DOMParser.ACTION_APPEND_AS_CHILDREN

The value of the constant DOMParser.ACTION_APPEND_AS_CHILDREN is 1.
DOMParser.ACTION_REPLACE_CHILDREN

The value of the constant DOMParser.ACTION_REPLACE_CHILDREN is 2.
DOMParser.ACTION_INSERT_BEFORE

The value of the constant DOMParser.ACTION_INSERT_BEFORE is 3.
DOMParser.ACTION_INSERT_AFTER

The value of the constant DOMParser.ACTION_INSERT_AFTER is 4.
DOMParser.ACTION_REPLACE

The value of the constant DOMParser.ACTION_REPLACE is 5.
Objects that implement the DOMParser interface:

Properties of objects that implement the DOMParser interface:
config

This read-only property is an object that implements the DOMConfiguration interface.
filter

This property is an object that implements the DOMParserFilter interface.
async

This read-only property is a Boolean.
busy

This read-only property is a Boolean.
Functions of objects that implement the DOMParser interface:

parse(is)
This function returns an object that implements the Document interface.
The is parameter is an object that implements the DOMInput interface.

49

Appendix C: ECMAScript Language Binding

This function can raise an object that implements the DOMException interface.
parseURI(uri)

This function returns an object that implements the Document interface.
The uri parameter is a String.
This function can raise an object that implements the DOMException interface.

parseWithContext(input, context, action)
This function returns an object that implements the Node interface.
The input parameter is an object that implements the DOMInput interface.
The context parameter is an object that implements the Node interface.
The action parameter is a Number.
This function can raise an object that implements the DOMException interface.

abort()
This function has no return value.

Objects that implement the DOMInput interface:
Properties of objects that implement the DOMInput interface:

byteStream
This property is an object that implements the DOMInputStream interface.

stringData
This property is a String.

systemId
This property is a String.

encoding
This property is a String.

publicId
This property is a String.

baseURI
This property is a String.

certified
This property is a Boolean.

Objects that implement the DOMResourceResolver interface:
Functions of objects that implement the DOMResourceResolver interface:

resolveResource(publicId, systemId, baseURI)
This function returns an object that implements the DOMInput interface.
The publicId parameter is a String.
The systemId parameter is a String.
The baseURI parameter is a String.

Properties of the DOMParserFilter Constructor function:
DOMParserFilter.FILTER_ACCEPT

The value of the constant DOMParserFilter.FILTER_ACCEPT is 1.
DOMParserFilter.FILTER_REJECT

The value of the constant DOMParserFilter.FILTER_REJECT is 2.
DOMParserFilter.FILTER_SKIP

The value of the constant DOMParserFilter.FILTER_SKIP is 3.
DOMParserFilter.FILTER_INTERRUPT

The value of the constant DOMParserFilter.FILTER_INTERRUPT is 4.

50

Appendix C: ECMAScript Language Binding

Objects that implement the DOMParserFilter interface:
Properties of objects that implement the DOMParserFilter interface:

whatToShow
This read-only property is a Number.

Functions of objects that implement the DOMParserFilter interface:
startElement(element)

This function returns a Number.
The element parameter is an object that implements the Element interface.

acceptNode(node)
This function returns a Number.
The node parameter is an object that implements the Node interface.

Objects that implement the LSProgressEvent interface:
Objects that implement the LSProgressEvent interface have all properties and functions of the
Event interface as well as the properties and functions defined below.
Properties of objects that implement the LSProgressEvent interface:

input
This read-only property is an object that implements the DOMInput interface.

position
This read-only property is a Number.

totalSize
This read-only property is a Number.

Objects that implement the LSLoadEvent interface:
Objects that implement the LSLoadEvent interface have all properties and functions of the Event
interface as well as the properties and functions defined below.
Properties of objects that implement the LSLoadEvent interface:

newDocument
This read-only property is an object that implements the Document interface.

input
This read-only property is an object that implements the DOMInput interface.

Objects that implement the DOMSerializer interface:
Properties of objects that implement the DOMSerializer interface:

config
This read-only property is an object that implements the DOMConfiguration interface.

newLine
This property is a String.

filter
This property is an object that implements the DOMSerializerFilter interface.

Functions of objects that implement the DOMSerializer interface:
write(node, destination)

This function returns a Boolean.
The node parameter is an object that implements the Node interface.
The destination parameter is an object that implements the DOMOutput interface.

writeURI(node, URI)
This function returns a Boolean.
The node parameter is an object that implements the Node interface.
The URI parameter is a String.

51

Appendix C: ECMAScript Language Binding

writeToString(node)
This function returns a String.
The node parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

Objects that implement the DOMOutput interface:
Properties of objects that implement the DOMOutput interface:

byteStream
This property is an object that implements the DOMOutputStream interface.

systemId
This property is a String.

encoding
This property is a String.

Objects that implement the DOMSerializerFilter interface:
Objects that implement the DOMSerializerFilter interface have all properties and functions of the
NodeFilter interface as well as the properties and functions defined below.
Properties of objects that implement the DOMSerializerFilter interface:

whatToShow
This read-only property is a Number.

Objects that implement the DocumentLS interface:
Properties of objects that implement the DocumentLS interface:

async
This property is a Boolean and can raise an object that implements DOMException
interface on setting.

Functions of objects that implement the DocumentLS interface:
abort()

This function has no return value.
load(uri)

This function returns a Boolean.
The uri parameter is a String.

loadXML(source)
This function returns a Boolean.
The source parameter is a String.

saveXML(node)
This function returns a String.
The node parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

Objects that implement the ElementLS interface:
Properties of objects that implement the ElementLS interface:

markupContent
This property is a String.

52

Appendix C: ECMAScript Language Binding

Appendix D: Acknowledgements
Many people contributed to the DOM specifications (Level 1, 2 or 3), including members of the DOM
Working Group and the DOM Interest Group. We especially thank the following:

Andrew Watson (Object Management Group), Andy Heninger (IBM), Angel Diaz (IBM), Arnaud Le
Hors (W3C and IBM), Ashok Malhotra (IBM and Microsoft), Ben Chang (Oracle), Bill Smith (Sun), Bill
Shea (Merrill Lynch), Bob Sutor (IBM), Chris Lovett (Microsoft), Chris Wilson (Microsoft), David
Brownell (Sun), David Ezell (Hewlett Packard Company), David Singer (IBM), Dimitris Dimitriadis
(Improve AB and invited expert), Don Park (invited), Elena Litani (IBM), Eric Vasilik (Microsoft), Gavin
Nicol (INSO), Ian Jacobs (W3C), James Clark (invited), James Davidson (Sun), Jared Sorensen (Novell),
Jeroen van Rotterdam (X-Hive Corporation), Joe Kesselman (IBM), Joe Lapp (webMethods), Joe Marini
(Macromedia), Johnny Stenback (Netscape/AOL), Jon Ferraiolo (Adobe), Jonathan Marsh (Microsoft),
Jonathan Robie (Texcel Research and Software AG), Kim Adamson-Sharpe (SoftQuad Software Inc.),
Lauren Wood (SoftQuad Software Inc., former Chair), Laurence Cable (Sun), Mark Davis (IBM), Mark
Scardina (Oracle), Martin Dürst (W3C), Mary Brady (NIST), Mick Goulish (Software AG), Mike
Champion (Arbortext and Software AG), Miles Sabin (Cromwell Media), Patti Lutsky (Arbortext), Paul
Grosso (Arbortext), Peter Sharpe (SoftQuad Software Inc.), Phil Karlton (Netscape), Philippe Le Hégaret
(W3C, W3C team contact and former Chair), Ramesh Lekshmynarayanan (Merrill Lynch), Ray Whitmer
(iMall, Excite@Home, and Netscape/AOL, Chair), Rezaur Rahman (Intel), Rich Rollman (Microsoft),
Rick Gessner (Netscape), Rick Jelliffe (invited), Rob Relyea (Microsoft), Scott Isaacs (Microsoft), Sharon
Adler (INSO), Steve Byrne (JavaSoft), Tim Bray (invited), Tim Yu (Oracle), Tom Pixley
(Netscape/AOL), Vidur Apparao (Netscape), Vinod Anupam (Lucent).

Thanks to all those who have helped to improve this specification by sending suggestions and corrections
(Please, keep bugging us with your issues!).

Special thanks to the DOM Conformance Test Suites contributors: Curt Arnold, Fred Drake, Mary Brady
(NIST), Rick Rivello (NIST), Robert Clary (Netscape).

D.1 Production Systems
This specification was written in XML. The HTML, OMG IDL, Java and ECMAScript bindings were all
produced automatically.

Thanks to Joe English, author of cost, which was used as the basis for producing DOM Level 1. Thanks
also to Gavin Nicol, who wrote the scripts which run on top of cost. Arnaud Le Hors and Philippe Le
Hégaret maintained the scripts.

After DOM Level 1, we used Xerces as the basis DOM implementation and wish to thank the authors.
Philippe Le Hégaret and Arnaud Le Hors wrote the Java programs which are the DOM application.

Thanks also to Jan Kärrman, author of html2ps, which we use in creating the PostScript version of the
specification.

53

Appendix D: Acknowledgements

http://www.w3.org/DOM/Test
http://www.flightlab.com/cost
http://xml.apache.org/xerces-j
http://dev.w3.org/cvsweb/java/classes/org/w3c/tools/specgenerator/
http://www.tdb.uu.se/~jan/html2ps.html

54

D.1 Production Systems

Glossary
Editors:

Arnaud Le Hors, W3C
Robert S. Sutor, IBM Research (for DOM Level 1)

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

16-bit unit
The base unit of a DOMString. This indicates that indexing on a DOMString occurs in units of 16
bits. This must not be misunderstood to mean that a DOMString can store arbitrary 16-bit units. A
DOMString is a character string encoded in UTF-16; this means that the restrictions of UTF-16 as
well as the other relevant restrictions on character strings must be maintained. A single character, for
example in the form of a numeric character reference, may correspond to one or two 16-bit units.

API
An API is an Application Programming Interface, a set of functions or methods used to access some
functionality.

namespace well-formed
A node is a namespace well-formed XML node if it is a well-formed [p.55] node, and follow the
productions and namespace constraints. If [XML 1.0] is used, the constraints are defined in [XML
Namespaces]. If [XML 1.1] is used, the constraints are defined in [XML Namespaces 1.1].

read only node
A read only node is a node that is immutable. This means its list of children, its content, and its
attributes, when it is an element, cannot be changed in any way. However, a read only node can
possibly be moved, when it is not itself contained in a read only node.

schema
A schema defines a set of structural and value constraints applicable to XML documents. Schemas
can be expressed in schema languages, such as DTD, XML Schema, etc.

well-formed
A node is a well-formed XML node if its serialized form, without doing any transformation during its
serialization, matches its respective production in [XML 1.0] or [XML 1.1] (depending on the XML
version in use) with all well-formedness constraints related to that production, and if the entities
which are referenced within the node are also well-formed. If namespaces for XML are in use, the
node must also be namespace well-formed [p.55] .

55

Glossary

56

Glossary

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

F.1 Normative references
[CharModel]

Character Model for the World Wide Web 1.0, M. Dürst, F. Yergeau, R. Ishida, M. Wolf, A. Freytag,
T. Texin, Editors. World Wide Web Consortium, April 2002. This version of the Character Model for
the World Wide Web Specification is http://www.w3.org/TR/2002/WD-charmod-20020430. The
latest version of Character Model is available at http://www.w3.org/TR/charmod.

[DOM Level 2 Core]
Document Object Model Level 2 Core Specification, A. Le Hors, et al., Editors. World Wide Web
Consortium, 13 November 2000. This version of the DOM Level 2 Core Recommendation is
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113. The latest version of DOM Level
2 Core is available at http://www.w3.org/TR/DOM-Level-2-Core.

[DOM Level 3 Core]
Document Object Model Level 3 Core Specification, A. Le Hors, et al., Editors. World Wide Web
Consortium, June 2003. This version of the Document Object Model Level 3 Core Specification is
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609. The latest version of DOM Level 3
Core is available at http://www.w3.org/TR/DOM-Level-3-Core.

[DOM Level 3 Events]
Document Object Model Level 3 Events Specification, P. Le Hégaret, T. Pixley, Editors. World Wide
Web Consortium, March 2003. This version of the Document Object Model Level 3 Events
Specification is http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331. The latest
version of Document Object Model Level 3 Events is available at
http://www.w3.org/TR/DOM-Level-3-Events.

[DOM Level 2 Traversal and Range]
Document Object Model Level 2 Traversal and Range Specification, J. Kesselman, J. Robie, M.
Champion, P. Sharpe, V. Apparao, L. Wood, Editors. World Wide Web Consortium, 13 November
2000. This version of the Document Object Model Level 2 Traversal and Range Recommendation is
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113. The latest version of
Document Object Model Level 2 Traversal and Range is available at
http://www.w3.org/TR/DOM-Level-2-Traversal-Range.

[ECMAScript]
ECMAScript Language Specification, Third Edition. European Computer Manufacturers Association,
Standard ECMA-262, December 1999. This version of the ECMAScript Language is available from
http://www.ecma-international.org/.

[ISO/IEC 10646]
ISO/IEC 10646-2000 (E). Information technology - Universal Multiple-Octet Coded Character Set
(UCS) - Part 1: Architecture and Basic Multilingual Plane, as, from time to time, amended, replaced
by a new edition or expanded by the addition of new parts. [Geneva]: International Organization for
Standardization, 2000. See also International Organization for Standardization, available at
http://www.iso.ch, for the latest version.

57

References

http://www.w3.org/TR
http://www.w3.org/TR/2002/WD-charmod-20020430
http://www.w3.org/TR/charmod
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113
http://www.w3.org/TR/DOM-Level-2-Traversal-Range
http://www.w3.org/TR/DOM-Level-2-Traversal-Range
http://www.iso.ch/

[Java]
The Java Language Specification, J. Gosling, B. Joy, and G. Steele, Authors. Addison-Wesley,
September 1996. Available at http://java.sun.com/docs/books/jls

[OMG IDL]
"OMG IDL Syntax and Semantics" defined in The Common Object Request Broker: Architecture and
Specification, version 2, Object Management Group. The latest version of CORBA version 2.0 is
available at http://www.omg.org/technology/documents/formal/corba_2.htm.

[IETF RFC 2396]
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter,
Authors. Internet Engineering Task Force, August 1998. Available at
http://www.ietf.org/rfc/rfc2396.txt.

[IETF RFC 3023]
XML Media Types, M. Murata, S. St.Laurent, and D. Kohn, Editors. Internet Engineering Task Force,
January 2001. Available at http://www.ietf.org/rfc/rfc3023.txt.

[SAX]
Simple API for XML, D. Megginson and D. Brownell, Maintainers. Available at
http://www.saxproject.org/.

[Unicode]
The Unicode Standard, Version 3, ISBN 0-201-61633-5, as updated from time to time by the
publication of new versions. The Unicode Consortium, 2000. See also Versions of the Unicode
Standard, available at http://www.unicode.org/unicode/standard/versions, for latest version and
additional information on versions of the standard and of the Unicode Character Database.

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Second Edition), T. Bray, J. Paoli, C. M.
Sperberg-McQueen, and E. Maler, Editors. World Wide Web Consortium, 10 February 1998, revised
6 October 2000. This version of the XML 1.0 Recommendation is
http://www.w3.org/TR/2000/REC-xml-20001006. The latest version of XML 1.0 is available at
http://www.w3.org/TR/REC-xml.

[XML 1.1]
XML 1.1, J. Cowan, Editor. World Wide Web Consortium, October 2002. This version of the XML
1.1 Specification is http://www.w3.org/TR/2002/CR-xml11-20021015. The latest version of XML
1.1 is available at http://www.w3.org/TR/xml11.

[XML Information set]
XML Information Set, J. Cowan and R. Tobin, Editors. World Wide Web Consortium, 24 October
2001. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/2001/REC-xml-infoset-20011024. The latest version of XML Information Set
is available at http://www.w3.org/TR/xml-infoset.

[XML Namespaces]
Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Editors. World Wide Web Consortium,
14 January 1999. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/1999/REC-xml-names-19990114. The latest version of Namespaces in XML
is available at http://www.w3.org/TR/REC-xml-names.

[XML Namespaces 1.1]
Namespaces in XML 1.1, T. Bray, D. Hollander, A. Layman, and R. Tobin, Editors. World Wide
Web Consortium, December 2002. This version of the XML Information Set Specification is
http://www.w3.org/TR/2002/CR-xml-names11-20021218/. The latest version of Namespaces in

58

F.1 Normative references

http://java.sun.com/docs/books/jls
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.saxproject.org/
http://www.unicode.org/unicode/standard/versions
http://www.unicode.org/unicode/standard/versions
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2002/CR-xml11-20021015/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/2002/CR-xml-names11-20021218/
http://www.w3.org/TR/xml-names11/

XML is available at http://www.w3.org/TR/xml-names11/.

F.2 Informative references
[Canonical XML]

Canonical XML Version 1.0, J. Boyer, Editor. World Wide Web Consortium, 15 March 2001. This
version of the Canonical XML Recommendation is
http://www.w3.org/TR/2001/REC-xml-c14n-20010315. The latest version of Canonical XML is
available at http://www.w3.org/TR/xml-c14n.

[JAXP]
Java API for XML Processing (JAXP). Sun Microsystems. Available at
http://java.sun.com/xml/jaxp/.

[IETF RFC 2616]
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, et al., Authors. Internet Engineering Task
Force, June 1999. Available at http://www.ietf.org/rfc/rfc2616.txt.

[XML Schema Part 1]
XML Schema Part 1: Structures, H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, Editors.
World Wide Web Consortium, 2 May 2001. This version of the XML Part 1 Recommendation is
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502. The latest version of XML Schema Part
1 is available at http://www.w3.org/TR/xmlschema-1.

59

F.2 Informative references

http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/xml-c14n
http://java.sun.com/xml/jaxp/
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/

60

F.2 Informative references

Index
"ignore-unknown-character-denormalizations"

"canonical-form" "charset-overrides-xml-encoding" "disallow-doctype" 13, 16

"discard-default-content" 27, 29 "format-pretty-print" 29, 30
"ignore-unknown-character-denormalizations"
13, 17

"infoset" "namespaces" "normalize-characters"

"supported-media-types-only" 13, 17 "xml-declaration" 27, 30

16-bit unit 10, 10, 21, 21, 34, 55

[attributes]

abort 18, 36 acceptNode ACTION_APPEND_AS_CHILDREN

ACTION_INSERT_AFTER ACTION_INSERT_BEFORE ACTION_REPLACE

ACTION_REPLACE_CHILDREN API 9, 55 async 16, 36

baseURI busy byteStream 21, 34

Canonical XML 29, 59 certified characterStream 21, 34

CharModel 27, 29, 57 config 16, 29 createDOMInput

createDOMParser createDOMSerializer

DocumentLS DOM Level 2 Core 9, 11, 27, 57
DOM Level 2 Traversal and Range 24, 34, 35,
57

DOM Level 3 Core 11, 11, 13, 16, 27, 29, 35,
38, 57

DOM Level 3 Events 26, 36, 57 DOMImplementationLS

DOMInput DOMInputStream DOMOutput

DOMOutputStream DOMParser DOMParserFilter

DOMReader DOMResourceResolver DOMSerializer

DOMSerializerFilter DOMWriter

ECMAScript ElementLS encoding 21, 34

filter 17, 31 FILTER_ACCEPT FILTER_INTERRUPT

FILTER_REJECT FILTER_SKIP

61

Index

IETF RFC 2396 18, 21, 21, 22, 34, 58 IETF RFC 2616 16, 21, 34, 59 IETF RFC 3023 16, 58

input 26, 27 ISO/IEC 10646 10, 10, 21, 34, 57

Java JAXP 9, 59

load 36, 14 loadXML LSLoadEvent

LSProgressEvent

markupContent MODE_ASYNCHRONOUS MODE_SYNCHRONOUS

namespace well-formed newDocument newLine

OMG IDL

parse parseURI parseWithContext

position progress publicId

read only node 19, 55 resolveResource

saveXML SAX 9, 22, 58 schema 12, 55

startElement stringData systemId 21, 34

totalSize

Unicode 10, 10, 21, 34, 58

well-formed 25, 24, 27, 55 whatToShow 24, 35 write

writeToString writeURI

XML 1.0 12, 16, 21, 29, 31, 34, 55, 55, 58
XML 1.1 16, 21, 29, 31, 55, 55,
58

XML Information set 14, 58

XML Namespaces 16, 55, 58 XML Namespaces 1.1 55, 58 XML Schema Part 1 12, 59

62

Index

	Document Object Model †DOM‡ Level 3 Load and Save Specification
	Version 1.0
	W3C Working Draft 19 June 2003
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	W3C Copyright Notices and Licenses
	W3C® Document Copyright Notice and License
	W3C® Software Copyright Notice and License
	W3C® Short Software Notice

	1. Document Object Model Load and Save
	1.1 Overview of the Interfaces
	1.2 Basic types
	1.2.1 The DOMInputStream type
	1.2.2 The DOMOutputStream type
	1.2.3 The DOMReader type
	1.2.4 The DOMWriter type

	1.3 Fundamental interfaces
	1.4 Convenience Interfaces

	Appendix A: IDL Definitions
	
	ls.idl:

	Appendix B: Java Language Binding
	
	org/w3c/dom/ls/DOMImplementationLS.java:
	org/w3c/dom/ls/DOMParser.java:
	org/w3c/dom/ls/DOMInput.java:
	org/w3c/dom/ls/DOMResourceResolver.java:
	org/w3c/dom/ls/DOMParserFilter.java:
	org/w3c/dom/ls/LSProgressEvent.java:
	org/w3c/dom/ls/LSLoadEvent.java:
	org/w3c/dom/ls/DOMSerializer.java:
	org/w3c/dom/ls/DOMOutput.java:
	org/w3c/dom/ls/DOMSerializerFilter.java:
	org/w3c/dom/ls/DocumentLS.java:
	org/w3c/dom/ls/ElementLS.java:

	Appendix C: ECMAScript Language Binding
	Appendix D: Acknowledgements
	D.1 Production Systems

	Glossary
	References
	F.1 Normative references
	F.2 Informative references

	Index

