
Document Object Model (DOM) Level 3 Load and Save 
Specification

Version 1.0

W3C Working Draft 26 February 2003
This version: 

http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030226 
Latest version: 

http://www.w3.org/TR/DOM-Level-3-LS 
Previous version: 

http://www.w3.org/TR/2002/WD-DOM-Level-3-LS-20020725

Editors: 
Johnny Stenback, Netscape 
Andy Heninger, IBM (until March 2001)

This document is also available in these non-normative formats: PostScript file, PDF file, plain text, ZIP 
file, and single HTML file.

Copyright ©2003 W3C®  (MIT, ERCIM, Keio), All Rights Reserved. W3C liability , trademark, document 
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Load and Save Level 3, a platform- and
language-neutral interface that allows programs and scripts to dynamically access and update the content,
structure and style of documents.

Status of this document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. The latest status of this document series is maintained at the W3C.

This is a W3C Working Draft for review by W3C members and other interested parties. This DOM
module has been dissociated from the Abstract Schema DOM module since the modules were independent
and the latter is no longer a work in progress.

1

Document Object Model (DOM) Level 3 Load and Save Specification

http://www.w3.org/
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030226
http://www.w3.org/TR/DOM-Level-3-LS
http://www.w3.org/TR/2002/WD-DOM-Level-3-LS-20020725
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030226/DOM3-LS.ps
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030226/DOM3-LS.pdf
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030226/DOM3-LS.txt
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030226/DOM3-LS.zip
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030226/DOM3-LS.zip
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030226/DOM3-LS.html
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software


It is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in
progress". This is work in progress and does not imply endorsement by, or the consensus of, either W3C
or members of the DOM working group.

Comments on this document are invited and are to be sent to the public mailing list www-dom@w3.org.
An archive is available at http://lists.w3.org/Archives/Public/www-dom/.

This document has been produced as part of the W3C DOM Activity. The authors of this document are
the DOM WG members.

Patent disclosures relevant to this specification may be found on the Working Group’s patent disclosure 
page.

A list of current W3C Recommendations and other technical documents can be found at 
http://www.w3.org/TR.

Table of contents
................ 3Expanded Table of Contents 
.............. 5W3C Copyright Notices and Licenses

............. 91. Document Object Model Load and Save

................ 49Appendix A: IDL Definitions 

.............. 53Appendix B: Java Language Binding 

............ 59Appendix C: ECMAScript Language Binding 

............... 63Appendix D: Acknowledgements 

.................... 65Glossary 

.................... 67References 

..................... 69Index

2

Table of contents

http://lists.w3.org/Archives/Public/www-dom/
http://www.w3.org/DOM/Activity.html
http://www.w3.org/2002/07/08-IPR-statements.html
http://www.w3.org/2002/07/08-IPR-statements.html
http://www.w3.org/TR/


Expanded Table of Contents
................ 3Expanded Table of Contents 
.............. 5W3C Copyright Notices and Licenses 
.......... 5W3C® Document Copyright Notice and License 
........... 6W3C® Software Copyright Notice and License 
............... 7W3C® Short Software Notice

............. 91. Document Object Model Load and Save 

.................. 91.1. Overview 

............. 91.1.1. Overview of the Interfaces 

............. 91.1.2. The DOMInputStream type 

............ 101.1.3. The DOMOutputStream type 

.............. 101.1.4. The DOMReader type

............... 101.2. Fundamental interfaces 

................. 131.3. Load Interfaces 

................. 251.4. Save Interfaces 

............... 301.5. Convenience Interfaces 

.................. 341.6. Issue List 

................ 341.6.1. Open Issues 

............... 341.6.2. Resolved Issues

................ 49Appendix A: IDL Definitions 

.............. 53Appendix B: Java Language Binding 

............ 59Appendix C: ECMAScript Language Binding 

............... 63Appendix D: Acknowledgements 

................ 63D.1. Production Systems

.................... 65Glossary 

.................... 67References 

................ 671. Normative references 

................ 682. Informative references

..................... 69Index

3

Expanded Table of Contents



4

Expanded Table of Contents



W3C Copyright Notices and Licenses
Copyright © 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

This document is published under the W3C® Document Copyright Notice and License [p.5] . The
bindings within this document are published under the W3C® Software Copyright Notice and License 
[p.6] . The software license requires "Notice of any changes or modifications to the W3C files, including
the date changes were made." Consequently, modified versions of the DOM bindings must document that
they do not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no
longer be ’w3c.org’; in the case of the Java language binding, the package names can no longer be in the
’org.w3c’ package.

W3C ®  Document Copyright Notice and License
Note: This section is a copy of the W3C®  Document Notice and License and could be found at 
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231.

Copyright © 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

Public documents on the W3C site are provided by the copyright holders under the following license. By
using and/or copying this document, or the W3C document from which this statement is linked, you (the
licensee) agree that you have read, understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the W3C document from which this
statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided
that you include the following on ALL copies of the document, or portions thereof, that you use:

1.  A link or URL to the original W3C document. 
2.  The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice (hypertext is

preferred, but a textual representation is permitted) of the form: "Copyright © [$date-of-document] 
World Wide Web Consortium, (Massachusetts Institute of Technology, European Research
Consortium for Informatics and Mathematics, Keio University). All Rights Reserved. 
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231" 

3.  If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE  should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those 

5

W3C Copyright Notices and Licenses

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/Consortium/Legal/IPR-FAQ


requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C ®  Software Copyright Notice and License
Note: This section is a copy of the W3C®  Software Copyright Notice and License and could be found at 
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Copyright © 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

This work (and included software, documentation such as READMEs, or other related items) is being
provided by the copyright holders under the following license. By obtaining, using and/or copying this
work, you (the licensee) agree that you have read, understood, and will comply with the following terms
and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without
modification, for any purpose and without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the software and documentation or portions thereof, including modifications:

1.  The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. 
2.  Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the 

W3C® Short Software Notice [p.7] should be included (hypertext is preferred, text is permitted)
within the body of any redistributed or derivative code. 

3.  Notice of any changes or modifications to the files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

6

W3C® Software Copyright Notice and License

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/


THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR 
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

W3C ®  Short Software Notice
Note: This section is a copy of the W3C®  Short Software Notice and could be found at 
http://www.w3.org/Consortium/Legal/2002/copyright-software-short-notice-20021231

Copyright © 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of Technology, 
European Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.
This work is distributed under the W3C®  Software License [1] in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.

[1] http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

7

W3C® Short Software Notice

http://www.w3.org/Consortium/Legal/2002/copyright-software-short-notice-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/


8

W3C® Short Software Notice



1. Document Object Model Load and Save
Editors: 

Johnny Stenback, Netscape 
Andy Heninger, IBM (until March 2001)

1.1. Overview
This section defines a set of interfaces for loading and saving document objects as defined in [DOM Level
3 Core]. The functionality specified in this section (the Load and Save functionality) is sufficient to allow
software developers and web script authors to load and save XML content inside conforming products.
The DOM Load and Save API [p.65] also allows filtering of XML content using only DOM API calls;
access and manipulation of the Document is defined in [DOM Level 3 Core].

The proposal for loading is influenced by the Java APIs for XML Processing [JAXP] and by SAX2 
[SAX].

1.1.1. Overview of the Interfaces

The list of interfaces involved with the Loading and Saving XML documents is:

DOMImplementationLS [p.10] -- A new DOMImplementation interface that provides the
factory methods for creating the objects required for loading and saving. 
DOMBuilder [p.13] -- A parser interface. 
DOMInputSource [p.18] -- Encapsulate information about the XML document to be loaded. 
DOMEntityResolver [p.20] -- During loading, provides a way for applications to redirect
references to external entities. 
DOMBuilderFilter [p.21] -- Provide the ability to examine and optionally remove Element
nodes as they are being processed during the parsing of a document. 
DOMWriter [p.25] -- An interface for writing out or serializing DOM documents. 
DocumentLS [p.31] -- Provides a client or browser style interface for loading and saving. 
ParseErrorEvent -- ParseErrorEvent is the event that is fired if there’s an error in the XML
document being parsed using the methods of DocumentLS.

1.1.2. The DOMInputStream type

To ensure interoperability, the DOM Load and Save specifies the following:

Type Definition DOMInputStream 

A DOMInputStream [p.9] represents a reference to a byte stream source of an XML input.

IDL Definition 

9

1. Document Object Model Load and Save



typedef Object DOMInputStream;

Note: Even though the DOM uses the type DOMInputStream [p.9] , bindings may use different types.
For example, in Java DOMInputStream is bound to the java.io.InputStream type, while in
ECMAScript DOMInputStream is bound to Object.

1.1.3. The DOMOutputStream type

To ensure interoperability, the DOM Load and Save specifies the following:

Type Definition DOMOutputStream 

A DOMOutputStream [p.10] represents a byte stream destination for the XML output.

IDL Definition 

typedef Object DOMOutputStream;

Note: Even though the DOM uses the type DOMOutputStream [p.10] , bindings may use different
types. For example, in Java DOMOutputStream is bound to the java.io.OutputStream type,
while in ECMAScript DOMOutputStream is bound to Object.

1.1.4. The DOMReader type

To ensure interoperability, the DOM Load and Save specifies the following:

Type Definition DOMReader 

A DOMReader [p.10] represents a character stream for the XML input.

IDL Definition 

typedef Object DOMReader;

Note: Even though the DOM uses the type DOMReader [p.10] , bindings may use different types. For
example, in Java DOMReader is bound to the java.io.Reader type, while in ECMAScript 
DOMReader is NOT bound, and therefore as no recommended meaning in ECMAScript.

1.2. Fundamental interfaces
The interface within this section is considered fundamental, and must be fully implemented by all
conforming implementations of the DOM Load and Save module.

Interface DOMImplementationLS 

DOMImplementationLS contains the factory methods for creating objects that implement the 
DOMBuilder [p.13] (parser) and DOMWriter [p.25] (serializer) interfaces.

10

1.2. Fundamental interfaces



The expectation is that an instance of the DOMImplementationLS interface can be obtained by
using binding-specific casting methods on an instance of the DOMImplementation interface or, if
the Document supports the feature "Core" version "3.0" defined in [DOM Level 3 Core], by
using the method DOMImplementation.getFeature with parameter values "LS-Load" and 
"3.0" (respectively).

IDL Definition 

interface DOMImplementationLS {

  // DOMIMplementationLSMode
  const unsigned short      MODE_SYNCHRONOUS               = 1;
  const unsigned short      MODE_ASYNCHRONOUS              = 2;

  DOMBuilder         createDOMBuilder(in unsigned short mode, 
                                      in DOMString schemaType)
                                        raises(DOMException);
  DOMWriter          createDOMWriter();
  DOMInputSource     createDOMInputSource();
};

Definition group DOMIMplementationLSMode 

An integer indicating which type of mode this is.

Defined Constants 
MODE_ASYNCHRONOUS 

Create an asynchronous DOMBuilder [p.13] . 
MODE_SYNCHRONOUS 

Create a synchronous DOMBuilder [p.13] .
Methods 

createDOMBuilder 
Create a new DOMBuilder [p.13] . The newly constructed parser may then be configured
by means of its setFeature method, and used to parse documents by means of its 
parse method. 
Parameters 
mode of type unsigned short 

The mode argument is either MODE_SYNCHRONOUS or MODE_ASYNCHRONOUS, if 
mode is MODE_SYNCHRONOUS then the DOMBuilder [p.13] that is created will
operate in synchronous mode, if it’s MODE_ASYNCHRONOUS then the DOMBuilder
that is created will operate in asynchronous mode.

schemaType of type DOMString 
An absolute URI representing the type of the schema language used during the load of
a Document using the newly created DOMBuilder [p.13] . Note that no lexical
checking is done on the absolute URI. In order to create a DOMBuilder for any kind
of schema types (i.e. the DOMBuilder will be free to use any schema found), use the
value null. 

11

1.2. Fundamental interfaces



Note: For W3C XML Schema [XML Schema Part 1], applications must use the value 
"http://www.w3.org/2001/XMLSchema". For XML DTD [XML 1.0],
applications must use the value "http://www.w3.org/TR/REC-xml". Other
Schema languages are outside the scope of the W3C and therefore should recommend
an absolute URI in order to use this method.

Return Value 

DOMBuilder 
[p.13] 

The newly created DOMBuilder object. This DOMBuilder is
either synchronous or asynchronous depending on the value of the 
mode argument.

Note: By default, the newly created DOMBuilder does not contain
a DOMErrorHandler, i.e. the value of the errorHandler is 
null. However, implementations may provide a default error
handler at creation time. In that case, the initial value of the 
errorHandler attribute on the new created DOMBuilder
contains a reference to the default error handler.

Exceptions 

DOMException NOT_SUPPORTED_ERR: Raised if the requested mode or
schema type is not supported.

createDOMInputSource 
Create a new "empty" DOMInputSource [p.18] . 
Return Value 

DOMInputSource [p.18] The newly created DOMInputSource object.

No Parameters
No Exceptions

createDOMWriter 
Create a new DOMWriter [p.25] object. DOMWriters are used to serialize a DOM tree
back into an XML document. 
Return Value 

DOMWriter 
[p.25] 

The newly created DOMWriter object.

Note: By default, the newly created DOMWriter does not contain a 
DOMErrorHandler, i.e. the value of the errorHandler is 
null. However, implementations may provide a default error
handler at creation time. In that case, the initial value of the 
errorHandler attribute on the new created DOMWriter contains
a reference to the default error handler.

12

1.2. Fundamental interfaces



No Parameters
No Exceptions

1.3. Load Interfaces
A DOM application may use the hasFeature(feature, version) method of the 
DOMImplementation interface with parameter values "LS-Load" and "3.0" (respectively) to determine
whether or not these interfaces are supported by the implementation. In order to fully support them, an
implementation must also support the "Core" feature defined in the DOM Level 3 Core specification 
[DOM Level 3 Core].

A DOM application may use the hasFeature(feature, version) method of the 
DOMImplementation interface with parameter values "LS-Load-Async" and "3.0" (respectively) to
determine whether or not the asynchronous mode is supported by the implementation. In order to fully
support the asyncrhonous mode, an implementation must also support the "LS-Load" feature defined in
this section.

Please, refer to additional information about conformance in the DOM Level 3 Core specification [DOM
Level 3 Core].

Interface DOMBuilder 

A interface to an object that is able to build a DOM tree from various input sources.

DOMBuilder provides an API for parsing XML documents and building the corresponding DOM
document tree. A DOMBuilder instance is obtained by invoking the 
DOMImplementationLS.createDOMBuilder [p.11] method.

As specified in [DOM Level 3 Core], when a document is first made available via the DOMBuilder:

there is only one Text node for each block of text. The Text nodes are in "normal" form: only
structure (e.g. elements, comments, processing instructions, CDATA sections, and entity
references) separates Text nodes, i.e., there are neither adjacent nor empty Text nodes. 
it is expected that the value and nodeValue attributes of an Attr node initially return the 
XML 1.0 normalized value. However, if the boolean parameters validate-if-schema and 
datatype-normalization are set to true, depending on the attribute normalization
used, the attribute values may differ from the ones obtained by the XML 1.0 attribute
normalization. If the boolean parameter datatype-normalization is set to false, the
XML 1.0 attribute normalization is guaranteed to occur, and if attributes list does not contain
namespace declarations, the attributes attribute on Element node represents the property
[attributes] defined in [XML Information set]. 
Issue Infoset: 

XML Schemas does not modify the XML attribute normalization but represents their
normalized value in an other information item property: [schema normalized value]
Resolution: XML Schema normalization only occurs if datatype-normalization is
set to true.

13

1.3. Load Interfaces

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/introduction.html#ID-Conformance
http://www.w3.org/TR/2000/REC-xml-20001006#AVNormalize


Asynchronous DOMBuilder objects are expected to also implement the 
events::EventTarget interface so that event listeners can be registered on asynchronous 
DOMBuilder objects.

Events supported by asynchronous DOMBuilder objects are:

load: The document that’s being loaded is completely parsed, see the definition of 
LSLoadEvent [p.24] 
progress: Progress notification, see the definition of LSProgressEvent [p.24] 

Note: All events defined in this specification use the namespace URI 
"http://www.w3.org/2002/DOMLS".

Issue Parse-Security: 
ED: State that a parse operation may fail due to security reasons (DOM LS telecon 20021202).

IDL Definition 

interface DOMBuilder {
  readonly attribute DOMConfiguration config;
           attribute DOMBuilderFilter filter;
  readonly attribute boolean         async;
  readonly attribute boolean         busy;
  Document           parse(in DOMInputSource is)
                                        raises(DOMException);
  Document           parseURI(in DOMString uri)
                                        raises(DOMException);

  // ACTION_TYPES
  const unsigned short      ACTION_APPEND_AS_CHILDREN      = 1;
  const unsigned short      ACTION_REPLACE_CHILDREN        = 2;
  const unsigned short      ACTION_INSERT_BEFORE           = 3;
  const unsigned short      ACTION_INSERT_AFTER            = 4;
  const unsigned short      ACTION_REPLACE                 = 5;

  Node               parseWithContext(in DOMInputSource is, 
                                      in Node cnode, 
                                      in unsigned short action)
                                        raises(DOMException);
  void               abort();
};

Definition group ACTION_TYPES 

A set of possible actions for the parseWithContext method.

Defined Constants 
ACTION_APPEND_AS_CHILDREN 

Append the result of the parse operation as children of the context node. For this
action to work, the context node must be an Element or a DocumentFragment. 

ACTION_INSERT_AFTER 
Insert the result of the parse operation as the immediately following sibling of the
context node. For this action to work the context node’s parent must be an Element

14

1.3. Load Interfaces

http://www.w3.org/2002/DOMLS


or a DocumentFragment. 
ACTION_INSERT_BEFORE 

Insert the result of the parse operation as the immediately preceeding sibling of the
context node. For this action to work the context node’s parent must be an Element
or a DocumentFragment. 

ACTION_REPLACE 
Replace the context node with the result of the parse operation. For this action to
work, the context node must have a parent, and the parent must be an Element or a 
DocumentFragment. 

ACTION_REPLACE_CHILDREN 
Replace all the children of the context node with the result of the parse operation. For
this action to work, the context node must be an Element or a 
DocumentFragment.

Attributes 
async of type boolean, readonly 

True if the DOMBuider is asynchronous, false if it is synchronous.
busy of type boolean, readonly 

True if the DOMBuider is currently busy loading a document, otherwise false.
config of type DOMConfiguration, readonly 

The configuration used when a document is loaded. The values of parameters used to load
a document are not passed automatically to the DOMConfiguration object used by the 
Document nodes. The DOM application is responsible for passing the parameters values
from the DOMConfiguration object referenced from the DOMBuilder to the 
DOMConfiguration object referenced from the Document node.
In addition to the boolean parameters and parameters recognized in the Core module, the 
DOMConfiguration objects for DOMBuider adds the following boolean parameters: 
"entity-resolver" 

[required]
A DOMEntityResolver [p.20] object. If this parameter has been specified, each
time a reference to an external entity is encountered the implementation will pass the
public and system IDs to the entity resolver, which can then specify the actual source
of the entity.
If this parameter is not set, the resolution of entities in the document is
implementation dependent. 

Note: When the features "LS-Load" or "LS-Save" are supported, this parameter may
also be supported by the DOMConfiguration object referenced from the 
Document node.

"certified" 
true 

[optional]
Assume, when XML 1.1 is supported, that the input is certified (see section 2.13
in [XML 1.1]). 

false 
[required] (default)
Don’t assume that the input is certified (see section 2.13 in [XML 1.1]).

15

1.3. Load Interfaces



"charset-overrides-xml-encoding" 
true 

[required] (default)
If a higher level protocol such as HTTP [IETF RFC 2616] provides an indication
of the character encoding of the input stream being processed, that will override
any encoding specified in the XML declaration or the Text declaration (see also 
[XML 1.0] 4.3.3 "Character Encoding in Entities"). Explicitly setting an
encoding in the DOMInputSource [p.18] overrides encodings from the
protocol. 

false 
[required]
Any character set encoding information from higher level protocols is ignored by
the parser.

"supported-mediatypes-only" 
true 

[optional]
Check that the media type of the parsed resource is a supported media type. If an
unsupported media type is encountered, a fatal error of type 
"unsupported-media-type" will be raised. The media types defined in [IETF
RFC 3023] must always be accepted. 

false 
[required] (default)
Accept any media type.

"unknown-characters" 
true 

[required] (default)
If, while verifying full normalization when [XML 1.1] is supported, a processor
encounters characters for which it cannot determine the normalization properties,
then the processor will ignore any possible denormalizations caused by these 
characters.
This parameter is ignored [XML 1.0]. 

false 
[optional]
Report an fatal error if a character is encountered for which the processor can not
determine the normalization properties.

filter of type DOMBuilderFilter [p.21] 
When a filter is provided, the implementation will call out to the filter as it is constructing
the DOM tree structure. The filter can choose to remove elements from the document being
constructed, or to terminate the parsing early.
The filter is invoked after the operations requested by the DOMConfiguration
parameters have been applied. For example, if "validate" is set to true, the validation
is done before invoking the filter.

Methods 
abort 

Abort the loading of the document that is currently being loaded by the DOMBuilder. If
the DOMBuilder is currently not busy, a call to this method does nothing. 

16

1.3. Load Interfaces



No Parameters
No Return Value
No Exceptions

parse 
Parse an XML document from a resource identified by a DOMInputSource [p.18] . 
Parameters 
is of type DOMInputSource [p.18] 

The DOMInputSource from which the source of the document is to be read.
Return Value 

Document If the DOMBuilder is a synchronous DOMBuilder, the newly
created and populated Document is returned. If the DOMBuilder is
asynchronous, null is returned since the document object may not yet
be constructed when this method returns.

Exceptions 

DOMException INVALID_STATE_ERR: Raised if the DOMBuilder’s 
DOMBuilder.busy [p.15] attribute is true.

parseURI 
Parse an XML document from a location identified by a URI reference [IETF RFC 2396].
If the URI contains a fragment identifier (see section 4.1 in [IETF RFC 2396]), the
behavior is not defined by this specification, future versions of this specification may
define the behavior. 
Parameters 
uri of type DOMString 

The location of the XML document to be read.
Return Value 

Document If the DOMBuilder is a synchronous DOMBuilder, the newly
created and populated Document is returned. If the DOMBuilder is
asynchronous, null is returned since the document object may not yet
be constructed when this method returns.

Exceptions 

DOMException INVALID_STATE_ERR: Raised if the DOMBuilder’s 
DOMBuilder.busy [p.15] attribute is true.

parseWithContext 
Parse an XML fragment from a resource identified by a DOMInputSource [p.18] and
insert the content into an existing document at the position specified with the 
contextNode and action arguments. When parsing the input stream, the context node

17

1.3. Load Interfaces



is used for resolving unbound namespace prefixes. The context node’s ownerDocument
node is used to resolve default attributes and entity references.
As the new data is inserted into the document, at least one mutation event is fired per
immediate child (or sibling) of context node.
If an error occurs while parsing, the caller is notified through the error handler. 
Parameters 
is of type DOMInputSource [p.18] 

The DOMInputSource from which the source document is to be read. The source
document must be an XML fragment, i.e. anything except a complete XML document,
a DOCTYPE (internal subset), entity declaration(s), notation declaration(s), or XML
or text declaration(s).

cnode of type Node 
The node that is used as the context for the data that is being parsed. This node must
be a Document node, a DocumentFragment node, or a node of a type that is
allowed as a child of an Element node, e.g. it can not be an Attribute node.

action of type unsigned short 
This parameter describes which action should be taken between the new set of node
being inserted and the existing children of the context node. The set of possible
actions is defined above.

Return Value 

Node Return the node that is the result of the parse operation. If the result is more
than one top-level node, the first one is returned.

Exceptions 

DOMException NOT_SUPPORTED_ERR: Raised if the DOMBuilder doesn’t
support this method.

NO_MODIFICATION_ALLOWED_ERR: Raised if the context
node is readonly.

INVALID_STATE_ERR: Raised if the DOMBuilder’s 
DOMBuilder.busy [p.15] attribute is true.

Interface DOMInputSource 

This interface represents a single input source for an XML entity.

This interface allows an application to encapsulate information about an input source in a single
object, which may include a public identifier, a system identifier, a byte stream (possibly with a
specified encoding), and/or a character stream.

The exact definitions of a byte stream and a character stream are binding dependent.

18

1.3. Load Interfaces



There are two places that the application will deliver this input source to the parser: as the argument
to the parse method, or as the return value of the DOMEntityResolver.resolveEntity 
[p.21] method.

(ED: There are at least three places where DOMInputSource is passed to the parser 
(parseWithContext).)

The DOMBuilder [p.13] will use the DOMInputSource object to determine how to read XML
input. If there is a character stream available, the parser will read that stream directly; if not, the
parser will use a byte stream, if available; if neither a character stream nor a byte stream is available,
the parser will attempt to open a URI connection to the resource identified by the system identifier.

A DOMInputSource object belongs to the application: the parser shall never modify it in any way
(it may modify a copy if necessary).

Note: Even though all attributes in this interface are writable the DOM implementation is expected to
never mutate a DOMInputSource.

IDL Definition 

interface DOMInputSource {
           attribute DOMInputStream  byteStream;
  // The attribute characterStream is not available in ECMAScript
           attribute DOMReader       characterStream;
           attribute DOMString       stringData;
           attribute DOMString       encoding;
           attribute DOMString       publicId;
           attribute DOMString       systemId;
           attribute DOMString       baseURI;
};

Attributes 
baseURI of type DOMString 

The base URI to be used (see section 5.1.4 in [IETF RFC 2396]) for resolving relative
URIs to absolute URIs. If the baseURI is itself a relative URI, the behavior is
implementation dependent.

byteStream of type DOMInputStream [p.9] 
An attribute of a language-binding dependent type that represents a stream of bytes.
The parser will ignore this if there is also a character stream specified, but it will use a byte
stream in preference to opening a URI connection itself.
If the application knows the character encoding of the byte stream, it should set the
encoding attribute. Setting the encoding in this way will override any encoding specified in
the XML declaration itself.

characterStream of type DOMReader [p.10] , not available in ECMAScript 
An attribute of a language-binding dependent type that represents a stream of 16-bit units. 
[p.65] Application must encode the stream using UTF-16 (defined in [Unicode 2.0] and
Amendment 1 of [ISO/IEC 10646]).
If a character stream is specified, the parser will ignore any byte stream and will not
attempt to open a URI connection to the system identifier.

19

1.3. Load Interfaces



encoding of type DOMString 
The character encoding, if known. The encoding must be a string acceptable for an XML
encoding declaration ([XML 1.0] section 4.3.3 "Character Encoding in Entities").
This attribute has no effect when the application provides a character stream. For other
sources of input, an encoding specified by means of this attribute will override any
encoding specified in the XML declaration or the Text declaration, or an encoding obtained
from a higher level protocol, such as HTTP [IETF RFC 2616].

publicId of type DOMString 
The public identifier for this input source. The public identifier is always optional: if the
application writer includes one, it will be provided as part of the location information.

stringData of type DOMString 
A string attribute that represents a sequence of 16 bit units (utf-16 encoded characters).
If string data is available in the input source, the parser will ignore the character stream and
the byte stream and will not attempt to open a URI connection to the system identifier.

systemId of type DOMString 
The system identifier, a URI reference [IETF RFC 2396], for this input source. The system
identifier is optional if there is a byte stream or a character stream, but it is still useful to
provide one, since the application can use it to resolve relative URIs and can include it in
error messages and warnings (the parser will attempt to fetch the ressource identifier by the
URI reference only if there is no byte stream or character stream specified).
If the application knows the character encoding of the object pointed to by the system
identifier, it can register the encoding by setting the encoding attribute.
If the system ID is a relative URI reference (see section 5 in [IETF RFC 2396]), the
behavior is implementation dependent.

Interface DOMEntityResolver 

DOMEntityResolver Provides a way for applications to redirect references to external entities.

Applications needing to implement customized handling for external entities must implement this
interface and register their implementation by setting the entityResolver attribute of the 
DOMBuilder [p.13] .

The DOMBuilder [p.13] will then allow the application to intercept any external entities (including
the external DTD subset and external parameter entities) before including them.

Many DOM applications will not need to implement this interface, but it will be especially useful for
applications that build XML documents from databases or other specialized input sources, or for
applications that use URNs.

Note: DOMEntityResolver is based on the SAX2 [SAX] EntityResolver interface.

IDL Definition 

interface DOMEntityResolver {
  DOMInputSource     resolveEntity(in DOMString publicId, 
                                   in DOMString systemId, 
                                   in DOMString baseURI);
};

20

1.3. Load Interfaces



Methods 
resolveEntity 

Allow the application to resolve external entities.
The DOMBuilder [p.13] will call this method before opening any external entity except
the top-level document entity (including the external DTD subset, external entities
referenced within the DTD, and external entities referenced within the document element);
the application may request that the DOMBuilder resolve the entity itself, that it use an
alternative URI, or that it use an entirely different input source.
Application writers can use this method to redirect external system identifiers to secure
and/or local URIs, to look up public identifiers in a catalogue, or to read an entity from a
database or other input source (including, for example, a dialog box).
If the system identifier is a URI, the DOMBuilder [p.13] must resolve it fully before
reporting it to the application through this interface. 
(ED: See issue #4. An alternative would be to pass the URI out without resolving it, and to
provide a base as an additional parameter. SAX resolves URIs first, and does not provide a
base. )
Parameters 
publicId of type DOMString 

The public identifier of the external entity being referenced, or null if none was 
supplied.

systemId of type DOMString 
The system identifier, a URI reference [IETF RFC 2396], of the external entity being
referenced exactly as written in the source.

baseURI of type DOMString 
The absolute base URI of the resource being parsed, or null if there is no base URI.

Return Value 

DOMInputSource 
[p.18] 

A DOMInputSource object describing the new input
source, or null to request that the parser open a regular
URI connection to the system identifier.

No Exceptions
Interface DOMBuilderFilter 

DOMBuilderFilters provide applications the ability to examine nodes as they are being
constructed during a parse. As each node is examined, it may be modified or removed, or the entire
parse may be terminated early.

At the time any of the filter methods are called by the parser, the owner Document and
DOMImplementation objects exist and are accessible. The document element is never passed to the 
DOMBuilderFilter methods, i.e. it is not possible to filter out the document element. The 
Document, DocumentType, Notation, and Entity nodes are not passed to the filter.

All validity checking while reading a document occurs on the source document as it appears on the
input stream, not on the DOM document as it is built in memory. With filters, the document in
memory may be a subset of the document on the stream, and its validity may have been affected by

21

1.3. Load Interfaces



the filtering.

All default content, including default attributes, must be passed to the filter methods.

Any exception raised in the filter are ignored by the DOMBuilder [p.13] .

(ED: The description of these methods is not complete)
IDL Definition 

interface DOMBuilderFilter {

  // Constants returned by startElement and acceptNode
  const short               FILTER_ACCEPT                  = 1;
  const short               FILTER_REJECT                  = 2;
  const short               FILTER_SKIP                    = 3;
  const short               FILTER_INTERRUPT               = 4;

  unsigned short     startElement(in Element elt);
  unsigned short     acceptNode(in Node enode);
  readonly attribute unsigned long   whatToShow;
};

Definition group Constants returned by startElement and acceptNode 

Constants returned by startElement and acceptNode.

Defined Constants 
FILTER_ACCEPT 

Accept the node. 
FILTER_INTERRUPT 

Interrupt the normal processing of the document. 
FILTER_REJECT 

Reject the node abd its children. 
FILTER_SKIP 

Skip this single node. The children of this node will still be considered.
Attributes 

whatToShow of type unsigned long, readonly 
Tells the DOMBuilder [p.13] what types of nodes to show to the filter. See 
NodeFilter for definition of the constants. The constant SHOW_ATTRIBUTE is
meaningless here, attribute nodes will never be passed to a DOMBuilderFilter.

Methods 
acceptNode 

This method will be called by the parser at the completion of the parsing of each node. The
node and all of its descendants will exist and be complete. The parent node will also exist,
although it may be incomplete, i.e. it may have additional children that have not yet been
parsed. Attribute nodes are never passed to this function.
From within this method, the new node may be freely modified - children may be added or
removed, text nodes modified, etc. The state of the rest of the document outside this node is
not defined, and the affect of any attempt to navigate to, or to modify any other part of the
document is undefined.

22

1.3. Load Interfaces



For validating parsers, the checks are made on the original document, before any
modification by the filter. No validity checks are made on any document modifications
made by the filter.
If this new node is rejected, the parser might reuse the new node or any of its descendants. 
Parameters 
enode of type Node 

The newly constructed element. At the time this method is called, the element is
complete - it has all of its children (and their children, recursively) and attributes, and
is attached as a child to its parent.

Return Value 

unsigned 
short

FILTER_ACCEPT if this Node should be included in the DOM
document being built. 
FILTER_REJECT if the Node and all of its children should be
rejected. 
FILTER_SKIP if the Node should be skipped and the Node
should be replaced by all the children of the Node. 
FILTER_INTERRUPT if the filter wants to stop the processing
of the document. Interrupting the processing of the document
does no longer guarantee that the entire is XML well-formed 
[p.65] .

No Exceptions
startElement 

This method will be called by the parser after each Element start tag has been scanned,
but before the remainder of the Element is processed. The intent is to allow the element,
including any children, to be efficiently skipped. Note that only element nodes are passed
to the startElement function.
The element node passed to startElement for filtering will include all of the Element’s
attributes, but none of the children nodes. The Element may not yet be in place in the
document being constructed (it may not have a parent node.)
A startElement filter function may access or change the attributes for the Element.
Changing Namespace declarations will have no effect on namespace resolution by the 
parser.
For efficiency, the Element node passed to the filter may not be the same one as is actually
placed in the tree if the node is accepted. And the actual node (node object identity) may be
reused during the process of reading in and filtering a document. 
Parameters 
elt of type Element 

The newly encountered element. At the time this method is called, the element is
incomplete - it will have its attributes, but no children.

Return Value 

23

1.3. Load Interfaces



unsigned 
short

FILTER_ACCEPT if this Element should be included in the
DOM document being built. 
FILTER_REJECT if the Element and all of its children should
be rejected. This return value will be ignored if elt is the
documentElement, the documentElement can not be rejected. 
FILTER_SKIP if the Element should be rejected. All of its
children are inserted in place of the rejected Element node.
This return value will be ignored if elt is the documentElement,
the documentElement can not be rejected nor skipped. 
FILTER_INTERRUPT if the filter wants to stop the processing
of the document. Interrupting the processing of the document
does no longer guarantee that the entire is XML well-formed 
[p.65] .

Returning any other values will result in unspecified behavior.

No Exceptions
Interface LSProgressEvent 

This interface represents a progress event object that notifies the application about progress as a
document is parsed. It extends the Event interface defined in [DOM Level 3 Events].

IDL Definition 

interface LSProgressEvent : events::Event {
  readonly attribute DOMInputSource  inputSource;
  readonly attribute unsigned long   position;
  readonly attribute unsigned long   totalSize;
};

Attributes 
inputSource of type DOMInputSource [p.18] , readonly 

The input source that is being parsed.
position of type unsigned long, readonly 

The current position in the input source, including all external entities and other resources
that have been read.

totalSize of type unsigned long, readonly 
The total size of the document including all external resources, this number might change
as a document is being parsed if references to more external resources are seen.

Interface LSLoadEvent 

This interface represents a load event object that signals the completion of a document load.

IDL Definition 

interface LSLoadEvent : events::Event {
  readonly attribute Document        newDocument;
  readonly attribute DOMInputSource  inputSource;
};

24

1.3. Load Interfaces



Attributes 
inputSource of type DOMInputSource [p.18] , readonly 

The input source that was parsed.
newDocument of type Document, readonly 

The document that finished loading.

1.4. Save Interfaces
A DOM application may use the hasFeature(feature, version) method of the 
DOMImplementation interface with parameter values "LS-Save" and "3.0" (respectively) to determine
whether or not these interfaces are supported by the implementation. In order to fully support them, an
implementation must also support the "Core" feature defined in the DOM Level 3 Core specification 
[DOM Level 3 Core]. Please, refer to additional information about conformance in the DOM Level 3 Core
specification [DOM Level 3 Core].

Interface DOMWriter 

DOMWriter provides an API for serializing (writing) a DOM document out in an XML document.
The XML data is written to an output stream, the type of which depends on the specific language
bindings in use.

During serialization of XML data, namespace fixup is done when possible as defined in [DOM Level
3 Core], Appendix B. [DOM Level 2 Core] allows empty strings as a real namespace URI. If the 
namespaceURI of a Node is empty string, the serialization will treat them as null, ignoring the
prefix if any.

Note: should the remark on DOM Level 2 namespace URI included in the namespace algorithm in
Core instead?

DOMWriter accepts any node type for serialization. For nodes of type Document or Entity,
well formed XML will be created if possible. The serialized output for these node types is either as a
Document or an External Entity, respectively, and is acceptable input for an XML parser. For all
other types of nodes the serialized form is not specified, but should be something useful to a human
for debugging or diagnostic purposes. Note: rigorously designing an external (source) form for
stand-alone node types that don’t already have one defined in [XML 1.0] seems a bit much to take on 
here.

Within a Document, DocumentFragment, or Entity being serialized, Nodes are processed as 
follows

Document nodes are written including with the XML declaration and a DTD subset, if one
exists in the DOM. Writing a Document node serializes the entire document. 
Entity nodes, when written directly by DOMWriter.writeNode [p.29] , output the entity
expansion but no namespace fixup is done. The resulting output will be valid as an external
entity. 
EntityReference nodes are serialized as an entity reference of the form 
"&entityName;" in the output. Child nodes (the expansion) of the entity reference are

25

1.4. Save Interfaces

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/introduction.html#ID-Conformance


ignored. 
CDATA sections containing content characters that can not be represented in the specified
output encoding are handled according to the "split-cdata-sections" boolean parameter.
If the boolean parameter is true, CDATA sections are split, and the unrepresentable characters
are serialized as numeric character references in ordinary content. The exact position and
number of splits is not specified.
If the boolean parameter is false, unrepresentable characters in a CDATA section are reported
as errors. The error is not recoverable - there is no mechanism for supplying alternative
characters and continuing with the serialization. 
DocumentFragment nodes are serialized by serializing the children of the document
fragment in the order they appear in the document fragment. 
All other node types (Element, Text, etc.) are serialized to their corresponding XML source 
form.

Note: The serialization of a Node does not always generate a well-formed [p.65] XML document,
i.e. a DOMBuilder [p.13] might through fatal errors when parsing the resulting serialization.

Within the character data of a document (outside of markup), any characters that cannot be
represented directly are replaced with character references. Occurrences of ’<’ and ’&’ are replaced
by the predefined entities &lt; and &amp;. The other predefined entities (&gt, &apos, and &quot;)
are not used; these characters can be included directly. Any character that can not be represented
directly in the output character encoding is serialized as a numeric character reference.

Attributes not containing quotes are serialized in quotes. Attributes containing quotes but no
apostrophes are serialized in apostrophes (single quotes). Attributes containing both forms of quotes
are serialized in quotes, with quotes within the value represented by the predefined entity &quot;.
Any character that can not be represented directly in the output character encoding is serialized as a
numeric character reference.

Within markup, but outside of attributes, any occurrence of a character that cannot be represented in
the output character encoding is reported as an error. An example would be serializing the element
<LaCañada/> with encoding="us-ascii".

When requested by setting the normalize-characters boolean parameter on DOMWriter, all
data to be serialized, both markup and character data, is W3C Text normalized according to the rules
defined in [CharModel]. The W3C Text normalization process affects only the data as it is being
written; it does not alter the DOM’s view of the document after serialization has completed.

Namespaces are fixed up during serialization, the serialization process will verify that namespace
declarations, namespace prefixes and the namespace URIs associated with elements and attributes are
consistent. If inconsistencies are found, the serialized form of the document will be altered to remove
them. The method used for doing the namespace fixup while serializing a document is the algorithm
defined in Appendix B.1 "Namespace normalization" of [DOM Level 3 Core].

(ED: previous paragraph to be defined closer here.)

26

1.4. Save Interfaces



Any changes made affect only the namespace prefixes and declarations appearing in the serialized
data. The DOM’s view of the document is not altered by the serialization operation, and does not
reflect any changes made to namespace declarations or prefixes in the serialized output.

While serializing a document the serializer will write out non-specified values (such as attributes
whose specified is false) if the discard-default-content boolean parameter is set to 
true. If the discard-default-content flag is set to false and a schema is used for
validation, the schema will be also used to determine if a value is specified or not. If no schema is
used, the specified flag on attribute nodes is used to determine if attribute values should be
written out.

Ref to Core spec (1.1.9, XML namespaces, 5th paragraph) entity ref description about warning about
unbound entity refs. Entity refs are always serialized as &foo;, also mention this in the load part of
this spec.

IDL Definition 

interface DOMWriter {
  readonly attribute DOMConfiguration config;
           attribute DOMString       encoding;
           attribute DOMString       newLine;
           attribute DOMWriterFilter filter;
  boolean            writeNode(in DOMOutputStream destination, 
                               in Node wnode);
  DOMString          writeToString(in Node wnode)
                                        raises(DOMException);
};

Attributes 
config of type DOMConfiguration, readonly 

The configuration used when a document is loaded. The values of parameters used on a
document are not passed automatically from the DOMConfiguration object used by the 
Document nodes. The DOM application is responsible for passing the parameters values
from the DOMConfiguration object referenced from the Document node to the 
DOMConfiguration object referenced from the DOMWriter.
In addition to the boolean parameters and parameters recognized in the Core module, the 
DOMConfiguration objects for DOMWriter adds, or modifies, the following boolean
parameters: 
"entity-resolver" 

This parameter is equivalent to the "entity-resolver" parameter defined in 
DOMBuilder.config [p.15] . 

"xml-declaration" 
true 

[required] (default)
If a Document Node or an Entity node is serialized, the XML declaration, or
text declaration, should be included Document.version and/or an encoding
is specified. 

27

1.4. Save Interfaces



false 
[required]
Do not serialize the XML and text declarations.

"canonical-form" 
true 

[optional]
This formatting writes the document according to the rules specified in 
[Canonical XML]. Setting this boolean parameter to true will set the boolean
parameter "format-pretty-print" to false. 

false 
[required] (default)
Do not canonicalize the output.

"format-pretty-print" 
true 

[optional]
Formatting the output by adding whitespace to produce a pretty-printed,
indented, human-readable form. The exact form of the transformations is not
specified by this specification. Setting this boolean parameter to true will set the
boolean parameter "canonical-form" to false. 

false 
[required] (default)
Don’t pretty-print the result.

"normalize-characters" 
This boolean parameter is equivalent to the one defined by DOMConfiguration in 
[DOM Level 3 Core]. Unlike in the Core, the default value for this boolean parameter
is true. While DOM implementations are not required to implement the W3C Text
Normalization defined in [CharModel], this boolean parameter must be activated by
default if supported. 

"unknown-characters" 
true 

[required] (default)
If, while verifying full normalization when [XML 1.1] is supported, a character is
encountered for which the normalization properties cannot be determined, then
ignore any possible denormalizations caused by these characters. 

false 
[optional]
Report an fatal error if a character is encountered for which the processor can not
determine the normalization properties.

encoding of type DOMString 
The character encoding in which the output will be written.
The encoding to use when writing is determined as follows: 

If the encoding attribute has been set, that value will be used. 
If the encoding attribute is null or empty, but the item to be written, or the owner
document of the item, specifies an encoding (i.e. the "actualEncoding" from the
document) specified encoding, that value will be used. 
If neither of the above provides an encoding name, a default encoding of "UTF-8" will

28

1.4. Save Interfaces



be used.
The default value is null.

filter of type DOMWriterFilter [p.30] 
When the application provides a filter, the serializer will call out to the filter before
serializing each Node. Attribute nodes are never passed to the filter. The filter
implementation can choose to remove the node from the stream or to terminate the
serialization early.

newLine of type DOMString 
The end-of-line sequence of characters to be used in the XML being written out. Any string
is supported, but these are the recommended end-of-line sequences (using other character
sequences than these recommended ones can result in a document that is either not
serializable or not well-formed): 
null 

Use a default end-of-line sequence. DOM implementations should choose the default
to match the usual convention for text files in the environment being used.
Implementations must choose a default sequence that matches one of those allowed by
"End-of-Line Handling" ([XML 1.0], section 2.11) if the serialized content is XML
1.0 or "End-of-Line Handling" ([XML 1.1], section 2.11) if the serialized content is
XML 1.1. 

CR 
The carriage-return character (#xD). 

CR-LF 
The carriage-return and line-feed characters (#xD #xA). 

LF 
The line-feed character (#xA).

The default value for this attribute is null.
Methods 

writeNode 
Write out the specified node as described above in the description of DOMWriter. Writing
a Document or Entity node produces a serialized form that is well formed XML, when
possible (Entity nodes might not always be well formed XML in themselves). Writing
other node types produces a fragment of text in a form that is not fully defined by this
document, but that should be useful to a human for debugging or diagnostic purposes.
If the specified encoding is not supported the error handler is called and the serialization is
interrupted. 
Parameters 
destination of type DOMOutputStream [p.10] 

The destination for the data to be written.
wnode of type Node 

The Document or Entity node to be written. For other node types, something
sensible should be written, but the exact serialized form is not specified.

Return Value 

boolean Returns true if node was successfully serialized and false in case a
failure occured and the failure wasn’t canceled by the error handler.

29

1.4. Save Interfaces



No Exceptions
writeToString 

Serialize the specified node as described above in the description of DOMWriter. The
result of serializing the node is returned as a DOMString (this method completely ignores
all the encoding information available). Writing a Document or Entity node produces a
serialized form that is well formed XML. Writing other node types produces a fragment of
text in a form that is not fully defined by this document, but that should be useful to a
human for debugging or diagnostic purposes.
Error handler is called if encoding not supported... 
Parameters 
wnode of type Node 

The node to be written.
Return Value 

DOMString Returns the serialized data, or null in case a failure occured and the
failure wasn’t canceled by the error handler.

Exceptions 

DOMException DOMSTRING_SIZE_ERR: Raised if the resulting string is too
long to fit in a DOMString.

Interface DOMWriterFilter 

DOMWriterFilters provide applications the ability to examine nodes as they are being serialized. 
DOMWriterFilter lets the application decide what nodes should be serialized or not.

The Document, DocumentType, Notation, and Entity nodes are not passed to the filter.

IDL Definition 

interface DOMWriterFilter : traversal::NodeFilter {
  readonly attribute unsigned long   whatToShow;
};

Attributes 
whatToShow of type unsigned long, readonly 

Tells the DOMWriter [p.25] what types of nodes to show to the filter. See NodeFilter
for definition of the constants. The constants SHOW_ATTRIBUTE, SHOW_DOCUMENT, 
SHOW_DOCUMENT_TYPE, SHOW_NOTATION, and SHOW_DOCUMENT_FRAGMENT are
meaningless here, those nodes will never be passed to a DOMWriterFilter. Entity
nodes are not passed to the filter.

30

1.4. Save Interfaces



1.5. Convenience Interfaces
The interfaces defined in this section provide no direct functionality that can not be achieved with the load
and save interfaces defined in the earlier sections of this specification. These interfaces are defined for
developer convenience only, and supporting them is optional.

Interface DocumentLS 

The DocumentLS interface provides a mechanism by which the content of a document can be
serialized, or replaced with the DOM tree produced when loading a URI, or parsing a string.

If the DocumentLS interface is supported, the expectation is that an instance of the DocumentLS
interface can be obtained by using binding-specific casting methods on an instance of the 
Document interface, or by using the method Node.getFeature with parameter values 
"LS-Load" and "3.0" (respectively) on an Document, if the Document supports the feature 
"Core" version "3.0" defined in [DOM Level 3 Core]

This interface is optional. If supported, implementations are must support version "3.0" of the
feature "LS-DocumentLS".

IDL Definition 

interface DocumentLS {
           attribute boolean         async;
                                        // raises(DOMException) on setting

  void               abort();
  boolean            load(in DOMString uri);
  boolean            loadXML(in DOMString source);
  DOMString          saveXML(in Node snode)
                                        raises(DOMException);
};

Attributes 
async of type boolean 

Indicates whether the method DocumentLS.load() should be synchronous or
asynchronous. When the async attribute is set to true the load method returns control to
the caller before the document has completed loading. The default value of this attribute is 
true. 
Issue async-1: 

Should the DOM spec define the default value of this attribute? What if implementing
both async and sync IO is impractical in some systems?
Resolution: 2001-09-14. default is false but we need to check with Mozilla and IE.
2003-01-24. Checked with IE and Mozilla, default is true.

Exceptions on setting 

DOMException NOT_SUPPORTED_ERR: Raised if the implementation doesn’t
support the mode the attribute is being set to.

31

1.5. Convenience Interfaces



Methods 
abort 

If the document is currently being loaded as a result of the method load being invoked the
loading and parsing is immediately aborted. The possibly partial result of parsing the
document is discarded and the document is cleared. 
No Parameters
No Return Value
No Exceptions

load 
Replaces the content of the document with the result of parsing the given URI. Invoking
this method will either block the caller or return to the caller immediately depending on the
value of the async attribute. Once the document is fully loaded the document will fire a
"load" event that the caller can register as a listener for. If an error occurs the document
will fire an "error" event so that the caller knows that the load failed (see 
ParseErrorEvent). If this method is called on a document that is currently loading, the
current load is interrupted and the new URI load is initiated.
When invoking this method the features used in the DOMBuilder [p.13] interface are
assumed to have their default values with the exception that the feature "entities" is "false". 
Parameters 
uri of type DOMString 

The URI reference for the XML file to be loaded. If this is a relative URI, the base
URI used by the implementation is implementation dependent.

Return Value 

boolean If async is set to true load returns true if the document load was
successfully initiated. If an error occurred when initiating the document
load load returns false.
If async is set to false load returns true if the document was
successfully loaded and parsed. If an error occurred when either loading
or parsing the URI load returns false.

No Exceptions
loadXML 

Replace the content of the document with the result of parsing the input string, this method
is always synchronous. This method always parses from a DOMString, which means the
data is always UTF16. All other encoding information is ignored.
The features used in the DOMBuilder [p.13] interface are assumed to have their default
values when invoking this method. 
Parameters 
source of type DOMString 

A string containing an XML document.
Return Value 

boolean true if parsing the input string succeeded without errors, otherwise 
false.

32

1.5. Convenience Interfaces



No Exceptions
saveXML 

Save the document or the given node and all its descendants to a string (i.e. serialize the
document or node).
The features used in the DOMWriter [p.25] interface are assumed to have their default
values when invoking this method. 
Parameters 
snode of type Node 

Specifies what to serialize, if this parameter is null the whole document is serialized,
if it’s non-null the given node is serialized.

Return Value 

DOMString The serialized document or null in case an error occured.

Exceptions 

DOMException WRONG_DOCUMENT_ERR: Raised if the node passed in as
the node parameter is from an other document.

Interface ElementLS 

The ElementLS interface provides a convenient mechanism by which the children of an element
can be serialized to a string, or replaced by the result of parsing a provided string.

If the ElementLS interface is supported, the expectation is that an instance of the ElementLS
interface can be obtained by using binding-specific casting methods on an instance of the Element
interface, or by using the method Node.getFeature with parameter values "LS-Load" and 
"3.0" (respectively) on an Element, if the Element supports the feature "Core" version 
"3.0" defined in [DOM Level 3 Core].

This interface is optional. If supported, implementations must support version "3.0" of the feature 
"LS-ElementLS".

IDL Definition 

interface ElementLS {
           attribute DOMString       markupContent;
};

Attributes 
markupContent of type DOMString 

The content of the element in serialized form.
When getting the value of this attribute, the children are serialized in document order and
the serialized result is returned. This is equivalent of calling 
DOMWriter.writeToString() on all children in document order and appending the
result of the individual results to a single string that is then returned as the value of this 
attribute.

33

1.5. Convenience Interfaces



When setting the value of this attribute, all children of the element are removed, the
provided string is parsed and the result of the parse operation is inserted into the element.
This is equivalent of calling DOMBuilder.parseWithContext() passing in the
provided string (through the input source argument), the Element, and the action 
ACTION_REPLACE_CHILDREN. If an error occures while parsing the provided string,
the Element’s owner document’s error handler will be called, and the Element is left
with no children.
Both setting and getting the value of this attribute assumes that the parameters in the
DOMConfiguration object have their default values.

1.6. Issue List

1.6.1. Open Issues

Issue LS-Issue-90: 
The interaction and relationships between all the DOMBuilder and DOMWriter features need to be
defined, i.e. setting x will set y and unset z. 

Issue LS-Issue-15: 
System Exceptions. Loading involves file opens and reads, and these can result in a variety of system
errors that may already have associated system exceptions. Should these system exceptions pass
through as is, or should they be some how wrapped in DOMExceptions, or should there be a parallel
set DOM Exceptions, or what? 

Issue LS-Issue-21: 
Define exceptions. A DOMSystemException needs to be defined as part of the error handling
module that is to be shared with AS. Common I/O type errors need to be defined for it, so that they
can be reported in a uniform way. A way to embed errors or exceptions from the OS or language
environment is needed, to provide full information to applications that want it. 

Issue LS-Issue-58: 
Some features should not be required for parseWithContext() (such as validate, validate-if-schema,
whitespace-in-element-content, external-dtd-subset, ...), what are these options, and how do we
describe this? 

Issue LS-Issue-108: 
Do we want to have NodeLS.load()/loadXML()? See 

1.6.2. Resolved Issues

Issue LS-Issue-1: 
Should these methods be in a new interface, or should they be added to the existing
DOMImplementation Interface? I think that adding them to the existing interface is cleaner, because
it helps avoid an explosion of new interfaces.
The methods are in a separate interface in this description for convenience in preparing the doc, so
that I don’t need to edit Core to add the methods. (The same argument could perhaps be made for 
implementations.)
Resolution: The methods are in a separate DOMImplementationLS interface. Because Load/Save is
an optional module, we don’t want to add its to the core DOMImplementation interface. 

34

1.6. Issue List



Issue LS-Issue-2: 
SAX handles the setting of parser attributes differently. Rather than having distinct getters and setters
for each attribute, it has a generic setter and getter of named properties, where properties are
specified by a URI. This has an advantage in that implementations do not need to extend the interface
when providing additional attributes.
If we choose to use strings, their syntax needs to be chosen. URIs would make sense, except for the
fact that these are just names that do not refer to any resources. Dereferencing them would be
meaningless. Yet the direction of the W3C is that all URIs must be dereferencable, and refer to
something on the web.
Resolution: Use strings for properties. Use Java package name syntax for the identifying names. The
question was revisited at the July f2f, with the same conclusion. But some discussion of using URIs 
continues.
This issue was revisited once again at the 9/2000 meeting. Now all DOM properties or features will
be short, descriptive names, and we will recommend that all vendor-specific extensions be prefixed
to avoid collisions, but will not make specific recommendations for the syntax of the prefix. 

Issue LS-Issue-3: 
It’s not obvious what name to choose for the parser interface. Taking any of the names already in use
by parser implementations would create problems when trying to support both the new API and the
existing old API. That leaves out DocumentBuilder (Sun) and DOMParser (Xerces).
Resolution: This is issue really just a comment. The "resolution" is in the names appearing in the
API. 

Issue LS-Issue-4: 
Question: should ResolveEntity pass a baseURI string back to the application, in addition to the
publicId, systemId, and/or stream? Particularly in the case of an input stream.
Resolution: No. Sax2 explicitly says that the system ID URI must be fully resolved before passing it
out to the entity resolve. We will follow SAX’s lead on this unless some additional use case surfaces.
This is from the 9/2000 f2f, and reverses an earlier decision.
2002-02-22: a baseURI parameter was added. 

Issue LS-Issue-5: 
When parsing a document that contains errors, should the whole document be decreed unusable, or
should we say that portions prior to the point where the error was detected are OK?
Resolution: In the case of errors in the XML source, what, if any, document is returned is
implementation dependent. 

Issue LS-Issue-6: 
The relationship between SAXExceptions and DOM exceptions seems confusing.
Resolution: This issue goes away because we are no longer using SAX. Any exceptions will be
DOM Exceptions. 

Issue LS-Issue-7: 
Question: In the original Java definition, are the strings returned from the methods 
SAXException.toString and SAXException.getMessage always the same? If not, we
need to add another attribute.
Resolution: No longer an issue because we are no longer using SAX. 

Issue LS-Issue-8: 
JAXP defines a mechanism, based on Java system properties, by which the Document Builder
Factory locates the specific parser implementation to be used. This ability to redirect to different
parsers is a key feature of JAXP. How this redirection works in the context of this design may be

35

1.6.2. Resolved Issues



something that needs to be defined separately for each language binding.
This question was discussed at the July f2f, without resolution. Agreed that the feature is not critical
to the rest of the API, and can be postponed.
Resolution: The issue is moving to core, where it is part of the bigger question of where does the
DOM implementation come from, and how do multiple implementations coexist. Allowing separate,
or mix-and-match, specification of the parser and the rest of the DOM is not generally practical
because parsers generally have some degree of private knowledge about their DOMs. 

Issue LS-Issue-9: 
The use of interfaces from SAX2 raises some questions. The Java bindings for these interfaces need
to be exactly the SAX2 definitions, including the original org.xml.sax package name.
The IDL presented here for these interfaces is an attempt to map the Java into IDL, but it will
certainly not round-trip accurately - Java bindings generated from the IDL will not match the original 
Java.
The reasons for using the SAX interfaces are that they are well designed, widely implemented and
used, and provide what is needed. Designing something new would create confusion for application
developers (which should be used?) and make extra work for implementers of the DOM, most of
whom probably already provide SAX, all for no real gain.
Resolution: Problem is gone. We are not using SAX2. The design will borrow features and concepts
from SAX2 when it makes sense to do so. 

Issue LS-Issue-10: 
Error Reporting. Loading will be reporting well-formedness and validation errors, just like AS. A
common error reporting mechanism needs to be developed.
Resolution: Resolved, see errors.html 

Issue LS-Issue-11: 
Another Error Reporting Question. We decided at the June f2f that validity errors should not be
exceptions. This means that a document load operation could encounter multiple errors. Should these
be collected and delivered as some sort of collection at the (otherwise) successful completion of the
load, or should there be some sort of callback? Callbacks are harder for applications to deal with.
Resolution: Provide a callback mechanism. Provide a default error handler that throws an exception
and stops further processing. From July f2f. 

Issue LS-Issue-12: 
Definition of "Non-validating". Exactly how much processing is done by "non-validating" parsers is
not fully defined by the XML specification. In particular, they are not required to read any external
entities, but are not prohibited from doing so.
Another common user request: a mode that completely ignores DTDs, both and external. Such a
parser would not conform to XML 1.0, however.
For the documents produced by a non-validating load to be the same, we need to tie down exactly
what processing must be done. The XML Core WG also has question as an open issue .
Some discussion is at http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000JanMar/0192.html
Here is proposal: Have three classes of parsers

Minimal. No external entities of any type are accessed. DTD subset is processes normally, as
required by XML 1.0, including all entity definitions it contains. 
Non-Validating. All external entities are read. Does everything except validation. 
Validating. As defined by XML 1.0 rec.

Resolution: Use the options from SAX2. These provide separate flags for validation, reading of
external general entities and reading of external parameter entities. 

36

1.6.2. Resolved Issues



Issue LS-Issue-13: 
Use of System or Language specific types for Input and Output
Loading and Saving requires that one of the possible sources or destinations of the XML data be
some sort of stream that can be used with io streams or memory buffers, or anything else that might
take or supply data. The type will vary, depending on the language binding.
The question is, what should be put into the IDL interfaces for these? Should we define an XML
stream to abstract out the dependency, or use system classes directly in the bindings?
Resolution: Define IDL types for use in the rest of the interface definitions. These types will be
mapped directly to system types for each language binding 

Issue LS-Issue-14: 
Should there be separate DOM modules for browser or scripting style loading
(document.load("whatever")) and server style parsers? It’s probably easy for the server style parsers
to implement the browser style interface, but the reverse may not be true.
Resolution: Yes. A client application style API will be provided. 

Issue LS-Issue-16: 
Loading and saving of abstract schema’s - DTDs or Schemas - outside of the context of a document
is not addressed.
Resolution: See the DOMASBuilder interface in the AS spec 

Issue LS-Issue-17: 
Loading while validating using an already loaded abstract schema is not addressed. Applications
should be able to load a abstract schema (issue 16), and then repeatedly reuse it during the loading of
additional documents.
Resolution: See the DOMASBuilder interface in the AS spec 

Issue LS-Issue-18: 
For the list of parser properties, which must all implementations recognize, which settings must all
implementations support, and which are optional?
Resolution: Done 

Issue LS-Issue-19: 
DOMOutputStream: should this be an interface with methods, or just an opaque type that maps onto
an appropriate binding-specific stream type?
If we specify an actual interface with methods, applications can implement it to wrap any arbitrary
destination that they may have. If we go with the system type it’s simpler to output to that type of
stream, but harder otherwise.
Resolution: Opaque. 

Issue LS-Issue-20: 
Action from September f2f to "add issues raised by schema discussion". What were these?
Resolution: nobody seems to remember this, no action taken 

Issue LS-Issue-22: 
What do the bindings for things like InputStream look like in ECMA Script? Tentative resolution -
InputStream will map to a binding dependent class or interface. For environments where nothing
appropriate exists, a new interface will be created. This question is still being discussed.
Resolution: will be left to the binding 

Issue LS-Issue-23: 
To Do: Add a method or methods to DOMBuilder that will provide information about a parser
feature - is the name recognized, which (boolean) values are supported - without throwing 
exceptions.

37

1.6.2. Resolved Issues



Resolution: Done. Added canSetFeature. 
Issue LS-Issue-24: 

Clearly identify which of the parser properties must be recognized, and which of their settings must
be supported by all conforming implementations.
Resolution: Done. All must be recognized. 

Issue LS-Issue-25: 
How does the validation property work in SAX, and how should it work for us? The default value in
SAX2 is "true". Non-validating parsers only support a value of false. Does this mean that the
default depends on the parser, or that some sort of an error happens if a parse is attempted before
resetting the property, or what?
The same question applies to the External Entities properties too.
Resolution: Make the default value for the validation property be false. 

Issue LS-Issue-26: 
Do we want to rename the "auto-validation" property to "validate-if-cm"? Proposed at f2f. Resolution 
unclear.
Resolution: Changed the name to "validate-if-cm". 

Issue LS-Issue-27: 
How is validation during document loading handled when there are multiple possible abstract
schemas associated with the document? How is one selected? The same question exists for
documents in general, outside of the context of loading. Resolving the question for loading probably
needs to wait until the more general question is understood.
Resolution: Always use the active external AS if any and the active internal AS if any. Whenever
you want to validate during parsing with a different Internal/External model you have to activate this
Abstract Schema first. 

Issue LS-Issue-29: 
Should all properties except namespaces default to false? Discussed at f2f. I’m not so sure now.
Some of the properties have somewhat non-standard behavior when false - leaving out ER nodes
or whitespace, for example - and support of false will probably not even be required.
Resolution: Not all properties should default to false. But validation should. 

Issue LS-Issue-28: 
To do: add new parser property "createEntityNodes". default is true. Illegal for it to be false and
createEntityReferenceNodes to be true. 
(ED: Is this really what we want? )
Resolution: new feature added. 

Issue LS-Issue-30: 
Possible additional parser features - option to not create CDATA nodes, and to merge CDATA
contents with adjacent TEXT nodes if they exist. Otherwise just create a TEXT node.
Option to omit Comments.
Resolution: new feature added. 

Issue LS-Issue-31: 
We now have an option for fixing up namespace declarations and prefixes on serialization. Should
we specify how this is done, so that the documents from different implementations of serialization
will use the same declarations and prefixes, or should we leave the details up to the implementation?
Resolution: The exact form of the namespace fixup is implementation dependent. The only
requirement is that all elements and attributes end up with the correct namespace URI. 

38

1.6.2. Resolved Issues



Issue LS-Issue-32: 
Mimetypes. If the input being parsed is from http or something else that supplies types, and the type
is something other than text/xml, should we parse it anyhow, or should we complain. Should there be
an option?
Tentative resolution: always parse, never complain. Reasons: 1. This is what all parsers do now, and
no one has ever complained, at least not that I’m aware of. 2. Applications must have a pretty good
reason to suspect that they’re getting xml or they wouldn’t have invoked the parser. 3. All the test
would do is to take something that might have worked (xml that is not known to the server) and turn
it into an error. Non-xml is exceptionally unlikely to successfully parse (be well formed.)
Resolution: See the supported-mediatypes-only feature on DOMBuilder [p.13] . 

Issue LS-Issue-33: 
Unicode Character Normalization Problems. It turns out that for some code pages, normalizing a
Unicode representation, translating to the code page, then translating back to Unicode can result in
un-normalized Unicode. Mark Davis says that this can happen with Vietnamese and maybe with 
Hebrew.
This means that the suggested W3C model of normalization on serialization (early normalization)
may not work, and that the receiver of the data may need to normalize it again, just in case.
Resolution: The scenario described is a quality-of-implementation issue. A transcoder converting
from the one of the troublesome code pages to a Unicode representation should be responsible for
re-normalizing the output. 

Issue LS-Issue-34: 
Features 2.1.4.1, 2 - XML Fragment Support. Should these be dropped?
Resolution: The DOM WG decided to drop support for XML fragment loading in the DOM Level 3
Load-Save module due to lack of time to define the behavior in all the edge cases, future versions of
this spec might address this issue. 

Issue LS-Issue-35: 
XPath based document load filter. It would be plausible to have a partial (filtered) document load
based on selecting the portion of the document to load with an XPath expression. This facility could
be in addition to the node-by-node filtering currently specified. Or we could drop the existing filter.
Implementing an XPath based selective load would require that there be an XPath processor present
in addition to the parser itself.
Resolution: The DOM Level 3 spec will not define an interface for doing XPath/XPointer type
filtering, implementations are free to implement XPath/XPointer based filters on top of a
DOMBuilderFilter. 

Issue LS-Issue-36: 
MIME Type checking for DOMASBuilder.
What MIME Type checking needs to be done for parsing schemas
Resolution: see DOMBuilder, DOMASBuilder is an extend of DOMBuilder, this issue is solved
within DOMBuilder 

Issue LS-Issue-37: 
Internal ASModel serialization for DOMWriter.
What if the internal ASModel is an XML Schema ASModel. Currently there is no ASModel type.
Adding an Internal ASModel can be any kind of schema. Should serialization somehow check the
internal ASModel ? What about the internal subset, is it discarded when the AS spec is implemented 
?
Resolution: An internal ASModel can’t be a schema according to the AS spec. The internal subset is

39

1.6.2. Resolved Issues



discarded when an Abstract Schema is active and the AS spec is implemented 
Issue LS-Issue-38: 

Attribute Normalization.
Add a property to "attributeNormalization" to DOMWriter to support or discard Attribute
Normalization during serialization to. Setting attributeNormalization will serialize attributes with
unexpanded entity references (if any) regardless their childnode(s). This means that if a user is
changing the child nodes of an entity reference node within an attribute and attributeNormalization is
set to true during serialization that these changes are discarded during serialization.
Resolution: The normalization will be driven by the validation options on DOMBuilder, if a
document is validated it will also be normalized, if the document is not validated then no
normalization will occure. 

Issue LS-Issue-39: 
Validation at serialization time. Should we have an option for validating while serializing, what about
validation errors, should we allow serializing non-valid DOM’s?
Resolution: No. Validation at serialization time will not be supported by this specification. 

Issue LS-Issue-40: 
Is the description of the DOMWriter option expand-entity-references acceptable?
Resolution: Yes, the description is acceptable. 

Issue LS-Issue-41: 
Do we need filter support in DOMWriter too?
Resolution: Not until we have good usecases for needing filters when serializing a node. 

Issue LS-Issue-42: 
Should all attributes on DOMInputSource be readonly? The DOM implementation will be passed an
object that implements this interface and there’s no need for the DOM implementation to ever
modify any of those values.
Resolution: Yes, the application is responsible for implementing this interface, the DOM
implementation should never modify an input source. 

Issue LS-Issue-43: 
What’s a DOMReader in non-Java languages? Does this really belong in these language neutral 
interfaces?
Resolution: The DOMReader type should be defined as "Object" in ECMAScript. 

Issue LS-Issue-44: 
What should the DOMWriter do if the doctype name doesn’t match the name of the document
element? This is a validity error, not a wellformedness error so should this just be a normal validity
error when serializing?
Resolution: This is only a validity error, and since this spec doesn’t support validation at
serialization time this will be ignored. If an implementation were to support validation at serialization
time the error handler should be called in this case. 

Issue LS-Issue-45: 
How should validation work if there’s a reference to both a schema and a DTD, should the parser
validate against both, or only one, if only one, how does one select which one?
Resolution: Add a validate-against-dtd option that forces validation against the DTD even if there
are other schemas referenced in the document. 

Issue LS-Issue-46: 
Should supporting async/sync loading be optional?
Resolution: Yes. 

40

1.6.2. Resolved Issues



Issue LS-Issue-47: 
Default attribute handling in DOMWriter needs to be defined for Level 1 elements.
Resolution: If Attr.specified is set to false then the attribute must be a level 1 node in which case
this information can safely be used. 
(ED: This resolution needs to be put in sync with our Attr.specified discussion.)

Issue LS-Issue-48: 
DOMWriter::writeNode takes a Node as an argument, shouldn’t this be a Document?
Resolution: It should also be possible to serialize elements, adding xmlns declarations on the
element that is serialized. Entities get serialized w/o binding element namespaces. Text nodes should
be serialized too, and document fragments, cdata section and attributes too and entity reference
(&foo;) and comments. 

Issue LS-Issue-49: 
Datatype normalization? I.e. stripping whitespace around integers n’ such.
Resolution: No, but add option to not normalize when validating, "datatype-normalization" added. 

Issue LS-Issue-50: 
Should ’external-parameter-entities’ be replaced by an "load-external-dtds-n’-stuff" option?
Resolution: yes, done, "external-parameter-entities" added. 

Issue LS-Issue-51: 
DOMBuilder::canSetFeature and ::supportsFeature are redundant, no?
Resolution: Yes, supportsFeature removed. 

Issue LS-Issue-52: 
Is the API dependencies on the Events spec acceptable?
Resolution: We’re only reusing events API’s, we’re not requiring people to implement the events
spec so this shouldn’t be a problem. 

Issue LS-ISSUE-53: 
Doesn’t the feature "external-dtd-subset" conflict with the XML 1.0 specifications 
standalone="true"?
Resolution: No, the standalone "attribute" in XML 1.0 is only a hint, and thus implementations are
not required to do anything with it that matters for a DOM builder. 

Issue LS-Issue-54: 
"canonical-form" needs a correct reference to the spec for canonical XML. 

Issue LS-Issue-55: 
How should default attributes be dealt with wrt DOMBuilderFilter?
Resolution: All default content must be passed to the filter. 

Issue LS-Issue-56: 
Should we make it possible to SKIP an element in DOMBuilderFilter::acceptNode?
Resolution: Yes, done. 

Issue LS-Issue-57: 
namespaceURI in core can be empty string, how should that be dealt with in DOM LS?
Resolution: [DOM Level 2 Core] allows empty strings as a real namespace URI. If the 
namespaceURI of a Node is empty string, the serialization will treat them as null, ignoring the
prefix if any. 

Issue LS-Issue-59: 
ACTION_APPEND is confusing, can we clarify it?
Resolution: make it ACTION_APPEND_AS_CHILDREN (2002-01-28) 

41

1.6.2. Resolved Issues



Issue LS-Issue-60: 
DOMEntityResolver::baseURI, should it be absolute or can it be relative?
Resolution: make it absolute. (2002-01-28) 

Issue LS-Issue-61: 
How to use an empty document with parseWithContext?
Resolution: As of today, it is not possible to have an empty Document using the DOM Core, so we
don’t consider this as an issue. However, following the discussion on having support for empty
Document in the Core, this issue might be reopened. 

Issue LS-Issue-62: 
createDOMBuilder: If MODE_SYNCHRONOUS and MODE_ASYNCHRONOUS are the only
anticipated values, then a boolean parameter would be preferred. If it stays a unsigned short, then
there needs to be a exception for unrecognized values.
Resolution: We keep the unsigned hsort for future possible extension.
"NOT_SUPPORTED_ERR: Raised if the requested mode is not supported." 

Issue LS-Issue-63: 
createDOMBuilder: The description of the return value mentions the type parameter, however the
method has no parameters.
Resolution: Fixed. 

Issue LS-Issue-64: 
createDOMWriter: Being able to create an asynchronous writer would be desirable. I’d add a mode
parameter to parallel createDOMBuilder.
Resolution: This will not be addressed by this version of the DOM LS spec. 

Issue LS-Issue-65: 
DOMBuilder.errorHandler: Passing "the node closest to where the error occurred" is really vague.
Especially if the problem is a well-formedness or other fatal error. An character offset and/or text
fragment would be more useful for error diagnosis. Passing null if the closest node could not be
determined would be cleaner than passing the document.
Resolution: Description updated to indicate that any other available position information should also
be passed to the error handler. 

Issue LS-Issue-66: 
parse and parseURI DOMBuilder methods: Returning null for asynchrous DOMBuilder’s would
make it difficult to express DocumentLS.load in terms of DOMBuilder.parse. Since DocumentLS
appears to be a convenience interface, everything should be expressible in terms of the more general 
interfaces.
Resolution: DocumentLS.load and DOMBuilder.parse* are two completely different animals. One
can most likely not be implemented in terms of using the other, and this will not change.
DocumentLS.load is defined as it is for compatibility with existing implementations, and that won’t
be changed. Returning a document from an async parse method on the DOMBuilder is just not
practical since you don’t know at the time when the parse method returns what type of document
you’ll need. No change. 

Issue LS-Issue-67: 
DOMBuilder.parseURI: Specifying a behavior for URI’s containing fragment identifier would seem
desirable. I’d suggest ignoring the fragment identifier, but throwing an exception would be better
than leaving it unspecified.
Resolution: Description updated, no exception, undefined behavior for now but future versions
might define the behavior. 

42

1.6.2. Resolved Issues



Issue LS-Issue-68: 
DOMBuilder.parseWithContext: Should throw DOMSystemExceptions. Should throw
NO_MODIFICATION_ALLOWED_ERR if context node (or parent) is read-only. Returning the
created node would be desirable.
Resolution: Exception added. But the created node can’t be returned since there might be more than
one node created. 

Issue LS-Issue-69: 
How does DOMBuilder.parseWithContext interact with any event listeners registered on the context
node or its ancestors?
Resolution: Description on what mutation events are fired when using parseWithContext() added. 

Issue LS-Issue-70: 
DOMBuilder.setFeature: Several features force other features to specific values, but there is no
defined behavior if you try to override the forced value, for example, setting
external-parameter-entities to false after setting validation to true. I would suggest throwing an 
exception.
Resolution: No exceptions will be thrown. See issue 90. 

Issue LS-Issue-71: 
DOMWriter.encoding attribute: The second bullet should describe how Document.encoding or
Document.actualEncoding are used to determine the encoding. 

Issue LS-Issue-72: 
DOMWriter.encoding attribute: Should throw an exception on setting if the encoding in not 
supported.
Resolution: Definition of DOMWriter.writeNode() updated, no exception thrown on setting the
encoding. 

Issue LS-Issue-73: 
DOMWriter.encoding attribute: There should be a list of required encodings (at minimum UTF-8 and 
UTF-16)
Resolution: No list will be defined in the DOM spec. The XML specification defines some required
encodings, we won’t define anything more than that. 

Issue LS-Issue-74: 
DOMWriter.lastEncoding attribute: I’d prefer a method where I’d pass in a Node and get the
encoding that would be used. Don’t like the statefulness of the attribute.
Resolution: The LS ET decided to remove this attribute completely since it doesn’t really serve any
valid purpose. The LS spec will not define an API for finding out what encoding would be used for a
particular Node. 

Issue LS-Issue-75: 
DOMWriter.errorHandler: Might be more general than just errors, could be reporting progress or
other details (such as the selected encoding) or participating in filtering.
Resolution: No, the error handler is an error handler and nothing more. Other API’s should be
defined for things like progress notifications or other such callbacks. Unless someone provides a
compelling usecase for changing this, it won’t change. 

Issue LS-Issue-76: 
DOMWriter.newLine: Should probably be a unsigned short with constants for the supported values
like other enumerations in the spec.
Resolution: Description updated, this will remain a string and the definition was relaxed to support
any string so that future unicode newlines n’ such can be used w/o an API change. 

43

1.6.2. Resolved Issues



Issue LS-Issue-77: 
DOMWriter.setFeature method: Should have an defined exception for inconsistent features, like
turning pretty-printing on after setting canonical-form to true.
Resolution: See issue 90. 

Issue LS-Issue-78: 
DOMWriter.writeNode method: Writing a Document or Entity node... well formed XML. Why
would writing an entity node be well formed XML?
Resolution: Description updated. 

Issue LS-Issue-79: 
DOMWriter.writeToString method: How is this affected by encoding? It will be represented
internally as UTF-16 on most binding, but users who have set encoding to ISO-8859-1 or US-ASCII
might expect no code points higher than 255 or 127 respectively so they can naively write out the
string to a file later.
Resolution: writeToString() always writes into a DOMString, which means it’s always UTF16. The
encoding information available is always ignored in writeToString(). Description updated to reflect
this. 

Issue LS-Issue-80: 
DOMInputSource Interface: I don’t like the multiple personalities of this interface. Instead of
creating a DOMInputSource and then customizing it by setting attributes, I’d prefer multiple create
(createSourceFromURI, createSourceFromString, etc), methods on DOMImplementationLS and only
the minimum read-only attributes on DOMInputSource.
Resolution: Won’t change, there are too many combinations of input sources to define specific
factory methods for all combinations. 

Issue LS-Issue-81: 
DOMEntityResolver Interface: "for applications that use URI types other than URIs" Did you mean 
URL’s.
Resolution: Description updated. 

Issue LS-Issue-82: 
DOMBuilderFilter.acceptNode and .startContainer: If the return value was a Node, then a Filter
could: 

1.  return the passed enode to have the element inserted. 
2.  return null to have the element rejected 
3.  return a DocumentFragment for SKIP

Resolution: Won’t change, this would make it more complicated and more expensive to implement
than with the current proposal. 

Issue LS-Issue-83: 
DOMBuilderFilter.acceptNode and .startContainer: substitute a replacement element created with 
Document.createElement[NS]
Resolution: No, such mutations to the tree from a filter is not allowed by this spec. 

Issue LS-Issue-84: 
DOMBuilderFilter.acceptNode and .startContainer: It should be possible to throw an exception in
acceptNode and startContainer to stop the parse.
Terminating parsing from a DOMBuilderFilter: The description of the DOMBuilderFilter states that
parsing can be terminated early using a filter, but doesn’t give a specific recommendation or
mechanism regarding how to do this. Should this be binding-specific, or is there a particular DOM
exception which should be raised?

44

1.6.2. Resolved Issues



Resolution: Use FILTER_INTERRUPT if you want to stop the processing of the document.
Interrupting the processing of the document does no longer guarantee that the entire is XML
well-formed. 

Issue LS-Issue-85: 
DocumentLS interface: An isLoaded or ReadyState attribute would be strongly desirable to
determine that an async document was loaded without registering an event listener.
Resolution: This has been discussed and proposed before, and so far all proposals have been turned
down. The load listener can be used for being notified about when a document is done loading, that
lets you do everything a ReadyState or isLoaded attribute would do for you, cleaner and more
efficiently (i.e. no polling of state, or anything like that). 

Issue LS-Issue-86: 
DocumentLS.load: Should an exception be raised if you attempt to start a second async load when
one is already in progress?
Resolution: No, no exception. Calling .load() while a load is in progress on that same document will
cancel the current load and start the new one. 

Issue LS-Issue-87: 
Document.loadXML: How would any XML declaration specifying an encoding be handled.
Resolution: 

Issue LS-Issue-88: 
DOMErrorHandler Interface: Called functions should be able to throw some type of exception or
return an object to stop the parse and raise an exception to the caller of parse. Those exceptions
would need to be added to the list of potential exceptions on the parse calls.
Resolution: Error handler methods can not throw exceptions. The main reason for this is that in the
async loading case there’s none on the receiving end of the call to the error handler that would be
able to deal with the exception. And besides, exceptions are for exceptional cases, this would not be
such a case. 

Issue LS-Issue-89: 
The description of the whatToShow attribute in DOM3 Load and Save for both DOMWriterFilter
and DOMBuilderFilter is unclear. For example, if I set whatToShow to
NodeFilter.SHOW_ELEMENT does this mean that only element nodes will be output? or does it
mean that only element nodes will be passed to the filter for further consideration while other kinds
of nodes will be output without being checked through the filter?
Resolution: The description is already pretty clear on this, no change. 

Issue LS-Issue-91: 
"entity-resolver": The description should describe what support a builder is expected to provide if the
resolver is not specified. When a new builder is created, should a default resolver be exposed via this
attribute, to allow client code to "wrap" a basic resolver, or should the default value be null? (This
kind of information would be helpful for many attributes in the DOM spec.)
Resolution: by default the parser is free to do whatever he wants regarding entities resolution. 

Issue LS-Issue-92: 
DOMBuilder.errorHandler: When a new builder is created, should a error handler be exposed via this
attribute, to allow client code to "wrap" a handler, or should the default value be null?
if no error handler, then throw exceptions?
Resolution: DOMBuilder.errorHandler might expose a default error handler at creation time.
(changed DOMImplementationLS.createDOMBuilder description). 

45

1.6.2. Resolved Issues



Issue LS-Issue-93: 
DOMBuilderFilter.whatToShow: The description of this attribute states that attribute nodes will
never be passed to the filter, and the description of the filter interface also states that the document
element will not be passed to the filter. What about the Document, DocumentType, Notation, and
Entity nodes?
Resolution: Document, DocumentType, Notation and entities are not passed to the filter. 

Issue LS-Issue-94: 
DocumentLS.saveXML: Why would the return value ever be null?
Resolution: "or null in case an error occurred." 

Issue LS-Issue-95: 
The DOMBuilder supports a "feature" called "create-entity-nodes"; is there a reason to also define
"create-notation-nodes"? There’s definitively less need to provide a filter of this sort. Perhaps there
should be an option to not build the DocumentType node at all, even if present?
"processing-instructions" ?
Resolution: Not enough use cases to include those features. Use DOMBuilderFilter. For
DocumentType, implications on validation are not certain, so we don’t plan to support it for the
moment. 

Issue LS-Issue-96: 
The description of serializing character data and attributes is at variance with XML C14N rules; it
seems preferable to stay consistent with C14N where possible, or at least to better motivate any 
departures.
For example, the description:
"Attributes containing quotes but no apostrophes are serialized in apostrophes (single quotes).
Attributes containing both forms of quotes are serialized in quotes, with quotes within the value
represented by the predefined entity "."
varies from C14N which never uses single quotes but always replaces a quotation mark in the
attribute value with ".
Somebody should carefully review this text with respect to C14N rules, and either use C14N rules or
provide feature options on DOMWriter that allows the user of DOMWriter to choose the appropriate 
serialization.
Resolution: use canonical-form for C14N, otherwise, we keep the way it is currently defined. 

Issue LS-Issue-97: 
Under the description of DOMWriter appears the following:
" When serializing a document the DOMWriter checks to see if the document element in the
document is a DOM Level 1 element or a DOM Level 2 (or higher) element (this check is done by
looking at the localName of the root element). If the root element is a DOM Level 1 element then the
DOMWriter will issue an error if a DOM Level 2 (or higher) element is found while serializing.
Likewise if the document element is a DOM Level 2 (or higher) element and the DOMWriter sees a
DOM Level 1 element an error is issued. Mixing DOM Level 1 elements with DOM Level 2 (or
higher) is not supported."
I’m not sure what this is saying. Is it describing a scenario where multiple implementations are
simultaneously used with a single API and a document which was instantiated by a Level 1
implementation has an element which was instantiated by a Level 2 implementation? Wouldn’t it be
an error to import a Level 2 node into a Level 1 document in the first place? Or wouldn’t such an
import effectively downcast that Level 2 node to its Level 1 counterpart?
If, on the other hand, this language is not talking about multiple implementations, then how is it

46

1.6.2. Resolved Issues



possible to have a Level 2 implementation create a Level 1 element? Any element created by a Level
2 implementation will be a Level 2 element.
Resolution: not an issue anymore (text removed). 

Issue LS-Issue-98: 
Regarding the "namespace-declarations" feature of DOMBuilder, which is defaulted as "true",
meaning "include the namespace declaration attributes, specified or defaulted from the schema or
the DTD, in the DOM document", how does this correlate with the following statements: 

1.  in DOM-3 Core, under Element, it is stated "The properties [namespace attributes] and
[in-scope namespaces] defined in [XML Information set] are not accessible from DOM Level 3 
Core."; and 

2.  in DOM-3 LS, under 2.1.3, it is stated "All information to be serialized should be available via
the normal DOM API."

Unless I am missing something (which is probably the case), these latter two statements would seem
to indicate that it is impossible to support "namespace-declarations" as presently defined.
Resolution: DOM 3 Core was fixed. 

Issue LS-Issue-99: 
DOMBuilder.parseWithContext: It states that the context node should be used for namespace
resolution, does the same apply to default attributes and entity references, are these to be taken from
the document on which the parse is done?
Resolution: default attributes and entity referecences are taken from the Document attached to the
context node. 

Issue LS-Issue-100: 
Is document fragment going to be defined. Since you do not have to parse a complete document at
that point, I suppose both
<foo/><bar/>
and
foobar
are valid fragments, but is there an exact definition for this? I am particularly interested whether a
document type is allowed in the input source that is the argument of this method. Since the input may
also be a document, I suppose the answer is ’yes’, but I think that would require implementations (or
maybe just mine?) to ’double parse’ or at least examine the stream a little, as the fragments 

 <?xml version="1.0"?>
 <!DOCTYPE foo>
 foo
and
 foobar

would have to be handled differently (one is wellformed xml, the other is not, and there is at least one
parseWithContext-usage where an input with a doctype would lead to a wellformed result).
Resolution: parseWithContext can take an XML fragment: i.e. anything except an XML Document,
a DOCTYPE, entities declarations, or notations declarations. 

Issue LS-Issue-101: 
reconsider your removal of the namespaces feature
Resolution: added back in the draft. 

Issue LS-Issue-102: 
DOMWriterFilter/DOMBuilderFilter: do you pass the document element, document type, document,
etc. to the filter?

47

1.6.2. Resolved Issues



Resolution: Document, DocumentType, Notation and entities are not passed to the filter. 
Issue LS-Issue-103: 

Current proposal: parse raises DOMIOException. All DOMIOException must also be reported to the 
DOMErrorHandler.
do we need to report and throw the exception? report seems to be enough but if no error handler was
set, doesn’t seem right to die like that...
Resolution: No changes. 

Issue LS-Issue-104: 
the spec says DocumentLS "uses the default features". Does it mean that no validation, etc will be
performed? basically XML 1.0 loading ? the document will be loading, attribute value normalization
XML 1.0 will be performed, but no validation will occure (even if users previously set
setNormalizationFeature() on the document)?
Resolution: entities - default is false, which is different from Core. 

Issue LS-Issue-105: 
DocumentLS.saveXML isn’t clear enough as to whether it’s deep or not. If the snode parameter is
null, the whole document is serialized. OK, that’s deep. But if it is non-null, then ONLY the Node
provided is serialized? What if one wishes to use DocumentLS.saveXML to serialize a specific node
AND its children? I think it might be nice to have a boolean deep argument for this method, and
specify that the provided Node, and all its children, may be serialized if the deep parameter is true. If
false, then only the provided Node is serialized.
Resolution: DocumentLS.saveXML saves the document or the given node and all its decendants to a
string. 

Issue LS-Issue-106: 
There is no way to query the DOMImplementation for a specific DOMBuilder. support XML 1.1?
support validation? namespaces=false?
Resolution: Issue moved to Core to let users enumerate all DOM implementations in the DOM
implementation registry to find out if there’s one that supports the specific features. 

Issue LS-Issue-107: 
Should we make DOMBuilder.filter, DOMWriter.filter, DOMWriter.encoding, DOMWriter.newLine
a parameter on DOMConfiguration?
Resolution: No.

48

1.6.2. Resolved Issues



Appendix A: IDL Definitions
This appendix contains the complete OMG IDL [OMG IDL] for the Level 3 Document Object Model
Abstract Schemas and Load and Save definitions.

The IDL files are also available as: http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030226/idl.zip

ls.idl:
// File: ls.idl

#ifndef _LS_IDL_
#define _LS_IDL_

#include "dom.idl"
#include "events.idl"
#include "traversal.idl"

#pragma prefix "dom.w3c.org"
module ls
{

  typedef   Object DOMInputStream;

  typedef   Object DOMOutputStream;

  typedef   Object DOMReader;

  typedef dom::DOMString DOMString;
  typedef dom::DOMConfiguration DOMConfiguration;
  typedef dom::Node Node;
  typedef dom::Document Document;
  typedef dom::Element Element;

  interface DOMBuilder;
  interface DOMWriter;
  interface DOMInputSource;
  interface DOMBuilderFilter;
  interface DOMWriterFilter;

  interface DOMImplementationLS {

    // DOMIMplementationLSMode
    const unsigned short      MODE_SYNCHRONOUS               = 1;
    const unsigned short      MODE_ASYNCHRONOUS              = 2;

    DOMBuilder         createDOMBuilder(in unsigned short mode, 
                                        in DOMString schemaType)
                                        raises(dom::DOMException);
    DOMWriter          createDOMWriter();
    DOMInputSource     createDOMInputSource();
  };

  interface DOMBuilder {

49

Appendix A: IDL Definitions



    readonly attribute DOMConfiguration config;
             attribute DOMBuilderFilter filter;
    readonly attribute boolean         async;
    readonly attribute boolean         busy;
    Document           parse(in DOMInputSource is)
                                        raises(dom::DOMException);
    Document           parseURI(in DOMString uri)
                                        raises(dom::DOMException);

    // ACTION_TYPES
    const unsigned short      ACTION_APPEND_AS_CHILDREN      = 1;
    const unsigned short      ACTION_REPLACE_CHILDREN        = 2;
    const unsigned short      ACTION_INSERT_BEFORE           = 3;
    const unsigned short      ACTION_INSERT_AFTER            = 4;
    const unsigned short      ACTION_REPLACE                 = 5;

    Node               parseWithContext(in DOMInputSource is, 
                                        in Node cnode, 
                                        in unsigned short action)
                                        raises(dom::DOMException);
    void               abort();
  };

  interface DOMInputSource {
             attribute DOMInputStream  byteStream;
    // The attribute characterStream is not available in ECMAScript
             attribute DOMReader       characterStream;
             attribute DOMString       stringData;
             attribute DOMString       encoding;
             attribute DOMString       publicId;
             attribute DOMString       systemId;
             attribute DOMString       baseURI;
  };

  interface DOMEntityResolver {
    DOMInputSource     resolveEntity(in DOMString publicId, 
                                     in DOMString systemId, 
                                     in DOMString baseURI);
  };

  interface DOMBuilderFilter {

    // Constants returned by startElement and acceptNode
    const short               FILTER_ACCEPT                  = 1;
    const short               FILTER_REJECT                  = 2;
    const short               FILTER_SKIP                    = 3;
    const short               FILTER_INTERRUPT               = 4;

    unsigned short     startElement(in Element elt);
    unsigned short     acceptNode(in Node enode);
    readonly attribute unsigned long   whatToShow;
  };

  interface DOMWriter {
    readonly attribute DOMConfiguration config;
             attribute DOMString       encoding;
             attribute DOMString       newLine;

50

ls.idl:



             attribute DOMWriterFilter filter;
    boolean            writeNode(in DOMOutputStream destination, 
                                 in Node wnode);
    DOMString          writeToString(in Node wnode)
                                        raises(dom::DOMException);
  };

  interface DocumentLS {
             attribute boolean         async;
                                        // raises(dom::DOMException) on setting

    void               abort();
    boolean            load(in DOMString uri);
    boolean            loadXML(in DOMString source);
    DOMString          saveXML(in Node snode)
                                        raises(dom::DOMException);
  };

  interface ElementLS {
             attribute DOMString       markupContent;
  };

  interface LSProgressEvent : events::Event {
    readonly attribute DOMInputSource  inputSource;
    readonly attribute unsigned long   position;
    readonly attribute unsigned long   totalSize;
  };

  interface LSLoadEvent : events::Event {
    readonly attribute Document        newDocument;
    readonly attribute DOMInputSource  inputSource;
  };

  interface DOMWriterFilter : traversal::NodeFilter {
    readonly attribute unsigned long   whatToShow;
  };
};

#endif // _LS_IDL_

51

ls.idl:



52

ls.idl:



Appendix B: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 3 Document Object Model Load
and Save.

The Java files are also available as 
http://www.w3.org/TR/2003/WD-DOM-Level-3-LS-20030226/java-binding.zip

org/w3c/dom/ls/DOMImplementationLS.java:
package org.w3c.dom.ls;

import org.w3c.dom.DOMException;

public interface DOMImplementationLS {
    // DOMIMplementationLSMode
    public static final short MODE_SYNCHRONOUS          = 1;
    public static final short MODE_ASYNCHRONOUS         = 2;

    public DOMBuilder createDOMBuilder(short mode, 
                                       String schemaType)
                                       throws DOMException;

    public DOMWriter createDOMWriter();

    public DOMInputSource createDOMInputSource();

}

org/w3c/dom/ls/DOMBuilder.java:
package org.w3c.dom.ls;

import org.w3c.dom.Document;
import org.w3c.dom.DOMConfiguration;
import org.w3c.dom.Node;
import org.w3c.dom.DOMException;

public interface DOMBuilder {
    public DOMConfiguration getConfig();

    public DOMBuilderFilter getFilter();
    public void setFilter(DOMBuilderFilter filter);

    public boolean getAsync();

    public boolean getBusy();

    public Document parse(DOMInputSource is)
                          throws DOMException;

    public Document parseURI(String uri)
                             throws DOMException;

53

Appendix B: Java Language Binding



    // ACTION_TYPES
    public static final short ACTION_APPEND_AS_CHILDREN = 1;
    public static final short ACTION_REPLACE_CHILDREN   = 2;
    public static final short ACTION_INSERT_BEFORE      = 3;
    public static final short ACTION_INSERT_AFTER       = 4;
    public static final short ACTION_REPLACE            = 5;

    public Node parseWithContext(DOMInputSource is, 
                                 Node cnode, 
                                 short action)
                                 throws DOMException;

    public void abort();

}

org/w3c/dom/ls/DOMInputSource.java:
package org.w3c.dom.ls;

public interface DOMInputSource {
    public java.io.InputStream getByteStream();
    public void setByteStream(java.io.InputStream byteStream);

    public java.io.Reader getCharacterStream();
    public void setCharacterStream(java.io.Reader characterStream);

    public String getStringData();
    public void setStringData(String stringData);

    public String getEncoding();
    public void setEncoding(String encoding);

    public String getPublicId();
    public void setPublicId(String publicId);

    public String getSystemId();
    public void setSystemId(String systemId);

    public String getBaseURI();
    public void setBaseURI(String baseURI);

}

org/w3c/dom/ls/DOMEntityResolver.java:
package org.w3c.dom.ls;

public interface DOMEntityResolver {
    public DOMInputSource resolveEntity(String publicId, 
                                        String systemId, 
                                        String baseURI);

}

54

org/w3c/dom/ls/DOMInputSource.java:



org/w3c/dom/ls/DOMBuilderFilter.java:
package org.w3c.dom.ls;

import org.w3c.dom.Element;
import org.w3c.dom.Node;

public interface DOMBuilderFilter {
    // Constants returned by startElement and acceptNode
    public static final short FILTER_ACCEPT             = 1;
    public static final short FILTER_REJECT             = 2;
    public static final short FILTER_SKIP               = 3;
    public static final short FILTER_INTERRUPT          = 4;

    public short startElement(Element elt);

    public short acceptNode(Node enode);

    public int getWhatToShow();

}

org/w3c/dom/ls/LSProgressEvent.java:
package org.w3c.dom.ls;

import org.w3c.dom.events.Event;

public interface LSProgressEvent extends Event {
    public DOMInputSource getInputSource();

    public int getPosition();

    public int getTotalSize();

}

org/w3c/dom/ls/LSLoadEvent.java:
package org.w3c.dom.ls;

import org.w3c.dom.Document;
import org.w3c.dom.events.Event;

public interface LSLoadEvent extends Event {
    public Document getNewDocument();

    public DOMInputSource getInputSource();

}

55

org/w3c/dom/ls/DOMBuilderFilter.java:



org/w3c/dom/ls/DOMWriter.java:
package org.w3c.dom.ls;

import org.w3c.dom.DOMConfiguration;
import org.w3c.dom.Node;
import org.w3c.dom.DOMException;

public interface DOMWriter {
    public DOMConfiguration getConfig();

    public String getEncoding();
    public void setEncoding(String encoding);

    public String getNewLine();
    public void setNewLine(String newLine);

    public DOMWriterFilter getFilter();
    public void setFilter(DOMWriterFilter filter);

    public boolean writeNode(java.io.OutputStream destination, 
                             Node wnode);

    public String writeToString(Node wnode)
                                throws DOMException;

}

org/w3c/dom/ls/DOMWriterFilter.java:
package org.w3c.dom.ls;

import org.w3c.dom.traversal.NodeFilter;

public interface DOMWriterFilter extends NodeFilter {
    public int getWhatToShow();

}

org/w3c/dom/ls/DocumentLS.java:
package org.w3c.dom.ls;

import org.w3c.dom.Node;
import org.w3c.dom.DOMException;

public interface DocumentLS {
    public boolean getAsync();
    public void setAsync(boolean async)
                                throws DOMException;

    public void abort();

    public boolean load(String uri);

56

org/w3c/dom/ls/DOMWriter.java:



    public boolean loadXML(String source);

    public String saveXML(Node snode)
                          throws DOMException;

}

org/w3c/dom/ls/ElementLS.java:
package org.w3c.dom.ls;

public interface ElementLS {
    public String getMarkupContent();
    public void setMarkupContent(String markupContent);

}

57

org/w3c/dom/ls/ElementLS.java:



58

org/w3c/dom/ls/ElementLS.java:



Appendix C: ECMAScript Language Binding
This appendix contains the complete ECMAScript [ECMAScript] binding for the Level 3 Document
Object Model Load and Save definitions.

Properties of the DOMImplementationLS Constructor function: 
DOMImplementationLS.MODE_SYNCHRONOUS 

The value of the constant DOMImplementationLS.MODE_SYNCHRONOUS is 1. 
DOMImplementationLS.MODE_ASYNCHRONOUS 

The value of the constant DOMImplementationLS.MODE_ASYNCHRONOUS is 2.
Objects that implement the DOMImplementationLS interface: 

Functions of objects that implement the DOMImplementationLS interface: 
createDOMBuilder(mode, schemaType) 

This function returns an object that implements the DOMBuilder interface.
The mode parameter is a Number.
The schemaType parameter is a String.
This function can raise an object that implements the DOMException interface. 

createDOMWriter() 
This function returns an object that implements the DOMWriter interface. 

createDOMInputSource() 
This function returns an object that implements the DOMInputSource interface.

Properties of the DOMBuilder Constructor function: 
DOMBuilder.ACTION_APPEND_AS_CHILDREN 

The value of the constant DOMBuilder.ACTION_APPEND_AS_CHILDREN is 1. 
DOMBuilder.ACTION_REPLACE_CHILDREN 

The value of the constant DOMBuilder.ACTION_REPLACE_CHILDREN is 2. 
DOMBuilder.ACTION_INSERT_BEFORE 

The value of the constant DOMBuilder.ACTION_INSERT_BEFORE is 3. 
DOMBuilder.ACTION_INSERT_AFTER 

The value of the constant DOMBuilder.ACTION_INSERT_AFTER is 4. 
DOMBuilder.ACTION_REPLACE 

The value of the constant DOMBuilder.ACTION_REPLACE is 5.
Objects that implement the DOMBuilder interface: 

Properties of objects that implement the DOMBuilder interface: 
config 

This read-only property is an object that implements the DOMConfiguration interface. 
filter 

This property is an object that implements the DOMBuilderFilter interface. 
async 

This read-only property is a Boolean. 
busy 

This read-only property is a Boolean.
Functions of objects that implement the DOMBuilder interface: 

parse(is) 
This function returns an object that implements the Document interface.
The is parameter is an object that implements the DOMInputSource interface.

59

Appendix C: ECMAScript Language Binding



This function can raise an object that implements the DOMException interface. 
parseURI(uri) 

This function returns an object that implements the Document interface.
The uri parameter is a String.
This function can raise an object that implements the DOMException interface. 

parseWithContext(is, cnode, action) 
This function returns an object that implements the Node interface.
The is parameter is an object that implements the DOMInputSource interface.
The cnode parameter is an object that implements the Node interface.
The action parameter is a Number.
This function can raise an object that implements the DOMException interface. 

abort() 
This function has no return value.

Objects that implement the DOMInputSource interface: 
Properties of objects that implement the DOMInputSource interface: 

byteStream 
This property is an object that implements the Object interface. 

stringData 
This property is a String. 

encoding 
This property is a String. 

publicId 
This property is a String. 

systemId 
This property is a String. 

baseURI 
This property is a String.

Objects that implement the DOMEntityResolver interface: 
Functions of objects that implement the DOMEntityResolver interface: 

resolveEntity(publicId, systemId, baseURI) 
This function returns an object that implements the DOMInputSource interface.
The publicId parameter is a String.
The systemId parameter is a String.
The baseURI parameter is a String.

Properties of the DOMBuilderFilter Constructor function: 
DOMBuilderFilter.FILTER_ACCEPT 

The value of the constant DOMBuilderFilter.FILTER_ACCEPT is 1. 
DOMBuilderFilter.FILTER_REJECT 

The value of the constant DOMBuilderFilter.FILTER_REJECT is 2. 
DOMBuilderFilter.FILTER_SKIP 

The value of the constant DOMBuilderFilter.FILTER_SKIP is 3. 
DOMBuilderFilter.FILTER_INTERRUPT 

The value of the constant DOMBuilderFilter.FILTER_INTERRUPT is 4.
Objects that implement the DOMBuilderFilter interface: 

Properties of objects that implement the DOMBuilderFilter interface: 

60

Appendix C: ECMAScript Language Binding



whatToShow 
This read-only property is a Number.

Functions of objects that implement the DOMBuilderFilter interface: 
startElement(elt) 

This function returns a Number.
The elt parameter is an object that implements the Element interface. 

acceptNode(enode) 
This function returns a Number.
The enode parameter is an object that implements the Node interface.

Objects that implement the LSProgressEvent interface: 
Objects that implement the LSProgressEvent interface have all properties and functions of the 
Event interface as well as the properties and functions defined below. 
Properties of objects that implement the LSProgressEvent interface: 

inputSource 
This read-only property is an object that implements the DOMInputSource interface. 

position 
This read-only property is a Number. 

totalSize 
This read-only property is a Number.

Objects that implement the LSLoadEvent interface: 
Objects that implement the LSLoadEvent interface have all properties and functions of the Event
interface as well as the properties and functions defined below. 
Properties of objects that implement the LSLoadEvent interface: 

newDocument 
This read-only property is an object that implements the Document interface. 

inputSource 
This read-only property is an object that implements the DOMInputSource interface.

Objects that implement the DOMWriter interface: 
Properties of objects that implement the DOMWriter interface: 

config 
This read-only property is an object that implements the DOMConfiguration interface. 

encoding 
This property is a String. 

newLine 
This property is a String. 

filter 
This property is an object that implements the DOMWriterFilter interface.

Functions of objects that implement the DOMWriter interface: 
writeNode(destination, wnode) 

This function returns a Boolean.
The destination parameter is an object that implements the Object interface.
The wnode parameter is an object that implements the Node interface. 

writeToString(wnode) 
This function returns a String.
The wnode parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

61

Appendix C: ECMAScript Language Binding



Objects that implement the DOMWriterFilter interface: 
Objects that implement the DOMWriterFilter interface have all properties and functions of the 
NodeFilter interface as well as the properties and functions defined below. 
Properties of objects that implement the DOMWriterFilter interface: 

whatToShow 
This read-only property is a Number.

Objects that implement the DocumentLS interface: 
Properties of objects that implement the DocumentLS interface: 

async 
This property is a Boolean and can raise an object that implements DOMException
interface on setting.

Functions of objects that implement the DocumentLS interface: 
abort() 

This function has no return value. 
load(uri) 

This function returns a Boolean.
The uri parameter is a String. 

loadXML(source) 
This function returns a Boolean.
The source parameter is a String. 

saveXML(snode) 
This function returns a String.
The snode parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

Objects that implement the ElementLS interface: 
Properties of objects that implement the ElementLS interface: 

markupContent 
This property is a String.

62

Appendix C: ECMAScript Language Binding



Appendix D: Acknowledgements
Many people contributed to the DOM specifications (Level 1, 2 or 3), including members of the DOM
Working Group and the DOM Interest Group. We especially thank the following:

Andrew Watson (Object Management Group), Andy Heninger (IBM), Angel Diaz (IBM), Arnaud Le
Hors (W3C and IBM), Ashok Malhotra (IBM and Microsoft), Ben Chang (Oracle), Bill Smith (Sun), Bill
Shea (Merrill Lynch), Bob Sutor (IBM), Chris Lovett (Microsoft), Chris Wilson (Microsoft), David
Brownell (Sun), David Ezell (Hewlett Packard Company), David Singer (IBM), Dimitris Dimitriadis
(Improve AB and invited expert), Don Park (invited), Elena Litani (IBM), Eric Vasilik (Microsoft), Gavin
Nicol (INSO), Ian Jacobs (W3C), James Clark (invited), James Davidson (Sun), Jared Sorensen (Novell),
Jeroen van Rotterdam (X-Hive Corporation), Joe Kesselman (IBM), Joe Lapp (webMethods), Joe Marini
(Macromedia), Johnny Stenback (Netscape/AOL), Jon Ferraiolo (Adobe), Jonathan Marsh (Microsoft),
Jonathan Robie (Texcel Research and Software AG), Kim Adamson-Sharpe (SoftQuad Software Inc.),
Lauren Wood (SoftQuad Software Inc., former Chair), Laurence Cable (Sun), Mark Davis (IBM), Mark
Scardina (Oracle), Martin Dürst (W3C), Mary Brady (NIST), Mick Goulish (Software AG), Mike
Champion (Arbortext and Software AG), Miles Sabin (Cromwell Media), Patti Lutsky (Arbortext), Paul
Grosso (Arbortext), Peter Sharpe (SoftQuad Software Inc.), Phil Karlton (Netscape), Philippe Le Hégaret
(W3C, W3C team contact and former Chair), Ramesh Lekshmynarayanan (Merrill Lynch), Ray Whitmer
(iMall, Excite@Home, and Netscape/AOL, Chair), Rezaur Rahman (Intel), Rich Rollman (Microsoft),
Rick Gessner (Netscape), Rick Jelliffe (invited), Rob Relyea (Microsoft), Scott Isaacs (Microsoft), Sharon
Adler (INSO), Steve Byrne (JavaSoft), Tim Bray (invited), Tim Yu (Oracle), Tom Pixley
(Netscape/AOL), Vidur Apparao (Netscape), Vinod Anupam (Lucent).

Thanks to all those who have helped to improve this specification by sending suggestions and corrections
(Please, keep bugging us with your issues!).

Special thanks to the DOM Conformance Test Suites contributors: Curt Arnold, Fred Drake, Mary Brady
(NIST), Rick Rivello (NIST), Robert Clary (Netscape).

D.1: Production Systems
This specification was written in XML. The HTML, OMG IDL, Java and ECMAScript bindings were all
produced automatically.

Thanks to Joe English, author of cost, which was used as the basis for producing DOM Level 1. Thanks
also to Gavin Nicol, who wrote the scripts which run on top of cost. Arnaud Le Hors and Philippe Le
Hégaret maintained the scripts.

After DOM Level 1, we used Xerces as the basis DOM implementation and wish to thank the authors.
Philippe Le Hégaret and Arnaud Le Hors wrote the Java programs which are the DOM application.

Thanks also to Jan Kärrman, author of html2ps, which we use in creating the PostScript version of the 
specification.

63

Appendix D: Acknowledgements

http://www.w3.org/DOM/Test
http://www.flightlab.com/cost
http://xml.apache.org/xerces-j
http://dev.w3.org/cvsweb/java/classes/org/w3c/tools/specgenerator/
http://www.tdb.uu.se/~jan/html2ps.html


64

D.1: Production Systems



Glossary
Editors: 

Arnaud Le Hors, W3C 
Robert S. Sutor, IBM Research (for DOM Level 1)

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

16-bit unit 
The base unit of a DOMString. This indicates that indexing on a DOMString occurs in units of 16
bits. This must not be misunderstood to mean that a DOMString can store arbitrary 16-bit units. A 
DOMString is a character string encoded in UTF-16; this means that the restrictions of UTF-16 as
well as the other relevant restrictions on character strings must be maintained. A single character, for
example in the form of a numeric character reference, may correspond to one or two 16-bit units. 

API 
An API is an Application Programming Interface, a set of functions or methods used to access some
functionality. 

document element 
There is only one document element in a Document. This element node is a child of the Document
node. See Well-Formed XML Documents in XML [XML 1.0]. 

document order 
There is an ordering, document order, defined on all the nodes in the document corresponding to the
order in which the first character of the XML representation of each node occurs in the XML
representation of the document after expansion of general entities. Thus, the document element [p.65] 
node will be the first node. Element nodes occur before their children. Thus, document order orders
element nodes in order of the occurrence of their start-tag in the XML (after expansion of entities).
The attribute nodes of an element occur after the element and before its children. The relative order
of attribute nodes is implementation-dependent. 

event 
An event is the representation of some asynchronous occurrence (such as a mouse click on the
presentation of the element, or the removal of child node from an element, or any of unthinkably
many other possibilities) that gets associated with an event target [p.65] . 

event target 
The object to which an event [p.65] is targeted. 

target node 
The target node is the node representing the event target [p.65] to which an event [p.65] is targeted
using the DOM event flow. 

tokenized 
The description given to various information items (for example, attribute values of various types,
but not including the StringType CDATA) after having been processed by the XML processor. The
process includes stripping leading and trailing white space, and replacing multiple space characters
by one. See the definition of tokenized type. 

well-formed 
A node is a well-formed XML node if it matches its respective production in [XML 1.0], meets all
well-formedness constraints related to the production, if the entities which are referenced within the

65

Glossary

http://www.w3.org/TR/2000/REC-xml-20001006#dt-root


node are also well-formed. See also the definition for well-formed XML documents in [XML 1.0].

66

Glossary

http://www.w3.org/TR/2000/REC-xml-20001006#dt-wellformed


References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

F.1: Normative references
[CharModel] 

Character Model for the World Wide Web 1.0, M. D¨rst, et al., Editors. World Wide Web
Consortium, April 2002. This version of the Character Model for the World Wide Web Specification
is http://www.w3.org/TR/2002/WD-charmod-20020430. The latest version of Character Model is
available at http://www.w3.org/TR/charmod. 

[DOM Level 2 Core] 
Document Object Model Level 2 Core Specification, A. Le Hors, et al., Editors. World Wide Web
Consortium, 13 November 2000. This version of the DOM Level 2 Core Recommendation is
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113. The latest version of DOM Level
2 Core is available at http://www.w3.org/TR/DOM-Level-2-Core. 

[DOM Level 3 Core] 
Document Object Model Level 3 Core Specification, A. Le Hors, et al., Editors. World Wide Web
Consortium, October 2002. This version of the Document Object Model Level 3 Core Specification
is http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022. The latest version of DOM
Level 3 Core is available at http://www.w3.org/TR/DOM-Level-3-Core. 

[ECMAScript] 
ECMAScript Language Specification, Third Edition. European Computer Manufacturers Association,
Standard ECMA-262, December 1999. 

[ISO/IEC 10646] 
ISO/IEC 10646-1993 (E). Information technology - Universal Multiple-Octet Coded Character Set
(UCS) - Part 1: Architecture and Basic Multilingual Plane. [Geneva]: International Organization for
Standardization, 1993 (plus amendments AM 1 through AM 7). 

[Java] 
The Java Language Specification, J. Gosling, B. Joy, and G. Steele, Authors. Addison-Wesley,
September 1996. Available at http://java.sun.com/docs/books/jls 

[OMG IDL] 
"OMG IDL Syntax and Semantics" defined in The Common Object Request Broker: Architecture and
Specification, version 2, Object Management Group. The latest version of CORBA version 2.0 is
available at http://www.omg.org/technology/documents/formal/corba_2.htm. 

[IETF RFC 2396] 
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter,
Authors. Internet Engineering Task Force, August 1998. Available at
http://www.ietf.org/rfc/rfc2396.txt. 

[IETF RFC 3023] 
XML Media Types, M. Murata, S. St.Laurent, D. Kohn, Editors. Internet Engineering Task Force,
January 2001. Available at http://www.ietf.org/rfc/rfc3023.txt. 

[SAX] 
Simple API for XML, D. Megginson and D. Brownell, Maintainers. Available at
http://www.saxproject.org/ 

67

References

http://www.w3.org/TR
http://www.w3.org/TR/2002/WD-charmod-20020430
http://www.w3.org/TR/charmod
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://java.sun.com/docs/books/jls
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.saxproject.org/


[Unicode 2.0] 
The Unicode Standard, Version 2.0.. The Unicode Consortium, 1996. Reading, Mass.:
Addison-Wesley Developers Press. ISBN 0-201-48345-9. 

[XML 1.0] 
Extensible Markup Language (XML) 1.0 (Second Edition), T. Bray, J. Paoli, C. M.
Sperberg-McQueen, and E. Maler, Editors. World Wide Web Consortium, 10 February 1998, revised
6 October 2000. This version of the XML 1.0 Recommendation is
http://www.w3.org/TR/2000/REC-xml-20001006. The latest version of XML 1.0 is available at
http://www.w3.org/TR/REC-xml. 

[XML 1.1] 
XML 1.1, J. Cowan, Editor. World Wide Web Consortium, 15 October 2002. This version of the
XML 1.1 Specification is http://www.w3.org/TR/2002/CR-xml11-20021015. The latest version of
XML 1.1 is available at http://www.w3.org/TR/xml11. 

[XML Information set] 
XML Information Set, J. Cowan and R. Tobin, Editors. World Wide Web Consortium, 24 October
2001. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/2001/REC-xml-infoset-20011024. The latest version of XML Information Set
is available at http://www.w3.org/TR/xml-infoset.

F.2: Informative references
[Canonical XML] 

Canonical XML Version 1.0, J. Boyer, Editor. World Wide Web Consortium, 15 March 2001. This
version of the Canonical XML Recommendation is
http://www.w3.org/TR/2001/REC-xml-c14n-20010315. The latest version of Canonical XML  is
available at http://www.w3.org/TR/xml-c14n. 

[DOM Level 3 Events] 
Document Object Model Level 3 Events Specification, P. Le Hégaret, T. Pixley, Editors. World Wide
Web Consortium, July 2002. This version of the Document Object Model Level 3 Events
Specification is http://www.w3.org/TR/DOM-Level-3-Events. The latest version of Document
Object Model Level 3 Events is available at http://www.w3.org/TR/DOM-Level-3-Events. 

[JAXP] 
Java API for XML Processing (JAXP). Sun Microsystems. Available at
http://java.sun.com/xml/xml_jaxp.html. 

[IETF RFC 2616] 
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, T. Berners-Lee, Authors. Internet Engineering Task Force, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt. 

[XML Schema Part 1] 
XML Schema Part 1: Structures, H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, Editors.
World Wide Web Consortium, 2 May 2001. This version of the XML Part 1 Recommendation is
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502. The latest version of XML Schema Part 
1 is available at http://www.w3.org/TR/xmlschema-1.

68

F.2: Informative references

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2002/CR-xml11-20021015/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/DOM-Level-3-Events
http://java.sun.com/xml/xml_jaxp.html
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/


Index
16-bit unit 19, 65

 

[attributes]

 

abort 16, 32 acceptNode ACTION_APPEND_AS_CHILDREN

ACTION_INSERT_AFTER ACTION_INSERT_BEFORE ACTION_REPLACE

ACTION_REPLACE_CHILDREN API 9, 65 async 15, 31

 

baseURI busy byteStream

 

Canonical XML  27, 68 characterStream CharModel 25, 27, 67

config 15, 27 createDOMBuilder createDOMInputSource

createDOMWriter

 

document element document order DocumentLS

DOM Level 2 Core 25, 41, 67
DOM Level 3 Core 9, 10, 13, 
13, 25, 25, 27, 31, 33, 67

DOM Level 3 Events 24, 68

DOMBuilder DOMBuilderFilter DOMEntityResolver

DOMImplementationLS DOMInputSource DOMInputStream

DOMOutputStream DOMReader DOMWriter

DOMWriterFilter

 

ECMAScript ElementLS encoding 20, 28

event event target

 

filter 16, 29 FILTER_ACCEPT FILTER_INTERRUPT

FILTER_REJECT FILTER_SKIP

 

IETF RFC 2396 17, 20, 19, 21, 67 IETF RFC 2616 15, 20, 68 IETF RFC 3023 15, 67

69

Index



inputSource 24, 25 ISO/IEC 10646 19, 67

 

Java JAXP 9, 68

 

load loadXML LSLoadEvent

LSProgressEvent

 

markupContent MODE_ASYNCHRONOUS MODE_SYNCHRONOUS

 

newDocument newLine

 

OMG IDL

 

parse parseURI parseWithContext

position publicId

 

resolveEntity

 

saveXML SAX 9, 20, 67 startElement

stringData systemId

 

target node tokenized totalSize

 

Unicode 2.0 19, 68

 

well-formed 23, 22, 25, 65 whatToShow 22, 30 writeNode

writeToString

 

XML 1.0 11, 15, 20, 25, 29, 65, 65, 
68

XML 1.1 15, 27, 29, 68 XML Information set 13, 68

XML Schema Part 1 11, 68

70

Index


	Document Object Model †DOM‡ Level 3 Load and Save Specification
	Version 1.0
	W3C Working Draft 26 February 2003
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	W3C Copyright Notices and Licenses
	W3C® Document Copyright Notice and License
	W3C® Software Copyright Notice and License
	W3C® Short Software Notice

	1. Document Object Model Load and Save
	1.1. Overview
	1.1.1. Overview of the Interfaces
	1.1.2. The DOMInputStream type
	1.1.3. The DOMOutputStream type
	1.1.4. The DOMReader type

	1.2. Fundamental interfaces
	1.3. Load Interfaces
	1.4. Save Interfaces
	1.5. Convenience Interfaces
	1.6. Issue List
	1.6.1. Open Issues
	1.6.2. Resolved Issues


	Appendix A: IDL Definitions
	
	ls.idl:


	Appendix B: Java Language Binding
	
	org/w3c/dom/ls/DOMImplementationLS.java:
	org/w3c/dom/ls/DOMBuilder.java:
	org/w3c/dom/ls/DOMInputSource.java:
	org/w3c/dom/ls/DOMEntityResolver.java:
	org/w3c/dom/ls/DOMBuilderFilter.java:
	org/w3c/dom/ls/LSProgressEvent.java:
	org/w3c/dom/ls/LSLoadEvent.java:
	org/w3c/dom/ls/DOMWriter.java:
	org/w3c/dom/ls/DOMWriterFilter.java:
	org/w3c/dom/ls/DocumentLS.java:
	org/w3c/dom/ls/ElementLS.java:


	Appendix C: ECMAScript Language Binding
	Appendix D: Acknowledgements
	D.1: Production Systems

	Glossary
	References
	F.1: Normative references
	F.2: Informative references

	Index

