How Security Keys work

1. Challenge was: 123456
 Origin was: google.com

2. Alice's Security Key

3. Who's calling?
 challenge, "google.com"

4. Alice's Key
 sign: {challenge, "google.com"}

5. {challenge, "google.com"}_signed

6. Server
 Alice's Key
 Challenge was: 123456
 Origin was: google.com
Registration Recap

1. **Relying Party** generates challenge
 ○ Prevents replay
2. **Client** validates origin
 ○ Prevents phishing
3. **Authenticator** checks user presence and consent
 ○ Prevents silent tracking
4. **Authenticator** creates key pair
 ○ No secret is shared with Relying Party
5. **Relying Party** verifies attestation signature
 ○ Prevents phishing
 ○ Proof that private key is safe
What is CTAP?

- Authenticator generates and securely stores credentials
- Communicates over USB, NFC, or Bluetooth
- Private keys, PINs, and biometric information never leave the authenticator
- CTAP2 Data format: Concise Binary Object Representation (CBOR)
What is WebAuthn?

- WebAuthn (JavaScript) API lets Browser, Client talk about external or platform (embedded) authenticators. **It is 2-party interaction.**
- Enables the creation and use of strong, attested, scoped, public key-based credentials for use by web applications.
- Strongly authenticates users.
- All major browsers are on track to implement full Web Authentication APIs. Chrome, Edge, Mozilla all support now.
Evolution of FIDO Authentication to FIDO2

U2F
- User Agent
 - U2F.js
- CTAP1
- FIDO U2F Authenticator

FIDO2
- Platform
 - WebAuthn
- CTAP1
- CTAP2
- FIDO2 Authenticator

U2F
- Phishing resistant authentication with user intent
- Multi-Factor Authentication (MFA) Subset
 - Authenticator - something you have
 - Password - something you know

FIDO2
- True MFA
 - Authenticator - something you have
 - User verification - something you know (PIN) or are (Biometrics)
WebAuthn and CTAP2

[Diagram of WebAuthn and CTAP2 architecture]
State of state

- CTAP2 in final review at FIDO; standardization soon
- WebAuthn clearing up some issues for move to PR (resolution soon, PR early 2019?).
- New FIDO2 (CTAP2/WebAuthn) features:
 - Resident Keys provide first-factor, high assurance MFA, and enable passwordless authentication
 - HMAC support to enable offline authentication
- Migration path to WebAuthn exists for U2F devices, credentials
- FIDO UAF features, such as transactions, part of Level 2 W3C work
EAT (more)

- Web Authn WG looking at this in IETF
- Key use is with payment handlers that open a new window
- We don’t anticipate any extra work in CredMan
- Been seeking guidance via Mike West
FIDO and Authenticators

Dr. Rae Hayward
Certification Director
FIDO Alliance
BENEFITS TO CERTIFICATION

Validation

Interoperable

Rigorous testing

Trust

Competitive edge

Market expansion
FIDO AUTHENTICATOR CERTIFICATION

• Validates the security characteristics of authenticator implementations
• Functional is a prerequisite
<table>
<thead>
<tr>
<th>SAMPLE DEVICE HARDWARE & SOFTWARE REQUIREMENTS</th>
<th>DEFENDS AGAINST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection against chip fault injection, invasive attacks...</td>
<td>L3+ Captured devices (chip-level attacks)</td>
</tr>
<tr>
<td>Circuit board potting, package on package memory, encrypted RAM...</td>
<td>L3 Captured devices (circuit board level attacks)</td>
</tr>
<tr>
<td>Restricted Operating Environment (ROE) (e.g., TEE or Secure Element in a phone, USB token or Smart Card which are intrinsically ROEs, other...)</td>
<td>L2+ Device OS compromise (defended by ROE)</td>
</tr>
<tr>
<td>Any device HW or SW</td>
<td>L2 Device OS compromise (defended by white-box cryptography)</td>
</tr>
<tr>
<td></td>
<td>L1+ Device OS compromise (defended by white-box cryptography)</td>
</tr>
<tr>
<td></td>
<td>L1 Phishing, server credential breaches & MiTM attacks (better than passwords)</td>
</tr>
</tbody>
</table>
LEVEL 1

- Better than passwords
 - FIDO is unfishable and biometrics are more convenient
- Keys and biometric templates are protected similar to passwords stored by a browser or password manager app
- Requires best facilities offered by hosting OS
- L1+ adds white-box cryptography (obfuscation and other techniques) to defend against compromise of hosting OS

Examples

- Android or iOS applications
- Platform built-in authenticators
- Level 2- or Level 3-capable authenticators not yet certified at Level 2 or Level 3

Certification Process

- Vendor documents their design in detail
- L1+ only: Evaluation by FIDO-accredited lab, penetration testing (L1+ program still in development)
- Evaluation by FIDO Alliance Security Secretariat
LEVEL 2

In addition to L1

• A restricted operating environment like a TEE gives security even if OS is compromised.

• Separate USB, BLE and NFC authenticators are considered to use a restricted operating environment

• Gives defense against larger scale attacks

• Additional assurance at L2+

Examples

• Android apps using FIDO Level 2 certified phone (there aren’t any yet)

• USB, BLE and NFC Security Keys

• Level 3-capable authenticators that haven’t yet been certified at Level 3

Certification Process

Vendor documents their design in detail
L2+ only: Vendor submits source code (L2+ program still in development)

Evaluation by a FIDO-accredited lab
L2+ only: Attack potential calculation, pen testing
LEVEL 3

In addition to L2

• Defends against physically captured authenticators

• Defenses against disassembling, probing, glitch and other such physical attacks

• L3+ adds defense against chip-level physical attacks, such as decapping and probing the chip

Examples

• USB, BLE and NFC Security Keys using Secure Elements or other means of defending HW attacks

• In some case phone or platform authenticators may achieve L3, but is difficult

Certification Process

Vendor documents their design in detail
Vendor submits source code

Evaluation by a FIDO-accredited lab (L3, L3+)
Attack potential calculation and penetration testing
L3+ only: Higher attack potential requirements
COMPANION PROGRAMS

Re use as much as possible from other programs like Common Criteria
 • Reduces time, effort and cost of certification for authenticator vendors, sometimes by quite a lot

Companion programs never cover all FIDO requirements; they were not developed specifically for authenticators
 • Even with advanced companion programs, vendors will have to go through additional certification with the FIDO Alliance

<table>
<thead>
<tr>
<th>Companion Program</th>
<th>FIDO Security Level</th>
<th>Program Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Criteria AVA_VAN 3</td>
<td>L3</td>
<td>Operating</td>
</tr>
<tr>
<td>Common Criteria AVA_VAN 4</td>
<td>L3+</td>
<td>Operating</td>
</tr>
<tr>
<td>FIPS</td>
<td>L2+, L3</td>
<td>In development</td>
</tr>
<tr>
<td>Global Platform TEE Protection</td>
<td>L2+</td>
<td>In development</td>
</tr>
<tr>
<td>Profile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Authentication-specific		
End-device configuration		
Cryptographic algorithms		
Companion program		
FIDO ACCREDITED LABS

L2

L3, L3+

UL
CAICT
BCTC
brightsight
Applus laboratories
riscure
TTA
OPLS Lab
leti
EXPIRATION, DERIVATIVE & DELTA CERTIFICATION

Security Requirements 1.2

xPhone Asteroid1 32GB
Authenticator v1

Derivative

xPhone Asteroid2 32GB
Authenticator v1

Delta

xPhone Asteroid3 32GB
Authenticator v2

Security Requirements 1.3

xPhone Asteroid1 64GB
Authenticator v1

Delta

xPhone Asteroid1 64GB
Authenticator v1

Delta

xPhone Asteroid1 64GB
Authenticator v1.1 (fixed)

No Expiration
- Certification of a given product never expires
- Recertification against new versions of the requirements is optional

Derivative certification
- No change to FIDO functionality allowed
- Surrounding functionality may change
- Packaging & product name may change
- No re evaluation of security

Delta Certification
- When the FIDO functionality changes
- Recertification against new requirements
- After fix to close a vulnerability
- Reevaluation of security is required