
Reexamining Consent
Mozilla position paper for the ​W3C Workshop on Permissions and User Consent​.

Contact: ​Martin Thomson​, ​Marcos Caceres​.

Introduction
The strength of the web lies in its ability to form casual interactions. The freedom of
movement that the hyperlink enables is only realized because browsers make following
links safe. That it is safe to follow any link is the foundation of trust in the web as an
application and communications platform.

The role of informed consent in ensuring that the web remains safe is complex. The
consequences of a choice can be complex. In seeking to make powerful capabilities
available to the web, consent is often a poor means of controlling access.

A browser typically requests consent because of the potential for negative consequences.
In asking a question, the goal should be to ensure that a person understands and
acknowledges all potential negative consequences. That is, should a negative outcome
arise, an individual would recognize that they acceded to this possibility, even if this
represents a violation of trust by those involved.

This paper explores central concepts in consent and proposes four concepts that we
believe should govern the development of new permissions interactions. Then we explore
the use of permissions using those principles. Finally, we explore some trends in the use of
permissions and their relation to these central concepts.

Concepts
The notion of informed consent has a rich history in academic literature, being critical to
the both the practice and research of medicine. Though intended for use in medical
research, the ​Belmont Report​ describes a useful three-part taxonomy for ​informed
consent​:

● Information​: The disclosure of information about what is being consented to. The
information provided needs to be complete.

● Comprehension​: An assessment of whether the disclosed information has been
understood.

● Voluntariness​: This concept encompasses both competency (the right to make the
decision) and freedom from coercion.

We’ll examine these concepts in relation to the role of consent on the web. Web features
are used to illustrate the limitations and shortcomings of informed consent.

https://www.w3.org/Privacy/permissions-ws-2018/cfp.html
mailto:mt@mozilla.com
mailto:mcaceres@mozilla.com
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html#xinform

We also argue that informed consent, though a necessary part of any permissions
interaction, is not sufficient to ensure continuing trust in the web. We propose that—in
addition to informed consent—​accountability​ is a necessary additional condition for
enabling features.

Sites with access to capabilities beyond those granted to other sites need to remain
accountable for the actions they take. With a permissions model that assumes a persistent
grant of capabilities, accountability means two things: providing ways in which access can
be monitored, and providing effective means of revocation.

Both informed consent and accountability need to be considered in assessing, designing,
and standardizing new features.

Information and Comprehension
The ability to present complete and accurate information can be challenging. What is often
simple at face value can hold complexity that is hard to communicate effectively.

For instance, APIs that enable access to a microphone or ​screen sharing​ seem fairly
understandable at face value. The obvious risks can mask other more subtle problems. For
instance, the capture of ultrasonics can be used as a covert channel between machines in
the same room. Or maybe the audio from fans can be recovered and used to measure the
room temperature and CPU load. Screen sharing potentially allows sites to access
information on other sites that would not otherwise be available to them and in ways that
those sites might not be prepared to defend against.

The same story plays out in many ways. The use of a ​battery status API for tracking​, the
recovery of passwords using an accelerometer API​, the use of an ​ambient light sensors to
recover cross-origin content​. In some of these cases, the risks were only discovered after
independent research on the subject. Expecting that information is both available and
understood has been shown to be a particularly difficult problem. When it is hard for
browser vendors to understand the full ramifications of features, expecting non-experts to
understand and make the right decisions might be unreasonable.

Voluntariness
The role of a user agent in ensuring that permissions are voluntary is a difficult problem for
user experience designers.

The Norwegian Consumer Council (Forbrukerrådet) ​report​ on consent as it pertains to use
on a number of major sites highlights the risks inherent in obtaining informed consent.
The report highlights several ways in which subtle coercion might be used to influence
outcomes. Special care is needed in framing of questions, the language used, and the
default option.

https://w3c.github.io/mediacapture-screen-share/
https://www.theguardian.com/technology/2016/aug/02/battery-status-indicators-tracking-online
http://www.news.gatech.edu/2011/10/17/georgia-tech-turns-iphone-spiphone
https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/
https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/
https://fil.forbrukerradet.no/wp-content/uploads/2018/06/2018-06-27-deceived-by-design-final.pdf

In many cases, permission to access a capability is not explicit. For instance, the ability to
open a new window or access a fullscreen display is often implicitly granted in response to
a user gesture (a mouse click, tap, or keypress). This sort of inference is critical to the
functioning of a modern browser. Browsers limit the capabilities that are implicitly granted
in this fashion; this sort of access is often limited to capabilities that are short-lived or
easily revoked.

Accountability
The web overall has excellent accountability characteristics. Sites gain access to a window
on which they are able to render literally anything. Sites can execute script within a
sandbox, access the network under certain restrictions, and accept user input that is
directed at them. When that window is closed, all these capabilities are revoked and the
site no longer has any further ability to operate.

Of course, this is a gross simplification. Even though access to capabilities beyond this are
now generally carefully circumscribed. A more thorough ​inventory of the capabilities of
the platform and their access control mechanisms​ is maintained by Jeffrey Yaskin.

Ensuring that a site remains accountable for the features that it uses can be difficult. For
instance, ​Service Workers​ can operate beyond the time that a site remains open.

Case Studies
Geolocation
Geolocation was one of the first features to be gated behind a permissions prompt, if not
the first. Here, the information needed to make a good decision is clear and concise,
removing concerns about comprehension. The non-modal interaction model (on desktop
at least) and UX paradigms chosen by various browsers avoids the worst questions about
coercion.

In terms of accountability, browsers differ in how they display active access to the API (e.g.,
Privacy of Geolocation Implementations​). Whether an indicator is shown for sites that
access the API varies. However, all tested browsers provide a means of revoking access in
the site control panel (the dialog that is usually accessed by clicking on the lock icon).

Thus, geolocation might be held up as the gold standard in terms of informed consent and
accountability. However, this is not necessarily the entire story. Acceptance rates for
geolocation are dramatically lower than for other APIs. This is partly reflective of
widespread poor practice on the part of sites that prompt immediately on first impression.
More research will be necessary to understand the underlying reasons.

https://docs.google.com/spreadsheets/d/1xWK4uf5O3v7xTo85U3X0gGVNfJLD8_W8Zt93BO37we4/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1xWK4uf5O3v7xTo85U3X0gGVNfJLD8_W8Zt93BO37we4/edit?usp=sharing
https://github.com/w3c/ServiceWorker
http://marcosc.com/wp-content/uploads/2010/06/caceres_marcos_geopriv.pdf

Opening Windows
The ability to open a new window was one of the first web capabilities to see abuse and
restriction. The misuse of the ​window.open() ​ API for various purposes had a serious
impact on the trust in the web. Without constraints on its use, this API could rapidly
render a machine unusable.

Browsers introduced “popup blocking”, which is generally a simple requirement to restrict
calls of window.open to one call for each engagement gesture. This can produce an
experience similar to the permissions prompt if a popup is blocked.

Audio Playback
The story of audio playback is similar to that of popups. Abuse of the capability has lead to
browsers producing better accountability in the form of indicators, but also with the ability
to mute a page.

This followed the “ask for forgiveness” approach, where permissions are granted by default,
but with effective means of revoking that access. However, that was not proven to be
effective and so we have seen further restrictions on playback, particularly at the time that
a page loads.

Recent Trends
This area continues to evolve rapidly. Here are a few developments that should be
considered.

Feature Policy
The introduction of ​Feature Policy​ represents a simplification of the permissions model.
Today, the browsing context that requests a permission could be any origin. Though the
top-level browsing context shows one origin, the origin that requests access to an API that
requires consent might be different. This presents a challenge for browsers in effectively
communicating what is going on, and a pretty significant risk to comprehension.

Feature Policy makes the top-level browsing context responsible for all permissions. If
framed contexts want access to capabilities, the top-level context is the one that acquires
permission. The top-level context is then responsible for passing that capability to the
framed context.

There will be challenges for capabilities that are currently available in framed contexts, but
this change is a generally positive one.

(Feature Policy has a CSP-style policy language that is currently coupled to this important
change. That aspect of the proposal is less clearly positive.)

https://html.spec.whatwg.org/multipage/window-object.html#dom-open
https://wicg.github.io/feature-policy/

Permission Bundling
Some features that depend on consent, like geolocation, are often clear and crisp.
However, new features are emerging that are challenging to explain.

Notifications permissions are commonly interpreted as allowing access to the ​Push API​.
On face value, this seems OK, but it means that sites are able to send push notifications to
idle browsers without any visible effect. Browsers are still experimenting with the right
way to ensure accountability for this API. The more promising ideas concentrate on having
access expire in different ways with a visit to the site refreshing the access.

WebRTC decided that it was essentially impossible to explain the consequences of its ​use
of IP addresses​ and so they decided to enable use of the more privacy-sensitive addresses
when ​getUserMedia​ permissions are granted. The operating principle seemingly that the
incremental damage to privacy is negligible.

The consequence of this sort of bundling is that it can violate expectations. It is surprising
when the capabilities that a site has access to change in non-obvious ways. These
expectations are built around the permissions that are requested, how those permissions
are used in practice, and the feedback provided about use of permissions. For instance, it
might be reasonable to assume that geolocation permissions are only available while a site
is active; extending that permission to include access to that information from a Service
Worker would change what is understood to be the scope of that permission.

Accountability for CPU Access
Browsers are lacking accountability measures for when sites abuse access to
computational resources. Historically, this was limited to sites that ran infinite loops, which
could cause a browser to become completely unresponsive. However, this is really only
effective in exposing bugs. Consistent and sustained CPU (or GPU) access can be hard to
attribute to a particular site.

Recent trends to limit and reduce the priority of access to the CPU for background and
framed browsing contexts is a positive development. As browsers move to more granular
process isolation techniques, it might become easier to provide more detailed information
on badly behaving sites.

Conclusions
To make the web more capable risks that which is the web’s most significant advantage:
trust.

We cannot assume that the web needs every new feature - or every feature found in
competing platforms. Using consent as a means of offloading responsibility for the safety
of features is irresponsible, and should be considered a bad practice. In deploying a feature

https://www.w3.org/TR/push-api/
https://datatracker.ietf.org/doc/draft-ietf-rtcweb-ip-handling/
https://datatracker.ietf.org/doc/draft-ietf-rtcweb-ip-handling/
https://w3c.github.io/mediacapture-main/

to the web, browsers need to do everything they can to guarantee that the consequences
of a bad choice are limited and can be observed and stopped - or reversed if possible.

This doesn’t mean that it isn’t possible to ship new, powerful capabilities, but it means that
the bar is higher. Where consent is used as a way to control access to these features, it is
necessary to take care to ensure that consent is informed.

Consent is a subtle tool, and we would be wise not to overuse it or rely on it too heavily.

For Discussion and Investigation
This paper covers a number of topics, but does not address the entire spectrum of subjects.
We hope to continue to have discussions on other questions, such as:

● How do browsers store and manage permissions? The duration and scope over
which a permission grant is given is not well understood. A comprehensive
description of how permissions are managed in browsers might be valuable. This is
not meant to imply that browsers would be required to apply consistent policies.

● Does it matter if permissions are deferred to a separate API (i.e., what’s the scope of
the Permissions API - why things like .revoke() might be problematic?) - or should
permissions be requested by each individual feature?

● The safeguards user agents apply to different platform features differs based on the
capability. Consistent use of recognizably similar safeguards has value, if only
because a consistent design language reduces the potential for problems that
misunderstanding might produce.

