Time-related data is a common requirement for many applications. [XML Schema] provides a variety of data types for dates and times, such as date, time, and dateTime. These data types follow internationally friendly formats defined by [ISO 8601] and can be used to address a variety of differing date or time applications. 

The date, time, and dateTime types can either include or omit the offset from Universal Coordinated Time (UTC). The presence (or absence) of this offset implies different things about the time value represented and presents different processing issues for applications. 

Note: Users and implementers of languages or specifications which handle time-related data should take the following recommendations into account even if time-zone-sensitive data is rarely used. Sooner or later some data will be affected by the issues described. Some examples of these include XQuery, XPath, and XSLT.
Datastructure Types for Time
There are two main ways of representing time values as a data structure:
Incremental Time (Monotonic or Computer Time) 
Internally, most programming languages and operating environments provide data types for handling time which are based on a monotonic integer value: units of some specific length measured from a specific point in time (called the epoch). 
For example, the Java type java.util.Date is a long (integer) value for the number of milliseconds since 00:00 (midnight) on January 1, 1970 in UTC (Universal Coordinated Time, sometimes also called GMT). Other systems use other units and epochs. 
Date and time values based on a construct of this type (which we'll call incremental time) are time-zone-independent, since at any given moment it is the same time in UTC everywhere: the values can be transformed for display for any particular time zone offset, but the value itself is not tied to a specific location. Values of this type are commonly used in applications as "time stamps", showing when an event occurred. 

Field-Based Time 
The human representation of computer times is more complicated, and represents time using various separate field values (year, month, day, hour, minute, second, etc.). An example of this would be the time_t struct in the C programming language. Incremental times may or may not be tied to either UTC or the local time zone. They are also typically tied to a specific calendar (such as the Gregorian calendar). The ISO 8601 format is one representation of a field-based time.
Scenarios Involving Time
There are a number of different ways that time-related data might be used in a data format or application. Each of these scenarios requires different levels of information about time and time zone.
1. Timestamps. 
If your application can accurately generate incremental and/or field-based times based on UTC and the events are not tied to specific local time, all that is needed is the timestamp value itself. That is, this scenario applies if your application never needs to recover what the actual wall time was when event occurred—it only cares about relative ordering of events. For example, if you merge log files from many machines together or if you are recording events in a log, a timestamp is perfectly adequate. For these types of time events, an incremental time or a field based time with an offset is all that is needed.
2. Past Events
For events that occurred in the past (with no future events) for which you need to know what the “wall time” was, the time zone of the event may be necessary additional data. Once an event is passed, its relationship to incremental time becomes fixed and the rules for generating wall time should remain static essentially forever. You might still need to know that event “X” occurred at 10:00 rather than at 14:00 local time, so time zone or zone offset from UTC are useful. Knowing the specific time zone allows one to reconstruct the time and its relationship to other wall times.
3. Past and Future Events
If you application deals with both past and future events (for example, if you have a calendar or meeting schedule), you’ll need additional time zone information to ensure proper time computation. At a minimum you will need the time zone and not merely an offset from UTC. This is because future event’s wall time depends on time zone related information, such as DST transitions. 
One issue with future events is that time zone rules can change from time-to-time and these may require an application to update affected records in order to meet user’s expectations. This is because many systems actually store the time portion of the value as an incremental time and the incremental time needs to be changes if the wall time offset from UTC has been altered.
4. Recurring Events.  
A recurring event, such as a regular meeting, is usually defined by a set of rules that express a user's intent. In some cases, the user intends for the event to recur at a specific local time (and thus, wants to tie it to local time changes, such as DST transitions). In other cases, they want it tied to another time zone, to a specific UTC offset, or other events.
So, for example, a recurring weekly event might need to add 167, 168, or 169 hours to “last week’s occurrence” of an event to compute this week’s start time, depending on whether a DST transition has occurred and which direction the transition was in.
5. Floating Time Events. 
Some time values are not attached to any particular time zone at all. We refer to these sorts of time values as “floating” time values, because they are not related to a specific fixed moment in time. Instead, they need to be combined with local information to determine a range of acceptable incremental time values.
Examples of floating time events include a user’s birthdate, an employee’s hire or termination date, a list of company holidays, and so forth.
Incremental time doesn’t deal well with floating times, since incremental times are based in UTC. Even if you have used a field-based time value to represent a floating time event, your software or database might still use an incremental time to store or process it. This can unwittingly produce incorrect results. 
For example, suppose that January 1st is a holiday in your payroll system. The day “January 1” has a floating-time status as a “holiday”. That “day” can begin as early as midnight GMT-14:00 and end as late as midnight of January 2 GMT+12:00, depending on local time. This covers an incremental time range of fifty hours.


A Brief History of Time

Computer systems tell time differently than people do. So it is helpful to understand how time works within computers as well as in the real world in order to get a handle on the things that can go wrong.

Observed Time

Actual analog time, sometimes called "observed time", is time, as we experience it. Originally timekeeping was related to an apparently orderly progression of observed events: sunrise, sunset, longest and shortest day of the year, the sun and moon's apparent position against the background stars, and so forth. These "observed events" are, of course, caused by the Earth's rotation on its axis; the Earth's orbit around the sun; and so forth. For convenience, these observed units are then sub-divided into arbitrary units that make time more measurable: hours in a day, for example, or weeks in a month. In many timekeeping systems, the original observational ties have been weakened or removed over time (in the Gregorian calendar the months are no longer tied to the lunar cycle). In other systems the observational aspects of time remain more pronounced. For example, the Koran specifies exactly how to tell day from night (defining a "day") and solar-lunar calendars (such as the traditional Chinese calendar) define months in terms of the lunar cycle.

From Observed to Incremental Time

Observed time has many disadvantages computationally. Observed events are not always predictable or convenient to use. The advent of mechanical timekeeping has allowed a different kind of time to flourish: incremental time based on a monotonic progression of fixed units. In some cases incremental time is merely a prediction of when an event might be observed.

What Is a Time Zone?

A time zone is a geographical region or area that has common rules for determining the local observed time as it relates to monotonic (computer) time. 
Before time zones, local time was derived directly from observation. The observational definition of a day was based observed events such as local noon. Traveling fairly short distances across the Earth's surface results in changes in local observed time: you only have to travel about 17 miles at the equator (and less distance the further north or south you travel) to alter the observed local noon by one minute. 

Time zones were originated in several countries by railroad operators. The importance of maintaining a schedule is that people in the various locations served by the railroad know when the train will arrive (and depart) based on local time and so that trains could be scheduled between stations (using a single line in alternating directions, for example) without confusion. Observational error, local customs, and other issues combined with a plethora of "local times" to make accurate train scheduling of this sort difficult. 

Railroads solved this problem by adopting fixed time zones "one hour wide". The time in the middle of the time zone is used throughout the region, so the most observational deviation you would get is about half an hour (and most people experience a smaller deviation). This is a value small enough that most people won't notice the difference between actual and observed time. 

More recently, the concept of "Daylight Savings Time" (DST) or "Summer Time" was adopted as a way of making people more productive in times of war. There are lots of interesting variations and problems related to DST, including the fact that it varies from country to country (not to mention locality-to-locality) and often has "special one-off" changes to accommodate special events (like hosting the Olympics and the like).

There are different definitions, resulting in different numbers of time zones, depending on which of the following criteria are taken into consideration:

· UTC Offset: This is the most basic measure of a time zone. With one-hour offsets between time zones, there would be 24 world-wide time zones. Actually, there are some that use half-hour or even quarter-hour offsets. In addition, some time zones fall outside a single 24-hour span.

· Daylight Savings/Summer Time: Many regions use daylight savings (also called “summer”) time, with adjustments that are typically one hour. The start and stop date for DST varies by locality. For example, most areas that use DST do so in the summer time. That is, they change their UTC offset forward by one hour when DST starts in the spring and the reverse when DST ends in the autumn. Since “spring” and “autumn” happen in opposite parts of the year in the northern and southern hemispheres. So regions in northern latitudes that share a base UTC offset with a region in a southern latitude will typically have very different DST rules. And other regions near the equator may not observe DST at all. Even regions that share a UTC offset and are similar in latitude may have differing DST start or stop rules.
· Changes to Offset or DST: Regions that currently have the same UTC offset and daylight savings behavior may have had different rules in the past. Correct handling of past time values may require treating such regions as separate time zones. For example, Korea Standard Time and Japan Standard Time currently use the same UTC offset and neither uses daylight savings. However, Japan abandoned DST in 1951, while South Korea used it last in 1988, so an application that tracks time values that reach back that far might need to track these time zones separately.
Identifying Time Zones and Zone Offsets

[XML Schema] follows the [ISO 8601] standard for its lexical representation. Date and time values in ISO 8601 are field-based using the definitions above and can indicate (or omit) the zone offset from UTC. A zone offset is not the same thing as a time zone, and the difference can be important. XML Schema only supports zone offset, but, confusingly, calls it time zone, see for example section 3.2.8.1, lexical representation in [XML Schema].

Although ISO 8601 is expressed in terms of the Gregorian calendar, it can be used to represent values in any calendar system. The presentation of date and time values to end users using different calendar and timekeeping systems is separate from the lexical representation. 

What is a "zone offset"? A zone offset is the difference in hours and minutes between a particular time zone and UTC. In ISO 8601, the particular zone offset can be indicated in a date or time value. The zone offset can be Z for UTC or it can be a value "+" or "-" from UTC. For example, the value 08:00-08:00 represents 8:00 AM in a time zone 8 hours behind UTC, which is the equivalent of 16:00Z (8:00 plus eight hours). The value 08:00+08:00 represents the opposite increment, or midnight (08:00 minus eight hours). 

What is a "time zone"? A time zone is an identifier for a specific location or region which translates into a combination of rules for calculating the UTC offset. For example, when a website maintaining a group calendar in the United States schedules a recurring meeting for 08:00 Pacific Time, it is referring to what is sometimes known as wall time (so called because that is the time shown "on the clock (or calendar) on the wall"). This is not equivalent to either 08:00-08:00 or 08:00-07:00, because Pacific Time does not have a fixed offset from UTC; instead, the offset changes during the course of the year. As mentioned before, XML Schema only supports zone offsets, and it does not make the terminological distinction between zone offset and time zone. So a wall time expressed as an XML Schema time value, must choose which zone offset to use. This may have the unintended effect of causing a scheduled event to shift by an hour (or more) when wall time changes to or from Daylight/Summer time.

To complicate matters, the rules for computing when daylight savings takes effect may be somewhat complex and may change from year to year or from location to location. In the United States, the state of Indiana, for example, does not follow daylight savings time, but this will change in April 2006. See: http://www.mccsc.edu/time.html for further information. The Northern and Southern hemispheres perform Daylight/Summer Time adjustments during opposing times during the year (corresponding to seasonal differences in the two hemispheres). 

To capture these situations, a calendar system must use an ID for the time zone. The most definitive reference for dealing with wall time is the TZ database (also known as the "Olson time zone database" [tzinfo]), which is used by systems such as various commercial UNIX operating systems, Linux, Java, CLDR, ICU, and many other systems and libraries. In the TZ database, "Pacific Time" is denoted with the ID America/Los_Angeles. The TZ database also supplies aliases among different IDs; for example, Asia/Ulan Bator is equivalent to Asia/Ulaanbaatar. From these alias relations, a canonical identifier can be derived. The Common Locale Data Repository [CLDR] can be used to provide a localized form for the IDs: see Appendix J in [UAX 35].


1.3 Incremental versus Field-Based Time

Incremental time and field-based time differ in the way certain operations work. For example, incremental times can be directly compared—their integer values determine which is earlier or later—while field based times must be normalized and their individual fields compared. Field based times can have certain kinds of logical operations performed on them (for example, rolling the date forward or back), while incremental time requires a logical transformation. For example, to set the date 2005-08-30 forward by one day, an implementation can add 'one unit' to the "day" field and adjust the month and year as appropriate. In incremental time, a similar operation might be performed by incrementing the value by 24 hours * 60 minutes * 60 seconds * 1000 milliseconds, which is one logical day, but there may be errors when a particular day has more or fewer seconds in it (such as occur during daylight savings transitions).

The SQL data types date, time, and timestamp are field based time values which are intended to be zone offset independent. The data type timestamp with time zone is the zone offset-dependent equivalent of timestamp in SQL. Programming languages, by contrast, tend to use incremental time and convert to and from a localized textual representation on demand. Databases may use incremental time or either zone offset-dependent or independent field-based structures internally. For example, an Oracle 8 database treats a timestamp field as though it is in the local time of the database instance.

As a result, users may not be clear on the differences between these types or may create a mixture of different representations. For example, a Java programmer using JDBC will retrieve incremental times (java.util.Date objects) from a database, even though the actual field in the database is a (field-based) timestamp value. 

In XML Schema, as with SQL, dates and times are always expressed using field-based time. The date or time may express the zone offset from UTC (for example using a format such as 08:00:00+01:00). UTC is indicated by the letter Z (for example 08:00:00Z). Or, the zone offset may be omitted completely. 

Properly speaking, an XML Schema date or time value with a zone offset is field-based/zone offset dependent and one without is field-based/zone offset independent. 

If the two types are mixed, then the interpretation of the zone offset is not adequately specified in [XML Schema]. In [XPathFO], the interpretation is implementation-defined and is based on an implicit zone offset. This is usually either UTC or local time. The presence or absence of the zone offset in the XML Schema representation may not be indicative of the original data's intention because of the confusion described above. Proper comparisons or processing rely on normalizing all date and time values into zone offset-independent (or zone offset-dependent) forms and never mixing the two in a particular operation. 


1.4 Guidelines

This section describes different guidelines that can be applied to various time and date comparisons.


1.4.1 Working with Field-Based Dates and Times based on XML Schema

Field-based time and date values require the user to determine whether to use a fixed zone offset, a time zone, or nothing. While XML Schema times are field-based in terms of the lexical representation, the underlying data may use incremental time, as may the implementation processing the values. Each specific case requires specific handling. 

· If all of the data values are used to represent incremental time, then the user should always use a specific zone offset (and UTC is strongly recommended as this offset, since most incremental time systems are based on it) and should always specify that zone offset. Values that do not specify a zone offset should be treated as if they use the same offset. If UTC is used, this produces the least amount of modification in the data.

· If all of the data values are used to represent time zone independent values (such as a list of employee's birth dates), then the zone offset should always be omitted. Any values that have a zone offset should probably ignore the zone offset (actually stripping it off, if possible), since zone changes are probably an artifact of other processing. If a zone offset must absolutely be applied to the data, then UTC should be used.

· If all of the data values are used represent time zone dependent values, then the zone offset must always be supplied. Great care should be used to ensure that the correct offset is used and not just the current zone offset. For example, if a system in the U.S. Pacific time zone (America/Los_Angeles) generates a dateTime value 2005-02-11T11:23:04-07:00 on 2005-08-16, it may be an error (since the offset from UTC during August in that time zone is UTC-7, but the zone offset in February is UTC-8).

· If there are time values (with no date portion) with a fixed UTC offset, then the zone offset should always be indicated if and only if the time value really is fixed. That is, this would not apply to a meeting scheduled in Pacific Time, but would apply to a meeting that is always UTC-08:00 (and thus at 7:00 in the morning in Pacific time during parts of the year).


1.4.2 Working with Date and Time Values that Require a Time Zone (and not a zone offset)

Documents or systems can also choose to accompany a time value with the appropriate time zone identifier or TZID using a complex type. This is very important with recurring times, such as calendar meeting times. If a regular meeting is at "08:00 Pacific Time", it is insufficient to store and interchange just a zone offset.

Unfortunately, XML Schema date and time types do not provide for Olson IDs, so most time operations cannot use TZIDs directly. Time zone identification in the date and time types relies entirely on time zone offset from UTC. It is up to the document designer to keep the TZID in a separate data field from the time value.

There are different ways to compare two <datetime, TZID> pairs. If both the date and time are fixed (2004-09-31T01:30), then this can be done by computing the offsets on that date and at those times, using the TZ database. This order then reflects whether one datetime is (absolutely) before another. 

If the dates are not fixed (such as <T01:30, TZID>  Enotice that the date value is omitted) then in some sense, neither is 'before' the other, since each refers to a repeating, interleaved set of points in time. The simplest comparison mechanism where the dates may not be fully specified is simply to put both in canonical form, then order them first by time then by TZID (alphabetical, caseless order). The Olson database does not maintain a fixed canonical form; however, CLDR does provide such a form (see: [CLDR]).

(It is also possible to have a looser comparison, whereby <time0, TZID0> is compared to <time1, TZID1> over some interval of time: if one consistently has a smaller offset during that period, it is considered to be less than the other value. However, there are cases where this mechanism results in a partial ordering.)


1.4.3 Comparing Times

Conversion between or operations on data sets that mix values with and without zone offsets present certain problems.

Example 1: Values with and without zone offsets

  <aDateTime>2005-06-07T13:14:27Z</aDateTime>  <!-- with a zone offset -->

  <bDateTime>2005-06-07T11:00:00</bDateTime>   <!-- without -->

If one wishes to write a comparison between the value of <aDateTime> and <bDateTime>, then the two values must be reconciled to use the same reference point. <aDateTime> uses UTC and can easily be converted to computer time or shifted to another zone offset. <bDateTime> contains no indication of the zone offset. It may be UTC or any other value (currently up to 14 hours different in either direction from UTC).

It is good practice to use an explicit zone offset wherever possible. If one is not available, best practice is to use UTC as the implicit zone offset for conversions of this nature. This is because the values are exactly centered in the range of possibilities and because representation internally (as computer time) is usually based on UTC. Since a single reference point has been used it may be possible to unwind the change later even if erroneous conversion takes place. When working with multiple documents from various sources, the "implicit" offset of the document may vary widely from that of the implementation doing the processing. If UTC is widely used, the chances of error are reduced.

Content and query authors are warned that comparing or processing dateTimes with and without time offsets may produce odd results and such processing should be avoided whenever possible. Generating content that omits zone offset information (where it exists) is a recipe for errors later. Of course, data such as the SQL types cited earlier which is meant to represent wall time should continue to omit the zone offset. Query writers can check for the presence (or absence) of zone offset and should do so to modify dates and times explicitly (instead of allowing implicit conversion) whenever possible.


1.5 Recommendations for XQuery / XSLT

Users of XQuery 1.0 and XSLT 2.0 and other standards should take the following recommendations into account even if time-zone-sensitive data is rarely used. Sooner or later some data will be affected by the issues described:

1. If possible, make sure that data always contains an explicit zone offset.

2. Do not apply operations based on date or time types (such as indexing) to collections of data in which some data items may have zone offset information and other data items may not have zone offset information.

3. If you have data that includes implicit and fixed explicit zone offsets, before applying any date- or time-sensitive operations adjust the zone offset of the implicit data to UTC with the functions for zone offset adjustment, cf. sec. 10.7 in [XPathFO].

4. If you have data that contains both implicit and fixed explicit time zones and you do not want to adjust the data subset which already has a zone offset, make sure that you recognize this data subset, for example via the component extraction functions, cf. sec. 10.5 in [XPathFO].

[image: image1.png]


