
Document Object Model (DOM) Level 3 Validation
Specification

Version 1.0

W3C Working Draft 08 October 2002
This version:

http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20021008
Latest version:

http://www.w3.org/TR/DOM-Level-3-Val
Previous version:

http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20020725

Editors:
Ben Chang, Oracle
Joe Kesselman, IBM (until September 2001)
Rezaur Rahman, Intel Corporation (until July 2001)

This document is also available in these non-normative formats: XML fileplain text, PostScript file, PDF
file, single HTML file, and ZIP file.

Copyright ©2002 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Validation Level 3, a platform- and
language-neutral interface. This module provides the guidance to programs and scripts to dynamically
update the content and the structure of documents while ensuring that the document remains valid, or to
ensure that the document becomes valid.

Status of this document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. The latest status of this document series is maintained at the W3C.

1

Document Object Model (DOM) Level 3 Validation Specification

http://www.w3.org/
http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20021008
http://www.w3.org/TR/DOM-Level-3-Val
http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20020725/
http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20021008/xml-source.xml
http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20021008/DOM3-Val.txt
http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20021008/DOM3-Val.ps
http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20021008/DOM3-Val.pdf
http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20021008/DOM3-Val.pdf
http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20021008/DOM3-Val.html
http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20021008/DOM3-Val.zip
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

This is a Last Call Working Draft for review by W3C members and other interested parties. The Last Call
review period ends on 27 November 2002. Please send reviews before the review period ends to the public
mailing list www-dom@w3.org. An archive is available at http://lists.w3.org/Archives/Public/www-dom/.

Individuals or organizations are also invited to send a message to the public mailing list if they intend to
produce an implementation of this module.

It is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in
progress". This is work in progress and does not imply endorsement by, or the consensus of, either W3C
or members of the DOM working group.

This document has been produced as part of the W3C DOM Activity. The authors of this document are
the DOM WG members.

Patent disclosures relevant to this specification may be found on the Working Group’s patent disclosure
page.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 3Expanded Table of Contents
................... 5Copyright Notice

.................... 91. Validation

................ 23Appendix A: IDL Definitions

.............. 25Appendix B: Java Language Binding

............ 29Appendix C: ECMAScript Language Binding

............... 33Appendix D: Acknowledgements

.................... 35Glossary

.................... 37References

..................... 39Index

2

Table of contents

http://www.w3.org/Consortium/Process-20010719/tr.html#last-call
http://lists.w3.org/Archives/Public/www-dom/
http://www.w3.org/DOM/Activity.html
http://www.w3.org/2002/08/02-DOM-Disclosures.html
http://www.w3.org/2002/08/02-DOM-Disclosures.html
http://www.w3.org/TR/

Expanded Table of Contents
................ 3Expanded Table of Contents
................... 5Copyright Notice
........... 5W3C Document Copyright Notice and License
........... 6W3C Software Copyright Notice and License

.................... 91. Validation

.................. 91.1. Overview

.............. 91.1.1. General Characteristics

............ 91.1.2. Use Cases and Requirements

.................. 101.2. Exceptions

.............. 101.3. Document-Editing Interfaces

............... 191.4. Document Manipulation

............... 201.5. Validating a Document

............... 211.6. Well-formedness Testing

................ 23Appendix A: IDL Definitions

.............. 25Appendix B: Java Language Binding

............ 29Appendix C: ECMAScript Language Binding

............... 33Appendix D: Acknowledgements

................ 33D.1. Production Systems

.................... 35Glossary

.................... 37References

................ 371. Normative references

................ 372. Informative references

..................... 39Index

3

Expanded Table of Contents

4

Expanded Table of Contents

Copyright Notice
Copyright © 2002 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

This document is published under the W3C Document Copyright Notice and License [p.5] . The bindings
within this document are published under the W3C Software Copyright Notice and License [p.6] . The
software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no longer be
’w3c.org’; in the case of the Java language binding, the package names can no longer be in the ’org.w3c’
package.

W3C Document Copyright Notice and License
Note: This section is a copy of the W3C Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-documents-19990405.

Copyright © 1994-2002 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
Software Notice. By using and/or copying this document, or the W3C document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:

"Copyright © [$date-of-document] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

5

Copyright Notice

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice and License
Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2002 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/."

6

W3C Software Copyright Notice and License

http://www.w3.org/Consortium/Legal/IPR-FAQ.html
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

7

W3C Software Copyright Notice and License

8

W3C Software Copyright Notice and License

1. Validation
Editors:

Ben Chang, Oracle
Joe Kesselman, IBM (until September 2001)
Rezaur Rahman, Intel Corporation (until July 2001)

1.1. Overview
This chapter describes the optional DOM Level 3 Validation feature. This module provides APIs to query
information about the XML document.

A DOM application can use the hasFeature method of the DOMImplementation interface to
determine whether a given DOM supports these capabilities or not. This module defines 1 feature string:
"VAL-DOC" for document-editing interfaces.

This chapter focuses on the editing aspects used in the XML document-editing world and usage of such
information.

1.1.1. General Characteristics

In the October 9, 1997 DOM requirements document, the following appeared: "There will be a way to
determine the presence of a DTD. There will be a way to add, remove, and change declarations in the
underlying DTD (if available). There will be a way to test conformance of all or part of the given
document against a DTD (if available)." In later discussions, the following was added, "There will be a
way to query element/attribute (and maybe other) declarations in the underlying DTD (if available),"
supplementing the primitive support for these in Level 1.

That work was deferred past Level 2, in the hope that XML Schemas would be addressed as well. Work
was deferred on lowest common denominator general grammar APIs due to heightened interest in XML
Schema- specific APIs; however, work on querying information on the grammar was only done for DOM
Level 3.

1.1.2. Use Cases and Requirements

Here are the following use cases and requirements that prompted the functionality in this document:

Use Cases:

1. DU1. For editing documents with an associated grammar, provide the guidance necessary so that
valid documents can be modified and remain valid.

2. DU2. For editing documents with an associated grammar, provide the guidance necessary to
transform an invalid document into a valid one.

9

1. Validation

Requirements:

1. DR1. Be able to determine if the document is well-formed, and if not, be given enough guidance to
locate the error.

2. DR2. Be able to determine if the document is namespace well-formed, and if not, be given enough
guidance to locate the error.

3. DR3. Be able to determine if the document is valid with respect to its associated grammar.
4. DR4. Be able to determine if specific modifications to a document would make it become invalid.
5. DR5. Retrieve information from all grammar. One example might be getting a list of all the defined

element names for document editing purposes.

1.2. Exceptions
This section describes the "VAL-DOC" exceptions.

Exception ExceptionVAL

These operations may throw a ExceptionVAL [p.10] as described in their descriptions.

IDL Definition

exception ExceptionVAL {
 unsigned short code;
};
// ExceptionVALCode
const unsigned short NO_GRAMMAR_AVAILABLE = 71;
const unsigned short VALIDATION_ERR = 72;

Definition group ExceptionVALCode

An integer indicating the type of error generated.

Defined Constants
NO_GRAMMAR_AVAILABLE

If the DocumentEditVAL [p.11] related to the node does not have any grammar and
wfValidityCheckLevel is set to PARTIAL or STRICT_VALIDITY_CHECK.

VALIDATION_ERR
Raised if document is invalid.

1.3. Document-Editing Interfaces
This section contains "Document-editing" methods (includes Node, Element, Text and Document
methods).

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "VAL-DOC" and "3.0" (respectively) to
determine whether or not the Document-Editing interfaces are supported by the implementation.

10

1.2. Exceptions

Interface DocumentEditVAL

This interface extends the NodeEditVAL [p.11] interface with additional methods for document
editing.

IDL Definition

interface DocumentEditVAL : NodeEditVAL {
 attribute boolean continuousValidityChecking;
 void validateDocument()
 raises(ExceptionVAL);
};

Attributes
continuousValidityChecking of type boolean

An attribute specifying whether continuous checking for the validity of the document is
enforced or not. Setting this to true will result in an exception being thrown, i.e.,
VALIDATION_ERR [p.10] , for documents that are invalid at the time of the call. When
set to true, the implementation if free to raise the VALIDATION_ERR exception on DOM
operations that would make the document invalid with respect to "partial validity." If the
document is invalid, then this attribute will remain false. This attribute is false by
default.

Methods
validateDocument

Validates the document against the grammar. If the document is mutated during validation,
a warning will be issued. In addition, the validation cannot modify the document, e.g., for
default attributes. This method makes use of the passed-in error handler, as described in
[DOM Level 3 Core] interface.
Exceptions

ExceptionVAL
[p.10]

NO_GRAMMAR_AVAILABLE: Raised if an error occurs
when the grammar is not available for the document.

No Parameters
No Return Value

Interface NodeEditVAL

This interface is similar to the [DOM Level 3 Core] Node interfaces, with methods for guided
document editing.

IDL Definition

interface NodeEditVAL {

 // CheckTypeVAL
 const unsigned short WF_CHECK = 1;
 const unsigned short NS_WF_CHECK = 2;
 const unsigned short PARTIAL_VALIDITY_CHECK = 3;
 const unsigned short STRICT_VALIDITY_CHECK = 4;

11

1.3. Document-Editing Interfaces

 boolean canInsertBefore(in Node newChild,
 in Node refChild);
 boolean canRemoveChild(in Node oldChild);
 boolean canReplaceChild(in Node newChild,
 in Node oldChild);
 boolean canAppendChild(in Node newChild);
 boolean isNodeValid(in boolean deep,
 in unsigned short wFValidityCheckLevel)
 raises(ExceptionVAL);
};

Definition group CheckTypeVAL

An integer indicating which type of validation this is.

Defined Constants
NS_WF_CHECK

Check for namespace well-formedness includes WF_CHECK.
PARTIAL_VALIDITY_CHECK

Checks for whether this node is partially valid [p.35] . It includes NS_WF_CHECK.
STRICT_VALIDITY_CHECK

Checks for strict validity of the node with respect to active grammar which by
definition includes NS_WF_CHECK.

WF_CHECK
Check for well-formedness of this node.

Methods
canAppendChild

Has the same arguments as Node.appendChild.
Parameters
newChild of type Node

Node to be appended.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canInsertBefore

Determines whether the Node.insertBefore operation would make this document not
partially valid with respect to the currently active grammar.
Parameters
newChild of type Node

Node to be inserted.
refChild of type Node

Reference Node.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

12

1.3. Document-Editing Interfaces

No Exceptions
canRemoveChild

Has the same arguments as Node.removeChild.
Parameters
oldChild of type Node

Node to be removed.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canReplaceChild

Has the same arguments as Node.replaceChild.
Parameters
newChild of type Node

New Node.
oldChild of type Node

Node to be replaced.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
isNodeValid

Determines if the Node is valid relative to currently active grammar. It doesn’t normalize
before checking if the document is valid. To do so, one would need to explicitly call a
normalize method.
Parameters
deep of type boolean

Setting the deep flag on causes the isNodeValid method to check for the whole
subtree of the current node for validity. Setting it to false only checks the current
node and its immediate child nodes. The validateDocument method on the
DocumentVAL interface, however, checks to determine whether the entire document
is valid.

wFValidityCheckLevel of type unsigned short
Flag to tell at what level validity and well-formedness checking is done.

Return Value

boolean true if the node is valid/well-formed in the current context and check
level defined by wfValidityCheckLevel, false if not.

Exceptions

13

1.3. Document-Editing Interfaces

ExceptionVAL
[p.10]

NO_GRAMMAR_AVAILABLE: Exception is raised if the
DocumentEditVAL related to this node does not have any
grammar associated with it and wfValidityCheckLevel is
set to PARTIAL or STRICT_VALIDITY_CHECK.

Interface ElementEditVAL

This interface extends the Element interface with additional methods for guided document editing.
An object implementing this interface must also implement NodeEditVAL interface.

IDL Definition

interface ElementEditVAL : NodeEditVAL {
 readonly attribute NodeList definedElementTypes;
 unsigned short contentType();
 boolean canSetAttribute(in DOMString attrname,
 in DOMString attrval);
 boolean canSetAttributeNode(in Attr attrNode);
 boolean canSetAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DOMString value);
 boolean canRemoveAttribute(in DOMString attrname);
 boolean canRemoveAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
 boolean canRemoveAttributeNode(in Node attrNode);
 NodeList getChildElements();
 NodeList getParentElements();
 NodeList getAttributeList();
 boolean isElementDefined(in DOMString name);
 boolean isElementDefinedNS(in DOMString name,
 in DOMString namespaceURI);
};

Attributes
definedElementTypes of type NodeList, readonly

The list of all element nodes defined in non-namespace aware grammar or list of all
element nodes belonging to the particular namespace. These are not nodes from the
instance document, but rather are new nodes that could be inserted in the document.

Methods
canRemoveAttribute

Verifies if an attribute by the given name can be removed.
Parameters
attrname of type DOMString

Name of attribute.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

14

1.3. Document-Editing Interfaces

No Exceptions
canRemoveAttributeNS

Verifies if an attribute by the given local name and namespace can be removed.
Parameters
namespaceURI of type DOMString

The namespace URI of the attribute to remove.
localName of type DOMString

Local name of the attribute to be removed.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canRemoveAttributeNode

Determines if an attribute node can be removed.
Parameters
attrNode of type Node

The Attr node to remove from the attribute list.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canSetAttribute

Determines if the value for specified attribute can be set.
Parameters
attrname of type DOMString

Name of attribute.
attrval of type DOMString

Value to be assigned to the attribute.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canSetAttributeNS

Determines if the attribute with given namespace and qualified name can be created if not
already present in the attribute list of the element. If the attribute with the same qualified
name and namespaceURI is already present in the element’s attribute list, it tests whether
the value of the attribute and its prefix can be set to the new value. See DOM core
setAttributeNS.
Parameters
namespaceURI of type DOMString

namespaceURI of namespace.

15

1.3. Document-Editing Interfaces

qualifiedName of type DOMString
Qualified name of attribute.

value of type DOMString
Value to be assigned to the attribute.

Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canSetAttributeNode

Determines if an attribute node can be added with respect to the validity check level.
Parameters
attrNode of type Attr

Node in which the attribute can possibly be set.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
contentType

Determines element content type.
Return Value

unsigned
short

Constant for one of EMPTY_CONTENTTYPE,
ANY_CONTENTTYPE, MIXED_CONTENTTYPE,
ELEMENTS_CONTENTTYPE.

No Parameters
No Exceptions

getAttributeList
Returns a NodeList containing all the possible Attrs that can appear with this type of
element. These are not nodes from the instance document, but rather are new nodes that
could be inserted in the document.
Return Value

NodeList List of possible attributes of this element.

No Parameters
No Exceptions

getChildElements
Returns a NodeList containing the possible Element nodes that can appear as children
of this type of element, with certain conditions as specified below. These are not nodes
from the instance document, but rather are new nodes that could be inserted in the
document.

16

1.3. Document-Editing Interfaces

Return Value

NodeList List of possible children element types of this element. Note that if no
context of this element exists, then a NULL is returned; an empty list is
returned if the element is not in the document tree.

No Parameters
No Exceptions

getParentElements
Returns a NodeList containing the possible Element nodes that can appear as a parent
of this type of element, with certain conditions as specified below. These are not nodes
from the instance document, but rather are new nodes that could be inserted in the
document.
Return Value

NodeList List of possible parent element types of this element. Note that if no
context of this element exists, for example, the parent element of this
element, then a NULL is returned; an empty list is returned if the
element is not in the document tree.

No Parameters
No Exceptions

isElementDefined
Determines if name is defined in the currently active grammar.
Parameters
name of type DOMString

Name of element.
Return Value

boolean A boolean that is true if the element is defined, false otherwise.

No Exceptions
isElementDefinedNS

Determines if name in this namespace is defined in the currently active grammar.
Parameters
name of type DOMString

Name of element.
namespaceURI of type DOMString

namespaceURI of namespace.
Return Value

boolean A boolean that is true if the element is defined, false otherwise.

17

1.3. Document-Editing Interfaces

No Exceptions
Interface CharacterDataEditVAL

This interface extends the NodeEditVAL [p.11] interface with additional methods for document
editing. An object implementing this interface must also implement NodeEditVAL interface.

IDL Definition

interface CharacterDataEditVAL : NodeEditVAL {
 readonly attribute boolean isWhitespaceOnly;
 boolean canSetData(in unsigned long offset,
 in DOMString arg);
 boolean canAppendData(in DOMString arg);
 boolean canReplaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg);
 boolean canInsertData(in unsigned long offset,
 in DOMString arg);
 boolean canDeleteData(in unsigned long offset,
 in unsigned long count);
};

Attributes
isWhitespaceOnly of type boolean, readonly

true if content only whitespace; false for non-whitespace.
Methods

canAppendData
Determines if data can be appended.
Parameters
arg of type DOMString

Data to be appended.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canDeleteData

Determines if data can be deleted.
Parameters
offset of type unsigned long

Offset.
count of type unsigned long

Number of 16-bit units to delete.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

18

1.3. Document-Editing Interfaces

No Exceptions
canInsertData

Determines if data can be inserted.
Parameters
offset of type unsigned long

Offset.
arg of type DOMString

Argument to be set.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canReplaceData

Determines if data can be replaced.
Parameters
offset of type unsigned long

Offset.
count of type unsigned long

Replacement.
arg of type DOMString

Argument to be set.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canSetData

Determines if data can be set.
Parameters
offset of type unsigned long

Offset.
arg of type DOMString

Argument to be set.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions

19

1.3. Document-Editing Interfaces

1.4. Document Manipulation
Applications would like to be able to use functionality to guide construction and editing of documents,
which falls into the document-editing world. Examples of this sort of guided editing already exist, and are
becoming more common. The necessary queries can be phrased in several ways, the most useful of which
may be a combination of "what does the DTD allow me to insert here" and "if I insert this here, will the
document still be valid". The former is better suited to presentation to humans via a user interface, and
when taken together with sub-tree validation may subsume the latter.

It has been proposed that in addition to asking questions about specific parts of the grammar, there should
be a reasonable way to obtain a list of all the defined symbols of a given type (element, attribute, entity)
independent of whether they’re valid in a given location; that might be useful in building a list in a
user-interface, which could then be updated to reflect which of these are relevant for the program’s current
state.

Remember that namespaces also weigh in on this issue, in the case of attributes, a "can-this-go-there" may
prompt a namespace-well-formedness check and warn you if you’re about to conflict with or overwrite
another attribute with the same namespaceURI/localName but different prefix, or same nodeName but
different namespaceURI.

We have to deal with the fact that "the shortest distance between two valid documents may be through an
invalid one". Users may want to know several levels of detail (all the possible children, those which would
be valid given what precedes this point, those which would be valid given both preceding and following
siblings). Also, once XML Schemas introduce context sensitive validity, we may have to consider the
effect of children as well as the individual node being inserted.

1.5. Validating a Document
The most obvious use for a DTD or XML Schema or any grammar is to use it to validate a given XML
document. This again falls into the document-editing world. The XML spec only discusses performing
this test at the time the document is loaded into the "processor", which most of us have taken to mean that
this check should be performed at parse time. But it is obviously desirable to be able to validate again a
document -- or selected subtrees -- at other times. One such case would be validating an edited or newly
constructed document before serializing it or otherwise passing it to other users. This issue also arises if
the "internal subset" is altered -- or if the grammar changes.

In the past, the DOM has allowed users to create invalid documents, and assumed the serializer would
accept the task of detecting problems and announcing/repairing them when the document was written out
in XML syntax... or that they would be checked for validity when read back in. We considered adding
validity checks to the DOM’s existing editing operations to prevent creation of invalid documents, but are
currently inclined against this for several reasons. First, it would impose a significant amount of
computational overhead to the DOM, which might be unnecessary in many situations, e.g., if the change is
occurring in a context where we know the result will be valid. Second, "the shortest distance between two
good documents may be through a bad document". Preventing a document from becoming temporarily
invalid may impose a considerable amount of additional work on higher-level code and users Hence our
current plan is to continue to permit editing to produce invalid DOMs, but provide operations which

20

1.4. Document Manipulation

permit a user to check the validity of a node on demand. If needed one can use
continuousValidityChecking flag to ensure that the DOM remains valid during the editing
process.

Note that validation includes checking that ID attributes are unique, and that IDREFs point to IDs which
actually exist.

1.6. Well-formedness Testing
XML defined the "well-formed" (WF) state for documents which are parsed without reference to their
DTDs. Knowing that a document is well-formed may be useful by itself even when a DTD is available.
For example, users may wish to deliberately save an invalid document, perhaps as a checkpoint before
further editing. Hence, the "Validation" features will permit both full validity checking (see previous
section) and "lightweight" WF checking, as requested by the caller, as well as processing entity
declarations in the AS even if validation is not turned on.

While the DOM inherently enforces some of XML’s well-formedness conditions (proper nesting of
elements, constraints on which children may be placed within each node), there are some checks that are
not yet performed. These include:

Character restrictions for text content and attribute values. Some characters aren’t permitted even
when expressed as numeric character entities
The three-character sequence "]]>" in CDATASections.
The two-character sequence "--" in comments. (Which, be it noted, some XML validators don’t
currently remember to test...)

In addition, Namespaces introduce their own concepts of well-formedness. Specifically:

No two attributes on a single Element may have the same combination of namespaceURI and
localName, even if their prefixes are different and hence they don’t conflict under XML 1.0 rules.
NamespaceURIs must be legal URI syntax. (Note that once we have this code, it may be reusable for
the URI "datatype" in document content; see discussion of datatypes.)
The mapping of namespace prefixes to their URIs must be declared and consistent. That isn’t
required during normal DOM operation, since we perform "early binding" and thereafter refer to
nodes primarily via their namespaceURIs and localName. But it does become an issue when we want
to serialize the DOM to XML syntax, and may be an issue if an application is assuming that all the
declarations are present and correct. This may imply that we should provide a
namespaceNormalize operation, which would create the implied declarations and reconcile
conflicts in some reasonably standardized manner. This may be a major undertaking, since some
DOMs may be using the namespace to direct subclassing of the nodes or similar special treatment; as
with the existing normalize method, you may be left with a different-but-equivalent set of node
objects.

In the past, the DOM has allowed users to create documents which violate these rules, and assumed the
serializer would accept the task of detecting problems and announcing/repairing them when the document
was written out in XML syntax. We considered adding WF checks to the DOM’s existing editing
operations to prevent WF violations from arising, but are currently inclined against this for two reasons.

21

1.6. Well-formedness Testing

First, it would impose a significant amount of computational overhead to the DOM, which might be
unnecessary in many situations (for example, if the change is occurring in a context where we know the
illegal characters have already been prevented from arising). Second, "the shortest distance between two
good documents may be through a bad document" -- preventing a document from becoming temporarily
ill-formed may impose a considerable amount of additional work on higher-level code and users. (Note
possible issue for Serialization: In some applications, being able to save and reload marginally
poorly-formed DOMs might be useful -- editor checkpoint files, for example.) Hence our current plan is to
continue to permit editing to produce ill-formed DOMs, but provide operations which permit a user to
check the well-formedness of a node on demand, and possibly provide some of the primitive (e.g.,
string-checking) functions directly.

22

1.6. Well-formedness Testing

Appendix A: IDL Definitions
This appendix contains the complete OMG IDL [OMG IDL] for the Level 3 Document Object Model
Validation definitions.

The IDL files are also available as: http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20021008/idl.zip

validation.idl:
// File: validation.idl

#ifndef _VALIDATION_IDL_
#define _VALIDATION_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module validation
{

 typedef dom::Node Node;
 typedef dom::NodeList NodeList;
 typedef dom::DOMString DOMString;
 typedef dom::Attr Attr;

 exception ExceptionVAL {
 unsigned short code;
 };
 // ExceptionVALCode
 const unsigned short NO_GRAMMAR_AVAILABLE = 71;
 const unsigned short VALIDATION_ERR = 72;

 interface NodeEditVAL {

 // CheckTypeVAL
 const unsigned short WF_CHECK = 1;
 const unsigned short NS_WF_CHECK = 2;
 const unsigned short PARTIAL_VALIDITY_CHECK = 3;
 const unsigned short STRICT_VALIDITY_CHECK = 4;

 boolean canInsertBefore(in Node newChild,
 in Node refChild);
 boolean canRemoveChild(in Node oldChild);
 boolean canReplaceChild(in Node newChild,
 in Node oldChild);
 boolean canAppendChild(in Node newChild);
 boolean isNodeValid(in boolean deep,
 in unsigned short wFValidityCheckLevel)
 raises(ExceptionVAL);
 };

 interface ElementEditVAL : NodeEditVAL {
 readonly attribute NodeList definedElementTypes;

23

Appendix A: IDL Definitions

 unsigned short contentType();
 boolean canSetAttribute(in DOMString attrname,
 in DOMString attrval);
 boolean canSetAttributeNode(in Attr attrNode);
 boolean canSetAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DOMString value);
 boolean canRemoveAttribute(in DOMString attrname);
 boolean canRemoveAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
 boolean canRemoveAttributeNode(in Node attrNode);
 NodeList getChildElements();
 NodeList getParentElements();
 NodeList getAttributeList();
 boolean isElementDefined(in DOMString name);
 boolean isElementDefinedNS(in DOMString name,
 in DOMString namespaceURI);
 };

 interface CharacterDataEditVAL : NodeEditVAL {
 readonly attribute boolean isWhitespaceOnly;
 boolean canSetData(in unsigned long offset,
 in DOMString arg);
 boolean canAppendData(in DOMString arg);
 boolean canReplaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg);
 boolean canInsertData(in unsigned long offset,
 in DOMString arg);
 boolean canDeleteData(in unsigned long offset,
 in unsigned long count);
 };

 interface DocumentEditVAL : NodeEditVAL {
 attribute boolean continuousValidityChecking;
 void validateDocument()
 raises(ExceptionVAL);
 };
};

#endif // _VALIDATION_IDL_

24

validation.idl:

Appendix B: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 3 Document Object Model
Validation.

The Java files are also available as
http://www.w3.org/TR/2002/WD-DOM-Level-3-Val-20021008/java-binding.zip

org/w3c/dom/validation/ExceptionVAL.java:
package org.w3c.dom.validation;

public class ExceptionVAL extends RuntimeException {
 public ExceptionVAL(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // ExceptionVALCode
 public static final short NO_GRAMMAR_AVAILABLE = 71;
 public static final short VALIDATION_ERR = 72;

}

org/w3c/dom/validation/DocumentEditVAL.java:
package org.w3c.dom.validation;

public interface DocumentEditVAL extends NodeEditVAL {
 public boolean getContinuousValidityChecking();
 public void setContinuousValidityChecking(boolean continuousValidityChecking);

 public void validateDocument()
 throws ExceptionVAL;

}

org/w3c/dom/validation/NodeEditVAL.java:
package org.w3c.dom.validation;

import org.w3c.dom.Node;

public interface NodeEditVAL {
 // CheckTypeVAL
 public static final short WF_CHECK = 1;
 public static final short NS_WF_CHECK = 2;
 public static final short PARTIAL_VALIDITY_CHECK = 3;
 public static final short STRICT_VALIDITY_CHECK = 4;

 public boolean canInsertBefore(Node newChild,
 Node refChild);

25

Appendix B: Java Language Binding

 public boolean canRemoveChild(Node oldChild);

 public boolean canReplaceChild(Node newChild,
 Node oldChild);

 public boolean canAppendChild(Node newChild);

 public boolean isNodeValid(boolean deep,
 short wFValidityCheckLevel)
 throws ExceptionVAL;

}

org/w3c/dom/validation/ElementEditVAL.java:
package org.w3c.dom.validation;

import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.w3c.dom.Attr;

public interface ElementEditVAL extends NodeEditVAL {
 public NodeList getDefinedElementTypes();

 public short contentType();

 public boolean canSetAttribute(String attrname,
 String attrval);

 public boolean canSetAttributeNode(Attr attrNode);

 public boolean canSetAttributeNS(String namespaceURI,
 String qualifiedName,
 String value);

 public boolean canRemoveAttribute(String attrname);

 public boolean canRemoveAttributeNS(String namespaceURI,
 String localName);

 public boolean canRemoveAttributeNode(Node attrNode);

 public NodeList getChildElements();

 public NodeList getParentElements();

 public NodeList getAttributeList();

 public boolean isElementDefined(String name);

 public boolean isElementDefinedNS(String name,
 String namespaceURI);

}

26

org/w3c/dom/validation/ElementEditVAL.java:

org/w3c/dom/validation/CharacterDataEditVAL.java:
package org.w3c.dom.validation;

public interface CharacterDataEditVAL extends NodeEditVAL {
 public boolean getIsWhitespaceOnly();

 public boolean canSetData(int offset,
 String arg);

 public boolean canAppendData(String arg);

 public boolean canReplaceData(int offset,
 int count,
 String arg);

 public boolean canInsertData(int offset,
 String arg);

 public boolean canDeleteData(int offset,
 int count);

}

27

org/w3c/dom/validation/CharacterDataEditVAL.java:

28

org/w3c/dom/validation/CharacterDataEditVAL.java:

Appendix C: ECMAScript Language Binding
This appendix contains the complete ECMAScript [ECMAScript] binding for the Level 3 Document
Object Model Validation definitions.

Properties of the ExceptionVAL Constructor function:
ExceptionVAL.NO_GRAMMAR_AVAILABLE

The value of the constant ExceptionVAL.NO_GRAMMAR_AVAILABLE is 71.
ExceptionVAL.VALIDATION_ERR

The value of the constant ExceptionVAL.VALIDATION_ERR is 72.
Objects that implement the ExceptionVAL interface:

Properties of objects that implement the ExceptionVAL interface:
code

This property is a Number.
Objects that implement the DocumentEditVAL interface:

Objects that implement the DocumentEditVAL interface have all properties and functions of the
NodeEditVAL interface as well as the properties and functions defined below.
Properties of objects that implement the DocumentEditVAL interface:

continuousValidityChecking
This property is a Boolean.

Functions of objects that implement the DocumentEditVAL interface:
validateDocument()

This function has no return value.
This function can raise an object that implements the ExceptionVAL interface.

Properties of the NodeEditVAL Constructor function:
NodeEditVAL.WF_CHECK

The value of the constant NodeEditVAL.WF_CHECK is 1.
NodeEditVAL.NS_WF_CHECK

The value of the constant NodeEditVAL.NS_WF_CHECK is 2.
NodeEditVAL.PARTIAL_VALIDITY_CHECK

The value of the constant NodeEditVAL.PARTIAL_VALIDITY_CHECK is 3.
NodeEditVAL.STRICT_VALIDITY_CHECK

The value of the constant NodeEditVAL.STRICT_VALIDITY_CHECK is 4.
Objects that implement the NodeEditVAL interface:

Functions of objects that implement the NodeEditVAL interface:
canInsertBefore(newChild, refChild)

This function returns a Boolean.
The newChild parameter is an object that implements the Node interface.
The refChild parameter is an object that implements the Node interface.

canRemoveChild(oldChild)
This function returns a Boolean.
The oldChild parameter is an object that implements the Node interface.

canReplaceChild(newChild, oldChild)
This function returns a Boolean.
The newChild parameter is an object that implements the Node interface.
The oldChild parameter is an object that implements the Node interface.

29

Appendix C: ECMAScript Language Binding

canAppendChild(newChild)
This function returns a Boolean.
The newChild parameter is an object that implements the Node interface.

isNodeValid(deep, wFValidityCheckLevel)
This function returns a Boolean.
The deep parameter is a Boolean.
The wFValidityCheckLevel parameter is a Number.
This function can raise an object that implements the ExceptionVAL interface.

Objects that implement the ElementEditVAL interface:
Objects that implement the ElementEditVAL interface have all properties and functions of the
NodeEditVAL interface as well as the properties and functions defined below.
Properties of objects that implement the ElementEditVAL interface:

definedElementTypes
This read-only property is an object that implements the NodeList interface.

Functions of objects that implement the ElementEditVAL interface:
contentType()

This function returns a Number.
canSetAttribute(attrname, attrval)

This function returns a Boolean.
The attrname parameter is a String.
The attrval parameter is a String.

canSetAttributeNode(attrNode)
This function returns a Boolean.
The attrNode parameter is an object that implements the Attr interface.

canSetAttributeNS(namespaceURI, qualifiedName, value)
This function returns a Boolean.
The namespaceURI parameter is a String.
The qualifiedName parameter is a String.
The value parameter is a String.

canRemoveAttribute(attrname)
This function returns a Boolean.
The attrname parameter is a String.

canRemoveAttributeNS(namespaceURI, localName)
This function returns a Boolean.
The namespaceURI parameter is a String.
The localName parameter is a String.

canRemoveAttributeNode(attrNode)
This function returns a Boolean.
The attrNode parameter is an object that implements the Node interface.

getChildElements()
This function returns an object that implements the NodeList interface.

getParentElements()
This function returns an object that implements the NodeList interface.

getAttributeList()
This function returns an object that implements the NodeList interface.

30

Appendix C: ECMAScript Language Binding

isElementDefined(name)
This function returns a Boolean.
The name parameter is a String.

isElementDefinedNS(name, namespaceURI)
This function returns a Boolean.
The name parameter is a String.
The namespaceURI parameter is a String.

Objects that implement the CharacterDataEditVAL interface:
Objects that implement the CharacterDataEditVAL interface have all properties and functions of
the NodeEditVAL interface as well as the properties and functions defined below.
Properties of objects that implement the CharacterDataEditVAL interface:

isWhitespaceOnly
This read-only property is a Boolean.

Functions of objects that implement the CharacterDataEditVAL interface:
canSetData(offset, arg)

This function returns a Boolean.
The offset parameter is a Number.
The arg parameter is a String.

canAppendData(arg)
This function returns a Boolean.
The arg parameter is a String.

canReplaceData(offset, count, arg)
This function returns a Boolean.
The offset parameter is a Number.
The count parameter is a Number.
The arg parameter is a String.

canInsertData(offset, arg)
This function returns a Boolean.
The offset parameter is a Number.
The arg parameter is a String.

canDeleteData(offset, count)
This function returns a Boolean.
The offset parameter is a Number.
The count parameter is a Number.

31

Appendix C: ECMAScript Language Binding

32

Appendix C: ECMAScript Language Binding

Appendix D: Acknowledgements
Many people contributed to the DOM specifications (Level 1, 2 or 3), including members of the DOM
Working Group and the DOM Interest Group. We especially thank the following:

Andrew Watson (Object Management Group), Andy Heninger (IBM), Angel Diaz (IBM), Arnaud Le
Hors (W3C and IBM), Ashok Malhotra (IBM and Microsoft), Ben Chang (Oracle), Bill Smith (Sun), Bill
Shea (Merrill Lynch), Bob Sutor (IBM), Chris Lovett (Microsoft), Chris Wilson (Microsoft), David
Brownell (Sun), David Ezell (Hewlett Packard Company), David Singer (IBM), Dimitris Dimitriadis
(Improve AB), Don Park (invited), Elena Litani (IBM), Eric Vasilik (Microsoft), Gavin Nicol (INSO), Ian
Jacobs (W3C), James Clark (invited), James Davidson (Sun), Jared Sorensen (Novell), Jeroen van
Rotterdam (X-Hive Corporation), Joe Kesselman (IBM), Joe Lapp (webMethods), Joe Marini
(Macromedia), Johnny Stenback (Netscape/AOL), Jon Ferraiolo (Adobe), Jonathan Marsh (Microsoft),
Jonathan Robie (Texcel Research and Software AG), Kim Adamson-Sharpe (SoftQuad Software Inc.),
Lauren Wood (SoftQuad Software Inc., former Chair), Laurence Cable (Sun), Mark Davis (IBM), Mark
Scardina (Oracle), Martin Dürst (W3C), Mary Brady (NIST), Mick Goulish (Software AG), Mike
Champion (Arbortext and Software AG), Miles Sabin (Cromwell Media), Patti Lutsky (Arbortext), Paul
Grosso (Arbortext), Peter Sharpe (SoftQuad Software Inc.), Phil Karlton (Netscape), Philippe Le Hégaret
(W3C, W3C team contact and former Chair), Ramesh Lekshmynarayanan (Merrill Lynch), Ray Whitmer
(iMall, Excite@Home, and Netscape/AOL, Chair), Rezaur Rahman (Intel), Rich Rollman (Microsoft),
Rick Gessner (Netscape), Rick Jelliffe (invited), Rob Relyea (Microsoft), Scott Isaacs (Microsoft), Sharon
Adler (INSO), Steve Byrne (JavaSoft), Tim Bray (invited), Tim Yu (Oracle), Tom Pixley
(Netscape/AOL), Vidur Apparao (Netscape), Vinod Anupam (Lucent).

Thanks to all those who have helped to improve this specification by sending suggestions and corrections
(Please, keep bugging us with your issues!).

D.1: Production Systems
This specification was written in XML. The HTML, OMG IDL, Java and ECMAScript bindings were all
produced automatically.

Thanks to Joe English, author of cost, which was used as the basis for producing DOM Level 1. Thanks
also to Gavin Nicol, who wrote the scripts which run on top of cost. Arnaud Le Hors and Philippe Le
Hégaret maintained the scripts.

After DOM Level 1, we used Xerces as the basis DOM implementation and wish to thank the authors.
Philippe Le Hégaret and Arnaud Le Hors wrote the Java programs which are the DOM application.

Thanks also to Jan Kärrman, author of html2ps, which we use in creating the PostScript version of the
specification.

33

Appendix D: Acknowledgements

http://www.flightlab.com/cost
http://xml.apache.org/xerces-j
http://dev.w3.org/cvsweb/java/classes/org/w3c/tools/specgenerator/
http://www.tdb.uu.se/~jan/html2ps.html

34

D.1: Production Systems

Glossary
Editors:

Arnaud Le Hors, W3C
Robert S. Sutor, IBM Research (for DOM Level 1)

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

document element
There is only one document element in a Document. This element node is a child of the Document
node. See Well-Formed XML Documents in XML [XML 1.0].

document order
There is an ordering, document order, defined on all the nodes in the document corresponding to the
order in which the first character of the XML representation of each node occurs in the XML
representation of the document after expansion of general entities. Thus, the document element [p.35]
node will be the first node. Element nodes occur before their children. Thus, document order orders
element nodes in order of the occurrence of their start-tag in the XML (after expansion of entities).
The attribute nodes of an element occur after the element and before its children. The relative order
of attribute nodes is implementation-dependent.

event
An event is the representation of some asynchronous occurrence (such as a mouse click on the
presentation of the element, or the removal of child node from an element, or any of unthinkably
many other possibilities) that gets associated with an event target [p.35] .

event target
The object to which an event [p.35] is targeted.

partially valid
A node in a DOM tree is partially valid if it is well formed [p.35] (this part is for comments and
processing instructions) and its immediate children are those expected by the content model. The
node may be missing trailing required children yet still be considered partially valid.

target node
The target node is the node representing the event target [p.35] to which an event [p.35] is targeted
using the DOM event flow defined in [DOM Level 3 Events].

tokenized
The description given to various information items (for example, attribute values of various types,
but not including the StringType CDATA) after having been processed by the XML processor. The
process includes stripping leading and trailing white space, and replacing multiple space characters
by one. See the definition of tokenized type.

well-formed document
A document is well-formed if it is tag valid and entities are limited to single elements (i.e., single
sub-trees).

35

Glossary

http://www.w3.org/TR/2000/REC-xml-20001006#dt-root

36

Glossary

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

F.1: Normative references
[DOM Level 3 Core]

Document Object Model Level 3 Core Specification, A. Le Hors, et al., Editors. World Wide Web
Consortium, January 2002. This version of the Document Object Model Level 3 Core Specification is
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020114. The latest version of DOM Level 3
Core is available at http://www.w3.org/TR/DOM-Level-3-Core.

[DOM Level 3 Events]
Document Object Model Level 3 Events Specification, T. Pixley, Editor. World Wide Web
Consortium, February 2002. This version of the Document Object Model Level 3 Events
Specification is http://www.w3.org/TR/DOM-Level-3-Events. The latest version of Document
Object Model Level 3 Events is available at http://www.w3.org/TR/DOM-Level-3-Events.

[ECMAScript]
ECMAScript Language Specification, Third Edition. European Computer Manufacturers Association,
December 1999. This version of the ECMAScript Language is available at
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM.

[Java]
The Java Language Specification, J. Gosling, B. Joy, and G. Steele, Authors. Addison-Wesley,
September 1996. Available at http://java.sun.com/docs/books/jls

[OMG IDL]
"OMG IDL Syntax and Semantics" defined in The Common Object Request Broker: Architecture and
Specification, version 2, Object Management Group. The latest version of CORBA version 2.0 is
available at http://www.omg.org/technology/documents/formal/corba_2.htm.

F.2: Informative references
[XML 1.0]

Extensible Markup Language (XML) 1.0 (Second Edition), T. Bray, J. Paoli, C. M.
Sperberg-McQueen, and E. Maler, Editors. World Wide Web Consortium, 10 February 1998, revised
6 October 2000. This version of the XML 1.0 Recommendation is
http://www.w3.org/TR/2000/REC-xml-20001006. The latest version of XML 1.0 is available at
http://www.w3.org/TR/REC-xml.

37

References

http://www.w3.org/TR
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020114
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/DOM-Level-3-Events
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://java.sun.com/docs/books/jls
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/REC-xml

38

F.2: Informative references

Index
canAppendChild canAppendData canDeleteData

canInsertBefore canInsertData canRemoveAttribute

canRemoveAttributeNode canRemoveAttributeNS canRemoveChild

canReplaceChild canReplaceData canSetAttribute

canSetAttributeNode canSetAttributeNS canSetData

CharacterDataEditVAL contentType continuousValidityChecking

definedElementTypes document element document order

DocumentEditVAL DOM Level 3 Core 11, 11, 37 DOM Level 3 Events 35, 37

ECMAScript ElementEditVAL event

event target ExceptionVAL

getAttributeList getChildElements getParentElements

isElementDefined isElementDefinedNS isNodeValid

isWhitespaceOnly

Java

NO_GRAMMAR_AVAILABLE NodeEditVAL NS_WF_CHECK

OMG IDL

PARTIAL_VALIDITY_CHECK partially valid 12, 35

39

Index

STRICT_VALIDITY_CHECK

target node tokenized

validateDocument VALIDATION_ERR

well-formed document WF_CHECK

XML 1.0 35, 37

40

Index

	Document Object Model †DOM‡ Level 3 Validation Specification
	Version 1.0
	W3C Working Draft 08 October 2002
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Validation
	1.1. Overview
	1.1.1. General Characteristics
	1.1.2. Use Cases and Requirements

	1.2. Exceptions
	1.3. Document-Editing Interfaces
	1.4. Document Manipulation
	1.5. Validating a Document
	1.6. Well-formedness Testing

	Appendix A: IDL Definitions
	
	validation.idl:

	Appendix B: Java Language Binding
	
	org/w3c/dom/validation/ExceptionVAL.java:
	org/w3c/dom/validation/DocumentEditVAL.java:
	org/w3c/dom/validation/NodeEditVAL.java:
	org/w3c/dom/validation/ElementEditVAL.java:
	org/w3c/dom/validation/CharacterDataEditVAL.java:

	Appendix C: ECMAScript Language Binding
	Appendix D: Acknowledgements
	D.1: Production Systems

	Glossary
	References
	F.1: Normative references
	F.2: Informative references

	Index

