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Abstract. How can Mathematics and the Semantic Web effectively
join? In this paper we provide an account of the key standard tech-
nologies that can foster the integration of Mathematical representation
into the Semantic Web.

1 Introduction

Modern approaches to Mathematics on the web, nowadays, have in common
with XML the well-known dualism between semantics and presentation: the me-
dia should be detached from the meaning ([1]). With the advent of the Semantic
Web, however, the potential of this dualism seems to raise even higher, as that
“semantics” part can possibly be more than itself, be part of a whole, be a single
brick in a big building, the World Wide Web. For Math, this means that not only
the Semantic Structure and Presentation Structure play their obvious classical
role, but new possibilities come from the integration of various mathematical
sources, allowing more powerful global search capabilities, but also associated
metadata (context), possibility of computable math (algebraic manipulation /
calculation) and so on. In order to achieve this, however, there is the need for in-
tegration: integration of the mathematical knowledge expertize/techniques, with
the mainstream technologies that constitute the Semantic Web. Here, we focus
on those Web technologies that could be potentially low-hanging fruits: RDF,
OWL, XML-Schema, XML-Query and Functions and Operators.

2 RDF

When one talks about the Semantic Web, the first thing that comes to mind is
RDF, the milestone on which the classic Semantic Web architecture lies. RDF, or
Resource Description Framework (cf. [9, 8, 3]), is essentially an enriched entity-
relationship model, designed to encode data (and, so to say, “meaning”) in the
World Wide Web.

So, while there are already XML representations for Mathematics on the
Web (the most prominent example being MathML), in order to fully enter the
Semantic Web bandwagon, there is the need to go beyond a normal XML rep-
resentation, and try instead to link a bridge towards RDF-land.



This doesn’t mean that existing XML dialects for Mathematics have to be
abandoned, or that future versions and improvements have to be based on RDF.
Rather, it means that a suitable representation to and from RDF should be
given, so that applications dealing with Mathematical knowledge can export their
knowledge to the Semantic Web (using an RDF representation), and conversely,
that such an RDF representation can be mapped back3 An example of such
approach is for example given by the P3P standard ([11]), which has its own
XML syntax, and a corresponding alternate RDF representation ([12]).

Many straightforward representations of Math knowledge to RDF are pos-
sible, given that RDF expresses, as said, a generic graph structure (entity-
relationship) that can be made to fit any generic structure. In particular, it
is rather evident that mathematical formulas, for their same nature of being
usually serializable in text form, fit rather well in the RDF graph model. For
example, the representation of a function p(2, 6) expressed in MathML as

<apply>
<csymbol encoding="text"

definitionURL="http://www.mathsw.org/scalarplus">
p
</csymbol>

<cn> 2 </cn>
<cn> 6 </cn>

</apply>

could be given an RDF representation like:
: 1 <http://www.w3.org/TR/MathML2#apply> : 2
: 1 <http://www.w3.org/TR/MathML2#csymbol> "p"
: 1 <http://www.w3.org/TR/MathML2#definitionURL>

<http://www.mathsw.org/scalarplus>
: 1 <http://www.w3.org/TR/MathML2#encoding> "text"
: 2 <http://www.w3.org/1999/02/22-rdf-syntax-ns#: 1> "2"
: 2 <http://www.w3.org/1999/02/22-rdf-syntax-ns#: 2> "6"

Here, we have used the so-called “triple” representation of an RDF graph,
where each row represents a triple

entity1 relationship entity2

(see e.g. [8] for more details).
Much like proof nets, the RDF graph structure nicely leads to encoding

mathematical structures (it allows for example easy (and effective) processing
of bound variables). For example, the function λx. x + x could be encoded in
MathML with an explicit bound variable like this:
3 Although, what is really needed is the mapping from the XML dialect to RDF, as

the reverse mapping could be (depending on the specific application) of less use, or
even impossible in some cases (when the domain of discourse is enlarged in RDF).



<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<plus/>
<ci> x </ci>
<ci> x </ci>

</apply>

RDF, on the other hand, allows a neater representation of the bound variable:
: 1 <http://www.w3.org/TR/MathML2#apply> : 3
: 1 <http://www.w3.org/TR/MathML2#lambda> : 2
: 3 <http://www.w3.org/TR/MathML2#definitionURL>

<http://www.w3.org/TR/MathML2#plus>
: 3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#: 1> : 2
: 3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#: 2> : 2

The technical details of any such mapping to RDF are unnecessary here, as
first they are rather obvious4, and second, many equivalent choices are possible.
What is important, though, is to note that the mathematical structure of objects
can/should be given an RDF formulation, so to foster integration between the
Math world and the Semantic Web. With an RDF representation for Math, we
can use all the tools developed/in development for the Semantic Web, like for
example search, inference, annotation, and so on. So, general-purpose tools can
be reused to operate with mathematical objects, and no special-purpose tools
have to be developed. Most importantly, putting mathematics inside RDF allows
a nice and smooth integration with all various other sources of data: in other
words, proper integration with the Semantic Web via RDF allows for a seamless
definition of contexts, and linkage to various other metadata related to the math
object. This allows to go way beyond the usual way of allowing metadata in
XML dialects, i.e., using specific attributes where to fit more information. So,
RDF really allows making Mathematics integrated in the World Wide Web.

3 OWL

Mathematical objects ”per se” can be very difficult objects to categorize, if
appropriate metadata is not provided. This is a general problem of many kinds
of data present on the Web, so much that W3C has addressed this issue by
chartering a new effort for the production of a standard devoted to Ontologies
for the Web: the Web Ontology Language (also called “OWL”), see for instance
[7]. OWL allows data to be attached with ontological meaning: in other words,
it allows powerful mechanisms to categorize data on the web into specific classes
and subclasses, therefore greatly facilitating the proper handling/search/query
of web data.
4 Although, note that even from the simple examples shown here, some subtleties are

present, and we have been for example sloppy in the treatment of datatypes, as we
will hint at later.



What this means from a Math viewpoint is that mathematical objects, that
can by their nature be rather dense and not easily categorizable at a first inspec-
tion, can instead be nicely associated to some specific categories. Such mathe-
matical ontologies can provide a formidable help for the task of searching for
mathematics, and for the task of issuing similarity searches, avoiding the intrin-
sic difficulties of extracting this information from the semantics/structure of the
object (which might obviously be just plain impossible). OWL is flexible enough
to allow for complete mathematical hierarchies to be formed, and also to allow
for alternate hierarchies, so that no just one categorization has to be used, but
many can happily coexist.

4 XML Schema

Types are an essential component in mathematics, and it comes by no surprise
that even when attempting to formalize mathematics on the Web, types have
entered the battlefield. Numeric types like integer, real, complex and so on have
been defined in MathML, while the OpenMath Consortium has also experimen-
tally tried to give more complex typing facilities using the Extended Calculus of
Constructors ([6]). On the other hand, type systems have also been introduced
in the Web, and more specifically, one type system is now the world standard:
XML Schema ([13, 4]). It is tempting therefore to analyze whether there are
differences, and where convergence is possible here.

The first big distinction that has to be done is between what XML-Schema
calls primitive datatypes. In a sense, primitive types are the basic building blocks,
from which more complex types can then be created. XML-Schema primitive
datatypes much correspond, in spirit, to MathML types. However, we can see
that there are differences, as MathML focusses on numeric types, and neglects
other specific XML datatypes. Now, here convergency is not only possible (prim-
itive datatypes can be merged with no problems), but strongly needed for the
future integration of mathematics on the web. In fact, RDF is already adopt-
ing XML-Schema primitive datatypes in the Semantic Web view of the world,
which makes even more urgent for mathematical knowledge to align. Note that
numeric datatypes currently not present in XML Schema can be added using
so-called user defined types, so the merge of the two needs (XML-Schema primi-
tive types, and “primitive types” of the mathematical community) can fit within
XML-Schema.

The other part of the XML-Schema type system is more powerful, but here,
the two types of schemas (XML, and math) diverge in a sense, as the first one
deals with structural constraints, while the second deals more with signature
definition. It seems like XML-Schema type system could accommodate some
math type systems, but the interaction here is deeper, as some desired type
system for math (like the ECC mentioned above) are more fine-grained than
XML-Schema’s type system in some circumstances, so convergence here should
be explored further.



5 Functions and Operators

Types are useful for a variety of task, last but not least, validation. But an-
other very useful functionality they provide is just to provide some signatures,
so that executable specification of the corresponding function/operator can be
safely activated, even when no full or accurate type system is present. And one
of the possible cool functionalities that math functions an operators could have
is just this: to be computable, in the sense that they could, somehow, be ac-
tivated (evaluated), and the appropriate result returned. There are of course
various model that would allow to have executable mathematics on the Web,
from the central server model (where requests are sent, for example using a Web
Service architecture, or classic HTTP PUT/POST methods), to the local server
model, where applets could be for example downloaded, and executed in situ.
What matters most for our discussion is, besides the need for a uniform way
(or, uniform multiple ways) to perform such activation, the necessity to have
uniformity.

The first key to successfully represent mathematics on the web is a single
acronym: URIs. As Web Architecture dictates, URIs should be used to denote
every relevant thing in the Web. Restated, in the mathematical environment
every function/operators/relations and so on, should be given an appropriate
URI, that is to say, an appropriate name in Web space. It is for this reason that
the current MathML standard ([5]) allows for new symbols to be classified using
a URI: this allows for much better search on the web, as well as, for example,
the possibility of automatic execution and/or algebraic manipulation between
different sources of math. Without URIs, we have to stick to local names, and
therefore we have names that are useful only within a single document, or within
a single application.

But, if URIs provides us with good “global addresses” along the Web, the
other crucial factor for their success is that, as far as possible, people don’t
introduce new URIs that always denote the same thing. If this happens, the
utility of the URI boils down to just a single identifier, making the web just an
isolated bunch of points, with no connections.

In our case, this means that it is of little use to use URIs for functions
and operators, if each of us creates such URIs from scratch, without reusing
existing URIs. There is the need for some appropriate standardization of common
operators, so that people can reuse it, search tools can link different occurrences
in different parts of the web, execution of a vast number of functions can be
performed. [10] is an example of a first catalog of functions and operators that
are going to be standardized, for uniform usage over the Web. Similar efforts
could be undertaken to extend such collection to more mathematical functions,
where first-order functions and operators could be considered first. In any case,
it is obviously important that uniformity prevails, and that there is convergence
between the XML/database world, and the mathematical environment on the
web (think for example at the collection in [14]).



6 XML Query

From what seen previously, it would seem like RDF and OWL already provide
all what we need for a proper integration of Mathematical knowledge into the
Semantic Web. But of course, the complete picture is far from being that simple.
While, certainly, RDF and OWL can do a lot to foster reuse of Semantic Web
tools with mathematical objects, there are still some drawbacks that one has to
take into proper account.

The primary of such drawback is the complexity of the tools. Simply having
an RDF representation doesn’t solve our needs, as then we need to use some
tools that allow us to query and manipulate the mathematical objects. Therefore,
another aspect has to be considered: the tradeoff between the complexity of such
tools, and our needs.

As far as the functional requirements are concerned, we envisage that, to
start with, the primary applications in the use of mathematical knowledge on the
World Wide Web in the large will be forms of simple search, possibly extraction,
and easy manipulation.

Moreover, always talking in the large, the other factor to consider here is the
scalability of the solution. The RDF representation make mathematical objects
migrate to a more general space, the RDF graph, at a price: it can complicates
quite a lot the structure, as compared to the original XML representation. When
talking about search/extraction/manipulation in the large, therefore, we risk
that staying in the RDF graph for such operations will not scale so easily, leading
to failure of responsiveness.

The possible way out to this is not to give away the XML representation when
we need it, as in this case. Such representation can in fact be traversed much more
efficiently than an RDF representation, and as such, specific tools that operate on
XML can be used. In particular, XML Query (also known as XQuery, cf. [2]), the
future world standard for querying XML data, could be profitably reused. XML
Query itself operates on a variant of the relational model, adapted to the specific
XML data model, and has been designed with all the needs that database vendors
seek out in current SQL-like systems,, like, in primis, speed and scalability. It is
an interesting exercise to see, given a certain XML representation for math (like,
say, MathML), what is the power of queries and related operations that XQuery
can perform5 . For sure, XQuery fits perfectly in the use cases of simple search
and extraction, which makes it a good candidate for query/search application of
XML Mathematical knowledge in the Web (so, in the large). In fact, for more
sophisticated applications, one could imagine the possibility of a hybrid system,
where the mathematical objects are just seen in the RDF graph as XML literals.
This still allows the mathematical objects to interact with the semantic web, to
be given context, annotations and so on. What we would lose is easy access to the
internal structure of the objects, within the RDF world. For that access, we could
activate an XQuery processor, that could quickly find the result we need. And
in fact, such XML literals could always be exploded ”on demand” to their RDF

5 Indeed, XQuery, although Turing complete, is not functionally complete.



structure, like in lazy functional programming, when really needed. Therefore,
the hybrid model would work well in all those situation where full RDF access
to the internal structure of the mathematical objects is seldom needed.

7 Success?

Having seen the possible synergies, the final questions to ask is: can this inte-
gration be performed with success?

The first factor to consider is merely technical, and has to do with the prob-
lem of vastity of domain.
Mathematics is a vast field. This means that potentially, Semantic Web appli-
cation like search, similarity search, manipulation, inference, can perform badly
if not properly assisted with precise Semantic Web annotations. There is prob-
ably the need to identify some critical subsets of mathematical knowledge that
can benefit more from semantical structuring (pretty much the same kind of
selection that MathML somehow had to do when facing the creation of an XML
math dialect ); this seems even more important when we go to the higher layers
(computability, typing, algebraic manipulation). Constructive mathematics here
obviously will play a much more relevant role.

The second factor to consider is societal, and concerns the cost/benefit vicious
circle.
Information encoded using the semantic web has a higher cost, like any form of
evolved semantic encoding, than a merely syntactic formatting. So, the cost to
put information on the Web gets higher. In order to make people accept this extra
cost, the cost/ratio benefit must stay low. But crucially, in the semantic web the
benefits usually depends on adoption: the more, the better. Therefore, we have
this vicious circle: people will not be very likely to contribute to a mathematical
semantic web, unless critical mass is reached. It is this vicious circle that might
slow down too much progress in the field, if not carefully weighted.
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