prev | ( testsuite > TortureTests > Complexity > complex4 ) | next | (show test run result) |
Alternatives: | (mml file) (full) (simple) (plain) (form) (slideshow) |
File: | TortureTests/Complexity/complex4 |
CVS-ID: | |
Author: | Design Science, Inc. (D. Doyle, R. Miner) |
Description: | Testing content tags. |
Sample Rendering: N/A |
Your browser's rendering:
a + b - c
x + yz + z
x * (y + z) * z
sin(a + b)
sin(x(y + z)z)
sin(xy)2b
(x + y) ^ (n - 3)
limit as x goes to a of sin x using <reln>
limit as x goes to a of sin x using <apply>
limit as x goes to a of sin(x + y) using <reln>
limit as x goes to a of sin(x + y) using <apply>
limit as x goes to a of sin(x + y)2b using <reln>
limit as x goes to a of sin(x + y)2b using <apply>
quotient
moment
selector
factorial
(a + b)!
inverse function
inverse matrix
conjugate
a + b + c
integral (a + x)dx
-1 + 7
7 + (-1)
max
lambda sin(x + 1)
lambda integral f(x)dx
compose f and g
compose f and g (x)
f(g(x))
composition of f and inverse of f eq identity using <reln>
composition of f and inverse of f eq identity using <apply>
e^x
min(x, x not in B, x^2) using <reln>
min(x, x not in B, x^2) using <apply>
a mod (b)
ab
gcd(a b, c)
integral
abs(x)
tall abs(x)
abs(x + y + z)
x > 0 and z < 1 as <reln>
x > 0 and z < 1 as <apply>
a and b
a or b
a xor b
a eq b with <reln> tag
a eq b with <apply> tag
a neq b with <reln> tag
a neq b with <apply> tag
a > b with <reln> tag
a > b with <apply> tag
a < b with <reln> tag
a < b with <apply> tag
a <= b with <reln> tag
a >= b with <apply> tag
a <= b with <reln> tag
a <= b with <apply> tag
set: {b, a, c}
set with condition
list: {b, a, c}
list: {x|x < 5}
A union B
A intersect B
A intersect (B union C)
integral
x in R as <reln>
x in R as <apply>
a in A
a not in A as <reln>
a not in A as <apply>
not a
not (a and b)
A -> B (reln)
A -> B (apply)
forall
forall/and/lt/power
forall/exists/and/plus
exists
forall/exists/and/plus
ln a
log base 3 of x
integer
diff
partialdiff
integral
partialdiff
divide
divide/plus/minus
divide/plus/divide
A is subset of B as <reln>
A is subset of B as <apply>
A is proper subset of B as <reln>
A is proper subset of B as <apply>
A is not subset of B as <reln>
A is not subset of B as <apply>
A is not proper subset of B as <reln>
A is not proper subset of B as <apply>
Set difference
Log base 3 of x + y
Sum as x goes from a to b of f(x)
sum
product
product
tendsto with <reln>
tendsto with <apply>
tendsto with <reln>
tendsto with <apply>
mean(X)
root(a + b)
standard deviation
variance(X)
median(X)
mode(X)
degree
vector
matrix
determinant
transpose
semantics
limit
symbol check
multiset
tendsto type = "above" with <reln>
tendsto type = "above" with <apply>
tendsto type = "below" with <reln>
tendsto type = "below" with <apply>
tendsto type = "two-sided" with <reln>
tendsto type = "two-sided" with <apply>
type check
sin + cos
f(x)
Source Code:
<p>a + b - c <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <plus/> <ci>a</ci> <apply> <minus/> <ci>b</ci> <ci>c</ci> </apply> </apply> </math> </p> <p> x + yz + z <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <plus/> <ci>x</ci> <apply> <times/> <ci>y</ci> <ci>z</ci> </apply> <ci>z</ci> </apply> </math> </p> <p> x * (y + z) * z <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <times/> <ci>x</ci> <apply> <plus/> <ci>y</ci> <ci>z</ci> </apply> <ci>z</ci> </apply> </math> </p> <p> sin(a + b) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <sin/> <apply> <plus/> <ci>a</ci> <ci>b</ci> </apply> </apply> </math> </p> <p> sin(x(y + z)z) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <sin/> <apply> <times/> <ci>x</ci> <apply> <plus/> <ci>y</ci> <ci>z</ci> </apply> <ci>z</ci> </apply> </apply> </math> </p> <p> sin(xy)2b <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <times/> <apply> <sin/> <apply> <times/> <ci>x</ci> <ci>y</ci> </apply> </apply> <apply> <times/> <cn>2</cn> <ci>b</ci> </apply> </apply> </math> </p> <p> (x + y) ^ (n - 3) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <power/> <apply> <plus/> <ci>x</ci> <ci>y</ci> </apply> <apply> <minus/> <cn>n</cn> <cn>3</cn> </apply> </apply> </math> </p> <p> limit as x goes to a of sin x using <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <limit/> <bvar> <ci>x</ci> </bvar> <condition> <reln> <tendsto type='above'/> <ci>x</ci> <ci>a</ci> </reln> </condition> <apply> <sin/> <ci>x</ci> </apply> </apply> </math> </p> <p> limit as x goes to a of sin x using <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <limit/> <bvar> <ci>x</ci> </bvar> <condition> <apply> <tendsto type='above'/> <ci>x</ci> <ci>a</ci> </apply> </condition> <apply> <sin/> <ci>x</ci> </apply> </apply> </math> </p> <p> limit as x goes to a of sin(x + y) using <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <limit/> <bvar> <ci>x</ci> </bvar> <condition> <reln> <tendsto type='above'/> <ci>x</ci> <ci>a</ci> </reln> </condition> <apply> <sin/> <apply> <plus/> <ci>x</ci> <ci>y</ci> </apply> </apply> </apply> </math> </p> <p> limit as x goes to a of sin(x + y) using <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <limit/> <bvar> <ci>x</ci> </bvar> <condition> <apply> <tendsto type='above'/> <ci>x</ci> <ci>a</ci> </apply> </condition> <apply> <sin/> <apply> <plus/> <ci>x</ci> <ci>y</ci> </apply> </apply> </apply> </math> </p> <p> limit as x goes to a of sin(x + y)2b using <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <limit/> <bvar> <ci>x</ci> </bvar> <condition> <reln> <tendsto type='above'/> <ci>x</ci> <ci>a</ci> </reln> </condition> <apply> <times/> <apply> <sin/> <apply> <times/> <ci>x</ci> <ci>y</ci> </apply> </apply> <apply> <times/> <cn>2</cn> <ci>b</ci> </apply> </apply> </apply> </math> </p> <p> limit as x goes to a of sin(x + y)2b using <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <limit/> <bvar> <ci>x</ci> </bvar> <condition> <apply> <tendsto type='above'/> <ci>x</ci> <ci>a</ci> </apply> </condition> <apply> <times/> <apply> <sin/> <apply> <times/> <ci>x</ci> <ci>y</ci> </apply> </apply> <apply> <times/> <cn>2</cn> <ci>b</ci> </apply> </apply> </apply> </math> </p> <p> quotient <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <quotient/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> moment <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <moment/> <degree> <cn>3</cn> </degree> <ci>X</ci> </apply> </math> </p> <p> selector <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <selector/> <matrix> <matrixrow> <cn>1</cn> <cn>2</cn> </matrixrow> <matrixrow> <cn>3</cn> <cn>4</cn> </matrixrow> </matrix> <cn>1</cn> </apply> </math> </p> <p> factorial <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <factorial/> <ci>n</ci> </apply> </math> </p> <p> (a + b)! <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <factorial/> <apply> <plus/> <apply> <plus/> <ci>n</ci> <ci>m</ci> </apply> <ci>x</ci> </apply> </apply> </math> </p> <p> inverse function <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <inverse/> <ci>f</ci> </apply> </math> </p> <p> inverse matrix <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <apply> <inverse/> <ci type='matrix'>a</ci> </apply> <ci>A</ci> </apply> </math> </p> <p> conjugate <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <apply> <conjugate/> <apply> <plus/> <ci>x</ci> <apply> <times/> <cn>ⅈ</cn> <ci>y</ci> </apply> </apply> </apply> </mrow> </math> </p> <p> a + b + c <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <plus/> <ci>a</ci> <ci>b</ci> <ci>c</ci> </apply> </math> </p> <p> integral (a + x)dx <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <int/> <bvar> <ci>x</ci> </bvar> <lowlimit> <cn>0</cn> </lowlimit> <uplimit> <ci>a</ci> </uplimit> <apply> <plus/> <ci>a</ci> <ci>x</ci> </apply> </apply> </math> </p> <p> -1 + 7 <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <plus/> <apply> <minus/> <cn>1</cn> </apply> <cn>7</cn> </apply> </math> </p> <p> 7 + (-1) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <plus/> <cn>7</cn> <apply> <minus/> <cn>1</cn> </apply> </apply> </math> </p> <p> max <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <max/> <bvar> <ci>x</ci> </bvar> <condition> <apply> <and/> <reln> <gt/> <ci>x</ci> <cn>0</cn> </reln> <reln> <lt/> <ci>x</ci> <cn>1</cn> </reln> </apply> </condition> <apply> <minus/> <ci>x</ci> <apply> <sin/> <ci>x</ci> </apply> </apply> </apply> </math> </p> <p> lambda sin(x + 1) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <lambda> <bvar> <ci>x</ci> </bvar> <apply> <sin/> <apply> <plus/> <ci>x</ci> <cn>1</cn> </apply> </apply> </lambda> </math> </p> <p> lambda integral f(x)dx <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <lambda> <bvar> <ci>b</ci> </bvar> <apply> <int/> <bvar> <ci>x</ci> </bvar> <lowlimit> <ci>a</ci> </lowlimit> <uplimit> <ci>b</ci> </uplimit> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> </apply> </apply> </lambda> </math> </p> <p> compose f and g <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <compose/> <fn> <ci>f</ci> </fn> <fn> <ci>g</ci> </fn> </apply> </math> </p> <p> compose f and g (x) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <apply> <compose/> <fn> <ci>f</ci> </fn> <fn> <ci>g</ci> </fn> </apply> <ci>x</ci> </apply> </math> </p> <p> f(g(x)) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <fn> <ci>f</ci> </fn> <apply> <fn> <ci>g</ci> </fn> <ci>x</ci> </apply> </apply> </math> </p> <p> composition of f and inverse of f eq identity using <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <eq/> <apply> <compose/> <fn> <ci>f</ci> </fn> <apply> <inverse/> <fn> <ci>f</ci> </fn> </apply> </apply> <ident/> </reln> </math> </p> <p> composition of f and inverse of f eq identity using <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <eq/> <apply> <compose/> <fn> <ci>f</ci> </fn> <apply> <inverse/> <fn> <ci>f</ci> </fn> </apply> </apply> <ident/> </apply> </math> </p> <p> e^x <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <exp/> <ci>x</ci> </apply> </math> </p> <p> min(x, x not in B, x^2) using <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <min/> <bvar> <ci>x</ci> </bvar> <condition> <reln> <notin/> <ci>x</ci> <ci type='set'>B</ci> </reln> </condition> <apply> <power/> <ci>x</ci> <cn>2</cn> </apply> </apply> </math> </p> <p> min(x, x not in B, x^2) using <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <min/> <bvar> <ci>x</ci> </bvar> <condition> <apply> <notin/> <ci>x</ci> <ci type='set'>B</ci> </apply> </condition> <apply> <power/> <ci>x</ci> <cn>2</cn> </apply> </apply> </math> </p> <p> a mod (b) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <rem/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> ab <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <times/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> gcd(a b, c) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <gcd/> <ci>a</ci> <ci>b</ci> <ci>c</ci> </apply> </math> </p> <p> integral <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <int/> <bvar> <ci>x</ci> </bvar> <lowlimit> <cn>0</cn> </lowlimit> <uplimit> <ci>a</ci> </uplimit> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> </apply> </apply> </math> </p> <p> abs(x) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <abs/> <ci>x</ci> </apply> </math> </p> <p> tall abs(x) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <abs/> <apply> <divide/> <ci>H</ci> <ci>K</ci> </apply> </apply> </math> </p> <p> abs(x + y + z) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <abs/> <apply> <plus/> <ci>x</ci> <ci>y</ci> <ci>z</ci> </apply> </apply> </math> </p> <p> x > 0 and z < 1 as <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <and/> <reln> <gt/> <ci>x</ci> <cn>0</cn> </reln> <reln> <lt/> <ci>x</ci> <cn>1</cn> </reln> </apply> </math> </p> <p> x > 0 and z < 1 as <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <and/> <apply> <gt/> <ci>x</ci> <cn>0</cn> </apply> <apply> <lt/> <ci>x</ci> <cn>1</cn> </apply> </apply> </math> </p> <p> a and b <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <and/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> a or b <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <or/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> a xor b <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <xor/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> a eq b with <reln> tag <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <eq/> <ci>a</ci> <ci>b</ci> </reln> </math> </p> <p> a eq b with <apply> tag <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <eq/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> a neq b with <reln> tag <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <neq/> <ci>a</ci> <ci>b</ci> </reln> </math> </p> <p> a neq b with <apply> tag <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <neq/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> a > b with <reln> tag <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <gt/> <ci>a</ci> <ci>b</ci> </reln> </math> </p> <p> a > b with <apply> tag <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <gt/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> a < b with <reln> tag <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <lt/> <ci>a</ci> <ci>b</ci> </reln> </math> </p> <p> a < b with <apply> tag <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <lt/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> a <= b with <reln> tag <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <geq/> <ci>a</ci> <ci>b</ci> </reln> </math> </p> <p> a >= b with <apply> tag <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <geq/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> a <= b with <reln> tag <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <leq/> <ci>a</ci> <ci>b</ci> </reln> </math> </p> <p> a <= b with <apply> tag <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <leq/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> set: {b, a, c} <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <set> <ci>b</ci> <ci>a</ci> <ci>c</ci> </set> </math> </p> <p> set with condition <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <set> <bvar> <ci>x</ci> </bvar> <condition> <reln> <lt/> <ci>x</ci> <cn>5</cn> </reln> </condition> </set> </math> </p> <p> list: {b, a, c} <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <list> <ci>b</ci> <ci>a</ci> <ci>c</ci> </list> </math> </p> <p> list: {x|x < 5} <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <list order='numeric'> <bvar> <ci>x</ci> </bvar> <condition> <reln> <lt/> <ci>x</ci> <cn>5</cn> </reln> </condition> </list> </math> </p> <p> A union B <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <union/> <ci>A</ci> <ci>B</ci> </apply> </math> </p> <p> A intersect B <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <intersect/> <ci type='set'>A</ci> <ci type='set'>B</ci> </apply> </math> </p> <p> A intersect (B union C) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <intersect/> <ci type='set'>A</ci> <apply> <union/> <ci type='set'>B</ci> <ci type='set'>C</ci> </apply> </apply> </math> </p> <p>integral x in R as <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <in/> <ci>x</ci> <ci type='set'>R</ci> </reln> </math> </p> <p> x in R as <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <in/> <ci>x</ci> <ci type='set'>R</ci> </apply> </math> </p> <p> a in A <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <in/> <ci>a</ci> <ci type='set'>A</ci> </reln> </math> </p> <p> a not in A as <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <notin/> <ci>a</ci> <ci>A</ci> </reln> </math> </p> <p> a not in A as <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <notin/> <ci>a</ci> <ci>A</ci> </apply> </math> </p> <p> not a <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <not/> <ci>a</ci> </apply> </math> </p> <p> not (a and b) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <not/> <apply> <and/> <ci>a</ci> <ci>b</ci> </apply> </apply> </math> </p> <p> A -> B (reln) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <implies/> <ci>A</ci> <ci>B</ci> </reln> </math> </p> <p> A -> B (apply) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <implies/> <ci>A</ci> <ci>B</ci> </apply> </math> </p> <p> forall <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <forall/> <bvar> <ci>x</ci> </bvar> <reln> <eq/> <apply> <minus/> <ci>x</ci> <ci>x</ci> </apply> <cn>0</cn> </reln> </apply> </math> </p> <p> forall/and/lt/power <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <forall/> <bvar> <ci>p</ci> </bvar> <bvar> <ci>q</ci> </bvar> <condition> <apply> <and/> <reln> <in/> <ci>p</ci> <ci type='set'>Q</ci> </reln> <reln> <in/> <ci>q</ci> <ci type='set'>Q</ci> </reln> <reln> <lt/> <ci>p</ci> <ci>q</ci> </reln> </apply> </condition> <reln> <lt/> <ci>p</ci> <apply> <power/> <ci>q</ci> <cn>2</cn> </apply> </reln> </apply> </math> </p> <p> forall/exists/and/plus <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <forall/> <bvar> <ci>n</ci> </bvar> <condition> <apply> <and/> <reln> <in/> <ci>n</ci> <ci type='set'>Z</ci> </reln> <reln> <gt/> <ci>n</ci> <cn>0</cn> </reln> </apply> </condition> <apply> <exists/> <bvar> <ci>x</ci> </bvar> <bvar> <ci>y</ci> </bvar> <bvar> <ci>z</ci> </bvar> <condition> <apply> <and/> <reln> <in/> <ci>x</ci> <ci type='set'>Z</ci> </reln> <reln> <in/> <ci>y</ci> <ci type='set'>Z</ci> </reln> <reln> <in/> <ci>z</ci> <ci type='set'>Z</ci> </reln> </apply> </condition> <reln> <eq/> <apply> <plus/> <apply> <power/> <ci>x</ci> <ci>n</ci> </apply> <apply> <power/> <ci>y</ci> <ci>n</ci> </apply> </apply> <apply> <power/> <ci>z</ci> <ci>n</ci> </apply> </reln> </apply> </apply> </math> </p> <p> exists <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <exists/> <bvar> <ci>x</ci> </bvar> <reln> <eq/> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> </apply> <cn>0</cn> </reln> </apply> </math> </p> <p> forall/exists/and/plus <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <forall/> <bvar> <ci>n</ci> </bvar> <condition> <apply> <and/> <reln> <in/> <ci>n</ci> <ci type='set'>Z</ci> </reln> <reln> <gt/> <ci>n</ci> <cn>0</cn> </reln> </apply> </condition> <apply> <exists/> <bvar> <ci>x</ci> </bvar> <bvar> <ci>y</ci> </bvar> <bvar> <ci>z</ci> </bvar> <condition> <apply> <and/> <reln> <in/> <ci>x</ci> <ci type='set'>Z</ci> </reln> <reln> <in/> <ci>y</ci> <ci type='set'>Z</ci> </reln> <reln> <in/> <ci>z</ci> <ci type='set'>Z</ci> </reln> </apply> </condition> <reln> <eq/> <apply> <plus/> <apply> <power/> <ci>x</ci> <ci>n</ci> </apply> <apply> <power/> <ci>y</ci> <ci>n</ci> </apply> </apply> <apply> <power/> <ci>z</ci> <ci>n</ci> </apply> </reln> </apply> </apply> </math> </p> <p> ln a <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <ln/> <ci>a</ci> </apply> </math> </p> <p> log base 3 of x <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <log/> <logbase> <cn>3</cn> </logbase> <ci>x</ci> </apply> </math> </p> <p> integer <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <int/> <bvar> <ci>x</ci> </bvar> <condition> <reln> <in/> <ci>x</ci> <ci type='set'>D</ci> </reln> </condition> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> </apply> </apply> </math> </p> <p> diff <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <diff/> <bvar> <ci>x</ci> </bvar> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> </apply> </apply> </math> </p> <p> partialdiff <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <partialdiff/> <bvar> <ci>x</ci> <degree> <cn>2</cn> </degree> </bvar> <bvar> <ci>y</ci> </bvar> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> <ci>y</ci> </apply> </apply> </math> </p> <p> integral <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <int/> <bvar> <ci>x</ci> </bvar> <lowlimit> <ci>a</ci> </lowlimit> <uplimit> <ci>b</ci> </uplimit> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> </apply> </apply> </math> </p> <p> partialdiff <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <partialdiff/> <bvar> <ci>x</ci> <degree> <ci>n</ci> </degree> </bvar> <bvar> <ci>y</ci> <degree> <ci>m</ci> </degree> </bvar> <apply> <sin/> <apply> <times/> <ci>x</ci> <ci>y</ci> </apply> </apply> </apply> </math> </p> <p> divide <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <divide/> <ci>a</ci> <ci>b</ci> </apply> </math> </p> <p> divide/plus/minus <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <divide/> <apply> <plus/> <ci>a</ci> <ci>b</ci> </apply> <apply> <minus/> <ci>a</ci> <ci>b</ci> </apply> </apply> </math> </p> <p> divide/plus/divide <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <divide/> <apply> <plus/> <ci>a</ci> <ci>b</ci> </apply> <apply> <divide/> <ci>a</ci> <ci>b</ci> </apply> </apply> </math> </p> <p> A is subset of B as <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <subset/> <ci>A</ci> <ci>B</ci> </reln> </math> </p> <p> A is subset of B as <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <subset/> <ci>A</ci> <ci>B</ci> </apply> </math> </p> <p> A is proper subset of B as <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <prsubset/> <ci>A</ci> <ci>B</ci> </reln> </math> </p> <p> A is proper subset of B as <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <prsubset/> <ci>A</ci> <ci>B</ci> </apply> </math> </p> <p> A is not subset of B as <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <notsubset/> <ci>A</ci> <ci>B</ci> </reln> </math> </p> <p> A is not subset of B as <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <notsubset/> <ci>A</ci> <ci>B</ci> </apply> </math> </p> <p> A is not proper subset of B as <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <notprsubset/> <ci>A</ci> <ci>B</ci> </reln> </math> </p> <p> A is not proper subset of B as <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <notprsubset/> <ci>A</ci> <ci>B</ci> </apply> </math> </p> <p> Set difference <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <setdiff/> <ci>A</ci> <ci>B</ci> </apply> </math> </p> <p> Log base 3 of x + y <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <log/> <logbase> <cn>3</cn> </logbase> <apply> <plus/> <ci>x</ci> <ci>y</ci> </apply> </apply> </math> </p> <p> Sum as x goes from a to b of f(x) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <sum/> <bvar> <ci>x</ci> </bvar> <lowlimit> <ci>a</ci> </lowlimit> <uplimit> <ci>b</ci> </uplimit> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> </apply> </apply> </math> </p> <p> sum <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <sum/> <bvar> <ci>x</ci> </bvar> <condition> <reln> <in/> <ci>x</ci> <ci type='set'>B</ci> </reln> </condition> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> </apply> </apply> </math> </p> <p> product <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <product/> <bvar> <ci>x</ci> </bvar> <lowlimit> <ci>a</ci> </lowlimit> <uplimit> <ci>b</ci> </uplimit> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> </apply> </apply> </math> </p> <p> product <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <product/> <bvar> <ci>x</ci> </bvar> <condition> <reln> <in/> <ci>x</ci> <ci type='set'>B</ci> </reln> </condition> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> </apply> </apply> </math> </p> <p> tendsto with <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <tendsto type='above'/> <apply> <power/> <ci>x</ci> <cn>2</cn> </apply> <apply> <power/> <ci>a</ci> <cn>2</cn> </apply> </reln> </math> </p> <p> tendsto with <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <tendsto type='above'/> <apply> <power/> <ci>x</ci> <cn>2</cn> </apply> <apply> <power/> <ci>a</ci> <cn>2</cn> </apply> </apply> </math> </p> <p> tendsto with <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <tendsto/> <vector> <ci>x</ci> <ci>y</ci> </vector> <vector> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> <ci>y</ci> </apply> <apply> <fn> <ci>g</ci> </fn> <ci>x</ci> <ci>y</ci> </apply> </vector> </reln> </math> </p> <p> tendsto with <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <tendsto/> <vector> <ci>x</ci> <ci>y</ci> </vector> <vector> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> <ci>y</ci> </apply> <apply> <fn> <ci>g</ci> </fn> <ci>x</ci> <ci>y</ci> </apply> </vector> </apply> </math> </p> <p> mean(X) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <mean/> <ci>X</ci> </apply> </math> </p> <p> root(a + b) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <root/> <degree> <ci>n</ci> </degree> <apply> <plus/> <ci>a</ci> <ci>b</ci> </apply> </apply> </math> </p> <p> standard deviation <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <sdev/> <ci>X</ci> </apply> </math> </p> <p> variance(X) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <variance/> <ci>X</ci> </apply> </math> </p> <p> median(X) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <median/> <ci>X</ci> </apply> </math> </p> <p> mode(X) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <mode/> <ci>X</ci> </apply> </math> </p> <p> degree <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <moment/> <degree> <cn>3</cn> </degree> <ci>X</ci> </apply> </math> </p> <p> vector <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <vector> <cn>1</cn> <cn>2</cn> <cn>3</cn> <ci>x</ci> </vector> </math> </p> <p> matrix <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <matrix> <matrixrow> <cn>0</cn> <cn>1</cn> <cn>0</cn> <cn>0</cn> </matrixrow> <matrixrow> <cn>0</cn> <cn>0</cn> <cn>1</cn> <cn>0</cn> </matrixrow> <matrixrow> <cn>1</cn> <cn>0</cn> <cn>0</cn> <cn>0</cn> </matrixrow> </matrix> </math> </p> <p> determinant <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <determinant/> <ci type='matrix'>A</ci> </apply> </math> </p> <p> transpose <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <transpose/> <ci type='matrix'>A</ci> </apply> </math> </p> <p> semantics <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <apply> <plus/> <apply> <sin/> <ci>x</ci> </apply> <cn>5</cn> </apply> <annotation encoding='TeX'>\sin x + 5 </annotation> </semantics> </math> </p> <p> limit <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <limit/> <bvar> <ci>x</ci> </bvar> <lowlimit> <cn>0</cn> </lowlimit> <apply> <sin/> <ci>x</ci> </apply> </apply> </math> </p> <p> symbol check <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <plus/> <cn type='real'>4.56</cn> <cn type='integer'>4.56</cn> <cn type='rational'>4 <sep/>5 </cn> <cn type='complex-cartesian'>4 <sep/>5 </cn> <cn type='complex-polar'>4.56 <sep/>4.56 </cn> <cn type='constant'>π</cn> <cn>ⅇ</cn> <cn>ⅇ</cn> <cn>ⅈ</cn> <cn>ⅈ</cn> <cn>γ</cn> <cn>∞</cn> <cn>∞</cn> </apply> </math> </p> <p> multiset <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <set type='multiset'> <cn type='real'>4.56</cn> <cn type='integer'>4.56</cn> <cn type='rational'>4 <sep/>5 </cn> <cn type='complex-cartesian'>4 <sep/>5 </cn> <cn type='complex-polar'>4.56 <sep/>4.56 </cn> <cn type='constant'>π</cn> <cn>ⅇ</cn> <cn>ⅇ</cn> <cn>ⅈ</cn> <cn>ⅈ</cn> <cn>γ</cn> <cn>∞</cn> <cn>∞</cn> </set> </math> </p> <p> tendsto type = "above" with <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <tendsto type='above'/> <apply> <power/> <ci>x</ci> <cn>2</cn> </apply> <apply> <power/> <ci>a</ci> <cn>2</cn> </apply> </reln> </math> </p> <p> tendsto type = "above" with <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <tendsto type='above'/> <apply> <power/> <ci>x</ci> <cn>2</cn> </apply> <apply> <power/> <ci>a</ci> <cn>2</cn> </apply> </apply> </math> </p> <p> tendsto type = "below" with <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <tendsto type='below'/> <apply> <power/> <ci>x</ci> <cn>2</cn> </apply> <apply> <power/> <ci>a</ci> <cn>2</cn> </apply> </reln> </math> </p> <p> tendsto type = "below" with <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <tendsto type='below'/> <apply> <power/> <ci>x</ci> <cn>2</cn> </apply> <apply> <power/> <ci>a</ci> <cn>2</cn> </apply> </apply> </math> </p> <p> tendsto type = "two-sided" with <reln> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <reln> <tendsto type='two-sided'/> <apply> <power/> <ci>x</ci> <cn>2</cn> </apply> <apply> <power/> <ci>a</ci> <cn>2</cn> </apply> </reln> </math> </p> <p> tendsto type = "two-sided" with <apply> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <tendsto type='two-sided'/> <apply> <power/> <ci>x</ci> <cn>2</cn> </apply> <apply> <power/> <ci>a</ci> <cn>2</cn> </apply> </apply> </math> </p> <p> type check <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <plus/> <ci type='real'>x</ci> <ci type='integer'>x</ci> <ci type='rational'>x</ci> <ci type='complex-cartesian'>y</ci> <ci type='complex-polar'>θ</ci> <ci type='vector'>v</ci> <ci type='constant'>π</ci> <ci>ⅇ</ci> <ci>ⅇ</ci> <ci>ⅈ</ci> <ci>ⅈ</ci> <ci>γ</ci> <ci>∞</ci> <ci>∞</ci> </apply> </math> </p> <p> sin + cos <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <plus/> <apply> <sin/> <ci>x</ci> </apply> <apply> <cos/> <ci>x</ci> </apply> </apply> </math> </p> <p> f(x) <br /> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <fn> <ci>f</ci> </fn> <ci>x</ci> </apply> </math> </p>