
Extensible Stylesheet Language (XSL)

- 2 -

Abstract

XSL is a language for expressing stylesheets. It consists of two parts:

• a language for transforming XML documents, and
• an XML vocabulary for specifying formatting semantics.

An XSL stylesheet specifies the presentation of a class of XML documents by describing how an instance
of the class is transformed into an XML document that uses the formatting vocabulary.

- 3 -

Contents

1 Processing a Stylesheet . 1
1.1 Introduction to stylesheet processing . 1
1.2 Tree Transformations . 1
1.3 Formatting . 2
1.4 Some test lists . 3
2 Benefits of XSL . 5
2.1 Paging and Scrolling . 5
2.2 Selectors and Tree Construction . 6
2.3 An Extended Page Layout Model . 6
2.4 A Comprehensive Area Model . 7
2.5 Internationalization and Writing-Modes 7
2.6 Linking . 7

- 4 -

More Complex XSL FO Test Document Introduction to stylesheet processing

1 Processing a Stylesheet
1.1 Introduction to stylesheet processing
An XSL stylesheet processor accepts a docu-
ment or data in XML and an XSL stylesheet and
produces the presentation of that XML source
content that was intended by the designer of that
stylesheet. There are two aspects of this presen-
tation process: first, constructing a result tree
from the XML source tree andsecond, interpret-
ing the result tree to produce formatted results
suitable for presentation on a display, on paper,
in speech, or onto other media. The first aspect
is called tree transformation and the second is
called formatting. The process of formatting
is performed by the formatter. This format-
ter may simply be a rendering engine inside a
browser.

Tree transformation allows the structure of the
result tree to be significantly different from the
structure of the source tree. For example, one
could add a table-of-contents as a filtered se-
lection of an original source document, or one
could rearrange source data into a sorted tabular
presentation. In constructing the result tree, the
tree transformation process also adds the infor-
mation necessary to format that result tree.

Formatting is enabled by including formatting
semantics in the result tree. Formatting se-
mantics are expressed in terms of a catalog of
classes of formatting objects. The nodes of the
result tree are formatting objects. The classes
of formatting objects denote typographic ab-
stractions such as page, paragraph, table, and
so forth. Finer control over the presentation
of these abstractions is provided by a set of
formatting properties, such as those controlling
indents, word- and letter-spacing, and widow,
orphan, and hyphenation control. In XSL, the
classes of formatting objects and formatting
properties provide the vocabulary for express-
ing presentation intent.
The XSL processing model is intended to be
conceptual only. An implementation is not

mandated to provide these as separate pro-
cesses. Furthermore, implementations are free
to process the source document in any way that
produces the same result as if it were processed
using the conceptual XSL processing model.
A diagram depicting the detailed conceptual
model is shown below.

1.2 Tree Transformations
Tree transformation constructs the result tree.
In XSL, this tree is called the element and at-
tribute tree, with objects primarily in the "for-
matting object" namespace. In this tree, a for-
matting object is represented as an XML ele-
ment, with the properties represented by a set
of XML attribute-value pairs. The content of
the formatting object is the content of the XML
element. Tree transformation is defined in the
XSLT Recommendation. A diagram depicting
this conceptual process is shown below.

1

More Complex XSL FO Test Document Formatting

The XSL stylesheet is used in tree transforma-
tion. A stylesheet contains a set of tree con-
struction rules. The tree construction rules have
two parts: a pattern that is matched against ele-
ments in the source tree and a template that con-
structs a portion of the result tree. This allows
a stylesheet to be applicable to a wide class of
documents that have similar source tree struc-
tures.

In some implementations of XSL/XSLT, the
result of tree construction can be output as an
XML document. This would allow an XML
document which contains formatting objects
and formatting properties to be output. This
capability is neither necessary for an XSL pro-
cessor nor is it encouraged. There are, however,
cases where this is important, such as a server
preparing input for a known client; for example,
the way that a WAP (h tt p: / /w w w. wa p fo -
ru m .o rg / fa q s/ in d ex . ht m) server prepares
specialized input for a WAP capable hand held
device. To preserve accessibility, designers
of Web systems should not develop architec-
tures that require (or use) the transmission of
documents containing formatting objects and
properties unless either the transmitter knows
that the client can accept formatting objects and
properties or the transmitted document contains
a reference to the source document(s) used
in the construction of the document with the
formatting objects and properties.

1.3 Formatting
Formatting interprets the result tree in its for-
matting object tree form to produce the presen-
tation intended by the designer of the stylesheet
from which the XML element and attribute tree
in the "fo" namespace was constructed.

The vocabulary of formatting objects supported
by XSL--the set of f o: element types--repre-
sents the set of typographic abstractions avail-
able to the designer. Semantically, each format-
tingobject represents a specification for a part of
the pagination, layout, and styling information

that will be applied to the content of that format-
ting object as a result of formatting the whole
result tree. Each formatting object class repre-
sents a particular kind of formatting behavior.
For example, the block formatting object class
represents the breaking of the content of a para-
graph into lines. Other parts of the specification
may come from other formatting objects; for ex-
ample, the formatting of a paragraph (block for-
matting object) depends on both the specifica-
tion of properties on the block formatting object
and the specification of the layout structure into
which the block is placed by the formatter.

The properties associated with an instance of
a formatting object control the formatting of
that object. Some of the properties, for exam-
ple "color", directly specify the formatted re-
sult. Other properties, for example "space-be-
fore", only constrain the set of possible format-
ted results without specifying any particular for-
matted result. The formatter may make choices
among other possible considerations such as es-
thetics.

Formatting consists of the generation of a tree of
geometric areas, called the area tree. The geo-
metric areas are positioned on a sequence of one
or more pages (a browser typically uses a single
page). Each geometric area has a position on the
page, a specification of what to display in that
area and may have a background, padding, and
borders. For example, formatting a single char-
acter generates an area sufficiently large enough
to hold the glyph that is used to present the char-
acter visually and the glyph is what is displayed
in this area. These areas may be nested. For
example, the glyph may be positioned within a
line, within a block, within a page.

Rendering takes the area tree, the abstract model
of the presentation (in terms of pages and their
collections of areas), and causes a presentation
to appear on the relevant medium, such as a
browser window on a computer display screen
or sheets of paper. The semantics of rendering
are not described in detail in this specification.

2

More Complex XSL FO Test Document Some test lists

The first step in formatting is to "objectify" the
element and attribute tree obtained via an XSLT
transformation. Objectifying the tree basically
consists of turning the elements in the tree into
formatting object nodes and the attributes into
property specifications. The result of this step
is the formatting object tree.

As part of the step of objectifying, the char-
acters that occur in the result tree are replaced
by f o: c ha ra c te r nodes. Characters in text
nodes which consist solely of whitespace char-
acters and which are children of elements whose
corresponding formatting objects do not per-
mit f o :c h ar ac t er nodes as children are ig-
nored. Other characters within elements whose
corresponding formatting objects do not permit
fo : ch ar a ct e r nodes as children are errors.
The first phase of the Unicode Bidirectional Al-
gorithm is used to convert implicit Bidirectional
markup to explicit nodes with the appropriate
directional properties. Care is taken to insure
that the explicit nodes so introduced are prop-
erly nested in the formatting object tree.

The content of the f o: i ns tr e am - fo re i gn -
ob j ec t is not objectified; instead the object
representing the f o: i ns t re am - fo r ei gn - ob -
je c t element points to the appropriate node in
the element and attribute tree. Similarly any
non-XSL namespace child element of f o: d ec -
la r at io n s is not objectified; instead the ob-
ject representing the f o: d ec la r at i on s ele-
ment points to the appropriate node in the ele-
ment and attribute tree.

The second phase in formatting is to refine
the formatting object tree to produce the re-
fined formatting object tree. The refinement
process handles the mapping from properties to
traits. This consists of: (1) shorthand expansion
into individual properties, (2) mapping of corre-
sponding properties, (3) determining computed
values (may include expression evaluation), and
(4) inheritance. Details on refinement are found
in [5 Property Refinement / Resolution].

The third step in formatting is the construction
of the area tree. The area tree is generated
as described in the semantics of each format-
ting object. The traits applicable to each for-
matting object class control how the areas are
generated. Although every formatting property
may be specified on every formatting object, for
each formatting object class, only a subset of the
formatting properties are used to determine the
traits for objects of that class.

1.4 Some test lists
An Ordered List:

1. The 1st item in this 1st level list.
2. The 2nd item in this 1st level list.

a. The 1st item in this 2nd level list.
b. The 2nd item in this 2nd level list.

i. The 1st item in this 3rd level list.
ii. The 2nd item in this 3rd level

list.
1. The 1st item in this 4th level

list.
2. The 2nd item in this 4th

level list.
3. The 3rd item in this 4th

level list.
4. The 4th item in this 4th

level list.
iii. The 3rd item in this 3rd level

list.
iv. The 4th item in this 3rd level

list.
c. The 3rd item in this 2nd level list.
d. The 4th item in this 2nd level list.

3. The 3rd item in this 1st level list.
4. The 4th item in this 1st level list.

An Unordered List:
• The 1st item in this 1st level list.
• The 2nd item in this 1st level list.

o The 1st item in this 2nd level list.
o The 2nd item in this 2nd level list.

– The 1st item in this 3rd level list.

3

More Complex XSL FO Test Document Some test lists

– The 2nd item in this 3rd level list.

• The 1st item in this 4th level list.
• The 2nd item in this 4th level

list.
• The 3rd item in this 4th level

list.
• The 4th item in this 4th level

list.

– The 3rd item in this 3rd level list.
– The 4th item in this 3rd level list.

o The 3rd item in this 2nd level list.
o The 4th item in this 2nd level list.

• The 3rd item in this 1st level list.
• The 4th item in this 1st level list.

A Definition List:
Dweeb

young excitable person who may
mature into a Nerd or Geek

Hacker
a clever programmer

Nerd
technically bright but socially in-
ept person

4

More Complex XSL FO Test Document Paging and Scrolling

2 Benefits of XSL
Unlike the case of HTML, element names in
XML have no intrinsic presentation semantics.
Absent a stylesheet, a processor could not
possibly know how to render the content of
an XML document other than as an undiffer-
entiated string of characters. XSL provides
a comprehensive model and a vocabulary for
writing such stylesheets using XML syntax.
This document is intended for implementors of
such XSL processors. Although it can be used
as a reference manual for writers of XSL style
sheets, it is not tutorial in nature.
XSL builds on the prior work on Cascading
Style Sheets and the Document Style Seman-
tics and Specification Language. While many
of XSL’s formatting objects and properties cor-
respond to the common set of properties, this
would not be sufficient by itself to accomplish
all the goals of XSL. In particular, XSL intro-
duces a model for pagination and layout that ex-
tends what is currently available and that can in
turn be extended, in a straightforward way, to
page structures beyond the simple page models
described in this specification.

2.1 Paging and Scrolling
Doing both scrollable document windows
and pagination introduces new complexities
to the styling (and pagination) of XML con-
tent. Because pagination introduces arbitrary
boundaries (pages or regions on pages) on the
content, concepts such as the control of spacing
at page, region, and block boundaries become
extremely important. There are also concepts
related to adjusting the spaces between lines (to
adjust the page vertically) and between words
and letters (to justify the lines of text). These
do not always arise with simple scrollable doc-
ument windows, such as those found in today’s
browsers. However, there is a correspondence
between a page with multiple regions, such as a
body, header, footer, and left and right sidebars,
and a Web presentation using "frames". The

distribution of content into the regions is basi-
cally the same in both cases, and XSL handles
both cases in an analogous fashion.
XSL was developed to give designers control
over the features needed when documents are
paginated as well as to provide an equiva-
lent "frame" based structure for browsing on
the Web. To achieve this control, XSL has
extended the set of formatting objects and for-
matting properties. In addition, the selection
of XML source components that can be styled
(elements, attributes, text nodes, comments,
and processing instructions) is based on XSLT
and XPath, thus providing the user with an
extremely powerful selection mechanism.
The design of the formatting objects and proper-
ties extensions wasfirst inspiredby DSSSL. The
actual extensions, however, do not always look
like the DSSSL constructs on which they were
based. To either conform more closely with the
CSS2 specification or to handle cases more sim-
ply than in DSSSL, some extensions have di-
verged from DSSSL.
There are several ways in whichextensions were
made. In some cases, it sufficed to add new
values, as in the case of those added to reflect a
variety of writing-modes, such as top-to-bottom
and bottom-to-top, rather than just left-to-right
and right-to-left.
In other cases, common properties that are
expressed in CSS2 as one property with multi-
ple simultaneous values, are split into several
new properties to provide independent con-
trol over independent aspects of the property.
For example, the "white-space" property was
split into four properties: a "space-treatment"
property that controls how white-space is
processed, a "linefeed-treatment" property
that controls how line-feeds are processed, a
"white-space-collapse" property that controls
how multiple consecutive spaces are collapsed,
and a "wrap-option" property that controls

5

More Complex XSL FO Test Document Selectors and Tree Construction

whether lines are automatically wrapped when
they encounter a boundary, such as the edge
of a column. The effect of splitting a property
into two or more (sub-)properties is to make
the equivalent existing CSS2 property a "short-
hand" for the set of sub-properties it subsumes.

In still other cases, it was necessary to create
new properties. For example, there are a number
of new properties that control how hyphenation
is done. These include identifying the script and
country the text is from as well as such prop-
erties as "hyphenation-character" (which varies
from script to script).

Some of the formatting objects and many of the
properties in XSL come from the CSS2 specifi-
cation, ensuring compatibility between the two.

There are four classes of XSL properties that can
be identified as:

1. CSS properties by copy (unchanged
from their CSS2 semantics)

2. CSS properties with extended values
(some of the extended values handle
new semantics while others subsume
semantics of one or more existing CSS
property values, sometimes due to the
need to provide writing-direction inde-
pendent controls)

3. CSS properties broken apart and/or ex-
tended

4. XSL-only properties

2.2 Selectors and Tree Construction

As mentioned above, XSL uses XSLT and
XPath for tree construction and pattern selec-
tion, thus providing a high degree of control
over how portions of the source content are
presented, and what properties are associated
with those content portions, even where mixed
namespaces are involved.

For example, the patterns of XPath allow the se-
lection of a portion of a string or the Nth text
node in a paragraph. This allows users to have

a rule that makes all third paragraphs in proce-
dural steps appear in bold, for instance. In ad-
dition, properties can be associated with a con-
tent portion based on the numeric value of that
content portion or attributes on the containing
element. This allows one to have a style rule
that makes negative values appear in "red" and
positive values appear in "black". Also, text can
be generated depending on a particular context
in the source tree, or portions of the source tree
may be presented multiple times with different
styles.

2.3 An Extended Page Layout Model
There is a set of formatting objects in XSL to
describe both the layout structure of a page or
"frame" (how big is the body; are there multiple
columns; are there headers, footers, or sidebars;
how big are these) and the rules by which the
XML source content is placed into these "con-
tainers".
The layout structure is defined in terms of
one or more instances of a "simple-page-mas-
ter" formatting object. This formatting object
allows one to define independently filled re-
gions for the body (with multiple columns), a
header, a footer, and sidebars on a page. These
simple-page-masters can be used in page se-
quences that specify in which order the various
simple-page-masters shall be used. The page
sequence also specifies how styled content is
to fill those pages. This model allows one to
specify a sequence of simple-page-masters for
a book chapter where the page instances are
automatically generated by the formatter or an
explicit sequence of pages such as used in a
magazine layout. Styled content is assigned to
the various regions on a page by associating
the name of the region with names attached to
styled content in the result tree.
In addition to these layout formatting objects
and properties, there are properties designed to
provide the level of control over formatting that
is typical of paginated documents. This includes
control over hyphenation, and expanding the

6

More Complex XSL FO Test Document A Comprehensive Area Model

control over text that is kept with other text in
the same line, column, or on the same page.

2.4 A Comprehensive Area Model

The extension of the properties and formatting
objects, particularly in the area on control over
the spacing of blocks, lines, and page regions
and within lines, necessitated an extension of
the CSS2 box formatting model. This extended
model is described in [4 Area Model] of this
specification. The CSS2 box model is a sub-
set of this model. See the mapping of the CSS2
box model terminology to the XSL Area Model
terminology in [7.2 XSL Areas and the CSS
Box Model]. The area model provides a vocab-
ulary for describing the relationships and space-
adjustment between letters, words, lines, and
blocks.

2.5 Internationalization and Writing-Modes

There are some scripts, in particular in the Far
East, that are typically set with words proceed-
ing from top-to-bottom and lines proceeding
either from right-to-left (most common) or
from left-to-right. Other directions are also
used. Properties expressed in terms of a fixed,
absolute frame of reference (using top, bottom,
left, and right) and which apply only to a notion
of words proceeding from left to right or right
to left do not generalize well to text written in
those scripts.

For this reason XSL (and before it DSSSL) uses
a relative frame of reference for the formatting
object and property descriptions. Just as the
CSS2 frame of reference has four directions
(top, bottom, left and right), so does the XSL
relative frame of reference have four directions
(before, after, start, and end), but these are rela-
tive to the "writing-mode". The "writing-mode"
property is a way of controlling the directions
needed by a formatter to correctly place glyphs,
words, lines, blocks, etc. on the page or screen.
The "writing-mode" expresses the basic direc-
tions noted above. There are writing-modes

for "left-to-right--top-to-bottom" (denoted as
"lr-tb"), "right-to-left--top-to-bottom" (de-
noted as "rl-tb"), "top-to-bottom--right-to-left"
(denoted as "tb-rl") and more. See [7.25.7
"writing-mode"] for the description of the
"writing-mode" property. Typically, the writ-
ing-mode value specifies two directions: the
first is the inline-progression-direction which
determines the direction in which words will
be placed and the second is the block-progres-
sion-direction which determines the direction
in which blocks (and lines) are placed one after
another.

Besides the directions that are explicit in the
name of the value of the "writing-mode" prop-
erty, the writing-mode determines other direc-
tions needed by the formatter, such as the shift-
direction (used for sub- and super-scripts), etc.

2.6 Linking

Because XML, unlike HTML, has no built-in
semantics, there is no built-in notion of a hy-
pertext link. In this context, "link" refers both
to "hypertext link" as defined in the HyperText
Markup Language specification as well as some
of the aspects of "link" as defined in the XML
Linking specification. The XLink specification
broadens the meaning of a "link" in XML to al-
low it to represent "a relationship between two
or more resources or portions of resources, made
explicit by an XLink linking element". There-
fore, XSL has a formatting object that expresses
the dual semantics of formatting the content of
the link reference and the semantics of follow-
ing the link.

NOTE:
During the CR period the XSL WG
and Linking WG will jointly develop
additional examples and guidance on
how to use these formatting objects
given XPointer and XLink XML
source.

7

More Complex XSL FO Test Document Linking

XSL provides a few mechanisms for changing
the presentation of a link target that is being vis-
ited. One of these mechanisms permits indicat-
ing the link target as such; another allows for
control over the placement of the link target in
the viewing area; still another gives some con-
trol over the way the link target is displayed in
relationship to the originating link anchor.

XSL also provides a general mechanism for
changing the way elements are formatted de-
pending on their active state. This is particularly
useful in relation to links, to indicate whether a
given link reference has already been visited, or
to apply a given style depending on whether the
mouse, for instance, is hovering over the link
reference or not.

8

