W3C rule interchange format
Rule interchange

Application A

Rule system 1

Data

Rule interchange

<XML doc>

Data model (OWL, RDF-S, XML-S, XMI, ...)

de-serial.

Rules

Application B

Rule system 2

Data

<XML doc>

Rules

de-serial.
Rules interchange

Policy setting organisation (regulator)

specifies rules (CIM level)

Compliance organisation

• Specifies operational interpretation of rules (PIM level)
• Merges rules from relevant sources

Policy compliant organisation (regulated)

Implements rules (PSM level)

Implements rules
Negotiating eCommerce Transactions Through Disclosure of Buyer and Seller Policies and Preferences

• In order to grant access a buyer must provide valid credit card information together with delivery information (address, postal code, city, and country)

Forall ?buyer
 Forall ?card ?address
 such that (?buyer[ex:creditCard->?card
 ex:deliveryAddress->?address])
 if ex:validAddress(?address) and ex:validCreditCard(?card)
 then Execute(ex:grantAccess(?buyer))

ex:validAddress(?address) :-
 Exists ?x ?y ?z …
 ex:isValidZip(?x ?y ?z)
 ...

• Disclose Alice's credit card information only to online shops belonging to the Better Business Bureau
• For anonymity reasons, never provide both her birth date and postal code.
Interchanging Rule Extensions to OWL

• “A rule is used to express the dependency between the ontology properties isMAEConnectedTo and isMAEBoundedBy, in particular (a simplified form of) the knowledge that two Material Anatomical Entities having a shared boundary are connected”

\[
\text{Forall } ?x \ ?y \ ?z \\
(?x[\text{isMAEConnectedTo}]->?y :- \\
\text{And}(?x[\text{isMAEBoundedBy}]->?z] \\
\text{?y[isMAEBoundedBy}]->?z]))
\]
Publishing Rules for Interlinked Metadata

- Every science fiction movie is a movie
 \[\text{?Movie}\#\text{ex:Movie} :- ?Movie\#\text{ex:ScienceFictionMovie}\]
- Every movie produced before 1930 is black and white
 \[\text{?Movie}\#\text{ex:BlackWhiteMovie} :-
 \quad ?\text{Movie}\#\text{ex:Movie}[\text{ex:date} -> ?\text{Date}], ?\text{Date} < "1930"^{\text{xs:dateTime}}\]
- All movies listed at http://altmd.example.org but not listed at http://imd.example.org are independent movies
 \[\text{?Movie}\#\text{ex:IndependentMovie} :-
 \quad \text{listed(?Movie\#\text{ex:Movie},http://altmd.example.org)}
 \quad \text{not(listed(?Movie\#\text{ex:Movie},<http://imd.example.org>))}\]
- All movies with budgets below 5 million USD are low-budget movies.
 \[\text{?Movie}\#\text{ex:LowBudgetMovie} :-
 \quad ?\text{Movie}\#\text{ex:Movie}[\text{date} -> ?\text{Date}, \text{budget} -> ?\text{Budget}]
 \quad ?\text{Budget} < 5000000^{\text{xs:long}}\]
- All of these can be expressed with OWL, but not all of them belongs in an ontology
Publishing Rules for Interlinked Metadata

• FOAF user Charlie might choose to complement his normal FOAF profile with his preferences about which of his phone numbers should be used depending on his iCalendar schedule:
 – If Charlie is currently in a meeting according to http://charlie.example.org/calender.ical and the importance is high then call his cell number
 – If Charlie is currently attending a public talk according to http://charlie.example.org/calender.ical then leave him a voicemail message
 – If Charlie currently has no appointments according to http://charlie.example.org/calender.ical then call his office number
Access control policies

• PRIME
 \(<subject>\) with \([<subject_expression>]\) can \(<actions>\) on \(<object>\)
 with \([<object_expression>]\) for \(<purposes>\) if \([<conditions>]\)

• RIF-BLD
 \(\text{Forall } ?\text{subject } ?\text{object}\)
 \(\text{prime:allowed(prime:action } ?\text{object prime:purpose) :-}\)
 \(\text{And}(subject_expression \text{ object_expression conditions})\)

• RIF-PRD
 \(\text{Forall } ?\text{subject such that (subject_expression)}\)
 \(\text{Forall } ?\text{object such that (object_expression)}\)
 \(\text{If conditions then Execute(prime:action(?object prime:purpose))}\)
What is the Rule Interchange Format?

• Format for interchanging rules, so they can be used across diverse systems
 – allowing rules written for one application to be published, shared, and re-used in other applications and other rule engines.
 – In a semantic preserving way (between languages with compatible semantics)
 – Encouraging interoperability
 – XML syntax
 – Compatible with relevant standards (PRR, RDF, OWL, …)

• A rule is (just another) data item
 – RIF provides a standard means to feed rules into an application (at run time)
 – Semantics to prescribe (intended) application’s behaviour
RIF Background: standards

• The early days of rule interchange
 – 1998: KIF – Knowledge Interchange Format
 – 2000: RuleML
 – 2001: SRML – Simple Rule Markup Language (Colleen and Changhai)
 – ...

• 2001-2004: JSR 94 – Java rule engine API
 – Prescribes a set of fundamental rule engine operations (i.e. loading rulesets, parsing rules, adding objects to an engine, firing rules, and getting resultant objects from the engine)
 – Engine semantics are not defined, so the API and specification are very high level (JDBC API ... without SQL)
 – No underlying rule language, hence no API to introspect rules, create rulesets, provide pluggable parsers etc.

• 2003-2008: OMG PRR – Production Rule Representation
 – “A metamodel for a language that can be used with UML models for explicitly representing production rules as visible, separate and primary model elements in UML models”
 • A MOF/UML meta-model and an UML profile
 • Addresses the PIM level of MDA
 – Engine semantics are defined (forward chaining + sequential)
 – No underlying rule language: PRR Core + non-normative PRR OCL

• April 2005: W3C workshop on rule languages for interoperability
• November 2005: W3C Rule Interchange Format working group chartered
• OMG SBVR, ISO Common Logic, …
RIF Background: semantic Web

• Semantic web approach
 – interoperability requires a formal semantics

• The OWL WG approach
 – Start with something (DAML+OIL)

• Literally *hundreds* of rule system implementations
 – ISO-Prolog, CLIPS, OPS…
 – Already several “SW” rule languages
 • SWRL, RuleML, WRL, SWSL, KAON2, TRIPLE, JenaRules…
 – Everyone wants “their” system/technique/theory to be the SW rule standard
Wherefore the RIFt(s)?

- **OWL DL < OWL < FOL**
 - Original idea to add full first-order at the logic level
 - Semantic web very “open world”
- **Most back-end DBs support closed queries**
- **Many rule systems have non-FO features**
 - CWA/NAF
 - Procedural Attachment
 - Rule ordering
 - Non-monotonicity
 ... can’t be layered on OWL
- **Not a strict SW layering already**
 - OWL restricted dialects (DL) not layered on (all of) RDF/S semantics
 - RDF & RDFS not layered at all
RIF Background: Business rules

- “Business Rule systems” Vendors
 - $1B/year existing market
 - 1,000’s end users
 - 1,000,000’s rules in use
 - ILOG, Fair Isaac, Haley, ...

- Database vendors
 - Oracle, IBM

- OMG PRR effort
 - Simple production rules
 - Event-condition-action
 - Vendors understand the value of standardization (see also JSR 94)
 - Interchange already a priority
 - ...a common semantics?
W3C RIF working group

• W3C working group
 – Chartered Nov. 05 (for 2 years)
 • Phase 1: extensible XML rule interchange format, Horn expressiveness, semantic Web compatibility
 – Kick-off Dec. 05
 • March 06: FPWD UCR
 • March 07: FPWD Core
 • Oct. 07: FPWD BLD
 – Extended Nov. 07 (for 6 months)
 • BLD to Last Call
 – Extended May 08 (for 1 year)
 • BLD, SWC to REC
 • FLD, DTB, PRD, extensibility

• 74 participants from 35 organisations
 – IBM, HP, Oracle, ILOG, JBoss, Fair Isaac, Corticon, Tibco, MITRE…
 – NIST, OMG (esp. SBVR and PRR), RuleML…
 – Research organisations, universities…
 – And 4 invited experts
 – Chairs: Chris Welty (IBM), Christian de Sainte Marie (ILOG)

• Working in the public eye
 – Under the W3C patent policy
W3C RIF: Design issues

• Very large number of rule users/use cases and types to satisfy!!!
 – Descriptive {OMG MDA level = CIM} VS executable rules {OMG MDA level = PIM & PSM}
 – Logical (side-effect free) VS active (side-effect full) rules
 – Data-oriented (SQL triggers, PR, …) VS proof-oriented (FOL…)
 • All kinds of different data sources (DB, WM, OO, OWL…)
 – Semantic Web VS non-SW usage

• Simplicity VS coverage
• Extensibility VS compliance VS interoperability
• Executable (AST) VS human-readable syntax
• …
Superset approach
Super-set approach

• Define a super-language so expressive that any language can be translated to/from it
 – The CL and IKL approach
 @deprecated: infeasible for this group, as major differences appeared irreconcilable (e.g. non-mon vs. mon)
A common core...
...and standard dialects
Core + standard dialects

• Define a *core* language that accounts for the intersection of all rule language capabilities
 – E.g. Horn, datalog, …

@postponed: The production rule, logic programming, and FO core is not clear
Separate families + Core

IRL

JBoss

RIF PRD

RIF BLD

RLj

RLn
Separate families + Core
Separate families + Core

• Define a logic-based core and a separate production-rule core
• If there is an intersection, define the common core (which may possibly be just a syntax)

@version 0.1: BLD LC (July 08)
@version 0.0.1: PRD FPWD (July 08)
Approach 3a

• Define a framework in the form of a menu of syntactic and semantic features that can be combined into dialects
 – @version 0.0.9: FLD
Design principles

• Translation paradigm
 – No intrusion in covered rule languages and rule sets

• Same semantics ⇔ same syntax
 – Share constructs across dialects wherever they agree on the semantics
 – Different constructs where semantics do not agree

• Fully striped XML (type-tagged, object-oriented, …)
 – alternating Class and role tags
 – Metadata can be attached to any class element

• Only XML schema is normative
 – Presentation syntax added for specification’s readability (examples, semantics etc)

• Principles are there so you can rest on them…until they break
BLD Overview

• Definite Horn rules
 – Disjunction of atoms with exactly one positive literal
• Equality, functions, and a standard *first-order* semantics
• Syntactic features
 – objects and frames
 – internationalized resource identifiers (IRIs) as identifiers
 – XML Schema data types and builtins
• XML (1.0) syntax with normative XMLS definition
• Non-normative presentation syntax
• Metadata and (RDF+OWL) imports
Symbols

• Used to identify constants, variables, functions, predicates

• "literal"^^<symspace-identifier>
 – Notable symbol spaces: xsd:string, rif:local, rif:iri
 – “Chris”^^<xsd:string>
 – “

 http://www.w3.org/1999/02/22-rdf-syntax-ns#ty
 rif:iri>
 – “Person1”^^rif:local
Rules

• IF <condition> THEN <conclusion>
 – <condition> aka rule body, antecedent
 – <conclusion> aka rule head, consequent

• BLD rule:
 – (Forall var* <conclusion> :- <condition>)
 – Conclusions may contain conjunction
 – Conditions may contain conjunction, disjunction, and existential

• Restrictions on conclusion
 – No existential, disjunction, external functions
Horn Extensions

• Functions and external calls (DTB)
• Equality (in conclusion and condition)
• Frames
 – Objects with slots and (multiple) values
 • Used to map to RDF and OWL (SWC)
 – Special syntactic treatment of class membership and subclass
• Named argument functions and predicates
 – However all arguments must be provided
Structure

• Rules occur in Groups

 Group(Forall ?x _Q(?x) :- _P(?x))
 (Forall ?x _Q(?x) :- _R(?x))

• Groups occur in Documents

 Document(Group((Forall ?x _Q(?x) :- _P(?x))
 (Forall ?x _Q(?x) :- _R(?x))))

Warning

• While representative of the RIF syntax, the following diagrams and examples are not completely up-to-date at the time of the presentation
If the Prop is a slot of a named argument UNITERM, the key is a Name, not a TERM.
PRD Overview

• Production rules
 – FOR <variables> WITH <binding patterns>, IF <condition> THEN <actions>
 – FORALL Var* (IF patterns AND condition THEN action
 – With an operational semantics a labelled transition system

• Patterns and condition
 – BLD condition language minus logic functions plus negation
 – With a model-theoretic semantics (compatible with BLD)

• Assert, Retract, New
 – Assign, Remove, Execute
 – Defining a transition relation

• Syntactic features
 – objects and frames
 – internationalized resource identifiers (IRIs) as identifiers
 – XML Schema data types and builtins

• Metadata
<Const type="xsd:anyURI" [xml:lang="xsd:language"]? />

Any Unicode string
</Const>

<Var> any Unicode string </Var>

<External><content><Expr><op> Const </op>
 <args rif:ordered="yes"> TERM* </args>?
</Expr> </content> </External>
ATOMIC

• jim:owns(?c ?p)
 <Atom>
 <op>
 <Const type="rif:iri">http://rif.examples.com/2008/jim#owns</Const>
 </op>
 <args rif:ordered="yes">
 <Var> ?c </Var>
 <Var> ?p </Var>
 </args>
 </Atom>

• ?c.age = ?a
 <Frame>
 <object> <Var> ?c </Var> </object>
 <slot rif:ordered="yes">
 <Const type="rif:iri">ttp://rif.examples.com/2008/jim#Chicken/age</Const>
 <Var> ?a </Var>
 </slot>
 </Frame>
• Exists Chicken(age>8)
 <Exists>
 <declare> <Var> ?c </Var> </declare>
 <declare> <Var> ?a </Var> </declare>
 <formula>
 <And>
 <Member> ?c jim:Chicken </Member>
 <Frame> ?c.age=?a </Frame>
 <External>
 <content>
 <Atom>
 <op> <Const type="rif:iri"> op:numeric-greater-than</Const> </op>
 <args rif:ordered="yes"> <Var> ?a </Var> <Const type="xsd:decimal"> 8 </Const> </args>
 </Atom>
 </content>
 </External>
 </And>
 </formula>
 </Exists>
RULE etc
RULE

• When
 ?c Chicken(age==8)
evaluate(today()="Monday")
Then …
 <Forall>
 <declare> <Var> ?c </Var> </declare>
 <pattern>
 <And>
 <Member> ?c jim:Chicken </Member>
 <Frame> ?c.age=8 </Frame>
 </And>
 </pattern>
 <formula>
 <Implies>
 <if> <External> today()="Monday" </External>
 <then> … </then>
 </Implies>
 </formula>
 </Forall>
<CLASSELT>
 <id> Const </id>?
 <meta>
 [Frame
 | <And>
 <formula> Frame </formula>*
]
 </meta>?
 other CLASSELT content
</CLASSELT>
RIF Documents

- BLD: RIF basic logic dialect
 - LC July 2008
 - REC by May 2009?
- FLD: RIF framework for logic dialects
 - 2nd public WD July 2008
 - LC November 2008?
- PRD: RIF production rule dialect
 - FPWD July 2008
 - LC May 2009?
- DTB: RIF data types and builtins
 - FPWD July 2008
 - LC November 2008?
- SWC: RIF RDF and OWL compatibility
 - LC July 2008
 - REC by May 2008?
- UCR: RIF use cases and requirements
 - 4th public WD July 2008
- Test Cases: FPWD November 2008

Credits

- BLD and FLD Editors
 - Michael Kifer (U. Stonybrook), Harold Boley (NRCC)
- PRD Editors
 - Christian de Sainte Marie (ILOG), Adrian Paschke (FUBerlin), Gary Hallmark (ORACLE)
- SWC Editor
 - Jos de Bruijn (FUB)
- DTB Editors
 - Axel Polleres (DERI Galway), Michael Kifer (U. Stonybrook), Harold Boley (NRCC)
- UCR Editors
 - Adrian Paschke (TU Dresden), David Hirtle (NRCC), Allen Ginsberg (Mitre), Paula-Lavinia Patranjan (REWERS), Frank McCabe (Fujitsu)
- Test Cases Editors
 - Stella Mitchell (IBM), Leora Morgenstern (IBM), Adrian Paschke (FUBerlin)
- Active WG members
 - Adrian Paschke (FUBerlin), Axel Polleres (DERI), Dave Reynolds (HP), Gary Hallmark (ORACLE), Hassan Aït-Kaci (ILOG), Igor Mozetic (JFI), John Hall (OMG), Jos de Bruijn (FUB), Leora Morgenstern (IBM), Mike Dean (SRI), Stella Mitchell (IBM), Changhai Ke (ILOG), Stuart Taylor (U Aberdeen)
- WG Team
 - Chris Welty (IBM), Christian de Sainte Marie (ILOG), and Sandro Hawke (W3C/MIT)
Thank you!

Questions?