Permissions Workshop Position Paper

The web's existing permission model has evolved in an ad-hoc way. This evolution has been
shaped by many forces, including:

Abuse and annoyance of users

e Concerns about user understanding of, and control over, potentially dangerous
capabilities
Implications of the Same Origin Policy, the Web's fundamental actor model
Evolving API design practice and the need for backwards compatibility

An overriding concern for browser vendors has been (and continues to be) the need to adjust
policies in a relatively dynamic way, for instance by denying iframes the ability to request certain
permissions by default, or the need to deny certain capabilities in various situations. These
adjustments are not part of any specification, and browsers require the flexibility to
independently intervene on the user's behalf. This requirement has motivated the Chrome
Team's dual pursuits of a more uniform Permissions API and a modern stance that standards
must not attempt to be prescriptive about when and how browsers request that users mediate
permission choices.

In our view, today's Permissions model and API| surface area should be heavily revised to better
support these goals and to enable more flexible permission policies. This view comes from an
acknowledgement that existing permission-requesting APls frequently annoy users to such an
extent that browser intervention to prevent low-quality prompts is inevitable (e.g., the case of the
current scourge of prompt-on-landing requests for Push Notifications).

Therefore, our position is that the current reflection-only surface area of the Web Permissions
API should be expanded in the following ways:

1. The ability to request user mediation of a capability (e.g., a prompt) is itself a
system-gated capability, and our APIs should model this capability. These decisions may
be made based on complex inputs, both local and remote. For example, we wish to gate
the ability to request Notifications on a calculation based on user engagement with a
particular site as well as a global reputation score.

Therefore, we propose that Permission-requesting APIs need to introduce the ability for
developers to register interest in a capability before ever being allowed to prompt users


mailto:slightlyoff@google.com
https://w3c.github.io/permissions/

and to be called back (by event, e.g.) when the situation changes in their favor.

2. Permissions requests should be centralized on a single method to enable the
introduction of better user controls and developer consistency. For instance, we are
interested in providing developers and users the ability to negotiate time-limited
permission grants. Retrofitting the ‘request®()" methods for every API to create a
consistent way to model this time limiting presents a years-long task.

Therefore, we propose that we should, instead, fast-track something like the unified
permission request proposal as a modern, Promise-compatible, extensible entrypoint for
developers to supplant the myriad, inconsistent legacy permission request methods. We
recognize that the previous proposals may only serve as a jumping-off point for a new
design effort.

3. Developers should be able to ensure their applications operate with |least-privilege. This
is critical in allowing the construction of accurate in-app toggle Ul for permissions as well
as for security-conscious sites to ensure that they can attenuate incorrectly granted
capabilities post-incident.

Therefore, we propose that the Permissions API should be extended with a “revoke()’
method (naming very much TBD).

4. Developers should be able to declaratively specify maximum-privilege extent.
Therefore, we propose that the Web Application Manifest should be extended to include

fields which allow sites to identify to the runtime a maximum set of permissions.
Requests for permissions not included in this list should fail (when the list is provided).

We believe that these additions, combined with the web's historically cautious grant of
capabilities, provide invaluable tools to developers, users, and browsers. Browsers will continue
to expand the set of capabilities available to developers to enable them to compete against
other platforms that compete for developer investment; a unified model for requesting and
managing them is long overdue.


https://wicg.github.io/permissions-request/
https://wicg.github.io/permissions-request/
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://developer.mozilla.org/en-US/docs/Web/Manifest







