
Towards a People’s Web: Metalog

Massimo Marchiori
MIT CSAIL, The World Wide Web Consortium (W3C)

Cambridge, MA (USA)
and

Dept. of Computer Science, University of Venice (Italy)
massimo@w3.org

In memoriam:To my father Orfeo, a marvellous person, with a tragic end.

Abstract

This paper introduces Metalog, a query/logical system
designed to allow reasoning on the Web. Metalog tries to
start filling in the so-calledpeople axis, where the Web is
tailored for the people, and not just for the machine. Be-
sides allowing the formulation of declarative logical rules,
Metalog’s distinctive feature is to lower the entry access
level, by employing a Pseudo Natural Language (PNL) in-
terface, which is particularly easy to understand. This al-
lows almost everybody to use Metalog, even without any
particular expertize in the field. This capability, together
with other advanced solutions that enhance customization
and user friendliness, are key components for a wide adop-
tion of intelligent semantic web technologies.

1. Introduction

The need for an “intelligent Web” has been growing fast in the
last years, thanks to the widespread adoption and growth of the
Web: conjoint factors like more and more users, more and more de-
manding applications, a huge enlargement in scope, have all con-
tributed both to the success of the current Web, and also raised the
expectations from the audience, that is currently experiencing all
the limitations that the original Web Architecture presents. To re-
cover from this situation, the W3C has proposed a new Web struc-
ture where more qualified information can be put on the Web, and
sophisticated reasoning can be performed: the so-called Semantic
Web (cf. http://www.w3.org/2001/sw). The main idea of the Se-
mantic Web is to provide a flexible “basic semantic language”,
RDF (cf. [3] and the latest W3C specifications), which makes pos-
sible to codify the basic bricks of reasoning: then, on top of this
“universal semantic alphabet”, more and more sophisticated tech-
nologies can be employed, so to bring the expressive power to
higher levels. The overall architecture is often simplified by the
well-known “Semantic Web Tower”, where various technologies

are stacked on top of RDF, including the upper layers that deal
with reasoning and intelligent web applications.

However, what has been somehow missing so far has been tech-
nologies that follow not just the technological axis, but thepeople
axis, i.e., technologies that empower the people and try to make
the semantic web closest to the widest possible audience, possi-
bly sacrificing some of its power. The people axis is of equal im-
portance, as the ultimate goals of an Intelligent Web is both ma-
chine and users, and while the first are tackled with the technolog-
ical axis (the ones present in the Semantic Web Tower, and other
related tools), there is still the big need to start filling the other or-
thogonal axis, the people one.

This paper describes the current status of the Metalog project
([5]), the first query/logical system developed for the Semantic
Web, whose main design choice is to start filling the people axis.

Metalog tries to blend two common necessities in the Seman-
tic Web: on the one hand, the ability ofreasoningon the Web. On
the other hand, a key aspect which is often underestimated: the
ability to bring these advanced technologies to the widest possi-
ble audience. This aspect is particularly crucial in this early adop-
tion phase, where the real usefulness, and the same concepts, of
Semantic Web, still have to reach sufficient critical mass among
the public.

To this extent, Metalog uses a so-called Pseudo Natural Lan-
guage (PNL) interface, which is much similar to natural language,
and therefore allows an easy interfacing to the more complex un-
derlying technologies of the Semantic Web. Metalog interfaces the
PNL with an underlying logical extension of the RDF semantics,
the “MLL” (Metalog Logical Level), which is in turn based on
an extension of the RDF model, the Metalog Model Level (the
“MML”). In the following, we will describe first the foundational
layers on which such logical extensions are given, then describe
the PNL, and finally introduce the latest developments within the
Metalog project.

2. The Metalog Model Level

The Metalog Model Level (MML for short) is a nat-
ural extension of RDF with logical operators. The Meta-
log operators are identified with a URI reference ([1]), and
lie in the Metalog namespaces, which all start with the URI
“http://www.w3.org/RDF/Metalog” . For brevity, we will
in the following associate the prefix ”ml” with the above
URI (so, writing for example ml:foo instead of the longer
http://www.w3.org/RDF/Metalog#foo). Similarly, we will in-
dicate with ”rdf” the standard RDF namespace URI, i.e.
“http://www.w3.org/1999/02/22-rdf-syntax-ns” (cf. [3,2]).

All of the new operators that the MML provides are represented
in the RDF model (graph level) in an uniform way: an operator de-
noted by the URIα, having as operandsβ1, . . . , βk, is encoded
(using a “subject predicate object” notation a la n-triples) via
:an <ml:operator> < α>.
:an <rdf 1> β1.

...
:an <rdf k> βk.

The MML provides the basic logical operators, that is to say
the logical “and”, “or” and “implication”. These are denoted with
ml:and, ml:or and ml:imply respectively. It provides a negation
(not) operator, and the classic comparison and math operators for
equality, inequality,>=, <=, +, −, ∗ and/. It also provides an
ml:name extension, which is used to name variables. Finally, it
also provides two annotation extensions, ml:annotation and ml:ns,
which will be explained later in the paper.

2.1. The Metalog Logic Level

The Metalog Logic Level, or MLL for short, is the logic that ex-
presses the semantics of the MML. It is essentially a subset of (in-
finitary) equational First Order Logic. A full formal mapping from
the MML to the MLL would be too lengthy, and unnecessary com-
plicated (given the minor role that the MLL plays, as we will see):
therefore, we just give the basic intuition of the recursive interpre-
tation mapping, whose details should be anyway straightforward.

• The ml:and, ml:or and ml:imply and “not” operators are trans-
lated into logical conjunction, logical disjunction, logical implica-
tion and logical negation respectively.
• Ground mathematics, and equality/inequality, can be naturally
mapped into this logic (this also means that the corresponding in-
finitary axioms for the comparison and equality predicates has to
be present in the MLL).
• Each literal/URI-reference is mapped into some constant via an
injective mapping.
•ml:name, ml:annotation and ml:ns are mapped into distinguished
(i.e., distinct and outside of the image of the literals/URI) con-
stants.
• Each triple (S,P,O) that neither has Metalog extensions, nor is
part of an RDF container description is mapped into the predicate
P(S,O).
• RDF container descriptions of type Seq (Bag, Alt resp.) con-
tainingk objects are mapped correspondingly into a distinguished

k-ary operator SEQk (BAGk, ALTk resp.) applied to (the map-
ping of) itsk operands.

Moreover, the BAGk and ALTk operators are given the follow-
ing axiomatization:

B1 BAGk(t1, . . . , tk) → BAGk(tπ(1), . . . , tπ(k)) for ev-
ery permutationπ of [1, k]

A1 ALTk(t1, . . . , tk) → ALTk(t1, tπ(2), . . . , tπ(k)) for every
permutationπ of [2, k]

A2 ALTk(t1, . . . , tk) → ALT i(t1, . . . , ti) for everyi in [1, k]

A3 ALTk(t1, . . . , tk) → ti for everyi in [1, k]

So, this mapping just defines the natural interpretation of the
MML (i.e., that ml:and works in fact like a conjunction, ml:or like
an or, and so on). Axiom B1 formally represents the intuition that
in a Bag order does not matter, while axioms A1, A2 and A3 rep-
resent the intuition that an Alt is a series of alternatives (“one of
these”), and that the first alternative is distinguished.

The MLL is in a sense the “ideal” interpretation for the Metalog
extensions (in fact, for any logical extension that wants to provide
FOL-like capabilities, RDF containers, math). However, of course,
it is of limited practical use: in order to use such a logic (for in-
stance, to prove theorems, i.e. to answer to queries) we would have
to employ powerful machinery, and worst of all, with no guaran-
tee of good computability.

Therefore, while the MLL nicely represents the semantics of
the Metalog extension, in the abstract, we will later need to down-
scale it, and try to find a more restricted setting with more per-
forming computational properties.

3. The PNL

As said, Metalog’s distinguished feature is to provide a top-
level interface that tries to climb up, as far as possible, the “peo-
ple’s axis”, so to be intuitive enough for normal people to un-
derstand. To this extent, Metalog employs so-called “discourses”,
which are Pseudo Natural Language (PNL) sentences that resem-
ble everyday’s common writing. The best way to understand dis-
courses is to start with a simple example, so to have an idea of how
things work. One of the simplest discourses from the online Met-
alog sample distribution is the following:
comment: one of the simplest Metalog sessions.

comment: we start defining what things are.
JOHN represents the person "John Smith" from
the company "http://www.example.com/staff".
IS represents the verb "is" from the collection
"http://www.relationships.example.org/verbs".

comment: now we say something.
JOHN IS "tall like a tower".

comment: and now we ask something.
do you know whether JOHN IS SOMETHING?

When this program is loaded in Metalog, it is actually colored
in different ways, so to better outline the various components of the
discourse. The first, second, fifth and sixth sentences would output
as red, indicating that these are comments: as it can be guessed,

these parts are superfluous in a Metalog discourse, they are just
there for better description.

The third and fourth sentences would appear as green lines:
green indicates that these are so-called “representation” parts.
Representations are useful to denote shorthands: in these sen-
tences, we associate some entity (likeJOHN) to its correspond-
ing concept (the person "John Smith" from the
company "http://www.example.com/staff".). This
means in a certain sense that, anywhere, writing the whole
the person "John Smith" from the company
"http://www.example.com/staff". is pretty much
equivalent to writing its representation (the shorterJOHN).

The last two sentences (the sixth and the eighth) would appear
on the Metalog screen in blu, signaling that they can be either “as-
sertions” or “queries”. An assertion is a sentence where we state
something. For instance, the first of such blue lines in the Met-
alog discourse (JOHN IS "tall like a tower".) states
precisely what it says. A query, instead, is a sentence where we
are asking Metalog for answers. In fact, the second blue line is a
query (do you know whether JOHN IS SOMETHING?).
Queries can be easily distinguished because they end with a ques-
tion mark (“?”). All the other sentences, instead, must end with a
dot (“. ”), as it can be seen from this example.

Representations, assertions, and queries are the three types of
sentences in any Metalog discourse. We will explain the first two
now, and the query part subsequently.

3.1. Representations

As we have seen in the first example, representations are a use-
ful mean to associate some word (like JOHN) to its correspond-
ing representation (the person “JohnSmith” from the company
“http://www.example.com/staff”). This means that whenever, in
the following, the word JOHN is used, it is precisely like if we
had written its whole representation instead. So, representations
are a helpful way to make a Metalog discourses much more read-
able. Their usage is somehow necessary when working in a Se-
mantic Web environment, because of the fact that objects are usu-
ally represented using URIs (or, more generally, URI references,
cf. [1]). This means that sentences can rapidly become unreadable
to people, without appropriate countermeasures.

The keyword “represents” is used to denote a representation.
Before it, there is the word whose meaning is stated, and after that
follows the associated meaning. Like every sentence, also a repre-
sentation sentence is terminated with a dot at the end.

Not every word can be associated with a representation. Only
words that are inupper casecan. This is the reason why our first
example had JOHN and not instead John or john. Words that are
all written in upper case are also calledvariables, which means
that they do not have a meaning per se, but instead their mean-
ing have to be explicitly specified. In the above case, the mean-
ing of JOHN has been assigned to the person “JohnSmith” from
the company “http://www.example.com/staff”.

3.2. Names

Names (literals/strings) can be written in Metalog by simply
enclosing them within double quotes, which is the rather common

and expected choice. However, it is a common prerogative of the
Semantic Web to use URI references (in particular, in the RDF
Data Model); and, the large collections of URI references that are
used mostly have the same few URI components, just to indicate
that they belong to some common category. For instance, in XML
Schema datatypes all what changes is the fragment identifier part,
while the basic URI stays the same. This implies that it might be
useful to separate the URI information from the fragment identi-
fier, to get a better readability. The Metalog PNL allows such a fa-
cility, via the “from” keyword. URI references can be built by first
writing the fragment identifier part, then the “from” keyword, and
then the URI component; this way, we state more clearly the in-
tuitive notion that URI references are a kind of “qualified names”,
names with a context. And, we pave the way for easier reusabil-
ity/grouping of multiple names within the same context.

Examples of such names in context were present in the
above Metalog discourse, where certainly writingJOHN
represents the person "John Smith" from the
company "http://www.example.com/staff".
sounds a bit more natural and less “computer-like”
than writing the equivalent JOHN represents
"http://www.example.com/staff#John Smith".

3.3. Assertions

Assertions are the main sentences in a Metalog discourse, the
ones where we state something.

The basic brick of these sentences follows the very simple pat-
tern “subject predicate object”. In the previous example, the asser-
tion we had was:JOHN IS "tall like a tower". This
indicates that JOHN is the subject of the sentence, IS is the verb,
and “tall like a tower” is the object of the sentence. Note that, like
said earlier, a dot ends the sentence.

Assertions can be much more sophisticated than that. For ex-
ample, “and” and “or” can be used with the usual meaning of con-
junction and disjunction. For example, we could write a sentence
like
JOHN and MARY ARE "tall".

Metalog assertions can also express deduction rules. For exam-
ple, we could write
if SOMEONE is "tall" then that SOMEONE
could TRY VOLLEYBALL.

3.4. How things work

As said, the PNL layer sits above the Metalog logic layer. The
way to pass from one to another is via a careful parsing that goes
thru the Metalog dialogue and extract the corresponding logical
meaning.

Metalog uses a set ofreserved keyword, whose position in the
sentence determines their meaning (so, the Metalog grammar is
not context-free). Each Metalog sentence is tokenized by using
the reserved keyword, the names therein, and the variables (every-
thing else is discarded). Then, the parsing proceeds to the transla-
tion phase.

The way this is done is for the Metalog assertions is, techni-
cally speaking, thru a 3-states left to right parsing (with forward
lookahead). The three levels of parsing roughly correspond to the

subject (level 0), predicate (level 1) and object (level 2) states. If a
name or a variable is found at the current parsing point of a sen-
tence, then the current state is filled in with that value, the pars-
ing point advances within the sentence to the next token, and the
state is increased by one modulo 3 (so, it cycles within the three
states).

The three main classes of reserved keywords are those corre-
sponding to the Metalog logic conjunction, disjunction and impli-
cation. These are, respectively, “and ” and “or ” for the first two,
and “then ”, “ imply ” and “implies ” for the third. Then, each
time one of these keyword is found, Metalog tries to interpret them
following the basic English grammar rules.

In some cases, this is easy: for instance, the interpretation of
the “then” (and its other two synonymous) is always the same: the
translation of everything to its left implies (at the Metalog logic
level) the translation of everything to its right. So, in this case, the
state is only needed to determine whether we have an error or not
(for instance, it is obvious that a “then” cannot occur in state 1,
where a predicate is expected).

However, in other cases things are not so straightforward, like
in the case of the “and” keyword. Indeed, such keyword does not
have a unique meaning, as in English it could either stand for a
logical conjunction, but also as the connector for, say, a sequence
of objects. For example, consider the sentence
RALPH and JOHN LIKE MARY and LUCY LIKE TOM.
It is rather clear that the first “and” has to be interpreted as a
connector (as it occurs at state 2, it cannot be otherwise). But,
the second “and” can’t be disambiguated just looking at its state
(0), as two interpretations are in principle equally possible: either
“and” as a logical conjunction (i.e., a new sentence is starting after-
wards), or “and” as a sequence connector (i.e., a sequence where
MARY is the first element, and the second is coming). In order to
disambiguate, the parsing needs to lookahead: doing so, we dis-
cover that the latter option (((RALPH and JOHN) LIKE (MARY
and LUCY)) LIKE TOM.) does not make sense. Therefore, the
parser assigns to this “and” the logical conjunction meaning.

Note that, within a discourse, a sequence with the “and” con-
nector is naturally interpreted in Metalog logic level as an RDF
Bag container (i.e., order doesn’t matter), while a sequence with
the “or” connector is interpreted as an RDF Alt container. Meta-
log also has the expressive power to encode the other RDF con-
tainer, the “Seq” (ordered sequence), making it a a subcase of the
Bag one: if the sequence is followed by the keyword “order”, then
instead of a Bag we obtain a Seq (again, note that this requires
lookahead). So for instance, one could writeRALPH and JOHN
in this order to indicate that order is significant.

A full description of all the Metalog keywords is not within
the scope of this paper, but en passant we can mention that Met-
alog has also support for basic math (via the keywords “add”,
“plus”, “sub”, “minus”, “times”, “mult”, “div”, “divided”, with
the obvious meaning), and for comparisons like strict comparison
(“greater”, “less”) and equality (“different”, “equal”, “equals”).
Also, strict comparison and equality can be composed to form
things like “greater or equal”, that have the obvious meaning (note
that, also in this case, we need lookahead).

Finally, we have said above that Metalog supports variables
(which are either substituted with the corresponding representa-

tion or, if no representation is present, are mapped into logical vari-
ables in the Metalog logical level). Because of the philosophy of
the PNL, this should have been done in such a way to preserve,
as far as possible, the natural (English-like) appearance of the sen-
tence. For this reason, the design choice, as partly hinted at when
talking about Representations, has been to represent all variables
in upper case. Therefore, no “special symbols” are introduced in
Metalog discourses. All the keywords, as the reader might have
noted, are in lower case; moreover, no mixed case words are al-
lowed (so, writing for example “Somebody” is not allowed): this
minimizes the risk of confusion between a variable and something
else.

3.5. Ambiguities

The field of natural language processing (NLP) is well known
for the extreme challenges that it poses: in particular, the biggest
problem is the ambiguity one: in other words, many possible
meanings could be possible, and to find out which one to choose
might be very hard, or even impossible. The philosophy of the
PNL approach is somehow middle-way between the benefits of
full natural language, and the benefits of precise computation. So,
the PNL is not a normal “Natural Language” interface. Pseudo
here means that the natural language that is used here is not the
whole natural language that we all use, but a subset of it (roughly,
it corresponds to those very basic grammar rules we were taught
in our first years at school).

More precisely, the current PNL has been designed to be an “r-
language”, which means, it is very easy toread (and hence, to un-
derstand). In fact, if used properly, the PNL makes trivial for peo-
ple to understand concepts and sentences in the Semantic Web.

On the other hand, if you are a developer or want to write infor-
mation using the PNL, you can’t just write everything: as said, the
current PNL limits the language to a very simple form; this implies
some amount of adaptation is still needed in the writing phase, al-
though it is not that much (essentially, just forget all the involved
grammar you learnt in high school and think you are a kid...).

This little price to pay has an important consequence: the PNL
is anunambiguouslanguage. In other words, there are no ambi-
guities in what you can write, every sentence has a precise and
determined meaning, not subject to interpretation and doubts. So,
the current PNL sacrifices the total freedom of natural language,
where ambiguities and interpretation problems exist, to give a
more restricted, but totally safe environment:a discourse written
in the PNL has the same meaning for every Metalog processor.

It should be noted that the fact the PNL is unambiguous does
not mean that the subset of natural language it deals with is com-
pletely unambiguous too: this would have limited too much the
expressive power of the PNL. It simply means that, in the (rela-
tively few) cases of ambiguity, the PNL assigns a well-determined
meaning. In particular, as the PNL parser works left to right, ev-
ery ambiguity is resolved with the simple rule to always keep the
left sentence as big as possible. For instance, consider the follow-
ing sentence, where we have augmented the previous example:
RALPH and JOHN LIKE MARY and LUCY and
ANDREA LIKE TOM.

This is ambiguous in natural language because it could well ei-
ther mean (((RALPH and JOHN) LIKE (MARY and LUCY)) and

(ANDREA LIKE TOM).), or also (((RALPH and JOHN) LIKE
MARY) and ((LUCY and ANDREA) LIKE TOM).) . But as said,
as parsing occurs left to right this is always interpreted by Meta-
log with the first option: (((RALPH and JOHN) LIKE (MARY and
LUCY)) and (ANDREA LIKE TOM).) .

In natural language, the easiest way to disambiguate a sen-
tence like the one above would have been for instance to use a
comma. And indeed, Metalog uses the same way: the comma
(,) can be used, whenever needed, to disambiguate. So for in-
stance, writing RALPH and JOHN LIKE MARY, and
LUCY and ANDREA LIKE TOM.would have made Meta-
log interpret the sentence with the second possibility: (((RALPH
and JOHN) LIKE MARY) and ((LUCY and ANDREA) LIKE
TOM).) .

4. Computable Metalog

The PNL interpretation within the MML should be just plain
obvious, as described in the parsing process. From there, we know
the meaning, passing on to the MLL. However, as said when intro-
ducing the MLL, such a logic is of little practical use, and we need
to find a subset with nicer computational properties that can be
successfully employed. One such subset of choice is Logic Pro-
gramming (Horn logic with the negation as failure), that can be
run using Prolog (even if with some minor differences like lit-
eral and clause ordering). Therefore, the current implementation
of Metalog interfaces to a Prolog system (to be precise, with SWI-
Prolog, [4]), using it as inferential engine. The mapping rules for
the logical part are rather straightforward, and are expressed in Ta-
ble 1. Note that rules 1) and 2) are different because rule 1) only
applies when we are translating a sentence, while rule 2 applies
when we are already within it; the other rules apply with no re-
strictions. Containers are more of a problem, as already introduc-
ing rule B1 for the Bag would break the termination property in
Prolog (i.e., we will risk to get in a lot of cases nonterminating
programs). A good compromise solution is to simulate them us-
ing the explicit replacements sketched in Table 2. Note the choice
regarding Alt, whose axiomatization has been reduced in order to
be more effective (loss of power would occur in extremely lim-
ited cases here).

‖Θ1 ∧Θ2 ∧ ... ∧Θn‖ =⇒ ‖Θ1‖ 1
‖Θ2‖
...
‖Θn‖

‖∆1 ∧∆2 ∧ ... ∧∆n‖ =⇒ ‖∆1‖ , ‖∆2‖, ... , ‖∆n‖ 2
‖Θ1 ∨Θ2 ∨ ... ∨Θn‖ =⇒ ‖Θ1‖ ; ‖Θ2‖ ; ... ; ‖Θn‖ 3
‖Θ1 → Θ2‖ =⇒ ‖Θ2‖ : − ‖Θ1‖ 4
‖(Θ1 ∨Θ2) → Θ3)‖ =⇒ ‖Θ3‖ : − ‖Θ1‖ 5

‖Θ3‖ : − ‖Θ2‖
‖Θ1 → (Θ2 ∧Θ3)‖ =⇒ ‖Θ2‖ : − ‖Θ1‖ 6

‖Θ3‖ : − ‖Θ1‖

Table 1. (Logical) mapping of MLL to Prolog.

‖Seqn(Γ1, Γ2, ... , Γn)‖ =⇒ [‖Γ1‖, ‖Γ2‖, ... , ‖Γn‖]
Metalog Sequence Container Prolog List
‖Bagn(Γ1, Γ2, ... , Γn)‖ =⇒ [‖Γ1‖, ‖Γ2‖, ... , ‖Γn‖]

=⇒ [‖Γ2‖, ‖Γ1‖, ... , ‖Γn‖]
.
=⇒ [‖Γπ1‖, ‖Γπ2‖, ... , ‖Γπn‖]

Metalog Bag Container Explosion in n! distinct assertions
(permuting elements of the Bag)

‖Altn(Γ1, Γ2, ... , Γn)‖ =⇒ ‖Γ1‖
=⇒ ‖Γ2‖
.
=⇒ ‖Γn‖

Metalog Alt Container Explosion in n distinct assertions
(selecting singletons of the Alt)

Table 2. Mapping MLL containers into Prolog

5. Where’s the Query?

We have seen how discourses are written in Metalog, but we
haven’t so far talked about a corresponding “query language” for
it. The point is, when talking about Semantic Web and intelligent
web applications, it can be confusing to write about the ”query
layer” alone, because it is so tightly linked with the reasoning/logic
layer that they should in fact be part of the same realm.

What is the point? In the upper layers of the Semantic Web,
there is simply more and more semantics that enters the game. A
meaningful query language, in general, is just supposed to ask a
specific query with respect to some knowledge (produced by the
semantics). Because, the meaning is given by the semantics, and
we want to query the meaning. If we don’t, then this ”query lan-
guage” is not a Semantic Web one, it’s just a query language that
is querying something different (like, say, low-level syntax struc-
tures). And as such, it ought to be properly classified as part of
the lower infrastructure that makes the system work, not of the Se-
mantic Web upper layers.

So, simple enough, if the query language is part of the Seman-
tic Web, its questions should be semantical.

Now, suppose a system has a semantics defined by an entail-
ment relationship̀ : that is to say, ”À B” means that from A, it
follows B. Then, a (semantical) query language should be able to
ask questions about the truth of entailments, like ”is it true that A`
B ?”. However, such kind of queries would be a problem for Met-
alog, because one should have a way to express the` relationship
in a natural English way.

There is however a way out, that Metalog employs. A simpler
class of possible queries is to ask whether something is true or not.
This can be written as ”̀ A”, which is an abbreviation for ”True
` A”: that is to say, roughly speaking, from the Truth it follows A.
This is a very handy and effective way to ask questions. In natural
language, it corresponds to the “Is it true that...?”.

We can then employ the following classic relationship, which
holds true in our case:A ` B ⇔` if A thenB. This means that
we can get rid of the entailment relationship ”`”: any question of
the form ”Is it true that À B ?” is equivalent by the above to the
”Is it true that` if A then B ?” So, in general, we don’t need to
carry around thè to express a query: we can just ask “if A then B
?”. Metalog uses this strategy to express queries: a query is just a
sentence, which ends with a question mark instead than a dot. So,

http://www.swi-prolog.org/
http://www.swi-prolog.org/

for instance, the query that we have seen within the first Metalog
discourse at the beginning of the paper was:
do you know whether JOHN IS SOMETHING?

which asks the system about the truth of the assertion. So, Met-
alog does not clutter the interface with an explicit reference to the
particular inference mechanism (`), and keeps the English-like fla-
vor of the interface at a natural level.

Moreover,there is no need to learn a separate, query language,
different from the PNL: the principle isone language, one query.

5.1. Feedback

If they were just to return truth, Metalog queries would be
of poor help. In fact, one of the biggest challenges faced in the
project has been to go beyond, and return much more meaning-
ful answers. This is obtained by a process of instantiations of the
answers (where free variables are bound to results, much like Pro-
log), and, above all, via a return process calledfeedback. Feed-
back allows to re-compute back an answer, and try to model it in
the form of a natural language reply. To this extent, feedback uti-
lizes special annotations, which codify at the RDF level the infor-
mation expressed by the representations, and use them back after
a reply is given by the inference engine, so to build up a meaning-
ful answer. For example, the above query would return that
JOHN IS "tall like tower".

together with the opportune (minimal) set of representations
needed to understand the answer. This method elegantly ensures
the crucial property, in a Web environment, that the representa-
tion information is not lost during the contact with an inference
engine (whatever it is), and that it can so be faithfully transported
within the Semantic Web, so any other application can recreate the
user-friendly information needed to help the user.

6. More towards the People

While, until now, we have described Metalog up to the v2.0,
which is publicly available (cf. [5]) , in the following we describe
some of the features that are under investigation for its future ver-
sions. All the features are aimed to strengthen even more the cru-
cial point behind Metalog: to provide an even more satisfactorily
experience forthe peopleusing the system.

6.1. Smart Queries

The fact Metalog has a query language which is the same as
its regular expression language is extremely helpful for users (as
seen, the “one language , one query”). However, one might need to
extend the query language, so to make a richer variety of queries
possible.

For example, consider the query that we have seen in the
first Metalog discourse of this paper:do you know whether
JOHN IS SOMETHING?. Another reasonable way to express
this query, using “natural language”, would be for exampleIS
JOHN SOMETHING?. So, in some cases it would make sense to
accept more queries, in addition to the ones obtained by the nor-
mal sentences of Metalog. We call this abilitySmart Querying: a
Smart Query is a query, possibly not in of the form of a normal

assertion, that is mapped into an assertion via an opportune nor-
malization. Smart Querying can be implemented in the following
way: usually, interpretation of a sentence islocal w.r.t. assertions,
i.e., only the representations are taken into account to build up the
context, and not the other assertions. With Smart Querying acti-
vated, the assertions in the current discourse are instead consid-
ered, forming up (with assertions) the currentcontextof the query.
Within this context, URI-references are then categorized as sub-
ject, verbs or objects, according to their use in the discourse. This
then allows for possible tranformations/interpretations of a Smart
Query, based on the additional information given by the context.
For instance, when a Smart Query occurs with a “verb” (according
to the context) appearing at state 0, followed by a “subject” at state
1, they are reversed. Therefore, a query like the aforementioned
one, IS JOHN SOMETHING?, would have IS interpreted as a
verb by the context, and JOHN interpreted as a subject: just like
in natural language, this is interpreted as a sign that an interroga-
tive verbal form is likely in use, and as such this Smart Query is
normalized into the queryJOHN IS SOMETHING?. Other pos-
sible Smart Queries are for instance queries that have some com-
ponents missing: for instance, a smart query likewhat about
JOHN?is translated into the queryJOHN VERB OBJECT?, that
asks for what things John can do.

This way, the system is getting closer and closer to the final
user who is querying the system, by providing a much bigger flex-
ibility, and trying to mimic even more natural language behavior.
All this, staying within the deterministic nature of the interface (so
the query has always a well-defined, unambiguous meaning).

6.2. Meta-Metalog

The current PNL interface is very easy to use, and serves rather
well its needs: to provide an easy introductory access to the Se-
mantic Web ideas and technologies to the people. However, this
same simplicity has its own limitations. For instance, nowadays,
the OWL standard for Web Ontologies has reached its final stage.
This means that it would be very nice to extend the PNL with
more keywords so to be able to grasp some of the more fundamen-
tal OWL constructs. Another example is the recent restructuring
of the RDF data model (cf. [2]), which also approached comple-
tion: data types have been introduced, and it would be nice to have
a simplified access to them using the PNL. Yet another example is
the problem ofmulti-linguism, i.e. the possible use of another spo-
ken language for the PNL, like for instance French or Spanish or
Chinese: in this case, the simplified grammar rules might be (even
substantially) different, and in any case the keywords should be
changed.

Now, of course, extensions to RDF can, in principle, be ex-
pressed by using the current PNL, e.g. by enumerating the triples.
However, usage of a PNL is supposed to make easy, andnatu-
ral, the access to this information structuring. The moment we are
forced to go down-level, the utility of using a PNL, rather than an-
other technical language (like N-triples, or RDF/XML) becomes
weaker and weaker. Instead, a good PNL should be able to take
this more advanced concepts, and provide a natural formulation
for people to use.

This problem, that can be in general seen as the problem ofevo-
lution of a PNL.

http://www.w3.org/RDF/Metalog/

Also, when we are dealing with multi-linguism, for example,
we are in presence not just of evolutions (in the sense of addi-
tional features) of the system, but of possiblealterationsof the
grammar/keywords: this would seem to imply we have to rebuild
a PNL from scratch, according to its language locale.

The above issues, which pertain in the general realm of PNL
handling, can be tackled in the following way: rather than having
each time to rebuild a different/more evolved PNL, one could ex-
tend Metalog with a new level, Meta-Metalog. Meta-Metalog is a
“meta” level, that can in a sense reason on Metalog (in our case,
on Metalog’s PNL). In order to do so, there is the need for an ap-
propriate conceptualization of an ”abstract PNL” in the Semantic
Web (so, at RDF/MML level). This can be introduced under a new
namespace (http://www.w3.org/2003/m2), ”m2” for short. Among
the “meta” concepts introduced, are the concept of keyword (via
m2:keyword), of arguments to a predicate (m2:arguments), and
a high-level representation of the logic operators in the MLL
(m2:and, m2:or, m2:imply). This allows to write Meta-Metalog
discourses where the abstract “meta” representation of a discourse
is interpreted according to some rules defining a PNL.

So, for instance, the PNL itself could be described entirely
within Meta-Metalog. For example, the definition of the “imply”
keyword and its rules could be given by the following snippet:
METAMETALOG represents "http://www.w3.org/2003/m2".
KEYWORD represents "keyword" from METAMETALOG.
ARGUMENTS represents "arguments" from METAMETALOG.

. . .
LOGICAL-IMPLY represents "imply" from METAMETALOG.

. . .
IMPLY represents "http://www.w3.org/RDF/Metalog#Implies".
IMPLY is a KEYWORD with arity 2.

. . .

if IMPLY has as ARGUMENTS X and Y in this order,

then X LOGICAL-IMPLY Y.

Note that obviously a change in the processing model is needed
for Meta-Metalog discourses (and so, meta-PNL execution). Pars-
ing is much more sophisticated and happens dynamically, as the
PNL is generated on the fly. In the first parsing phase, keywords
are extracted by the m2:keyword’s. This generates a tree-like RDF
structure, that is subsequently interpreted by the Meta-Metalog
discourse, and put in logical relationship to its MLL structure.

The big advantages of a ”meta” solution like Meta-Metalog is
that we don’t need any more to build ad-hoc PNLs for every dif-
ferent need of evolution/alteration, as we are using the same basic
PNL as a unified meta-language to reason about the interpretation
of the data. This meta-modelling allows “programming” of a PNL,
always staying within the Semantic Web world. This approach is
so powerful that it can also deal with Smart Queries. For instance,
remember the example we have seen previously about the smart
query IS JOHN SOMETHING?. Meta-Metalog could also pro-
vide the conceptualization of a syntactic query operator (m2:qop)
and of a logical query (m2:query), together with the concepts of
subject, predicate and verb within a sentence. Then, for example,
the corresponding smart-query rule (inversion of subject and pred-
icate) could be expressed in Meta-Metalog with the following ad-
ditional snippet:
VERB represents "http://www.w3.org/2003/m2#verb".
QUERYOP represents "http://www.w3.org/2003/m2#qop".
QUERY represents "http://www.w3.org/2003/m2#query".
if a QUERYOP has ARGUMENTS X and Y and Z in this

order, and Y is a VERB, then there is a QUERY

with ARGUMENTS Y and X and Z in this order.

So, with the appropriate modelization (i.e., bringing the topic
of interest within the Semantic Web world, like in this case for
queries), we manage to reuse Meta-Metalog to provide Smart
Queries capabilities; again, without having to build an ad-hoc
parser for each type of Smart Query we might want to incorpo-
rate into the system.

7. Conclusions

The Semantic Web has a tremendous potential to enhance the
future Web, and to bring classification and reasoning as first class
objects in the Web. However, it is still lacking in thepeople axis,
where intelligent technologies are specifically tailored for the peo-
ple, rather than for the machines. Metalog can be seen as a first
attempt to showcase such promises, in a way that is natural and
easy-friendly to as many people as possible, via the introduction
of the PNL interface, on top of a clean logical extension of RDF.
The big promise is to bring this capabilities even further, as the Se-
mantic Web tower grows and grows (datatypes in RDF, OWL, var-
ious needs like smart queries and multilinguism). To this extent,
the introduction of meta-features might prove to be the right way
to fulfill this promise, and to pave the way for a variety of even
more user-friendly entry level tools (e.g. using voice interfaces, or
fuzzy natural language processing). Ultimately, the aim is to get
into the user’s needs in a seamless way: much like, currently, the
”e-” prefix is synonymous with electronic interfaces that empower
the generic user (e-mail, e-commerce, e-learning, etc.), we envi-
sion a future where semantic web technologies will play a similar
seamless role, and maybe the introduction of anew ”s-” prefix will
be in order, together with the birth of new distinguished paradigms
(like s-search, s-query and so on). Meanwhile, in this initial period,
user-friendly tools that start to hide the complexity, like ones us-
ing PNL solutions, are especially needed to start filling in the peo-
ple axis, in this crucial phase where the Semantic Web needs to
gain critical mass to the wider audience of the big WWW commu-
nity. Because, after all,it’s the people who matter.

8. Acknowledgments

Thanks to Antonio Epifani, Samuele Trevisan, and Janne
Saarela for their contribution to the Metalog project, and to Tim
Berners-Lee, Maria Claudia Buzzi, Elena Marchiori, Jan Rut-
ten and Franca Tressoldi for their continuous support. And, thanks
to you, dad, you are always with me, deep inside.

Bibliography

[1] T.Berners-Lee, R.Fielding and L.Masinter, Uniform Resource
Identifiers (URI): Generic Syntax, RFC 2396, 1998.
[2] G.Klyne and J.J.Carroll (Eds.), Resource Description Frame-
work (RDF): Concepts and Abstract Syntax. W3C. 2004.
[3] O.Lassila and R.Swick (Eds.), Resource Description Frame-
work (RDF) Model and Syntax Specification. W3C, 1999.
[4] J.Wielemaker, SWI-Prolog 5.2.9 Ref. Manual. SWI, 2003.
[5] The Metalog Project, http://www.w3.org/RDF/Metalog/. W3C,
1998-2004.

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.swi-prolog.org/
http://www.w3.org/RDF/Metalog/

	Introduction
	The Metalog Model Level
	The Metalog Logic Level

	The PNL
	Representations
	Names
	Assertions
	How things work
	Ambiguities

	Computable Metalog
	Where's the Query?
	Feedback

	More towards the People
	Smart Queries
	Meta-Metalog

	Conclusions
	Acknowledgments

