
Document Object Model (DOM) Level 3 Events
Specification

Version 1.0

W3C Working Draft 21 February 2003
This version:

http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030221
Latest version:

http://www.w3.org/TR/DOM-Level-3-Events
Previous version:

http://www.w3.org/TR/2002/WD-DOM-Level-3-Events-20020712

Editors:
Philippe Le Hégaret, W3C
Tom Pixley, Netscape Communications Corporation (until July 2002)

This document is also available in these non-normative formats: XML file, plain text, PostScript file, PDF
file, single HTML file, and ZIP file.

Copyright ©2003 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Events Level 3, a generic platform- and
language-neutral event system which allows registration of event handlers, describes event flow through a
tree structure, and provides basic contextual information for each event. The Document Object Model
Events Level 3 builds on the Document Object Model Events Level 2 [DOM Level 2 Events].

Status of this document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. The latest status of this document series is maintained at the W3C.

This document contains the Document Object Model Level 3 Events specification.

1

Document Object Model (DOM) Level 3 Events Specification

http://www.w3.org/
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030221
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/2002/WD-DOM-Level-3-Events-20020712
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030221/xml-source.xml
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030221/DOM3-Events.txt
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030221/DOM3-Events.ps
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030221/DOM3-Events.pdf
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030221/DOM3-Events.pdf
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030221/DOM3-Events.html
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030221/DOM3-Events.zip
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software

This is a Working Draft for review by W3C members and other interested parties.

It is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in
progress". This is work in progress and does not imply endorsement by, or the consensus of, either W3C
or members of the DOM Working Group.

Comments on this document are invited and are to be sent to the public mailing list www-dom@w3.org.
An archive is available at http://lists.w3.org/Archives/Public/www-dom/.

Patent disclosures relevant to this specification may be found on the Working Group’s patent disclosure
page.

This document has been produced as part of the W3C DOM Activity. The authors of this document are
the DOM Working Group members.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 3Expanded Table of Contents
.............. 5W3C Copyright Notices and Licenses

............... 91. Document Object Model Events

........... 61Appendix A: Key identifiers for keyboard events.

.................. 75Appendix B: Changes

................ 77Appendix C: IDL Definitions

.............. 83Appendix D: Java Language Binding

............ 91Appendix E: ECMAScript Language Binding

.................... 101Glossary

.................... 103References

..................... 107Index

2

Table of contents

http://www.w3.org/Consortium/Process-20010719/tr.html#RecsWD
http://lists.w3.org/Archives/Public/www-dom/
http://www.w3.org/2002/07/08-IPR-statements.html
http://www.w3.org/2002/07/08-IPR-statements.html
http://www.w3.org/DOM/Activity.html
http://www.w3.org/TR/

Expanded Table of Contents
................ 3Expanded Table of Contents
.............. 5W3C Copyright Notices and Licenses
.......... 5W3C® Document Copyright Notice and License
........... 6W3C® Software Copyright Notice and License
............... 7W3C® Short Software Notice

............... 91. Document Object Model Events

.................. 91.1. Introduction

................ 91.1.1. Event flows

................ 91.1.2. Conformance

................. 101.2. DOM event flow

................. 101.2.1. Phases

................ 111.2.2. Event listeners

............ 131.3. Default actions and cancelable events

.................. 131.4. Event types

............. 141.4.1. Complete list of event types

.......... 161.4.2. Compatibility with DOM Level 2 Events

............... 171.5. Event listener registration

............ 171.5.1. Using the EventTarget methods

.............. 181.5.2. Using XML Events

............ 181.5.3. Using XML or HTML attributes

................. 191.6. Basic interfaces

................ 291.6.1. Event creation

............... 331.7. Event module definitions

............. 331.7.1. User Interface event types

................ 351.7.2. Text events

............... 381.7.3. Mouse event types

.............. 451.7.4. Keyboard event types

.......... 501.7.5. Mutation and mutation name event types

............... 561.7.6. Basic event types

................ 571.7.7. HTML Events

........... 61Appendix A: Key identifiers for keyboard events.

................. 61A.1. Introduction

................ 62A.1.1. Modifier keys

................ 62A.1.2. Dead keys

.............. 63A.1.3. Input Method Editors

.......... 64A.1.4. Guidelines for defining key identifiers

................ 64A.2. Key identifiers set

.................. 75Appendix B: Changes

...... 75B.1. Changes between DOM Level 2 Events and DOM Level 3 Events

3

Expanded Table of Contents

.......... 75B.1.1. Changes to DOM Level 2 event flow

.......... 75B.1.2. Changes to DOM Level 2 event types

......... 75B.1.3. Changes to DOM Level 2 Events interfaces

............... 76B.1.4. New Interfaces

................ 77Appendix C: IDL Definitions

.............. 83Appendix D: Java Language Binding

............ 91Appendix E: ECMAScript Language Binding

.................... 101Glossary

.................... 103References

................ 1031. Normative references

................ 1042. Informative references

..................... 107Index

4

Expanded Table of Contents

W3C Copyright Notices and Licenses
Copyright © 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

This document is published under the W3C® Document Copyright Notice and License [p.5] . The
bindings within this document are published under the W3C® Software Copyright Notice and License
[p.6] . The software license requires "Notice of any changes or modifications to the W3C files, including
the date changes were made." Consequently, modified versions of the DOM bindings must document that
they do not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no
longer be ’w3c.org’; in the case of the Java language binding, the package names can no longer be in the
’org.w3c’ package.

W3C ® Document Copyright Notice and License
Note: This section is a copy of the W3C® Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231.

Copyright © 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

Public documents on the W3C site are provided by the copyright holders under the following license. By
using and/or copying this document, or the W3C document from which this statement is linked, you (the
licensee) agree that you have read, understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the W3C document from which this
statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided
that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice (hypertext is

preferred, but a textual representation is permitted) of the form: "Copyright © [$date-of-document]
World Wide Web Consortium, (Massachusetts Institute of Technology, European Research
Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231"

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those

5

W3C Copyright Notices and Licenses

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/Consortium/Legal/IPR-FAQ

requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C ® Software Copyright Notice and License
Note: This section is a copy of the W3C® Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Copyright © 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

This work (and included software, documentation such as READMEs, or other related items) is being
provided by the copyright holders under the following license. By obtaining, using and/or copying this
work, you (the licensee) agree that you have read, understood, and will comply with the following terms
and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without
modification, for any purpose and without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the software and documentation or portions thereof, including modifications:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the

W3C® Short Software Notice [p.7] should be included (hypertext is preferred, text is permitted)
within the body of any redistributed or derivative code.

3. Notice of any changes or modifications to the files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

6

W3C® Software Copyright Notice and License

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

W3C ® Short Software Notice
Note: This section is a copy of the W3C® Short Software Notice and could be found at
http://www.w3.org/Consortium/Legal/2002/copyright-software-short-notice-20021231

Copyright © 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of Technology,
European Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.
This work is distributed under the W3C® Software License [1] in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.

[1] http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

7

W3C® Short Software Notice

http://www.w3.org/Consortium/Legal/2002/copyright-software-short-notice-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/

8

W3C® Short Software Notice

1. Document Object Model Events
Editors:

Philippe Le Hégaret, W3C
Tom Pixley, Netscape Communications Corporation (until July 2002)

1.1. Introduction
DOM Events is designed with two main goals. The first goal is the design of an event [p.101] system
which allows registration of event listeners, describes event flow through a tree structure. Additionally,
the specification will provide standard modules of events for user interface control and document mutation
notifications, including defined contextual information for each of these event modules.

The second goal of the DOM Events is to provide a common subset of the current event systems used in
DOM Level 0 [p.101] browsers. This is intended to foster interoperability of existing scripts and content. It
is not expected that this goal will be met with full backwards compatibility. However, the specification
attempts to achieve this when possible.

The following sections of the specification define both the specification for the DOM Event Model and a
number of conformant event modules designed for use within the model. The DOM Event Model consists
of:

The DOM event flow [p.10] , which describe the flow of events in a tree-based structure.
A set of interfaces to access contextual information on events, to register event listeners.

1.1.1. Event flows

This document specifies an event flow for tree-based structures: DOM event flow [p.10] . While it is
expected that HTML and XML applications will follow this event flow, applications might reuse the
interfaces defined in this document for non tree-based structure. In that case, it is the responsibility of such
application to define their event flow and how it relates to the DOM event flow [p.10] . As example of
such use could be found in [DOM Level 3 Load and Save].

1.1.2. Conformance

An implementation is DOM Level 3 Events conformant if it supports the Core module defined in [DOM
Level 2 Core], the DOM event flow [p.10] and the interfaces with their associated semantics defined in
Basic interfaces [p.19] . An implementation conforms to a DOM Level 3 Events module if it conforms to
DOM Level 3 Events and the event types defined in the module. An implementation conforms to an event
type if it conforms to its associated semantics and DOM interfaces. For example, an implementation
conforms to the DOM Level 3 User Interface Events module (see User Interface event types [p.33]) if it
conforms to DOM Level 3 Events (i.e. implements all the basic interfaces), can generate the event types
{"http://www.w3.org/2001/xml-events", "DOMActivate"}
{"http://www.w3.org/2001/xml-events", "DOMFocusIn"}
{"http://www.w3.org/2001/xml-events", "DOMFocusOut"} accordingly to their
semantics, supports the UIEvent [p.33] interface, and conforms to DOM Level 2 Core module.

9

1. Document Object Model Events

Note: An implementation which does not conform to an event module can still implement the DOM
interfaces associated with it. The DOM application can then create an event object using the
DocumentEvent.createEvent [p.31] method and dispatch an event type associated with this
interface using the EventTarget.dispatchEvent [p.25] method.

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "Events" and "3.0" (respectively) to
determine whether or not DOM Level 3 Events is supported by the implementation. In order to fully
support DOM Level 3 Events, an implementation must also support the "Core" feature defined in the
DOM Level 2 Core specification [DOM Level 2 Core] and use the DOM event flow [p.10] . For
additional information about conformance, please see the DOM Level 3 Core specification [DOM Level 3
Core]. DOM Level 3 Events is built on top of DOM Level 2 Events [DOM Level 2 Events], i.e. a DOM
Level 3 Events implementation where hasFeature("Events", "3.0") returns true must also
return true when the version number is "2.0", "" or, null.

Each event module describes its own feature string in the event module listing.

1.2. DOM event flow
The DOM event flow is the process through which the event [p.101] originates from the DOM Events
implementation and is dispatched into a tree. Each event has an event target [p.101] , a targeted node in
the case of the DOM Event flow, toward which the event is dispatched by the DOM Events
implementation.

1.2.1. Phases

The event is dispatched following a path from the root of the tree to this target node [p.102] . It can then
be handled locally at the target node level or from any target ancestor higher in the tree. The event
dispatching (also called event propagation) occurs in three phases:

1. The capture phase [p.101] : the event is dispatched on the target ancestors from the root of the tree to
the direct parent of the target node [p.102] .

2. The target phase [p.101] : the event is dispatched on the target node [p.102] .
3. The bubbling phase [p.101] : the event is dispatched on the target ancestors from the direct parent of

the target node [p.102] to the root of the tree.

10

1.2. DOM event flow

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/introduction.html#ID-Conformance

graphical representation of an event dispatched in a DOM tree using the DOM event flow

Note: An SVG 1.0 version of the representation above is also available.

The target ancestors are determined before the initial dispatch of the event. If the target node is removed
during the dispatching, or a target ancestor is added or removed, the event propagation will always be
based on the target node and the target ancestors determined before the dispatch.

Some events may not necessarily accomplish the three phases of the DOM event flow, e.g. the event could
only be defined for one or two phases. As an example, events defined in this specification will always
accomplish the capture and target phases but some will not accomplish the bubbling phase ("bubbling
events" versus "non-bubbling events", see also the Event.bubbles [p.20] attribute).

1.2.2. Event listeners

Each node encountered during the dispatch of the event may contain event listeners.

11

1.2.2. Event listeners

1.2.2.1. Registration of event listeners

Event listeners can be registered on all nodes in the tree for a specific type of event, phase, and group. If
the event listener is registered on a node while an event gets processed on this node, the event listener will
not be triggered during the current phase but may be triggered during a later phase in the event flow, i.e.
the bubbling phase [p.101] .

1.2.2.2. Event groups

An event listener is always part of a group. It is either explicitly in a group if a group has been specified at
the registration or implicitly in the default group if no group has been specified. Within a group, event
listeners are ordered in their order of registration. If two event listeners {A1, A2}, that are part of the same
group, are registered one after the other (A1, then A2) for the same phase, the DOM event flow guarantees
their triggering order (A1, then A2). If the two listeners are not part of the same group, no specification is
made as to the order in which they will be triggered.

Note: While this specification does not specify a full ordering (i.e. groups are still unordered), it does
specify ordering within a group. This implies that if the event listeners {A1, A2, B1, B2}, with A and B
being two different groups, are registered for the same phase in the following order: A1, A2, B1, and B2.
The following triggering orders are possible and conform to the DOM event flow: {A1, A2, B1, B2},
{A1, B1, A2, B2}, {B1, A1, A2, B2}, {A1, B1, B2, A2}, {B1, A1, B2, A2}, {B1, B2, A1, A2}. DOM
Events implementations may impose priorities on groups but DOM applications must not rely on it.
Unlike this specification, [DOM Level 2 Events] did not specify any triggering order for event listeners.

1.2.2.3. Triggering an event listener

When the event is dispatched through the tree, from node to node, event listeners registered on the node
are triggered if:

1. they were registered for the same type of event;
2. they were registered for the same phase;
3. the event propagation has not been stopped for the group.

1.2.2.4. Removing an event listener

If an event listener is removed from a node while an event is being processed on the node, it will not be
triggered by the current actions. Once removed, the event listener is never invoked again (unless
registered again for future processing).

1.2.2.5. Reentrance

It is expected that actions taken by EventListener [p.27] s may cause additional events to be
dispatched. Additional events should be handled in a synchronous manner and may cause reentrance into
the event model. If an event listener fires a new event using EventTarget.dispatchEvent [p.25] ,
the event propagation that causes the event listener to be triggered will resume only after the event
propagation of the new event is completed.

12

1.2.2. Event listeners

Since implementations may have restrictions such as stack-usage or other memory requirements,
applications should not depend on how many synchronous events may be triggered.

1.2.2.6. Event propagation and event groups

All event listeners are part of a group (see Registration of event listeners [p.11]). An event listener may
prevent event listeners that are part of a same group from being triggered. The effect could be:

immediate and no more event listeners from the same group will be triggered by the event object;
differed until all event listeners from the same group have been triggered on the current node, i.e. the
event listeners of the same group attached on other nodes will not be triggered.

If two event listeners are registered for two different groups, one cannot prevent the other from being
triggered.

1.3. Default actions and cancelable events
Implementations may have a default action associated with an event type. An example is the [HTML 4.01]
form element. When the user submits the form (e.g. by pressing on a submit button), the event
{"http://www.w3.org/2001/xml-events", "submit"} is dispatched to the element and the
default action for this event type is generally to send a request to a Web server with the parameters from
the form.

The default actions are not part of the DOM Event flow. Before invoking a default action, the
implementation must first dispatch the event as described in the DOM event flow [p.10] .

A cancelable event is an event associated with a default action which is allowed to be canceled during the
DOM event flow. At any phase during the event flow, the triggered event listeners have the option of
canceling the default action or allowing the default action to proceed. In the case of the hyperlink in the
browser, canceling the action would have the result of not activating the hyperlink. Not all events defined
in this specification are cancelable events.

Different implementations will specify their own default actions, if any, associated with each event. The
DOM Events specification does not attempt to specify these actions.

This specification does not provide mechanisms for accessing default actions or adding new ones.

Note: Some implementations also provide default actions before the dispatch of the event. It is not
possible to cancel those default actions and this specification does not address them. An example of such
default actions can be found in [DOM Level 2 HTML] on the HTMLInputElement.checked
attribute.

13

1.3. Default actions and cancelable events

1.4. Event types
Each event is associated with a type, called event type. The event type is composed of a local name
[p.101] and a namespace URI [p.101] as defined in [XML Namespaces]. All events defined in this
specification use the namespace URI "http://www.w3.org/2001/xml-events".

Note: As in [DOM Level 3 Core], DOM Level 3 Events does not perform any URI normalization or
canonicalization. The URIs given to the DOM are assumed to be valid (e.g., characters such as white
spaces are properly escaped), and no lexical checking is performed. Absolute URI references are treated
as strings and compared literally [p.102] . How relative namespace URI references are treated is
undefined. To ensure interoperability only absolute namespace URI references (i.e., URI references
beginning with a scheme name and a colon) should be used. Applications that wish to have no namespace
should use the value null as the namespaceURI parameter of methods. If they pass an empty string the
DOM implementation turns it into a null.

1.4.1. Complete list of event types

Depending on the level of DOM support, or the devices used to display (e.g. screen) or interact with (e.g.
mouse, keyboard, touch screen, voice, ...), these event types could be generated by the implementation.
When used with an [XML 1.0] or [HTML 4.01] application, the specifications of those languages may
restrict the semantics and scope (in particular the possible target nodes) associated with an event type. For
example, {"http://www.w3.org/2001/xml-events", "click"} can be targeted to all
[XHTML 1.0] elements but applet, base, basefont, bdo, br, font, frame, frameset, head, html, iframe,
isindex, meta, param, script, style, and title. Refer to the specification defining the language used in order
to find those restrictions or to find event types that are not defined in this document.

The following table defines all event types provided in this specification (with the exception of two event
types preserved for backward compatibility with [HTML 4.01]). All events will accomplish the capture
phase and target phases, but not all of them will accomplish the bubbling phase (see also DOM event flow
[p.10]). Some events are not cancelable [p.13] (see Default actions and cancelable events [p.13]).
Contextual information related to the event type are accessible using DOM interfaces.

Event type Description
Bubbling

phase
Cancelable Target node DOM interface

"http://www.w3.org/2001/xml-events",
"DOMActivate"

An element is activated, for instance, using a mouse
device, a keyboard device, or a voice command.

Note: The activation of an element is device dependent
but is also application dependent, e.g. a link in a
document can be activated using a mouse click or a
mouse double click.

Yes Yes Element UIEvent [p.33]

"http://www.w3.org/2001/xml-events",
"DOMFocusIn"

An event target [p.101] receives focus, for instance via
a pointing device being moved onto an element or
using keyboard navigation.

Yes No Element UIEvent [p.33]

"http://www.w3.org/2001/xml-events",
"DOMFocusOut"

A event target [p.101] loses focus, for instance via a
pointing device being moved out of an element or by
tabbing navigation out of the element.

Yes No Element UIEvent [p.33]

"http://www.w3.org/2001/xml-events",
"textInput"

One or more characters have been entered. The
characters can originate from a variety of sources. For
example, it could be a character resulting from a key
being pressed or released on a keyboard device, a
character resulting from the processing of an input
method editor [p.63] , or resulting from a voice
command.

Yes Yes Element TextEvent [p.36]

14

1.4. Event types

"http://www.w3.org/2001/xml-events",
"click"

A pointing device button is clicked over an element.
The definition of a click depends on the environment
configuration; i.e. may depend on the screen location
or the delay between the press and release of the
pointing device button. In any case, the target node
must be the same between the mousedown, mouseup,
and click. The sequence of these events is:
{"http://www.w3.org/2001/xml-events",
"mousedown"},
{"http://www.w3.org/2001/xml-events",
"mouseup"}, and
{"http://www.w3.org/2001/xml-events",
"click"}. Note that, given the definition of a click,
If one or more of the event types
{"http://www.w3.org/2001/xml-events",
"mouseover"},
{"http://www.w3.org/2001/xml-events",
"mousemove"}, and
{"http://www.w3.org/2001/xml-events",
"mouseout"} occur between the press and release
of the pointing device button, the event type
{"http://www.w3.org/2001/xml-events",
"click"} cannot occur. In the case of nested
elements, this event type is always targeted at the most
deeply nested element.

Yes Yes Element MouseEvent [p.38]

"http://www.w3.org/2001/xml-events",
"mousedown"

A pointing device button is pressed over an element. In
the case of nested elements, this event type is always
targeted at the most deeply nested element.

Yes Yes Element MouseEvent [p.38]

"http://www.w3.org/2001/xml-events",
"mouseup"

A pointing device button is released over an element.
In the case of nested elements, this event type is
always targeted at the most deeply nested element.

Yes Yes Element MouseEvent [p.38]

"http://www.w3.org/2001/xml-events",
"mouseover"

A pointing device is moved onto an element. In the
case of nested elements, this event type is always
targeted at the most deeply nested element.

Yes Yes Element MouseEvent [p.38]

"http://www.w3.org/2001/xml-events",
"mousemove"

A pointing device is moved while it is over an element.
In the case of nested elements, this event type is
always targeted at the most deeply nested element.

Yes Yes Element MouseEvent [p.38]

"http://www.w3.org/2001/xml-events",
"mouseout"

A pointing device is moved away from an element. In
the case of nested elements, this event type is always
targeted at the most deeply nested element.

Yes Yes Element MouseEvent [p.38]

"http://www.w3.org/2001/xml-events",
"keydown"

A key is pressed down. This event type is device
dependent and relies on the capabilities of the input
devices and how they are mapped in the operating
system. This event type is generated after the keyboard
mapping but before the processing of the input method
editor [p.63] . This event should logically happen
before the event
{"http://www.w3.org/2001/xml-events",
"keyup"} is produced.

Yes Yes Element KeyboardEvent
[p.45]

"http://www.w3.org/2001/xml-events",
"keyup"

A key is released. This event type is device dependent
and relies on the capabilities of the input devices and
how they are mapped in the operating system. This
event type is generated after the keyboard mapping but
before the processing of the input method editor [p.63]
. This event should logically happen after the event
{"http://www.w3.org/2001/xml-events",
"keydown"} is produced.

Yes Yes Element KeyboardEvent
[p.45]

"http://www.w3.org/2001/xml-events",
"DOMSubtreeModified"

This is a general event for notification of all changes to
the document. It can be used instead of the more
specific events listed below. It may be dispatched after
a single modification to the document or, at the
implementation’s discretion, after multiple changes
have occurred. The latter use should generally be used
to accommodate multiple changes which occur either
simultaneously or in rapid succession. The target of
this event is the lowest common parent of the changes
which have taken place. This event is dispatched after
any other events caused by the mutation(s) have
occurred.

Yes No Document,
DocumentFragment,
Element, Attr

MutationEvent
[p.50]

"http://www.w3.org/2001/xml-events",
"DOMNodeInserted"

A node has been added as a child [p.101] of another
node. This event is dispatched after the insertion has
taken place. The target node [p.102] of this event is the
node being inserted.

Yes No Element, Attr, Text,
Comment, CDATASection,
DocumentType,
EntityReference,
ProcessingInstruction

MutationEvent
[p.50]

"http://www.w3.org/2001/xml-events",
"DOMNodeRemoved"

A node is being removed from its parent node. This
event is dispatched before the node is removed from
the tree. The target node [p.102] of this event is the
node being removed.

Yes No Element, Attr, Text,
Comment, CDATASection,
DocumentType,
EntityReference,
ProcessingInstruction

MutationEvent
[p.50]

15

1.4.1. Complete list of event types

"http://www.w3.org/2001/xml-events",
"DOMNodeRemovedFromDocument"

A node is being removed from a document, either
through direct removal of the node or removal of a
subtree in which it is contained. This event is
dispatched before the removal takes place. The target
node [p.102] of this event type is the node being
removed. If the node is being directly removed, the
event type
{"http://www.w3.org/2001/xml-events",
"DOMNodeRemoved"} will fire before this event
type.

No No Element, Attr, Text,
Comment, CDATASection,
DocumentType,
EntityReference,
ProcessingInstruction

MutationEvent
[p.50]

"http://www.w3.org/2001/xml-events",
"DOMNodeInsertedIntoDocument"

A node is being inserted into a document, either
through direct insertion of the node or insertion of a
subtree in which it is contained. This event is
dispatched after the insertion has taken place. The
target node [p.102] of this event is the node being
inserted. If the node is being directly inserted, the
event type
{"http://www.w3.org/2001/xml-events",
"DOMNodeInserted"} will fire before this event
type.

No No Element, Attr, Text,
Comment, CDATASection,
DocumentType,
EntityReference,
ProcessingInstruction

MutationEvent
[p.50]

"http://www.w3.org/2001/xml-events",
"DOMAttrModified"

Occurs after an Attr has been modified on a node.
The target node [p.102] of this event is the parent
Element node whose Attr changed. It is expected
that string based replacement of an Attr value will be
viewed as a modification of the Attr since its identity
does not change. Subsequently replacement of the
Attr node with a different Attr node is viewed as
the removal of the first Attr node and the addition of
the second.

Yes No Element MutationEvent
[p.50]

"http://www.w3.org/2001/xml-events",
"DOMCharacterDataModified"

Occurs after CharacterData.data or
ProcessingInstruction.data have been
modified but the node itself has not been inserted or
deleted. The target node [p.102] of this event is the
CharacterData node or the
ProcessingInstruction node.

Yes No Text, Comment,
CDATASection,
ProcessingInstruction

MutationEvent
[p.50]

"http://www.w3.org/2001/xml-events",
"DOMElementNameChanged"

Occurs after the namespaceURI and/or the
nodeName of an Element node have been modified
(e.g., the element was renamed using
Document.renameNode). The target of this event
is the renamed Element node.

Yes No Element MutationNameEvent
[p.54]

"http://www.w3.org/2001/xml-events",
"DOMAttributeNameChanged"

Occurs after the namespaceURI and/or the
nodeName of a Attr node have been modified (e.g.,
the attribute was renamed using
Document.renameNode). The target of this event
is the parent Element node whose Attr has been
renamed.

Yes No Element MutationNameEvent
[p.54]

"http://www.w3.org/2001/xml-events",
"load"

The DOM Implementation finishes loading in the
environment the document or a resource linked from it.

No No Element Event [p.19]

"http://www.w3.org/2001/xml-events",
"unload"

The DOM implementation removes from the
environment the document or a resource linked from it.

No No Element Event [p.19]

"http://www.w3.org/2001/xml-events",
"abort"

The loading of the document, or a resource linked from
it, is stopped before being entirely loaded.

Yes No Element Event [p.19]

"http://www.w3.org/2001/xml-events",
"error"

The document, or a resource linked from it, has been
loaded but cannot be interpreted according to its
semantic, such as an invalid image or a script
execution error.

Yes No Element Event [p.19]

"http://www.w3.org/2001/xml-events",
"select"

A user selects some text. DOM Level 3 Events does
not provide contextual information to access the
selected text.

Yes No Element Event [p.19]

"http://www.w3.org/2001/xml-events",
"change"

A control loses the input focus and its values has been
modified since gaining focus.

Yes No Element Event [p.19]

"http://www.w3.org/2001/xml-events",
"submit"

A form, such as [HTML 4.01], [XHTML 1.0], or
[XForms 1.0] forms, is submitted.

Yes Yes Element Event [p.19]

"http://www.w3.org/2001/xml-events",
"reset"

A form, such as [HTML 4.01], [XHTML 1.0], or
[XForms 1.0] forms, is reset.

Yes Yes Element Event [p.19]

"http://www.w3.org/2001/xml-events",
"resize"

A document view is resized. Yes No Document UIEvent [p.33]

"http://www.w3.org/2001/xml-events",
"scroll"

A document view is scrolled. Yes No Document UIEvent [p.33]

The event objects associated with the event types described above may contain context information. Refer
to the description of the DOM interfaces for further information.

16

1.4.1. Complete list of event types

1.4.2. Compatibility with DOM Level 2 Events

Namespace URIs [p.101] Were only introduced in DOM Level 3 Events and were not part of DOM Level
2 Events. DOM Level 2 Events methods are namespace ignorant and the event type is only represented by
an XML name [p.102] , specified in the Event.type [p.21] attribute.

Therefore, while it is safe to use these methods when not dealing with namespaces, using them and the
new ones at the same time should be avoided. DOM Level 2 Events methods solely identify events by
their Event.type [p.21] . On the contrary, the DOM Level 3 Events methods related to namespaces,
identify attribute nodes by their Event.namespaceURI [p.20] and Event.type. Because of this
fundamental difference, mixing both sets of methods can lead to unpredictable results. For example, using
EventTarget.addEventListenerNS [p.24] , two event listeners (or more) could be registered
using the same type and same useCapture values, but different namespaceURIs. Calling
EventTarget.removeEventListener [p.26] with that type and useCapture could then
remove any or none of those event listeners. The result depends on the implementation. The only
guarantee in such cases is that all methods which access an event listener by its namespaceURI and
type will access the same event listener. For instance, EventTarget.removeEventListenerNS
[p.27] removes the event that EventTarget.addEventListenerNS added.

For compatibility reasons, the dispatching of an event will ignore namespace URIs if either the event or
the event listener has a null namespace URI. If a DOM Level 2 event (i.e. with a null namespace URI)
is dispatched in the DOM tree, all event listeners that match the type will be triggered as described in the
DOM event flow [p.10] . If a DOM Level 3 event (i.e. with a namespace URI) is dispatched in the DOM
tree, all event listener with the same type and the same or null namespace URI, will be triggered as
described in the DOM event flow [p.10] .

1.5. Event listener registration
Note: This section is informative.

There are mainly two ways to associate an event listener to a node in the tree:

1. at the programming level using the EventTarget [p.23] methods.
2. at the document level using [XML Events] or an ad-hoc syntax, as the ones provided in [XHTML

1.0] or [SVG 1.0].

1.5.1. Using the EventTarget methods

The user can attach an event listener using the methods on the EventTarget [p.23] interface:

myCircle.addEventListenerNS("http://www.w3.org/2001/xml-events",
 "DOMActivate",
 myListener,
 true,
 myEvtGroup);

17

1.5. Event listener registration

The methods do not provide the ability to register the same event listener more than once for the same
event type and the same phase. The target phase [p.102] and the bubbling phase [p.101] are coupled
during the registration, i.e. it is not possible to register an event listener for only one of these two phases
(but the listener itself could ignore events during one of these phases if desired). It is also not possible to
register an event listener for a specific event target and have it only triggered for this event target during
the bubbling or capture phases (but again, the listener itself could ignore events with other event targets if
desired).

To register an event listener, DOM applications must use the methods
EventTarget.addEventListener [p.24] and EventTarget.addEventListenerNS [p.24] .

An EventListener [p.27] being registered on an EventTarget [p.23] may choose to have that
EventListener triggered during the capture phase by specifying the useCapture parameter of the
EventTarget.addEventListener [p.24] or EventTarget.addEventListenerNS [p.24]
methods to be true. If false, the EventListener will be triggered during the target and bubbling
phases.

1.5.2. Using XML Events

In [XML Events], event listeners are attached using elements and attributes:

<listener event="DOMActivate" observer="myCircle" handler="#myListener"
 phase="capture" propagate="stop"/>

Event listeners can only be registered on Element nodes, i.e. other Node types are not addressable, and
cannot be registered for a specific group either, i.e. they are always attached to the default group. [XML
Events] does not address namespaces in event types. If the value of the event attribute of the
listener element contains a colon (’:’), it should be interpreted as a QName as defined in [XML
Schema Part 2].

1.5.3. Using XML or HTML attributes

In languages such as [HTML 4.01], [XHTML 1.0], or [SVG 1.0], event listeners are specified as
attributes:

<circle id="myCircle" onactivate="myListener(evt)"
 cx="300" cy="225" r="100" fill="red"/>

Since only one attribute with the same name can appear on an element, it is therefore not possible to
register more than one event listener on a single EventTarget [p.23] for the event type. Also, event
listeners can only be registered on Element nodes for the target phase [p.102] and bubbling phase
[p.101] , i.e. other Node types and the capture phase [p.101] are not addressable with these languages.
Event listeners cannot be registered for a specific group either, i.e. they are always attached to the default
group.

In order to achieve compatibility with those languages, implementors may view the setting of attributes
which represent event handlers as the creation and registration of an EventListener on the
EventTarget [p.23] . The value of useCapture defaults to false. This EventListener [p.27]

18

1.5.2. Using XML Events

behaves in the same manner as any other EventListeners which may be registered on the
EventTarget. If the attribute representing the event listener is changed, this may be viewed as the
removal of the previously registered EventListener and the registration of a new one. Furthermore,
no specification is made as to the order in which event attributes will receive the event with regards to the
other EventListeners on the EventTarget.

1.6. Basic interfaces
The interfaces described in this section are fundamental to DOM Level 3 Events and must always be
supported by the implementation.

Interface Event (introduced in DOM Level 2)

The Event interface is used to provide contextual information about an event to the listener
processing the event. An object which implements the Event interface is passed as the parameter to
an EventListener [p.27] . More specific context information is passed to event listeners by
deriving additional interfaces from Event which contain information directly relating to the type of
event they represent. These derived interfaces are also implemented by the object passed to the event
listener.

IDL Definition

// Introduced in DOM Level 2:
interface Event {

 // PhaseType
 const unsigned short CAPTURING_PHASE = 1;
 const unsigned short AT_TARGET = 2;
 const unsigned short BUBBLING_PHASE = 3;

 readonly attribute DOMString type;
 readonly attribute EventTarget target;
 readonly attribute EventTarget currentTarget;
 readonly attribute unsigned short eventPhase;
 readonly attribute boolean bubbles;
 readonly attribute boolean cancelable;
 readonly attribute DOMTimeStamp timeStamp;
 void stopPropagation();
 void preventDefault();
 void initEvent(in DOMString eventTypeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg);
 // Introduced in DOM Level 3:
 readonly attribute DOMString namespaceURI;
 // Introduced in DOM Level 3:
 boolean isCustom();
 // Introduced in DOM Level 3:
 void stopImmediatePropagation();
 // Introduced in DOM Level 3:
 boolean isDefaultPrevented();
 // Introduced in DOM Level 3:
 boolean isPropagationStopped();

19

1.6. Basic interfaces

 // Introduced in DOM Level 3:
 void initEventNS(in DOMString namespaceURIArg,
 in DOMString eventTypeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg);
};

Definition group PhaseType

An integer indicating which phase of the event flow is being processed as defined in DOM event
flow [p.10] .

Defined Constants
AT_TARGET

The current event is in the target phase [p.101] , i.e. it is being evaluated at the event
target [p.101] .

BUBBLING_PHASE
The current event phase is the bubbling phase [p.101] .

CAPTURING_PHASE
The current event phase is the capture phase [p.101] .

Attributes
bubbles of type boolean, readonly

Used to indicate whether or not an event is a bubbling event. If the event can bubble the
value is true, otherwise the value is false.

cancelable of type boolean, readonly
Used to indicate whether or not an event can have its default action prevented (see also
Default actions and cancelable events [p.13]). If the default action can be prevented the
value is true, otherwise the value is false.

currentTarget of type EventTarget [p.23] , readonly
Used to indicate the EventTarget [p.23] whose EventListeners [p.27] are
currently being processed. This is particularly useful during the capture and bubbling
phases. This attribute could contain the target node [p.102] or a target ancestor when used
with the DOM event flow [p.10] .

eventPhase of type unsigned short, readonly
Used to indicate which phase of event flow is currently being accomplished.

namespaceURI of type DOMString, readonly, introduced in DOM Level 3
The namespace URI [p.101] associated with this event at creation time, or null if it is
unspecified.
For events initialized with a DOM Level 2 Events method, such as initEvent, this is
always null.

target of type EventTarget [p.23] , readonly
Used to indicate the event target [p.101] . This attribute contain the target node [p.102]
when used with the DOM event flow [p.10] .

timeStamp of type DOMTimeStamp, readonly
Used to specify the time (in milliseconds relative to the epoch) at which the event was
created. Due to the fact that some systems may not provide this information the value of
timeStamp may be not available for all events. When not available, a value of 0 will be
returned. Examples of epoch time are the time of the system start or 0:0:0 UTC 1st January

20

1.6. Basic interfaces

1970.
type of type DOMString, readonly

The name must be an NCName as defined in [XML Namespaces] and is case-sensitive.
The character ":" (colon) should not be used in this attribute.
If the attribute Event.namespaceURI [p.20] is different from null, this attribute
represents a local name [p.101] .

Methods
initEvent

The initEvent method is used to initialize the value of an Event created through the
DocumentEvent.createEvent [p.31] method. This method may only be called
before the Event has been dispatched via the EventTarget.dispatchEvent [p.25]
method. If the method is called several times before invoking
EventTarget.dispatchEvent, only the final invocation takes precedence. If called
from a subclass of Event interface only the values specified in this method are modified,
all other attributes are left unchanged.
This method sets the Event.type [p.21] attribute to eventTypeArg, and
Event.localName and Event.namespaceURI [p.20] to null. To initialize an
event with a local name and namespace URI, use the initEventNS method.
Parameters
eventTypeArg of type DOMString

Specifies the event type.
canBubbleArg of type boolean

Specifies whether or not the event can bubble. This parameter overrides the intrinsic
bubbling behavior of the event.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevented. This parameter
overrides the intrinsic cancelable behavior of the event.

No Return Value
No Exceptions

initEventNS introduced in DOM Level 3
The initEventNS method is used to initialize the value of an Event created through
the DocumentEvent [p.30] interface. This method may only be called before the Event
has been dispatched via the dispatchEvent method, though it may be called multiple
times the event has been dispatched. If called multiple times the final invocation takes
precedence. If a call to initEventNS is made after one of the Event derived interfaces’
init methods has been called, only the values specified in the initEventNS method are
modified, all other attributes are left unchanged.
This method sets the Event.type [p.21] attribute to eventTypeArg, and
Event.namespaceURI [p.20] to namespaceURIArg.
Parameters
namespaceURIArg of type DOMString

Specifies the namespace URI [p.101] associated with this event, or null if no
namespace.

eventTypeArg of type DOMString
Specifies the local name [p.101] of the event type (see also the description of
Event.type [p.21]).

21

1.6. Basic interfaces

http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName

canBubbleArg of type boolean
Specifies whether or not the event can bubble.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevented.

No Return Value
No Exceptions

isCustom introduced in DOM Level 3
This method will always return false, unless the event implements the CustomEvent
[p.32] interface.
Return Value

boolean true if preventDefault() has been called for this event.

No Parameters
No Exceptions

isDefaultPrevented introduced in DOM Level 3
This method will return true if the method preventDefault() has been called for
this event, false otherwise.
Return Value

boolean true if preventDefault() has been called for this event.

No Parameters
No Exceptions

isPropagationStopped introduced in DOM Level 3
This method will return true if the method stopPropagation() has been called for
this event in the current group, false in any other cases.
Return Value

boolean true if the event propagation has been stopped in the current group.

No Parameters
No Exceptions

preventDefault
If an event is cancelable, the preventDefault method is used to signify that the event
is to be canceled, meaning any default action normally taken by the implementation as a
result of the event will not occur (see also Default actions and cancelable events [p.13]),
and thus independently of event groups. Calling this method for a non-cancelable event has
no effect.

Note: This method does not stop the event propagation; use stopPropagation or
stopImmediatePropagation for that effect.

No Parameters
No Return Value

22

1.6. Basic interfaces

No Exceptions
stopImmediatePropagation introduced in DOM Level 3

This method is used to prevent event listeners of the same group to be triggered and, unlike
stopPropagation its effect is immediate (see Event propagation and event groups
[p.13]). Once it has been called, further calls to that method have no additional effect.

Note: This method does not prevent the default action from being invoked; use
preventDefault for that effect.

No Parameters
No Return Value
No Exceptions

stopPropagation
This method is used to prevent event listeners of the same group to be triggered but its
effect is differed until all event listeners attached on the currentTarget have been
triggered (see Event propagation and event groups [p.13]). Once it has been called, further
calls to that method have no additional effect.

Note: This method does not prevent the default action from being invoked; use
preventDefault for that effect.

No Parameters
No Return Value
No Exceptions

Interface EventTarget (introduced in DOM Level 2)

The EventTarget interface is implemented by all the objects which could be event targets [p.101]
in an implementation which supports the Event flows [p.9] . The interface allows registration,
removal or query of event listeners, and dispatch of events to an event target.

When used with DOM event flow [p.10] , this interface is implemented by all target nodes [p.102]
and target ancestors, i.e. all DOM Nodes of the tree support this interface when the implementation
conforms to DOM Level 3 Events and, therefore, this interface can be obtained by using
binding-specific casting methods on an instance of the Node interface.

When using addEventListener or addEventListenerNS, if multiple identical
EventListener [p.27] s are registered on the same EventTarget with the same parameters the
duplicate instances are discarded. They do not cause the EventListener to be called twice and
since they are discarded they do not need to be removed.

IDL Definition

// Introduced in DOM Level 2:
interface EventTarget {
 void addEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 void removeEventListener(in DOMString type,
 in EventListener listener,

23

1.6. Basic interfaces

 in boolean useCapture);
 // Modified in DOM Level 3:
 boolean dispatchEvent(in Event evt)
 raises(EventException);
 // Introduced in DOM Level 3:
 void addEventListenerNS(in DOMString namespaceURI,
 in DOMString type,
 in EventListener listener,
 in boolean useCapture,
 in EventListenerGroup evtGroup);
 // Introduced in DOM Level 3:
 void removeEventListenerNS(in DOMString namespaceURI,
 in DOMString type,
 in EventListener listener,
 in boolean useCapture,
 in EventListenerGroup evtGroup);
 // Introduced in DOM Level 3:
 boolean willTriggerNS(in DOMString namespaceURI,
 in DOMString type);
 // Introduced in DOM Level 3:
 boolean hasEventListenerNS(in DOMString namespaceURI,
 in DOMString type);
};

Methods
addEventListener

This method allows the registration of an event listener in the default group and, depending
on the useCapture parameter, on the capture phase of the DOM event flow or its target
and bubbling phases.
Parameters
type of type DOMString

Specifies the Event.type [p.21] associated with the event for which the user is
registering.

listener of type EventListener [p.27]
The listener parameter takes an object implemented by the user which
implements the EventListener interface and contains the method to be called
when the event occurs.

useCapture of type boolean
If true, useCapture indicates that the user wishes to add the event listener for the
capture phase [p.101] only, i.e. this event listener will not be triggered during the
target [p.102] and bubbling [p.101] phases. If false, the event listener will only be
triggered during the target and bubbling phases.

No Return Value
No Exceptions

addEventListenerNS introduced in DOM Level 3
This method allows the registration of an event listener in a specified group or the default
group and, depending on the useCapture parameter, on the capture phase of the DOM
event flow or its target and bubbling phases.
Parameters

24

1.6. Basic interfaces

namespaceURI of type DOMString
Specifies the Event.namespaceURI [p.20] associated with the event for which the
user is registering.

type of type DOMString
Specifies the Event.type [p.21] associated with the event for which the user is
registering.

listener of type EventListener [p.27]
The listener parameter takes an object implemented by the user which
implements the EventListener interface and contains the method to be called
when the event occurs.

useCapture of type boolean
If true, useCapture indicates that the user wishes to add the event listener for the
capture phase [p.101] only, i.e. this event listener will not be triggered during the
target [p.102] and bubbling [p.101] phases. If false, the event listener will only be
triggered during the target and bubbling phases.

evtGroup of type EventListenerGroup [p.28]
The EventListenerGroup to associate with the EventListener (see also
Event propagation and event groups [p.13]). Use null to attach the event listener to
the default group.

No Return Value
No Exceptions

dispatchEvent modified in DOM Level 3
This method allows the dispatch of events into the implementation’s event model. The
event target [p.101] of the event is the EventTarget object on which
dispatchEvent is called.
Issue dispatchEvent-1:

It is necessary to have an exception that occurs if the specified event is not an event
which the implementation knows how to dispatch, if it was not created by calling
DocumentEvent.createEvent [p.31] and Event.isCustom() is false.
NOT_SUPPORTED?

Parameters
evt of type Event [p.19]

The event to be dispatched.
Return Value

boolean Indicates whether any of the listeners which handled the event called
preventDefault. If preventDefault was called the returned
value is false, else it is true.

Exceptions

25

1.6. Basic interfaces

EventException
[p.29]

UNSPECIFIED_EVENT_TYPE_ERR: Raised if the
Event.type [p.21] was not specified by initializing the
event before dispatchEvent was called. Specification of
the Event.type as null or an empty string will also
trigger this exception.

DISPATCH_REQUEST_ERR: Raised if the Event [p.19]
object is already being dispatched in the tree.

hasEventListenerNS introduced in DOM Level 3
This method allows the DOM application to know if this EventTarget contains an
event listener registered for the specified event type. This is useful for determining at
which nodes within a hierarchy altered handling of specific event types has been
introduced, but should not be used to determine whether the specified event type triggers
an event listener (see willTriggerNS).
Issue canTriggerOnTarget-useCapture:

do we need a useCapture parameter?
Resolution: No use case for that.

Parameters
namespaceURI of type DOMString

Specifies the Event.namespaceURI [p.20] associated with the event.
type of type DOMString

Specifies the Event.type [p.21] associated with the event.
Return Value

boolean true if an event listener is registered on this EventTarget for the
specified event type, false otherwise.

No Exceptions
removeEventListener

This method allows the removal of event listeners from the default group.
Calling removeEventListener with arguments which do not identify any currently
registered EventListener [p.27] on the EventTarget has no effect.
Parameters
type of type DOMString

Specifies the Event.type [p.21] for which the user registered the event listener.
listener of type EventListener [p.27]

The EventListener to be removed.
useCapture of type boolean

Specifies whether the EventListener being removed was registered for the
capture phase or not. If a listener was registered twice, once for the capture phase and
once for the target and bubbling phases, each must be removed separately. Removal of
an event listener registered for the capture phase does not affect the same event
listener registered for the target and bubbling phases, and vice versa.

No Return Value
No Exceptions

26

1.6. Basic interfaces

removeEventListenerNS introduced in DOM Level 3
This method allows the removal of event listeners from a specified group or the default
group.
Calling removeEventListenerNS with arguments which do not identify any currently
registered EventListener [p.27] on the EventTarget has no effect.
Parameters
namespaceURI of type DOMString

Specifies the Event.namespaceURI [p.20] associated with the event for which the
user registered the event listener.

type of type DOMString
Specifies the Event.type [p.21] associated with the event for which the user
registered the event listener.

listener of type EventListener [p.27]
The EventListener parameter indicates the EventListener to be removed.

useCapture of type boolean
Specifies whether the EventListener being removed was registered for the
capture phase or not. If a listener was registered twice, once for the capture phase and
once for the target and bubbling phases, each must be removed separately. Removal of
an event listener registered for the capture phase does not affect the same event
listener registered for the target and bubbling phases, and vice versa.

evtGroup of type EventListenerGroup [p.28]
The EventListenerGroup associated with the EventListener. Use null to
reference the default group.

No Return Value
No Exceptions

willTriggerNS introduced in DOM Level 3
This method allows the DOM application to know if an event listener, attached to this
EventTarget or one of its ancestors, will be triggered by the specified event type during
the dispatch of the event to this event target or one of its descendants.
Parameters
namespaceURI of type DOMString

Specifies the Event.namespaceURI [p.20] associated with the event.
type of type DOMString

Specifies the Event.type [p.21] associated with the event.
Return Value

boolean true if an event listener will be triggered on the EventTarget with
the specified event type, false otherwise.

No Exceptions
Interface EventListener (introduced in DOM Level 2)

The EventListener interface is the primary way for handling events. Users implement the
EventListener interface and register their event listener on an EventTarget [p.23] . The
users should also remove their EventListener from its EventTarget after they have
completed using the listener.

27

1.6. Basic interfaces

Copying a Node does not copy the event listeners attached to it. Event listeners must be attached to
the newly created Node afterwards if so desired. Therefore, Nodes are copied using
Node.cloneNode or Range.cloneContents, the EventListeners attached to the source
Nodes are not attached to their copies.

Moving a Node does not affect the event listeners attached to it. Therefore, when Nodes are moved
using Document.adoptNode, Node.appendChild, or Range.extractContents, the
EventListeners attached to the moved Nodes stay attached to them.

IDL Definition

// Introduced in DOM Level 2:
interface EventListener {
 void handleEvent(in Event evt);
};

Methods
handleEvent

This method is called whenever an event occurs of the event type for which the
EventListener interface was registered.
Parameters
evt of type Event [p.19]

The Event contains contextual information about the event [p.101] .
No Return Value
No Exceptions

Interface EventListenerGroup (introduced in DOM Level 3)

Event listeners can be registered using Event.addEventListenerNS within a group.

When a set of actions associated with event listeners is critical for an application such as refreshing
the display, it is important to separate them from other event listeners who might stop the event flow.
In order to prevent undesirable side effects, the application should create a group using
DocumentEvent.createEventListenerGroup [p.31] and use it when adding or removing
event listeners.

IDL Definition

// Introduced in DOM Level 3:
interface EventListenerGroup {
 boolean isSameEventListenerGroup(in EventListenerGroup other);
};

Methods
isSameEventListenerGroup

This method checks if the supplied EventListenerGroup is the same as the
EventListenerGroup upon which the method is called.
Parameters
other of type EventListenerGroup [p.28]

The EventListenerGroup with which to check equality.
Return Value

28

1.6. Basic interfaces

boolean Returns true if the EventListenerGroups are the same, else
returns false.

Issue isSameEventListenerGroup-equal:
We should clarify what "equal" means here, or better yet, substitute
it with "is the same"?

No Exceptions
Exception EventException introduced in DOM Level 2

Event operations may throw an EventException [p.29] as specified in their method descriptions.

IDL Definition

// Introduced in DOM Level 2:
exception EventException {
 unsigned short code;
};
// EventExceptionCode
const unsigned short UNSPECIFIED_EVENT_TYPE_ERR = 0;
// Introduced in DOM Level 3:
const unsigned short DISPATCH_REQUEST_ERR = 1;

Definition group EventExceptionCode

An integer indicating the type of error generated.

Defined Constants
DISPATCH_REQUEST_ERR, introduced in DOM Level 3.

If the Event [p.19] object is already dispatched in the tree.
UNSPECIFIED_EVENT_TYPE_ERR

If the Event.type [p.21] was not specified by initializing the event before the
method was called. Specification of the Event.type as null or an empty string
will also trigger this exception.

1.6.1. Event creation

In most cases, the events dispatched by the DOM Events implementation are also created by the
implementation. It is however possible to simulate events such as mouse events by creating the Event
[p.19] objects and dispatch them using the DOM Events implementation.

DOM Events provides two ways for creating Event [p.19] objects. An application can either create
Event objects that are known to the implementation, or create its own objects and have them dispatched
by the DOM Events implementation.

Creating Event [p.19] objects that are known to the DOM Events implementation is done using
DocumentEvent.createEvent [p.31] . The application must then initialize the object by calling the
appropriate initialization method before invoking EventTarget.dispatchEvent [p.25] . The
Event objects created must be known by the DOM Events implementation otherwise an event exception

29

1.6.1. Event creation

is thrown.

The DOM application might want to create its own Event [p.19] objects, in order to change the default
Event implementation provided by the DOM Events implementation or to generate new event types with
specific contextual information. In any case, the application is responsible for creating and initializing the
Event object. The application can then dispatch the event using the DOM Events implementation by
using EventTarget.dispatchEvent [p.25] .

However, the DOM Events implementation requires to have access to two attributes in the Event [p.19]
object in order to accomplish the dispatch appropriately: Event.currentTarget [p.20] and
Event.eventPhase [p.20] . Those attributes are defined as readonly in the Event interface since
event listeners must not change them and it is the responsibility of the DOM Events implementation to
update them during the event flow. Therefore, implementing the Event interface when creating its own
events is not enough for an application since the DOM Events implementation will not be able to update
the current phase and the current node during the dispatch, unless the event object also implements the
CustomEvent [p.32] interface to give access to the relevant attributes.

Interface DocumentEvent (introduced in DOM Level 2)

The DocumentEvent interface provides a mechanism by which the user can create an Event
[p.19] object of a type supported by the implementation. It is expected that the DocumentEvent
interface will be implemented on the same object which implements the Document interface in an
implementation which supports the Event model.

IDL Definition

// Introduced in DOM Level 2:
interface DocumentEvent {
 Event createEvent(in DOMString eventType)
 raises(DOMException);
 // Introduced in DOM Level 3:
 EventListenerGroup createEventListenerGroup();
 // Introduced in DOM Level 3:
 boolean canDispatch(in DOMString namespaceURI,
 in DOMString type);
};

Methods
canDispatch introduced in DOM Level 3

Test if the implementation can generate events of a specified type.
Parameters
namespaceURI of type DOMString

Specifies the Event.namespaceURI [p.20] of the event.
type of type DOMString

Specifies the Event.type [p.21] of the event.
Return Value

boolean true if the implementation can generate and dispatch this event type,
false otherwise.

30

1.6.1. Event creation

No Exceptions
createEvent

Parameters
eventType of type DOMString

The eventType parameter specifies the name of the DOM Events interface to be
supported by the created event object, e.g. "Event", "MouseEvent",
"MutationEvent" ... If the Event [p.19] is to be dispatched via the
EventTarget.dispatchEvent [p.25] method the appropriate event init method
must be called after creation in order to initialize the Event’s values.
As an example, a user wishing to synthesize some kind of UIEvent [p.33] would call
DocumentEvent.createEvent [p.31] with the parameter "UIEvent". The
UIEvent.initUIEventNS [p.34] method could then be called on the newly
created UIEvent object to set the specific type of user interface event to be
dispatched, {"http://www.w3.org/2001/xml-events",
"DOMActivate"} for example, and set its context information, e.g.
UIEvent.detail [p.34] in this example.
The createEvent method is used in creating Event [p.19] s when it is either
inconvenient or unnecessary for the user to create an Event themselves. In cases
where the implementation provided Event is insufficient, users may supply their own
Event implementations for use with the EventTarget.dispatchEvent [p.25]
method. However, the DOM implementation needs access to the attributes
Event.currentTarget [p.20] and Event.eventPhase [p.20] to propagate
appropriately the event in the DOM tree. Therefore users’ Event implementations
might need to support the CustomEvent [p.32] interface for that effect.

Note: For backward compatibility reason, "UIEvents", "MouseEvents",
"MutationEvents", and "HTMLEvents" feature names are valid values for the
parameter eventType and represent respectively the interfaces "UIEvent",
"MouseEvent", "MutationEvent", and "Event".

Return Value

Event [p.19] The newly created event object.

Exceptions

DOMException NOT_SUPPORTED_ERR: Raised if the implementation does not
support the Event [p.19] interface requested.

createEventListenerGroup introduced in DOM Level 3
This method creates a new EventListenerGroup [p.28] for use in the
addEventListenerNS and removeEventListenerNS methods of the
EventTarget [p.23] interface (see also Event propagation and event groups [p.13]).
Return Value

31

1.6.1. Event creation

EventListenerGroup
[p.28]

The newly created EventListenerGroup
object.

No Parameters
No Exceptions

Interface CustomEvent (introduced in DOM Level 3)

The CustomEvent interface gives access to the attributes Event.currentTarget [p.20] and
Event.eventPhase [p.20] . It is intended to be used by the DOM Events implementation to
access the underlying current target and event phase while dispatching a custom Event [p.19] in the
tree; it is intended to be implemented, and not used, by DOM applications.

The methods contained in this interface are not intended to be used by a DOM application, especially
during the dispatch on the Event [p.19] object. Changing the current target or the current phase may
conduct into unpredictable results of the event flow. The DOM Events implementation should ensure
that both methods return the appropriate current target and phase before invoking each event listener
on the current target to protect DOM applications from malicious event listeners.

Note: If this interface is supported by the event object, Event.isCustom() must return true.

IDL Definition

// Introduced in DOM Level 3:
interface CustomEvent : Event {
 void setCurrentTarget(in EventTarget target);
 void setEventPhase(in unsigned short phase);
 void setCurrentEventListenerGroup(in EventListenerGroup evtGroup);
 // Introduced in DOM Level 3:
 boolean isImmediatePropagationStopped();
};

Methods
isImmediatePropagationStopped introduced in DOM Level 3

The isImmediatePropagationStopped method is used by the DOM Events
implementation to know if the method stopImmediatePropagation() has been
called for this event in the current group. It returns true if the method has been called,
false otherwise.
Return Value

boolean true if the event propagation has been stopped immediately in the
current group.

No Parameters
No Exceptions

setCurrentEventListenerGroup
The setCurrentEventListenerGroup method is used by the DOM Events
implementation to change the current event group on which the event is being processed.
Parameters

32

1.6.1. Event creation

evtGroup of type EventListenerGroup [p.28]
The specified event group. Use null to specify the default group.

No Return Value
No Exceptions

setCurrentTarget
The setCurrentTarget method is used by the DOM Events implementation to change
the value of Event.currentTarget [p.20] .
Parameters
target of type EventTarget [p.23]

Specifies the new value for the Event.currentTarget [p.20] attribute.
No Return Value
No Exceptions

setEventPhase
The setEventPhase method is used by the DOM Events implementation to change the
value of Event.eventPhase [p.20] .
Parameters
phase of type unsigned short

Specifies the new value for the Event.eventPhase [p.20] attribute.
No Return Value
No Exceptions

1.7. Event module definitions
The DOM Event Model allows a DOM implementation to support multiple modules of events. The model
has been designed to allow addition of new event modules as is required. The DOM will not attempt to
define all possible events. For purposes of interoperability, the DOM will define a module of user
interface events including lower level device dependent events, a module of UI logical events, and a
module of document mutation events.

1.7.1. User Interface event types

The User Interface event module contains basic event types associated with user interfaces.

Interface UIEvent (introduced in DOM Level 2)

The UIEvent interface provides specific contextual information associated with User Interface
events.

Note: To create an instance of the UIEvent interface, use the feature string "UIEvent" as the value
of the input parameter used with the DocumentEvent.createEvent [p.31] method.

IDL Definition

// Introduced in DOM Level 2:
interface UIEvent : Event {
 readonly attribute views::AbstractView view;
 readonly attribute long detail;
 void initUIEvent(in DOMString typeArg,

33

1.7. Event module definitions

 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg);
 // Introduced in DOM Level 3:
 void initUIEventNS(in DOMString namespaceURI,
 in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg);
};

Attributes
detail of type long, readonly

Specifies some detail information about the Event [p.19] , depending on the type of event.
view of type views::AbstractView, readonly

The view attribute identifies the AbstractView from which the event was generated.
Methods

initUIEvent
The initUIEvent method is used to initialize the value of a UIEvent created using the
DocumentEvent.createEvent [p.31] method. This method may only be called
before the UIEvent has been dispatched via the EventTarget.dispatchEvent
[p.25] method, though it may be called multiple times during that phase if necessary. If
called multiple times, the final invocation takes precedence.
Parameters
typeArg of type DOMString

Specifies the event type.
canBubbleArg of type boolean

Specifies whether or not the event can bubble. This parameter overrides the intrinsic
bubbling behavior of the event.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevented. This parameter
overrides the intrinsic cancelable behavior of the event.

viewArg of type views::AbstractView
Specifies the Event [p.19] ’s AbstractView.

detailArg of type long
Specifies the Event [p.19] ’s detail.

No Return Value
No Exceptions

initUIEventNS introduced in DOM Level 3
The initUIEventNS method is used to initialize the value of a UIEvent created using
the DocumentEvent.createEvent [p.31] method. This method may only be called
before the UIEvent has been dispatched via the EventTarget.dispatchEvent
[p.25] method, though it may be called multiple times during that phase if necessary. If
called multiple times, the final invocation takes precedence.
Parameters

34

1.7.1. User Interface event types

namespaceURI of type DOMString
Specifies the namespace URI [p.101] associated with this event, or null if the
application wish not to use namespaces.

typeArg of type DOMString
Specifies the event type (see also the description of the type attribute in the Event
[p.19] interface).

canBubbleArg of type boolean
Specifies whether or not the event can bubble.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevented.

viewArg of type views::AbstractView
Specifies the Event [p.19] ’s AbstractView.

detailArg of type long
Specifies the Event [p.19] ’s detail.

No Return Value
No Exceptions

The User Interface event types are listed below. For a full description of the semantics associated with
these event types, refer to the Complete list of event types [p.14] . A DOM application may use the
hasFeature(feature, version) method of the DOMImplementation interface with
parameter values "UIEvents" and "3.0" (respectively) to determine whether or not the DOM Level 3
User Interface event types are supported by the implementation. In order to fully support this module, an
implementation must also support the "Events" feature defined in this specification and the "Views"
feature defined in the DOM Level 2 Views specification [DOM Level 2 Views]. For additional
information about conformance, please see the DOM Level 3 Core specification [DOM Level 3 Core].
The DOM Level 3 User Interface Events module is built on top of the DOM Level 2 User Interface Events
[DOM Level 2 Events] module, i.e. a DOM Level 3 User Interface Events implementation where
hasFeature("UIEvents", "3.0") returns true must also return true when the version
number is "2.0", "" or, null.

Event type Context information
"http://www.w3.org/2001/xml-events",
"DOMActivate"

UIEvent.view [p.34] is in use.
UIEvent.detail [p.34] contains a numerical
value to give an indication of the type of
activation that occurs: 1 for a simple activation
(e.g. a simple click or Enter), 2 for
hyperactivation (for instance a double click or
Shift Enter).

"http://www.w3.org/2001/xml-events",
"DOMFocusIn"

UIEvent.view [p.34] is in use.

"http://www.w3.org/2001/xml-events",
"DOMFocusOut"

UIEvent.view [p.34] is in use.

35

1.7.1. User Interface event types

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/introduction.html#ID-Conformance

1.7.2. Text events

The text event module originates from the [HTML 4.01] onkeypress attribute. Unlike this attribute, the
event type {"http://www.w3.org/2001/xml-events", "textInput"} applies only to
characters and is specifically designed for use with text input devices.

Interface TextEvent (introduced in DOM Level 3)

The TextEvent interface provides specific contextual information associated with Text Events.

Note: To create an instance of the TextEvent interface, use the feature string "TextEvent" as the
value of the input parameter used with the DocumentEvent.createEvent [p.31] method.

Issue auto-repeat:
In the past, detail was used to contain the repeat count for the key. Do we want to keep this
notion? How? using an auto-repeat event instead? Use cases?
Resolution: closed.

Issue visibleOutputGenerated-1:
same question for visibleOutputGenerated: This attribute is device dependent (display related).
What happen on voice system for example? What are the real use cases for it?
Resolution: closed.

Issue paste-1:
What happens on paste through Ctrl-V? Do you get a textInput event or not if the selection
contains characters?
Resolution: This will be undefined by this specification.

IDL Definition

// Introduced in DOM Level 3:
interface TextEvent : UIEvent {
 readonly attribute DOMString data;
 void initTextEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in DOMString dataArg);
 void initTextEventNS(in DOMString namespaceURI,
 in DOMString type,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in DOMString dataArg);
};

Attributes
data of type DOMString, readonly

data holds the value of the characters generated by the character device. This may be a
single Unicode character or it may be a string.

Methods

36

1.7.2. Text events

initTextEvent
The initTextEvent method is used to initialize the value of a TextEvent created
using the DocumentEvent.createEvent [p.31] method. This method may only be
called before the TextEvent has been dispatched via the
EventTarget.dispatchEvent [p.25] method, though it may be called multiple
times during that phase if necessary. If called multiple times, the final invocation takes
precedence. This method has no effect if called after the event has been dispatched.
Parameters
typeArg of type DOMString

Specifies the event type.
canBubbleArg of type boolean

Specifies whether or not the event can bubble. This parameter overrides the intrinsic
bubbling behavior of the event.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevent. This parameter
overrides the intrinsic cancelable behavior of the event.

viewArg of type views::AbstractView
Specifies the TextEvent’s view.

dataArg of type DOMString
Specifies the TextEvent’s data attribute

No Return Value
No Exceptions

initTextEventNS
The initTextEventNS method is used to initialize the value of a TextEvent created
using the DocumentEvent.createEvent [p.31] method. This method may only be
called before the TextEvent has been dispatched via the
EventTarget.dispatchEvent [p.25] method, though it may be called multiple
times during that phase if necessary. If called multiple times, the final invocation takes
precedence. This method has no effect if called after the event has been dispatched.
Parameters
namespaceURI of type DOMString

Specifies the namespace URI [p.101] associated with this event, or null if the
applications wish to have no namespace.

type of type DOMString
Specifies the event type.

canBubbleArg of type boolean
Specifies whether or not the event can bubble.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevent.

viewArg of type views::AbstractView
Specifies the TextEvent’s view.

dataArg of type DOMString
Specifies the TextEvent’s data attribute

No Return Value
No Exceptions

37

1.7.2. Text events

The text event type is listed below. For a full description of the semantics associated with this event type,
refer to the Complete list of event types [p.14] . A DOM application may use the
hasFeature(feature, version) method of the DOMImplementation interface with
parameter values "TextEvents" and "3.0" (respectively) to determine whether or not the Text event
module is supported by the implementation. In order to fully support this module, an implementation must
also support the "UIEvents" feature defined in this specification. For additional information about
conformance, please see the DOM Level 3 Core specification [DOM Level 3 Core].

Event type Context information
"http://www.w3.org/2001/xml-events",
"textInput"

UIEvent.view [p.34] and
TextEvent.data [p.36] are in use.

1.7.3. Mouse event types

The Mouse event module originates from the [HTML 4.01] onclick, ondblclick, onmousedown,
onmouseup, onmouseover, onmousemove, and onmouseout attributes. This event module is
specifically designed for use with pointing input devices, such a mouse.

Interface MouseEvent (introduced in DOM Level 2)

The MouseEvent interface provides specific contextual information associated with Mouse events.

In the case of nested elements mouse events are always targeted at the most deeply nested element.
Ancestors of the targeted element may use bubbling to obtain notification of mouse events which
occur within its descendent elements.

Note: To create an instance of the MouseEvent interface, use the feature string "MouseEvent" as
the value of the input parameter used with the DocumentEvent.createEvent [p.31] method.

IDL Definition

// Introduced in DOM Level 2:
interface MouseEvent : UIEvent {
 readonly attribute long screenX;
 readonly attribute long screenY;
 readonly attribute long clientX;
 readonly attribute long clientY;
 readonly attribute boolean ctrlKey;
 readonly attribute boolean shiftKey;
 readonly attribute boolean altKey;
 readonly attribute boolean metaKey;
 readonly attribute unsigned short button;
 readonly attribute EventTarget relatedTarget;
 void initMouseEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg,
 in long screenXArg,
 in long screenYArg,
 in long clientXArg,

38

1.7.3. Mouse event types

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/introduction.html#ID-Conformance

 in long clientYArg,
 in boolean ctrlKeyArg,
 in boolean altKeyArg,
 in boolean shiftKeyArg,
 in boolean metaKeyArg,
 in unsigned short buttonArg,
 in EventTarget relatedTargetArg);
 // Introduced in DOM Level 3:
 void initMouseEventNS(in DOMString namespaceURI,
 in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg,
 in long screenXArg,
 in long screenYArg,
 in long clientXArg,
 in long clientYArg,
 in boolean ctrlKeyArg,
 in boolean altKeyArg,
 in boolean shiftKeyArg,
 in boolean metaKeyArg,
 in unsigned short buttonArg,
 in EventTarget relatedTargetArg,
 in boolean altGraphKeyArg);
 // Introduced in DOM Level 3:
 readonly attribute boolean altGraphKey;
};

Attributes
altGraphKey of type boolean, readonly, introduced in DOM Level 3

true if the alt-graph (Alt Gr) key modifier is activated.

Note: Some operating systems simulate the alt-graph key modifier with the combinaison of
alt and ctrl key modifiers. Implementations are encouraged to use this modifier instead.

altKey of type boolean, readonly
true if the alt (alternative) key modifier is activated.

button of type unsigned short, readonly
During mouse events caused by the depression or release of a mouse button, button is
used to indicate which mouse button changed state. 0 indicates the normal (in general on
the left or the one button on Macintosh mice, used to activate a button or select text) button
of the mouse. 2 indicates the contextual property (in general on the right, used to display a
context menu) button of the mouse if present. 1 indicates the extra (in general in the middle
and often combined with the mouse wheel) button. Some mice may provide or simulate
more buttons and values higher than 2 could be used to represent such buttons.

clientX of type long, readonly
The horizontal coordinate at which the event occurred relative to the DOM
implementation’s client area.

clientY of type long, readonly
The vertical coordinate at which the event occurred relative to the DOM implementation’s
client area.

39

1.7.3. Mouse event types

ctrlKey of type boolean, readonly
true if the control (Ctrl) key modifier is activated.

metaKey of type boolean, readonly
true if the meta (Meta) key modifier is activated.

Note: The Command key modifier on Macintosh system must be represented using this
key modifier.

relatedTarget of type EventTarget [p.23] , readonly
Used to identify a secondary EventTarget [p.23] related to a UI event. Currently this
attribute is used with the mouseover event to indicate the EventTarget which the
pointing device exited and with the mouseout event to indicate the EventTarget which
the pointing device entered.

screenX of type long, readonly
The horizontal coordinate at which the event occurred relative to the origin of the screen
coordinate system.

screenY of type long, readonly
The vertical coordinate at which the event occurred relative to the origin of the screen
coordinate system.

shiftKey of type boolean, readonly
true if the shift (Shift) key modifier is activated.

Methods
initMouseEvent

The initMouseEvent method is used to initialize the value of a MouseEvent created
using the DocumentEvent.createEvent [p.31] method. This method may only be
called before the MouseEvent has been dispatched via the
EventTarget.dispatchEvent [p.25] method, though it may be called multiple
times before being dispatched. If called multiple times, the final invocation takes
precedence.
Parameters
typeArg of type DOMString

Specifies the event type.
canBubbleArg of type boolean

Specifies whether or not the event can bubble.
cancelableArg of type boolean

Specifies whether or not the event’s default action can be prevented.
viewArg of type views::AbstractView

Specifies the Event [p.19] ’s view.
detailArg of type long

Specifies the Event [p.19] ’s mouse click count.
screenXArg of type long

Specifies the Event [p.19] ’s screen x coordinate
screenYArg of type long

Specifies the Event [p.19] ’s screen y coordinate
clientXArg of type long

Specifies the Event [p.19] ’s client x coordinate

40

1.7.3. Mouse event types

clientYArg of type long
Specifies the Event [p.19] ’s client y coordinate

ctrlKeyArg of type boolean
Specifies whether or not control key was depressed during the Event [p.19] .

altKeyArg of type boolean
Specifies whether or not alt key was depressed during the Event [p.19] .

shiftKeyArg of type boolean
Specifies whether or not shift key was depressed during the Event [p.19] .

metaKeyArg of type boolean
Specifies whether or not meta key was depressed during the Event [p.19] .

buttonArg of type unsigned short
Specifies the Event [p.19] ’s mouse button.

relatedTargetArg of type EventTarget [p.23]
Specifies the Event [p.19] ’s related EventTarget.

No Return Value
No Exceptions

initMouseEventNS introduced in DOM Level 3
The initMouseEventNS method is used to initialize the value of a MouseEvent
created using the DocumentEvent.createEvent [p.31] interface. This method may
only be called before the MouseEvent has been dispatched via the
EventTarget.dispatchEvent [p.25] method, though it may be called multiple
times during that phase if necessary. If called multiple times, the final invocation takes
precedence.
Parameters
namespaceURI of type DOMString

Specifies the namespace URI [p.101] associated with this event, or null if the
application wish to have no namespace.

typeArg of type DOMString
Specifies the event type.

canBubbleArg of type boolean
Specifies whether or not the event can bubble.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevented.

viewArg of type views::AbstractView
Specifies the Event [p.19] ’s AbstractView.

detailArg of type long
Specifies the Event [p.19] ’s mouse click count.

screenXArg of type long
Specifies the Event [p.19] ’s screen x coordinate

screenYArg of type long
Specifies the Event [p.19] ’s screen y coordinate

clientXArg of type long
Specifies the Event [p.19] ’s client x coordinate

clientYArg of type long
Specifies the Event [p.19] ’s client y coordinate

41

1.7.3. Mouse event types

ctrlKeyArg of type boolean
Specifies whether or not control key was depressed during the Event [p.19] .

altKeyArg of type boolean
Specifies whether or not alt key was depressed during the Event [p.19] .

shiftKeyArg of type boolean
Specifies whether or not shift key was depressed during the Event [p.19] .

metaKeyArg of type boolean
Specifies whether or not meta key was depressed during the Event [p.19] .

buttonArg of type unsigned short
Specifies the Event [p.19] ’s mouse button.

relatedTargetArg of type EventTarget [p.23]
Specifies the Event [p.19] ’s related EventTarget.

altGraphKeyArg of type boolean
Specifies whether or not alt graph key was depressed during the Event [p.19] .

No Return Value
No Exceptions

The Mouse event types are listed below. For a full description of the semantics associated with these event
types, refer to the Complete list of event types [p.14] . In the case of nested elements, mouse event types
are always targeted at the most deeply nested element. Ancestors of the targeted element may use
bubbling to obtain notification of mouse events which occur within its descendent elements. A DOM
application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "MouseEvents" and "3.0" (respectively)
to determine whether or not the Mouse event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "UIEvents" feature defined in this
specification. For additional information about conformance, please see the DOM Level 3 Core
specification [DOM Level 3 Core]. The DOM Level 3 Mouse Events module is built on top of the DOM
Level 2 Mouse Events [DOM Level 2 Events] module, i.e. a DOM Level 3 Mouse Events implementation
where hasFeature("MouseEvents", "3.0") returns true must also return true when the
version number is "2.0", "" or, null.

Event type Context information

42

1.7.3. Mouse event types

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/introduction.html#ID-Conformance

"http://www.w3.org/2001/xml-events",
"click"

MouseEvent.screenX [p.40] ,
MouseEvent.screenY [p.40] ,
MouseEvent.clientX [p.39] ,
MouseEvent.clientY [p.39] ,
MouseEvent.altKey [p.39] ,
MouseEvent.ctrlKey [p.40] ,
MouseEvent.shiftKey [p.40] ,
MouseEvent.metaKey [p.40] ,
MouseEvent.altGraphKey [p.39] ,
MouseEvent.button [p.39] , and
UIEvent.view [p.34] are in use. The
UIEvent.detail [p.34] attribute indicates the
number of consecutive clicks of a pointing device
button during a user action. The attribute value is 1
when the user begins this action and increments by
1 for each click. The notion of consecutive clicks
depends on the environment configuration. For
example, a "double click" will not happen if there is
a long delay between the two clicks, even if the
pointing device did not move.

"http://www.w3.org/2001/xml-events",
"mousedown"

MouseEvent.screenX [p.40] ,
MouseEvent.screenY [p.40] ,
MouseEvent.clientX [p.39] ,
MouseEvent.clientY [p.39] ,
MouseEvent.altKey [p.39] ,
MouseEvent.ctrlKey [p.40] ,
MouseEvent.shiftKey [p.40] ,
MouseEvent.metaKey [p.40] ,
MouseEvent.altGraphKey [p.39] ,
MouseEvent.button [p.39] , and
UIEvent.view [p.34] are in use. The
UIEvent.detail [p.34] attribute indicates the
number of consecutive clicks, incremented by one,
of a pointing device button during a user action. For
example, if no click happened before the
mousedown, UIEvent.detail will contain the
value 1.

43

1.7.3. Mouse event types

"http://www.w3.org/2001/xml-events",
"mouseup"

MouseEvent.screenX [p.40] ,
MouseEvent.screenY [p.40] ,
MouseEvent.clientX [p.39] ,
MouseEvent.clientY [p.39] ,
MouseEvent.altKey [p.39] ,
MouseEvent.ctrlKey [p.40] ,
MouseEvent.shiftKey [p.40] ,
MouseEvent.metaKey [p.40] ,
MouseEvent.altGraphKey [p.39] ,
MouseEvent.button [p.39] , and
UIEvent.view [p.34] are in use. The
UIEvent.detail [p.34] attribute indicates the
number of consecutive clicks, incremented by one,
of a pointing device button during a user action. For
example, if no click happened before the mouseup,
UIEvent.detail will contain the value 1.
However, if no click is generated after the mouseup,
UIEvent.detail contains the value 0,
indicating that no click is occurring.

"http://www.w3.org/2001/xml-events",
"mouseover"

MouseEvent.screenX [p.40] ,
MouseEvent.screenY [p.40] ,
MouseEvent.clientX [p.39] ,
MouseEvent.clientY [p.39] ,
MouseEvent.altKey [p.39] ,
MouseEvent.ctrlKey [p.40] ,
MouseEvent.shiftKey [p.40] ,
MouseEvent.metaKey [p.40] ,
MouseEvent.altGraphKey [p.39] , and
UIEvent.view [p.34] are in use.
MouseEvent.relatedTarget [p.40] indicates
the event target [p.101] a pointing device is exiting.

"http://www.w3.org/2001/xml-events",
"mousemove"

MouseEvent.screenX [p.40] ,
MouseEvent.screenY [p.40] ,
MouseEvent.clientX [p.39] ,
MouseEvent.clientY [p.39] ,
MouseEvent.altKey [p.39] ,
MouseEvent.ctrlKey [p.40] ,
MouseEvent.shiftKey [p.40] ,
MouseEvent.metaKey [p.40] ,
MouseEvent.altGraphKey [p.39] , and
UIEvent.view [p.34] are in use.

44

1.7.3. Mouse event types

"http://www.w3.org/2001/xml-events",
"mouseout"

MouseEvent.screenX [p.40] ,
MouseEvent.screenY [p.40] ,
MouseEvent.clientX [p.39] ,
MouseEvent.clientY [p.39] ,
MouseEvent.altKey [p.39] ,
MouseEvent.ctrlKey [p.40] ,
MouseEvent.shiftKey [p.40] ,
MouseEvent.metaKey [p.40] ,
MouseEvent.altGraphKey [p.39] , and
UIEvent.view [p.34] are in use.
MouseEvent.relatedTarget [p.40] indicates
the event target [p.101] a pointing device is
entering.

As an example, a "double-click" on a mouse device will produce the following events (the value of
UIEvent.detail [p.34] is indicated in parenthesis):

1. {"http://www.w3.org/2001/xml-events", "mousedown"} (1)
2. {"http://www.w3.org/2001/xml-events", "mouseup"} (1)
3. {"http://www.w3.org/2001/xml-events", "click"} (1)
4. {"http://www.w3.org/2001/xml-events", "mousedown"} (2)
5. {"http://www.w3.org/2001/xml-events", "mouseup"} (2)
6. {"http://www.w3.org/2001/xml-events", "click"} (2)

(ED: plh -- I added this example above but didn’t check if it is correct or not yet (do we have the
click(1)?). If it is not, let me know in any case. I’ll probably complicate the example a bit (with moves) to
show how detail really works.)

1.7.4. Keyboard event types

Keyboard events are device dependent, i.e. they rely on the capabilities of the input devices and how they
are mapped in the operating systems. It is therefore highly recommended to rely on Text events [p.36]
when dealing with characters.

Interface KeyboardEvent (introduced in DOM Level 3)

The KeyboardEvent interface provides specific contextual information associated with keyboard
devices. Each keyboard event reference a key using an identifier.

Each modifier attribute (ctrlKey, shiftKey, altKey, metaKey, and altGraphKey) is
activated when the key modifier is being pressed down or maintained pressed, i.e. the modifier
attribute is not in use when the key modifier is being released.

Note: To create an instance of the KeyboardEvent interface, use the feature string
"KeyboardEvent" as the value of the input parameter used with the
DocumentEvent.createEvent [p.31] method.

45

1.7.4. Keyboard event types

IDL Definition

// Introduced in DOM Level 3:
interface KeyboardEvent : UIEvent {

 // KeyLocationCode
 const unsigned long DOM_KEY_LOCATION_STANDARD = 0x00;
 const unsigned long DOM_KEY_LOCATION_LEFT = 0x01;
 const unsigned long DOM_KEY_LOCATION_RIGHT = 0x02;
 const unsigned long DOM_KEY_LOCATION_NUMPAD = 0x03;
 const unsigned long DOM_KEY_LOCATION_UNKNOWN = 0x04;

 readonly attribute DOMString keyIdentifier;
 readonly attribute unsigned long keyLocation;
 readonly attribute boolean ctrlKey;
 readonly attribute boolean shiftKey;
 readonly attribute boolean altKey;
 readonly attribute boolean metaKey;
 readonly attribute boolean altGraphKey;
 void initKeyboardEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in DOMString keyIdentifierArg,
 in unsigned long keyLocationArg,
 in boolean ctrlKeyArg,
 in boolean shiftKeyArg,
 in boolean altKeyArg,
 in boolean metaKeyArg,
 in boolean altGraphKeyArg);
 void initKeyboardEventNS(in DOMString namespaceURI,
 in DOMString type,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in DOMString keyIdentifierArg,
 in unsigned long keyLocationArg,
 in boolean ctrlKeyArg,
 in boolean shiftKeyArg,
 in boolean altKeyArg,
 in boolean metaKeyArg,
 in boolean altGraphKeyArg);
};

Definition group KeyLocationCode
Defined Constants

DOM_KEY_LOCATION_LEFT
The key activated is in the left key location (there is more than one possible location
for this key). Example: the left Shift key on a PC 101 Key US.

DOM_KEY_LOCATION_NUMPAD
The key activation originated on the numeric keypad or with a virtual key
corresponding to the numeric keypad. Example: the ’1’ key on a PC 101 Key US.

46

1.7.4. Keyboard event types

DOM_KEY_LOCATION_RIGHT
The key activation is in the right key location (there is more than one possible location
for this key). Example: the right Shift key on a PC 101 Key US.

DOM_KEY_LOCATION_STANDARD
The key activation is not distinguished as the left or right version of the key, and did
not originate from the numeric keypad (or did not originate with a virtual key
corresponding to the numeric keypad). Example: the ’Q’ key on a PC 101 Key US.

DOM_KEY_LOCATION_UNKNOWN
Implementations can use this constant to indicate that the location of the key cannot be
determined.

Note: In case a DOM implementation wishes to provide new location information, all
values above the value of this constant can be used for that effect and generic DOM
applications should consider values above the value of this constant as being
equivalent to DOM_KEY_LOCATION_UNKNOWN.

Attributes
altGraphKey of type boolean, readonly

true if the alt-graph (Alt Gr) key modifier is activated.

Note: Some operating systems simulate the alt-graph key modifier with the combinaison of
alt and ctrl key modifiers. Implementations are encouraged to use this modifier instead.

altKey of type boolean, readonly
true if the alt (alternative) key modifier is activated.

ctrlKey of type boolean, readonly
true if the control (Ctrl) key modifier is activated.

keyIdentifier of type DOMString, readonly
keyIdentifier holds the identifier of the key. For a list of possible value, refer to Key
identifiers for keyboard events. [p.61] .

Note: Implementations that are unable to identify a key must use the key identifier
"Unidentified".

keyLocation of type unsigned long, readonly
The keyLocation attribute contains an indication of the location of they key on the
device.

metaKey of type boolean, readonly
true if the meta (Meta) key modifier is activated.

Note: The Command key modifier on Macintosh system must be represented using this
key modifier.

shiftKey of type boolean, readonly
true if the shift (Shift) key modifier is activated.

Methods

47

1.7.4. Keyboard event types

initKeyboardEvent
The initKeyboardEvent method is used to initialize the value of a
KeyboardEvent created using the DocumentEvent.createEvent [p.31] method.
This method may only be called before the KeyboardEvent has been dispatched via the
EventTarget.dispatchEvent [p.25] method, though it may be called multiple
times before being dispatched if necessary. If called multiple times, the final invocation
takes precedence. This method has no effect if called after the event has been dispatched.
Parameters
typeArg of type DOMString

Specifies the event type.
canBubbleArg of type boolean

Specifies whether or not the event can bubble. This parameter overrides the intrinsic
bubbling behavior of the event.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevent. This parameter
overrides the intrinsic cancelable behavior of the event.

viewArg of type views::AbstractView
Specifies the KeyboardEvent’s AbstractView.

keyIdentifierArg of type DOMString
Specifies the KeyboardEvent’s keyIdentifier attribute.

keyLocationArg of type unsigned long
Specifies the KeyboardEvent’s keyLocation attribute.

ctrlKeyArg of type boolean
Specifies the KeyboardEvent’s ctrlKey attribute.

shiftKeyArg of type boolean
Specifies the KeyboardEvent’s shiftKey attribute.

altKeyArg of type boolean
Specifies the KeyboardEvent’s altKey attribute.

metaKeyArg of type boolean
Specifies the KeyboardEvent’s metaKey attribute.

altGraphKeyArg of type boolean
Specifies the KeyboardEvent’s altGraphKey attribute.

No Return Value
No Exceptions

initKeyboardEventNS
The initKeyboardEventNS method is used to initialize the value of a
KeyboardEvent created using the DocumentEvent.createEvent [p.31] method.
This method may only be called before the KeyboardEvent has been dispatched via the
EventTarget.dispatchEvent [p.25] method, though it may be called multiple
times during that phase if necessary. If called multiple times, the final invocation takes
precedence. This method has no effect if called after the event has been dispatched.
Parameters
namespaceURI of type DOMString

Specifies the namespace URI [p.101] associated with this event, or null if the
applications wish to have no namespace.

48

1.7.4. Keyboard event types

type of type DOMString
Specifies the event type.

canBubbleArg of type boolean
Specifies whether or not the event can bubble.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevent.

viewArg of type views::AbstractView
Specifies the KeyboardEvent’s AbstractView.

keyIdentifierArg of type DOMString
Specifies the KeyboardEvent’s keyIdentifier attribute

keyLocationArg of type unsigned long
Specifies the KeyboardEvent’s keyLocation attribute.

ctrlKeyArg of type boolean
Specifies the KeyboardEvent’s ctrlKey attribute.

shiftKeyArg of type boolean
Specifies the KeyboardEvent’s shiftKey attribute.

altKeyArg of type boolean
Specifies the KeyboardEvent’s altKey attribute.

metaKeyArg of type boolean
Specifies the KeyboardEvent’s metaKey attribute.

altGraphKeyArg of type boolean
Specifies the KeyboardEvent’s altGraphKey attribute.

No Return Value
No Exceptions

Depending on the character device generation system, keyboard events may or may not be generated.

The keyboard event types are listed below. For a full description of the semantics associated with these
event types, refer to the Complete list of event types [p.14] . A DOM application may use the
hasFeature(feature, version) method of the DOMImplementation interface with
parameter values "KeyboardEvents" and "3.0" (respectively) to determine whether or not the
Keyboard event module is supported by the implementation. In order to fully support this module, an
implementation must also support the "UIEvents" feature defined in this specification. For additional
information about conformance, please see the DOM Level 3 Core specification [DOM Level 3 Core].

49

1.7.4. Keyboard event types

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/introduction.html#ID-Conformance

Event type Context information
"http://www.w3.org/2001/xml-events",
"keydown"

UIEvent.view [p.34] ,
KeyboardEvent.keyIdentifier [p.47] ,
KeyboardEvent.location,
KeyboardEvent.altKey [p.47] ,
KeyboardEvent.altGraphKey [p.47] ,
KeyboardEvent.shiftKey [p.47] ,
KeyboardEvent.ctrlKey [p.47] , and
KeyboardEvent.metaKey [p.47] are in use.

"http://www.w3.org/2001/xml-events",
"keyup"

UIEvent.view [p.34] ,
KeyboardEvent.keyIdentifier [p.47] ,
and KeyboardEvent.location are in use.
KeyboardEvent.altKey [p.47] ,
KeyboardEvent.altGraphKey [p.47] ,
KeyboardEvent.shiftKey [p.47] ,
KeyboardEvent.ctrlKey [p.47] , and
KeyboardEvent.metaKey [p.47] are in use
unless the Keyboard.keyIdentifier
corresponds to the key modifier itself.

1.7.5. Mutation and mutation name event types

The mutation and mutation name event modules are designed to allow notification of any changes to the
structure of a document, including attribute, text, or name modifications. It may be noted that none of the
event types associated with the modules are designated as cancelable. This stems from the fact that it is
very difficult to make use of existing DOM interfaces which cause document modifications if any change
to the document might or might not take place due to cancelation of the resulted event. Although this is
still a desired capability, it was decided that it would be better left until the addition of transactions into
the DOM.

Many single modifications of the tree can cause multiple mutation events to be dispatched. Rather than
attempt to specify the ordering of mutation events due to every possible modification of the tree, the
ordering of these events is left to the implementation.

Interface MutationEvent (introduced in DOM Level 2)

The MutationEvent interface provides specific contextual information associated with Mutation
events.

Note: To create an instance of the MutationEvent interface, use the feature string
"MutationEvent" as the value of the input parameter used with the
DocumentEvent.createEvent [p.31] method.

IDL Definition

50

1.7.5. Mutation and mutation name event types

// Introduced in DOM Level 2:
interface MutationEvent : Event {

 // attrChangeType
 const unsigned short MODIFICATION = 1;
 const unsigned short ADDITION = 2;
 const unsigned short REMOVAL = 3;

 readonly attribute Node relatedNode;
 readonly attribute DOMString prevValue;
 readonly attribute DOMString newValue;
 readonly attribute DOMString attrName;
 readonly attribute unsigned short attrChange;
 void initMutationEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in Node relatedNodeArg,
 in DOMString prevValueArg,
 in DOMString newValueArg,
 in DOMString attrNameArg,
 in unsigned short attrChangeArg);
 // Introduced in DOM Level 3:
 void initMutationEventNS(in DOMString namespaceURI,
 in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in Node relatedNodeArg,
 in DOMString prevValueArg,
 in DOMString newValueArg,
 in DOMString attrNameArg,
 in unsigned short attrChangeArg);
};

Definition group attrChangeType

An integer indicating in which way the Attr was changed.

Defined Constants
ADDITION

The Attr was just added.
MODIFICATION

The Attr was modified in place.
REMOVAL

The Attr was just removed.
Attributes

attrChange of type unsigned short, readonly
attrChange indicates the type of change which triggered the DOMAttrModified event.
The values can be MODIFICATION, ADDITION, or REMOVAL.

attrName of type DOMString, readonly
attrName indicates the name of the changed Attr node in a DOMAttrModified event.

newValue of type DOMString, readonly
newValue indicates the new value of the Attr node in DOMAttrModified events, and of
the CharacterData node in DOMCharacterDataModified events.

51

1.7.5. Mutation and mutation name event types

prevValue of type DOMString, readonly
prevValue indicates the previous value of the Attr node in DOMAttrModified events,
and of the CharacterData node in DOMCharacterDataModified events.

relatedNode of type Node, readonly
relatedNode is used to identify a secondary node related to a mutation event. For
example, if a mutation event is dispatched to a node indicating that its parent has changed,
the relatedNode is the changed parent. If an event is instead dispatched to a subtree
indicating a node was changed within it, the relatedNode is the changed node. In the
case of the DOMAttrModified event it indicates the Attr node which was modified,
added, or removed.

Methods
initMutationEvent

The initMutationEvent method is used to initialize the value of a
MutationEvent created using the DocumentEvent.createEvent [p.31] method.
This method may only be called before the MutationEvent has been dispatched via the
EventTarget.dispatchEvent [p.25] method, though it may be called multiple
times before being dispatched if necessary. If called multiple times, the final invocation
takes precedence.
Parameters
typeArg of type DOMString

Specifies the event type.
canBubbleArg of type boolean

Specifies whether or not the event can bubble. This parameter overrides the intrinsic
bubbling behavior of the event.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevented. This parameter
overrides the intrinsic cancelable behavior of the event.

relatedNodeArg of type Node
Specifies the Event [p.19] ’s related Node.

prevValueArg of type DOMString
Specifies the Event [p.19] ’s prevValue attribute. This value may be null.

newValueArg of type DOMString
Specifies the Event [p.19] ’s newValue attribute. This value may be null.

attrNameArg of type DOMString
Specifies the Event [p.19] ’s attrName attribute. This value may be null.

attrChangeArg of type unsigned short
Specifies the Event [p.19] ’s attrChange attribute.

No Return Value
No Exceptions

initMutationEventNS introduced in DOM Level 3
The initMutationEventNS method is used to initialize the value of a
MutationEvent created using the DocumentEvent.createEvent [p.31] method.
This method may only be called before the MutationEvent has been dispatched via the
EventTarget.dispatchEvent [p.25] method, though it may be called multiple
times during that phase if necessary. If called multiple times, the final invocation takes
precedence.

52

1.7.5. Mutation and mutation name event types

Parameters
namespaceURI of type DOMString

Specifies the namespace URI [p.101] associated with this event, or null if the
application wish to have no namespace.

typeArg of type DOMString
Specifies the event type.

canBubbleArg of type boolean
Specifies whether or not the event can bubble.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevented.

relatedNodeArg of type Node
Specifies the Event [p.19] ’s related Node.

prevValueArg of type DOMString
Specifies the Event [p.19] ’s prevValue attribute. This value may be null.

newValueArg of type DOMString
Specifies the Event [p.19] ’s newValue attribute. This value may be null.

attrNameArg of type DOMString
Specifies the Event [p.19] ’s attrName attribute. This value may be null.

attrChangeArg of type unsigned short
Specifies the Event [p.19] ’s attrChange attribute.

No Return Value
No Exceptions

The mutation event types are listed below. For a full description of the semantics associated with these
event types, refer to the Complete list of event types [p.14] . A DOM application may use the
hasFeature(feature, version) method of the DOMImplementation interface with
parameter values "MutationEvents" and "3.0" (respectively) to determine whether or not the
MutationEvent [p.50] is supported by the implementation. In order to fully support this module, an
implementation must also support the "Events" feature defined in this specification. For additional
information about conformance, please see the DOM Level 3 Core specification [DOM Level 3 Core].
This MutationEvent interface is built on top of the DOM Level 2 Mutation Events [DOM Level 2
Events] module, i.e. a DOM Level 3 MutationEvent interface implementation where
hasFeature("MutationEvents","3.0") returns true must also return true when the
version number is "2.0", "" or, null.

53

1.7.5. Mutation and mutation name event types

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/introduction.html#ID-Conformance

Event type Context information
"http://www.w3.org/2001/xml-events",
"DOMSubtreeModified"

None

"http://www.w3.org/2001/xml-events",
"DOMNodeInserted"

MutationEvent.relatedNode [p.52] holds
the parent node of the node being inserted.

"http://www.w3.org/2001/xml-events",
"DOMNodeRemoved"

MutationEvent.relatedNode [p.52] holds
the parent node of the node being removed.

"http://www.w3.org/2001/xml-events",
"DOMNodeRemovedFromDocument"

None

"http://www.w3.org/2001/xml-events",
"DOMNodeInsertedIntoDocument"

None

"http://www.w3.org/2001/xml-events",
"DOMAttrModified"

MutationEvent.attrName [p.51] is in use.
The value of MutationEvent.relatedNode
[p.52] indicates the Attr node whose value has
been affected. The value of
MutationEvent.attrChange [p.51]
indicates whether the Attr was modified, added,
or removed. If the Attr node is being added,
MutationEvent.newValue [p.51] is in use. If
the Attr node is being removed,
MutationEvent.prevValue [p.52] is in
value. If the Attr node is being modified,
MutationEvent.newValue and
MutationEvent.prevValue are in use.

"http://www.w3.org/2001/xml-events",
"DOMCharacterDataModified"

MutationEvent.prevValue [p.52] , and
MutationEvent.newValue [p.51] are in use.

Interface MutationNameEvent (introduced in DOM Level 3)

The MutationNameEvent interface provides specific contextual information associated with
Mutation name event types.

Note: To create an instance of the MutationNameEvent interface, use the feature string
"MutationNameEvent" as the value of the input parameter used with the createEvent method of
the DocumentEvent [p.30] interface.

IDL Definition

// Introduced in DOM Level 3:
interface MutationNameEvent : MutationEvent {
 readonly attribute DOMString prevNamespaceURI;
 readonly attribute DOMString prevNodeName;
 // Introduced in DOM Level 3:
 void initMutationNameEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in Node relatedNodeArg,
 in DOMString prevNamespaceURI,
 in DOMString prevNodeName);

54

1.7.5. Mutation and mutation name event types

 // Introduced in DOM Level 3:
 void initMutationNameEventNS(in DOMString namespaceURI,
 in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in Node relatedNodeArg,
 in DOMString prevNamespaceURI,
 in DOMString prevNodeName);
};

Attributes
prevNamespaceURI of type DOMString, readonly

The previous value of the relatedNode’s namespaceURI.
prevNodeName of type DOMString, readonly

The previous value of the relatedNode’s nodeName.
Methods

initMutationNameEvent introduced in DOM Level 3
The initMutationNameEvent method is used to initialize the value of a
MutationNameEvent created using the DocumentEvent.createEvent [p.31]
method. This method may only be called before the MutationNameEvent has been
dispatched via the EventTarget.dispatchEvent [p.25] method, though it may be
called multiple times during that phase if necessary. If called multiple times, the final
invocation takes precedence.
Parameters
typeArg of type DOMString

Specifies the event type.
canBubbleArg of type boolean

Specifies whether or not the event can bubble.
cancelableArg of type boolean

Specifies whether or not the event’s default action can be prevented.
relatedNodeArg of type Node

Specifies the Event [p.19] ’s related Node.
prevNamespaceURI of type DOMString

Specifies the previous namespaceURI of the related Node. This value may be null.
prevNodeName of type DOMString

Specifies the previous nodeName of the related Node.
No Return Value
No Exceptions

initMutationNameEventNS introduced in DOM Level 3
The initMutationNameEventNS method is used to initialize the value of a
MutationNameEvent created using the DocumentEvent.createEvent [p.31]
method. This method may only be called before the MutationNameEvent has been
dispatched via the EventTarget.dispatchEvent [p.25] method, though it may be
called multiple times during that phase if necessary. If called multiple times, the final
invocation takes precedence.
Parameters
namespaceURI of type DOMString

Specifies the namespace URI [p.101] associated with this event, or null if the

55

1.7.5. Mutation and mutation name event types

application wish to have no namespace.
typeArg of type DOMString

Specifies the event type.
canBubbleArg of type boolean

Specifies whether or not the event can bubble.
cancelableArg of type boolean

Specifies whether or not the event’s default action can be prevented.
relatedNodeArg of type Node

Specifies the Event [p.19] ’s related Node.
prevNamespaceURI of type DOMString

Specifies the previous namespaceURI of the related Node. This value may be null.
prevNodeName of type DOMString

Specifies the previous nodeName of the related Node.
No Return Value
No Exceptions

The mutation name event types are listed below. For a full description of the semantics associated with
these event types, refer to the Complete list of event types [p.14] . A DOM application may use the
hasFeature(feature, version) method of the DOMImplementation interface with
parameter values "MutationNameEvents" and "3.0" (respectively) to determine whether or not the
MutationNameEvent [p.54] is supported by the implementation. In order to fully support this module,
an implementation must also support the "MutationEvents" feature defined in this specification and
the "Core" feature defined in the DOM Level 3 Core specification [DOM Level 3 Core]. For additional
information about conformance, please see the DOM Level 3 Core specification [DOM Level 3 Core].

Event type Context information
"http://www.w3.org/2001/xml-events",
"DOMElementNameChanged"

MutationNameEvent.prevNamespaceURI
[p.55] , and
MutationNameEvent.prevNodeName [p.55]
are in use.

"http://www.w3.org/2001/xml-events",
"DOMAttributeNameChanged"

MutationNameEvent.prevNamespaceURI
[p.55] , and
MutationNameEvent.prevNodeName [p.55]
are in use. The value of
MutationEvent.relatedNode [p.52]
contains the renamed Attr node.

1.7.6. Basic event types

This event module contains basic event types associated with document manipulation.

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "BasicEvents" and "3.0" (respectively)
to determine whether or not the basic event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "Events" feature defined in this
specification. For additional information about conformance, please see the DOM Level 3 Core

56

1.7.6. Basic event types

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/introduction.html#ID-Conformance
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/introduction.html#ID-Conformance

specification [DOM Level 3 Core].

The basic event types are listed below. For a full description of the semantics associated with these event
types, refer to the Complete list of event types [p.14] .

The event types {"http://www.w3.org/2001/xml-events", "resize"} and
{"http://www.w3.org/2001/xml-events", "scroll"} implement the UIEvent [p.33]
interface. All other HTML event types implement at least the basic Event [p.19] interface. However,
they may be generated from a user interface; in that case, the event objects also implements the UIEvent
interface and UIEvent.view [p.34] is in use.

Event type Context information
"http://www.w3.org/2001/xml-events", "load" UIEvent.view [p.34] may be in

use.
"http://www.w3.org/2001/xml-events",
"unload"

(same as above)

"http://www.w3.org/2001/xml-events", "abort" (same as above)
"http://www.w3.org/2001/xml-events", "error" (same as above)
"http://www.w3.org/2001/xml-events",
"select"

(same as above)

"http://www.w3.org/2001/xml-events",
"change"

(same as above)

"http://www.w3.org/2001/xml-events",
"submit"

(same as above)

"http://www.w3.org/2001/xml-events", "reset" (same as above)
"http://www.w3.org/2001/xml-events",
"resize"

UIEvent.view [p.34] is in use.

"http://www.w3.org/2001/xml-events",
"scroll"

UIEvent.view [p.34] is in use.

1.7.7. HTML Events

The HTML event module is composed of events listed in [HTML 4.01] and additional events which are
supported in DOM Level 0 [p.101] browsers. It refines the semantics and scope of the basic event types
and provides two new event types. This event module is only applicable if the Document supports the
[DOM Level 2 HTML] specification. Use Node.isSupported(feature, version) with the
parameter values "HTML" and "2.0" (respectively) to determine whether or not the Document node
supported the HTML module.

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "HTMLEvents" and "3.0" (respectively) to
determine whether or not the HTML event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "BasicEvents" feature defined in this
specification and the "HTML" feature defined in [DOM Level 2 HTML]. For additional information about
conformance, please see the DOM Level 3 Core specification [DOM Level 3 Core]. The DOM Level 3
HTML Events module is built on top of the DOM Level 2 HTML Events [DOM Level 2 Events] module,

57

1.7.7. HTML Events

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/introduction.html#ID-Conformance

i.e. a DOM Level 3 HTML Events implementation where hasFeature("HTMLEvents", "3.0")
returns true must also return true when the version number is "2.0", "" or, null.

Event type Description Target node
"http://www.w3.org/2001/xml-events",
"load"

The DOM implementation finishes
loading all content within the
BODY element, all frames within a
FRAMESET, or any resource
linked from the document.

HTMLBodyElement,
HTMLFrameSetElement,
HTMLObjectElement,
HTMLLinkElement,
HTMLMetaElement,
HTMLScriptElement,
HTMLFrameElement,
HTMLIFrameElement,
HTMLImageElement

"http://www.w3.org/2001/xml-events",
"unload"

The DOM implementation removes
a document from a window or
frame. This event is valid for
BODY and FRAMESET elements.

HTMLBodyElement,
HTMLFrameSetElement

"http://www.w3.org/2001/xml-events",
"abort"

The page loading is stopped before
an image has been allowed to
completely load. This event applies
to OBJECT elements.

HTMLObjectElement

"http://www.w3.org/2001/xml-events",
"error"

An image does not load properly or
when an error occurs during script
execution. This event is valid for
OBJECT elements, BODY
elements, and FRAMESET
element.

HTMLObjectElement,
HTMLBodyElement,
HTMLFrameSetElement

"http://www.w3.org/2001/xml-events",
"select"

A user selects some text in a text
field either via the user interface or
via attributes defined in [DOM
Level 2 HTML]. This event is valid
for INPUT and TEXTAREA
elements.

HTMLInputElement,
HTMLTextAreaElement

"http://www.w3.org/2001/xml-events",
"change"

A control loses the input focus and
its value has been modified since
gaining focus. This event can occur
either via a user interface
manipulation or the focus()
methods and the attributes defined
in [DOM Level 2 HTML]. This
event is valid for INPUT, SELECT,
and TEXTAREA element.

HTMLInputElement,
HTMLSelectElement,
HTMLTextAreaElement

"http://www.w3.org/2001/xml-events",
"submit"

A form is submitted either via a
button. This event only applies to
the FORM element. Note that the
HTMLFormElement.submit()
method defined in [DOM Level 2
HTML] does not fire this event
type.

HTMLFormElement

58

1.7.7. HTML Events

"http://www.w3.org/2001/xml-events",
"reset"

A form is reset either via a button,
or the
HTMLFormElement.reset()
method defined in [DOM Level 2
HTML]. This event only applies to
the FORM element.

HTMLFormElement

"http://www.w3.org/2001/xml-events",
"resize"

A document view is resized. HTMLDocument

"http://www.w3.org/2001/xml-events",
"scroll"

A document view is scrolled. HTMLDocument

The following new event types are defined:

59

1.7.7. HTML Events

Event type Description
Bubbling

phase
Cancelable Target node

DOM
interface

"http://www.w3.org/2001/xml-events",
"focus"

An element
receives
focus either
via a pointing
device, the
focus()
methods
defined in
[DOM Level
2 HTML], or
by tabbing
navigation.
This event is
only valid for
the following
elements: A,
AREA,
LABEL,
INPUT,
SELECT,
TEXTAREA,
and
BUTTON.

No No HTMLAnchorElement,
HTMLAreaElement,
HTMLLabelElement,
HTMLInputElement,
HTMLSelectElement,
HTMLtextAreaElement,
HTMLButtonElement.

Event
[p.19]

"http://www.w3.org/2001/xml-events",
"blur"

An element
loses focus
either via a
pointing
device, the
blur()
methods
defined in
[DOM Level
2 HTML], or
by tabbing
navigation.
This event is
only valid for
the following
elements: A,
AREA,
LABEL,
INPUT,
SELECT,
TEXTAREA,
and
BUTTON.

No No HTMLAnchorElement,
HTMLAreaElement,
HTMLLabelElement,
HTMLInputElement,
HTMLSelectElement,
HTMLtextAreaElement,
HTMLButtonElement.

Event
[p.19]

The event types {"http://www.w3.org/2001/xml-events", "focus"} and
{"http://www.w3.org/2001/xml-events", "blur"} may be generated from a user
interface; in that case, the event objects also implements the UIEvent [p.33] interface and
UIEvent.view [p.34] is in use.

60

1.7.7. HTML Events

Appendix A: Key identifiers for keyboard events.
Editor:

Philippe Le Hégaret, W3C

A.1: Introduction
Each keyboard event references a key using a DOMString key identifier. The set contained in this
appendix is based on the sets of keycodes from:

the interface java.awt.event.KeyEvent of the Java 2 Platform v1.4 [KeyEvent for Java];
the enumeration System.Windows.Forms.Keys of the Microsoft .NET Framework 1.0 [Keys
enumeration for .Net].

While implementations are recommended to use the most relevant identifier for a key independently of the
platform or keyboard layout mappings, DOM applications should not make assumption on the ability of
keyboard devices to generate them. When using keyboard events, "consider using numbers and function
keys (F4, F5, and so on) instead of letters in shortcut-key combinaisons" ([DWW95]) given that most
keyboard layouts will provide keys for those.

"U+000000", "U+000001", ..., "U+FFFFFF" are Unicode based key identifiers ([Unicode 3.0]).
When a key cannot be mapped to Unicode, a specific identifier is used (see also Guidelines for defining
key identifiers [p.64]). In any case, no assumption should be made between the sequence of keyboard
events and the text events. The following three examples illustrated the concept of keyboard layout
mappings and its relation with keyboard events.

The keystroke "U+000051" (Latin Capital Letter Q key) will produce (on a PC/AT US keyboard using a
US keyboard layout mapping and without any modifier activated) the Unicode character q (Latin Small
Letter Q):

1. {"http://www.w3.org/2001/xml-events", "keydown"}: "U+000051" (Latin
Capital Letter Q key)

2. {"http://www.w3.org/2001/xml-events", "textInput"}: "q"
3. {"http://www.w3.org/2001/xml-events", "keyup"}: "U+000051" (Latin Capital

Letter Q key)

If the keyboard layout mapping is switched to a french mapping, pressing the same key will produce:

1. {"http://www.w3.org/2001/xml-events", "keydown"}: "U+000041"
2. {"http://www.w3.org/2001/xml-events", "textInput"}: "a"
3. {"http://www.w3.org/2001/xml-events", "keyup"}: "U+000041"

If the keyboard layout mapping is switched to a serbian (cyrillic) mapping, pressing the same key will
produce:

61

Appendix A: Key identifiers for keyboard events.

1. {"http://www.w3.org/2001/xml-events", "keydown"}: "U+000409"
2. {"http://www.w3.org/2001/xml-events", "textInput"}: "љ"
3. {"http://www.w3.org/2001/xml-events", "keyup"}: "U+000409"

Note: The order between the text event and keyboard events may differ depending on the keyboard
devices.

A.1.1: Modifier keys

Keyboard input use modifier keys to change the normal behavior of a key. The KeyboardEvent [p.45]
interface provides specific attributes for them: KeyboardEvent.ctrlKey [p.47] ,
KeyboardEvent.shiftKey [p.47] , KeyboardEvent.altKey [p.47] ,
KeyboardEvent.metaKey [p.47] , and KeyboardEvent.altGraphKey [p.47] .

The following example describes a possible sequence of keys to generate the Unicode character Q (Latin
Capital Letter Q) on a PC/AT US keyboard using a US mapping:

1. {"http://www.w3.org/2001/xml-events", "keydown"}: "Shift", shiftKey
2. {"http://www.w3.org/2001/xml-events", "keydown"}: "U+000051" (Latin

Capital Letter Q key), shiftKey
3. {"http://www.w3.org/2001/xml-events", "textInput"}: "Q"
4. {"http://www.w3.org/2001/xml-events", "keyup"}: "U+000051" (Latin Capital

Letter Q key), shiftKey
5. {"http://www.w3.org/2001/xml-events", "keyup"}: "Shift"

The following example describes a possible sequence of keys that does not generate a Unicode character
(using the same configuration):

1. {"http://www.w3.org/2001/xml-events", "keydown"}: "Control", ctrlKey
2. {"http://www.w3.org/2001/xml-events", "keydown"}: "U+000056" (Latin

Capital Letter V key), ctrlKey
3. {"http://www.w3.org/2001/xml-events", "keyup"}: "U+000056" (Latin Capital

Letter V key), ctrlKey
4. {"http://www.w3.org/2001/xml-events", "keyup"}: "Control"

A.1.2: Dead keys

Keyboard input use dead keys for the input of composed character sequences. Unlike the handwriting
sequence, in which users type the base character first, keyboard input require to enter a special state when
a dead key is pressed and emit the character(s) only when one of a limited number of "legal" base
character is entered.

The dead keys are represented in the key identifiers set using combining diacritical marks. The sequence
of keystrokes "U+000302" (Combining Circumflex Accent key) and "U+000045" (Latin Capital Letter E
key) will likely produce (on a PC/AT french keyboard using a french mapping and without any modifier
activated) the Unicode character é (Latin Small Letter E With Acute) or the composed Unicode character
sequence e (Latin Small Letter E) and 000302 (Combining Circumflex Accent). In practice, french

62

A.1.1: Modifier keys

keyboard input will generate the Unicode character é instead of the composed Unicode character
sequence, as shown in the following example:

1. {"http://www.w3.org/2001/xml-events", "keydown"} : "U+000302" (Combining
Circumflex Accent key)

2. {"http://www.w3.org/2001/xml-events", "keyup"} : "U+000302" (Combining
Circumflex Accent key)

3. {"http://www.w3.org/2001/xml-events", "keydown"} : "U+000045" (Latin
Capital Letter E key)

4. {"http://www.w3.org/2001/xml-events", "textInput"} : "é"
5. {"http://www.w3.org/2001/xml-events", "keyup"} : "U+000045" (Latin Capital

Letter E key)

A.1.3: Input Method Editors

Also known as front end processor, an input method editor (IME) is an application that performs the
conversion between keystrokes and ideographs or other characters, usually by user-guided dictionary
lookup.

The IMEs function keys are not represented in this set. As an example, receiving an keydown for the
"Accept" key identifier does not necessarily implies that the text currently selected in the IME is being
accepted. It only indicates that a keystroke happened, disconnected from the IME Accept functionality.
Depending on the device in use, the IME Accept functionality can be obtain using the Accept key or the
Return key. Keyboard events cannot be used to determine the current state of the input method editor.

Keyboard events correspond to the events generated by the input device after the keyboard layout
mapping but before the processing of the input method editor.

The following example describes a possible sequence of keys to generate the Unicode character し
(Hiragana Letter SI) using Japanese input methods. This assumes that the input method editor is activated
and in the Japanese-Romaji input mode. The keys "Convert" and "Accept" may be replaced by
others depending on the input device in use and the configuration of the IME, e.g. it could be respectively
"U+000020" (Space key) and "Enter".

1. {"http://www.w3.org/2001/xml-events", "keydown"} : "U+000053" (Latin
Capital Letter S key)

2. {"http://www.w3.org/2001/xml-events", "keyup"} : "U+000053" (Latin Capital
Letter S key)

3. {"http://www.w3.org/2001/xml-events", "keydown"} : "U+000049" (Latin
Capital Letter I key)

4. {"http://www.w3.org/2001/xml-events", "keyup"} : "U+000049" (Latin Capital
Letter I key)

5. {"http://www.w3.org/2001/xml-events", "keydown"} : "Convert"
6. {"http://www.w3.org/2001/xml-events", "keyup"} : "Convert"
7. {"http://www.w3.org/2001/xml-events", "keydown"} : "Accept"
8. {"http://www.w3.org/2001/xml-events", "textInput"} : "し"

63

A.1.3: Input Method Editors

9. {"http://www.w3.org/2001/xml-events", "keyup"}: "Accept"

Note: This specification does not provide a representation of the input method editor (IME) events, e.g.
representing the input context.

A.1.4: Guidelines for defining key identifiers

Note: This section is informative.

The list of key identifiers contained in this appendix is not exhaustive and input devices may have to
define their own key identifiers. Here is a algorithm to determine which key identifier to use:

1. Determine a representation for the key by looking at the keyboard layout mapping in use (and not the
keyboard device in use). This representation should be unique, as human friendly as possible,
platform independent, and consistent. For example, on PC/AT US keyboards with a US mapping, the
’Q’ key is mapped to the key identifier "U+000051" (Latin Capital Letter Q key), the ’1/!’ key is
mapped to the key identifier "U+000031" (Digit One key), the key ’‘/~’ is mapped to the key
identifier "U+000060" (Grave Accent key), and the ’Enter’ key is mapped to the key identifier
"Enter".

2. Find an appropriate mapping in the Unicode character set. There might not always be an appropriate
and obvious mapping: the Unicode set contains characters and symbols, the key might generate
different characters depending on the operating system, ... In general, unless the representation of the
key can be mapped to a unique Unicode character, it is better to create a new one.

3. If no appropriate mapping was found, create an key identifier as human friendly as possible. As an
example, the Enter key is mapped to the key identifier "Enter" and not to "U+00000A" (Line Feed),
given that this key generates the character 00000A on Unix operating systems and the characters
00000D and 00000A on Windows operating systems.

A.2: Key identifiers set
Note: The keycodes Multiply, Add, Substract, Decimal, Separator, Divide, NumPad0,
NumPad1, NumPad2, NumPad3, NumPad4, NumPad5, NumPad6, NumPad7, NumPad8, and
NumPad9 are not part of this set. Use KeyBoard.keyLocation to know if a key originated from the
numeric keypad.

"Accept"
The Accept (Commit) key.

"Again"
The Again key.

"AllCandidates"
The All Candidates key.

"Alphanumeric"
The Alphanumeric key.

"Alt"
The Alt (Menu) key.

64

A.2: Key identifiers set

"AltGraph"
The Alt-Graph key.

"Apps"
The Application key.

"Attn"
The ATTN key.

"BrowserBack"
The Browser Back key.

"BrowserFavorites"
The Browser Favorites key.

"BrowserForward"
The Browser Forward key.

"BrowserHome"
The Browser Home key.

"BrowserRefresh"
The Browser Refresh key.

"BrowserSearch"
The Browser Search key.

"BrowserStop"
The Browser Stop key.

"CapsLock"
The Caps Lock (Capital) key.

"Clear"
The Clear key.

"CodeInput"
The Code Input key.

"Compose"
The Compose key.

"Control"
The Control (Ctrl) key.

"Crsel"
The Crsel key.

"Convert"
The Convert key.

"Copy"
The Copy key.

"Cut"
The Cut key.

"Down"
The Down Arrow key.

"End"
The End key.

"Enter"
The Enter key.

65

A.2: Key identifiers set

Note: This key identifier is also used for the Return (Macintosh numpad) key.

"EraseEof"
The Erase EOF key.

"Execute"
The Execute key.

"Exsel"
The Exsel key.

"F1"
The F1 key.

"F2"
The F2 key.

"F3"
The F3 key.

"F4"
The F4 key.

"F5"
The F5 key.

"F6"
The F6 key.

"F7"
The F7 key.

"F8"
The F8 key.

"F9"
The F9 key.

"F10"
The F10 key.

"F11"
The F11 key.

"F12"
The F12 key.

"F13"
The F13 key.

"F14"
The F14 key.

"F15"
The F15 key.

"F16"
The F16 key.

"F17"
The F17 key.

"F18"
The F18 key.

"F19"
The F19 key.

66

A.2: Key identifiers set

"F20"
The F20 key.

"F21"
The F21 key.

"F22"
The F22 key.

"F23"
The F23 key.

"F24"
The F24 key.

"FinalMode"
The Final Mode (Final) key used on some asian keyboards.

"Find"
The Find key.

"FullWidth"
The Full-Width Characters key.

"HalfWidth"
The Half-Width Characters key.

"HangulMode"
The Hangul (Korean characters) Mode key.

"HanjaMode"
The Hanja (Korean characters) Mode key.

"Help"
The Help key.

"Hiragana"
The Hiragana (Japanese Kana characters) key.

"Home"
The Home key.

"Insert"
The Insert (Ins) key.

"JapaneseHiragana"
The Japanese-Hiragana key.

"JapaneseKatakana"
The Japanese-Katakana key.

"JapaneseRomaji"
The Japanese-Romaji key.

"JunjaMode"
The Junja Mode key.

"KanaMode"
The Kana Mode (Kana Lock) key.

"KanjiMode"
The Kanji (Japanese name for ideographic characters of Chinese origin) Mode key.

"Katakana"
The Katakana (Japanese Kana characters) key.

"LaunchApplication1"
The Start Application One key.

67

A.2: Key identifiers set

"LaunchApplication2"
The Start Application Two key.

"LaunchMail"
The Start Mail key.

"Left"
The Left Arrow key.

"Meta"
The Meta key.

"MediaNextTrack"
The Media Next Track key.

"MediaPlayPause"
The Media Play Pause key.

"MediaPreviousTrack"
The Media Previous Track key.

"MediaStop"
The Media Stok key.

"ModeChange"
The Mode Change key.

"Nonconvert"
The Nonconvert (Don’t Convert) key.

"NumLock"
The Num Lock key.

"PageDown"
The Page Down (Next) key.

"PageUp"
The Page Up key.

"Paste"
The Paste key.

"Pause"
The Pause key.

"Play"
The Play key.

"PreviousCandidate"
The Previous Candidate function key.

"PrintScreen"
The Print Screen (PrintScrn, SnapShot) key.

"Process"
The Process key.

"Props"
The Props key.

"Right"
The Right Arrow key.

"RomanCharacters"
The Roman Characters function key.

"Scroll"
The Scroll Lock key.

68

A.2: Key identifiers set

"Select"
The Select key.

"SelectMedia"
The Select Media key.

"Shift"
The Shift key.

"Stop"
The Stop key.

"Up"
The Up Arrow key.

"Undo"
The Undo key.

"VolumeDown"
The Volume Down key.

"VolumeMute"
The Volume Mute key.

"VolumeUp"
The Volume Up key.

"Win"
The Windows Logo key.

"Zoom"
The Zoom key.

"U+000008"
The Backspace (Back) key.

"U+000009"
The Horizontal Tabulation (Tab) key.

"U+000018"
The Cancel key.

"U+00001B"
The Escape (Esc) key.

"U+000020"
The Space (Spacebar) key.

"U+000021"
The Exclamation Mark (Factorial, Bang) key (!).

"U+000022"
The Quotation Mark (Quote Double) key (").

"U+000023"
The Number Sign (Pound Sign, Hash, Crosshatch, Octothorpe) key (#).

"U+000024"
The Dollar Sign (milreis, escudo) key ($).

"U+000026"
The Ampersand key (&).

"U+000027"
The Apostrophe (Apostrophe-Quote, APL Quote) key (’).

"U+000028"
The Left Parenthesis (Opening Parenthesis) key (().

69

A.2: Key identifiers set

"U+000029"
The Right Parenthesis (Closing Parenthesis) key ()).

"U+00002A"
The Asterix (Star) key (*).

"U+00002B"
The Plus Sign (Plus) key (+).

"U+00002C"
The Comma (decimal separator) sign key (,).

"U+00002D"
The Hyphen-minus (hyphen or minus sign) key (-).

"U+00002E"
The Full Stop (period, dot, decimal point) key (.).

"U+00002F"
The Solidus (slash, virgule, shilling) key (/).

"U+000030"
The Digit Zero key (0).

"U+000031"
The Digit One key (1).

"U+000032"
The Digit Two key (2).

"U+000033"
The Digit Three key (3).

"U+000034"
The Digit Four key (4).

"U+000035"
The Digit Five key (5).

"U+000036"
The Digit Six key (6).

"U+000037"
The Digit Seven key (7).

"U+000038"
The Digit Eight key (8).

"U+000039"
The Digit Nine key (9).

"U+00003A"
The Colon key (:).

"U+00003B"
The Semicolon key (;).

"U+00003C"
The Less-Than Sign key (<).

"U+00003D"
The Equals Sign key (=).

"U+00003E"
The Greater-Than Sign key (>).

"U+00003F"
The Question Mark key (?).

70

A.2: Key identifiers set

"U+000040"
The Commercial At (@) key.

"U+000041"
The Latin Capital Letter A key (A).

"U+000042"
The Latin Capital Letter B key (B).

"U+000043"
The Latin Capital Letter C key (C).

"U+000044"
The Latin Capital Letter D key (D).

"U+000045"
The Latin Capital Letter E key (E).

"U+000046"
The Latin Capital Letter F key (F).

"U+000047"
The Latin Capital Letter G key (G).

"U+000048"
The Latin Capital Letter H key (H).

"U+000049"
The Latin Capital Letter I key (I).

"U+00004A"
The Latin Capital Letter J key (J).

"U+00004B"
The Latin Capital Letter K key (K).

"U+00004C"
The Latin Capital Letter L key (L).

"U+00004D"
The Latin Capital Letter M key (M).

"U+00004E"
The Latin Capital Letter N key (N).

"U+00004F"
The Latin Capital Letter O key (O).

"U+000050"
The Latin Capital Letter P key (P).

"U+000051"
The Latin Capital Letter Q key (Q).

"U+000052"
The Latin Capital Letter R key (R).

"U+000053"
The Latin Capital Letter S key (S).

"U+000054"
The Latin Capital Letter T key (T).

"U+000055"
The Latin Capital Letter U key (U).

"U+000056"
The Latin Capital Letter V key (V).

71

A.2: Key identifiers set

"U+000057"
The Latin Capital Letter W key (W).

"U+000058"
The Latin Capital Letter X key (X).

"U+000059"
The Latin Capital Letter Y key (Y).

"U+00005A"
The Latin Capital Letter Z key (Z).

"U+00005B"
The Left Square Bracket (Opening Square Bracket) key ([).

"U+00005C"
The Reverse Solidus (Backslash) key (\).

"U+00005D"
The Right Square Bracket (Closing Square Bracket) key (]).

"U+00005E"
The Circumflex Accent key (^).

"U+00005F"
The Low Sign (Spacing Underscore, Underscore) key (_).

"U+000060"
The Grave Accent (Back Quote) key (‘).

"U+00007B"
The Left Curly Bracket (Opening Curly Bracket, Opening Brace, Brace Left) key ({).

"U+00007C"
The Vertical Line (Vertical Bar, Pipe) key (|).

"U+00007D"
The Right Curly Bracket (Closing Curly Bracket, Closing Brace, Brace Right) key (}).

"U+00007F"
The Delete (Del) Key.

"U+0000A1"
The Inverted Exclamation Mark key (¡).

"U+000300"
The Combining Grave Accent (Greek Varia, Dead Grave) key.

"U+000301"
The Combining Acute Accent (Stress Mark, Greek Oxia, Tonos, Dead Eacute) key.

"U+000302"
The Combining Circumflex Accent (Hat, Dead Circumflex) key.

"U+000303"
The Combining Tilde (Dead Tilde) key.

"U+000304"
The Combining Macron (Long, Dead Macron) key.

"U+000306"
The Combining Breve (Short, Dead Breve) key.

"U+000307"
The Combining Dot Above (Derivative, Dead Above Dot) key.

"U+000308"
The Combining Diaeresis (Double Dot Abode, Umlaut, Greek Dialytika, Double Derivative, Dead

72

A.2: Key identifiers set

Diaeresis) key.
"U+00030A"

The Combining Ring Above (Dead Above Ring) key.
"U+00030B"

The Combining Double Acute Accent (Dead Doubleacute) key.
"U+00030C"

The Combining Caron (Hacek, V Above, Dead Caron) key.
"U+000327"

The Combining Cedilla (Dead Cedilla) key.
"U+000328"

The Combining Ogonek (Nasal Hook, Dead Ogonek) key.
"U+000345"

The Combining Greek Ypogegrammeni (Greek Non-Spacing Iota Below, Iota Subscript, Dead Iota)
key.

"U+0020AC"
The Euro Currency Sign key (€).

"U+003099"
The Combining Katakana-Hiragana Voiced Sound Mark (Dead Voiced Sound) key.

"U+00309A"
The Combining Katakana-Hiragana Semi-Voiced Sound Mark (Dead Semivoiced Sound) key.

73

A.2: Key identifiers set

74

A.2: Key identifiers set

Appendix B: Changes
Editor:

Philippe Le Hégaret, W3C

B.1: Changes between DOM Level 2 Events and DOM Level 3
Events
This new specification provides a better separation between the DOM even flow, the event types, and the
DOM interfaces.

B.1.1: Changes to DOM Level 2 event flow

This new specification introduced two new concepts in the event flow:

event groups: unlike DOM Level 2 Events, stopPropagation does no longer stop the event
propagation entirely. It only stops it for a given event group.
partial ordering of event listeners: within an event group, event listeners are now ordered while
ordering was unspecified in DOM Level 2 Events.

B.1.2: Changes to DOM Level 2 event types

Lots of clarifications have been made on the event types. The conformance is now explicity defined
against the event types, and not only the interfaces required by the event types. Support for namespaces
and the feature "BasicEvents" have been introduced.

The DOM Level 2 Event load event type can now be dispatched to more [HTML 4.01] elements. blur
and focus have been clarified and restricted to [HTML 4.01] applications only.

B.1.3: Changes to DOM Level 2 Events interfaces

Interface Event [p.19]
The Event [p.19] interface has a new attribute namespaceURI, and a four new methods:
isDefaultPrevented, isCustom, stopImmediatePropagation,
isPropagationStopped, initEventNS.

Interface EventTarget [p.23]
The EventTarget [p.23] interface has four new methods: addEventListenerNS,
removeEventListenerNS, willTriggerNS, hasEventListenerNS.

Interface DocumentEvent [p.30]
The Event [p.19] interface has two new methods: createEventListenerGroup and
canDispatch.

Interface UIEvent [p.33]
The UIEvent [p.33] interface has a new method initUIEventNS.

75

Appendix B: Changes

Interface MouseEvent [p.38]
The MouseEvent [p.38] interface has a new method initMouseEventNS and a new attribute
altGraphKey.

Interface MutationEvent [p.50]
The MutationEvent [p.50] interface has a new method initMutationEventNS.

Exception EventException [p.29]
The DISPATCH_REQUEST_ERR [p.29] constant has been added.

B.1.4: New Interfaces

The interfaces EventListenerGroup [p.28] , CustomEvent [p.32] , TextEvent [p.36] ,
KeyboardEvent [p.45] , and MutationNameEvent [p.54] were added to the Events module.

76

B.1.4: New Interfaces

Appendix C: IDL Definitions
This appendix contains the complete OMG IDL [OMG IDL] for the Level 3 Document Object Model
Events definitions.

The IDL files are also available as:
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030221/idl.zip

events.idl:
// File: events.idl

#ifndef _EVENTS_IDL_
#define _EVENTS_IDL_

#include "dom.idl"
#include "views.idl"

#pragma prefix "dom.w3c.org"
module events
{

 typedef dom::DOMString DOMString;
 typedef dom::DOMTimeStamp DOMTimeStamp;
 typedef dom::Node Node;

 interface EventTarget;
 interface EventListener;
 interface EventListenerGroup;

 // Introduced in DOM Level 2:
 exception EventException {
 unsigned short code;
 };
 // EventExceptionCode
 const unsigned short UNSPECIFIED_EVENT_TYPE_ERR = 0;
 // Introduced in DOM Level 3:
 const unsigned short DISPATCH_REQUEST_ERR = 1;

 // Introduced in DOM Level 2:
 interface Event {

 // PhaseType
 const unsigned short CAPTURING_PHASE = 1;
 const unsigned short AT_TARGET = 2;
 const unsigned short BUBBLING_PHASE = 3;

 readonly attribute DOMString type;
 readonly attribute EventTarget target;
 readonly attribute EventTarget currentTarget;
 readonly attribute unsigned short eventPhase;
 readonly attribute boolean bubbles;
 readonly attribute boolean cancelable;

77

Appendix C: IDL Definitions

 readonly attribute DOMTimeStamp timeStamp;
 void stopPropagation();
 void preventDefault();
 void initEvent(in DOMString eventTypeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg);
 // Introduced in DOM Level 3:
 readonly attribute DOMString namespaceURI;
 // Introduced in DOM Level 3:
 boolean isCustom();
 // Introduced in DOM Level 3:
 void stopImmediatePropagation();
 // Introduced in DOM Level 3:
 boolean isDefaultPrevented();
 // Introduced in DOM Level 3:
 boolean isPropagationStopped();
 // Introduced in DOM Level 3:
 void initEventNS(in DOMString namespaceURIArg,
 in DOMString eventTypeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg);
 };

 // Introduced in DOM Level 2:
 interface EventTarget {
 void addEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 void removeEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 // Modified in DOM Level 3:
 boolean dispatchEvent(in Event evt)
 raises(EventException);
 // Introduced in DOM Level 3:
 void addEventListenerNS(in DOMString namespaceURI,
 in DOMString type,
 in EventListener listener,
 in boolean useCapture,
 in EventListenerGroup evtGroup);
 // Introduced in DOM Level 3:
 void removeEventListenerNS(in DOMString namespaceURI,
 in DOMString type,
 in EventListener listener,
 in boolean useCapture,
 in EventListenerGroup evtGroup);
 // Introduced in DOM Level 3:
 boolean willTriggerNS(in DOMString namespaceURI,
 in DOMString type);
 // Introduced in DOM Level 3:
 boolean hasEventListenerNS(in DOMString namespaceURI,
 in DOMString type);
 };

 // Introduced in DOM Level 2:
 interface EventListener {
 void handleEvent(in Event evt);

78

events.idl:

 };

 // Introduced in DOM Level 3:
 interface EventListenerGroup {
 boolean isSameEventListenerGroup(in EventListenerGroup other);
 };

 // Introduced in DOM Level 2:
 interface DocumentEvent {
 Event createEvent(in DOMString eventType)
 raises(dom::DOMException);
 // Introduced in DOM Level 3:
 EventListenerGroup createEventListenerGroup();
 // Introduced in DOM Level 3:
 boolean canDispatch(in DOMString namespaceURI,
 in DOMString type);
 };

 // Introduced in DOM Level 3:
 interface CustomEvent : Event {
 void setCurrentTarget(in EventTarget target);
 void setEventPhase(in unsigned short phase);
 void setCurrentEventListenerGroup(in EventListenerGroup evtGroup);
 // Introduced in DOM Level 3:
 boolean isImmediatePropagationStopped();
 };

 // Introduced in DOM Level 2:
 interface UIEvent : Event {
 readonly attribute views::AbstractView view;
 readonly attribute long detail;
 void initUIEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg);
 // Introduced in DOM Level 3:
 void initUIEventNS(in DOMString namespaceURI,
 in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg);
 };

 // Introduced in DOM Level 3:
 interface TextEvent : UIEvent {
 readonly attribute DOMString data;
 void initTextEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in DOMString dataArg);
 void initTextEventNS(in DOMString namespaceURI,
 in DOMString type,
 in boolean canBubbleArg,
 in boolean cancelableArg,

79

events.idl:

 in views::AbstractView viewArg,
 in DOMString dataArg);
 };

 // Introduced in DOM Level 2:
 interface MouseEvent : UIEvent {
 readonly attribute long screenX;
 readonly attribute long screenY;
 readonly attribute long clientX;
 readonly attribute long clientY;
 readonly attribute boolean ctrlKey;
 readonly attribute boolean shiftKey;
 readonly attribute boolean altKey;
 readonly attribute boolean metaKey;
 readonly attribute unsigned short button;
 readonly attribute EventTarget relatedTarget;
 void initMouseEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg,
 in long screenXArg,
 in long screenYArg,
 in long clientXArg,
 in long clientYArg,
 in boolean ctrlKeyArg,
 in boolean altKeyArg,
 in boolean shiftKeyArg,
 in boolean metaKeyArg,
 in unsigned short buttonArg,
 in EventTarget relatedTargetArg);
 // Introduced in DOM Level 3:
 void initMouseEventNS(in DOMString namespaceURI,
 in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg,
 in long screenXArg,
 in long screenYArg,
 in long clientXArg,
 in long clientYArg,
 in boolean ctrlKeyArg,
 in boolean altKeyArg,
 in boolean shiftKeyArg,
 in boolean metaKeyArg,
 in unsigned short buttonArg,
 in EventTarget relatedTargetArg,
 in boolean altGraphKeyArg);
 // Introduced in DOM Level 3:
 readonly attribute boolean altGraphKey;
 };

 // Introduced in DOM Level 3:
 interface KeyboardEvent : UIEvent {

 // KeyLocationCode

80

events.idl:

 const unsigned long DOM_KEY_LOCATION_STANDARD = 0x00;
 const unsigned long DOM_KEY_LOCATION_LEFT = 0x01;
 const unsigned long DOM_KEY_LOCATION_RIGHT = 0x02;
 const unsigned long DOM_KEY_LOCATION_NUMPAD = 0x03;
 const unsigned long DOM_KEY_LOCATION_UNKNOWN = 0x04;

 readonly attribute DOMString keyIdentifier;
 readonly attribute unsigned long keyLocation;
 readonly attribute boolean ctrlKey;
 readonly attribute boolean shiftKey;
 readonly attribute boolean altKey;
 readonly attribute boolean metaKey;
 readonly attribute boolean altGraphKey;
 void initKeyboardEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in DOMString keyIdentifierArg,
 in unsigned long keyLocationArg,
 in boolean ctrlKeyArg,
 in boolean shiftKeyArg,
 in boolean altKeyArg,
 in boolean metaKeyArg,
 in boolean altGraphKeyArg);
 void initKeyboardEventNS(in DOMString namespaceURI,
 in DOMString type,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in DOMString keyIdentifierArg,
 in unsigned long keyLocationArg,
 in boolean ctrlKeyArg,
 in boolean shiftKeyArg,
 in boolean altKeyArg,
 in boolean metaKeyArg,
 in boolean altGraphKeyArg);
 };

 // Introduced in DOM Level 2:
 interface MutationEvent : Event {

 // attrChangeType
 const unsigned short MODIFICATION = 1;
 const unsigned short ADDITION = 2;
 const unsigned short REMOVAL = 3;

 readonly attribute Node relatedNode;
 readonly attribute DOMString prevValue;
 readonly attribute DOMString newValue;
 readonly attribute DOMString attrName;
 readonly attribute unsigned short attrChange;
 void initMutationEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in Node relatedNodeArg,
 in DOMString prevValueArg,
 in DOMString newValueArg,

81

events.idl:

 in DOMString attrNameArg,
 in unsigned short attrChangeArg);
 // Introduced in DOM Level 3:
 void initMutationEventNS(in DOMString namespaceURI,
 in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in Node relatedNodeArg,
 in DOMString prevValueArg,
 in DOMString newValueArg,
 in DOMString attrNameArg,
 in unsigned short attrChangeArg);
 };

 // Introduced in DOM Level 3:
 interface MutationNameEvent : MutationEvent {
 readonly attribute DOMString prevNamespaceURI;
 readonly attribute DOMString prevNodeName;
 // Introduced in DOM Level 3:
 void initMutationNameEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in Node relatedNodeArg,
 in DOMString prevNamespaceURI,
 in DOMString prevNodeName);
 // Introduced in DOM Level 3:
 void initMutationNameEventNS(in DOMString namespaceURI,
 in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in Node relatedNodeArg,
 in DOMString prevNamespaceURI,
 in DOMString prevNodeName);
 };
};

#endif // _EVENTS_IDL_

82

events.idl:

Appendix D: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 3 Document Object Model Events.

The Java files are also available as
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030221/java-binding.zip

org/w3c/dom/events/EventException.java:
package org.w3c.dom.events;

public class EventException extends RuntimeException {
 public EventException(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // EventExceptionCode
 public static final short UNSPECIFIED_EVENT_TYPE_ERR = 0;
 public static final short DISPATCH_REQUEST_ERR = 1;

}

org/w3c/dom/events/Event.java:
package org.w3c.dom.events;

public interface Event {
 // PhaseType
 public static final short CAPTURING_PHASE = 1;
 public static final short AT_TARGET = 2;
 public static final short BUBBLING_PHASE = 3;

 public String getType();

 public EventTarget getTarget();

 public EventTarget getCurrentTarget();

 public short getEventPhase();

 public boolean getBubbles();

 public boolean getCancelable();

 public long getTimeStamp();

 public void stopPropagation();

 public void preventDefault();

 public void initEvent(String eventTypeArg,
 boolean canBubbleArg,
 boolean cancelableArg);

83

Appendix D: Java Language Binding

 public String getNamespaceURI();

 public boolean isCustom();

 public void stopImmediatePropagation();

 public boolean isDefaultPrevented();

 public boolean isPropagationStopped();

 public void initEventNS(String namespaceURIArg,
 String eventTypeArg,
 boolean canBubbleArg,
 boolean cancelableArg);

}

org/w3c/dom/events/EventTarget.java:
package org.w3c.dom.events;

public interface EventTarget {
 public void addEventListener(String type,
 EventListener listener,
 boolean useCapture);

 public void removeEventListener(String type,
 EventListener listener,
 boolean useCapture);

 public boolean dispatchEvent(Event evt)
 throws EventException;

 public void addEventListenerNS(String namespaceURI,
 String type,
 EventListener listener,
 boolean useCapture,
 EventListenerGroup evtGroup);

 public void removeEventListenerNS(String namespaceURI,
 String type,
 EventListener listener,
 boolean useCapture,
 EventListenerGroup evtGroup);

 public boolean willTriggerNS(String namespaceURI,
 String type);

 public boolean hasEventListenerNS(String namespaceURI,
 String type);

}

84

org/w3c/dom/events/EventTarget.java:

org/w3c/dom/events/EventListener.java:
package org.w3c.dom.events;

public interface EventListener {
 public void handleEvent(Event evt);

}

org/w3c/dom/events/EventListenerGroup.java:
package org.w3c.dom.events;

public interface EventListenerGroup {
 public boolean isSameEventListenerGroup(EventListenerGroup other);

}

org/w3c/dom/events/DocumentEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.DOMException;

public interface DocumentEvent {
 public Event createEvent(String eventType)
 throws DOMException;

 public EventListenerGroup createEventListenerGroup();

 public boolean canDispatch(String namespaceURI,
 String type);

}

org/w3c/dom/events/CustomEvent.java:
package org.w3c.dom.events;

public interface CustomEvent extends Event {
 public void setCurrentTarget(EventTarget target);

 public void setEventPhase(short phase);

 public void setCurrentEventListenerGroup(EventListenerGroup evtGroup);

 public boolean isImmediatePropagationStopped();

}

85

org/w3c/dom/events/EventListener.java:

org/w3c/dom/events/UIEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.views.AbstractView;

public interface UIEvent extends Event {
 public AbstractView getView();

 public int getDetail();

 public void initUIEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,
 int detailArg);

 public void initUIEventNS(String namespaceURI,
 String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,
 int detailArg);

}

org/w3c/dom/events/TextEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.views.AbstractView;

public interface TextEvent extends UIEvent {
 public String getData();

 public void initTextEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,
 String dataArg);

 public void initTextEventNS(String namespaceURI,
 String type,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,
 String dataArg);

}

86

org/w3c/dom/events/UIEvent.java:

org/w3c/dom/events/MouseEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.views.AbstractView;

public interface MouseEvent extends UIEvent {
 public int getScreenX();

 public int getScreenY();

 public int getClientX();

 public int getClientY();

 public boolean getCtrlKey();

 public boolean getShiftKey();

 public boolean getAltKey();

 public boolean getMetaKey();

 public short getButton();

 public EventTarget getRelatedTarget();

 public void initMouseEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,
 int detailArg,
 int screenXArg,
 int screenYArg,
 int clientXArg,
 int clientYArg,
 boolean ctrlKeyArg,
 boolean altKeyArg,
 boolean shiftKeyArg,
 boolean metaKeyArg,
 short buttonArg,
 EventTarget relatedTargetArg);

 public void initMouseEventNS(String namespaceURI,
 String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,
 int detailArg,
 int screenXArg,
 int screenYArg,
 int clientXArg,
 int clientYArg,
 boolean ctrlKeyArg,
 boolean altKeyArg,
 boolean shiftKeyArg,

87

org/w3c/dom/events/MouseEvent.java:

 boolean metaKeyArg,
 short buttonArg,
 EventTarget relatedTargetArg,
 boolean altGraphKeyArg);

 public boolean getAltGraphKey();

}

org/w3c/dom/events/KeyboardEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.views.AbstractView;

public interface KeyboardEvent extends UIEvent {
 // KeyLocationCode
 public static final int DOM_KEY_LOCATION_STANDARD = 0x00;
 public static final int DOM_KEY_LOCATION_LEFT = 0x01;
 public static final int DOM_KEY_LOCATION_RIGHT = 0x02;
 public static final int DOM_KEY_LOCATION_NUMPAD = 0x03;
 public static final int DOM_KEY_LOCATION_UNKNOWN = 0x04;

 public String getKeyIdentifier();

 public int getKeyLocation();

 public boolean getCtrlKey();

 public boolean getShiftKey();

 public boolean getAltKey();

 public boolean getMetaKey();

 public boolean getAltGraphKey();

 public void initKeyboardEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,
 String keyIdentifierArg,
 int keyLocationArg,
 boolean ctrlKeyArg,
 boolean shiftKeyArg,
 boolean altKeyArg,
 boolean metaKeyArg,
 boolean altGraphKeyArg);

 public void initKeyboardEventNS(String namespaceURI,
 String type,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,
 String keyIdentifierArg,
 int keyLocationArg,

88

org/w3c/dom/events/KeyboardEvent.java:

 boolean ctrlKeyArg,
 boolean shiftKeyArg,
 boolean altKeyArg,
 boolean metaKeyArg,
 boolean altGraphKeyArg);

}

org/w3c/dom/events/MutationEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.Node;

public interface MutationEvent extends Event {
 // attrChangeType
 public static final short MODIFICATION = 1;
 public static final short ADDITION = 2;
 public static final short REMOVAL = 3;

 public Node getRelatedNode();

 public String getPrevValue();

 public String getNewValue();

 public String getAttrName();

 public short getAttrChange();

 public void initMutationEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 Node relatedNodeArg,
 String prevValueArg,
 String newValueArg,
 String attrNameArg,
 short attrChangeArg);

 public void initMutationEventNS(String namespaceURI,
 String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 Node relatedNodeArg,
 String prevValueArg,
 String newValueArg,
 String attrNameArg,
 short attrChangeArg);

}

89

org/w3c/dom/events/MutationEvent.java:

org/w3c/dom/events/MutationNameEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.Node;

public interface MutationNameEvent extends MutationEvent {
 public String getPrevNamespaceURI();

 public String getPrevNodeName();

 public void initMutationNameEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 Node relatedNodeArg,
 String prevNamespaceURI,
 String prevNodeName);

 public void initMutationNameEventNS(String namespaceURI,
 String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 Node relatedNodeArg,
 String prevNamespaceURI,
 String prevNodeName);

}

90

org/w3c/dom/events/MutationNameEvent.java:

Appendix E: ECMAScript Language Binding
This appendix contains the complete ECMAScript [ECMAScript] binding for the Level 3 Document
Object Model Events definitions.

Properties of the Event Constructor function:
Event.CAPTURING_PHASE

The value of the constant Event.CAPTURING_PHASE is 1.
Event.AT_TARGET

The value of the constant Event.AT_TARGET is 2.
Event.BUBBLING_PHASE

The value of the constant Event.BUBBLING_PHASE is 3.
Objects that implement the Event interface:

Properties of objects that implement the Event interface:
type

This read-only property is a String.
target

This read-only property is an object that implements the EventTarget interface.
currentTarget

This read-only property is an object that implements the EventTarget interface.
eventPhase

This read-only property is a Number.
bubbles

This read-only property is a Boolean.
cancelable

This read-only property is a Boolean.
timeStamp

This read-only property is an object that implements the Date interface.
namespaceURI

This read-only property is a String.
Functions of objects that implement the Event interface:

stopPropagation()
This function has no return value.

preventDefault()
This function has no return value.

initEvent(eventTypeArg, canBubbleArg, cancelableArg)
This function has no return value.
The eventTypeArg parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.

isCustom()
This function returns a Boolean.

stopImmediatePropagation()
This function has no return value.

91

Appendix E: ECMAScript Language Binding

isDefaultPrevented()
This function returns a Boolean.

isPropagationStopped()
This function returns a Boolean.

initEventNS(namespaceURIArg, eventTypeArg, canBubbleArg, cancelableArg)
This function has no return value.
The namespaceURIArg parameter is a String.
The eventTypeArg parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.

Objects that implement the EventTarget interface:
Functions of objects that implement the EventTarget interface:

addEventListener(type, listener, useCapture)
This function has no return value.
The type parameter is a String.
The listener parameter is an object that implements the EventListener interface.
The useCapture parameter is a Boolean.

removeEventListener(type, listener, useCapture)
This function has no return value.
The type parameter is a String.
The listener parameter is an object that implements the EventListener interface.
The useCapture parameter is a Boolean.

dispatchEvent(evt)
This function returns a Boolean.
The evt parameter is an object that implements the Event interface.
This function can raise an object that implements the EventException interface.

addEventListenerNS(namespaceURI, type, listener, useCapture, evtGroup)
This function has no return value.
The namespaceURI parameter is a String.
The type parameter is a String.
The listener parameter is an object that implements the EventListener interface.
The useCapture parameter is a Boolean.
The evtGroup parameter is an object that implements the EventListenerGroup interface.

removeEventListenerNS(namespaceURI, type, listener, useCapture, evtGroup)
This function has no return value.
The namespaceURI parameter is a String.
The type parameter is a String.
The listener parameter is an object that implements the EventListener interface.
The useCapture parameter is a Boolean.
The evtGroup parameter is an object that implements the EventListenerGroup interface.

willTriggerNS(namespaceURI, type)
This function returns a Boolean.
The namespaceURI parameter is a String.
The type parameter is a String.

hasEventListenerNS(namespaceURI, type)
This function returns a Boolean.

92

Appendix E: ECMAScript Language Binding

The namespaceURI parameter is a String.
The type parameter is a String.

EventListener function:
This function has no return value. The parameter is an object that implements the Event interface.

Objects that implement the EventListenerGroup interface:
Functions of objects that implement the EventListenerGroup interface:

isSameEventListenerGroup(other)
This function returns a Boolean.
The other parameter is an object that implements the EventListenerGroup interface.

Properties of the EventException Constructor function:
EventException.UNSPECIFIED_EVENT_TYPE_ERR

The value of the constant EventException.UNSPECIFIED_EVENT_TYPE_ERR is 0.
EventException.DISPATCH_REQUEST_ERR

The value of the constant EventException.DISPATCH_REQUEST_ERR is 1.
Objects that implement the EventException interface:

Properties of objects that implement the EventException interface:
code

This property is a Number.
Objects that implement the DocumentEvent interface:

Functions of objects that implement the DocumentEvent interface:
createEvent(eventType)

This function returns an object that implements the Event interface.
The eventType parameter is a String.
This function can raise an object that implements the DOMException interface.

createEventListenerGroup()
This function returns an object that implements the EventListenerGroup interface.

canDispatch(namespaceURI, type)
This function returns a Boolean.
The namespaceURI parameter is a String.
The type parameter is a String.

Objects that implement the CustomEvent interface:
Objects that implement the CustomEvent interface have all properties and functions of the Event
interface as well as the properties and functions defined below.
Functions of objects that implement the CustomEvent interface:

setCurrentTarget(target)
This function has no return value.
The target parameter is an object that implements the EventTarget interface.

setEventPhase(phase)
This function has no return value.
The phase parameter is a Number.

setCurrentEventListenerGroup(evtGroup)
This function has no return value.
The evtGroup parameter is an object that implements the EventListenerGroup interface.

isImmediatePropagationStopped()
This function returns a Boolean.

93

Appendix E: ECMAScript Language Binding

Objects that implement the UIEvent interface:
Objects that implement the UIEvent interface have all properties and functions of the Event
interface as well as the properties and functions defined below.
Properties of objects that implement the UIEvent interface:

view
This read-only property is an object that implements the AbstractView interface.

detail
This read-only property is a Number.

Functions of objects that implement the UIEvent interface:
initUIEvent(typeArg, canBubbleArg, cancelableArg, viewArg, detailArg)

This function has no return value.
The typeArg parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.
The viewArg parameter is an object that implements the AbstractView interface.
The detailArg parameter is a Number.

initUIEventNS(namespaceURI, typeArg, canBubbleArg, cancelableArg, viewArg,
detailArg)

This function has no return value.
The namespaceURI parameter is a String.
The typeArg parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.
The viewArg parameter is an object that implements the AbstractView interface.
The detailArg parameter is a Number.

Objects that implement the TextEvent interface:
Objects that implement the TextEvent interface have all properties and functions of the UIEvent
interface as well as the properties and functions defined below.
Properties of objects that implement the TextEvent interface:

data
This read-only property is a String.

Functions of objects that implement the TextEvent interface:
initTextEvent(typeArg, canBubbleArg, cancelableArg, viewArg, dataArg)

This function has no return value.
The typeArg parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.
The viewArg parameter is an object that implements the AbstractView interface.
The dataArg parameter is a String.

initTextEventNS(namespaceURI, type, canBubbleArg, cancelableArg, viewArg, dataArg)
This function has no return value.
The namespaceURI parameter is a String.
The type parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.
The viewArg parameter is an object that implements the AbstractView interface.

94

Appendix E: ECMAScript Language Binding

The dataArg parameter is a String.
Objects that implement the MouseEvent interface:

Objects that implement the MouseEvent interface have all properties and functions of the UIEvent
interface as well as the properties and functions defined below.
Properties of objects that implement the MouseEvent interface:

screenX
This read-only property is a Number.

screenY
This read-only property is a Number.

clientX
This read-only property is a Number.

clientY
This read-only property is a Number.

ctrlKey
This read-only property is a Boolean.

shiftKey
This read-only property is a Boolean.

altKey
This read-only property is a Boolean.

metaKey
This read-only property is a Boolean.

button
This read-only property is a Number.

relatedTarget
This read-only property is an object that implements the EventTarget interface.

altGraphKey
This read-only property is a Boolean.

Functions of objects that implement the MouseEvent interface:
initMouseEvent(typeArg, canBubbleArg, cancelableArg, viewArg, detailArg, screenXArg,
screenYArg, clientXArg, clientYArg, ctrlKeyArg, altKeyArg, shiftKeyArg, metaKeyArg,
buttonArg, relatedTargetArg)

This function has no return value.
The typeArg parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.
The viewArg parameter is an object that implements the AbstractView interface.
The detailArg parameter is a Number.
The screenXArg parameter is a Number.
The screenYArg parameter is a Number.
The clientXArg parameter is a Number.
The clientYArg parameter is a Number.
The ctrlKeyArg parameter is a Boolean.
The altKeyArg parameter is a Boolean.
The shiftKeyArg parameter is a Boolean.
The metaKeyArg parameter is a Boolean.
The buttonArg parameter is a Number.

95

Appendix E: ECMAScript Language Binding

The relatedTargetArg parameter is an object that implements the EventTarget interface.
initMouseEventNS(namespaceURI, typeArg, canBubbleArg, cancelableArg, viewArg,
detailArg, screenXArg, screenYArg, clientXArg, clientYArg, ctrlKeyArg, altKeyArg,
shiftKeyArg, metaKeyArg, buttonArg, relatedTargetArg, altGraphKeyArg)

This function has no return value.
The namespaceURI parameter is a String.
The typeArg parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.
The viewArg parameter is an object that implements the AbstractView interface.
The detailArg parameter is a Number.
The screenXArg parameter is a Number.
The screenYArg parameter is a Number.
The clientXArg parameter is a Number.
The clientYArg parameter is a Number.
The ctrlKeyArg parameter is a Boolean.
The altKeyArg parameter is a Boolean.
The shiftKeyArg parameter is a Boolean.
The metaKeyArg parameter is a Boolean.
The buttonArg parameter is a Number.
The relatedTargetArg parameter is an object that implements the EventTarget interface.
The altGraphKeyArg parameter is a Boolean.

Properties of the KeyboardEvent Constructor function:
KeyboardEvent.DOM_KEY_LOCATION_STANDARD

The value of the constant KeyboardEvent.DOM_KEY_LOCATION_STANDARD is 0x00.
KeyboardEvent.DOM_KEY_LOCATION_LEFT

The value of the constant KeyboardEvent.DOM_KEY_LOCATION_LEFT is 0x01.
KeyboardEvent.DOM_KEY_LOCATION_RIGHT

The value of the constant KeyboardEvent.DOM_KEY_LOCATION_RIGHT is 0x02.
KeyboardEvent.DOM_KEY_LOCATION_NUMPAD

The value of the constant KeyboardEvent.DOM_KEY_LOCATION_NUMPAD is 0x03.
KeyboardEvent.DOM_KEY_LOCATION_UNKNOWN

The value of the constant KeyboardEvent.DOM_KEY_LOCATION_UNKNOWN is 0x04.
Objects that implement the KeyboardEvent interface:

Objects that implement the KeyboardEvent interface have all properties and functions of the
UIEvent interface as well as the properties and functions defined below.
Properties of objects that implement the KeyboardEvent interface:

keyIdentifier
This read-only property is a String.

keyLocation
This read-only property is a Number.

ctrlKey
This read-only property is a Boolean.

shiftKey
This read-only property is a Boolean.

96

Appendix E: ECMAScript Language Binding

altKey
This read-only property is a Boolean.

metaKey
This read-only property is a Boolean.

altGraphKey
This read-only property is a Boolean.

Functions of objects that implement the KeyboardEvent interface:
initKeyboardEvent(typeArg, canBubbleArg, cancelableArg, viewArg, keyIdentifierArg,
keyLocationArg, ctrlKeyArg, shiftKeyArg, altKeyArg, metaKeyArg, altGraphKeyArg)

This function has no return value.
The typeArg parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.
The viewArg parameter is an object that implements the AbstractView interface.
The keyIdentifierArg parameter is a String.
The keyLocationArg parameter is a Number.
The ctrlKeyArg parameter is a Boolean.
The shiftKeyArg parameter is a Boolean.
The altKeyArg parameter is a Boolean.
The metaKeyArg parameter is a Boolean.
The altGraphKeyArg parameter is a Boolean.

initKeyboardEventNS(namespaceURI, type, canBubbleArg, cancelableArg, viewArg,
keyIdentifierArg, keyLocationArg, ctrlKeyArg, shiftKeyArg, altKeyArg, metaKeyArg,
altGraphKeyArg)

This function has no return value.
The namespaceURI parameter is a String.
The type parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.
The viewArg parameter is an object that implements the AbstractView interface.
The keyIdentifierArg parameter is a String.
The keyLocationArg parameter is a Number.
The ctrlKeyArg parameter is a Boolean.
The shiftKeyArg parameter is a Boolean.
The altKeyArg parameter is a Boolean.
The metaKeyArg parameter is a Boolean.
The altGraphKeyArg parameter is a Boolean.

Properties of the MutationEvent Constructor function:
MutationEvent.MODIFICATION

The value of the constant MutationEvent.MODIFICATION is 1.
MutationEvent.ADDITION

The value of the constant MutationEvent.ADDITION is 2.
MutationEvent.REMOVAL

The value of the constant MutationEvent.REMOVAL is 3.
Objects that implement the MutationEvent interface:

97

Appendix E: ECMAScript Language Binding

Objects that implement the MutationEvent interface have all properties and functions of the Event
interface as well as the properties and functions defined below.
Properties of objects that implement the MutationEvent interface:

relatedNode
This read-only property is an object that implements the Node interface.

prevValue
This read-only property is a String.

newValue
This read-only property is a String.

attrName
This read-only property is a String.

attrChange
This read-only property is a Number.

Functions of objects that implement the MutationEvent interface:
initMutationEvent(typeArg, canBubbleArg, cancelableArg, relatedNodeArg,
prevValueArg, newValueArg, attrNameArg, attrChangeArg)

This function has no return value.
The typeArg parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.
The relatedNodeArg parameter is an object that implements the Node interface.
The prevValueArg parameter is a String.
The newValueArg parameter is a String.
The attrNameArg parameter is a String.
The attrChangeArg parameter is a Number.

initMutationEventNS(namespaceURI, typeArg, canBubbleArg, cancelableArg,
relatedNodeArg, prevValueArg, newValueArg, attrNameArg, attrChangeArg)

This function has no return value.
The namespaceURI parameter is a String.
The typeArg parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.
The relatedNodeArg parameter is an object that implements the Node interface.
The prevValueArg parameter is a String.
The newValueArg parameter is a String.
The attrNameArg parameter is a String.
The attrChangeArg parameter is a Number.

Objects that implement the MutationNameEvent interface:
Objects that implement the MutationNameEvent interface have all properties and functions of the
MutationEvent interface as well as the properties and functions defined below.
Properties of objects that implement the MutationNameEvent interface:

prevNamespaceURI
This read-only property is a String.

prevNodeName
This read-only property is a String.

98

Appendix E: ECMAScript Language Binding

Functions of objects that implement the MutationNameEvent interface:
initMutationNameEvent(typeArg, canBubbleArg, cancelableArg, relatedNodeArg,
prevNamespaceURI, prevNodeName)

This function has no return value.
The typeArg parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.
The relatedNodeArg parameter is an object that implements the Node interface.
The prevNamespaceURI parameter is a String.
The prevNodeName parameter is a String.

initMutationNameEventNS(namespaceURI, typeArg, canBubbleArg, cancelableArg,
relatedNodeArg, prevNamespaceURI, prevNodeName)

This function has no return value.
The namespaceURI parameter is a String.
The typeArg parameter is a String.
The canBubbleArg parameter is a Boolean.
The cancelableArg parameter is a Boolean.
The relatedNodeArg parameter is an object that implements the Node interface.
The prevNamespaceURI parameter is a String.
The prevNodeName parameter is a String.

99

Appendix E: ECMAScript Language Binding

100

Appendix E: ECMAScript Language Binding

Glossary
Editors:

Arnaud Le Hors, W3C
Robert S. Sutor, IBM Research (for DOM Level 1)

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

bubbling phase
The process by which an event [p.101] can be handled by one of the target ancestors after being
handled by the target node [p.102] .

capture phase
The process by which an event [p.101] can be handled by one of the target ancestors before being
handled by the target node [p.102] .

child
A child is an immediate descendant node of a node.

document element
There is only one document element in a Document. This element node is a child of the Document
node. See Well-Formed XML Documents in XML [XML 1.0].

document order
There is an ordering, document order, defined on all the nodes in the document corresponding to the
order in which the first character of the XML representation of each node occurs in the XML
representation of the document after expansion of general entities. Thus, the document element
[p.101] node will be the first node. Element nodes occur before their children. Thus, document order
orders element nodes in order of the occurrence of their start-tag in the XML (after expansion of
entities). The attribute nodes of an element occur after the element and before its children. The
relative order of attribute nodes is implementation-dependent.

DOM Level 0
The term "DOM Level 0" refers to a mix (not formally specified) of HTML document functionalities
offered by Netscape Navigator version 3.0 and Microsoft Internet Explorer version 3.0. In some
cases, attributes or methods have been included for reasons of backward compatibility with "DOM
Level 0".

event
An event is the representation of some asynchronous occurrence (such as a mouse click on the
presentation of the element, or the removal of child node from an element, or any of unthinkably
many other possibilities) that gets associated with an event target [p.101] .

event target
The object to which an event [p.101] is targeted.

local name
A local name is the local part of a qualified name. This is called the local part in Namespaces in
XML [XML Namespaces].

namespace URI
A namespace URI is a URI that identifies an XML namespace. This is called the namespace name in
Namespaces in XML [XML Namespaces].

101

Glossary

http://www.w3.org/TR/2000/REC-xml-20001006#dt-root

string comparison
When string matching is required, it is to occur as though the comparison was between 2 sequences
of code points from [Unicode 2.0].

target node
The target node is the node representing the event target [p.101] to which an event [p.101] is targeted
using the DOM event flow.

target phase
The process by which an event [p.101] can be handled by the event target [p.101] .

tokenized
The description given to various information items (for example, attribute values of various types,
but not including the StringType CDATA) after having been processed by the XML processor. The
process includes stripping leading and trailing white space, and replacing multiple space characters
by one. See the definition of tokenized type.

well-formed
A node is a well-formed XML node if it matches its respective production in [XML 1.0], meets all
well-formedness constraints related to the production, if the entities which are referenced within the
node are also well-formed. See also the definition for well-formed XML documents in [XML 1.0].

XML name
See XML name in the XML specification ([XML 1.0]).

102

Glossary

http://www.w3.org/TR/2000/REC-xml-20001006#dt-wellformed
http://www.w3.org/TR/2000/REC-xml-20001006#NT-Name

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

G.1: Normative references
[DOM Level 2 Core]

Document Object Model Level 2 Core Specification, A. Le Hors, et al., Editors. World Wide Web
Consortium, 13 November 2000. This version of the DOM Level 2 Core Recommendation is
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113. The latest version of DOM Level
2 Core is available at http://www.w3.org/TR/DOM-Level-2-Core.

[DOM Level 3 Core]
Document Object Model Level 3 Core Specification, A. Le Hors, et al., Editors. World Wide Web
Consortium, October 2002. This version of the Document Object Model Level 3 Core Specification
is http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022. The latest version of DOM
Level 3 Core is available at http://www.w3.org/TR/DOM-Level-3-Core.

[DOM Level 2 Events]
Document Object Model Level 2 Events Specification, T. Pixley, Editor. World Wide Web
Consortium, 13 November 2000. This version of the Document Object Model Level 2 Events
Recommendation is http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113. The latest
version of Document Object Model Level 2 Events is available at
http://www.w3.org/TR/DOM-Level-2-Events.

[DOM Level 2 HTML]
Document Object Model Level 2 HTML Specification, J. Stenback, et al., Editors. World Wide Web
Consortium, 9 January 2003. This version of the Document Object Model Level 2 HTML
Recommendation is http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109. The latest
version of Document Object Model Level 2 HTML is available at
http://www.w3.org/TR/DOM-Level-2-HTML.

[DOM Level 2 Views]
Document Object Model Level 2 Views Specification, A. Le Hors, L. Cable, Editors. World Wide
Web Consortium, 13 November 2000. This version of the Document Object Model Level 2 Views
Recommendation is http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113. The latest
version of Document Object Model Level 2 Views is available at
http://www.w3.org/TR/DOM-Level-2-Views.

[ECMAScript]
ECMAScript Language Specification, Third Edition. European Computer Manufacturers Association,
Standard ECMA-262, December 1999.

[HTML 4.01]
HTML 4.01 Specification, D. Raggett, A. Le Hors, and I. Jacobs, Editors. World Wide Web
Consortium, 17 December 1997, revised 24 April 1998, revised 24 December 1999. This version of
the HTML 4.01 Recommendation is http://www.w3.org/TR/1999/REC-html401-19991224. The
latest version of HTML 4 is available at http://www.w3.org/TR/html4.

[Java]
The Java Language Specification, J. Gosling, B. Joy, and G. Steele, Authors. Addison-Wesley,
September 1996. Available at http://java.sun.com/docs/books/jls

103

References

http://www.w3.org/TR
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
http://www.w3.org/TR/DOM-Level-2-Events
http://www.w3.org/TR/DOM-Level-2-Events
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113
http://www.w3.org/TR/DOM-Level-2-Views
http://www.w3.org/TR/DOM-Level-2-Views
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/html4
http://java.sun.com/docs/books/jls

[OMG IDL]
"OMG IDL Syntax and Semantics" defined in The Common Object Request Broker: Architecture and
Specification, version 2, Object Management Group. The latest version of CORBA version 2.0 is
available at http://www.omg.org/technology/documents/formal/corba_2.htm.

[Unicode 3.0]
The Unicode Standard, Version 3.0.. The Unicode Consortium, 2000. Reading, Mass.:
Addison-Wesley Developers Press. ISBN 0-201-61633-5.

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Second Edition), T. Bray, J. Paoli, C. M.
Sperberg-McQueen, and E. Maler, Editors. World Wide Web Consortium, 10 February 1998, revised
6 October 2000. This version of the XML 1.0 Recommendation is
http://www.w3.org/TR/2000/REC-xml-20001006. The latest version of XML 1.0 is available at
http://www.w3.org/TR/REC-xml.

[XML Namespaces]
Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Editors. World Wide Web Consortium,
14 January 1999. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/1999/REC-xml-names-19990114. The latest version of Namespaces in XML
is available at http://www.w3.org/TR/REC-xml-names.

G.2: Informative references
[DOM Level 3 Load and Save]

Document Object Model Level 3 Load and Save Specification, J. Stenback, A. Heninger, Editors.
World Wide Web Consortium, July 2002. This version of the DOM Level 3 Load and Save
Specification is http://www.w3.org/TR/DOM-Level-3-LS. The latest version of DOM Level 3 Load
and Save is available at http://www.w3.org/TR/DOM-Level-3-LS.

[DWW95]
Developing International Software for Windows 95 and Windows NT: A Handbook for International
Software Design, N. Kano, Author. Microsoft Press, 1995. ISBN 1-55615-840-8.

[KeyEvent for Java]
Java 2 SDK, Standard Edition Documentation, Version 1.4.1, Class java.awt.events.KeyEvent. Sun
Microsystems. Available at http://java.sun.com/j2se/1.4.1/docs/api/java/awt/event/KeyEvent.html.

[Keys enumeration for .Net]
.NET Framework Class Library, Keys Enumeration. Microsoft. Available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWindowsFormsKeysClassTopic.asp.

[SVG 1.0]
Scalable Vector Graphics (SVG) 1.0 Specification, J. Ferraiolo, Editor. World Wide Web
Consortium, 4 September 2001. This version of the SVG 1.0 Recommendation is
http://www.w3.org/TR/2001/REC-SVG-20010904. The latest version of SVG 1.0 is available at
http://www.w3.org/TR/SVG.

[Unicode 2.0]
The Unicode Standard, Version 2.0.. The Unicode Consortium, 1996. Reading, Mass.:
Addison-Wesley Developers Press. ISBN 0-201-48345-9.

[XForms 1.0]
XForms 1.0, M. Dubinko, et al., Editors. World Wide Web Consortium, November 2002. This
version of the XForms 1.0 specification is http://www.w3.org/TR/2002/CR-xforms-20021112/. The

104

G.2: Informative references

http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/DOM-Level-3-LS
http://www.w3.org/TR/DOM-Level-3-LS
http://www.w3.org/TR/DOM-Level-3-LS
http://java.sun.com/j2se/1.4.1/docs/api/java/awt/event/KeyEvent.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWindowsFormsKeysClassTopic.asp
http://www.w3.org/TR/2001/REC-SVG-20010904
http://www.w3.org/TR/SVG
http://www.w3.org/TR/2002/CR-xforms-20021112/

latest version of XForms 1.0 is available at http://www.w3.org/TR/xforms/.
[XHTML 1.0]

XHTML 1.0: The Extensible HyperText Markup Language, S. Pemberton, et al., Authors. World
Wide Web Consortium, 26 January 2000, revised 1 August 2002. This version of the XHTML 1.0
Recommendation is http://www.w3.org/TR/2002/REC-xhtml1-20020801. The latest version of
XHTML 1.0 is available at http://www.w3.org/TR/xhtml1.

[XML Events]
XML Events, S. McCarron, S. Pemberton, and T.V. Raman, Editors. World Wide Web Consortium,
February 2003. This version of the XML Events specification is
http://www.w3.org/TR/2003/CR-xml-events-20030207. The latest version of XML Events is
available at http://www.w3.org/TR/xml-events.

[XML Schema Part 2]
XML Schema Part 2: Datatypes, P. Byron and Ashok Malhotra, Editors. World Wide Web
Consortium, 2 May 2001. This version of the XML Part 2 Recommendation is
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502. The latest version of XML Schema Part
2 is available at http://www.w3.org/TR/xmlschema-2.

105

G.2: Informative references

http://www.w3.org/TR/xforms/
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/2003/CR-xml-events-20030207/
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

106

G.2: Informative references

Index
addEventListener addEventListenerNS ADDITION

altGraphKey 39, 47 altKey 39, 47 AT_TARGET

attrChange attrName

bubbles
bubbling phase 10, 11, 17, 18, 20, 24,
24, 101

BUBBLING_PHASE

button

cancelable cancelable event 13, 14 canDispatch

capture phase 10, 18, 20, 20, 24, 24, 101 CAPTURING_PHASE child 14, 101

clientX clientY createEvent

createEventListenerGroup ctrlKey 40, 47 currentTarget

CustomEvent

data detail DISPATCH_REQUEST_ERR

dispatchEvent document element document order

DocumentEvent DOM event flow DOM Level 0 9, 57, 101

DOM Level 2 Core 9, 103
DOM Level 2 Events 9, 12, 33, 38, 50,
57, 103

DOM Level 2 HTML 13, 57, 103

DOM Level 2 Views 33, 103
DOM Level 3 Core 9, 13, 33, 35, 38,
45, 50, 56, 57, 103

DOM Level 3 Load and Save 9,
104

DOM_KEY_LOCATION_LEFT DOM_KEY_LOCATION_NUMPAD DOM_KEY_LOCATION_RIGHT

DOM_KEY_LOCATION_STANDARD DOM_KEY_LOCATION_UNKNOWN DWW95

ECMAScript Event 19, 9, 10, 28, 101
event target 10, 14, 20, 20, 23, 25,
38, 101

EventException EventListener EventListenerGroup

eventPhase EventTarget

handleEvent hasEventListenerNS
HTML 4.01 13, 14, 18, 35, 38, 57,
103

initEvent initEventNS initKeyboardEvent

initKeyboardEventNS initMouseEvent initMouseEventNS

107

Index

initMutationEvent initMutationEventNS initMutationNameEvent

initMutationNameEventNS initTextEvent initTextEventNS

initUIEvent initUIEventNS Input Method Editor 14

isCustom isDefaultPrevented isImmediatePropagationStopped

isPropagationStopped isSameEventListenerGroup

Java

KeyboardEvent KeyEvent for Java keyIdentifier

keyLocation Keys enumeration for .Net

local name 13, 21, 21, 101

metaKey 40, 47 MODIFICATION MouseEvent

MutationEvent MutationNameEvent

namespace URI 13, 16, 20, 21, 34, 37,
41, 48, 52, 55, 101

namespaceURI newValue

OMG IDL

preventDefault prevNamespaceURI prevNodeName

prevValue

relatedNode relatedTarget REMOVAL

removeEventListener removeEventListenerNS

screenX screenY setCurrentEventListenerGroup

setCurrentTarget setEventPhase shiftKey 40, 47

stopImmediatePropagation stopPropagation string comparison 13, 102

SVG 1.0 17, 18, 104

target target node 10, 14, 20, 20, 23, 102 target phase 17, 18, 24, 24, 102

TextEvent timeStamp tokenized

108

Index

type

UIEvent Unicode 2.0 102, 104 Unicode 3.0

UNSPECIFIED_EVENT_TYPE_ERR

view

well-formed willTriggerNS

XForms 1.0 14, 104 XHTML 1.0 14, 17, 18, 105 XML 1.0 14, 101, 102, 102, 104

XML Events 17, 18, 105 XML name 16, 102
XML Namespaces 13, 21, 101,
101, 104

XML Schema Part 2 18, 105

109

Index

	Document Object Model †DOM‡ Level 3 Events Specification
	Version 1.0
	W3C Working Draft 21 February 2003
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	W3C Copyright Notices and Licenses
	W3C® Document Copyright Notice and License
	W3C® Software Copyright Notice and License
	W3C® Short Software Notice

	1. Document Object Model Events
	1.1. Introduction
	1.1.1. Event flows
	1.1.2. Conformance

	1.2. DOM event flow
	1.2.1. Phases
	1.2.2. Event listeners
	1.2.2.1. Registration of event listeners
	1.2.2.2. Event groups
	1.2.2.3. Triggering an event listener
	1.2.2.4. Removing an event listener
	1.2.2.5. Reentrance
	1.2.2.6. Event propagation and event groups

	1.3. Default actions and cancelable events
	1.4. Event types
	1.4.1. Complete list of event types
	1.4.2. Compatibility with DOM Level 2 Events

	1.5. Event listener registration
	1.5.1. Using the EventTarget methods
	1.5.2. Using XML Events
	1.5.3. Using XML or HTML attributes

	1.6. Basic interfaces
	1.6.1. Event creation

	1.7. Event module definitions
	1.7.1. User Interface event types
	1.7.2. Text events
	1.7.3. Mouse event types
	1.7.4. Keyboard event types
	1.7.5. Mutation and mutation name event types
	1.7.6. Basic event types
	1.7.7. HTML Events

	Appendix A: Key identifiers for keyboard events.
	A.1: Introduction
	A.1.1: Modifier keys
	A.1.2: Dead keys
	A.1.3: Input Method Editors
	A.1.4: Guidelines for defining key identifiers

	A.2: Key identifiers set

	Appendix B: Changes
	B.1: Changes between DOM Level 2 Events and DOM Level 3 Events
	B.1.1: Changes to DOM Level 2 event flow
	B.1.2: Changes to DOM Level 2 event types
	B.1.3: Changes to DOM Level 2 Events interfaces
	B.1.4: New Interfaces

	Appendix C: IDL Definitions
	
	events.idl:

	Appendix D: Java Language Binding
	
	org/w3c/dom/events/EventException.java:
	org/w3c/dom/events/Event.java:
	org/w3c/dom/events/EventTarget.java:
	org/w3c/dom/events/EventListener.java:
	org/w3c/dom/events/EventListenerGroup.java:
	org/w3c/dom/events/DocumentEvent.java:
	org/w3c/dom/events/CustomEvent.java:
	org/w3c/dom/events/UIEvent.java:
	org/w3c/dom/events/TextEvent.java:
	org/w3c/dom/events/MouseEvent.java:
	org/w3c/dom/events/KeyboardEvent.java:
	org/w3c/dom/events/MutationEvent.java:
	org/w3c/dom/events/MutationNameEvent.java:

	Appendix E: ECMAScript Language Binding
	Glossary
	References
	G.1: Normative references
	G.2: Informative references

	Index

